WO2022124320A1 - 有機エレクトロルミネッセンス素子、及び、電子機器 - Google Patents

有機エレクトロルミネッセンス素子、及び、電子機器 Download PDF

Info

Publication number
WO2022124320A1
WO2022124320A1 PCT/JP2021/045024 JP2021045024W WO2022124320A1 WO 2022124320 A1 WO2022124320 A1 WO 2022124320A1 JP 2021045024 W JP2021045024 W JP 2021045024W WO 2022124320 A1 WO2022124320 A1 WO 2022124320A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
formula
substituted
ring
Prior art date
Application number
PCT/JP2021/045024
Other languages
English (en)
French (fr)
Inventor
将太 田中
慎太郎 伴
聡美 田崎
裕亮 糸井
匡 羽毛田
裕基 中野
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US18/256,036 priority Critical patent/US20240147846A1/en
Priority to KR1020237018605A priority patent/KR20230118092A/ko
Priority to CN202180081834.8A priority patent/CN116547363A/zh
Publication of WO2022124320A1 publication Critical patent/WO2022124320A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene

Definitions

  • the present invention relates to an organic electroluminescence device and an electronic device.
  • an organic electroluminescence element (organic EL element) is composed of an anode, a cathode, and an organic layer sandwiched between the anode and the cathode.
  • organic EL element When a voltage is applied between both electrodes, electrons from the cathode side and holes from the anode side are injected into the light emitting region, and the injected electrons and holes recombine in the light emitting region to generate an excited state and excite. It emits light as the state returns to the ground state. Therefore, it is important to develop a compound that efficiently transports electrons or holes to the light emitting region and promotes the recombination of electrons and holes in order to obtain a high-performance organic EL device. Further, in recent years, with the further spread of smart phones, organic EL televisions, organic EL lighting and the like using organic EL elements, there is a demand for compounds that satisfy a sufficient element life.
  • Patent Documents 1 to 5 disclose aromatic amine compounds used in organic EL devices and anthracene compounds used in organic EL devices.
  • the present invention has been made to solve the above-mentioned problems, and it is an organic EL element having high performance, more specifically, an organic EL element capable of realizing a long life, and the organic EL element.
  • the subject is to provide electronic devices to be equipped.
  • the organic layer located between the anode and the cathode contains a first layer containing a first compound and a second compound.
  • the first compound has a second layer, and the first compound contains a compound having one or more dehydrogen atoms in the compound represented by the following formula (1), and the second compound is described below.
  • the compound represented by the formula (2) contains a compound having one or more dehydrogen atoms, it is possible to realize a high-performance organic EL element, more specifically, to extend the life. We have found that an organic EL element can be realized, and completed the present invention.
  • the present invention comprises an atom, a cathode facing the anode, and an organic layer including a light emitting band arranged between the anode and the cathode, wherein the organic layer is the first compound. It has a first layer containing a second layer and a second layer containing a second compound, and the first layer and the second layer are different layers, and the first compound has the following formula.
  • the compound represented by (1) contains 1% by mass or more of a compound having one or more dehydrogen atoms, and the second compound has one or more weights in the compound represented by the following formula (2).
  • an organic electroluminescence device containing 1% by mass or more of a compound having a hydrogen atom.
  • N * is the central nitrogen atom.
  • L 1 to L 3 are independently single-bonded, substituted or unsubstituted ring-forming arylene groups having 6 to 30 carbon atoms, or substituted or unsubstituted ring-forming divalent heterocycles having 5 to 30 atoms. It is the basis.
  • a1 to a3 are independently integers of 1 to 3.
  • Ar 1 to Ar 3 are independently substituted or unsubstituted aryl groups having 6 to 30 ring-forming carbon atoms or monovalent heterocyclic groups having 5 to 30 substituted or unsubstituted ring-forming atoms. .. ]
  • X is an oxygen atom, a sulfur atom, or NR 100 .
  • L 4 and L 5 are independently single-bonded, substituted or unsubstituted ring-forming arylene groups having 6 to 30 carbon atoms, or substituted or unsubstituted ring-forming divalent heterocycles having 5 to 30 atoms. It is the basis.
  • Ar 4 is an aryl group having 6 to 30 substituted or unsubstituted ring-forming carbon atoms or a monovalent heterocyclic group having 5 to 30 substituted or unsubstituted ring-forming atoms.
  • R 9 to R 16 and R 100 binds to * x.
  • R 1 to R 8 and R 9 to R 16 and R 100 that do not bond with * x are independently hydrogen atoms or substituents A, respectively.
  • the substituent A is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 carbon atoms. * Adjacent two selected from R 9 to R 16 that do not bind to x may or may not form a ring. ]
  • the present invention provides an electronic device including the organic electroluminescence device.
  • the organic layer containing a light emitting band which is arranged between the anode and the cathode, is represented by the formula (1), and is a first layer containing a first compound containing a compound having one or more dehydrogen atoms.
  • the organic EL element having a second layer containing a second compound containing a compound having one or more dehydrogen atoms represented by the formula (2) shall be a high-performance organic EL element. Can be done. More specifically, it can be an organic EL element capable of achieving a long life. Further, it is possible to provide an electronic device provided with a high-performance organic EL element.
  • hydrogen atoms include isotopes with different numbers of neutrons, namely light hydrogen (protium), deuterium (deuterium), and tritium (tritium).
  • a hydrogen atom that is, a light hydrogen atom, a heavy hydrogen atom, or a hydrogen atom is located at a bondable position in which a symbol such as "R" or "D” representing a deuterium atom is not specified in the chemical structural formula. It is assumed that the triple hydrogen atom is bonded.
  • the number of carbon atoms forming a ring constitutes the ring itself of a compound having a structure in which atoms are cyclically bonded (for example, a monocyclic compound, a fused ring compound, a crosslinked compound, a carbocyclic compound, and a heterocyclic compound). Represents the number of carbon atoms among the atoms to be used. When the ring is substituted with a substituent, the carbon contained in the substituent is not included in the ring-forming carbon number.
  • the "ring-forming carbon number” described below shall be the same unless otherwise stated.
  • the benzene ring has 6 ring-forming carbon atoms
  • the naphthalene ring has 10 ring-forming carbon atoms
  • the pyridine ring has 5 ring-forming carbon atoms
  • the furan ring has 4 ring-forming carbon atoms.
  • the ring-forming carbon number of the 9,9-diphenylfluorenyl group is 13
  • the ring-forming carbon number of the 9,9'-spirobifluorenyl group is 25.
  • the carbon number of the alkyl group is not included in the ring-forming carbon number of the benzene ring.
  • the ring-forming carbon number of the benzene ring substituted with the alkyl group is 6. Further, when the naphthalene ring is substituted with, for example, an alkyl group as a substituent, the carbon number of the alkyl group is not included in the ring-forming carbon number of the naphthalene ring. Therefore, the ring-forming carbon number of the naphthalene ring substituted with the alkyl group is 10.
  • the number of ring-forming atoms is a compound having a structure in which atoms are cyclically bonded (for example, a monocycle, a fused ring, and a ring aggregate) (for example, a monocyclic compound, a fused ring compound, a crosslinked compound, and a carbocycle).
  • atoms for example, a monocycle, a fused ring, and a ring aggregate
  • Atoms that do not form a ring for example, a hydrogen atom that terminates the bond of atoms that form a ring
  • atoms included in the substituent when the ring is substituted by a substituent are not included in the number of ring-forming atoms.
  • the "number of ring-forming atoms" described below shall be the same unless otherwise stated.
  • the pyridine ring has 6 ring-forming atoms
  • the quinazoline ring has 10 ring-forming atoms
  • the furan ring has 5 ring-forming atoms.
  • the number of hydrogen atoms bonded to the pyridine ring or the number of atoms constituting the substituent is not included in the number of pyridine ring forming atoms. Therefore, the number of ring-forming atoms of the pyridine ring to which the hydrogen atom or the substituent is bonded is 6.
  • a hydrogen atom bonded to a carbon atom of a quinazoline ring or an atom constituting a substituent is not included in the number of ring-forming atoms of the quinazoline ring. Therefore, the number of ring-forming atoms of the quinazoline ring to which a hydrogen atom or a substituent is bonded is 10.
  • the number of carbon atoms XX to YY in the expression "the ZZ group having the number of carbon atoms XX to YY substituted or unsubstituted” represents the number of carbon atoms when the ZZ group is unsubstituted and is substituted. Does not include the carbon number of the substituent in the case.
  • "YY” is larger than “XX”, “XX” means an integer of 1 or more, and "YY” means an integer of 2 or more.
  • the number of atoms XX to YY in the expression "the ZZ group having the number of atoms XX to YY substituted or unsubstituted” represents the number of atoms when the ZZ group is unsubstituted and is substituted. Does not include the number of atoms of the substituent in the case.
  • "YY” is larger than “XX”
  • "XX” means an integer of 1 or more
  • YY" means an integer of 2 or more.
  • the unsubstituted ZZ group represents the case where the "substituted or unsubstituted ZZ group" is the "unsubstituted ZZ group", and the substituted ZZ group is the "substituted or unsubstituted ZZ group". Represents the case where is a "substitution ZZ group”.
  • the term "unsubstituted” in the case of "substituted or unsubstituted ZZ group” means that the hydrogen atom in the ZZ group is not replaced with the substituent.
  • the hydrogen atom in the "unsubstituted ZZ group” is a light hydrogen atom, a heavy hydrogen atom, or a triple hydrogen atom.
  • substitution in the case of “substituent or unsubstituted ZZ group” means that one or more hydrogen atoms in the ZZ group are replaced with the substituent.
  • substitution in the case of “BB group substituted with AA group” means that one or more hydrogen atoms in the BB group are replaced with the AA group.
  • the ring-forming carbon number of the "unsubstituted aryl group” described herein is 6 to 50, preferably 6 to 30, more preferably 6 to 18, unless otherwise stated herein. ..
  • the number of ring-forming atoms of the "unsubstituted heterocyclic group” described herein is 5 to 50, preferably 5 to 30, more preferably 5 to 18, unless otherwise stated herein. be.
  • the carbon number of the "unsubstituted alkyl group” described herein is 1 to 50, preferably 1 to 20, and more preferably 1 to 6, unless otherwise stated herein.
  • the carbon number of the "unsubstituted alkenyl group” described herein is 2 to 50, preferably 2 to 20, and more preferably 2 to 6, unless otherwise stated herein.
  • the carbon number of the "unsubstituted alkynyl group” described herein is 2 to 50, preferably 2 to 20, and more preferably 2 to 6, unless otherwise stated herein.
  • the ring-forming carbon number of the "unsubstituted cycloalkyl group” described herein is 3 to 50, preferably 3 to 20, more preferably 3 to 6, unless otherwise stated herein. be.
  • the ring-forming carbon number of the "unsubstituted arylene group” described herein is 6 to 50, preferably 6 to 30, more preferably 6 to 18, unless otherwise stated herein. ..
  • the number of ring-forming atoms of the "unsubstituted divalent heterocyclic group” described herein is 5 to 50, preferably 5 to 30, and more preferably 5. ⁇ 18.
  • the carbon number of the "unsubstituted alkylene group” described herein is 1 to 50, preferably 1 to 20, and more preferably 1 to 6, unless otherwise stated herein.
  • Specific examples (specific example group G1) of the "substituted or unsubstituted aryl group” described in the present specification include the following unsubstituted aryl group (specific example group G1A) and substituted aryl group (specific example group G1B). ) Etc. can be mentioned.
  • the unsubstituted aryl group refers to the case where the "substituted or unsubstituted aryl group" is the "unsubstituted aryl group”
  • the substituted aryl group is the "substituted or unsubstituted aryl group”.
  • aryl group includes both "unsubstituted aryl group” and “substituted aryl group”.
  • the "substituted aryl group” means a group in which one or more hydrogen atoms of the "unsubstituted aryl group” are replaced with a substituent.
  • Examples of the “substituted aryl group” include a group in which one or more hydrogen atoms of the "unsubstituted aryl group” of the following specific example group G1A are replaced with a substituent, and a substituted aryl group of the following specific example group G1B. Examples are given.
  • aryl group (specific example group G1A): Phenyl group, p-biphenyl group, m-biphenyl group, o-biphenyl group, p-terphenyl-4-yl group, p-terphenyl-3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-terphenyl-4-yl group, o-terphenyl-3-yl group, o-terphenyl-2-yl group, 1-naphthyl group, 2-naphthyl group, Anthril group, Benzoanthril group, Phenantril group, Benzophenanthril group, Fenarenyl group, Pyrenyl group, Chrysenyl group, Benzocrisenyl group
  • aryl group (specific example group G1B): o-tolyl group, m-tolyl group, p-tolyl group, Parakisilyl group, Meta-kisilyl group, Ortho-kisilyl group, Para-isopropylphenyl group, Meta-isopropylphenyl group, Ortho-isopropylphenyl group, Para-t-butylphenyl group, Meta-t-butylphenyl group, Ortho-t-butylphenyl group, 3,4,5-trimethylphenyl group, 9,9-Dimethylfluorenyl group, 9,9-Diphenylfluorenyl group 9,9-bis (4-methylphenyl) fluorenyl group, 9,9-bis (4-isopropylphenyl) fluorenyl group, 9,9-bis (4-t-butylphenyl) fluorenyl group, Cyanophenyl group, Triphenylsilylphenyl group, Tripheny
  • heterocyclic group is a cyclic group containing at least one heteroatom in the ring-forming atom.
  • the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, a phosphorus atom, and a boron atom.
  • the "heterocyclic group” described herein is a monocyclic group or a fused ring group.
  • the “heterocyclic group” described herein is an aromatic heterocyclic group or a non-aromatic heterocyclic group.
  • Specific examples (specific example group G2) of the "substituted or unsubstituted heterocyclic group" described in the present specification include the following unsubstituted heterocyclic group (specific example group G2A) and substituted heterocyclic group (specific example group G2). Specific example group G2B) and the like can be mentioned.
  • the unsubstituted heterocyclic group refers to the case where the "substituted or unsubstituted heterocyclic group" is the "unsubstituted heterocyclic group", and the substituted heterocyclic group is "substituted or unsubstituted".
  • heterocyclic group is "substituted heterocyclic group”.
  • heterocyclic group is simply referred to as “unsubstituted heterocyclic group” and “substituted heterocyclic group”. Including both.
  • substituted heterocyclic group means a group in which one or more hydrogen atoms of the "unsubstituted heterocyclic group” are replaced with a substituent.
  • substituted heterocyclic group examples include a group in which the hydrogen atom of the "unsubstituted heterocyclic group” of the following specific example group G2A is replaced, an example of the substituted heterocyclic group of the following specific example group G2B, and the like. Can be mentioned.
  • the examples of the "unsubstituted heterocyclic group” and the “substituted heterocyclic group” listed here are merely examples, and the "substituted heterocyclic group” described in the present specification is specifically referred to as a "substituted heterocyclic group".
  • the specific example group G2A is, for example, an unsubstituted heterocyclic group containing the following nitrogen atom (specific example group G2A1), an unsubstituted heterocyclic group containing an oxygen atom (specific example group G2A2), and a non-substituted heterocyclic group containing a sulfur atom. (Specific example group G2A3) and a monovalent heterocyclic group derived by removing one hydrogen atom from the ring structure represented by the following general formulas (TEMP-16) to (TEMP-33). (Specific example group G2A4) is included.
  • the specific example group G2B is, for example, a substituted heterocyclic group containing the following nitrogen atom (specific example group G2B1), a substituted heterocyclic group containing an oxygen atom (specific example group G2B2), and a substituted heterocycle containing a sulfur atom.
  • the substituent is one or more hydrogen atoms of the group (specific example group G2B3) and the monovalent heterocyclic group derived from the ring structure represented by the following general formulas (TEMP-16) to (TEMP-33). Includes replaced groups (specific example group G2B4).
  • An unsubstituted heterocyclic group containing a nitrogen atom (specific example group G2A1): Pyrrolyl group, Imidazolyl group, Pyrazolyl group, Triazolyl group, Tetrazoleyl group, Oxazolyl group, Isooxazolyl group, Oxadiazolyl group, Thiazolyl group, Isothiazolyl group, Thiasia Zoryl group, Pyridyl group, Pyridadinyl group, Pyrimidinyl group, Pyrazinel group, Triazinyl group, Indrill group, Isoin drill group, Indridinyl group, Kinolidinyl group, Quinoline group, Isoquinolyl group, Synnolyl group, Phthalazinyl group, Kinazolinyl group, Kinoxalinyl group, Benzoimidazolyl group, Indazolyl group, Phenantrolinyl group, Phenantridinyl group, Acridinyl group
  • An unsubstituted heterocyclic group containing an oxygen atom (specific example group G2A2): Frill group, Oxazolyl group, Isooxazolyl group, Oxadiazolyl group, Xanthenyl group, Benzofuranyl group, Isobenzofuranyl group, Dibenzofuranyl group, Naftbenzofuranyl group, Benzodiazepine group, Benzoisoxazolyl group, Phenoxazinyl group, Morphorino group, Ginaftfuranyl group, Azadibenzofuranyl group, Diazadibenzofuranyl group, Azanaftbenzofuranyl group and diazanaphthobenzofuranyl group.
  • An unsubstituted heterocyclic group containing a sulfur atom (specific example group G2A3): Thienyl group, Thiazolyl group, Isothiazolyl group, Thiasia Zoryl group, Benzothiophenyl group (benzothienyl group), Isobenzothiophenyl group (isobenzothienyl group), Dibenzothiophenyl group (dibenzothienyl group), Naftbenzothiophenyl group (naphthobenzothienyl group), Benzothiazolyl group, Benzodiazepine azolyl group, Phenothiadinyl group, Dinaftthiophenyl group (dinaftthienyl group), Azadibenzothiophenyl group (azadibenzothienyl group), Diazadibenzothiophenyl group (diazadibenzothienyl group), Azanaft benzothiophenyl
  • XA and YA are independently oxygen atom, sulfur atom, NH, or CH 2 . However, at least one of XA and YA is an oxygen atom, a sulfur atom, or NH.
  • the general formulas (TEMP-16) to (TEMP - 33) when at least one of X A and YA is NH or CH 2 , the general formulas (TEMP-16) to (TEMP-33) are used.
  • the monovalent heterocyclic group derived from the represented ring structure includes a monovalent group obtained by removing one hydrogen atom from these NH or CH 2 .
  • -Substituted heterocyclic group containing a nitrogen atom (specific example group G2B1): (9-Phenyl) carbazolyl group, (9-biphenylyl) carbazolyl group, (9-Phenyl) Phenylcarbazolyl group, (9-naphthyl) carbazolyl group, Diphenylcarbazole-9-yl group, Phenylcarbazole-9-yl group, Methylbenzoimidazolyl group, Ethylbenzoimidazolyl group, Phenyltriazinyl group, Biphenyll triazinyl group, Diphenyltriazinyl group, Phenylquinazolinyl group and biphenylylquinazolinyl group.
  • the "one or more hydrogen atoms of the monovalent heterocyclic group” means that at least one of hydrogen atoms, XA and YA bonded to the ring-forming carbon atom of the monovalent heterocyclic group is NH. It means one or more hydrogen atoms selected from the hydrogen atom bonded to the nitrogen atom of the case and the hydrogen atom of the methylene group when one of XA and YA is CH2.
  • Specific examples (specific example group G3) of the "substituted or unsubstituted alkyl group" described in the present specification include the following unsubstituted alkyl group (specific example group G3A) and substituted alkyl group (specific example group G3B). ).
  • the unsubstituted alkyl group refers to the case where the "substituted or unsubstituted alkyl group" is an "unsubstituted alkyl group”
  • the substituted alkyl group is a "substituted or unsubstituted alkyl group”.
  • alkyl group includes both "unsubstituted alkyl group” and "substituted alkyl group”.
  • the "substituted alkyl group” means a group in which one or more hydrogen atoms in the "unsubstituted alkyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkyl group” include a group in which one or more hydrogen atoms in the following "unsubstituted alkyl group” (specific example group G3A) are replaced with a substituent, and a substituted alkyl group (specific example). Examples of group G3B) can be mentioned.
  • the alkyl group in the "unsubstituted alkyl group” means a chain-like alkyl group. Therefore, the "unsubstituted alkyl group” includes a linear "unsubstituted alkyl group” and a branched "unsubstituted alkyl group”.
  • the examples of the "unsubstituted alkyl group” and the “substituted alkyl group” listed here are merely examples, and the "substituted alkyl group” described in the present specification includes the specific example group G3B.
  • Unsubstituted alkyl group (specific example group G3A): Methyl group, Ethyl group, n-propyl group, Isopropyl group, n-butyl group, Isobutyl group, s-Butyl group and t-Butyl group.
  • Substituent alkyl group (specific example group G3B): Propylfluoropropyl group (including isomers), Pentafluoroethyl group, 2,2,2-trifluoroethyl group and trifluoromethyl group.
  • Specific examples (specific example group G4) of the "substituted or unsubstituted alkenyl group" described in the present specification include the following unsubstituted alkenyl group (specific example group G4A) and substituted alkenyl group (specific example group). G4B) and the like can be mentioned.
  • the unsubstituted alkenyl group refers to the case where the "substituted or unsubstituted alkenyl group” is a "substituted alkenyl group", and the "substituted alkenyl group” is a "substituted or unsubstituted alkenyl group”. Refers to the case where "is a substituted alkenyl group”.
  • alkenyl group includes both "unsubstituted alkenyl group” and "substituted alkenyl group”.
  • the "substituted alkenyl group” means a group in which one or more hydrogen atoms in the "unsubstituted alkenyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkenyl group” include a group in which the following "unsubstituted alkenyl group” (specific example group G4A) has a substituent, an example of a substituted alkenyl group (specific example group G4B), and the like. Be done.
  • the examples of the "unsubstituted alkenyl group” and the “substituted alkenyl group” listed here are only examples, and the "substituted alkenyl group” described in the present specification includes the specific example group G4B.
  • Unsubstituted alkenyl group (specific example group G4A): Vinyl group, Allyl group, 1-butenyl group, 2-butenyl group and 3-butenyl group.
  • Substituent alkenyl group (specific example group G4B): 1,3-Butanjienyl group, 1-Methylvinyl group, 1-methylallyl group, 1,1-dimethylallyl group, 2-Methylallyl group and 1,2-dimethylallyl group.
  • alkynyl groups and “substituted alkynyl groups”.
  • the "substituted alkynyl group” means a group in which one or more hydrogen atoms in the "unsubstituted alkynyl group” are replaced with a substituent.
  • Specific examples of the "substituted alkynyl group” include a group in which one or more hydrogen atoms are replaced with a substituent in the following "unsubstituted alkynyl group” (specific example group G5A).
  • Specific examples (specific example group G6) of the "substituted or unsubstituted cycloalkyl group” described in the present specification include the following unsubstituted cycloalkyl group (specific example group G6A) and substituted cycloalkyl group (specific example group G6A). Specific example group G6B) and the like can be mentioned.
  • the unsubstituted cycloalkyl group refers to the case where the "substituted or unsubstituted cycloalkyl group" is an "unsubstituted cycloalkyl group", and the substituted cycloalkyl group is "substituted or unsubstituted”. Refers to the case where the "cycloalkyl group” is a "substituted cycloalkyl group”.
  • the term “cycloalkyl group” is simply referred to as "unsubstituted cycloalkyl group” and "substituted cycloalkyl group”. Including both.
  • the "substituted cycloalkyl group” means a group in which one or more hydrogen atoms in the "unsubstituted cycloalkyl group” are replaced with a substituent.
  • Specific examples of the "substituted cycloalkyl group” include a group in which one or more hydrogen atoms in the following "unsubstituted cycloalkyl group” (specific example group G6A) are replaced with a substituent, and a substituted cycloalkyl group. Examples of (Specific example group G6B) can be mentioned.
  • cycloalkyl group (specific example group G6A): Cyclopropyl group, Cyclobutyl group, Cyclopentyl group, Cyclohexyl group, 1-adamantyl group, 2-adamantyl group, 1-norbornyl group and 2-norbornyl group.
  • Substituent cycloalkyl group (specific example group G6B): 4-Methylcyclohexyl group.
  • group G7 of the group represented by —Si (R 901 ) (R 902 ) (R 903 ) described in the present specification, -Si (G1) (G1) (G1), -Si (G1) (G2) (G2), -Si (G1) (G1) (G2), -Si (G2) (G2) (G2), -Si (G3) (G3) (G3), and -Si (G6) (G6) (G6) (G6) Can be mentioned.
  • G1 is the "substituted or unsubstituted aryl group” described in the specific example group G1.
  • G2 is the “substituted or unsubstituted heterocyclic group” described in the specific example group G2.
  • G3 is the “substituted or unsubstituted alkyl group” described in the specific example group G3.
  • G6 is the "substituted or unsubstituted cycloalkyl group” described in the specific example group G6.
  • -A plurality of G1s in Si (G1) (G1) (G1) are the same as or different from each other.
  • -A plurality of G2s in Si (G1) (G2) (G2) are the same as or different from each other.
  • -A plurality of G1s in Si (G1) (G1) (G2) are the same as or different from each other.
  • -A plurality of G2s in Si (G2) (G2) (G2) are the same as or different from each other.
  • -A plurality of G3s in Si (G3) (G3) (G3) are the same as or different from each other.
  • -A plurality of G6s in Si (G6) (G6) (G6) are the same as or different from each other.
  • G1 is the "substituted or unsubstituted aryl group” described in the specific example group G1.
  • G2 is the "substituted or unsubstituted heterocyclic group” described in the specific example group G2.
  • G3 is the "substituted or unsubstituted alkyl group” described in the specific example group G3.
  • G6 is the "substituted or unsubstituted cycloalkyl group” described in the specific example group G6.
  • G1 is the "substituted or unsubstituted aryl group” described in the specific example group G1.
  • G2 is the "substituted or unsubstituted heterocyclic group” described in the specific example group G2.
  • G3 is the "substituted or unsubstituted alkyl group” described in the specific example group G3.
  • G6 is the "substituted or unsubstituted cycloalkyl group” described in the specific example group G6.
  • G1 is the "substituted or unsubstituted aryl group” described in the specific example group G1.
  • G2 is the "substituted or unsubstituted heterocyclic group” described in the specific example group G2.
  • G3 is the "substituted or unsubstituted alkyl group” described in the specific example group G3.
  • G6 is the "substituted or unsubstituted cycloalkyl group” described in the specific example group G6.
  • -The plurality of G1s in N (G1) (G1) are the same as or different from each other.
  • -The plurality of G2s in N (G2) (G2) are the same as or different from each other.
  • -The plurality of G3s in N (G3) (G3) are the same as or different from each other.
  • a plurality of G6s in -N (G6) (G6) are the same as or different from each other.
  • Halogen atom Specific examples of the “halogen atom” described in the present specification (specific example group G11) include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • the "unsubstituted fluoroalkyl group” has 1 to 50 carbon atoms, preferably 1 to 30 carbon atoms, and more preferably 1 to 18 carbon atoms, unless otherwise specified herein.
  • the "substituted fluoroalkyl group” means a group in which one or more hydrogen atoms of the "fluoroalkyl group” are replaced with a substituent.
  • the "substituted fluoroalkyl group” described in the present specification includes a group in which one or more hydrogen atoms bonded to a carbon atom of the alkyl chain in the "substituted fluoroalkyl group” are further replaced with a substituent, and a group.
  • substituted fluoroalkyl group also included is a group in which one or more hydrogen atoms of the substituent in the "substituted fluoroalkyl group” are further replaced with the substituent.
  • substituents in the "substituted fluoroalkyl group” include an example of a group in which one or more hydrogen atoms in the "alkyl group” (specific example group G3) are replaced with a fluorine atom.
  • the "unsubstituted haloalkyl group” has 1 to 50 carbon atoms, preferably 1 to 30 carbon atoms, and more preferably 1 to 18 carbon atoms, unless otherwise specified herein.
  • the "substituted haloalkyl group” means a group in which one or more hydrogen atoms of the "haloalkyl group” are replaced with a substituent.
  • the "substituted haloalkyl group” described in the present specification includes a group in which one or more hydrogen atoms bonded to a carbon atom of the alkyl chain in the "substituted haloalkyl group” are further replaced with a substituent, and a "substitution".
  • haloalkyl group groups in which one or more hydrogen atoms of the substituents in the "haloalkyl group” are further replaced by the substituents.
  • substituents include an example of a group in which one or more hydrogen atoms in the "alkyl group” (specific example group G3) are replaced with a halogen atom.
  • the haloalkyl group may be referred to as a halogenated alkyl group.
  • a specific example of the "substituted or unsubstituted alkoxy group” described in the present specification is a group represented by —O (G3), where G3 is the “substituted or substituted” described in the specific example group G3. It is an unsubstituted alkyl group.
  • the "unsubstituted alkoxy group” has 1 to 50 carbon atoms, preferably 1 to 30 carbon atoms, and more preferably 1 to 18 carbon atoms, unless otherwise specified herein.
  • a specific example of the "substituted or unsubstituted alkylthio group” described in the present specification is a group represented by —S (G3), where G3 is the “substituted or substituted” described in the specific example group G3. It is an unsubstituted alkyl group.
  • the "unsubstituted alkylthio group” has 1 to 50 carbon atoms, preferably 1 to 30 carbon atoms, and more preferably 1 to 18 carbon atoms, unless otherwise specified herein.
  • a specific example of the "substituted or unsubstituted aryloxy group” described in the present specification is a group represented by —O (G1), where G1 is the “substitution” described in the specific example group G1. Alternatively, it is an unsubstituted aryl group.
  • the ring-forming carbon number of the "unsubstituted aryloxy group” is 6 to 50, preferably 6 to 30, and more preferably 6 to 18, unless otherwise specified herein.
  • a specific example of the "substituted or unsubstituted arylthio group” described in the present specification is a group represented by —S (G1), where G1 is the “substituted or substituted arylthio group” described in the specific example group G1. It is an unsubstituted aryl group. " The ring-forming carbon number of the "unsubstituted arylthio group” is 6 to 50, preferably 6 to 30, and more preferably 6 to 18, unless otherwise specified herein.
  • a specific example of the "trialkylsilyl group” described in the present specification is a group represented by ⁇ Si (G3) (G3) (G3), where G3 is described in the specific example group G3. It is a "substituted or unsubstituted alkyl group”.
  • -A plurality of G3s in Si (G3) (G3) (G3) are the same as or different from each other.
  • the carbon number of each alkyl group of the "trialkylsilyl group” is 1 to 50, preferably 1 to 20, and more preferably 1 to 6, unless otherwise specified herein.
  • a specific example of the "substituted or unsubstituted aralkyl group” described in the present specification is a group represented by-(G3)-(G1), where G3 is described in the specific example group G3. It is a "substituted or unsubstituted alkyl group", and G1 is a "substituted or unsubstituted aryl group” described in the specific example group G1.
  • the "aralkyl group” is a group in which the hydrogen atom of the "alkyl group” is replaced with the "aryl group” as a substituent, and is an embodiment of the "substituted alkyl group".
  • the "unsubstituted aralkyl group” is an "unsubstituted alkyl group” substituted with an "unsubstituted aryl group", and the carbon number of the "unsubstituted aralkyl group” is unless otherwise specified herein. , 7 to 50, preferably 7 to 30, and more preferably 7 to 18.
  • substituted or unsubstituted aralkyl group examples include a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylisopropyl group, a 2-phenylisopropyl group, a phenyl-t-butyl group and an ⁇ .
  • -Naphtylmethyl group 1- ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group , 2- ⁇ -naphthylethyl group, 1- ⁇ -naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group and the like.
  • substituted or unsubstituted aryl groups described herein are preferably phenyl groups, p-biphenyl groups, m-biphenyl groups, o-biphenyl groups, p-terphenyl-unless otherwise described herein.
  • the substituted or unsubstituted heterocyclic group described herein is preferably a pyridyl group, a pyrimidinyl group, a triazinyl group, a quinolyl group, an isoquinolyl group, a quinazolinyl group, a benzoimidazolyl group, a phenyl group, unless otherwise specified herein.
  • Nantrolinyl group carbazolyl group (1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, or 9-carbazolyl group), benzocarbazolyl group, azacarbazolyl group, diazacarbazolyl group , Dibenzofuranyl group, naphthobenzofuranyl group, azadibenzofuranyl group, diazadibenzofuranyl group, dibenzothiophenyl group, naphthobenzothiophenyl group, azadibenzothiophenyl group, diazadibenzothiophenyl group, ( 9-phenyl) carbazolyl group ((9-phenyl) carbazole-1-yl group, (9-phenyl) carbazole-2-yl group, (9-phenyl) carbazole-3-yl group, or (9-phenyl) carbazole group -4-yl group), (9-bi
  • carbazolyl group is specifically one of the following groups unless otherwise described in the present specification.
  • the (9-phenyl) carbazolyl group is specifically any of the following groups unless otherwise described in the present specification.
  • dibenzofuranyl group and the dibenzothiophenyl group are specifically any of the following groups unless otherwise described in the present specification.
  • Substituentally substituted or unsubstituted alkyl groups described herein are preferably methyl groups, ethyl groups, propyl groups, isopropyl groups, n-butyl groups, isobutyl groups, and t-, unless otherwise stated herein. It is a butyl group or the like.
  • the "substituted or unsubstituted arylene group” described herein is derived by removing one hydrogen atom on the aryl ring from the above "substituted or unsubstituted aryl group” 2 It is the basis of the price.
  • the "substituted or unsubstituted arylene group” (specific example group G12) one hydrogen atom on the aryl ring is removed from the "substituted or unsubstituted aryl group” described in the specific example group G1. Examples include the induced divalent group.
  • the "substituted or unsubstituted divalent heterocyclic group" described in the present specification shall exclude one hydrogen atom on the heterocycle from the above "substituted or unsubstituted heterocyclic group”. It is a divalent group derived by.
  • specific example group G13 of the "substituted or unsubstituted divalent heterocyclic group"
  • Examples thereof include a divalent group derived by removing an atom.
  • the "substituted or unsubstituted alkylene group” described herein is derived by removing one hydrogen atom on the alkyl chain from the above "substituted or unsubstituted alkyl group” 2 It is the basis of the price.
  • the "substituted or unsubstituted alkylene group” (specific example group G14), one hydrogen atom on the alkyl chain is removed from the "substituted or unsubstituted alkyl group" described in the specific example group G3. Examples include the induced divalent group.
  • the substituted or unsubstituted arylene group described in the present specification is preferably any group of the following general formulas (TEMP-42) to (TEMP-68), unless otherwise described in the present specification.
  • Q1 to Q10 are independently hydrogen atoms or substituents, respectively.
  • * represents a binding position.
  • Q 1 to Q 10 are independently hydrogen atoms or substituents, respectively.
  • the formulas Q 9 and Q 10 may be bonded to each other via a single bond to form a ring.
  • * represents a binding position.
  • the substituted or unsubstituted divalent heterocyclic group described in the present specification is preferably a group according to any one of the following general formulas (TEMP-69) to (TEMP-102), unless otherwise described in the present specification. Is.
  • Q1 to Q9 are independently hydrogen atoms or substituents, respectively.
  • Q1 to Q8 are independently hydrogen atoms or substituents, respectively.
  • the set of two adjacent sets is one set. Is a pair of R 921 and R 922 , a pair of R 922 and R 923 , a pair of R 923 and R 924 , a pair of R 924 and R 930 , a pair of R 930 and R 925 , and R 925 .
  • the above-mentioned "one or more sets” means that two or more sets of two or more adjacent sets may form a ring at the same time.
  • R 921 and R 922 are coupled to each other to form ring Q A
  • R 925 and R 926 are coupled to each other to form ring Q B
  • the above general formula (TEMP-103) is used.
  • the anthracene compound represented is represented by the following general formula (TEMP-104).
  • anthracene compound represented by the general formula (TEMP-103) is described below. It is represented by the general formula (TEMP-105). In the following general formula (TEMP-105), ring QA and ring QC share R922 .
  • the formed “monocycle” or “condensed ring” may be a saturated ring or an unsaturated ring as the structure of only the formed ring. Even when “a set of two adjacent sets” forms a “monocycle” or a “condensed ring”, the “monocycle” or “condensed ring” is a saturated ring or a ring of saturation.
  • An unsaturated ring can be formed.
  • the ring QA and the ring QB formed in the general formula (TEMP - 104) are “single ring” or “condensed ring", respectively.
  • the ring Q A and the ring Q C formed in the general formula (TEMP-105) are “condensed rings”.
  • the ring Q A and the ring Q C of the general formula (TEMP-105) are formed into a fused ring by condensing the ring Q A and the ring Q C. If the ring QA of the general formula ( TMEP - 104) is a benzene ring, the ring QA is a monocyclic ring. If the ring QA of the general formula ( TMEP - 104) is a naphthalene ring, the ring QA is a fused ring.
  • the "unsaturated ring” means an aromatic hydrocarbon ring or an aromatic heterocycle.
  • saturated ring is meant an aliphatic hydrocarbon ring or a non-aromatic heterocycle.
  • aromatic hydrocarbon ring include a structure in which the group given as a specific example in the specific example group G1 is terminated by a hydrogen atom.
  • aromatic heterocycle include a structure in which the aromatic heterocyclic group given as a specific example in the specific example group G2 is terminated by a hydrogen atom.
  • Specific examples of the aliphatic hydrocarbon ring include a structure in which the group given as a specific example in the specific example group G6 is terminated by a hydrogen atom.
  • forming a ring is meant forming a ring with only a plurality of atoms in the matrix, or with a plurality of atoms in the matrix and one or more arbitrary elements.
  • the ring QA formed by bonding R 921 and R 922 to each other which is represented by the general formula (TEMP-104), has a carbon atom of an anthracene skeleton to which R 921 is bonded and an anthracene to which R 922 is bonded. It means a ring formed by a carbon atom of a skeleton and one or more arbitrary elements.
  • a carbon atom of an anthracene skeleton to which R 921 is bonded a carbon atom of an anthracene skeleton to which R 922 is bonded, and four carbon atoms.
  • the ring formed by R 921 and R 922 is a benzene ring.
  • arbitrary element is preferably at least one element selected from the group consisting of carbon element, nitrogen element, oxygen element, and sulfur element, unless otherwise described in the present specification.
  • the bond that does not form a ring may be terminated with a hydrogen atom or the like, or may be substituted with an "arbitrary substituent” described later.
  • the formed ring is a heterocycle.
  • the number of "one or more arbitrary elements" constituting the monocyclic or condensed ring is preferably 2 or more and 15 or less, and more preferably 3 or more and 12 or less. , More preferably 3 or more and 5 or less.
  • the "monocycle” and the “condensed ring” are preferably “monocycles”.
  • the "saturated ring” and the “unsaturated ring” are preferably “unsaturated rings”.
  • a “monocycle” is preferably a benzene ring.
  • the "unsaturated ring” is preferably a benzene ring.
  • one or more pairs of two or more adjacent pairs are bonded to each other with a plurality of atoms in the matrix and one or more 15 pairs. It forms a substituted or unsubstituted "unsaturated ring” consisting of at least one element selected from the group consisting of the following carbon element, nitrogen element, oxygen element, and sulfur element.
  • the substituent is, for example, an "arbitrary substituent” described later.
  • Specific examples of the substituent when the above-mentioned “monocycle” or “condensed ring” has a substituent are the substituents described in the above-mentioned “Substituents described in the present specification” section.
  • the substituent is, for example, an "arbitrary substituent” described later.
  • substituents when the above-mentioned "monocycle” or “condensed ring” has a substituent are the substituents described in the above-mentioned “Substituents described in the present specification” section.
  • the above is the case where “one or more sets of two or more adjacent sets are combined with each other to form a substituted or unsubstituted monocycle” and “one or more sets of two or more adjacent sets”.
  • an unsubstituted alkyl group having 1 to 50 carbon atoms An unsubstituted alkenyl group having 2 to 50 carbon atoms, An unsubstituted alkynyl group having 2 to 50 carbon atoms, An unsubstituted cycloalkyl group having 3 to 50 carbon atoms, -Si (R 901 ) (R 902 ) (R 903 ), -O- (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, It is a group selected from the group consisting of an aryl group having an unsubstituted ring-forming carbon number of 6 to 50 and a heterocyclic group having an unsubstituted ring-forming atom number of 5 to 50.
  • R 901 to R 907 are independent of each other. Hydrogen atom, Substituentally substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, Substitutable or unsubstituted ring-forming cycloalkyl group having 3 to 50 carbon atoms, A substituted or unsubstituted ring-forming aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms. When two or more R 901s are present, the two or more R 901s are the same as or different from each other.
  • the two or more R 902s are the same as or different from each other. If there are two or more R 903s , the two or more R 903s are the same as or different from each other. If there are two or more R 904s , the two or more R 904s are the same as or different from each other. When two or more R 905s are present, the two or more R 905s are the same as or different from each other. If there are two or more R- 906s , the two or more R- 906s are the same as or different from each other. When two or more R 907s are present, the two or more R 907s are the same as or different from each other.
  • the substituent in the case of "substitutable or unsubstituted" is Alkyl group with 1 to 50 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 50 ring-forming carbon atoms and a heterocyclic group having 5 to 50 ring-forming atoms.
  • the substituent in the case of "substitutable or unsubstituted" is Alkyl groups with 1 to 18 carbon atoms, It is a group selected from the group consisting of an aryl group having 6 to 18 ring-forming carbon atoms and a heterocyclic group having 5 to 18 ring-forming atoms.
  • the substituent in the case of "substitutable or unsubstituted" is Cyano group, Halogen atom, Alkyl group with 1 to 30 carbon atoms, A cycloalkyl group having 3 to 30 carbon atoms forming a ring, Aralkyl group with 7 to 36 carbon atoms, Alkoxy group with 1 to 30 carbon atoms, Aryloxy groups with 6 to 30 carbon atoms forming a ring, A tri-substituted silyl group having a substituent selected from an alkyl group having 1 to 30 carbon atoms, Haloalkyl group with 1 to 30 carbon atoms, Aryl groups with 6 to 30 carbon atoms forming a ring, Alkylthio groups having 1 to 30 carbon atoms and It is at least one substituent selected from the group consisting of arylthio groups having 6 to 30 ring-forming carbon atoms.
  • any adjacent substituents may form a "saturated ring" or an "unsaturated ring", preferably substituted or unsaturated 5 It forms a membered ring, a substituted or unsubstituted saturated 6-membered ring, a substituted or unsubstituted unsaturated 5-membered ring, or a substituted or unsubstituted unsaturated 6-membered ring, more preferably a benzene ring. do.
  • any substituent may further have a substituent.
  • the substituent further possessed by the arbitrary substituent is the same as that of the above-mentioned arbitrary substituent.
  • the numerical range expressed by using “AA to BB” has the numerical value AA described before “AA to BB” as the lower limit value and the numerical value BB described after “AA to BB”. Means the range including as the upper limit value.
  • the organic EL element according to the embodiment of the present invention includes an atom, a cathode, and an organic layer including a light emitting band arranged between the anode and the cathode, and the organic layer comprises a first compound. It has a first layer containing and a second layer containing a second compound, and is a layer different from the first layer and the second layer.
  • the first compound has the following formula.
  • the compound represented by (1) contains 1% by mass or more of a compound having one or more dehydrogen atoms
  • the second compound has one or more weights in the compound represented by the following formula (2). It contains 1% by mass or more of a compound having a hydrogen atom.
  • the compound represented by the formula (1) may be referred to as “compound (1)”
  • the compound represented by the formula (2) may be referred to as “compound (2)”. Compound (1) and compound (2) will be described later.
  • the organic EL device exhibits high device performance by having the above configuration. Specifically, it becomes possible to provide an organic EL element having a longer life.
  • the first layer of the organic EL element which is contained in the organic layer including the light emitting band, contains the compound (1) having at least one dehydrogen atom. It is also possible to provide a method for improving the performance of the organic EL element by including the compound (2) having at least one dehydrogen atom. In this method, for example, a compound (1) containing only a light hydrogen atom as a hydrogen atom is used as the hole transport material contained in the hole transport layer which is one layer constituting the organic layer.
  • the compound (2) is compared with the case of using at least one of the cases where a compound containing only a light hydrogen atom is used as a hydrogen atom. Therefore, it becomes possible to improve the performance of the organic EL element.
  • a compound represented by the above formula (1) and having a structure containing only a light hydrogen atom as a hydrogen atom is also referred to as a "light hydrogen substance of the compound (1)”.
  • a compound represented by the above formula (2) and having a structure containing only a light hydrogen atom as a hydrogen atom is also referred to as a "light hydrogen substance of the compound (2)”.
  • the light hydrogen body when used, for example, as the hole transport material contained in the hole transport layer, substantially only the light hydrogen body (containing the light hydrogen body of the compound (1) with respect to the first compound).
  • a ratio of 90 mol% or more, 95 mol% or more or 99 mol% or more when used, and as a host material contained in the emission zone, substantially only a light hydrogen compound (a compound with respect to the second compound (2). )
  • the content ratio of the light hydrogen substance to the total with the light hydrogen substance is 90 mol% or more, 95 mol% or more, or 99 mol% or more).
  • the compound (1) in place of the light hydrogen form of the compound (1) or in addition to the light hydrogen form of the compound (1).
  • a compound in which one is replaced with a heavy hydrogen atom is used, and as a host material contained in the emission zone, the compound is used in place of the light hydrogen substance of the compound (2) or in addition to the light hydrogen substance of the compound (2).
  • the performance can be enhanced by using a compound in which at least one of the light hydrogen atoms of the light hydrogen body of (2) is replaced with a heavy hydrogen atom.
  • FIG. 1 is a schematic diagram showing an example of the configuration of the organic EL element.
  • the organic EL element 1 shown in FIG. 1 has a substrate 2, an anode 3, a cathode 4, and a light emitting unit 10 arranged between the anode 3 and the cathode 4.
  • the light emitting unit 10 has a light emitting band 5.
  • a hole transport band 6 hole injection layer, hole transport layer, etc.
  • an electron transport band 7 electron injection layer, electron transport layer
  • an electron blocking layer (not shown) may be provided on the anode 3 side of the light emitting band 5, and a hole blocking layer (not shown) may be provided on the cathode 4 side of the light emitting band 5.
  • an electron blocking layer (not shown) may be provided on the anode 3 side of the light emitting band 5
  • a hole blocking layer (not shown) may be provided on the cathode 4 side of the light emitting band 5.
  • FIG. 2 is a schematic view showing another configuration of the organic EL element.
  • the organic EL element 11 shown in FIG. 2 has a substrate 2, an anode 3, a cathode 4, and a light emitting unit 20 arranged between the anode 3 and the cathode 4.
  • the light emitting unit 20 has a light emitting band 5.
  • the hole transport band arranged between the anode 3 and the emission band 5 is formed from the first hole transport layer 6a and the second hole transport layer 6b.
  • the electron transport band arranged between the light emitting band 5 and the cathode 4 is formed from the first electron transport layer 7a and the second electron transport layer 7b.
  • the light emitting band 5 includes at least one light emitting layer.
  • the light emitting band 5 may be a light emitting layer composed of a single layer, or may include a plurality of layers (for example, a plurality of light emitting layers, a plurality of light emitting layers, and a space layer).
  • the light emitting unit 10 in the organic EL element 1 of FIG. 1 and the light emitting unit 20 of the organic EL element 11 of FIG. 2 are "organic layers including a light emitting band", respectively. Then, in the first layer contained in the organic layer, the first compound which is a compound containing 1% by mass or more of a compound having one or more deuterium atoms in the compound represented by the above formula (1) is contained. included. Further, in the second layer contained in the organic layer and different from the first layer, 1% by mass or more of the compound having one or more deuterium atoms in the compound represented by the above formula (2) is added. A second compound, which is a compound containing the compound, is included.
  • the first compound contained in the first layer and the second compound contained in the second layer may be one kind alone or two or more kinds, respectively.
  • the first compound includes a plurality of compounds represented by the formula (1) and having different structures from each other, and the second compound is described above.
  • the compound includes a plurality of compounds represented by the formula (2) and having different structures from each other.
  • the first compound contained in the first layer and the second compound contained in the second layer will be described. After that, the layer structure of the organic EL element and the like will be described.
  • the first compound contained in at least one layer of the organic layer is 1% by mass of a compound having one or more deuterium atoms in the compound represented by the formula (1) (compound (1)) as described above. Including the above.
  • N * is the central nitrogen atom.
  • L 1 to L 3 are independently single-bonded, substituted or unsubstituted arylene groups having 6 to 30 carbon atoms, or substituted or unsubstituted ring-forming atoms having 5 to 30 atoms. It is a divalent heterocyclic group of.
  • the details of the substituted or unsubstituted ring-forming arylene group having 6 to 30 carbon atoms represented by L 1 to L 3 are as described above in the section of "Substituents described in the present specification”.
  • the substituted or unsubstituted arylene group represented by L 1 to L 3 is preferably a phenylene group, a biphenylene group, or a terphenylene group independently of each other.
  • the details of the substituted or unsubstituted ring-forming divalent heterocyclic group having 5 to 30 atoms represented by L 1 to L 3 are as described above in the section of "Substituents described in the present specification”.
  • A1 to a3 are independently integers of 1 to 3.
  • Ar 1 to Ar 3 are independently substituted or unsubstituted aryl groups having 6 to 30 ring-forming carbon atoms or monovalent heterocyclic groups having 5 to 30 substituted or unsubstituted ring-forming atoms. ..
  • Ar 1 to Ar 3 are independently substituted or unsubstituted aryl groups having 6 to 16 ring-forming carbon atoms, or substituted or unsubstituted ring-forming atoms having 5 to 30 atoms. It is preferably a valent heterocyclic group.
  • the total carbon atoms of the two substituted or unsubstituted ring-forming carbon atoms of 6 to 16 are all carbon atoms.
  • the number is preferably 12-38.
  • the "total number of carbon atoms" also includes the number of carbon atoms of the substituent.
  • the substituent of Ar 1 , the substituent of Ar 2 , and the substituent of Ar 3 are all unsubstituted substituents. That is, substitution of a substituent of Ar 1 , substitution of a substituent of Ar 2 , and substitution of a substituent of Ar 3 are not allowed.
  • the substituted or unsubstituted aryl group having 6 to 16 carbon atoms represented by Ar 1 to Ar 3 contains a substituted or unsubstituted fluorenyl group
  • at least one of the substituted or unsubstituted fluorenyl group has the following formula. It is preferably represented by (A).
  • Ra is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  • R b is a substituted or unsubstituted alkyl group.
  • one of R 91 to R 98 is a single bond that binds to (L 1 ) a1, (L 2 ) a 2 or (L 3 ) a 3.
  • the non-single bond R 91 to R 98 are independently hydrogen atoms or substituents, and the substituents are the substituent of Ar 1 in the above-mentioned formula (1), the substituent of Ar 2 and Ar 3 . It is the same as the substituent of the above, and the preferred embodiment is also the same.
  • R a and R b Details of the substituted or unsubstituted alkyl group represented by R a and R b are as described above in the section "Substituents described herein".
  • the substituents of the substituted alkyl groups represented by R a and R b are both unsubstituted substituents. That is, substitution of the substituent of the above-mentioned substituted alkyl group represented by Ra and R b is not allowed.
  • the unsubstituted alkyl group represented by R a and R b is preferably a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, or a t-butyl group. Yes, more preferably a methyl group, an ethyl group, an isopropyl group, or a t-butyl group, and even more preferably a methyl group or a t-butyl group.
  • the substituent of the substituted aryl group represented by Ra is an unsubstituted substituent. That is, substitution of the substituent of the aryl group represented by Ra is not allowed.
  • the unsubstituted aryl group represented by Ra is more preferably selected from the group consisting of a phenyl group, a biphenyl group, a naphthyl group, and a phenanthryl group.
  • Aryl Group Represented by Ar 1 to Ar 3 The details of the substituted or unsubstituted aryl group having 6 to 16 carbon atoms represented by Ar 1 to Ar 3 are described above in the section "Substituents described herein". That's right.
  • the unsubstituted aryl group represented by Ar 1 to Ar 3 is preferably composed of only a benzene ring, and more preferably selected from the group consisting of a phenyl group, a biphenyl group, a naphthyl group, and a phenanthryl group.
  • Heterocyclic groups represented by Ar 1 to Ar 3 The details of the substituted or unsubstituted monovalent heterocyclic group having 5 to 30 atom-forming atoms represented by Ar 1 to Ar 3 are described in "Substituents described herein". As described above in the section.
  • the unsubstituted monovalent heterocyclic group represented by Ar 1 to Ar 3 is preferably a pyridyl group, a pyrimidinyl group, a triazinyl group, a quinolyl group, an isoquinolyl group, a quinazolinyl group, a benzoimidazolyl group, a phenanthrolinyl group or a carbazolyl group.
  • Ar 1 Substituent, Ar 2 Substituent and Ar 3 Substituent are independent of each other.
  • Alkynyl Group The details of the above-unsubstituted alkynyl group having 2 to 50 carbon atoms as a substituent of Ar 1 , a substituent of Ar 2 and a substituent of Ar 3 are described in the section of "Substituents described herein". As you did.
  • Cycloalkyl Group The details of the unsubstituted cycloalkyl group having 3 to 50 carbon atoms as the substituent of Ar 1 , the substituent of Ar 2 and the substituent of Ar 3 are described in "Substituents described herein". As described above in the section.
  • Haloalkyl Group The details of the above-unsubstituted haloalkyl group having 1 to 50 carbon atoms as the substituent of Ar 1 , the substituent of Ar 2 and the substituent of Ar 3 are described in the section of "Substituents described herein". As you did.
  • the unsubstituted haloalkoxy group having 1 to 50 carbon atoms as the substituent of Ar 1 , the substituent of Ar 2 and the substituent of Ar 3 is a group represented by ⁇ O (G12).
  • G12 is the unsubstituted haloalkyl group.
  • Alkylthio Group The details of the above-unsubstituted alkylthio group having 1 to 50 carbon atoms as the substituent of Ar 1 , the substituent of Ar 2 and the substituent of Ar 3 are described in the section of "Substituents described herein". As you did.
  • Aryl Group Ar 1 Substituent, Ar 2 Substituent and Ar 3 Substituent The Unsubstituted Aryl Group with 6-50 Rings of Carbon As mentioned above in the section.
  • the unsubstituted aryl group as the substituent of Ar 1 , the substituent of Ar 2 and the substituent of Ar 3 is more preferably selected from the group consisting of a phenyl group, a naphthyl group, and a phenanthryl group.
  • the unsubstituted ring-forming aryl group having 6 to 50 carbon atoms as the substituent of Ar 2 and the substituent of Ar 3 includes, for example, a fused aryl group such as a fluorenyl group, a phenanthryl group and an anthrasenyl group; Although it is included, it does not include a ring set such as a biphenyl group, a terphenyl group or a naphthylphenyl group.
  • Aryloxy Group The details of the unsubstituted, ring-forming aryloxy group having 6 to 50 carbon atoms as the substituent of Ar 1 , the substituent of Ar 2 and the substituent of Ar 3 are described in "Substituents described herein". As described above in the section.
  • Arylthio Group The details of the above-unsubstituted arylthio group having 6 to 50 carbon atoms as a substituent of Ar 1 , a substituent of Ar 2 and a substituent of Ar 3 are described in the section of "Substituents described herein". As described above.
  • Aralkyl Group The details of the unsubstituted Aralkyl group having 7 to 50 carbon atoms as the substituent of Ar 1 , the substituent of Ar 2 and the substituent of Ar 3 are described in the section of "Substituents described herein". As you did.
  • Heterocyclic Group The details of the unsubstituted monovalent heterocyclic group having 5 to 50 atoms forming an unsubstituted ring as a substituent of Ar 1 , a substituent of Ar 2 and a substituent of Ar 3 are described in the present specification. As described above in the section "Substituents”.
  • Substituents For details of the substituents of the mono, di or tri-substituted silyl groups as the substituents of Ar 1 , the substituents of Ar 2 and the substituents of Ar 3 , the section "Substituents described herein". As described above.
  • Ar 1 is preferably substituted with an unsubstituted alkyl group having 1 to 50 carbon atoms.
  • the total number of carbon atoms of each group bonded to the central nitrogen atom in compound (1) is 10 or more.
  • the total carbon number of each group bonded to the central nitrogen atom is preferably 12 or more, more preferably 18 or more.
  • the compound (1) is represented by any of the following formulas (1-1a) to (1-1c).
  • ring A is a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 carbon atoms, or a substituted or unsubstituted heterocyclic ring having 5 to 50 ring-forming atoms. ..
  • the substituted or unsubstituted aromatic hydrocarbon ring represented by the ring A having 6 to 50 carbon atoms is selected from the group consisting of a substituted or unsubstituted phenyl group, a biphenyl group, a naphthyl group, and a phenanthryl group, respectively. Is more preferable.
  • the substituted or unsubstituted heterocycle having 5 to 50 atom-forming atoms represented by ring A is a substituted or unsubstituted pyridyl group, pyrimidinyl group, triazinyl group, quinolyl group, isoquinolyl group, quinazolinyl group, benzoimidazolyl group, and fe.
  • Nantrolinyl group carbazolyl group (1-carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, or 9-carbazolyl group), benzocarbazolyl group, dibenzofuranyl group, naphthobenzofuranyl It is preferably a heterocyclic group selected from a group, a dibenzothiophenyl group and a naphthobenzothiophenyl group, and more preferably a heterocyclic group selected from a carbazolyl group, a dibenzofuranyl group and a dibenzothiophenyl group.
  • R 17a to R 20a is bound to * y.
  • R 17a to R 20a not bonded to * 7 are independently hydrogen atoms or substituents B, respectively.
  • the substituent B is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 carbon atoms.
  • the details of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms represented by the substituent B are as described above in the section of "Substituents described herein".
  • the details of the substituted or unsubstituted aryl group having 6 to 50 carbon atoms represented by the substituent B are as described above in the section of "Substituents described herein".
  • two adjacent two selected from R 17a to R 20a that do not bind to * y may or may not form a ring.
  • ring B is a substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 carbon atoms, or a substituted or unsubstituted heterocyclic ring having 5 to 50 ring-forming atoms. ..
  • the substituted or unsubstituted aromatic hydrocarbon ring represented by the ring B and the substituted or unsubstituted aromatic hydrocarbon ring having 6 to 50 carbon atoms and the substituted or unsubstituted heterocyclic ring having 5 to 50 atoms are the same as those described for the ring A. Is.
  • the ring C and the ring D are independently substituted or unsubstituted aromatic hydrocarbon rings having 6 to 50 carbon atoms, or substituted or unsubstituted ring-forming atoms having 5 atoms. It is a heterocycle of ⁇ 50.
  • the substituted or unsubstituted aromatic hydrocarbon ring represented by the ring C and the ring D having 6 to 50 carbon atoms and the substituted or unsubstituted heterocyclic ring having 5 to 50 ring-forming atoms have described the ring A. Is similar to.
  • N * , L1 to L3, Ar2, Ar3 , and a1 to a3 are as defined in the above formula ( 1 ).
  • compound (1) is represented by the following formula (1-2).
  • Y represents an oxygen atom, a sulfur atom, NR 101 , or CR 102 R 103 .
  • R 17b to R 24b and R 101 binds to * y1.
  • R 17b to R 24b and R 101 that do not bind to R 102 , R 103 , and * y 1 are independently hydrogen atoms or substituents C, respectively.
  • the substituent C is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 carbon atoms.
  • the details of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms represented by the substituent C are as described above in the section of "Substituents described herein”.
  • the details of the substituted or unsubstituted aryl group having 6 to 50 carbon atoms represented by the substituent C are as described above in the section of "Substituents described herein”.
  • N * , L1 to L3, Ar2, Ar3 , and a1 to a3 are as defined in the above formula (1).
  • R 17b to R 24b not bonded to L 1 in the formula (1-2) are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms and are bonded to L 1 . Not at least one of R 17b to R 24 is an alkyl group having 1 to 10 carbon atoms.
  • compound (1) is represented by the following formula (1-3a) or formula (1-3b).
  • L 11 is a single-bonded, substituted or unsubstituted arylene group having 6 to 30 carbon atoms, or a substituted or unsubstituted ring-forming atom number 5. It is a divalent heterocyclic group of ⁇ 30.
  • a11 is an integer of 1 or 2.
  • Y represents an oxygen atom, a sulfur atom, NR 101 , or CR 102 R 103 .
  • R 17c to R 24c and R 101 in the formula (1-3a) binds to * y 2 , and R 17c to R 24c and R 101 not bound to R 102 , R 103 , and * y 2 , respectively. Independently, it is a hydrogen atom or a substituent C.
  • R 17d to R 24d and R 101 in the formula (1-3b) binds to * y 3 , and R 17d to R 24d and R 101 not bound to R 102 , R 103 , and * y 3 , respectively. Independently, it is a hydrogen atom or a substituent C.
  • R 25 to R 28 in the formula (1-3a) and R 25 to R 27 and R 29 in the formula (1-3b) are independently hydrogen atoms or substituents D, respectively.
  • the substituent D is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 carbon atoms.
  • the details of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms represented by the substituent D are as described above in the section of "Substituents described herein".
  • the details of the substituted or unsubstituted aryl group having 6 to 50 carbon atoms represented by the substituent D are as described above in the section of "Substituents described herein".
  • R 26 and R 27 , R 27 and R 28 of equation (1-3a), and R 26 and R 27 , R 25 and R 29 of equation (1-3b) independently form a ring. It may or may not form a ring.
  • R 25 or R 26 of the formulas (1-3a) and (1-3b) may or may not be bonded to the ring-forming carbon atom of the adjacent L 11 .
  • N * , L2 , L3, Ar2, Ar3 , a2 , and a3 are as defined in the above equation (1).
  • the substituent C is as defined in the above formula (1-2).
  • the compound represented by the formula (1) is represented by the above formula (1-3a).
  • compound (1) is represented by the following formula (1-4).
  • R 104 is a hydrogen atom or a substituent E.
  • the substituent E is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 carbon atoms.
  • the details of the substituted or unsubstituted alkyl group having 1 to 50 carbon atoms represented by the substituent E are as described above in the section of "Substituents described herein".
  • the details of the substituted or unsubstituted aryl group having 6 to 50 carbon atoms represented by the substituent E are as described above in the section of "Substituents described herein".
  • Y represents an oxygen atom, a sulfur atom, NR 101 , or CR 102 R 103 .
  • R 17e to R 24e and R 101 is bound to * y 4
  • R 17e to R 24e and R 101 not bound to R 102 , R 103 , and * y 4 are independently hydrogen atoms or substitutions, respectively. It is a group C.
  • N * , L1 to L3, Ar2, Ar3 , and a1 to a3 are as defined in the above formula (1).
  • the substituent C is as defined in the above formula (1-2).
  • compound (1) is represented by the following formula (1-5).
  • R 17 to R 24 are each independently a hydrogen atom or a substituent C.
  • N * , L1 to L3, Ar2, Ar3 , and a1 to a3 are as defined in the above formula ( 1 ).
  • the substituent C is as defined in the above formula (1-2).
  • compound (1) is represented by the following formula (1-6a) or formula (1-6b).
  • N * , L2 , L3, Ar2, Ar3 , a2 , and a3 are as defined in the above formula (1).
  • R 17 to R 24 are as defined in the above equation (1-5).
  • R 25 to R 28 in the formula (1-6a) and R 25 to R 27 and R 29 in the formula (1-6b) are defined in the formulas (1-3a) and (1-3b), respectively. As you did.
  • the compound represented by the formula (1) is represented by the above formula (1-6a).
  • Y represents an oxygen atom, a sulfur atom, NR 101 , or CR 102 R 103 .
  • R 17f to R 24f and R 101 binds to * y5 .
  • R 17f to R 24f and R 101 which do not bind to R 102 , R 103 , and * y 5 , are each independently a hydrogen atom or the above-mentioned substituent C.
  • R 151 to R 155 and R 161 to R 166 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, or substituted or unsubstituted alkyl groups, respectively. It is an aryl group having 6 to 50 carbon atoms forming a ring. however, One selected from R 151 to R 155 is a single bond that binds to * p 2 . One selected from R 161 to R 166 is a single bond that binds to * q 2 , and the other one selected from R 161 to R 166 is a single bond that binds to * r 2 .
  • R 131 to R 135 , R 141 to R 146 , R 171 to R 175 , R 181 to R 186 , R 51 to R 55 and R 191 to R 195 are independent of each other. It is a hydrogen atom or a substituent F, and the substituent F is a substituent similar to the substituent of Ar 1 , the substituent of Ar 2 and the substituent of Ar 3 in the above-mentioned formula (1). however, One selected from R 131 to R 135 is a single bond that binds to * p.
  • R 141 to R 146 is a single bond that binds to * q
  • the other one or two selected from R 141 to R 146 is a single bond that binds to * r.
  • One selected from R 171 to R 175 is a single bond that binds to * p1.
  • One selected from R181 to R186 is a single bond that binds to * q 1
  • the other one or two selected from R181 to R186 is a single bond that binds to * r1.
  • m1, m11 and m21 are independently 0 or 1
  • n1, n11 and n21 are independently 0 or 1, respectively.
  • * r is bonded to the central nitrogen atom N *
  • * p is bonded to the central nitrogen atom N * .
  • one selected from R 131 to R 135 is a single bond that binds to * r.
  • the two adjacent non-bonds selected from R 181 to R 186 , the adjacent two selected from R 51 to R 55 , and the adjacent two selected from R 191 to R 195 are independent and mutually exclusive.
  • C2 the benzene ring B2 and the benzene ring C2, and the benzene ring A3 and the benzene ring B3 are not crosslinked.
  • R 151 to R 155 and R 161 to R 166 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, or substituted or unsubstituted alkyl groups, respectively. It is an aryl group having 6 to 50 carbon atoms forming a ring. however, One selected from R 151 to R 155 is a single bond that binds to * p 2 . One selected from R 161 to R 166 is a single bond that binds to * q 2 , and the other one selected from R 161 to R 166 is a single bond that binds to * r 2 .
  • R 131 to R 135 , R 141 to R 146 , R 81 to R 85 , R 41 to R 46 , R 51 to R 55 , and R 71 to R 80 are independent of each other. It is the same as R 131 to R 135 , R 141 to R 146 , R 171 to R 175 , R 181 to R 186 , R 51 to R 55 and R 191 to R 195 in the above-mentioned formula (1-7), which is preferable.
  • One selected from R 131 to R 135 is a single bond that binds to * p.
  • R 141 to R 146 is a single bond that binds to * q, and the other one or two selected from R 141 to R 146 is a single bond that binds to * r.
  • One selected from R 81 to R 85 is a single bond that binds to * c.
  • One selected from R 41 to R 46 is a single bond that binds to * d, and the other one selected from R 41 to R 46 is a single bond that binds to * e.
  • m1, m3 and m21 are independently 0 or 1
  • n1, n3 and n21 are independently 0 or 1, respectively.
  • * r is bonded to the central nitrogen atom N *
  • * p is bonded to the central nitrogen atom N * .
  • one selected from R 131 to R 135 is a single bond that binds to * r.
  • one selected from R 71 to R 80 is a single bond that binds to * h.
  • Ring B3 is not crosslinked.
  • R 151 to R 155 and R 161 to R 166 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, or substituted or unsubstituted alkyl groups, respectively. It is an aryl group having 6 to 50 carbon atoms forming a ring. however, One selected from R 151 to R 155 is a single bond that binds to * p 2 . One selected from R 161 to R 166 is a single bond that binds to * q 2 , and the other one selected from R 161 to R 166 is a single bond that binds to * r 2 .
  • R 131 to R 135 , R 141 to R 146 , R 81 to R 85 , R 41 to R 46 , R 51 to R 55 , and R 71 to R 80 are independent of each other. It is the same as R 131 to R 135 , R 141 to R 146 , R 171 to R 175 , R 181 to R 186 , R 51 to R 55 and R 191 to R 195 in the above-mentioned formula (1-7), which is preferable.
  • One selected from R 131 to R 135 is a single bond that binds to * p.
  • R 141 to R 146 is a single bond that binds to * q, and the other one or two selected from R 141 to R 146 is a single bond that binds to * r.
  • One selected from R 81 to R 85 is a single bond that binds to * c.
  • One selected from R 41 to R 46 is a single bond that binds to * d, and the other one selected from R 41 to R 46 is a single bond that binds to * e.
  • m1, m3 and m21 are independently 0 or 1
  • n1, n3 and n21 are independently 0 or 1, respectively.
  • * r is bonded to the central nitrogen atom N *
  • * p is bonded to the central nitrogen atom N * .
  • one selected from R 131 to R 135 is a single bond that binds to * r.
  • one selected from R 71 to R 80 is a single bond that binds to * h.
  • Ring B3 is not crosslinked.
  • R 151 to R 155 and R 161 to R 166 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, or substituted or unsubstituted alkyl groups, respectively. It is an aryl group having 6 to 50 carbon atoms forming a ring. however, One selected from R 151 to R 155 is a single bond that binds to * p 2 . One selected from R 161 to R 166 is a single bond that binds to * q 2 , and the other one selected from R 161 to R 166 is a single bond that binds to * r 2 .
  • R 131 to R 135 , R 141 to R 146 , R 111 to R 115 , R 51 to R 55 and R 121 to R 128 are independently described in the above-mentioned formula (1-10). It is the same as R 131 to R 135 , R 141 to R 146 , R 171 to R 175 , R 181 to R 186 , R 51 to R 55 and R 191 to R 195 in 7), and the preferred embodiments are also the same. however, One selected from R 131 to R 135 is a single bond that binds to * p.
  • R 141 to R 146 is a single bond that binds to * q, and the other one or two selected from R 141 to R 146 is a single bond that binds to * r.
  • One selected from R 111 to R 115 is a single bond that binds to * c.
  • One selected from R 121 to R 128 is a single bond that binds to * t.
  • m1 and m21 are independently 0 or 1
  • n1 and n21 are independently 0 or 1, respectively.
  • * r is bonded to the central nitrogen atom N *
  • * p is bonded to the central nitrogen atom N * .
  • one selected from R 131 to R 135 is a single bond that binds to * r.
  • m7 is 0 or 1
  • * c is bonded to the central nitrogen atom N * .
  • Y 3 is an oxygen atom, a sulfur atom, or CR c R d .
  • R c and R d are independently substituted or unsubstituted alkyl groups having 1 to 50 ring-forming carbon atoms, or substituted or unsubstituted aryl groups having 6 to 50 ring-forming carbon atoms, respectively.
  • R c and R d may be bonded to each other to form a spiro ring.
  • two adjacent substances selected from the non-single bond R 131 to R 135 two adjacent substances selected from the non-single bond R 141 to R 146 , and the non-single bond R.
  • Adjacent two selected from 151 to R 155 adjacent two selected from the non-single bond R 161 to R 166 , adjacent two selected from the non-single bond R 111 to R 115 , R 51
  • the two adjacent two selected from R 55 and the two adjacent ones selected from R 121 -R 124 and R 125 -R 128 are independent and do not bond to each other and thus do not form a ring structure.
  • the benzene ring A1 and the benzene ring B1, the benzene ring A1 and the benzene ring C1, the benzene ring B1 and the benzene ring C1, and the benzene ring A3 and the benzene ring B3 are not crosslinked.
  • R 151 to R 155 and R 161 to R 166 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, or substituted or unsubstituted alkyl groups, respectively. It is an aryl group having 6 to 50 carbon atoms forming a ring. however, One selected from R 151 to R 155 is a single bond that binds to * p 2 . One selected from R 161 to R 166 is a single bond that binds to * q 2 , and the other one selected from R 161 to R 166 is a single bond that binds to * r 2 .
  • R 81 to R 85 , R 281 to R 285 , R 61 to R 68 and R 261 to R 268 are independently of R 131 to R in the above-mentioned formula (1-7). It is the same as R 135 , R 141 to R 146 , R 171 to R 175 , R 181 to R 186 , R 51 to R 55 and R 191 to R 195 , and the preferred embodiments are also the same.
  • one selected from R 81 to R 85 is a single bond that binds to * c 1 .
  • One selected from R 281 to R 285 is a single bond that binds to * c 2 .
  • One selected from R 61 to R 68 is a single bond that binds to * f.
  • R261 to R268 is a single bond that binds to * f1.
  • m21 is 0 or 1
  • n21 is 0 or 1.
  • * r2 is bonded to the central nitrogen atom N *
  • * p 2 is bonded to the central nitrogen atom N * .
  • one selected from R 151 to R 155 is a single bond that binds to * r 2 .
  • two adjacent substances selected from the non-single bond R 81 to R 85 two adjacent substances selected from the non-single bond R 151 to R 155 , and the non-single bond R.
  • Two adjacent selected from 161 to R 166 two adjacent selected from the non-single bonds R 281 to R 285 , two adjacent selected from R 61 to R 68 and selected from R 261 to R 268 .
  • the two adjacent bodies are independent of each other and do not bond to each other and thus do not form a ring structure, and the benzene ring A3 and the benzene ring B3 do not crosslink.
  • R 151 to R 155 and R 161 to R 166 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, or substituted or unsubstituted alkyl groups, respectively. It is an aryl group having 6 to 50 carbon atoms forming a ring. however, One selected from R 151 to R 155 is a single bond that binds to * p 2 . One selected from R 161 to R 166 is a single bond that binds to * q 2 , and the other one selected from R 161 to R 166 is a single bond that binds to * r 2 .
  • R 81 to R 85 , R 281 to R 285 , R 41 to R 46 , R 61 to R 68 and R 71 to R 80 are independently described in the above-mentioned formula (1-12). It is the same as R 131 to R 135 , R 141 to R 146 , R 171 to R 175 , R 181 to R 186 , R 51 to R 55 and R 191 to R 195 in 7), and the preferred embodiments are also the same.
  • one selected from R 81 to R 85 is a single bond that binds to * c 1 .
  • R 281 to R 285 is a single bond that binds to * c 2 .
  • R 41 to R 46 is a single bond that binds to * d, and the other one selected from R 41 to R 46 is a single bond that binds to * e.
  • One selected from R 61 to R 68 is a single bond that binds to * f.
  • One selected from R 71 to R 80 is a single bond that binds to * h.
  • m21 and m3 are independently 0 or 1
  • n21 and n3 are independently 0 or 1, respectively.
  • * r2 is bonded to the central nitrogen atom N *
  • * p 2 is bonded to the central nitrogen atom N * .
  • m21 is 1 and n21 is 0, one selected from R 151 to R 155 is a single bond that binds to * r 2 .
  • m2 is 0 or 1 , and when m2 is 0, * c1 is bonded to the central nitrogen atom N * .
  • R 151 to R 155 and R 161 to R 166 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, or substituted or unsubstituted alkyl groups, respectively. It is an aryl group having 6 to 50 carbon atoms forming a ring. however, One selected from R 151 to R 155 is a single bond that binds to * p 2 . One selected from R 161 to R 166 is a single bond that binds to * q 2 , and the other one selected from R 161 to R 166 is a single bond that binds to * r 2 .
  • R 81 to R 85 , R 111 to R 115 , R 61 to R 68 , and R 121 to R 128 are independent of each other, and R 131 to R in the above-mentioned formula (1-7). It is the same as R 135 , R 141 to R 146 , R 171 to R 175 , R 181 to R 186 , R 51 to R 55 and R 191 to R 195 , and the preferred embodiments are also the same.
  • one selected from R 81 to R 85 is a single bond that binds to * c 1
  • one selected from R 111 to R 115 is a single bond that binds to * c 2 .
  • One selected from R 61 to R 65 is a single bond that binds to * f
  • one selected from R 121 to R 128 is a single bond that binds to * t.
  • m21 is 0 or 1
  • n21 is 0 or 1.
  • * r2 is bonded to the central nitrogen atom N *
  • * p 2 is bonded to the central nitrogen atom N * .
  • one selected from R 151 to R 155 is a single bond that binds to * r 2 .
  • Y 3 is an oxygen atom, a sulfur atom, or CR c R d .
  • R c and R d are independently substituted or unsubstituted alkyl groups having 1 to 50 ring-forming carbon atoms, or substituted or unsubstituted aryl groups having 6 to 50 ring-forming carbon atoms, respectively.
  • R c and R d may be bonded to each other to form a spiro ring.
  • two adjacent two selected from the non-single bond R 81 to R 85 two adjacent two selected from the non-single bond R 151 to R 155 , the non-single bond R.
  • Select from two adjacent two selected from 161 to R 166 two adjacent selected from R 111 to R 115 that are not single bonds, two adjacent two selected from R 61 to R 68 , and R 121 to R 128.
  • the two adjacent bodies are independent of each other and do not bond to each other and thus do not form a ring structure, and the benzene ring A3 and the benzene ring B3 do not crosslink.
  • R 151 to R 155 and R 161 to R 166 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, or substituted or unsubstituted alkyl groups, respectively. It is an aryl group having 6 to 50 carbon atoms forming a ring. however, One selected from R 151 to R 155 is a single bond that binds to * p 2 . One selected from R 161 to R 166 is a single bond that binds to * q 2 , and the other one selected from R 161 to R 166 is a single bond that binds to * r 2 .
  • R 81 to R 85 , R 41 to R 46 , R 281 to R 285 , R 241 to R 246 , R 71 to R 80 , and R 271 to R 280 are independent of each other. It is the same as R 131 to R 135 , R 141 to R 146 , R 171 to R 175 , R 181 to R 186 , R 51 to R 55 and R 191 to R 195 in the above-mentioned formula (1-7), which is preferable. The same applies to the embodiments. however, One selected from R 81 to R 85 is a single bond that binds to * c 1 .
  • R 41 to R 46 is a single bond that binds to * d 1
  • the other one selected from R 41 to R 46 is a single bond that binds to * e 1
  • One selected from R 281 to R 285 is a single bond that binds to * c 2
  • One selected from R 241 to R 246 is a single bond that binds to * d 2
  • the other one selected from R 241 to R 246 is a single bond that binds to * e 2
  • One selected from R 71 to R 80 is a single bond that binds to * h 1
  • One selected from R 271 to R 280 is a single bond that binds to * h 2 .
  • m3, m13 and m21 are independently 0 or 1
  • n3, n13 and n21 are independently 0 or 1, respectively.
  • * e1 is bonded to the central nitrogen atom N *
  • * c 1 is bonded to the central nitrogen atom N *
  • one selected from R 81 to R 85 is a single bond that binds to * e 1 .
  • two adjacent two selected from the non-single bond R 81 -R 85 two adjacent two selected from the non-single bond R 41 -R 46 , the non-single bond R.
  • Adjacent two selected from 151 to R 155 adjacent two selected from the non-single bond R 161 to R 166 , adjacent two selected from the non-single bond R 281 to R 285 , R 241
  • the adjacent two selected from R 246 , the adjacent two selected from R 71 to R 80 , and the adjacent two selected from R 271 to R 280 are independent and do not bind to each other and therefore.
  • the ring structure is not formed, and the benzene ring A12 and the benzene ring B12, the benzene ring A22 and the benzene ring B22, and the benzene ring A3 and the benzene ring B3 are not crosslinked.
  • R 151 to R 155 and R 161 to R 166 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, or substituted or unsubstituted alkyl groups, respectively. It is an aryl group having 6 to 50 carbon atoms forming a ring. however, One selected from R 151 to R 155 is a single bond that binds to * p 2 . One selected from R 161 to R 166 is a single bond that binds to * q 2 , and the other one selected from R 161 to R 166 is a single bond that binds to * r 2 .
  • R 81 to R 85 , R 41 to R 46 , R 111 to R 115 , R 71 to R 80 , and R 121 to R 128 are independently described in the above-mentioned formula (1-15). It is the same as R 131 to R 135 , R 141 to R 146 , R 171 to R 175 , R 181 to R 186 , R 51 to R 55 and R 191 to R 195 in 7), and the preferred embodiments are also the same. however, One selected from R 81 to R 85 is a single bond that binds to * c 1 .
  • R 41 to R 46 is a single bond that binds to * d, and the other one selected from R 41 to R 46 is a single bond that binds to * e.
  • One selected from R 111 to R 115 is a single bond that binds to * c 2 .
  • One selected from R 71 to R 80 is a single bond that binds to * h.
  • One selected from R 121 to R 128 is a single bond that binds to * t.
  • m3 and m21 are independently 0 or 1
  • n3 and n21 are independently 0 or 1, respectively.
  • * e is bonded to the central nitrogen atom N *
  • * c 1 is bonded to the central nitrogen atom N *
  • one selected from R 81 to R 85 is a single bond that binds to * e.
  • m7 is 0 or 1, and when m7 is 0, * c 2 is bonded to the central nitrogen atom N * .
  • Y 3 is an oxygen atom, a sulfur atom, or CR c R d .
  • R c and R d are independently substituted or unsubstituted alkyl groups having 1 to 50 ring-forming carbon atoms, or substituted or unsubstituted aryl groups having 6 to 50 ring-forming carbon atoms, respectively. However, this does not apply when both R c and R d are substituted or unsubstituted aryl groups having 6 to 50 carbon atoms.
  • R 151 to R 155 and R 161 to R 166 are independently hydrogen atoms, substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, or substituted or unsubstituted alkyl groups, respectively. It is an aryl group having 6 to 50 carbon atoms forming a ring. however, One selected from R 151 to R 155 is a single bond that binds to * p 2 . One selected from R 161 to R 166 is a single bond that binds to * q 2 , and the other one selected from R 161 to R 166 is a single bond that binds to * r 2 .
  • R 31 to R 35 , R 231 to R 235 , R 121 to R 128 and R 321 to R 328 are independently of R 131 to R 328 in the above-mentioned formula (1-7). It is the same as R 135 , R 141 to R 146 , R 171 to R 175 , R 181 to R 186 , R 51 to R 55 and R 191 to R 195 , and the preferred embodiments are also the same. however, One selected from R 31 to R 35 is a single bond that binds to * c 1 .
  • One selected from R 231 to R 235 is a single bond that binds to * c 2 .
  • One selected from R 121 to R 128 is a single bond that binds to * t 1 .
  • R 321 to R 328 is a single bond that binds to * t 2 .
  • m21 is independently 0 or 1
  • n21 is independently 0 or 1, respectively.
  • * r2 is bonded to the central nitrogen atom N *
  • * p 2 is bonded to the central nitrogen atom N * .
  • one selected from R 151 to R 155 is a single bond that binds to * r 2 .
  • Y 1 and Y 2 are independently oxygen atoms, sulfur atoms, or CR c R d , respectively.
  • R c and R d are independently substituted or unsubstituted alkyl groups having 1 to 50 ring-forming carbon atoms, or substituted or unsubstituted aryl groups having 6 to 50 ring-forming carbon atoms, respectively.
  • R c and R d may be bonded to each other to form a spiro ring.
  • two adjacent substances selected from the non-single bond R 31 to R 35 two adjacent substances selected from the non-single bond R 151 to R 155 , and the non-single bond R.
  • Two adjacent selected from 161 to R 166 two adjacent selected from R 231 to R 235 that are not single bonds, two adjacent two selected from R 121 to R 128 , and selected from R 321 to R 328 .
  • the two adjacent bodies are independent of each other and do not bond to each other and thus do not form a ring structure, and the benzene ring A3 and the benzene ring B3 do not crosslink.
  • compound (1) (Deuterium atom of compound (1))
  • the "hydrogen atom” used herein includes a light hydrogen atom, a dehydrogen atom, and a triple hydrogen atom. Therefore, compound (1) may contain naturally occurring deuterium atoms. Further, a deuterium atom may be intentionally introduced into the compound (1) by using a deuterated compound for a part or all of the raw material compound. Therefore, in one aspect of the invention, compound (1) comprises at least one deuterium atom. That is, the compound (1) may be a compound represented by the formula (1), and at least one of the hydrogen atoms contained in the compound may be a deuterium atom.
  • examples of the raw material compound partially or completely deuterated include, for example, a compound forming the terminal portion (Ar 1 , Ar 2 , Ar 3 ) of the formula (1), and the central nitrogen atom of the formula (1).
  • examples thereof include compounds forming a linker moiety (L 1 , L 2 , L 3 ) connecting the terminal moiety and the terminal moiety.
  • the deuteration rate of compound (1) depends on the deuteration rate of the raw material compound used. Even if a raw material having a predetermined deuteration rate is used, a certain proportion of naturally derived light hydrogen isotopes may be contained. Therefore, in the mode of the deuteration rate of the compound (1) shown below, a trace amount of naturally occurring isotopes is taken into consideration with respect to the ratio obtained by simply counting the number of deuterium atoms represented by the chemical formula. The ratio is included.
  • the deuteration rate of the compound (1) contained in the first compound is 1% or more, preferably 3% or more, more preferably 5% or more, still more preferably 10% or more, still more preferably 50%. That is all.
  • the first compound contains 1% by mass or more of a compound having one or more deuterium atoms in the compound represented by the above formula (1) (compound (1)), preferably 3% by mass. As described above, it is more preferably 5% by mass or more, further preferably 10% by mass or more, still more preferably 50% by mass or more.
  • the compound (1) may be a mixture containing a deuterated compound and a non-deuterated compound, or a mixture of two or more compounds having different deuteration rates.
  • the compound (1) may be a mixture of the following compounds A1 and A2, a mixture of the following compounds D1 and D2, and the following compounds H1 and H2. May be a mixture of.
  • the first compound may be composed of the following compounds A1 and A2, the following compounds D1 and D2, or the following compounds H1 and H2.
  • the deuteration rate of such a mixture is preferably 1% or more, more preferably 3% or more, still more preferably 5% or more, still more preferably 10% or more, still more preferably 50% or more, and 100. Less than%.
  • the ratio of the number of deuterium atoms to the total number of hydrogen atoms in compound (1) is preferably 1% or more, more preferably 3% or more, still more preferably 5% or more, still more preferably 10% or more, and , 100% or less.
  • the hydrogen atom directly linked to the arylene group represented by L 1 and the divalent heterocyclic group represented by L 1 are directly linked.
  • At least one of the hydrogen atom directly connected to the monovalent heterocyclic group represented by 2 , the hydrogen atom directly connected to the aryl group represented by Ar 3 , and the hydrogen atom directly connected to the monovalent heterocyclic group represented by Ar 3 is a heavy hydrogen atom.
  • the total of a, b, c, d, e and f is 1 or more.
  • Da means that a of the hydrogen atoms directly connected to the aryl group represented by Ar 1 or the hydrogen atom directly connected to the monovalent heterocyclic group is a deuterium atom.
  • Db means that b of hydrogen atoms represented by hydrogen atoms directly connected to 1 to 3 arylene groups represented by-((L 1 ) a1)-or divalent heterocyclic groups are deuterium atoms.
  • Dc indicates that c of the hydrogen atoms directly connected to the aryl group represented by Ar 2 or the hydrogen atoms directly connected to the monovalent heterocyclic group are deuterium atoms.
  • “Dd” indicates that d of the hydrogen atoms directly connected to the 1 to 3 arylene groups represented by ⁇ ((L 2 ) a2) ⁇ or the divalent heterocyclic group are deuterium atoms.
  • “De” indicates that e of the hydrogen atoms directly connected to the aryl group represented by Ar 3 or the hydrogen atoms directly connected to the monovalent heterocyclic group are deuterium atoms, and “Df” is ⁇ ((((). It is shown that f of the hydrogen atoms directly connected to the 1 to 3 arylene groups or divalent heterocyclic groups represented by L3) a3) -are dehydrogen atoms.
  • At least one heavy hydrogen atom contained in the compound (1) contained in the first compound is directly linked to the hydrogen atom directly linked to the arylene group represented by L 1 and the divalent heterocyclic group represented by L 1 .
  • a hydrogen atom directly connected to a heterocyclic group a hydrogen atom directly connected to an aryl group represented by Ar 1 , a hydrogen atom directly connected to a monovalent heterocyclic group represented by Ar 1 , a hydrogen atom directly connected to an aryl group represented by Ar 2 , Ar. It is at least one of a hydrogen atom directly connected to a monovalent heterocyclic group represented by 2 ; a hydrogen atom directly linked to an aryl group represented by Ar 3 and a hydrogen atom directly linked to a monovalent heterocyclic group represented by Ar 3 (). That is, in the compound (1), it is more preferable that the substituents when Ar 1 to Ar 3 and L 1 to L 3 are substituted do not contain a heavy hydrogen atom).
  • the compound (1) containing a deuterium atom contained in the first compound for example, a compound represented by the following formula (1-18a) or (1-18b) is preferably mentioned.
  • At least one dehydrogen atom is directly linked to the arylene group represented by L1.
  • the total of b, d and f is preferably 1 or more, and in the formulas (1-18a) and (1-18b), the total of ba, bb, d and f. Is preferably 1 or more.
  • a compound in which at least one of the hydrogen atoms directly linked to the divalent heterocyclic group represented by L 3 is a deuterium atom.
  • the content of the compound which is a deuterium atom in the compound (1) contained in the first compound is more preferably 10% by mass or more, still more preferably 50% by mass or more.
  • the second compound contained in at least one layer of the organic layer is 1% by mass of a compound having one or more deuterium atoms in the compound represented by the formula (2) (compound (2)) as described above. Including the above.
  • X is an oxygen atom, a sulfur atom, or NR 100 .
  • L 4 and L 5 are independently single-bonded, substituted or unsubstituted arylene groups having 6 to 30 carbon atoms, or substituted or unsubstituted ring-forming atoms having 5 to 30 atoms. It is a divalent heterocyclic group of.
  • Ar 4 is an aryl group having 6 to 30 substituted or unsubstituted ring-forming carbon atoms or a monovalent heterocyclic group having 5 to 30 substituted or unsubstituted ring-forming atoms.
  • R 1 to R 8 and R 9 to R 16 and R 100 that do not bond with * x are independently hydrogen atoms or substituents A, respectively.
  • the substituent A is a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms or a substituted or unsubstituted aryl group having 6 to 50 carbon atoms.
  • R 9 to R 16 and R 100 that do not bind to x are all hydrogen atoms, or only one of them is the above-mentioned substituent A.
  • two adjacent two selected from R 9 to R 16 that do not bind to * x may or may not form a ring.
  • Ar 4 is preferably a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • Ar 4 is more preferably selected from the groups represented by the following formulas (a1) to (a4).
  • R 110 is Substituentally substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms, Substituent or unsubstituted alkenyl groups having 2 to 50 carbon atoms, Substituentally or unsubstituted alkynyl groups having 2 to 50 carbon atoms, Substitutable or unsubstituted ring-forming cycloalkyl group having 3 to 50 carbon atoms, -Si (R 901 ) (R 902 ) (R 903 ), -O- (R 904 ), -S- (R 905 ), -N (R 906 ) (R 907 ), Halogen atom, cyano group, nitro group, It is an aryl group having 6 to 50 substituted or unsubstituted ring-forming carbon atoms, or a monovalent heterocyclic group having 5 to 50
  • R 901 to R 907 are as defined in the above-mentioned "substituents described in the present specification”.
  • b1 is an integer from 0 to 4.
  • b2 is an integer from 0 to 5.
  • b3 is an integer from 0 to 7.
  • the plurality of R 110s may be the same or different from each other.
  • adjacent plurality of R 110s are bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring, or a substituted or unsubstituted saturated or unsaturated ring. Does not form.
  • L 4 and L 5 are preferably single-bonded, substituted or unsubstituted ring-forming arylene groups having 6 to 14 carbon atoms, respectively.
  • at least one of L4 and L5 is a single bond.
  • L4 and L5 are independently single - bonded, substituted or unsubstituted ring-forming arylene groups having 6 to 14 carbon atoms.
  • at least one of L4 and L5 is a single bond.
  • compound (2) is represented by the following formula (2-1).
  • X is an oxygen atom, a sulfur atom, or NR 100 .
  • R 9a to R 16a and R 100 binds to * x 1 .
  • * R 9a to R 16a and R 100 that do not bond with x 1 are independently hydrogen atoms or substituents A, respectively.
  • L 4 , Ar 4 , X, R 4 to R 8 , and the substituent A are as defined in the formula (2).
  • the compound (2) is represented by any of the following formulas (2-2a) to (2-2c).
  • X is an oxygen atom, a sulfur atom, or NR 100 .
  • R 9b to R 14b , R 30b to R 33b , and R 100 in the formula (2-2a) binds to * x.
  • * R 9b to R 14b , R 30b to R 33b , and R 100 that do not bond with x are each independently a hydrogen atom or a substituent A.
  • R 9c to R 13c , R 16c , R 30c to R 33c , and R 100 in the formula (2-2b) binds to * x.
  • R 9c to R 13c , R 16c , R 30c to R 33c , and R 100 that do not bond with x are independently hydrogen atoms or substituents A, respectively.
  • One of R 9d to R 12d , R 15d , R 16d , R 30d to R 33d , and R 100 in the formula (2-2c) is combined with * x.
  • R 9d to R 12d , R 15d , R 16d , R 30d to R 33d , and R 100 that do not bind to x are independently hydrogen atoms or substituents A, respectively.
  • compound (2) is represented by the following formula (2-1-1).
  • L 4 , Ar 4 , and R 1 to R 8 are as defined in the formula (2).
  • compound (2) is represented by the following formula (2-1-2).
  • L 4 and Ar 4 are as defined in the formula (2).
  • compound (2) is represented by the following formula (2-1-3a) or (2-1-3b).
  • R 9e to R 12e are independently hydrogen atoms or substituents A, respectively.
  • L 4 , Ar 4 , R 1 to R 8 and the substituent A are as defined in the formula (2).
  • the compound (2) is represented by any of the following formulas (2-2a-1) to (2-2c-1).
  • L4, L5, Ar4 , and R1 to R8 are as defined in the formula (2).
  • compound (2) is represented by the following formulas (2-2a-2) to (2-2c-2).
  • L4, L5, and Ar 4 are as defined in the formula ( 2 ).
  • compound (2) is represented by the following formula (2-2d).
  • R 1A to R 8A are independently hydrogen atoms, and at least one of R 1A to R 8A is a deuterium atom.
  • L 1A and L 2A are independently single-bonded, unsubstituted phenylene groups, or unsubstituted naphthylene groups, respectively.
  • Ar 4A is a phenyl group which may have a phenyl group as a substituent or a naphthyl group which may have a phenyl group as a substituent.
  • Ar 5A is a monovalent group represented by the following formula (2A), (3A) or (4A).
  • any one of R 13A to R 14A is a single bond that binds to L 2A .
  • R 11A , R 12A , R 15A to R 20A , and non-single bond R 13A to R 14A that bind to L 2A are each independently a hydrogen atom or an unsubstituted aryl group having 6 to 50 ring-forming carbon atoms. Is.
  • At least two of R 1A to R 8A are deuterium atoms.
  • R 1A to R 8A are all deuterium atoms.
  • At least one of the hydrogen atoms contained in Ar 1A is a deuterium atom.
  • R 11A , R 12A , R 15A to R 20A , and R 13A to R 14A which are not single bonds and bind to L 2A , are hydrogen atoms.
  • At least one of R 11A , R 12A , R 15A to R 20A , and non-single bond R 13A to R 14A that binds to L 2A is a deuterium atom.
  • the compound represented by the formula (2) can be synthesized by following the synthesis method described in Examples and using a known alternative reaction or raw material suitable for the target product.
  • compound (2) (Deuterium atom of compound (2))
  • the "hydrogen atom” used herein includes a light hydrogen atom, a dehydrogen atom, and a triple hydrogen atom. Therefore, compound (2) may contain naturally occurring deuterium atoms. Further, a deuterium atom may be intentionally introduced into the compound (2) by using a deuterated compound for a part or all of the raw material compound. Therefore, in one aspect of the invention, compound (2) comprises at least one deuterium atom. That is, the compound (2) may be a compound represented by the formula (2), and at least one of the hydrogen atoms contained in the compound may be a deuterium atom.
  • the raw material compound partially or completely deuterated, for example, a compound forming the terminal portion (Ar 4 , X and a skeleton portion containing two benzene rings) of the formula (2), the formula (2). ), A compound forming a linker moiety (L 4 , L 5 ) connecting the terminal portion of the formula (2) and the portion containing the anthracene skeleton, and the like.
  • the deuteration rate of compound (2) depends on the deuteration rate of the raw material compound used. Even if a raw material having a predetermined deuteration rate is used, a certain proportion of naturally derived light hydrogen isotopes may be contained. Therefore, in the mode of the deuteration rate of the compound (2) shown below, a trace amount of naturally occurring isotopes is taken into consideration with respect to the ratio obtained by simply counting the number of deuterium atoms represented by the chemical formula. The ratio is included.
  • the deuteration rate of the compound (2) contained in the first compound is 1% or more, preferably 3% or more, more preferably 5% or more, still more preferably 10% or more, still more preferably 50%. That is all.
  • the second compound contains 1% by mass or more of a compound having one or more deuterium atoms in the compound represented by the above formula (2) (compound (2)), preferably 3% by mass. As described above, it is more preferably 5% by mass or more, further preferably 10% by mass or more, still more preferably 50% by mass or more.
  • the compound (2) may be a mixture containing a deuterated compound and a non-deuterated compound, or a mixture of two or more compounds having different deuteration rates.
  • the compound (2) may be a mixture of the following compound B1 and the compound B2, or may be a mixture of the following compound C1 and the compound C2.
  • the first compound can be composed of the following compounds B1 and B2, or C1 and C2.
  • the compound (2) may be, for example, a mixture of the following compound E1 and the compound E2, a mixture of the following compound F1 and the compound F2, and the following compounds G1 and the compound G2. May be a mixture of. Further, the compound (2) may be a mixture of the following compound I1 and the compound I2, or may be a mixture of the following compound J1 and the compound J2. In these cases, the first compound may consist of the following compounds E1 and E2, F1 and F2, G1 and G2, I1 and I2, or J1 and J2.
  • the deuteration rate of such a mixture is preferably 1% or more, more preferably 3% or more, still more preferably 5% or more, still more preferably 10% or more, still more preferably 50% or more, and 100. Less than%.
  • the ratio of the number of deuterium atoms to the total number of hydrogen atoms in compound (2) is preferably 1% or more, more preferably 3% or more, still more preferably 5% or more, still more preferably 10% or more, and , 100% or less.
  • the compound (1) is composed of the above compounds A1 and A2, and the compound (2) is composed of the above compounds B1 and B2 or the above compounds C1 and C2.
  • the compound (1) is composed of the above compounds D1 and D2, and the compound (2) is composed of the above compounds E1 and E2, the above compounds F1 and F2, or the above compounds G1 and G2. .
  • the compound (1) is composed of the above compounds H1 and H2, and the compound (2) is composed of the above compounds I1 and I2 or the above compounds J1 and J2.
  • the first compound is a compound represented by the formula (1) and contains a plurality of compounds having different structures from each other
  • the second compound is the formula (2).
  • And includes a plurality of compounds having different structures from each other.
  • the first compound is composed of the following compounds 1 and 2
  • the second compound is composed of the following compounds 3 and 4, or compounds 5 and 6.
  • the organic EL element according to the embodiment of the present invention includes an atom, a cathode, and an organic layer including a light emitting band arranged between the anode and the cathode, and the organic layer comprises. It has a first layer containing a first compound and a second layer containing a second compound, and is a layer different from the first layer and the second layer, and is the first compound. Contains 1% by mass or more of the compound having one or more dehydrogen atoms in the compound represented by the formula (1), and the second compound is one or more in the compound represented by the formula (2). It contains 1% by mass or more of a compound having a heavy hydrogen atom.
  • conventionally known materials and device configurations can be applied to the organic EL device as long as the effects of the present invention are not impaired.
  • a hole transport zone (hole injection layer, hole transport layer) provided between the anode and the light emitting layer is provided.
  • Electron blocking layer, exciter blocking layer, etc.), light emitting band (light emitting layer, space layer, etc.), electron transport band provided between the cathode and light emitting layer (electron injection layer, electron transport layer, hole blocking layer, etc.) ), Etc. but are not limited to these.
  • the first compound and the second compound are preferably used as materials for the hole transport band or the light emission band of the fluorescent or phosphorescent EL device.
  • the organic layer includes a hole transport band between the anode and the emission band, and the first layer is included in the hole transport band.
  • the first compound is preferably used as a material for the hole transport zone.
  • the hole transport band is composed of at least one layer having a hole transport function. Examples of the layer constituting the hole transport band include a hole injection layer, a hole transport layer, an electron blocking layer, an exciton blocking layer, and the like.
  • the first layer may be a single layer constituting the hole transport zone, or may be a plurality of layers constituting the hole transport zone. It may be at least one layer of layers.
  • the first layer is the hole transport layer.
  • the first compound is preferably used as a material for the hole transport layer.
  • the hole transport band comprises a third layer that is different from the first layer.
  • the third layer may be arranged between the anode and the first layer, and the third layer may not contain the first compound.
  • the hole transport layer has a multilayer structure including two or more layers, and the hole transport layers are the first hole transport layer (anode side) and the second hole. It has a two-layer structure including a transport layer (cathode side), the first hole transport layer is the third layer, and the second hole transport layer is the first layer.
  • no other layer is included between the first layer and the emission band.
  • the emission band is in direct contact with the first layer.
  • the emission band comprises the second compound.
  • the second layer is preferably a layer included in the emission band, and the second compound is preferably used as a material in the emission band of a fluorescent or phosphorescent EL device. More preferably, the second layer is the light emitting layer, and the second compound is used as a material for the light emitting layer. The second compound is more preferably used as a host material for the light emitting layer.
  • the emission band includes a fluorescent dopant material.
  • the emission band includes a phosphorescent dopant material.
  • the hole transport band comprises the first layer and the emission band comprises the second layer. More preferably, the hole transport layer is the first layer, the light emitting layer is the second layer, and more preferably, the second hole transport layer is the first layer. The light emitting layer is the second layer.
  • the organic EL element may be a fluorescent or phosphorescent single-color light emitting element, a fluorescent / phosphorescent hybrid white light emitting element, or a simple type having a single light emitting unit. It may be a tandem type having a light emitting unit of the above, and above all, a fluorescent light emitting type element is preferable.
  • the "light emitting unit” refers to a minimum unit that includes an organic layer, at least one of which is a light emitting layer, and emits light by recombination of injected holes and electrons.
  • the light emitting unit may be a laminated type having a plurality of phosphorescent light emitting layers or fluorescent light emitting layers, and in that case, it is generated by a phosphorescent light emitting layer between the light emitting layers.
  • a space layer may be provided for the purpose of preventing the excited elements from diffusing into the fluorescent light emitting layer.
  • the typical layer structure of the simple light emitting unit is shown below. The layers in parentheses are arbitrary.
  • A (Hole injection layer /) Hole transport layer / Fluorescent light emitting layer (/ Electron transport layer / Electron injection layer)
  • B (Hole injection layer /) Hole transport layer / Phosphorescent light emitting layer (/ Electron transport layer / Electron injection layer)
  • C (Hole injection layer /) Hole transport layer / First fluorescent light emitting layer / Second fluorescent light emitting layer (/ Electron transport layer / Electron injection layer)
  • D (Hole injection layer /) Hole transport layer / First phosphorescence light emitting layer / Second phosphorescence light emitting layer (/ Electron transport layer / Electron injection layer)
  • E (Hole injection layer /) Hole transport layer / Phosphorescence light emitting layer / Space layer / Fluorescent light emitting layer (/ Electron transport layer / Electron injection layer)
  • F (Hole injection layer /) Hole transport layer / First phosphorescence light emitting layer / Second phosphorescence light emitting
  • Each of the phosphorescent or fluorescent light emitting layers can exhibit different emission colors from each other.
  • (hole injection layer /) hole transport layer / first phosphorescent light emitting layer (red light emitting) / second phosphorescent light emitting layer (green light emitting) / space layer / fluorescence examples thereof include a layer structure such as a light emitting layer (blue light emission) / an electron transport layer.
  • An electron blocking layer may be appropriately provided between each light emitting layer and the hole transporting layer or the space layer.
  • a hole blocking layer may be appropriately provided between each light emitting layer and the electron transporting layer.
  • the first light emitting unit and the second light emitting unit can be independently selected from the above light emitting units, for example. ..
  • the intermediate layer is also generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer, and has electrons in the first light emitting unit and holes in the second light emitting unit.
  • Known material configurations to be supplied can be used.
  • the host combined with the fluorescent dopant is referred to as a fluorescent host
  • the host combined with the phosphorescent dopant is referred to as a phosphorescent host.
  • Fluorescent hosts and phosphorescent hosts are not classified solely by their molecular structure. That is, the phosphorescent host means a material for forming a phosphorescent light emitting layer containing a phosphorescent dopant, and does not mean that it cannot be used as a material for forming a fluorescent light emitting layer. The same applies to the fluorescent host.
  • the substrate is used as a support for an organic EL element.
  • a plate made of glass, quartz, plastic or the like can be used.
  • a flexible substrate may be used.
  • the flexible substrate include a plastic substrate made of polycarbonate, polyarylate, polyether sulfone, polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride and the like. Inorganic vapor deposition film can also be used.
  • anode For the anode formed on the substrate, it is preferable to use a metal having a large work function (specifically, 4.0 eV or more), an alloy, an electrically conductive compound, a mixture thereof, or the like.
  • a metal having a large work function specifically, 4.0 eV or more
  • an alloy an electrically conductive compound, a mixture thereof, or the like.
  • ITO Indium Tin Oxide
  • ITO Indium Tin Oxide
  • indium tin oxide containing silicon or silicon oxide indium tin oxide-zinc oxide
  • tungsten oxide and indium oxide containing zinc oxide and the like.
  • Graphene and the like can be mentioned.
  • gold Au
  • platinum Pt
  • nickel Ni
  • tungsten W
  • Cr chromium
  • Mo molybdenum
  • iron Fe
  • Co cobalt
  • Cu copper
  • palladium Pd
  • titanium Ti
  • a nitride of the metal for example, titanium nitride
  • indium oxide-zinc oxide is a target to which 1 to 10 wt% zinc oxide is added to indium oxide, and indium oxide containing tungsten oxide and zinc oxide is 0.5 to 5 wt to tungsten oxide to indium oxide. It can be formed by a sputtering method by using a target containing 0.1 to 1 wt% of% and zinc oxide. In addition, it may be produced by a vacuum vapor deposition method, a coating method, an inkjet method, a spin coating method, or the like.
  • the hole injection layer formed in contact with the anode is formed by using a material that facilitates hole injection regardless of the work function of the anode, a material generally used as an electrode material (for example, metal).
  • a material generally used as an electrode material for example, metal.
  • Alloys, electrically conductive compounds, and mixtures thereof, elements belonging to Group 1 or Group 2 of the Periodic Table of the Elements can be used.
  • Elements belonging to Group 1 or Group 2 of the Periodic Table of the Elements which are materials with a small work function, that is, alkali metals such as lithium (Li) and cesium (Cs), and magnesium (Mg), calcium (Ca), and strontium.
  • Alkaline earth metals such as (Sr), rare earth metals such as alloys containing these (for example, MgAg, AlLi), europium (Eu), ytterbium (Yb), and alloys containing these can also be used.
  • a vacuum vapor deposition method or a sputtering method can be used.
  • a coating method, an inkjet method, or the like can be used.
  • the hole transport band is composed of a hole injection layer, a hole transport layer, an electron blocking layer, and the like. It is preferable that any one of these layers contains the first compound, and it is more preferable that the hole transport layer contains the first compound.
  • the hole injection layer is a layer containing a material having a high hole injection property (hole injection material).
  • the hole-injecting material can be used alone or in combination of two or more for the hole-injecting layer.
  • Hole-injectable materials include molybdenum oxide, titanium oxide, vanadium oxide, renium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silver oxide, and tungsten oxide.
  • a substance, a manganese oxide, or the like can be used.
  • Polymer compounds (oligomers, dendrimers, polymers, etc.) can also be used.
  • poly (N-vinylcarbazole) (abbreviation: PVK)
  • poly (4-vinyltriphenylamine) (abbreviation: PVTPA)
  • PVTPA poly (4-vinyltriphenylamine)
  • PTPDMA poly [N- (4- ⁇ N'- [4- (4-diphenylamino)
  • Phenyl] phenyl-N'-phenylamino ⁇ phenyl) methacrylicamide] abbreviation: PTPDMA
  • poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) benzidine] (abbreviation: Poly-TPD) and other high molecular weight compounds can be mentioned.
  • a polymer compound to which an acid such as poly (3,4-ethylenedioxythiophene) / poly (styrene sulfonic acid) (PEDOT / PSS) and polyaniline / poly (styrene sulfonic acid) (Pani / PSS) is added is used. You can also do it.
  • acceptor material such as a hexaazatriphenylene (HAT) compound represented by the following formula (K) in combination with another compound.
  • HAT hexaazatriphenylene
  • R 401 to R 406 are independently cyano groups, -CONH 2 , carboxy groups, or -COOR 407 (R 407 is an alkyl group having 1 to 20 carbon atoms or 3 to 20 carbon atoms, respectively. Represents the cycloalkyl group of), and two adjacent two selected from R 401 and R 402 , R 403 and R 404 , and R 405 and R 406 are bonded to each other at -CO-O-CO-.
  • R 407 examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a cyclopentyl group, a cyclohexyl group and the like.
  • the hole transport layer is a layer containing a material having a high hole transport property (hole transport material).
  • Hole transport materials can be used alone or in combination.
  • the hole transporting material for example, an aromatic amine compound, a carbazole derivative, an anthracene derivative and the like can be used.
  • the aromatic amine compound include 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB) and N, N'-bis (3-methylphenyl) -N.
  • N'-diphenyl- [1,1'-biphenyl] -4,4'-diamine (abbreviation: TPD)
  • 4-phenyl-4'-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: BAFLP)
  • BAFLP 4-phenyl-4'-(9-phenylfluoren-9-yl) triphenylamine
  • BAFLP 4,4'-bis [N- (9,9-dimethylfluoren-2-yl) -N-phenylamino] biphenyl
  • DFLDPBi 4,4', 4 "-tris (N, N) -Diphenylamino) Triphenylamine
  • TDATA 4,4', 4 "-Tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine
  • MTDATA triphenylamine
  • Examples thereof include 4'-bis [N- (spiro-9,9'-b
  • carbazole derivative examples include 4,4'-di (9-carbazolyl) biphenyl (abbreviation: CBP), 9- [4- (9-carbazolyl) phenyl] -10-phenylanthracene (abbreviation: CzPA), and Examples thereof include 9-phenyl-3- [4- (10-phenyl-9-anthril) phenyl] -9H-carbazole (abbreviation: PCzPA).
  • CBP 4,4'-di (9-carbazolyl) biphenyl
  • CzPA 9- [4- (9-carbazolyl) phenyl] -10-phenylanthracene
  • PCzPA 9-phenyl-3- [4- (10-phenyl-9-anthril) phenyl] -9H-carbazole
  • anthracene derivative examples include 2-t-butyl-9,10-di (2-naphthyl) anthracene (abbreviation: t-BuDNA), 9,10-di (2-naphthyl) anthracene (abbreviation: DNA), and , 9,10-Diphenylanthracene (abbreviation: DPAnth).
  • Polymer compounds such as poly (N-vinylcarbazole) (abbreviation: PVK) and poly (4-vinyltriphenylamine) (abbreviation: PVTPA) can also be used.
  • PVK poly (N-vinylcarbazole)
  • PVTPA poly (4-vinyltriphenylamine)
  • a compound other than the above may be used as long as it is a compound having a hole transport property higher than that of an electron transport property.
  • the hole transport layer may have a single-layer structure or a multi-layer structure including two or more layers.
  • the hole transport layer may have a two-layer structure including a first hole transport layer (anode side) and a second hole transport layer (cathode side).
  • Each of the above hole transport layers is formed of the hole transport material.
  • the first compound may be contained in one of the first hole transport layer and the second hole transport layer, or may be contained in both, however.
  • the first compound contained in the first hole transport layer and the first compound contained in the second hole transport layer are different from each other.
  • the first compound is included in the second hole transport layer.
  • the first compound is included in the first hole transport layer and the second hole transport layer.
  • the first compound is included in the first hole transport layer.
  • the hole transport layer when the hole transport layer contains the first compound, the content thereof is preferably 10% by mass or more, more preferably 30% by mass or more, still more preferably 50% by mass or more.
  • the upper limit of the content of the first compound in the hole transport layer is 100% by mass. In other words, when the hole transport layer contains the first compound, its content is preferably 50 to 100% by mass.
  • this embodiment does not exclude that the hole transport layer contains a material other than the first compound.
  • the light emitting band is composed of a single light emitting layer, a plurality of light emitting layers, a space layer located between the plurality of light emitting layers and each light emitting layer, and the like. It is preferable that any one of these layers contains the second compound, and it is more preferable that the light emitting layer contains the second compound.
  • the light emitting layer is a layer containing a material having high light emitting property (dopant material), and various materials can be used.
  • a fluorescent light emitting material or a phosphorescent light emitting material can be used as a dopant material.
  • the fluorescent material is a compound that emits light from a singlet excited state
  • the phosphorescent material is a compound that emits light from a triplet excited state.
  • a pyrene derivative, a styrylamine derivative, a chrysene derivative, a fluoranthene derivative, a fluorene derivative, a diamine derivative, a triarylamine derivative and the like can be used.
  • an aromatic amine derivative or the like can be used as a green fluorescent light emitting material that can be used for the light emitting layer. Specifically, N- (9,10-diphenyl-2-anthryl) -N, 9-diphenyl-9H-carbazole-3-amine (abbreviation: 2PCAPA), N- [9,10-bis (1,1).
  • a tetracene derivative, a diamine derivative, or the like can be used as a red fluorescent light emitting material that can be used for the light emitting layer.
  • a tetracene derivative, a diamine derivative, or the like can be used.
  • N, N, N', N'-tetrakis (4-methylphenyl) tetracene-5,11-diamine abbreviation: p-mPhTD
  • 7,14-diphenyl-N, N, N' examples thereof include N'-tetrakis (4-methylphenyl) acenaft [1,2-a] fluoranthene-3,10-diamine (abbreviation: p-mPhAFD).
  • a metal complex such as an iridium complex, an osmium complex, or a platinum complex is used.
  • iridium complex an iridium complex
  • osmium complex an osmium complex
  • platinum complex a metal complex such as an iridium complex, an osmium complex, or a platinum complex.
  • iridium complex an iridium complex
  • osmium complex an osmium complex
  • platinum complex Specifically, bis [2- (4', 6'-difluorophenyl) pyridinato-N, C2'] iridium (III) tetrakis (1-pyrazolyl) borate (abbreviation: Fir6), bis [2- (4').
  • An iridium complex or the like is used as a green phosphorescent material that can be used for the light emitting layer.
  • Tris (2-phenylpyridinato-N, C2') iridium (III) (abbreviation: Ir (ppy) 3), bis (2-phenylpyridinato-N, C2') iridium (III) acetylacetonate (abbreviation: Ir (ppy) 3)
  • Ir (ppy) 2 (acac) bis (1,2-diphenyl-1H-benzoimidazolat) iridium (III) acetylacetonate
  • Ir (pbi) 2 (acac) bis (benzo [ h] Kinolinat) Iridium (III) Acetylacetonate (abbreviation: Ir (bzq) 2 (acac)) and the like can be mentioned.
  • a metal complex such as an iridium complex, a platinum complex, a terbium complex, or a europium complex is used.
  • a metal complex such as an iridium complex, a platinum complex, a terbium complex, or a europium complex is used.
  • iridium complex bis [2- (2'-benzo [4,5- ⁇ ] thienyl) pyridinato-N, C3'] iridium (III) acetylacetonate (abbreviation: Ir (btp) 2 (acac)), Bis (1-phenylisoquinolinato-N, C2') Iridium (III) Acetylacetonate (abbreviation: Ir (piq) 2 (acac)), (Acetylacetonate) Bis [2,3-bis (4-fluoro) Phenyl) Kinoxalinato] Iridium (III) (abbreviation: Ir (Fdpq) 2 (a
  • tris (acetylacetonate) (monophenanthroline) terbium (III) (abbreviation: Tb (acac) 3 (Phen)
  • tris (1,3-diphenyl-1,3-propanedionat) (monophenanthroline) europium (III) (abbreviation: Eu (DBM) 3 (Phen)
  • Tris [1- (2-tenoyle) -3,3,3-trifluoroacetonato] (monophenanthroline) Europium (III) (abbreviation: Eu (abbreviation: Eu)
  • TTA rare earth metal complexes such as TTA) 3 (Phen)
  • the light emitting layer may be configured by dispersing the above-mentioned dopant material in another material (host material).
  • host material it is preferable to use a material having a higher minimum empty orbital level (LUMO level) and a lower maximum occupied molecular orbital level (HOMO level) than the dopant material.
  • the second compound is used as a host material for the light emitting layer.
  • Metal complexes such as aluminum complex, beryllium complex, or zinc complex
  • Heterocyclic compounds such as oxadiazole derivatives, benzimidazole derivatives, or phenanthroline derivatives
  • Condensed aromatic compounds such as carbazole derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, or chrysene derivatives.
  • Aromatic amine compounds such as triarylamine derivatives or condensed polycyclic aromatic amine derivatives are used.
  • II (abbreviation: BeBq2), bis (2-methyl-8-quinolinolat) (4-phenylphenolato) aluminum (III) (abbreviation: BAlq), bis (8-quinolinolato) zinc (II) (abbreviation: Znq) ), Bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ) and other metal complexes.
  • BeBq2 bis (2-methyl-8-quinolinolat) (4-phenylphenolato) aluminum
  • BAlq bis (8-quinolinolato) zinc
  • Znq bis [2- (2-benzoxazolyl) phenolato] zinc
  • ZnPBO bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBT
  • anthracene compound in the case of a blue fluorescent device, it is preferable to use the following anthracene compound as a host material.
  • the film thickness of the light emitting band in the organic EL element is preferably 5 nm or more and 50 nm or less, more preferably 7 nm or more and 50 nm or less, and further preferably 10 nm or more and 50 nm or less.
  • the film thickness of the light emitting band is 5 nm or more, it becomes easy to form the light emitting band and it becomes easy to adjust the chromaticity.
  • the film thickness of the light emitting band is 50 nm or less, it becomes easy to suppress an increase in the drive voltage.
  • the content thereof is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more.
  • this embodiment does not exclude that a material other than the second compound is included in the emission band.
  • the electron transport band is composed of an electron injection layer, an electron transport layer, a hole blocking layer, and the like.
  • Any layer of the electron transport zone, particularly the electron transport layer is preferably an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, an alkali.
  • the electron transport layer is a layer containing a material having a high electron transport property (electron transport material).
  • electron transport material examples include, for example.
  • Metal complexes such as aluminum complex, beryllium complex, zinc complex, etc.
  • Heteroaromatic compounds such as imidazole derivatives, benzimidazole derivatives, azine derivatives, carbazole derivatives, and phenanthroline derivatives.
  • a polymer compound can be used.
  • metal complex examples include tris (8-quinolinolato) aluminum (III) (abbreviation: Alq), tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq3), and bis (10-hydroxybenzo [h] quinolinato).
  • Berylium (abbreviation: BeBq 2 ), bis (2-methyl-8-quinolinolat) (4-phenylphenorato) aluminum (III) (abbreviation: BAlq), bis (8-quinolinolato) zinc (II) (abbreviation: Znq) ), Bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ), (8- Kinorinorat) Lithium (abbreviation: Liq) can be mentioned.
  • heteroaromatic compound examples include 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (abbreviation: PBD), 1,3-bis [5. -(Ptert-butylphenyl) -1,3,4-oxadiazole-2-yl] benzene (abbreviation: OXD-7), 3- (4-tert-butylphenyl) -4-phenyl-5- (4) -Biphenylyl) -1,2,4-triazole (abbreviation: TAZ), 3- (4-tert-butylphenyl) -4- (4-ethylphenyl) -5- (4-biphenylyl) -1,2,4 -Triazole (abbreviation: p-EtTAZ), vasofenantroline (abbreviation: BPhen), vasocuproin (abbreviation: BCP), 4,4'-bis (5
  • polymer compound examples include poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF-Py) and poly [(9, 9-Dioctylfluorene-2,7-diyl) -co- (2,2'-bipyridine-6,6'-diyl)] (abbreviation: PF-BPy) can be mentioned.
  • the above material is a material having an electron mobility of 10-6 cm 2 / Vs or more.
  • a material other than the above may be used for the electron transport layer as long as the material has a higher electron transport property than the hole transport property.
  • the electron transport layer may be a single layer or a multilayer including two or more layers.
  • the electron transport layer may be a layer including a first electron transport layer (anode side) and a second electron transport layer (cathode side).
  • Each of the two or more electron transport layers is formed of the electron transport material.
  • the electron injection layer is a layer containing a material having high electron injection properties.
  • the electron injection layer includes lithium (Li), cesium (Cs), calcium (Ca), lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF2), lithium oxide (LiOx) and the like.
  • Alkaline metals, alkaline earth metals, or compounds thereof can be used.
  • a material having electron transportability containing an alkali metal, an alkaline earth metal, or a compound thereof, specifically, a material containing magnesium (Mg) in Alq or the like may be used. In this case, electron injection from the cathode can be performed more efficiently.
  • a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer.
  • a composite material is excellent in electron injection property and electron transport property because the organic compound receives electrons from the electron donor.
  • the organic compound is preferably a material excellent in transporting received electrons, and specifically, for example, a material constituting the above-mentioned electron transport layer (metal complex, heteroaromatic compound, etc.) is used. be able to.
  • the electron donor may be any material that exhibits electron donating property to the organic compound.
  • alkali metals, alkaline earth metals and rare earth metals are preferable, and lithium, cesium, magnesium, calcium, erbium, ytterbium and the like can be mentioned.
  • alkali metal oxides and alkaline earth metal oxides are preferable, and lithium oxides, calcium oxides, barium oxides and the like can be mentioned.
  • a Lewis base such as magnesium oxide.
  • an organic compound such as tetrathiafulvalene (abbreviation: TTF) can also be used.
  • cathode As the cathode, it is preferable to use a metal having a small work function (specifically, 3.8 eV or less), an alloy, an electrically conductive compound, a mixture thereof, or the like.
  • a cathode material include elements belonging to Group 1 or Group 2 of the Periodic Table of the Elements, that is, alkali metals such as lithium (Li) and cesium (Cs), magnesium (Mg), and calcium (Ca). ), Alkaline earth metals such as strontium (Sr), and rare earth metals such as alloys containing them (for example, MgAg, AlLi), europium (Eu), ytterbium (Yb), and alloys containing these.
  • a vacuum vapor deposition method or a sputtering method can be used.
  • a silver paste or the like is used, a coating method, an inkjet method, or the like can be used.
  • a cathode is formed by using various conductive materials such as indium oxide-tin oxide containing Al, Ag, ITO, graphene, silicon or silicon oxide, regardless of the size of the work function. can do. These conductive materials can be formed into a film by using a sputtering method, an inkjet method, a spin coating method, or the like.
  • an insulating layer made of an insulating thin film layer may be inserted between the pair of electrodes.
  • Materials used for the insulating layer include, for example, aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, silicon oxide. , Germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide and the like. A mixture or laminate of these may be used.
  • the space layer is, for example, when the phosphorescent light emitting layer and the phosphorescent light emitting layer are laminated, the fluorescent light is emitted for the purpose of preventing the exciters generated in the phosphorescent light emitting layer from diffusing into the fluorescent light emitting layer or adjusting the carrier balance. It is a layer provided between the layer and the phosphorescent light emitting layer. Further, the space layer can be provided between a plurality of phosphorescent light emitting layers.
  • carrier as used herein means a charge carrier in a substance. Since the space layer is provided between the light emitting layers, it is preferable that the material has both electron transporting property and hole transporting property. Further, in order to prevent the diffusion of triplet energy in the adjacent phosphorescent light emitting layer, the triplet energy is preferably 2.6 eV or more. Examples of the material used for the space layer include the same materials used for the hole transport layer described above.
  • a blocking layer such as an electron blocking layer, a hole blocking layer, or an exciton blocking layer may be provided adjacent to the light emitting layer.
  • the electron blocking layer is a layer that prevents electrons from leaking from the light emitting layer to the hole transporting layer
  • the hole blocking layer is a layer that prevents holes from leaking from the light emitting layer to the electron transporting layer.
  • the exciton blocking layer has a function of preventing excitons generated in the light emitting layer from diffusing into surrounding layers and confining excitons in the light emitting layer.
  • the film thickness of each layer described above is not particularly limited, but in general, if the film thickness is too thin, defects such as pinholes are likely to occur, and conversely, if the film thickness is too thick, a high drive voltage is required and efficiency tends to deteriorate. It is more preferably 10 nm to 0.2 ⁇ m.
  • the thickness of the light emitting band is as described above.
  • the method for forming each layer of the organic EL element according to the embodiment of the present invention is not particularly limited, and examples thereof include a vacuum vapor deposition method, a molecular beam vapor deposition method (MBE method), a sputtering method, a plasma method, and an ion plating method.
  • a vacuum vapor deposition method a molecular beam vapor deposition method (MBE method)
  • MBE method molecular beam vapor deposition method
  • sputtering method a plasma method
  • an ion plating method Known methods such as a dry film forming method, a spin coating method, a dipping method, a flow coating method, a bar coating method, a roll coating method, and a wet film forming method such as an inkjet method can be adopted.
  • the organic EL element according to the embodiment of the present invention can be used for electronic devices such as display devices and light emitting devices.
  • Examples of the display device include display components such as an organic EL panel module, a television, a mobile phone, a tablet, a personal computer, and the like.
  • Examples of the light emitting device include lighting, vehicle lamps, and the like.
  • the organic EL element can be used for display parts such as organic EL panel modules, display devices such as televisions, mobile phones, and personal computers, and electronic devices such as lighting and light emitting devices for vehicle lamps.
  • the organic EL element was manufactured as follows.
  • Example 1 A glass substrate with an ITO transparent electrode (manufactured by Geomatec Co., Ltd.) having a size of 25 mm ⁇ 75 mm ⁇ 1.1 mm was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes. The thickness of the ITO transparent electrode was 130 nm. The cleaned glass substrate with ITO transparent electrode is mounted on the substrate holder of the vacuum vapor deposition apparatus, and the compound HT-1 and the compound HI-1 are co-deposited so as to cover the ITO transparent electrode to have a film thickness of 10 nm. A hole injection layer was formed. The concentration of compound HI-1 in the hole injection layer was 3.0% by mass.
  • the compound HT-1 (first hole transport layer material) was vapor-deposited on the hole injection layer to form a first hole transport layer having a film thickness of 85 nm.
  • the compound 1 (B'HT-1 (D), the material of the second hole transport layer) synthesized in the following synthesis example 1 is deposited on the first hole transport layer to form a fifth hole having a film thickness of 5 nm.
  • a two-hole transport layer was formed.
  • the compound 2 (BH-1 (D), host material) synthesized in the following synthesis example 2 and the compound BD-1 (dopant material) are co-deposited on the second hole transport layer.
  • a light emitting layer having a film thickness of 20 nm was formed.
  • the concentration of compound BD-1 in the light emitting layer was 2.0% by mass.
  • the following compound HBL-1 was deposited on the light emitting layer to form a hole blocking layer having a film thickness of 5 nm.
  • the compound ET-1 (electron transport layer material) and the compound Liq were co-deposited on the hole blocking layer to form an electron transport layer having a film thickness of 25 nm.
  • the concentrations of the compounds ET-1 and Liq in the electron transport layer were 50.0% by mass.
  • a metal Al cathode was deposited on the electron transport layer to form a metal Al cathode having a film thickness of 80 nm.
  • the element configuration of the first embodiment is shown in abbreviated form as follows.
  • the numbers in parentheses indicate the film thickness (unit: nm). Also, in parentheses, the number displayed as a percentage indicates the ratio (mass%) of the compound described on the right side in the layer.
  • the following Examples 2 to 7 and Comparative Examples 1 to 21 differ from Example 1 except that at least one of B'HT-1 (D) and BH-1 (D) used in Example 1 is different. Since the element configuration is the same as that of the above, the description of the outline of the element configuration is omitted for these examples and comparative examples.
  • Example 2 The organic EL device is the same as in Example 1 except that the compound 3 (BH-2 (D)) synthesized in the following synthesis example 3 is used instead of the compound 2 used as the host material for the light emitting layer of the first embodiment.
  • the compound 3 BH-2 (D)
  • Example 3 The organic EL device is the same as in Example 1 except that the compound 3 (BH-2 (D)) synthesized in the following synthesis example 3 is used instead of the compound 2 used as the host material for the light emitting layer of the first embodiment.
  • the compound 3 BH-2 (D) synthesized in the following synthesis example 3
  • Comparative Example 1 The comparative compound 1 (B'HT-1) was used in place of the compound 1 (B'HT-1 (D)) used for the second hole transport layer of Example 1, and the light emitting layer of Example 1 was used.
  • An organic EL device was produced in the same manner as in Example 1 except that the comparative compound 2 (BH-1) was used instead of the compound 2 (BH-1 (D)) used as the host material, and the organic EL device was produced in Comparative Example 1.
  • Comparative Example 2 The organic EL device is the same as in Example 1 except that the comparative compound 2 (BH-1) is used instead of the compound 2 (BH-1 (D)) used as the host material for the light emitting layer of Example 1. Was prepared and used as the organic EL element of Comparative Example 2.
  • Comparative Example 3 Same as Example 1 except that the above comparative compound 1 (B'HT-1) was used in place of the compound 1 (B'HT-1 (D)) used for the second hole transport layer of Example 1. Then, an organic EL element was produced and used as the organic EL element of Comparative Example 1.
  • Comparative Example 4 The comparative compound 1 (B'HT-1) was used in place of the compound 1 (B'HT-1 (D)) used for the second hole transport layer of Example 2, and the light emitting layer of Example 2 was used.
  • An organic EL device was produced in the same manner as in Example 2 except that the comparative compound 3 (BH-2) was used instead of the compound 3 (BH-2 (D)) used as the host material, and the organic EL device was produced in Comparative Example 4.
  • Comparative Example 5 The organic EL device is the same as in Example 2 except that the comparative compound 3 (BH-2) is used instead of the compound 3 (BH-2 (D)) used as the host material for the light emitting layer of Example 2. Was prepared and used as the organic EL element of Comparative Example 5.
  • BH-2 comparative compound 3
  • Comparative Example 6 Same as Example 2 except that the above comparative compound 1 (B'HT-1) was used in place of the compound 1 (B'HT-1 (D)) used for the second hole transport layer of Example 2. Then, an organic EL element was produced and used as the organic EL element of Comparative Example 6.
  • Example 3 The above compound 4 (B'HT-1 (D2)) was used in place of the compound 1 (B'HT-1 (D)) used for the second hole transport layer of Example 1, and the light emission of Example 1.
  • An organic EL device was produced in the same manner as in Example 1 except that the above compound 5 (BH-3 (D)) was used instead of the compound 2 (BH-1 (D)) used as the host material of the layer. , The organic EL element of Example 3.
  • Comparative Example 7 The comparative compound 1 (B'HT-1) was used in place of the compound 4 used in the second hole transport layer of Example 3, and the compound 5 used in the host material of the light emitting layer of Example 3 was replaced.
  • An organic EL device was produced in the same manner as in Example 3 except that the comparative compound 5 (BH-3) was used, and the organic EL device was used as the organic EL device of Comparative Example 7.
  • Comparative Example 8 An organic EL device was produced in the same manner as in Example 3 except that the comparative compound 5 (BH-3) was used in place of the compound 5 used as the host material for the light emitting layer of Example 3, and the organic EL device of Comparative Example 8 was produced. It was an organic EL element.
  • Example 9 An organic EL device was prepared in the same manner as in Example 3 except that the comparative compound 1 (B'HT-1) was used in place of the compound 4 used for the second hole transport layer of Example 3, and the comparison was made. The organic EL element of Example 9 was used.
  • Example 4 The above compound 4 (B'HT-1 (D2)) was used in place of the compound 1 (B'HT-1 (D)) used for the second hole transport layer of Example 1, and the light emission of Example 1.
  • An organic EL device was produced in the same manner as in Example 1 except that the above compound 6 (BH-4 (D)) was used instead of the compound 2 (BH-1 (D)) used as the host material of the layer. , The organic EL element of Example 4.
  • Comparative Example 10 The comparative compound 1 (B'HT-1) was used in place of the compound 4 used in the second hole transport layer of Example 4, and the compound 6 used in the host material of the light emitting layer of Example 4 was replaced.
  • An organic EL device was produced in the same manner as in Example 4 except that the comparative compound 6 (BH-4) was used, and the organic EL device was used as the organic EL device of Comparative Example 10.
  • Comparative Example 11 An organic EL device was produced in the same manner as in Example 4 except that the comparative compound 6 (BH-4) was used in place of the compound 6 used as the host material for the light emitting layer of Example 4, and the organic EL device of Comparative Example 11 was produced. It was an organic EL element.
  • Comparative Example 12 An organic EL device was prepared in the same manner as in Example 4 except that the comparative compound 1 (B'HT-1) was used in place of the compound 4 used for the second hole transport layer of Example 4, and the comparison was made. The organic EL element of Example 12 was used.
  • Example 5 The above compound 7 (B'HT-2 (D)) was used in place of the compound 1 (B'HT-1 (D)) used for the second hole transport layer of Example 1, and the light emission of Example 1.
  • An organic EL device was produced in the same manner as in Example 1 except that the above compound 8 (BH-2 (D2)) was used instead of the compound 2 (BH-1 (D)) used as the host material of the layer. , The organic EL element of Example 5.
  • Comparative Example 13 The comparative compound 4 (B'HT-2) was used in place of the compound 7 used in the second hole transport layer of Example 5, and the compound 8 used in the host material of the light emitting layer of Example 5 was replaced.
  • An organic EL device was produced in the same manner as in Example 5 except that the comparative compound 7 (BH-5) was used, and the organic EL device was used as the organic EL device of Comparative Example 13.
  • Comparative Example 14 An organic EL device was produced in the same manner as in Example 5 except that the comparative compound 7 (BH-5) was used in place of the compound 8 used as the host material for the light emitting layer of Example 5, and the organic EL device of Comparative Example 14 was produced. It was an organic EL element.
  • Example 15 An organic EL device was prepared in the same manner as in Example 5 except that the comparative compound 4 (B'HT-2) was used in place of the compound 7 used for the second hole transport layer of Example 5, and the comparison was made. The organic EL element of Example 15 was used.
  • Example 6 The above compound 7 (B'HT-2 (D)) was used in place of the compound 1 (B'HT-1 (D)) used for the second hole transport layer of Example 1, and the light emission of Example 1.
  • An organic EL device was produced in the same manner as in Example 1 except that the above compound 9 (BH-5 (D)) was used instead of the compound 2 (BH-1 (D)) used as the host material of the layer. , The organic EL element of Example 6.
  • Comparative Example 16 The comparative compound 4 (B'HT-2) was used in place of the compound 7 used in the second hole transport layer of Example 6, and the compound 9 used in the host material of the light emitting layer of Example 6 was replaced.
  • An organic EL device was produced in the same manner as in Example 6 except that the comparative compound 7 (BH-5) was used, and the organic EL device was used as the organic EL device of Comparative Example 16.
  • Comparative Example 17 An organic EL device was produced in the same manner as in Example 6 except that the comparative compound 7 (BH-5) was used in place of the compound 9 used as the host material for the light emitting layer of Example 6, and the organic EL device of Comparative Example 17 was produced. It was an organic EL element.
  • Example 18 An organic EL device was prepared in the same manner as in Example 6 except that the comparative compound 4 (B'HT-2) was used in place of the compound 7 used for the second hole transport layer of Example 6, and the comparison was made. The organic EL element of Example 18 was used.
  • Example 7 The above compound 4 (B'HT-1 (D2)) was used in place of the compound 1 (B'HT-1 (D)) used for the second hole transport layer of Example 1, and the light emission of Example 1.
  • An organic EL device was produced in the same manner as in Example 1 except that the above compound 10 (BH-6 (D)) was used instead of the compound 2 (BH-1 (D)) used as the host material of the layer. , The organic EL element of Example 7.
  • Comparative Example 19 The comparative compound 1 (B'HT-1) was used in place of the compound 4 used in the second hole transport layer of Example 7, and the compound 10 used in the host material of the light emitting layer of Example 7 was replaced.
  • An organic EL device was produced in the same manner as in Example 7 except that the comparative compound 8 (BH-6) was used, and the organic EL device was used as the organic EL device of Comparative Example 19.
  • Comparative Example 20 An organic EL device was produced in the same manner as in Example 7 except that the comparative compound 8 (BH-6) was used in place of the compound 10 used as the host material for the light emitting layer of Example 7, and the organic EL device of Comparative Example 20 was prepared. It was an organic EL element.
  • the comparative compound 8 BH-6
  • the organic EL device of Comparative Example 20 was prepared. It was an organic EL element.
  • Example 21 An organic EL device was prepared in the same manner as in Example 7 except that the comparative compound 1 (B'HT-1) was used in place of the compound 4 used for the second hole transport layer of Example 7, and the comparison was made. The organic EL element of Example 21 was used.
  • the second hole transport layer is divided into the compound B'HT-1 (D) included in the formula (1) having a specific structure and the formula (2) having a specific structure.
  • the compound B'HT-1 not included in the above formula (1) and the compound BH-1 not included in the above formula (2) by forming an organic EL device having the included compound BH-1 (D).
  • the value of LT95 is significantly larger than that of the organic EL elements of Comparative Examples 1 to 3 using any of them.
  • the second hole transport layer includes the compound B'HT-1 (D) included in the formula (1) having a specific structure and the formula (2) having a specific structure.
  • the second hole transport layer includes the compound B'HT-1 (D2) included in the formula (1) having a specific structure and the formula (2) having a specific structure. ), By forming an organic EL device having the compound BH-3 (D) included in the above formula (1), the compound B'HT-1 not included in the above formula (1) and the compound BH-3 not included in the above formula (2). It can be seen that the value of LT95 is significantly larger than that of the organic EL elements of Comparative Examples 7 to 9 using any of the above. Further, as is clear from Table 4, the second hole transport layer includes the compound B'HT-1 (D2) included in the formula (1) having a specific structure and the formula (2) having a specific structure.
  • the second hole transport layer includes the compound B'HT-2 (D) included in the formula (1) having a specific structure and the formula (2) having a specific structure. ), By forming an organic EL device having the compound BH-2 (D) included in the above formula (1), the compound B'HT-2 not included in the above formula (1) and the compound BH-2 not included in the above formula (2). It can be seen that the value of LT95 is significantly larger than that of the organic EL elements of Comparative Examples 13 to 15 using any of the above. Further, as is clear from Table 6, the second hole transport layer includes the compound B'HT-2 (D) included in the formula (1) having a specific structure and the formula (2) having a specific structure.
  • the second hole transport layer includes the compound B'HT-1 (D2) included in the formula (1) having a specific structure and the formula (2) having a specific structure. ),
  • the compound B'HT-1 (D2) included in the formula (1) having a specific structure
  • the formula (2) having a specific structure having a specific structure.
  • the compound B'HT-1 not included in the above formula (1) By forming an organic EL device having the compound BH-6 (D) included in the above formula (1), the compound B'HT-1 not included in the above formula (1) and the compound BH-6 not included in the above formula (2). It can be seen that the value of LT95 is significantly larger than that of the organic EL elements of Comparative Examples 19 to 21 using any of the above.
  • aniline-2,3,4,5,6-d5 (2.19 g, 22.33 mmol), bromobenzene-d5 (3.29 g, 20.3 mmol), tris (dibenzylideneacetone) dipalladium ( 0) (372 mg, 0.41 mmol), BINAP (506 mg, 0.812 mmol), sodium-t-butoxide (2.15 g, 22.33 mmol) and toluene (200 ml) were added, and the mixture was heated and stirred at 100 ° C. for 3 hours. After allowing to cool, the residue obtained by filtration was purified by column chromatography to obtain Intermediate A (3.59 g). The yield was 99%.
  • intermediate B (6.41 g, 19.12 mmol), phenylboronic acid (5.83 g, 47.8 mmol), bis (di-t-butyl (4-dimethylaminophenyl) phosphine) dichloropalladium (II). ) (406 mg, 0.574 mmol) and 1,4-dioxane (100 ml) were mixed, and an aqueous potassium phosphate solution was added. After heating and stirring at 110 ° C. for 5 hours and allowing to cool, the mixture was filtered and purified by column chromatography and recrystallization to obtain Intermediate C (3.9 g). The yield was 62% (2 steps).
  • 1,4-dibromobenzene-2,3,5,6-d4 (2.5 g, 10.42 mmol) and THF (105 ml) are mixed and n-butyllithium (1.59 M) is mixed at ⁇ 78 ° C. , 6.55 ml) was added dropwise. Then, at ⁇ 78 ° C., a mixture of iodine (3.97 g, 15.63 mmol) and THF (25 ml) was added dropwise and stirred for 30 minutes.
  • Synthesis Example 2 Synthesis of compound 2 (BH-1 (D)) Under an argon atmosphere, intermediate 4 1.7 g (5.0 mmol), benzo [b] naphtho [2,1-d] furan-7-boron Acid 1.4 g (5.3 mmol), Pd [PPh 3 ] 4 0.1 g (0.1 mmol) with 7.5 ml of toluene, 7.5 ml of dimethoxyethane, 7.5 ml (15.0 mmol) of 2M Na 2 CO 3 aqueous solution was added, and the mixture was heated under reflux and stirred for 10 hours. After completion of the reaction, the sample was cooled to room temperature, transferred to a separating funnel, and extracted with dichloromethane.
  • Synthesis Example 3 Synthesis of compound 3 (BH-2 (D)) Under an argon atmosphere, intermediate 6 2.1 g (5.0 mmol), benzo [b] naphtho [2,1-d] furan-7-boron Acid 1.4 g (5.3 mmol), Pd [PPh 3 ] 4 0.1 g (0.1 mmol) with 7.5 ml of toluene, 7.5 ml of dimethoxyethane, 7.5 ml (15.0 mmol) of 2M Na 2 CO 3 aqueous solution was added, and the mixture was heated under reflux and stirred for 10 hours. After completion of the reaction, the sample was cooled to room temperature, transferred to a separating funnel, and extracted with dichloromethane.
  • intermediate B (6.41 g, 19.12 mmol), 1-naphthylboronic acid (8.22 g, 47.8 mmol), bis (di-t-butyl (4-dimethylaminophenyl) phosphine) dichloropalladium (II) (406 mg, 0.574 mmol) and 1,4-dioxane (100 mL) were mixed, and an aqueous potassium phosphate solution was added. After heating and stirring at 110 ° C. for 7 hours and allowing to cool, the mixture was filtered and purified by column chromatography and recrystallization to obtain Intermediate E (4.9 g). The yield was 71% (2 steps).
  • the obtained residue was purified by silica gel column chromatography and recrystallization to obtain 3.90 g of a white solid. The yield was 82%.
  • Synthesis Example 6 Synthesis of Compound 8 (BH-2 (D2)) 1.93 g of naphtho [1,2-b] benzofuran-7-yl trifluoromethanesulfonate synthesized by a known method under an argon atmosphere, known. 2.00 g of boronic acid derivative (intermediate G) synthesized by the above method, 0.24 g of tetraflate (triphenylphosphine) palladium (0) (Pd (PPh 3 ) 4 ), 1.21 g of sodium carbonate, 40 mL. Toluene and 13 mL of ion-exchanged water were added to the flask, and the mixture was refluxed and stirred for 18 hours.
  • compound BH-3 (D), compound BH-4 (D), compound BH-5 (D), and compound BH-6 (D) can be synthesized according to a known synthesis technique, a synthesis procedure is performed. The detailed description of is omitted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

高性能化された有機エレクトロルミネッセンス素子を提供するものであり、陽極と、陰極と、前記陽極と陰極との間に配置された、発光帯域を含む有機層とを備え、前記有機層は、第1の化合物を含む第1の層と、第2の化合物を含む第2の層とを有し、前記第1の層と前記第2の層は異なる層であり、前記第1の化合物は、下記の式(1)で表される化合物において1つ以上の重水素原子を有する化合物を1質量%以上含み、前記第2の化合物は、下記の式(2)で表される化合物において1つ以上の重水素原子を有する化合物を1質量%以上含む、有機エレクトロルミネッセンス素子。 [式(1)における、N*、L1~L3、a1~a3、及び、Ar1~Ar3、式(2)における、X、L4、L5、Ar4、及び、R1~R16は、明細書において定義したとおりである。]

Description

有機エレクトロルミネッセンス素子、及び、電子機器
 本発明は、有機エレクトロルミネッセンス素子、及び、電子機器に関する。
 一般に有機エレクトロルミネッセンス素子(有機EL素子)は陽極、陰極、及び陽極と陰極に挟まれた有機層から構成されている。両電極間に電圧が印加されると、陰極側から電子、陽極側から正孔が発光領域に注入され、注入された電子と正孔は発光領域において再結合して励起状態を生成し、励起状態が基底状態に戻る際に光を放出する。したがって、電子又は正孔を効率よく発光領域に輸送し、電子と正孔との再結合を促進する化合物の開発は高性能有機EL素子を得る上で重要である。また、近年、有機EL素子を使用した、スマートフォーン、有機ELテレビ、有機EL照明等のさらなる普及にあたり、十分な素子寿命を満たす化合物の要求がある。
 例えば、特許文献1~5には、有機EL素子で用いる芳香族アミン化合物や、有機EL素子で用いるアントラセン化合物が開示されている。
国際公開第2016/009823号 国際公開第2020/111733号 米国公開特許公報2020/111986 米国公開特許公報2017/200899 韓国公開特許第10-2019-30731号
 従来、有機EL素子製造用の材料として多くの化合物が報告されているが、有機EL素子の特性をさらに向上させる化合物が依然として求められている。有機EL素子で用いる芳香族アミン化合物についても、有機EL素子の特性をさらに向上させる化合物、特に、更なる長寿命化を達成し得る化合物が依然として求められている。
 本発明は、前記の課題を解決するためになされたもので、高性能化された有機EL素子、より具体的には、長寿命化を実現し得る有機EL素子、及び、当該有機EL素子を備える電子機器を提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、陽極と陰極との間に位置する有機層が、第1の化合物を含む第1の層と、第2の化合物を含む第2の層とを有し、上記第1の化合物が、下記の式(1)で表される化合物において1つ以上の重水素原子を有する化合物を含み、上記第2の化合物が、下記の式(2)で表される化合物において1つ以上の重水素原子を有する化合物を含む場合に、高性能化された有機EL素子を実現し得ること、より具体的には、長寿命化された有機EL素子を実現し得ることを見出し、本発明を完成した。
 一態様において、本発明は、陽極と、前記陽極に面する陰極と、前記陽極と陰極との間に配置された、発光帯域を含む有機層とを備え、当該有機層が、第1の化合物を含む第1の層と、第2の化合物を含む第2の層とを有し、上記第1の層と上記第2の層は異なる層であり、上記第1の化合物は、下記の式(1)で表される化合物において1つ以上の重水素原子を有する化合物を1質量%以上含み、上記第2の化合物は、下記の式(2)で表される化合物において1つ以上の重水素原子を有する化合物を1質量%以上含む、有機エレクトロルミネッセンス素子を提供する。
Figure JPOXMLDOC01-appb-C000014

[式(1)において、
 Nは中心窒素原子である。
 L~Lは、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は、置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
 a1~a3は、それぞれ独立に、1~3の整数である。
 Ar~Arは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30の1価の複素環基である。]
Figure JPOXMLDOC01-appb-C000015

[式(2)において、
 Xは、酸素原子、硫黄原子、又は、NR100である。
 L、Lは、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は、置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
 Arは、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30の1価の複素環基である。
 R~R16及びR100のうち一つは*xと結合する。
 R~R、及び、*xと結合しないR~R16及びR100は、それぞれ独立に、水素原子又は置換基Aである。
 前記置換基Aは、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 *xと結合しないR~R16から選ばれる隣接する2つは環を形成してもよいし、環を形成しなくてもよい。]
 他の態様において、本発明は、前記有機エレクトロルミネッセンス素子を含む電子機器を提供する。
 陽極と陰極との間に配置された、発光帯域を含む有機層が、式(1)で表され、1つ以上の重水素原子を有する化合物を含む第1の化合物を含む第1の層と、式(2)で表され、1つ以上の重水素原子を有する化合物を含む第2の化合物を含む第2の層とを有する有機EL素子は、高性能化された有機EL素子とすることができる。より具体的には、長寿命化を実現し得る有機EL素子とすることができる。また、高性能化された有機EL素子を備える電子機器を提供することができる。
本発明の実施形態に係る有機EL素子の層構成の一例を示す概略図である。 本発明の実施態様に係る有機EL素子の層構成の他の例を示す概略図である。
[定義]
 本明細書において、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、及び三重水素(tritium)を包含する。
 本明細書において、化学構造式中、「R」等の記号や重水素原子を表す「D」が明示されていない結合可能位置には、水素原子、即ち、軽水素原子、重水素原子、又は三重水素原子が結合しているものとする。
 本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記される「環形成炭素数」については、別途記載のない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジン環は環形成炭素数5であり、フラン環は環形成炭素数4である。また、例えば、9,9-ジフェニルフルオレニル基の環形成炭素数は13であり、9,9’-スピロビフルオレニル基の環形成炭素数は25である。
 また、ベンゼン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ベンゼン環の環形成炭素数に含めない。そのため、アルキル基が置換しているベンゼン環の環形成炭素数は、6である。また、ナフタレン環に置換基として、例えば、アルキル基が置換している場合、当該アルキル基の炭素数は、ナフタレン環の環形成炭素数に含めない。そのため、アルキル基が置換しているナフタレン環の環形成炭素数は、10である。
 本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば、単環、縮合環、及び環集合)の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、及び複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子(例えば、環を構成する原子の結合を終端する水素原子)や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記される「環形成原子数」については、別途記載のない限り同様とする。例えば、ピリジン環の環形成原子数は6であり、キナゾリン環の環形成原子数は10であり、フラン環の環形成原子数は5である。例えば、ピリジン環に結合している水素原子、又は置換基を構成する原子の数は、ピリジン環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているピリジン環の環形成原子数は、6である。また、例えば、キナゾリン環の炭素原子に結合している水素原子、又は置換基を構成する原子については、キナゾリン環の環形成原子数の数に含めない。そのため、水素原子、又は置換基が結合しているキナゾリン環の環形成原子数は10である。
 本明細書において、「置換もしくは無置換の炭素数XX~YYのZZ基」という表現における「炭素数XX~YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基の炭素数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。
 本明細書において、「置換もしくは無置換の原子数XX~YYのZZ基」という表現における「原子数XX~YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基の原子数を含めない。ここで、「YY」は、「XX」よりも大きく、「XX」は、1以上の整数を意味し、「YY」は、2以上の整数を意味する。
 本明細書において、無置換のZZ基とは「置換もしくは無置換のZZ基」が「無置換のZZ基」である場合を表し、置換のZZ基とは「置換もしくは無置換のZZ基」が「置換のZZ基」である場合を表す。
 本明細書において、「置換もしくは無置換のZZ基」という場合における「無置換」とは、ZZ基における水素原子が置換基と置き換わっていないことを意味する。「無置換のZZ基」における水素原子は、軽水素原子、重水素原子、又は三重水素原子である。
 また、本明細書において、「置換もしくは無置換のZZ基」という場合における「置換」とは、ZZ基における1つ以上の水素原子が、置換基と置き換わっていることを意味する。「AA基で置換されたBB基」という場合における「置換」も同様に、BB基における1つ以上の水素原子が、AA基と置き換わっていることを意味する。
[本明細書に記載の置換基]
 以下、本明細書に記載の置換基について説明する。
 本明細書に記載の「無置換のアリール基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
 本明細書に記載の「無置換のアルケニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のアルキニル基」の炭素数は、本明細書に別途記載のない限り、2~50であり、好ましくは2~20、より好ましくは2~6である。
 本明細書に記載の「無置換のシクロアルキル基」の環形成炭素数は、本明細書に別途記載のない限り、3~50であり、好ましくは3~20、より好ましくは3~6である。
 本明細書に記載の「無置換のアリーレン基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30、より好ましくは6~18である。
 本明細書に記載の「無置換の2価の複素環基」の環形成原子数は、本明細書に別途記載のない限り、5~50であり、好ましくは5~30、より好ましくは5~18である。
 本明細書に記載の「無置換のアルキレン基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20、より好ましくは1~6である。
・「置換もしくは無置換のアリール基」
 本明細書に記載の「置換もしくは無置換のアリール基」の具体例(具体例群G1)としては、以下の無置換のアリール基(具体例群G1A)及び置換のアリール基(具体例群G1B)等が挙げられる。(ここで、無置換のアリール基とは「置換もしくは無置換のアリール基」が「無置換のアリール基」である場合を指し、置換のアリール基とは「置換もしくは無置換のアリール基」が「置換のアリール基」である場合を指す。)本明細書において、単に「アリール基」という場合は、「無置換のアリール基」と「置換のアリール基」の両方を含む。
 「置換のアリール基」は、「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアリール基」としては、例えば、下記具体例群G1Aの「無置換のアリール基」の1つ以上の水素原子が置換基と置き換わった基、及び下記具体例群G1Bの置換のアリール基の例等が挙げられる。尚、ここに列挙した「無置換のアリール基」の例、及び「置換のアリール基」の例は、一例に過ぎず、本明細書に記載の「置換のアリール基」には、下記具体例群G1Bの「置換のアリール基」におけるアリール基自体の炭素原子に結合する水素原子がさらに置換基と置き換わった基、及び下記具体例群G1Bの「置換のアリール基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアリール基(具体例群G1A):
フェニル基、
p-ビフェニル基、
m-ビフェニル基、
o-ビフェニル基、
p-ターフェニル-4-イル基、
p-ターフェニル-3-イル基、
p-ターフェニル-2-イル基、
m-ターフェニル-4-イル基、
m-ターフェニル-3-イル基、
m-ターフェニル-2-イル基、
o-ターフェニル-4-イル基、
o-ターフェニル-3-イル基、
o-ターフェニル-2-イル基、
1-ナフチル基、
2-ナフチル基、
アントリル基、
ベンゾアントリル基、
フェナントリル基、
ベンゾフェナントリル基、
フェナレニル基、
ピレニル基、
クリセニル基、
ベンゾクリセニル基、
トリフェニレニル基、
ベンゾトリフェニレニル基、
テトラセニル基、
ペンタセニル基、
フルオレニル基、
9,9’-スピロビフルオレニル基、
ベンゾフルオレニル基、
ジベンゾフルオレニル基、
フルオランテニル基、
ベンゾフルオランテニル基、
ペリレニル基、及び
下記一般式(TEMP-1)~(TEMP-15)で表される環構造から1つの水素原子を除くことにより誘導される1価のアリール基。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
・置換のアリール基(具体例群G1B):
o-トリル基、
m-トリル基、
p-トリル基、
パラ-キシリル基、
メタ-キシリル基、
オルト-キシリル基、
パラ-イソプロピルフェニル基、
メタ-イソプロピルフェニル基、
オルト-イソプロピルフェニル基、
パラ-t-ブチルフェニル基、
メタ-t-ブチルフェニル基、
オルト-t-ブチルフェニル基、
3,4,5-トリメチルフェニル基、
9,9-ジメチルフルオレニル基、
9,9-ジフェニルフルオレニル基
9,9-ビス(4-メチルフェニル)フルオレニル基、
9,9-ビス(4-イソプロピルフェニル)フルオレニル基、
9,9-ビス(4-t-ブチルフェニル)フルオレニル基、
シアノフェニル基、
トリフェニルシリルフェニル基、
トリメチルシリルフェニル基、
フェニルナフチル基、
ナフチルフェニル基、及び
前記一般式(TEMP-1)~(TEMP-15)で表される環構造から誘導される1価の基の1つ以上の水素原子が置換基と置き換わった基。
・「置換もしくは無置換の複素環基」
 本明細書に記載の「複素環基」は、環形成原子にヘテロ原子を少なくとも1つ含む環状の基である。ヘテロ原子の具体例としては、窒素原子、酸素原子、硫黄原子、ケイ素原子、リン原子、及びホウ素原子が挙げられる。
 本明細書に記載の「複素環基」は、単環の基であるか、又は縮合環の基である。
 本明細書に記載の「複素環基」は、芳香族複素環基であるか、又は非芳香族複素環基である。
 本明細書に記載の「置換もしくは無置換の複素環基」の具体例(具体例群G2)としては、以下の無置換の複素環基(具体例群G2A)、及び置換の複素環基(具体例群G2B)等が挙げられる。(ここで、無置換の複素環基とは「置換もしくは無置換の複素環基」が「無置換の複素環基」である場合を指し、置換の複素環基とは「置換もしくは無置換の複素環基」が「置換の複素環基」である場合を指す。)本明細書において、単に「複素環基」という場合は、「無置換の複素環基」と「置換の複素環基」の両方を含む。
 「置換の複素環基」は、「無置換の複素環基」の1つ以上の水素原子が置換基と置き換わった基を意味する。「置換の複素環基」の具体例は、下記具体例群G2Aの「無置換の複素環基」の水素原子が置き換わった基、及び下記具体例群G2Bの置換の複素環基の例等が挙げられる。尚、ここに列挙した「無置換の複素環基」の例や「置換の複素環基」の例は、一例に過ぎず、本明細書に記載の「置換の複素環基」には、具体例群G2Bの「置換の複素環基」における複素環基自体の環形成原子に結合する水素原子がさらに置換基と置き換わった基、及び具体例群G2Bの「置換の複素環基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
 具体例群G2Aは、例えば、以下の窒素原子を含む無置換の複素環基(具体例群G2A1)、酸素原子を含む無置換の複素環基(具体例群G2A2)、硫黄原子を含む無置換の複素環基(具体例群G2A3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4)を含む。
 具体例群G2Bは、例えば、以下の窒素原子を含む置換の複素環基(具体例群G2B1)、酸素原子を含む置換の複素環基(具体例群G2B2)、硫黄原子を含む置換の複素環基(具体例群G2B3)、及び下記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4)を含む。
・窒素原子を含む無置換の複素環基(具体例群G2A1):
ピロリル基、
イミダゾリル基、
ピラゾリル基、
トリアゾリル基、
テトラゾリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ピリジル基、
ピリダジニル基、
ピリミジニル基、
ピラジニル基、
トリアジニル基、
インドリル基、
イソインドリル基、
インドリジニル基、
キノリジニル基、
キノリル基、
イソキノリル基、
シンノリル基、
フタラジニル基、
キナゾリニル基、
キノキサリニル基、
ベンゾイミダゾリル基、
インダゾリル基、
フェナントロリニル基、
フェナントリジニル基、
アクリジニル基、
フェナジニル基、
カルバゾリル基、
ベンゾカルバゾリル基、
モルホリノ基、
フェノキサジニル基、
フェノチアジニル基、
アザカルバゾリル基、及びジアザカルバゾリル基。
・酸素原子を含む無置換の複素環基(具体例群G2A2):
フリル基、
オキサゾリル基、
イソオキサゾリル基、
オキサジアゾリル基、
キサンテニル基、
ベンゾフラニル基、
イソベンゾフラニル基、
ジベンゾフラニル基、
ナフトベンゾフラニル基、
ベンゾオキサゾリル基、
ベンゾイソキサゾリル基、
フェノキサジニル基、
モルホリノ基、
ジナフトフラニル基、
アザジベンゾフラニル基、
ジアザジベンゾフラニル基、
アザナフトベンゾフラニル基、及び
ジアザナフトベンゾフラニル基。
・硫黄原子を含む無置換の複素環基(具体例群G2A3):
チエニル基、
チアゾリル基、
イソチアゾリル基、
チアジアゾリル基、
ベンゾチオフェニル基(ベンゾチエニル基)、
イソベンゾチオフェニル基(イソベンゾチエニル基)、
ジベンゾチオフェニル基(ジベンゾチエニル基)、
ナフトベンゾチオフェニル基(ナフトベンゾチエニル基)、
ベンゾチアゾリル基、
ベンゾイソチアゾリル基、
フェノチアジニル基、
ジナフトチオフェニル基(ジナフトチエニル基)、
アザジベンゾチオフェニル基(アザジベンゾチエニル基)、
ジアザジベンゾチオフェニル基(ジアザジベンゾチエニル基)、
アザナフトベンゾチオフェニル基(アザナフトベンゾチエニル基)、及び
ジアザナフトベンゾチオフェニル基(ジアザナフトベンゾチエニル基)。
・下記一般式(TEMP-16)~(TEMP-33)で表される環構造から1つの水素原子を除くことにより誘導される1価の複素環基(具体例群G2A4):
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYは、それぞれ独立に、酸素原子、硫黄原子、NH、又はCHである。ただし、X及びYのうち少なくとも1つは、酸素原子、硫黄原子、又はNHである。
 前記一般式(TEMP-16)~(TEMP-33)において、X及びYの少なくともいずれかがNH、又はCHである場合、前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基には、これらNH、又はCHから1つの水素原子を除いて得られる1価の基が含まれる。
・窒素原子を含む置換の複素環基(具体例群G2B1):
(9-フェニル)カルバゾリル基、
(9-ビフェニリル)カルバゾリル基、
(9-フェニル)フェニルカルバゾリル基、
(9-ナフチル)カルバゾリル基、
ジフェニルカルバゾール-9-イル基、
フェニルカルバゾール-9-イル基、
メチルベンゾイミダゾリル基、
エチルベンゾイミダゾリル基、
フェニルトリアジニル基、
ビフェニリルトリアジニル基、
ジフェニルトリアジニル基、
フェニルキナゾリニル基、及び
ビフェニリルキナゾリニル基。
・酸素原子を含む置換の複素環基(具体例群G2B2):
フェニルジベンゾフラニル基、
メチルジベンゾフラニル基、
t-ブチルジベンゾフラニル基、及び
スピロ[9H-キサンテン-9,9’-[9H]フルオレン]の1価の残基。
・硫黄原子を含む置換の複素環基(具体例群G2B3):
フェニルジベンゾチオフェニル基、
メチルジベンゾチオフェニル基、
t-ブチルジベンゾチオフェニル基、及び
スピロ[9H-チオキサンテン-9,9’-[9H]フルオレン]の1価の残基。
・前記一般式(TEMP-16)~(TEMP-33)で表される環構造から誘導される1価の複素環基の1つ以上の水素原子が置換基と置き換わった基(具体例群G2B4):
 前記「1価の複素環基の1つ以上の水素原子」とは、該1価の複素環基の環形成炭素原子に結合している水素原子、XA及びYAの少なくともいずれかがNHである場合の窒素原子に結合している水素原子、及びXA及びYAの一方がCH2である場合のメチレン基の水素原子から選ばれる1つ以上の水素原子を意味する。
・「置換もしくは無置換のアルキル基」
 本明細書に記載の「置換もしくは無置換のアルキル基」の具体例(具体例群G3)としては、以下の無置換のアルキル基(具体例群G3A)及び置換のアルキル基(具体例群G3B)が挙げられる。(ここで、無置換のアルキル基とは「置換もしくは無置換のアルキル基」が「無置換のアルキル基」である場合を指し、置換のアルキル基とは「置換もしくは無置換のアルキル基」が「置換のアルキル基」である場合を指す。)以下、単に「アルキル基」という場合は、「無置換のアルキル基」と「置換のアルキル基」の両方を含む。
 「置換のアルキル基」は、「無置換のアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキル基」の具体例としては、下記の「無置換のアルキル基」(具体例群G3A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のアルキル基(具体例群G3B)の例等が挙げられる。本明細書において、「無置換のアルキル基」におけるアルキル基は、鎖状のアルキル基を意味する。そのため、「無置換のアルキル基」は、直鎖である「無置換のアルキル基」、及び分岐状である「無置換のアルキル基」が含まれる。尚、ここに列挙した「無置換のアルキル基」の例や「置換のアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルキル基」には、具体例群G3Bの「置換のアルキル基」におけるアルキル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G3Bの「置換のアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアルキル基(具体例群G3A):
メチル基、
エチル基、
n-プロピル基、
イソプロピル基、
n-ブチル基、
イソブチル基、
s-ブチル基、及び
t-ブチル基。
・置換のアルキル基(具体例群G3B):
ヘプタフルオロプロピル基(異性体を含む)、
ペンタフルオロエチル基、
2,2,2-トリフルオロエチル基、及び
トリフルオロメチル基。
・「置換もしくは無置換のアルケニル基」
 本明細書に記載の「置換もしくは無置換のアルケニル基」の具体例(具体例群G4)としては、以下の無置換のアルケニル基(具体例群G4A)、及び置換のアルケニル基(具体例群G4B)等が挙げられる。(ここで、無置換のアルケニル基とは「置換もしくは無置換のアルケニル基」が「無置換のアルケニル基」である場合を指し、「置換のアルケニル基」とは「置換もしくは無置換のアルケニル基」が「置換のアルケニル基」である場合を指す。)本明細書において、単に「アルケニル基」という場合は、「無置換のアルケニル基」と「置換のアルケニル基」の両方を含む。
 「置換のアルケニル基」は、「無置換のアルケニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルケニル基」の具体例としては、下記の「無置換のアルケニル基」(具体例群G4A)が置換基を有する基、及び置換のアルケニル基(具体例群G4B)の例等が挙げられる。尚、ここに列挙した「無置換のアルケニル基」の例や「置換のアルケニル基」の例は、一例に過ぎず、本明細書に記載の「置換のアルケニル基」には、具体例群G4Bの「置換のアルケニル基」におけるアルケニル基自体の水素原子がさらに置換基と置き換わった基、及び具体例群G4Bの「置換のアルケニル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のアルケニル基(具体例群G4A):
ビニル基、
アリル基、
1-ブテニル基、
2-ブテニル基、及び
3-ブテニル基。
・置換のアルケニル基(具体例群G4B):
1,3-ブタンジエニル基、
1-メチルビニル基、
1-メチルアリル基、
1,1-ジメチルアリル基、
2-メチルアリル基、及び
1,2-ジメチルアリル基。
・「置換もしくは無置換のアルキニル基」
 本明細書に記載の「置換もしくは無置換のアルキニル基」の具体例(具体例群G5)としては、以下の無置換のアルキニル基(具体例群G5A)等が挙げられる。(ここで、無置換のアルキニル基とは、「置換もしくは無置換のアルキニル基」が「無置換のアルキニル基」である場合を指す。)以下、単に「アルキニル基」という場合は、「無置換のアルキニル基」と「置換のアルキニル基」の両方を含む。
 「置換のアルキニル基」は、「無置換のアルキニル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のアルキニル基」の具体例としては、下記の「無置換のアルキニル基」(具体例群G5A)における1つ以上の水素原子が置換基と置き換わった基等が挙げられる。
・無置換のアルキニル基(具体例群G5A):
エチニル基
・「置換もしくは無置換のシクロアルキル基」
 本明細書に記載の「置換もしくは無置換のシクロアルキル基」の具体例(具体例群G6)としては、以下の無置換のシクロアルキル基(具体例群G6A)、及び置換のシクロアルキル基(具体例群G6B)等が挙げられる。(ここで、無置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「無置換のシクロアルキル基」である場合を指し、置換のシクロアルキル基とは「置換もしくは無置換のシクロアルキル基」が「置換のシクロアルキル基」である場合を指す。)本明細書において、単に「シクロアルキル基」という場合は、「無置換のシクロアルキル基」と「置換のシクロアルキル基」の両方を含む。
 「置換のシクロアルキル基」は、「無置換のシクロアルキル基」における1つ以上の水素原子が置換基と置き換わった基を意味する。「置換のシクロアルキル基」の具体例としては、下記の「無置換のシクロアルキル基」(具体例群G6A)における1つ以上の水素原子が置換基と置き換わった基、及び置換のシクロアルキル基(具体例群G6B)の例等が挙げられる。尚、ここに列挙した「無置換のシクロアルキル基」の例や「置換のシクロアルキル基」の例は、一例に過ぎず、本明細書に記載の「置換のシクロアルキル基」には、具体例群G6Bの「置換のシクロアルキル基」におけるシクロアルキル基自体の炭素原子に結合する1つ以上の水素原子が置換基と置き換わった基、及び具体例群G6Bの「置換のシクロアルキル基」における置換基の水素原子がさらに置換基と置き換わった基も含まれる。
・無置換のシクロアルキル基(具体例群G6A):
シクロプロピル基、
シクロブチル基、
シクロペンチル基、
シクロヘキシル基、
1-アダマンチル基、
2-アダマンチル基、
1-ノルボルニル基、及び
2-ノルボルニル基。
・置換のシクロアルキル基(具体例群G6B):
4-メチルシクロヘキシル基。
・「-Si(R901)(R902)(R903)で表される基」
 本明細書に記載の-Si(R901)(R902)(R903)で表される基の具体例(具体例群G7)としては、
-Si(G1)(G1)(G1)、
-Si(G1)(G2)(G2)、
-Si(G1)(G1)(G2)、
-Si(G2)(G2)(G2)、
-Si(G3)(G3)(G3)、及び
-Si(G6)(G6)(G6)
が挙げられる。ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -Si(G1)(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G1)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G1)(G1)(G2)における複数のG1は、互いに同一であるか、又は異なる。
 -Si(G2)(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -Si(G6)(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる。
・「-O-(R904)で表される基」
 本明細書に記載の-O-(R904)で表される基の具体例(具体例群G8)としては、
-O(G1)、
-O(G2)、
-O(G3)、及び
-O(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
・「-S-(R905)で表される基」
 本明細書に記載の-S-(R905)で表される基の具体例(具体例群G9)としては、
-S(G1)、
-S(G2)、
-S(G3)、及び
-S(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
・「-N(R906)(R907)で表される基」
 本明細書に記載の-N(R906)(R907)で表される基の具体例(具体例群G10)としては、
-N(G1)(G1)、
-N(G2)(G2)、
-N(G1)(G2)、
-N(G3)(G3)、及び
-N(G6)(G6)
が挙げられる。
 ここで、
 G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。
 G2は、具体例群G2に記載の「置換もしくは無置換の複素環基」である。
 G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。
 G6は、具体例群G6に記載の「置換もしくは無置換のシクロアルキル基」である。
 -N(G1)(G1)における複数のG1は、互いに同一であるか、又は異なる。
 -N(G2)(G2)における複数のG2は、互いに同一であるか、又は異なる。
 -N(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。
 -N(G6)(G6)における複数のG6は、互いに同一であるか、又は異なる
・「ハロゲン原子」
 本明細書に記載の「ハロゲン原子」の具体例(具体例群G11)としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられる。
・「置換もしくは無置換のフルオロアルキル基」
 本明細書に記載の「置換もしくは無置換のフルオロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がフッ素原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がフッ素原子で置き換わった基(パーフルオロ基)も含む。「無置換のフルオロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のフルオロアルキル基」は、「フルオロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のフルオロアルキル基」には、「置換のフルオロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のフルオロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のフルオロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がフッ素原子と置き換わった基の例等が挙げられる。
・「置換もしくは無置換のハロアルキル基」
 本明細書に記載の「置換もしくは無置換のハロアルキル基」は、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している少なくとも1つの水素原子がハロゲン原子と置き換わった基を意味し、「置換もしくは無置換のアルキル基」におけるアルキル基を構成する炭素原子に結合している全ての水素原子がハロゲン原子で置き換わった基も含む。「無置換のハロアルキル基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。「置換のハロアルキル基」は、「ハロアルキル基」の1つ以上の水素原子が置換基と置き換わった基を意味する。尚、本明細書に記載の「置換のハロアルキル基」には、「置換のハロアルキル基」におけるアルキル鎖の炭素原子に結合する1つ以上の水素原子がさらに置換基と置き換わった基、及び「置換のハロアルキル基」における置換基の1つ以上の水素原子がさらに置換基と置き換わった基も含まれる。「無置換のハロアルキル基」の具体例としては、前記「アルキル基」(具体例群G3)における1つ以上の水素原子がハロゲン原子と置き換わった基の例等が挙げられる。ハロアルキル基をハロゲン化アルキル基と称する場合がある。
・「置換もしくは無置換のアルコキシ基」
 本明細書に記載の「置換もしくは無置換のアルコキシ基」の具体例としては、-O(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルコキシ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・「置換もしくは無置換のアルキルチオ基」
 本明細書に記載の「置換もしくは無置換のアルキルチオ基」の具体例としては、-S(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。「無置換のアルキルチオ基」の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~30であり、より好ましくは1~18である。
・「置換もしくは無置換のアリールオキシ基」
 本明細書に記載の「置換もしくは無置換のアリールオキシ基」の具体例としては、-O(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールオキシ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・「置換もしくは無置換のアリールチオ基」
 本明細書に記載の「置換もしくは無置換のアリールチオ基」の具体例としては、-S(G1)で表される基であり、ここで、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。「無置換のアリールチオ基」の環形成炭素数は、本明細書に別途記載のない限り、6~50であり、好ましくは6~30であり、より好ましくは6~18である。
・「置換もしくは無置換のトリアルキルシリル基」
 本明細書に記載の「トリアルキルシリル基」の具体例としては、-Si(G3)(G3)(G3)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」である。-Si(G3)(G3)(G3)における複数のG3は、互いに同一であるか、又は異なる。「トリアルキルシリル基」の各アルキル基の炭素数は、本明細書に別途記載のない限り、1~50であり、好ましくは1~20であり、より好ましくは1~6である。
・「置換もしくは無置換のアラルキル基」
 本明細書に記載の「置換もしくは無置換のアラルキル基」の具体例としては、-(G3)-(G1)で表される基であり、ここで、G3は、具体例群G3に記載の「置換もしくは無置換のアルキル基」であり、G1は、具体例群G1に記載の「置換もしくは無置換のアリール基」である。従って、「アラルキル基」は、「アルキル基」の水素原子が置換基としての「アリール基」と置き換わった基であり、「置換のアルキル基」の一態様である。「無置換のアラルキル基」は、「無置換のアリール基」が置換した「無置換のアルキル基」であり、「無置換のアラルキル基」の炭素数は、本明細書に別途記載のない限り、7~50であり、好ましくは7~30であり、より好ましくは7~18である。
 「置換もしくは無置換のアラルキル基」の具体例としては、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2-フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、1-α-ナフチルエチル基、2-α-ナフチルエチル基、1-α-ナフチルイソプロピル基、2-α-ナフチルイソプロピル基、β-ナフチルメチル基、1-β-ナフチルエチル基、2-β-ナフチルエチル基、1-β-ナフチルイソプロピル基、及び2-β-ナフチルイソプロピル基等が挙げられる。
 本明細書に記載の置換もしくは無置換のアリール基は、本明細書に別途記載のない限り、好ましくはフェニル基、p-ビフェニル基、m-ビフェニル基、o-ビフェニル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-ターフェニル-4-イル基、o-ターフェニル-3-イル基、o-ターフェニル-2-イル基、1-ナフチル基、2-ナフチル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、トリフェニレニル基、フルオレニル基、9,9’-スピロビフルオレニル基、9,9-ジメチルフルオレニル基、及び9,9-ジフェニルフルオレニル基等である。
 本明細書に記載の置換もしくは無置換の複素環基は、本明細書に別途記載のない限り、好ましくはピリジル基、ピリミジニル基、トリアジニル基、キノリル基、イソキノリル基、キナゾリニル基、ベンゾイミダゾリル基、フェナントロリニル基、カルバゾリル基(1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、又は9-カルバゾリル基)、ベンゾカルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、ジベンゾフラニル基、ナフトベンゾフラニル基、アザジベンゾフラニル基、ジアザジベンゾフラニル基、ジベンゾチオフェニル基、ナフトベンゾチオフェニル基、アザジベンゾチオフェニル基、ジアザジベンゾチオフェニル基、(9-フェニル)カルバゾリル基((9-フェニル)カルバゾール-1-イル基、(9-フェニル)カルバゾール-2-イル基、(9-フェニル)カルバゾール-3-イル基、又は(9-フェニル)カルバゾール-4-イル基)、(9-ビフェニリル)カルバゾリル基、(9-フェニル)フェニルカルバゾリル基、ジフェニルカルバゾール-9-イル基、フェニルカルバゾール-9-イル基、フェニルトリアジニル基、ビフェニリルトリアジニル基、ジフェニルトリアジニル基、フェニルジベンゾフラニル基、及びフェニルジベンゾチオフェニル基等である。
 本明細書において、カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000020
 本明細書において、(9-フェニル)カルバゾリル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000021
 前記一般式(TEMP-Cz1)~(TEMP-Cz9)中、*は、結合位置を表す。
 本明細書において、ジベンゾフラニル基、及びジベンゾチオフェニル基は、本明細書に別途記載のない限り、具体的には以下のいずれかの基である。
Figure JPOXMLDOC01-appb-C000022
 前記一般式(TEMP-34)~(TEMP-41)中、*は、結合位置を表す。
 本明細書に記載の置換もしくは無置換のアルキル基は、本明細書に別途記載のない限り、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及びt-ブチル基等である。
・「置換もしくは無置換のアリーレン基」
 本明細書に記載の「置換もしくは無置換のアリーレン基」は、別途記載のない限り、上記「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアリーレン基」の具体例(具体例群G12)としては、具体例群G1に記載の「置換もしくは無置換のアリール基」からアリール環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・「置換もしくは無置換の2価の複素環基」
 本明細書に記載の「置換もしくは無置換の2価の複素環基」は、別途記載のない限り、上記「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換の2価の複素環基」の具体例(具体例群G13)としては、具体例群G2に記載の「置換もしくは無置換の複素環基」から複素環上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
・「置換もしくは無置換のアルキレン基」
 本明細書に記載の「置換もしくは無置換のアルキレン基」は、別途記載のない限り、上記「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基である。「置換もしくは無置換のアルキレン基」の具体例(具体例群G14)としては、具体例群G3に記載の「置換もしくは無置換のアルキル基」からアルキル鎖上の1つの水素原子を除くことにより誘導される2価の基等が挙げられる。
 本明細書に記載の置換もしくは無置換のアリーレン基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-42)~(TEMP-68)のいずれかの基である。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 前記一般式(TEMP-42)~(TEMP-52)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-42)~(TEMP-52)中、*は、結合位置を表す。
Figure JPOXMLDOC01-appb-C000025
 前記一般式(TEMP-53)~(TEMP-62)中、Q~Q10は、それぞれ独立に、水素原子、又は置換基である。
 式Q及びQ10は、単結合を介して互いに結合して環を形成してもよい。
 前記一般式(TEMP-53)~(TEMP-62)中、*は、結合位置を表す。
Figure JPOXMLDOC01-appb-C000026
 前記一般式(TEMP-63)~(TEMP-68)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 前記一般式(TEMP-63)~(TEMP-68)中、*は、結合位置を表す。
 本明細書に記載の置換もしくは無置換の2価の複素環基は、本明細書に別途記載のない限り、好ましくは下記一般式(TEMP-69)~(TEMP-102)のいずれかの基である。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 前記一般式(TEMP-69)~(TEMP-82)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 前記一般式(TEMP-83)~(TEMP-102)中、Q~Qは、それぞれ独立に、水素原子、又は置換基である。
 以上が、「本明細書に記載の置換基」についての説明である。
・「結合して環を形成する場合」
 本明細書において、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成するか、互いに結合して、置換もしくは無置換の縮合環を形成するか、又は互いに結合せず」という場合は、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合と、「隣接する2つ以上からなる組の1組以上が、互いに結合しない」場合と、を意味する。
 本明細書における、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(以下、これらの場合をまとめて「結合して環を形成する場合」と称する場合がある。)について、以下、説明する。母骨格がアントラセン環である下記一般式(TEMP-103)で表されるアントラセン化合物の場合を例として説明する。
Figure JPOXMLDOC01-appb-C000034
 例えば、R921~R930のうちの「隣接する2つ以上からなる組の1組以上が、互いに結合して、環を形成する」場合において、1組となる隣接する2つからなる組とは、R921とR922との組、R922とR923との組、R923とR924との組、R924とR930との組、R930とR925との組、R925とR926との組、R926とR927との組、R927とR928との組、R928とR929との組、並びにR929とR921との組である。
 上記「1組以上」とは、上記隣接する2つ以上からなる組の2組以上が同時に環を形成してもよいことを意味する。例えば、R921とR922とが互いに結合して環Qを形成し、同時にR925とR926とが互いに結合して環Qを形成した場合は、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-104)で表される。
Figure JPOXMLDOC01-appb-C000035
 「隣接する2つ以上からなる組」が環を形成する場合とは、前述の例のように隣接する「2つ」からなる組が結合する場合だけではなく、隣接する「3つ以上」からなる組が結合する場合も含む。例えば、R921とR922とが互いに結合して環Qを形成し、かつ、R922とR923とが互いに結合して環Qを形成し、互いに隣接する3つ(R921、R922及びR923)からなる組が互いに結合して環を形成して、アントラセン母骨格に縮合する場合を意味し、この場合、前記一般式(TEMP-103)で表されるアントラセン化合物は、下記一般式(TEMP-105)で表される。下記一般式(TEMP-105)において、環Q及び環Qは、R922を共有する。
Figure JPOXMLDOC01-appb-C000036
 形成される「単環」、又は「縮合環」は、形成された環のみの構造として、飽和の環であっても不飽和の環であってもよい。「隣接する2つからなる組の1組」が「単環」、又は「縮合環」を形成する場合であっても、当該「単環」、又は「縮合環」は、飽和の環、又は不飽和の環を形成することができる。例えば、前記一般式(TEMP-104)において形成された環Q及び環Qは、それぞれ、「単環」又は「縮合環」である。また、前記一般式(TEMP-105)において形成された環Q、及び環Qは、「縮合環」である。前記一般式(TEMP-105)の環Qと環Qとは、環Qと環Qとが縮合することによって縮合環となっている。前記一般式(TMEP-104)の環Qがベンゼン環であれば、環Qは、単環である。前記一般式(TMEP-104)の環Qがナフタレン環であれば、環Qは、縮合環である。
 「不飽和の環」とは、芳香族炭化水素環、又は芳香族複素環を意味する。「飽和の環」とは、脂肪族炭化水素環、又は非芳香族複素環を意味する。
 芳香族炭化水素環の具体例としては、具体例群G1において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 芳香族複素環の具体例としては、具体例群G2において具体例として挙げられた芳香族複素環基が水素原子によって終端された構造が挙げられる。
 脂肪族炭化水素環の具体例としては、具体例群G6において具体例として挙げられた基が水素原子によって終端された構造が挙げられる。
 「環を形成する」とは、母骨格の複数の原子のみ、あるいは母骨格の複数の原子とさらに1以上の任意の元素で環を形成することを意味する。例えば、前記一般式(TEMP-104)に示す、R921とR922とが互いに結合して形成された環Qは、R921が結合するアントラセン骨格の炭素原子と、R922が結合するアントラセン骨格の炭素原子と、1以上の任意の元素とで形成する環を意味する。具体例としては、R921とR922とで環Qを形成する場合において、R921が結合するアントラセン骨格の炭素原子と、R922とが結合するアントラセン骨格の炭素原子と、4つの炭素原子とで単環の不飽和の環を形成する場合、R921とR922とで形成する環は、ベンゼン環である。
 ここで、「任意の元素」は、本明細書に別途記載のない限り、好ましくは、炭素元素、窒素元素、酸素元素、及び硫黄元素からなる群から選択される少なくとも1種の元素である。任意の元素において(例えば、炭素元素、又は窒素元素の場合)、環を形成しない結合は、水素原子等で終端されてもよいし、後述する「任意の置換基」で置換されてもよい。炭素元素以外の任意の元素を含む場合、形成される環は複素環である。
 単環または縮合環を構成する「1以上の任意の元素」は、本明細書に別途記載のない限り、好ましくは2個以上15個以下であり、より好ましくは3個以上12個以下であり、さらに好ましくは3個以上5個以下である。
 本明細書に別途記載のない限り、「単環」、及び「縮合環」のうち、好ましくは「単環」である。
 本明細書に別途記載のない限り、「飽和の環」、及び「不飽和の環」のうち、好ましくは「不飽和の環」である。
 本明細書に別途記載のない限り、「単環」は、好ましくはベンゼン環である。
 本明細書に別途記載のない限り、「不飽和の環」は、好ましくはベンゼン環である。
 「隣接する2つ以上からなる組の1組以上」が、「互いに結合して、置換もしくは無置換の単環を形成する」場合、又は「互いに結合して、置換もしくは無置換の縮合環を形成する」場合、本明細書に別途記載のない限り、好ましくは、隣接する2つ以上からなる組の1組以上が、互いに結合して、母骨格の複数の原子と、1個以上15個以下の炭素元素、窒素元素、酸素元素、及び硫黄元素からなる群から選択される少なくとも1種の元素とからなる置換もしくは無置換の「不飽和の環」を形成する。
 上記の「単環」、又は「縮合環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 上記の「飽和の環」、又は「不飽和の環」が置換基を有する場合の置換基は、例えば後述する「任意の置換基」である。上記の「単環」、又は「縮合環」が置換基を有する場合の置換基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基である。
 以上が、「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の単環を形成する」場合、及び「隣接する2つ以上からなる組の1組以上が、互いに結合して、置換もしくは無置換の縮合環を形成する」場合(「結合して環を形成する場合」)についての説明である。
・「置換もしくは無置換の」という場合の置換基
 本明細書における一実施形態においては、前記「置換もしくは無置換の」という場合の置換基(本明細書において、「任意の置換基」と呼ぶことがある。)は、例えば、無置換の炭素数1~50のアルキル基、
無置換の炭素数2~50のアルケニル基、
無置換の炭素数2~50のアルキニル基、
無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
無置換の環形成炭素数6~50のアリール基、及び
無置換の環形成原子数5~50の複素環基
からなる群から選択される基等であり、
 ここで、R901~R907は、それぞれ独立に、
水素原子、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の複素環基である。
 R901が2個以上存在する場合、2個以上のR901は、互いに同一であるか、又は異なり、
 R902が2個以上存在する場合、2個以上のR902は、互いに同一であるか、又は異なり、
 R903が2個以上存在する場合、2個以上のR903は、互いに同一であるか、又は異なり、
 R904が2個以上存在する場合、2個以上のR904は、互いに同一であるか、又は異なり、
 R905が2個以上存在する場合、2個以上のR905は、互いに同一であるか、又は異なり、
 R906が2個以上存在する場合、2個以上のR906は、互いに同一であるか、又は異なり、
 R907が2個以上存在する場合、2個以上のR907は、互いに同一であるか又は異なる。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~50のアルキル基、
環形成炭素数6~50のアリール基、及び
環形成原子数5~50の複素環基
からなる群から選択される基である。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
炭素数1~18のアルキル基、
環形成炭素数6~18のアリール基、及び
環形成原子数5~18の複素環基
からなる群から選択される基である。
 一実施形態においては、前記「置換もしくは無置換の」という場合の置換基は、
シアノ基、
ハロゲン原子、
炭素数1~30のアルキル基、
環形成炭素数3~30のシクロアルキル基、
炭素数7~36のアラルキル基、
炭素数1~30のアルコキシ基、
環形成炭素数6~30のアリールオキシ基、
炭素数1~30のアルキル基から選ばれる置換基を有するトリ置換シリル基、
炭素数1~30のハロアルキル基、
環形成炭素数6~30のアリール基、
炭素数1~30のアルキルチオ基、及び、
環形成炭素数6~30のアリールチオ基
からなる群から選ばれる少なくとも一つの置換基である。
 上記任意の置換基の各基の具体例は、上述した「本明細書に記載の置換基」の項で説明した置換基の具体例である。
 本明細書において別途記載のない限り、隣接する任意の置換基同士で、「飽和の環」、又は「不飽和の環」を形成してもよく、好ましくは、置換もしくは無置換の飽和の5員環、置換もしくは無置換の飽和の6員環、置換もしくは無置換の不飽和の5員環、又は置換もしくは無置換の不飽和の6員環を形成し、より好ましくは、ベンゼン環を形成する。
 本明細書において別途記載のない限り、任意の置換基は、さらに置換基を有してもよい。任意の置換基がさらに有する置換基としては、上記任意の置換基と同様である。
 本明細書において、「AA~BB」を用いて表される数値範囲は、「AA~BB」の前に記載される数値AAを下限値とし、「AA~BB」の後に記載される数値BBを上限値として含む範囲を意味する。
[有機EL素子]
 本発明の実施形態に係る有機EL素子は、陽極と、陰極と、上記陽極と陰極との間に配置された、発光帯域を含む有機層とを備え、上記有機層が、第1の化合物を含む第1の層と、第2の化合物を含む第2の層とを有し、上記第1の層と上記第2の層とは異なる層であり、上記第1の化合物は、下記の式(1)で表される化合物において1つ以上の重水素原子を有する化合物を1質量%以上含み、上記第2の化合物は、下記の式(2)で表される化合物において1つ以上の重水素原子を有する化合物を1質量%以上含む。
 以下、式(1)で表される化合物を「化合物(1)」、式(2)で表される化合物を「化合物(2)」ということがある。化合物(1)及び化合物(2)については後述する。
 本発明の一態様に係る有機EL素子は、上記の構成を有することによって高い素子性能を示す。具体的には、より長寿命な有機EL素子が提供可能となる。
 本発明の一態様によれば、有機EL素子の、発光帯域を含む有機層が有している、第1の層に上記化合物(1)であって少なくとも一つの重水素原子を有する化合物を含ませるとともに、上記化合物(2)であって少なくとも一つの重水素原子を有する化合物を含ませることによる、有機EL素子性能の向上方法を提供することもできる。当該方法は、例えば、有機層を構成する一つの層である正孔輸送層に含まれる正孔輸送材料として、化合物(1)であって、水素原子として軽水素原子のみを含む化合物を用いる場合、及び、有機層の少なくとも一部を構成する発光帯域に含まれるホスト材料として、化合物(2)であって、水素原子として軽水素原子のみを含む化合物を用いる場合のうち少なくとも一方の場合と比較して、有機EL素子性能を改善することが可能となる。
 以下、上記式(1)で表される化合物であって、水素原子として軽水素原子のみを含む構造を有する化合物を「化合物(1)の軽水素体」とも言う。また、上記式(2)で表される化合物であって、水素原子として軽水素原子のみを含む構造を有する化合物を「化合物(2)の軽水素体」とも言う。
 なお、軽水素体を用いた場合とは、例えば、正孔輸送層に含まれる正孔輸送材料として、実質的に軽水素体のみ(第1の化合物に対する化合物(1)の軽水素体の含有割合が、90モル%以上、95モル%以上又は99モル%以上)を用いた場合、及び、発光帯域に含まれるホスト材料として、実質的に軽水素体のみ(第2の化合物に対する化合物(2)の軽水素体との合計に対する軽水素体の含有割合が、90モル%以上、95モル%以上又は99モル%以上)のうち少なくとも一方の場合を示す。
 すなわち、例えば、正孔輸送材料として、化合物(1)の軽水素体に代えて、又は化合物(1)の軽水素体に加えて、化合物(1)の軽水素体の軽水素原子のうち少なくとも1つを重水素原子に置き換えた化合物を用い、かつ、発光帯域に含まれるホスト材料として、化合物(2)の軽水素体に代えて、又は化合物(2)の軽水素体に加えて、化合物(2)の軽水素体の軽水素原子のうち少なくとも1つを重水素原子に置き換えた化合物を用いることで、当該性能を高めることができる。
 本発明の一態様に係る有機EL素子の概略構成を、図を参照して説明する。
 図1は、上記有機EL素子の構成の一例を示す概略図である。図1に示す有機EL素子1は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された発光ユニット10とを有する。発光ユニット10は、発光帯域5を有する。発光帯域5と陽極3との間に正孔輸送帯域6(正孔注入層、正孔輸送層等)、発光帯域5と陰極4との間に電子輸送帯域7(電子注入層、電子輸送層等)を有する。また、発光帯域5の陽極3側に電子阻止層(図示せず)を、発光帯域5の陰極4側に正孔阻止層(図示せず)を、それぞれ設けてもよい。これにより、電子や正孔を発光帯域5に閉じ込めて、発光帯域5における励起子の生成効率をさらに高めることができる。
 図2は、上記有機EL素子の他の構成を示す概略図である。図2に示す有機EL素子11は、基板2、陽極3、陰極4、及び該陽極3と陰極4との間に配置された発光ユニット20とを有する。発光ユニット20は、発光帯域5を有する。陽極3と発光帯域5の間に配置された正孔輸送帯域は、第1正孔輸送層6a及び第2正孔輸送層6bから形成されている。また、発光帯域5と陰極4の間に配置された電子輸送帯域は、第1電子輸送層7a及び第2電子輸送層7bから形成されている。
 図1、図2において、発光帯域5は少なくとも1層の発光層を含む。発光帯域5は、単独の層からなる発光層であってもよいし、複数の層(例えば、複数の発光層、複数の発光層とスペース層)を含むものであってもよい。
 図1の有機EL素子1における発光ユニット10、図2の有機EL素子11における発光ユニット20が、それぞれ「発光帯域を含む有機層」である。そして、当該有機層に含まれる第1の層に、上記式(1)で表される化合物において、1つ以上の重水素原子を有する化合物を1質量%以上含む化合物である第1の化合物が含まれる。更に、上記有機層に含まれ、上記第1の層とは異なる第2の層に、上記式(2)で表される化合物において、1つ以上の重水素原子を有する化合物を1質量%以上含む化合物である第2の化合物が含まれる。
 上記第1の層に含まれる第1の化合物、及び、上記第2の層に含まれる第2の化合物は、それぞれ1種単独であってもよいし、2種以上であってもよい。
 本発明の一態様に係る有機EL素子おいて、上記第1の化合物として、式(1)で表される化合物であって、互いに異なる構造を有する複数の化合物を含み、かつ、上記第2の化合物として、式(2)で表される化合物であって、互いに異なる構造を有する複数の化合物を含む。
 以下、上記第1の層に含まれる第1の化合物、及び、上記第2の層に含まれる第2の化合物について説明する。その後、有機EL素子の層構成等について説明する。
<第1の化合物>
 上記該有機層の少なくとも一層に含まれる第1の化合物は、上述したように式(1)で表される化合物(化合物(1))において1つ以上の重水素原子を有する化合物を1質量%以上含む。
Figure JPOXMLDOC01-appb-C000037
 以下、式(1)及び後述する式(1)に含まれる各式における記号を説明する。なお、同じ記号は同じ意味を有する。
 式(1)において、Nは中心窒素原子である。
 式(1)において、L~Lは、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は、置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
 L~Lが表す置換もしくは無置換の環形成炭素数6~30のアリーレン基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
 L~Lが表す前記置換もしくは無置換のアリーレン基は、好ましくは、それぞれ独立に、フェニレン基、ビフェニレン基、ターフェニレン基である。
 L~Lが表す置換もしくは無置換の環形成原子数5~30の2価の複素環基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
 a1~a3は、それぞれ独立に、1~3の整数である。
 Ar~Arは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30の1価の複素環基である。
 式(1)中、Ar~Arは、それぞれ独立して、置換もしくは無置換の環形成炭素数6~16のアリール基、又は、置換もしくは無置換の環形成原子数5~30の1価の複素環基であることが好ましい。
 Ar~Arがいずれも前記置換もしくは無置換の環形成炭素数6~16のアリール基である場合、前記2つの置換もしくは無置換の環形成炭素数6~16のアリール基の総炭素原子数が12~38であることが好ましい。
 ここで、本明細書において、「総炭素原子数」には、置換基の炭素数も含まれる。
 Arの置換基、Arの置換基及びArの置換基は、いずれも無置換の置換基である。すなわち、Arの置換基の置換、Arの置換基の置換、及び、Arの置換基の置換は、許容されない。
 Ar~Arが表す前記置換もしくは無置換の環形成炭素数6~16のアリール基が、置換もしくは無置換のフルオレニル基を含む場合、該置換もしくは無置換のフルオレニル基の少なくとも1つが下記式(A)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000038

 式(A)中、Rは、置換もしくは無置換のアルキル基、又は、置換もしくは無置換のアリール基であり、
 式(A)中、Rは、置換もしくは無置換のアルキル基であり、
 式(A)中、R91~R98の1つは、(L)a1、(L)a2又は(L)a3と結合する単結合であり、
 前記単結合でないR91~R98は、それぞれ独立して、水素原子又は置換基であり、該置換基は、前述した式(1)におけるArの置換基、Arの置換基及びArの置換基と同様であり、好ましい態様も同様である。
 R及びRが表す前記置換もしくは無置換のアルキル基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
 R及びRが表す前記置換のアルキル基の置換基は、いずれも無置換の置換基である。即ち、R及びRが表す前記置換のアルキル基の置換基の置換は、許容されない。
 R及びRが表す前記無置換のアルキル基は、好ましくはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、又はt-ブチル基であり、より好ましくはメチル基、エチル基、イソプロピル基、又はt-ブチル基であり、更に好ましくはメチル基又はt-ブチル基である。
 Rが表す前記置換もしくは無置換のアリール基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
 Rが表す前記置換のアリール基の置換基は、無置換の置換基である。即ち、Rが表す前記置換のアリール基の置換基の置換は、許容されない。
 Rが表す前記無置換のアリール基は、フェニル基、ビフェニル基、ナフチル基、及びフェナントリル基からなる群より選ばれることがより好ましい。
Ar~Arが表すアリール基
 Ar~Arが表す前記置換もしくは無置換の環形成炭素数6~16のアリール基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
 Ar~Arが表す前記無置換のアリール基は、ベンゼン環のみからなることが好ましく、フェニル基、ビフェニル基、ナフチル基、及びフェナントリル基からなる群より選ばれることがより好ましい。
Ar~Arが表す複素環基
 Ar~Arが表す前記置換もしくは無置換の環形成原子数5~30の1価の複素環基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
 Ar~Arが表す前記無置換の1価の複素環基は、好ましくはピリジル基、ピリミジニル基、トリアジニル基、キノリル基、イソキノリル基、キナゾリニル基、ベンゾイミダゾリル基、フェナントロリニル基、カルバゾリル基(1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、又は9-カルバゾリル基)、ベンゾカルバゾリル基、ジベンゾフラニル基、ナフトベンゾフラニル基、ジベンゾチオフェニル基、及びナフトベンゾチオフェニル基から選ばれる複素環基であり、より好ましくはピリジル基、ジベンゾフラニル基、ジベンゾチオフェニル基から選ばれる複素環基である。
Arの置換基、Arの置換基及びArの置換基
 Arの置換基、Arの置換基及びArの置換基は、それぞれ独立して、
ハロゲン原子、ニトロ基、シアノ基、
無置換の炭素数1~50のアルキル基、
無置換の炭素数2~50のアルケニル基、
無置換の炭素数2~50のアルキニル基、
無置換の環形成炭素数3~50のシクロアルキル基、
無置換の炭素数1~50のハロアルキル基、
無置換の炭素数1~50のアルコキシ基、
無置換の炭素数1~50のハロアルコキシ基、
無置換の炭素数1~50のアルキルチオ基、
無置換の環形成炭素数6~50のアリール基、
無置換の環形成炭素数6~50のアリールオキシ基、
無置換の環形成炭素数6~50のアリールチオ基、
無置換の炭素数7~50のアラルキル基、
無置換の環形成原子数5~50の1価の複素環基、又は
無置換の炭素数1~50のアルキル基、無置換の環形成炭素数3~50のシクロアルキル基、無置換の環形成炭素数6~50のアリール基、及び無置換の環形成原子数5~50の1価の複素環基から選ばれる置換基を有するモノ、ジ又はトリ置換シリル基である。
ハロゲン原子
 Arの置換基、Arの置換基及びArの置換基としての前記ハロゲン原子の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
アルキル基
 Arの置換基、Arの置換基及びArの置換基としての前記無置換の炭素数1~50のアルキル基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
アルケニル基
 Arの置換基、Arの置換基及びArの置換基としての前記無置換の炭素数2~50のアルケニル基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
アルキニル基
 Arの置換基、Arの置換基及びArの置換基としての前記無置換の炭素数2~50のアルキニル基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
シクロアルキル基
 Arの置換基、Arの置換基及びArの置換基としての前記無置換の環形成炭素数3~50のシクロアルキル基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
ハロアルキル基
 Arの置換基、Arの置換基及びArの置換基としての前記無置換の炭素数1~50のハロアルキル基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
アルコキシ基
 Arの置換基、Arの置換基及びArの置換基としての前記無置換の炭素数1~50のアルコキシ基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
ハロアルコキシ基
 Arの置換基、Arの置換基及びArの置換基としての前記無置換の炭素数1~50のハロアルコキシ基は、-O(G12)で表される基であり、G12は前記無置換のハロアルキル基である。
アルキルチオ基
 Arの置換基、Arの置換基及びArの置換基としての前記無置換の炭素数1~50のアルキルチオ基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
アリール基
 Arの置換基、Arの置換基及びArの置換基としての前記無置換の環形成炭素数6~50のアリール基の詳細は、「本明細書に記載の置換基」の項において上記したとおりである。
 Arの置換基、Arの置換基及びArの置換基としての前記無置換のアリール基は、フェニル基、ナフチル基、及びフェナントリル基からなる群より選ばれることがより好ましい。
 但し、Arの置換基及びArの置換基としての前記無置換の環形成炭素数6~50のアリール基には、例えば、フルオレニル基、フェナントリル基、アントラセニル基等の縮合アリール基;などは含まれるが、ビフェニル基、ターフェニル基、ナフチルフェニル基等の環集合は含まれない。
アリールオキシ基
 Arの置換基、Arの置換基及びArの置換基としての前記無置換の環形成炭素数6~50のアリールオキシ基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
アリールチオ基
 Arの置換基、Arの置換基及びArの置換基としての前記無置換の環形成炭素数6~50のアリールチオ基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
アラルキル基
 Arの置換基、Arの置換基及びArの置換基としての前記無置換の炭素数7~50のアラルキル基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
複素環基
 Arの置換基、Arの置換基及びArの置換基としての前記無置換の環形成原子数5~50の1価の複素環基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
置換シリル基
 Arの置換基、Arの置換基及びArの置換基としての前記モノ、ジ又はトリ置換シリル基の置換基の詳細は、「本明細書に記載の置換基」の項において上記したとおりである。
 Arは、無置換の炭素数1~50のアルキル基で置換されていることが好ましい。
 本発明の一態様において、化合物(1)における、中心窒素原子に結合する各基の合計炭素数は10以上である。化合物(1)における、中心窒素原子に結合する各基の合計炭素数は、好ましくは12以上であり、より好ましくは18以上である。
 本発明の一態様において、化合物(1)は、下記式(1-1a)~式(1-1c)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000039
 式(1-1a)において、環Aは、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は、置換もしくは無置換の環形成原子数5~50の複素環である。
 環Aが表す置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環は、それぞれ置換もしくは無置換の、フェニル基、ビフェニル基、ナフチル基、及びフェナントリル基からなる群より選ばれることがより好ましい。
 環Aが表す置換もしくは無置換の環形成原子数5~50の複素環は、それぞれ置換もしくは無置換の、ピリジル基、ピリミジニル基、トリアジニル基、キノリル基、イソキノリル基、キナゾリニル基、ベンゾイミダゾリル基、フェナントロリニル基、カルバゾリル基(1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、又は9-カルバゾリル基)、ベンゾカルバゾリル基、ジベンゾフラニル基、ナフトベンゾフラニル基、ジベンゾチオフェニル基、及びナフトベンゾチオフェニル基から選ばれる複素環基であることが好ましく、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基から選ばれる複素環基であることがより好ましい。
 式(1-1a)において、R17a~R20aのうち一つは*yに結合する。*7に結合しないR17a~R20aは、それぞれ独立に、水素原子又は置換基Bである。
 前記置換基Bは、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 置換基Bが表す置換もしくは無置換の炭素数1~50のアルキル基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
 置換基Bが表す置換もしくは無置換の環形成炭素数6~50のアリール基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
 式(1-1a)において、*yに結合しないR17a~R20aから選ばれる隣接する2つは環を形成してもよく、環を形成しなくてもよい。
 式(1-1b)において、環Bは、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は、置換もしくは無置換の環形成原子数5~50の複素環である。
 環Bが表す置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、及び、置換もしくは無置換の環形成原子数5~50の複素環は、環Aについて説明したのと同様である。
 式(1-1c)において、環C及び環Dは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は、置換もしくは無置換の環形成原子数5~50の複素環である。
 環C及び環Dが表す置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、及び、置換もしくは無置換の環形成原子数5~50の複素環は、環Aについて説明したのと同様である。
 式(1-1a)~式(1-1c)において、N、L~L、Ar、Ar、及び、a1~a3は、前記式(1)で定義したとおりである。
 本発明の一態様において、化合物(1)は、下記式(1-2)で表される。
Figure JPOXMLDOC01-appb-C000040
 式(1-2)において、Yは、酸素原子、硫黄原子、NR101、又は、CR102103を示す。
 式(1-2)において、R17b~R24b及びR101のうち一つは*yに結合する。R102、R103、*yに結合しないR17b~R24b及びR101は、それぞれ独立に、水素原子又は置換基Cである。
 前記置換基Cは、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 置換基Cが表す置換もしくは無置換の炭素数1~50のアルキル基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
 置換基Cが表す置換もしくは無置換の環形成炭素数6~50のアリール基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
 式(1-2)において、N、L~L、Ar、Ar、及び、a1~a3は、前記式(1)で定義したとおりである。
 本発明の一態様において、式(1-2)におけるLに結合しないR17b~R24bは、それぞれ独立に、水素原子、又は、炭素数1~10のアルキル基であり、Lに結合しないR17b~R24のうち少なくとも1つは炭素数1~10のアルキル基である、
 本発明の一態様において、化合物(1)は、下記式(1-3a)又は式(1-3b)で表される。
Figure JPOXMLDOC01-appb-C000041
 式(1-3a)及び式(1-3b)において、L11は、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は、置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
 式(1-3a)及び式(1-3b)において、a11は、1又は2の整数である。Yは、酸素原子、硫黄原子、NR101、又は、CR102103を示す。
 式(1-3a)におけるR17c~R24c及びR101のうち一つは*yに結合し、R102、R103、*yに結合しないR17c~R24c及びR101は、それぞれ独立に、水素原子又は置換基Cである。
 式(1-3b)におけるR17d~R24d及びR101のうち一つは*yに結合し、R102、R103、*yに結合しないR17d~R24d及びR101は、それぞれ独立に、水素原子又は置換基Cである。
 式(1-3a)におけるR25~R28、及び、式(1-3b)におけるR25~R27、R29は、それぞれ独立に、水素原子又は置換基Dである。
 前記置換基Dは、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 置換基Dが表す置換もしくは無置換の炭素数1~50のアルキル基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
 置換基Dが表す置換もしくは無置換の環形成炭素数6~50のアリール基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
 式(1-3a)のR26とR27、R27とR28、及び、式(1-3b)のR26とR27、R25とR29は、それぞれ独立に、環を形成してもよいし、環を形成しなくてもよい。
 式(1-3a)及び(1-3b)のR25又はR26は隣接するL11の環形成炭素原子と結合してもよいし、結合しなくてもよい。
 N、L、L、Ar、Ar、a2、及び、a3は、前記式(1)において定義したとおりである。置換基Cは、前記式(1-2)において定義したとおりである。
 本発明の一態様において、式(1)で表される化合物は、上記式(1-3a)で表される。
 本発明の一態様において、化合物(1)は、下記式(1-4)で表される。
Figure JPOXMLDOC01-appb-C000042
 式(1-4)において、R104は、水素原子又は置換基Eである。
 前記置換基Eは、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 置換基Eが表す置換もしくは無置換の炭素数1~50のアルキル基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
 置換基Eが表す置換もしくは無置換の環形成炭素数6~50のアリール基の詳細は「本明細書に記載の置換基」の項において上記したとおりである。
 Yは、酸素原子、硫黄原子、NR101、又は、CR102103を示す。
 R17e~R24e及びR101のうち一つは*yに結合し、R102、R103、*yに結合しないR17e~R24e及びR101は、それぞれ独立に、水素原子又は置換基Cである。
 式(1-4)において、N、L~L、Ar、Ar、及び、a1~a3は、前記式(1)において定義したとおりである。置換基Cは、前記式(1-2)において定義したとおりである。
 本発明の一態様において、化合物(1)は、下記式(1-5)で表される。
Figure JPOXMLDOC01-appb-C000043
 式(1-5)において、R17~R24は、それぞれ独立に、水素原子又は置換基Cである。N、L~L、Ar、Ar、及び、a1~a3は、前記式(1)において定義したとおりである。置換基Cは、前記式(1-2)において定義したとおりである。
 本発明の一態様において、化合物(1)は、下記式(1-6a)又は式(1-6b)で表される。
Figure JPOXMLDOC01-appb-C000044
 式(1-6a)及び式(1-6b)において、N、L、L、Ar、Ar、a2、及び、a3は、前記式(1)において定義したとおりである。R17~R24は、前記式(1-5)において定義したとおりである。
 式(1-6a)におけるR25~R28、及び、式(1-6b)におけるR25~R27、R29は、それぞれ、前記式(1-3a)及び式(1-3b)において定義したとおりである。
 本発明の一態様において、式(1)で表される化合物は、上記式(1-6a)で表される。
(好適な化合物(1)の例)
 上記化合物(1)としては、例えば、下記式(1-7)~(1-16)で表される化合物が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000045
 式(1-7)中、Yは、酸素原子、硫黄原子、NR101、又は、CR102103を示す。
 R17f~R24f及びR101のうち一つは*yに結合する。R102、R103、*yに結合しないR17f~R24f及びR101は、それぞれ独立に、水素原子又は前記置換基Cである。
 式(1-7)中、R151~R155及びR161~R166は、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 ただし、
 R151~R155から選ばれる一つは*pに結合する単結合であり、
 R161~R166から選ばれる一つは*qに結合する単結合であり、R161~R166から選ばれる他の一つは*rに結合する単結合である。
 式(1-7)中、R131~R135、R141~R146、R171~R175、R181~R186、R51~R55及びR191~R195は、それぞれ独立して、水素原子、又は、置換基Fであり、該置換基Fは、前述した式(1)におけるArの置換基、Arの置換基及びArの置換基と同様の置換基である。
 ただし、
 R131~R135から選ばれる一つは*pに結合する単結合であり、
 R141~R146から選ばれる一つは*qに結合する単結合であり、R141~R146から選ばれる他の一つ又は二つは*rに結合する単結合であり、
 R171~R175から選ばれる一つは*pに結合する単結合であり、
 R181~R186から選ばれる一つは*qに結合する単結合であり、R181~R186から選ばれる他の一つ又は二つは*rに結合する単結合である。
 式(1-7)中、m1、m11及びm21は、それぞれ独立して、0又は1であり、n1、n11及びn21は、それぞれ独立して、0又は1であり、
 m1が0でn1が0のとき、*rが中心窒素原子Nに結合し、
 m1が0でn1が1のとき、*pが中心窒素原子Nに結合し、
 m1が1でn1が0のとき、R131~R135から選ばれる一つが*rに結合する単結合であり、
 m11が0でn11が0のとき、*rが中心窒素原子Nに結合し、
 m11が0でn11が1のとき、*pが中心窒素原子Nに結合し、
 m11が1でn11が0のとき、R171~R175から選ばれる一つが*rに結合する単結合であり、
 m21が0でn21が0のとき、*rが中心窒素原子Nに結合し、
 m21が0でn21が1のとき、*pが中心窒素原子Nに結合し、
 m21が1でn21が0のとき、R151~R155から選ばれる一つが*rに結合する単結合であり、
 k及びk1は、それぞれ独立して、1又は2である。
 式(1-7)中、前記単結合ではないR131~R135から選ばれる隣接する2つ、前記単結合ではないR141~R146から選ばれる隣接する2つ、前記単結合ではないR151~R155から選ばれる隣接する2つ、前記単結合ではないR161~R166から選ばれる隣接する2つ、前記単結合ではないR171~R175から選ばれる隣接する2つ、前記単結合ではないR181~R186から選ばれる隣接する2つ、R51~R55から選ばれる隣接する2つ、及びR191~R195から選ばれる隣接する2つは、それぞれ独立して、互いに結合せず、したがって環構造を形成せず、ベンゼン環A1とベンゼン環B1、ベンゼン環A1とベンゼン環C1、ベンゼン環B1とベンゼン環C1、ベンゼン環A2とベンゼン環B2、ベンゼン環A2とベンゼン環C2、ベンゼン環B2とベンゼン環C2、及びベンゼン環A3とベンゼン環B3は架橋しない。
Figure JPOXMLDOC01-appb-C000046
 式(1-8)中、Y及びR17f~R24fは、前述した通りである。
 式(1-8)中、R151~R155及びR161~R166は、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 ただし、
 R151~R155から選ばれる一つは*pに結合する単結合であり、
 R161~R166から選ばれる一つは*qに結合する単結合であり、R161~R166から選ばれる他の一つは*rに結合する単結合である。
 式(1-8)中、R131~R135、R141~R146、R81~R85、R41~R46、R51~R55及びR71~R80は、それぞれ独立して、前述した式(1-7)におけるR131~R135、R141~R146、R171~R175、R181~R186、R51~R55及びR191~R195と同様であり、好ましい態様も同様である。
 ただし、
 R131~R135から選ばれる一つは*pに結合する単結合であり、
 R141~R146から選ばれる一つは*qに結合する単結合であり、R141~R146から選ばれる他の一つ又は二つは*rに結合する単結合であり、
 R81~R85から選ばれる一つは*cに結合する単結合であり、
 R41~R46から選ばれる一つは*dに結合する単結合であり、R41~R46から選ばれる他の一つは*eに結合する単結合である。
 式(1-8)中、m1、m3及びm21は、それぞれ独立して、0又は1であり、n1、n3及びn21は、それぞれ独立して、0又は1であり、
 m1が0でn1が0のとき、*rが中心窒素原子Nに結合し、
 m1が0でn1が1のとき、*pが中心窒素原子Nに結合し、
 m1が1でn1が0のとき、R131~R135から選ばれる一つが*rに結合する単結合であり、
 m3が0でn3が0のとき、*eが中心窒素原子Nに結合し、
 m3が0でn3が1のとき、*cが中心窒素原子Nに結合し、
 m3が1でn3が0のとき、R81~R85から選ばれる一つが*eに結合する単結合であり、
 m21が0でn21が0のとき、*rが中心窒素原子Nに結合し、
 m21が0でn21が1のとき、*pが中心窒素原子Nに結合し、
 m21が1でn21が0のとき、R151~R155から選ばれる一つが*rに結合する単結合であり、
 kは1又は2である。
 式(1-8)中、R71~R80から選ばれる一つは*hに結合する単結合である。
 式(1-8)中、前記単結合ではないR131~R135から選ばれる隣接する2つ、前記単結合ではないR141~R146から選ばれる隣接する2つ、前記単結合ではないR151~R155から選ばれる隣接する2つ、前記単結合ではないR161~R166から選ばれる隣接する2つ、前記単結合ではないR81~R85から選ばれる隣接する2つ、前記単結合ではないR41~R46から選ばれる隣接する2つ、R51~R55から選ばれる隣接する2つ、及びR71~R80から選ばれる隣接する2つは、それぞれ独立して、互いに結合せず、したがって環構造を形成せず、ベンゼン環A1とベンゼン環B1、ベンゼン環A1とベンゼン環C1、ベンゼン環B1とベンゼン環C1、ベンゼン環A12とベンゼン環B12、及びベンゼン環A3とベンゼン環B3は架橋しない。
Figure JPOXMLDOC01-appb-C000047
 式(1-9)中、Y及びR17f~R24fは、前述した通りである。
 式(1-9)中、R151~R155及びR161~R166は、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 ただし、
 R151~R155から選ばれる一つは*pに結合する単結合であり、
 R161~R166から選ばれる一つは*qに結合する単結合であり、R161~R166から選ばれる他の一つは*rに結合する単結合である。
 式(1-9)中、R131~R135、R141~R146、R81~R85、R41~R46、R51~R55及びR71~R80は、それぞれ独立して、前述した式(1-7)におけるR131~R135、R141~R146、R171~R175、R181~R186、R51~R55及びR191~R195と同様であり、好ましい態様も同様である。
 ただし、
 R131~R135から選ばれる一つは*pに結合する単結合であり、
 R141~R146から選ばれる一つは*qに結合する単結合であり、R141~R146から選ばれる他の一つ又は二つは*rに結合する単結合であり、
 R81~R85から選ばれる一つは*cに結合する単結合であり、
 R41~R46から選ばれる一つは*dに結合する単結合であり、R41~R46から選ばれる他の一つは*eに結合する単結合である。
 式(1-9)中、m1、m3及びm21は、それぞれ独立して、0又は1であり、n1、n3及びn21は、それぞれ独立して、0又は1であり、
 m1が0でn1が0のとき、*rが中心窒素原子Nに結合し、
 m1が0でn1が1のとき、*pが中心窒素原子Nに結合し、
 m1が1でn1が0のとき、R131~R135から選ばれる一つが*rに結合する単結合であり、
 m3が0でn3が0のとき、*eが中心窒素原子Nに結合し、
 m3が0でn3が1のとき、*cが中心窒素原子Nに結合し、
 m3が1でn3が0のとき、R81~R85から選ばれる一つが*eに結合する単結合であり、
 m21が0でn21が0のとき、*rが中心窒素原子Nに結合し、
 m21が0でn21が1のとき、*pが中心窒素原子Nに結合し、
 m21が1でn21が0のとき、R151~R155から選ばれる一つが*rに結合する単結合であり、
 kは1又は2である。
 式(1-9)中、R71~R80から選ばれる一つは*hに結合する単結合である。
 式(1-9)中、前記単結合ではないR131~R135から選ばれる隣接する2つ、前記単結合ではないR141~R146から選ばれる隣接する2つ、前記単結合ではないR151~R155から選ばれる隣接する2つ、前記単結合ではないR161~R166から選ばれる隣接する2つ、前記単結合ではないR81~R85から選ばれる隣接する2つ、前記単結合ではないR41~R46から選ばれる隣接する2つ、R51~R55から選ばれる隣接する2つ、及びR71~R80から選ばれる隣接する2つは、それぞれ独立して、互いに結合せず、したがって環構造を形成せず、ベンゼン環A1とベンゼン環B1、ベンゼン環A1とベンゼン環C1、ベンゼン環B1とベンゼン環C1、ベンゼン環A12とベンゼン環B12、及びベンゼン環A3とベンゼン環B3は架橋しない。
Figure JPOXMLDOC01-appb-C000048
 式(1-10)中、Y及びR17f~R24fは、前述した通りである。
 式(1-10)中、R151~R155及びR161~R166は、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 ただし、
 R151~R155から選ばれる一つは*pに結合する単結合であり、
 R161~R166から選ばれる一つは*qに結合する単結合であり、R161~R166から選ばれる他の一つは*rに結合する単結合である。
 式(1-10)中、R131~R135、R141~R146、R111~R115、R51~R55及びR121~R128は、それぞれ独立して、前述した式(1-7)におけるR131~R135、R141~R146、R171~R175、R181~R186、R51~R55及びR191~R195と同様であり、好ましい態様も同様である。
 ただし、
 R131~R135から選ばれる一つは*pに結合する単結合であり、
 R141~R146から選ばれる一つは*qに結合する単結合であり、R141~R146から選ばれる他の一つ又は二つは*rに結合する単結合であり、
 R111~R115から選ばれる一つは*cに結合する単結合であり、
 R121~R128から選ばれる一つは*tに結合する単結合である。
 式(1-10)中、m1及びm21は、それぞれ独立して、0又は1であり、n1及びn21は、それぞれ独立して、0又は1であり、
 m1が0でn1が0のとき、*rが中心窒素原子Nに結合し、
 m1が0でn1が1のとき、*pが中心窒素原子Nに結合し、
 m1が1でn1が0のとき、R131~R135から選ばれる一つが*rに結合する単結合であり、
 m21が0でn21が0のとき、*rが中心窒素原子Nに結合し、
 m21が0でn21が1のとき、*pが中心窒素原子Nに結合し、
 m21が1でn21が0のとき、R151~R155から選ばれる一つが*rに結合する単結合であり、
 kは1又は2である。
 式(1-10)中、m7は0又は1であり、m7が0のとき、*cが中心窒素原子Nに結合する。
 式(1-10)中、Yは酸素原子、硫黄原子、又はCRであり、
 R及びRは、それぞれ独立して、置換もしくは無置換の環形成炭素数1~50のアルキル基であるか、置換もしくは無置換の環形成炭素数6~50のアリール基である。なお、R及びRの双方がアリール基である場合、R及びR互いに結合して、スピロ環を形成してもよい。
 式(1-10)中、前記単結合ではないR131~R135から選ばれる隣接する2つ、前記単結合ではないR141~R146から選ばれる隣接する2つ、前記単結合ではないR151~R155から選ばれる隣接する2つ、前記単結合ではないR161~R166から選ばれる隣接する2つ、前記単結合ではないR111~R115から選ばれる隣接する2つ、R51~R55から選ばれる隣接する2つ、並びにR121~R124及びR125~R128から選ばれる隣接する2つは、それぞれ独立して、互いに結合せず、したがって環構造を形成せず、ベンゼン環A1とベンゼン環B1、ベンゼン環A1とベンゼン環C1、ベンゼン環B1とベンゼン環C1、及びベンゼン環A3とベンゼン環B3は架橋しない。
Figure JPOXMLDOC01-appb-C000049
 式(1-11)中、Y及びR17f~R24fは、前述した通りである。
 式(1-11)中、R151~R155及びR161~R166は、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 ただし、
 R151~R155から選ばれる一つは*pに結合する単結合であり、
 R161~R166から選ばれる一つは*qに結合する単結合であり、R161~R166から選ばれる他の一つは*rに結合する単結合である。
 式(1-11)中、R81~R85、R281~R285、R61~R68及びR261~R268は、それぞれ独立して、前述した式(1-7)におけるR131~R135、R141~R146、R171~R175、R181~R186、R51~R55及びR191~R195と同様であり、好ましい態様も同様である。
 ただし、R81~R85から選ばれる一つは*cに結合する単結合であり、
 R281~R285から選ばれる一つは*cに結合する単結合であり、
 R61~R68から選ばれる一つは*fに結合する単結合であり、
 R261~R268から選ばれる一つは*fに結合する単結合である。
 式(1-11)中、m21は0又は1であり、n21は0又は1であり、
 m21が0でn21が0のとき、*rが中心窒素原子Nに結合し、
 m21が0でn21が1のとき、*pが中心窒素原子Nに結合し、
 m21が1でn21が0のとき、R151~R155から選ばれる一つが*rに結合する単結合である。
 式(1-11)中、m2は0又は1であり、m2が0のとき、*cが中心窒素原子Nに結合し、m12は0又は1であり、m12が0のとき、*cが中心窒素原子Nに結合する。
 式(1-11)中、前記単結合ではないR81~R85から選ばれる隣接する2つ、前記単結合ではないR151~R155から選ばれる隣接する2つ、前記単結合ではないR161~R166から選ばれる隣接する2つ、前記単結合ではないR281~R285から選ばれる隣接する2つ、R61~R68から選ばれる隣接する2つ及びR261~R268から選ばれる隣接する2つは、それぞれ独立して、互いに結合せず、したがって環構造を形成せず、ベンゼン環A3とベンゼン環B3は架橋しない。
Figure JPOXMLDOC01-appb-C000050
 式(1-12)中、Y及びR17f~R24fは、前述した通りである。
 式(1-12)中、R151~R155及びR161~R166は、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 ただし、
 R151~R155から選ばれる一つは*pに結合する単結合であり、
 R161~R166から選ばれる一つは*qに結合する単結合であり、R161~R166から選ばれる他の一つは*rに結合する単結合である。
 式(1-12)中、R81~R85、R281~R285、R41~R46、R61~R68及びR71~R80は、それぞれ独立して、前述した式(1-7)におけるR131~R135、R141~R146、R171~R175、R181~R186、R51~R55及びR191~R195と同様であり、好ましい態様も同様である。
 ただし、R81~R85から選ばれる一つは*cに結合する単結合であり、
 R281~R285から選ばれる一つは*cに結合する単結合であり、
 R41~R46から選ばれる一つは*dに結合する単結合であり、R41~R46から選ばれる他の一つは*eに結合する単結合であり、
 R61~R68から選ばれる一つは*fに結合する単結合であり、
 R71~R80から選ばれる一つは*hに結合する単結合である。
 式(1-12)中、m21及びm3は、それぞれ独立して、0又は1であり、n21及びn3は、それぞれ独立して、0又は1であり、
 m21が0でn21が0のとき、*rが中心窒素原子Nに結合し、
 m21が0でn21が1のとき、*pが中心窒素原子Nに結合し、
 m21が1でn21が0のとき、R151~R155から選ばれる一つが*rに結合する単結合であり、
 m3が0でn3が0のとき、*eが中心窒素原子Nに結合し、
 m3が0でn3が1のとき、*cが中心窒素原子Nに結合し、
 m3が1でn3が0のとき、R281~R285から選ばれる一つが*eに結合する単結合である。
 式(1-12)中、m2は0又は1であり、m2が0のとき、*cが中心窒素原子Nに結合する。
 式(1-12)中、前記単結合ではないR81~R85から選ばれる隣接する2つ、前記単結合ではないR151~R155から選ばれる隣接する2つ、前記単結合ではないR161~R166から選ばれる隣接する2つ、前記単結合ではないR281~R285から選ばれる隣接する2つ、前記単結合ではないR41~R46から選ばれる隣接する2つ、R61~R68から選ばれる隣接する2つ、及びR71~R80から選ばれる隣接する2つは、それぞれ独立して、互いに結合せず、したがって環構造を形成せず、ベンゼン環A22とベンゼン環B22、及びベンゼン環A3とベンゼン環B3は架橋しない。
Figure JPOXMLDOC01-appb-C000051
 式(1-13)中、Y及びR17f~R24fは、前述した通りである。
 式(1-13)中、R151~R155及びR161~R166は、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 ただし、
 R151~R155から選ばれる一つは*pに結合する単結合であり、
 R161~R166から選ばれる一つは*qに結合する単結合であり、R161~R166から選ばれる他の一つは*rに結合する単結合である。
 式(1-13)中、R81~R85、R111~R115、R61~R68及びR121~R128は、それぞれ独立して、前述した式(1-7)におけるR131~R135、R141~R146、R171~R175、R181~R186、R51~R55及びR191~R195と同様であり、好ましい態様も同様である。
 ただし、R81~R85から選ばれる一つは*cに結合する単結合であり、R111~R115から選ばれる一つは*cに結合する単結合であり、
 R61~R65から選ばれる一つは*fに結合する単結合であり、R121~R128から選ばれる一つは*tに結合する単結合である。
 式(1-13)中、m21は0又は1であり、n21は0又は1であり、
 m21が0でn21が0のとき、*rが中心窒素原子Nに結合し、
 m21が0でn21が1のとき、*pが中心窒素原子Nに結合し、
 m21が1でn21が0のとき、R151~R155から選ばれる一つが*rに結合する単結合である。
 式(1-13)中、m2は0又は1であり、m2が0のとき、*cが中心窒素原子Nに結合し、m7は0又は1であり、m7が0のとき、*cが中心窒素原子Nに結合する。
 式(1-13)中、Yは酸素原子、硫黄原子、又はCRであり、
 R及びRは、それぞれ独立して、置換もしくは無置換の環形成炭素数1~50のアルキル基であるか、置換もしくは無置換の環形成炭素数6~50のアリール基である。なお、R及びRの双方がアリール基である場合、R及びR互いに結合して、スピロ環を形成してもよい。
 式(1-13)中、前記単結合ではないR81~R85から選ばれる隣接する2つ、前記単結合ではないR151~R155から選ばれる隣接する2つ、前記単結合ではないR161~R166から選ばれる隣接する2つ、前記単結合ではないR111~R115から選ばれる隣接する2つ、R61~R68から選ばれる隣接する2つ及びR121~R128から選ばれる隣接する2つは、それぞれ独立して、互いに結合せず、したがって環構造を形成せず、ベンゼン環A3とベンゼン環B3は架橋しない。
Figure JPOXMLDOC01-appb-C000052
 式(1-14)中、Y及びR17f~R24fは、前述した通りである。
 式(1-14)中、R151~R155及びR161~R166は、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 ただし、
 R151~R155から選ばれる一つは*pに結合する単結合であり、
 R161~R166から選ばれる一つは*qに結合する単結合であり、R161~R166から選ばれる他の一つは*rに結合する単結合である。
 式(1-14)中、R81~R85、R41~R46、R281~R285、R241~R246、R71~R80及びR271~R280は、それぞれ独立して、前述した式(1-7)におけるR131~R135、R141~R146、R171~R175、R181~R186、R51~R55及びR191~R195と同様であり、好ましい態様も同様である。
 ただし、
 R81~R85から選ばれる一つは*cに結合する単結合であり、
 R41~R46から選ばれる一つは*dに結合する単結合であり、R41~R46から選ばれる他の一つは*eに結合する単結合であり、
 R281~R285から選ばれる一つは*cに結合する単結合であり、
 R241~R246から選ばれる一つは*dに結合する単結合であり、R241~R246から選ばれる他の一つは*eに結合する単結合であり、
 R71~R80から選ばれる一つは*hに結合する単結合であり、
 R271~R280から選ばれる一つは*hに結合する単結合である。
 式(1-14)中、m3、m13及びm21は、それぞれ独立して、0又は1であり、n3、n13及びn21は、それぞれ独立して、0又は1であり、
 m3が0でn3が0のとき、*eが中心窒素原子Nに結合し、
 m3が0でn3が1のとき、*cが中心窒素原子Nに結合し、
 m3が1でn3が0のとき、R81~R85から選ばれる一つが*eに結合する単結合であり、
 m13が0でn13が0のとき、*eが中心窒素原子Nに結合し、
 m13が0でn13が1のとき、*cが中心窒素原子Nに結合し、
 m13が1でn13が0のとき、R281~R285から選ばれる一つが*eに結合する単結合であり、
 m21が0でn21が0のとき、*rが中心窒素原子Nに結合し、
 m21が0でn21が1のとき、*pが中心窒素原子Nに結合し、
 m21が1でn21が0のとき、R151~R155から選ばれる一つが*rに結合する単結合である。
 式(1-14)中、前記単結合ではないR81~R85から選ばれる隣接する2つ、前記単結合ではないR41~R46から選ばれる隣接する2つ、前記単結合ではないR151~R155から選ばれる隣接する2つ、前記単結合ではないR161~R166から選ばれる隣接する2つ、前記単結合ではないR281~R285から選ばれる隣接する2つ、R241~R246から選ばれる隣接する2つ、R71~R80から選ばれる隣接する2つ、及びR271~R280から選ばれる隣接する2つは、それぞれ独立して、互いに結合せず、したがって環構造を形成せず、ベンゼン環A12とベンゼン環B12、ベンゼン環A22とベンゼン環B22、及びベンゼン環A3とベンゼン環B3は架橋しない。
Figure JPOXMLDOC01-appb-C000053
 式(1-15)中、Y及びR17f~R24fは、前述した通りである。
 式(1-15)中、R151~R155及びR161~R166は、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 ただし、
 R151~R155から選ばれる一つは*pに結合する単結合であり、
 R161~R166から選ばれる一つは*qに結合する単結合であり、R161~R166から選ばれる他の一つは*rに結合する単結合である。
 式(1-15)中、R81~R85、R41~R46、R111~R115、R71~R80及びR121~R128は、それぞれ独立して、前述した式(1-7)におけるR131~R135、R141~R146、R171~R175、R181~R186、R51~R55及びR191~R195と同様であり、好ましい態様も同様である。
 ただし、
 R81~R85から選ばれる一つは*cに結合する単結合であり、
 R41~R46から選ばれる一つは*dに結合する単結合であり、R41~R46から選ばれる他の一つは*eに結合する単結合であり、
 R111~R115から選ばれる一つは*cに結合する単結合であり、
 R71~R80から選ばれる一つは*hに結合する単結合であり、
 R121~R128から選ばれる一つは*tに結合する単結合である。
 式(1-15)中、m3及びm21は、それぞれ独立して、0又は1であり、n3及びn21は、それぞれ独立して、0又は1であり、
 m3が0でn3が0のとき、*eが中心窒素原子Nに結合し、
 m3が0でn3が1のとき、*cが中心窒素原子Nに結合し、
 m3が1でn3が0のとき、R81~R85から選ばれる一つが*eに結合する単結合であり、
 m21が0でn21が0のとき、*rが中心窒素原子Nに結合し、
 m21が0でn21が1のとき、*pが中心窒素原子Nに結合し、
 m21が1でn21が0のとき、R151~R155から選ばれる一つが*rに結合する単結合である。
 式(1-15)中、m7は0又は1であり、m7が0のとき、*cが中心窒素原子Nに結合する。
 式(1-15)中、Yは酸素原子、硫黄原子、又はCRであり、
 R及びRは、それぞれ独立して、置換もしくは無置換の環形成炭素数1~50のアルキル基であるか、置換もしくは無置換の環形成炭素数6~50のアリール基である。ただし、R及びRの両方が置換もしくは無置換の環形成炭素数6~50のアリール基である場合を除く。
 式(1-15)中、前記単結合ではないR81~R85から選ばれる隣接する2つ、前記単結合ではないR41~R46から選ばれる隣接する2つ、前記単結合ではないR151~R155から選ばれる隣接する2つ、前記単結合ではないR161~R166から選ばれる隣接する2つ、前記単結合ではないR111~R115から選ばれる隣接する2つ、R71~R80から選ばれる隣接する2つ、及びR121~R128から選ばれる隣接する2つは、それぞれ独立して、互いに結合せず、したがって環構造を形成せず、ベンゼン環A12とベンゼン環B12、及びベンゼン環A3とベンゼン環B3は架橋しない。
Figure JPOXMLDOC01-appb-C000054
 式(1-16)中、Y及びR17f~R24fは、前述した通りである。
 式(1-16)中、R151~R155及びR161~R166は、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 ただし、
 R151~R155から選ばれる一つは*pに結合する単結合であり、
 R161~R166から選ばれる一つは*qに結合する単結合であり、R161~R166から選ばれる他の一つは*rに結合する単結合である。
 式(1-16)中、R31~R35、R231~R235、R121~R128及びR321~R328は、それぞれ独立して、前述した式(1-7)におけるR131~R135、R141~R146、R171~R175、R181~R186、R51~R55及びR191~R195と同様であり、好ましい態様も同様である。
 ただし、
 R31~R35から選ばれる一つは*cに結合する単結合であり、
 R231~R235から選ばれる一つは*cに結合する単結合であり、
 R121~R128から選ばれる一つは*tに結合する単結合であり、
 R321~R328から選ばれる一つは*tに結合する単結合である。
 式(1-16)中、m21は、それぞれ独立して、0又は1であり、n21は、それぞれ独立して、0又は1であり、
 m21が0でn21が0のとき、*rが中心窒素原子Nに結合し、
 m21が0でn21が1のとき、*pが中心窒素原子Nに結合し、
 m21が1でn21が0のとき、R151~R155から選ばれる一つが*rに結合する単結合である。
 式(1-16)中、m7は0又は1であり、m7が0のとき、*cが中心窒素原子Nに結合し、m17は0又は1であり、m17が0のとき、*cが中心窒素原子Nに結合する。
 式(1-16)中、Y及びYは、それぞれ独立して、酸素原子、硫黄原子、又はCRであり、
 R及びRは、それぞれ独立して、置換もしくは無置換の環形成炭素数1~50のアルキル基であるか、置換もしくは無置換の環形成炭素数6~50のアリール基である。なお、R及びRの双方がアリール基である場合、R及びR互いに結合して、スピロ環を形成してもよい。
 式(1-16)中、前記単結合ではないR31~R35から選ばれる隣接する2つ、前記単結合ではないR151~R155から選ばれる隣接する2つ、前記単結合ではないR161~R166から選ばれる隣接する2つ、前記単結合ではないR231~R235から選ばれる隣接する2つ、R121~R128から選ばれる隣接する2つ及びR321~R328から選ばれる隣接する2つは、それぞれ独立して、互いに結合せず、したがって環構造を形成せず、ベンゼン環A3とベンゼン環B3は架橋しない。
(化合物(1)が有する重水素原子)
 上記したように、本明細書において使用する「水素原子」は軽水素原子、重水素原子、及び三重水素原子を包含する。したがって、化合物(1)は天然由来の重水素原子を含んでいてもよい。
 また、原料化合物の一部又は全てに重水素化した化合物を使用することにより、化合物(1)に重水素原子を意図的に導入してもよい。したがって、本発明の一態様において、化合物(1)は少なくとも1個の重水素原子を含む。すなわち、化合物(1)は、式(1)で表される化合物であって、該化合物に含まれる水素原子の少なくとも一つが重水素原子である化合物であってもよい。
 ここで、一部又は全てが重水素化された原料化合物としては、例えば、式(1)の末端部分(Ar、Ar、Ar)を形成する化合物、式(1)の中心窒素原子と上記末端部分とをつなぐリンカー部分(L、L、L)を形成する化合物、などが挙げられる。
 化合物(1)の重水素化率は使用する原料化合物の重水素化率に依存する。所定の重水素化率の原料を用いたとしても、天然由来の一定の割合で軽水素同位体が含まれ得る。従って、下記で示される化合物(1)の重水素化率の態様は、単に化学式で表される重水素原子の数をカウントして求められる割合に対し、天然由来の微量の同位体を考慮した比率が含まれる。
 上記第1の化合物に含まれる化合物(1)の重水素化率は1%以上であり、好ましくは3%以上、より好ましくは5%以上、更に好ましくは10%以上、より更に好ましくは50%以上である。換言すれば、上記第1の化合物は、上記式(1)で表される化合物(化合物(1))において1つ以上の重水素原子を有する化合物を1質量%以上含み、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上、より更に好ましくは50質量%以上含む。
 化合物(1)は、重水素化された化合物と重水素化されていない化合物を含む混合物、異なる重水素化率を有する2以上の化合物の混合物であってもよい。例えば、化合物(1)は、下記の化合物A1と化合物A2との混合物であってもよいし、下記の化合物D1と化合物D2との混合物であってもよいし、下記の化合物H1と化合物H2との混合物であってもよい。これらの場合、第1の化合物を、下記の化合物A1及びA2からなるもの、下記の化合物D1及びD2からなるもの、又は、下記の化合物H1及びH2からなるものとすることができる。
Figure JPOXMLDOC01-appb-C000055
 このような混合物の重水素化率は、好ましくは1%以上、より好ましくは3%以上、更に好ましくは5%以上、より更に好ましくは10%以上、より更に好ましくは50%以上、かつ、100%未満である。
 また、化合物(1)中の全水素原子数に対する重水素原子数の割合は、好ましくは1%以上、より好ましくは3%以上、更に好ましくは5%以上、より更に好ましくは10%以上、かつ、100%以下である。
 上記第1の化合物に含まれる式(1)で表される化合物(化合物(1))において、Lが表すアリーレン基に直結する水素原子、Lが表す2価の複素環基に直結する水素原子、Lが表すアリーレン基に直結する水素原子、Lが表す2価の複素環基に直結する水素原子、Lが表すアリーレン基に直結する水素原子、Lが表す2価の複素環基に直結する水素原子、Arが表すアリール基に直結する水素原子、Arが表す1価の複素環基に直結する水素原子、Arが表すアリール基に直結する水素原子、Arが表す1価の複素環基に直結する水素原子、Arが表すアリール基に直結する水素原子、Arが表す1価の複素環基に直結する水素原子の少なくとも1個が重水素原子であることが好ましい。
 すなわち、下記式(1-17)において、a、b、c、d、e及びfの合計が、1以上であることが好ましい。
Figure JPOXMLDOC01-appb-C000056
 但し、式(1-17)において、「Da」は、Arが表すアリール基に直結する水素原子又は1価の複素環基に直結する水素原子のうちa個が重水素原子であることを示す。「Db」は、-((L)a1)-が表す1~3つのアリーレン基又は2価の複素環基に直結する水素原子が表す水素原子のうちb個が重水素原子であることを示す。「Dc」は、Arが表すアリール基に直結する水素原子又は1価の複素環基に直結する水素原子のうちc個が重水素原子であることを示す。「Dd」は、-((L)a2)-が表す1~3つのアリーレン基又は2価の複素環基に直結する水素原子のうちd個が重水素原子であることを示す。「De」は、Arが表すアリール基に直結する水素原子又は1価の複素環基に直結する水素原子のうちe個が重水素原子であることを示し、「Df」は、-((L)a3)-が表す1~3つのアリーレン基又は2価の複素環基に直結する水素原子のうちf個が重水素原子であることを示す。
 さらに、上記第1の化合物に含まれる化合物(1)が含む少なくとも1個の重水素原子が、Lが表すアリーレン基に直結する水素原子、Lが表す2価の複素環基に直結する水素原子、Lが表すアリーレン基に直結する水素原子、Lが表す2価の複素環基に直結する水素原子、Lが表すアリーレン基に直結する水素原子、Lが表す2価の複素環基に直結する水素原子、Arが表すアリール基に直結する水素原子、Arが表す1価の複素環基に直結する水素原子、Arが表すアリール基に直結する水素原子、Arが表す1価の複素環基に直結する水素原子、Arが表すアリール基に直結する水素原子、Arが表す1価の複素環基に直結する水素原子、の少なくともいずれかである(すなわち、化合物(1)において、Ar~Ar、及び、L~Lが置換される場合の置換基は重水素原子を含まない)ことがより好ましい。
 上記第1の化合物に含まれる、重水素原子を含む化合物(1)としては、例えば、下記式(1-18a)又は(1-18b)で表される化合物が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000057
 式(1-18a)及び式(1-18b)において、「Da」「Dc」「Dd」「De」「Df」は、前記式(1-17a)及び式(1-17b)で定義したとおりである。「Dba」は、-((L11)a11)-が表す1~2つのアリーレン基又は2価の複素環基に直結する水素原子が表す水素原子のうちba個が重水素原子であることを示す。「Dbb」は、式(1-18a)におけるR25~R28のうちbb個が重水素原子であることを示し、式(1-18b)におけるR25~R27、R29のうちbb個が重水素原子であることを示す。
 式(1-18a)及び式(1-18b)において、Yは式(1-3a)及び式(1-3b)で定義したとおりである。
 式(1-18a)及び式(1-18b)において、Rは省略している。
 本発明の好ましい一態様において、上記第1の化合物に含まれる式(1)で表される化合物(化合物(1))において、上記少なくとも1つの重水素原子が、Lが表すアリーレン基に直結する水素原子、Lが表す2価の複素環基に直結する水素原子、Lが表すアリーレン基に直結する水素原子、Lが表す2価の複素環基に直結する水素原子、Lが表すアリーレン基に直結する水素原子、及び、Lが表す2価の複素環基に直結する水素原子の少なくともいずれかである。
 すなわち、式(1-17)において、b、d及びfの合計が1以上であることが好ましく、式(1-18a)及び式(1-18b)において、ba、bb、d及びfの合計が1以上であることが好ましい。
 本発明の好ましい一態様において、上記第1の化合物に含まれる式(1)で表される化合物(化合物(1))における、Lが表すアリーレン基に直結する水素原子、Lが表す2価の複素環基に直結する水素原子、Lが表すアリーレン基に直結する水素原子、Lが表す2価の複素環基に直結する水素原子、Lが表すアリーレン基に直結する水素原子、及び、Lが表す2価の複素環基に直結する水素原子の少なくともいずれかが重水素原子である化合物を10質量%以上含む。
 上記第1の化合物に含まれる化合物(1)における、上記重水素原子である化合物の含有量は、より好ましくは質量10%以上、更に好ましくは50質量%以上である。
 化合物(1)としては、例えば、下記式(1-18-1a)~(1-18-16b)で表される化合物が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000058

(式(1-18-1a)及び式(1-18-1b)中、x+y+z+k+l+m+n=1~34、各Rは省略。)
Figure JPOXMLDOC01-appb-C000059

(式(1-18-2a)及び式(1-18-2b)中、x+y+z+k+l+m+n=1~34、各Rは省略。)
Figure JPOXMLDOC01-appb-C000060

(式(1-18-3a)及び式(1-18-3b)中、x+y+z+k+l+m+n=1~36、各Rは省略。)
Figure JPOXMLDOC01-appb-C000061

(式(1-18-4a)及び式(1-18-4b)中、x+y+z+k+l+m+n=1~36、各Rは省略。)
Figure JPOXMLDOC01-appb-C000062

(式(1-18-5a)及び式(1-18-5b)中、x+y+z+k+l+m+n+o=1~38、各Rは省略。)
Figure JPOXMLDOC01-appb-C000063

(式(1-18-6a)及び式(1-18-6b)中、x+y+z+k+l+m+n=1~36、各Rは省略。)
Figure JPOXMLDOC01-appb-C000064

(式(1-18-7a)及び式(1-18-7b)中、x+y+z+k+l+m+n=1~38、各Rは省略。)
Figure JPOXMLDOC01-appb-C000065

(式(1-18-8a)及び式(1-18-8b)中、x+y+z+k+l+m+n=1~36、各Rは省略。)
Figure JPOXMLDOC01-appb-C000066

(式(1-18-9a)及び式(1-18-9b)中、x+y+z+k+l+m=1~43、各Rは省略。)
Figure JPOXMLDOC01-appb-C000067

(式(1-18-10a)及び式(1-18-10b)中、x+y+z+k+l+m+n+o=1~38、各Rは省略。)
Figure JPOXMLDOC01-appb-C000068

(式(1-18-11a)及び式(1-18-11b)中、x+y+z+k+l+m+n=1~38、各Rは省略。)
Figure JPOXMLDOC01-appb-C000069

(式(1-18-12a)及び式(1-18-12b)中、x+y+z+k+l+m+n=1~42、各Rは省略。)
Figure JPOXMLDOC01-appb-C000070

(式(1-18-13a)及び式(1-18-13b)中、x+y+z+k+l+m+n=1~36、各Rは省略。)
Figure JPOXMLDOC01-appb-C000071

(式(1-18-14a)及び式(1-18-14b)中、x+y+z+k+l+m+n=1~34、各Rは省略。)
Figure JPOXMLDOC01-appb-C000072

(式(1-18-15a)及び式(1-18-15b)中、x+y+z+k+l+m=1~32、各Rは省略。)
Figure JPOXMLDOC01-appb-C000073

(式(1-18-16a)及び式(1-18-16b)中、x+y+z+k+l+m+n+o=1~38、各Rは省略。)
 特段の場合の除き、上記各式の定義に含まれる「置換もしくは無置換の」という場合の置換基(任意の置換基)の詳細は、「「置換もしくは無置換の」という場合の置換基」の項において記載したとおりである。
 化合物(1)は、当業者であれば、下記合成例及び公知の合成方法を参考にして容易に製造することができる。
 本発明の実施形態に係る化合物(1)の具体例を以下に示す。下記の具体例において「D」は重水素原子を示す。なお、本発明の実施形態に係る化合物(1)は、これらの具体例に限定されない。
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085

Figure JPOXMLDOC01-appb-C000086

Figure JPOXMLDOC01-appb-C000087

Figure JPOXMLDOC01-appb-C000088

Figure JPOXMLDOC01-appb-C000089

Figure JPOXMLDOC01-appb-C000090

Figure JPOXMLDOC01-appb-C000091

Figure JPOXMLDOC01-appb-C000092

Figure JPOXMLDOC01-appb-C000093

Figure JPOXMLDOC01-appb-C000094

Figure JPOXMLDOC01-appb-C000095

Figure JPOXMLDOC01-appb-C000096

Figure JPOXMLDOC01-appb-C000097

Figure JPOXMLDOC01-appb-C000098

Figure JPOXMLDOC01-appb-C000099

Figure JPOXMLDOC01-appb-C000100

Figure JPOXMLDOC01-appb-C000101

Figure JPOXMLDOC01-appb-C000102

Figure JPOXMLDOC01-appb-C000103

Figure JPOXMLDOC01-appb-C000104

Figure JPOXMLDOC01-appb-C000105

Figure JPOXMLDOC01-appb-C000106

Figure JPOXMLDOC01-appb-C000107

Figure JPOXMLDOC01-appb-C000108

Figure JPOXMLDOC01-appb-C000109

Figure JPOXMLDOC01-appb-C000110

Figure JPOXMLDOC01-appb-C000111

Figure JPOXMLDOC01-appb-C000112

Figure JPOXMLDOC01-appb-C000113

Figure JPOXMLDOC01-appb-C000114

Figure JPOXMLDOC01-appb-C000115


 
Figure JPOXMLDOC01-appb-C000116


 
Figure JPOXMLDOC01-appb-C000117


 
Figure JPOXMLDOC01-appb-C000118


 
Figure JPOXMLDOC01-appb-C000119


 
Figure JPOXMLDOC01-appb-C000120


 
Figure JPOXMLDOC01-appb-C000121


 
Figure JPOXMLDOC01-appb-C000122


 
Figure JPOXMLDOC01-appb-C000123


 
Figure JPOXMLDOC01-appb-C000124


 
Figure JPOXMLDOC01-appb-C000125


 
Figure JPOXMLDOC01-appb-C000126


 
Figure JPOXMLDOC01-appb-C000127


 
Figure JPOXMLDOC01-appb-C000128


 
Figure JPOXMLDOC01-appb-C000129


 
Figure JPOXMLDOC01-appb-C000130


 
Figure JPOXMLDOC01-appb-C000131


 
Figure JPOXMLDOC01-appb-C000132


 
Figure JPOXMLDOC01-appb-C000133

Figure JPOXMLDOC01-appb-C000134

Figure JPOXMLDOC01-appb-C000135


 
Figure JPOXMLDOC01-appb-C000136


 
Figure JPOXMLDOC01-appb-C000137


 
Figure JPOXMLDOC01-appb-C000138


 
(1-1-1)
Figure JPOXMLDOC01-appb-C000139


 
(1-1-2)
Figure JPOXMLDOC01-appb-C000140


 
(1-1-3)
Figure JPOXMLDOC01-appb-C000141


 
(1-1-4)
Figure JPOXMLDOC01-appb-C000142


 
(1-1-5)
Figure JPOXMLDOC01-appb-C000143


 
(1-1-6)
Figure JPOXMLDOC01-appb-C000144


 
(1-1-7)
Figure JPOXMLDOC01-appb-C000145


 
(1-1-8)
Figure JPOXMLDOC01-appb-C000146


 
(1-1-9)
Figure JPOXMLDOC01-appb-C000147


 
(1-1-10)
Figure JPOXMLDOC01-appb-C000148


 
(1-2-1)
Figure JPOXMLDOC01-appb-C000149


 
(1-2-2)
Figure JPOXMLDOC01-appb-C000150


 
(1-2-3)
Figure JPOXMLDOC01-appb-C000151


 
(1-2-4)
Figure JPOXMLDOC01-appb-C000152


 
(1-2-5)
Figure JPOXMLDOC01-appb-C000153


 
(1-2-6)
Figure JPOXMLDOC01-appb-C000154


 
(1-2-7)
Figure JPOXMLDOC01-appb-C000155


 
(1-2-8)
Figure JPOXMLDOC01-appb-C000156


 
(1-2-9)
Figure JPOXMLDOC01-appb-C000157


 
(1-2-10)
Figure JPOXMLDOC01-appb-C000158


 
(1-3-1)
Figure JPOXMLDOC01-appb-C000159


 
(1-3-2)
Figure JPOXMLDOC01-appb-C000160


 
(1-3-3)
Figure JPOXMLDOC01-appb-C000161


 
(1-3-4)
Figure JPOXMLDOC01-appb-C000162


 
(1-3-5)
Figure JPOXMLDOC01-appb-C000163


 
(1-3-6)
Figure JPOXMLDOC01-appb-C000164


 
(1-3-7)
Figure JPOXMLDOC01-appb-C000165


 
(1-3-8)
Figure JPOXMLDOC01-appb-C000166


 
(1-3-9)
Figure JPOXMLDOC01-appb-C000167


 
(1-3-10)
Figure JPOXMLDOC01-appb-C000168


 
(1-3-11)
Figure JPOXMLDOC01-appb-C000169


 
(1-3-12)
Figure JPOXMLDOC01-appb-C000170


 
(1-3-13)
Figure JPOXMLDOC01-appb-C000171


 
(1-3-14)
Figure JPOXMLDOC01-appb-C000172


 
(1-3-15)
Figure JPOXMLDOC01-appb-C000173


 
(1-3-16)
Figure JPOXMLDOC01-appb-C000174


 
(1-3-17)
Figure JPOXMLDOC01-appb-C000175


 
(1-4-1)
Figure JPOXMLDOC01-appb-C000176


 
(1-4-2)
Figure JPOXMLDOC01-appb-C000177


 
(1-4-3)
Figure JPOXMLDOC01-appb-C000178


 
(1-4-4)
Figure JPOXMLDOC01-appb-C000179


 
(1-4-5)
Figure JPOXMLDOC01-appb-C000180


 
(1-4-6)
Figure JPOXMLDOC01-appb-C000181


 
(1-4-7)
Figure JPOXMLDOC01-appb-C000182


 
(1-4-8)
Figure JPOXMLDOC01-appb-C000183


 
(1-4-9)
Figure JPOXMLDOC01-appb-C000184


 
(1-4-10)
Figure JPOXMLDOC01-appb-C000185


 
(1-4-11)
Figure JPOXMLDOC01-appb-C000186


 
(1-4-12)
Figure JPOXMLDOC01-appb-C000187


 
(1-4-13)
Figure JPOXMLDOC01-appb-C000188


 
(1-4-14)
Figure JPOXMLDOC01-appb-C000189


 
(1-4-15)
Figure JPOXMLDOC01-appb-C000190


 
(1-4-16)
Figure JPOXMLDOC01-appb-C000191


 
(1-5-1)
Figure JPOXMLDOC01-appb-C000192


 
(1-5-2)
Figure JPOXMLDOC01-appb-C000193


 
(1-5-3)
Figure JPOXMLDOC01-appb-C000194


 
(1-5-4)
Figure JPOXMLDOC01-appb-C000195


 
(1-5-5)
Figure JPOXMLDOC01-appb-C000196


 
(1-5-6)
Figure JPOXMLDOC01-appb-C000197


 
(1-5-7)
Figure JPOXMLDOC01-appb-C000198


 
(1-5-8)
Figure JPOXMLDOC01-appb-C000199


 
(1-5-9)
Figure JPOXMLDOC01-appb-C000200


 
(1-5-10)
Figure JPOXMLDOC01-appb-C000201


 
(1-5-11)
Figure JPOXMLDOC01-appb-C000202


 
(1-5-12)
Figure JPOXMLDOC01-appb-C000203


 
(1-5-13)
Figure JPOXMLDOC01-appb-C000204


 
(1-5-14)
Figure JPOXMLDOC01-appb-C000205


 
(1-5-15)
Figure JPOXMLDOC01-appb-C000206


 
(1-5-16)
Figure JPOXMLDOC01-appb-C000207


 
(1-5-17)
Figure JPOXMLDOC01-appb-C000208


 
(1-5-18)
Figure JPOXMLDOC01-appb-C000209


 
(1-5-19)
Figure JPOXMLDOC01-appb-C000210


 
(1-5-20)
Figure JPOXMLDOC01-appb-C000211


 
(1-5-21)
Figure JPOXMLDOC01-appb-C000212


 
(1-5-22)
Figure JPOXMLDOC01-appb-C000213


 
(1-5-23)
Figure JPOXMLDOC01-appb-C000214


 
(1-5-24)
Figure JPOXMLDOC01-appb-C000215


 
(1-5-25)
Figure JPOXMLDOC01-appb-C000216


 
(1-5-26)
Figure JPOXMLDOC01-appb-C000217


 
(1-5-27)
Figure JPOXMLDOC01-appb-C000218


 
(1-6-1)
Figure JPOXMLDOC01-appb-C000219


 
(1-6-2)
Figure JPOXMLDOC01-appb-C000220


 
(1-6-3)
Figure JPOXMLDOC01-appb-C000221


 
(1-6-4)
Figure JPOXMLDOC01-appb-C000222


 
(1-6-5)
Figure JPOXMLDOC01-appb-C000223


 
(1-6-6)
Figure JPOXMLDOC01-appb-C000224


 
(1-6-7)
Figure JPOXMLDOC01-appb-C000225


 
(1-6-8)
Figure JPOXMLDOC01-appb-C000226


 
(1-6-9)
Figure JPOXMLDOC01-appb-C000227


 
(1-6-10)
Figure JPOXMLDOC01-appb-C000228


 
(1-6-11)
Figure JPOXMLDOC01-appb-C000229


 
(1-6-12)
Figure JPOXMLDOC01-appb-C000230


 
(1-6-13)
Figure JPOXMLDOC01-appb-C000231


 
(1-6-14)
Figure JPOXMLDOC01-appb-C000232


 
(1-6-15)
Figure JPOXMLDOC01-appb-C000233


 
(1-6-16)
Figure JPOXMLDOC01-appb-C000234


 
(1-6-17)
Figure JPOXMLDOC01-appb-C000235


 
(1-6-18)
Figure JPOXMLDOC01-appb-C000236


 
(1-6-19)
Figure JPOXMLDOC01-appb-C000237


 
(1-6-20)
Figure JPOXMLDOC01-appb-C000238


 
(1-7-1)
Figure JPOXMLDOC01-appb-C000239


 
(1-7-2)
Figure JPOXMLDOC01-appb-C000240


 
(1-7-3)
Figure JPOXMLDOC01-appb-C000241


 
(1-7-4)
Figure JPOXMLDOC01-appb-C000242


 
(1-7-5)
Figure JPOXMLDOC01-appb-C000243


 
(1-7-6)
Figure JPOXMLDOC01-appb-C000244


 
(1-7-7)
Figure JPOXMLDOC01-appb-C000245


 
(1-7-8)
Figure JPOXMLDOC01-appb-C000246


 
(1-7-9)
Figure JPOXMLDOC01-appb-C000247


 
(1-7-10)
Figure JPOXMLDOC01-appb-C000248


 
(1-7-11)
Figure JPOXMLDOC01-appb-C000249


 
(1-7-12)
Figure JPOXMLDOC01-appb-C000250


 
(1-7-13)
Figure JPOXMLDOC01-appb-C000251


 
(1-7-14)
Figure JPOXMLDOC01-appb-C000252


 
(1-7-15)
Figure JPOXMLDOC01-appb-C000253


 
(1-7-16)
Figure JPOXMLDOC01-appb-C000254


 
(1-7-17)
Figure JPOXMLDOC01-appb-C000255


 
(1-7-18)
Figure JPOXMLDOC01-appb-C000256


 
(1-7-19)
Figure JPOXMLDOC01-appb-C000257


 
(1-7-20)
Figure JPOXMLDOC01-appb-C000258


 
(1-8-1)
Figure JPOXMLDOC01-appb-C000259


 
(1-8-2)
Figure JPOXMLDOC01-appb-C000260


 
(1-8-3)
Figure JPOXMLDOC01-appb-C000261


 
(1-8-4)
Figure JPOXMLDOC01-appb-C000262


 
(1-8-5)
Figure JPOXMLDOC01-appb-C000263


 
(1-8-6)
Figure JPOXMLDOC01-appb-C000264


 
(1-8-7)
Figure JPOXMLDOC01-appb-C000265


 
(1-8-8)
Figure JPOXMLDOC01-appb-C000266


 
(1-8-9)
Figure JPOXMLDOC01-appb-C000267


 
(1-8-10)
Figure JPOXMLDOC01-appb-C000268


 
(1-8-11)
Figure JPOXMLDOC01-appb-C000269


 
(1-8-12)
Figure JPOXMLDOC01-appb-C000270


 
(1-8-13)
Figure JPOXMLDOC01-appb-C000271


 
(1-8-14)
Figure JPOXMLDOC01-appb-C000272


 
(1-8-15)
Figure JPOXMLDOC01-appb-C000273


 
(1-8-16)
Figure JPOXMLDOC01-appb-C000274


 
(1-8-17)
Figure JPOXMLDOC01-appb-C000275


 
(1-8-18)
Figure JPOXMLDOC01-appb-C000276


 
(1-8-19)
Figure JPOXMLDOC01-appb-C000277


 
(1-8-20)
Figure JPOXMLDOC01-appb-C000278


 
(1-8-21)
Figure JPOXMLDOC01-appb-C000279


 
(1-8-22)
Figure JPOXMLDOC01-appb-C000280


 
(1-8-23)
Figure JPOXMLDOC01-appb-C000281


 
(1-8-24)
Figure JPOXMLDOC01-appb-C000282


 
(1-8-25)
Figure JPOXMLDOC01-appb-C000283


 
(1-8-26)
Figure JPOXMLDOC01-appb-C000284


 
(1-8-27)
Figure JPOXMLDOC01-appb-C000285


 
(1-8-28)
Figure JPOXMLDOC01-appb-C000286


 
(1-8-29)
Figure JPOXMLDOC01-appb-C000287


 
(1-9-1)
Figure JPOXMLDOC01-appb-C000288


 
(1-9-2)
Figure JPOXMLDOC01-appb-C000289


 
(1-9-3)
Figure JPOXMLDOC01-appb-C000290


 
(1-9-4)
Figure JPOXMLDOC01-appb-C000291


 
(1-9-5)
Figure JPOXMLDOC01-appb-C000292


 
(1-9-6)
Figure JPOXMLDOC01-appb-C000293


 
(1-9-7)
Figure JPOXMLDOC01-appb-C000294


 
(1-9-8)
Figure JPOXMLDOC01-appb-C000295


 
(1-9-9)
Figure JPOXMLDOC01-appb-C000296


 
(1-9-10)
Figure JPOXMLDOC01-appb-C000297


 
(1-9-11)
Figure JPOXMLDOC01-appb-C000298


 
(1-9-12)
Figure JPOXMLDOC01-appb-C000299


 
(1-9-13)
Figure JPOXMLDOC01-appb-C000300


 
(1-9-14)
Figure JPOXMLDOC01-appb-C000301


 
(1-9-15)
Figure JPOXMLDOC01-appb-C000302


 
(1-9-16)
Figure JPOXMLDOC01-appb-C000303


 
(1-9-17)
Figure JPOXMLDOC01-appb-C000304


 
(1-9-18)
Figure JPOXMLDOC01-appb-C000305


 
(1-9-19)
Figure JPOXMLDOC01-appb-C000306


 
(1-9-20)
Figure JPOXMLDOC01-appb-C000307


 
(1-9-21)
Figure JPOXMLDOC01-appb-C000308


 
(1-9-22)
Figure JPOXMLDOC01-appb-C000309


 
(1-9-23)
Figure JPOXMLDOC01-appb-C000310


 
(1-9-24)
Figure JPOXMLDOC01-appb-C000311


 
(1-9-25)
Figure JPOXMLDOC01-appb-C000312


 
(1-9-26)
Figure JPOXMLDOC01-appb-C000313


 
(1-9-27)
Figure JPOXMLDOC01-appb-C000314


 
(1-9-28)
Figure JPOXMLDOC01-appb-C000315


 
(1-9-29)
Figure JPOXMLDOC01-appb-C000316


 
(1-9-30)
Figure JPOXMLDOC01-appb-C000317


 
(1-9-31)
Figure JPOXMLDOC01-appb-C000318


 
(2-1)
Figure JPOXMLDOC01-appb-C000319


 
(2-2)
Figure JPOXMLDOC01-appb-C000320


 
(2-3)
Figure JPOXMLDOC01-appb-C000321


 
(2-4)
Figure JPOXMLDOC01-appb-C000322


 
(2-5)
Figure JPOXMLDOC01-appb-C000323


 
(2-6)
Figure JPOXMLDOC01-appb-C000324


 
(2-7)
Figure JPOXMLDOC01-appb-C000325


 
(3)
Figure JPOXMLDOC01-appb-C000326
<第2の化合物>
 上記該有機層の少なくとも一層に含まれる第2の化合物は、上述したように式(2)で表される化合物(化合物(2))において1つ以上の重水素原子を有する化合物を1質量%以上含む。
Figure JPOXMLDOC01-appb-C000327
 式(2)において、Xは、酸素原子、硫黄原子、又は、NR100である。
 式(2)において、L、Lは、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は、置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
 式(2)において、Arは、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30の1価の複素環基である。
 式(2)において、R~R16及びR100のうち一つは*xと結合する。
 式(2)において、R~R、及び、*xと結合しないR~R16及びR100は、それぞれ独立に、水素原子又は置換基Aである。
 上記置換基Aは、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 *xと結合しないR~R16及びR100は、全て水素原子であるか、これらのうちいずれか一つのみが上記置換基Aであることが好ましい。
 式(2)において、*xと結合しないR~R16から選ばれる隣接する2つは環を形成してもよいし、環を形成しなくてもよい。
 Arは、好ましくは、置換もしくは無置換の環形成炭素数6~30のアリール基である。
 Arは、より好ましくは下記式(a1)~(a4)で表される基から選択される。
Figure JPOXMLDOC01-appb-C000328
 式(a1)~(a4)中、*は、Lと結合する単結合である。
 R110は、
置換もしくは無置換の炭素数1~50のアルキル基、
置換もしくは無置換の炭素数2~50のアルケニル基、
置換もしくは無置換の炭素数2~50のアルキニル基、
置換もしくは無置換の環形成炭素数3~50のシクロアルキル基、
-Si(R901)(R902)(R903)、
-O-(R904)、
-S-(R905)、
-N(R906)(R907)、
ハロゲン原子、シアノ基、ニトロ基、
置換もしくは無置換の環形成炭素数6~50のアリール基、又は
置換もしくは無置換の環形成原子数5~50の1価の複素環基である。
 R901~R907は、前記「本明細書に記載の置換基」で定義した通りである。
 b1は、0~4の整数である。
 b2は、0~5の整数である。
 b3は、0~7の整数である。
 b1~b3が、それぞれ2以上のとき、複数のR110は互いに同一であってもよいし、異なっていてもよい。
 b1~b3が、それぞれ2以上のとき、隣接する複数のR110は互いに結合して置換もしくは無置換の飽和又は不飽和の環を形成するか、あるいは置換もしくは無置換の飽和又は不飽和の環を形成しない。
 L、Lは、好ましくは、それぞれ独立に、単結合、又は置換もしくは無置換の環形成炭素数6~14のアリーレン基である。好ましくは、L、Lの少なくとも1つは単結合である。
 一実施形態において、L、Lは、、それぞれ独立に、単結合、又は置換もしくは無置換の環形成炭素数6~14のアリーレン基である。好ましくは、L及びLの少なくとも1つは単結合である。
 本発明の好ましい一態様において、化合物(2)は、下記式(2-1)で表される。
Figure JPOXMLDOC01-appb-C000329
 式(2-1)において、
 Xは、酸素原子、硫黄原子、又は、NR100である。
 R9a~R16a及びR100のうち一つは*xと結合する。
 *xと結合しないR9a~R16a及びR100は、それぞれ独立に、水素原子又は置換基Aである。
 L、Ar、X、R~R、及び、置換基Aは、式(2)において定義したとおりである。
 本発明の好ましい一態様において、化合物(2)は、下記式(2-2a)~式(2-2c)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000330
 式(2-2a)~式(2-2c)において、
 Xは、酸素原子、硫黄原子、又は、NR100である。
 式(2-2a)における、R9b~R14b、R30b~R33b、及びR100のうち一つは*xと結合する。*xと結合しないR9b~R14b、R30b~R33b、及びR100は、それぞれ独立に、水素原子又は置換基Aである。
 式(2-2b)における、R9c~R13c、R16c、R30c~R33c、及びR100のうち一つは*xと結合する。*xと結合しないR9c~R13c、R16c、R30c~R33c、及びR100は、それぞれ独立に、水素原子又は置換基Aである。
 式(2-2c)における、R9d~R12d、R15d、R16d、R30d~R33d、及びR100のうち一つは*xと結合する。*xと結合しないR9d~R12d、R15d、R16d、R30d~R33d、及びR100は、それぞれ独立に、水素原子又は置換基Aである。
 式(2-2a)~式(2-2c)における、L、L、Ar、及び、置換基Aは、式(2)において定義したとおりである。
 本発明の一態様において、化合物(2)は、下記式(2-1-1)で表される。
Figure JPOXMLDOC01-appb-C000331
 式(2-1-1)において、L、Ar、及び、R~Rは、式(2)において定義したとおりである。
 本発明の一態様において、化合物(2)は、下記式(2-1-2)で表される。
Figure JPOXMLDOC01-appb-C000332
 式(2-1-1)において、L及びArは、式(2)において定義したとおりである。
 本発明の一態様において、化合物(2)は、下記式(2-1-3a)又は(2-1-3b)で表される。
Figure JPOXMLDOC01-appb-C000333
 式(2-1-3a)及び(2-1-3b)において、R9e~R12eは、それぞれ独立に、水素原子又は置換基Aである。
 式(2-1-3a)及び(2-1-3b)において、L、Ar、R~R、及び、置換基Aは、式(2)において定義したとおりである。
 本発明の好ましい一態様において、化合物(2)は、下記式(2-2a-1)~(2-2c-1)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000334
 式(2-2a-1)~(2-2c-1)において、L、L、Ar、及び、R~Rは、式(2)において定義したとおりである。
 本発明の一態様において、化合物(2)は、下記式(2-2a-2)~(2-2c-2)で表される。
Figure JPOXMLDOC01-appb-C000335
 式(2-2a-2)~(2-2c-2)において、L、L、及び、Arは、式(2)において定義したとおりである。
 本発明の一態様において、化合物(2)は、下記式(2-2d)で表される。
Figure JPOXMLDOC01-appb-C000336
 式(2-2d)において、R1A~R8Aは、それぞれ独立に水素原子であり、R1A~R8Aのうち、少なくとも1つは重水素原子である。
 式(2-2d)において、L1A及びL2Aは、それぞれ独立に、単結合、無置換のフェニレン基、又は無置換のナフチレン基である。
 式(2-2d)において、Ar4Aは、置換基としてフェニル基を有してもよいフェニル基、又は置換基としてフェニル基を有してもよいナフチル基である。
 式(2-2d)において、Ar5Aは、下記式(2A)、(3A)又は(4A)で表される1価の基である。
Figure JPOXMLDOC01-appb-C000337
 式(2A)~(4A)において、R13A~R14Aのいずれか1つはL2Aと結合する単結合である。R11A、R12A、R15A~R20A、及びL2Aと結合する単結合ではないR13A~R14Aは、それぞれ独立に、水素原子、又は無置換の環形成炭素数6~50のアリール基である。
 一実施形態において、前記式(2-2d)において、R1A~R8Aのうち少なくとも2つが重水素原子である。
 一実施形態において、前記式(2-2d)において、R1A~R8Aが全て重水素原子である。
 一実施形態において、前記式(2-2d)において、Ar1Aが有する水素原子の少なくとも1つが重水素原子である。
 一実施形態において、前記式(2-2d)において、R11A、R12A、R15A~R20A、及びL2Aと結合する単結合ではないR13A~R14Aが水素原子である。
 一実施形態において、前記式(2-2d)において、R11A、R12A、R15A~R20A、及びL2Aと結合する単結合ではないR13A~R14Aのうち少なくとも1つが重水素原子である。
 式(2)で表される化合物は、実施例に記載の合成方法に倣い、目的物に合わせた既知の代替反応や原料を用いることで合成することができる。
(化合物(2)が有する重水素原子)
 上記したように、本明細書において使用する「水素原子」は軽水素原子、重水素原子、及び三重水素原子を包含する。したがって、化合物(2)は天然由来の重水素原子を含んでいてもよい。
 また、原料化合物の一部又は全てに重水素化した化合物を使用することにより、化合物(2)に重水素原子を意図的に導入してもよい。したがって、本発明の一態様において、化合物(2)は少なくとも1個の重水素原子を含む。すなわち、化合物(2)は、式(2)で表される化合物であって、該化合物に含まれる水素原子の少なくとも一つが重水素原子である化合物であってもよい。
 ここで、一部又は全てが重水素化された原料化合物としては、例えば、式(2)の末端部分(Ar、X及び2つのベンゼン環を含む骨格部分)を形成する化合物、式(2)のアントラセン骨格を含む部分、式(2)の末端部分とアントラセン骨格を含む部分とをつなぐリンカー部分(L、L)を形成する化合物、などが挙げられる。
 化合物(2)の重水素化率は使用する原料化合物の重水素化率に依存する。所定の重水素化率の原料を用いたとしても、天然由来の一定の割合で軽水素同位体が含まれ得る。従って、下記で示される化合物(2)の重水素化率の態様は、単に化学式で表される重水素原子の数をカウントして求められる割合に対し、天然由来の微量の同位体を考慮した比率が含まれる。
 上記第1の化合物に含まれる化合物(2)の重水素化率は1%以上であり、好ましくは3%以上、より好ましくは5%以上、更に好ましくは10%以上、より更に好ましくは50%以上である。換言すれば、上記第2の化合物は、上記式(2)で表される化合物(化合物(2))において1つ以上の重水素原子を有する化合物を1質量%以上含み、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上、より更に好ましくは50質量%以上含む。
 化合物(2)は、重水素化された化合物と重水素化されていない化合物を含む混合物、異なる重水素化率を有する2以上の化合物の混合物であってもよい。例えば、化合物(2)は、下記の化合物B1と化合物B2との混合物であってもよく、下記の化合物C1と化合物C2との混合物であってもよい。この場合、第1の化合物を下記の化合物B1及びB2、又は、C1及びC2からなるものとすることができる。
Figure JPOXMLDOC01-appb-C000338
 また、化合物(2)は、例えば、下記の化合物E1と化合物E2との混合物であってもよく、下記の化合物F1と化合物F2との混合物であってもよく、下記の化合物G1と化合物G2との混合物であってもよい。また、化合物(2)は、下記の化合物I1と化合物I2との混合物であってもよく、下記の化合物J1と化合物J2との混合物であってもよい。これらの場合、第1の化合物を下記の化合物E1及びE2、F1及びF2、G1及びG2、I1及びI2、又は、J1及びJ2からなるものとすることができる。
Figure JPOXMLDOC01-appb-C000339

Figure JPOXMLDOC01-appb-C000340
 このような混合物の重水素化率は、好ましくは1%以上、より好ましくは3%以上、更に好ましくは5%以上、より更に好ましくは10%以上、より更に好ましくは50%以上、かつ、100%未満である。
 また、化合物(2)中の全水素原子数に対する重水素原子数の割合は、好ましくは1%以上、より好ましくは3%以上、更に好ましくは5%以上、より更に好ましくは10%以上、かつ、100%以下である。
 有機EL素子の一態様においては、化合物(1)が上記化合物A1及びA2からなり、化合物(2)が上記化合物B1及びB2、又は、上記化合物C1及びC2からなる。
 有機EL素子の他の一態様においては、化合物(1)が上記化合物D1及びD2からなり、化合物(2)が上記化合物E1及びE2、上記化合物F1及びF2、又は、上記化合物G1及びG2からなる。
 有機EL素子の更に他の一態様においては、化合物(1)が上記化合物H1及びH2からなり、化合物(2)が上記化合物I1及びI2、又は、上記化合物J1及びJ2からなる。
 本発明の実施形態に係る化合物(2)の具体例を以下に示す。下記の具体例において「D」は重水素原子を示す。なお、本発明の実施形態に係る化合物(2)は、これらの具体例に限定されない。
Figure JPOXMLDOC01-appb-C000341


 
Figure JPOXMLDOC01-appb-C000342


 
Figure JPOXMLDOC01-appb-C000343


 
Figure JPOXMLDOC01-appb-C000344


 
Figure JPOXMLDOC01-appb-C000345


 
Figure JPOXMLDOC01-appb-C000346


 
Figure JPOXMLDOC01-appb-C000347


 
Figure JPOXMLDOC01-appb-C000348


 
Figure JPOXMLDOC01-appb-C000349


 
Figure JPOXMLDOC01-appb-C000350


 
Figure JPOXMLDOC01-appb-C000351


 
Figure JPOXMLDOC01-appb-C000352


 
Figure JPOXMLDOC01-appb-C000353


 
Figure JPOXMLDOC01-appb-C000354


 
Figure JPOXMLDOC01-appb-C000355


 
Figure JPOXMLDOC01-appb-C000356


 
Figure JPOXMLDOC01-appb-C000357


 
Figure JPOXMLDOC01-appb-C000358


 
Figure JPOXMLDOC01-appb-C000359


 
Figure JPOXMLDOC01-appb-C000360


 
Figure JPOXMLDOC01-appb-C000361


 
Figure JPOXMLDOC01-appb-C000362


 
Figure JPOXMLDOC01-appb-C000363


 
Figure JPOXMLDOC01-appb-C000364


 
Figure JPOXMLDOC01-appb-C000365


 
Figure JPOXMLDOC01-appb-C000366


 
Figure JPOXMLDOC01-appb-C000367


 
Figure JPOXMLDOC01-appb-C000368


 
Figure JPOXMLDOC01-appb-C000369


 
Figure JPOXMLDOC01-appb-C000370


 
Figure JPOXMLDOC01-appb-C000371


 
Figure JPOXMLDOC01-appb-C000372


 
Figure JPOXMLDOC01-appb-C000373


 
Figure JPOXMLDOC01-appb-C000374


 
Figure JPOXMLDOC01-appb-C000375


 
Figure JPOXMLDOC01-appb-C000376


 
Figure JPOXMLDOC01-appb-C000377


 
Figure JPOXMLDOC01-appb-C000378


 
Figure JPOXMLDOC01-appb-C000379


 
Figure JPOXMLDOC01-appb-C000380


 
Figure JPOXMLDOC01-appb-C000381


 
Figure JPOXMLDOC01-appb-C000382


 
Figure JPOXMLDOC01-appb-C000383


 
Figure JPOXMLDOC01-appb-C000384


 
Figure JPOXMLDOC01-appb-C000385


 
Figure JPOXMLDOC01-appb-C000386


 
Figure JPOXMLDOC01-appb-C000387


 
Figure JPOXMLDOC01-appb-C000388


 
Figure JPOXMLDOC01-appb-C000389


 
Figure JPOXMLDOC01-appb-C000390


 
Figure JPOXMLDOC01-appb-C000391


 
Figure JPOXMLDOC01-appb-C000392


 
Figure JPOXMLDOC01-appb-C000393


 
Figure JPOXMLDOC01-appb-C000394


 
Figure JPOXMLDOC01-appb-C000395


 
Figure JPOXMLDOC01-appb-C000396


 
Figure JPOXMLDOC01-appb-C000397


 
Figure JPOXMLDOC01-appb-C000398


 
Figure JPOXMLDOC01-appb-C000399


 
Figure JPOXMLDOC01-appb-C000400


 
Figure JPOXMLDOC01-appb-C000401


 
Figure JPOXMLDOC01-appb-C000402


 
Figure JPOXMLDOC01-appb-C000403


 
Figure JPOXMLDOC01-appb-C000404


 
Figure JPOXMLDOC01-appb-C000405


 
Figure JPOXMLDOC01-appb-C000406


 
Figure JPOXMLDOC01-appb-C000407


 
Figure JPOXMLDOC01-appb-C000408


 
Figure JPOXMLDOC01-appb-C000409


 
Figure JPOXMLDOC01-appb-C000410


 
Figure JPOXMLDOC01-appb-C000411


 
Figure JPOXMLDOC01-appb-C000412


 
Figure JPOXMLDOC01-appb-C000413


 
Figure JPOXMLDOC01-appb-C000414


 
Figure JPOXMLDOC01-appb-C000415


 
Figure JPOXMLDOC01-appb-C000416


 
Figure JPOXMLDOC01-appb-C000417


 
Figure JPOXMLDOC01-appb-C000418


 
Figure JPOXMLDOC01-appb-C000419


 
Figure JPOXMLDOC01-appb-C000420


 
Figure JPOXMLDOC01-appb-C000421


 
Figure JPOXMLDOC01-appb-C000422


 
Figure JPOXMLDOC01-appb-C000423


 
Figure JPOXMLDOC01-appb-C000424


 
Figure JPOXMLDOC01-appb-C000425


 
Figure JPOXMLDOC01-appb-C000426


 
Figure JPOXMLDOC01-appb-C000427


 
Figure JPOXMLDOC01-appb-C000428


 
Figure JPOXMLDOC01-appb-C000429


 
Figure JPOXMLDOC01-appb-C000430


 
Figure JPOXMLDOC01-appb-C000431


 
Figure JPOXMLDOC01-appb-C000432


 
Figure JPOXMLDOC01-appb-C000433


 
Figure JPOXMLDOC01-appb-C000434


 
Figure JPOXMLDOC01-appb-C000435


 
Figure JPOXMLDOC01-appb-C000436


 
Figure JPOXMLDOC01-appb-C000437


 
Figure JPOXMLDOC01-appb-C000438


 
Figure JPOXMLDOC01-appb-C000439


 
Figure JPOXMLDOC01-appb-C000440


 
Figure JPOXMLDOC01-appb-C000441


 
Figure JPOXMLDOC01-appb-C000442


 
Figure JPOXMLDOC01-appb-C000443


 
Figure JPOXMLDOC01-appb-C000444


 
Figure JPOXMLDOC01-appb-C000445


 
Figure JPOXMLDOC01-appb-C000446


 
Figure JPOXMLDOC01-appb-C000447


 
Figure JPOXMLDOC01-appb-C000448


 
Figure JPOXMLDOC01-appb-C000449


 
Figure JPOXMLDOC01-appb-C000450


 
Figure JPOXMLDOC01-appb-C000451


 
Figure JPOXMLDOC01-appb-C000452


 
Figure JPOXMLDOC01-appb-C000453


 
Figure JPOXMLDOC01-appb-C000454


 
Figure JPOXMLDOC01-appb-C000455


 
Figure JPOXMLDOC01-appb-C000456


 
Figure JPOXMLDOC01-appb-C000457


 
Figure JPOXMLDOC01-appb-C000458


 
Figure JPOXMLDOC01-appb-C000459


 
Figure JPOXMLDOC01-appb-C000460


 
Figure JPOXMLDOC01-appb-C000461


 
Figure JPOXMLDOC01-appb-C000462


 
Figure JPOXMLDOC01-appb-C000463


 
Figure JPOXMLDOC01-appb-C000464


 
Figure JPOXMLDOC01-appb-C000465


 
Figure JPOXMLDOC01-appb-C000466


 
Figure JPOXMLDOC01-appb-C000467


 
Figure JPOXMLDOC01-appb-C000468


 
Figure JPOXMLDOC01-appb-C000469


 
Figure JPOXMLDOC01-appb-C000470


 
Figure JPOXMLDOC01-appb-C000471


 
Figure JPOXMLDOC01-appb-C000472


 
Figure JPOXMLDOC01-appb-C000473
 本発明の一態様において、上記第1の化合物として、式(1)で表される化合物であって、互いに異なる構造を有する複数の化合物を含み、かつ、前記第2の化合物として、式(2)で表される化合物であって、互いに異なる構造を有する複数の化合物を含む。
 本発明の一態様において、上記第1の化合物が下記の化合物1及び2からなり、上記第2の化合物が下記の化合物3及び4、又は、化合物5及び6からなる。
Figure JPOXMLDOC01-appb-C000474
 上記各基の具体例は、本明細書の[定義]の欄に記載のとおりである。
<有機EL素子の層構成>
 本発明の実施形態に係る有機EL素子は、上述したように、陽極と、陰極と、上記陽極と陰極との間に配置された、発光帯域を含む有機層とを備え、上記有機層が、第1の化合物を含む第1の層と、第2の化合物を含む第2の層とを有し、上記第1の層と上記第2の層とは異なる層であり、上記第1の化合物は、式(1)で表される化合物において1つ以上の重水素原子を有する化合物を1質量%以上含み、上記第2の化合物は、式(2)で表される化合物において1つ以上の重水素原子を有する化合物を1質量%以上含む。そして、これ以外は、本発明の効果を損なわない限りにおいて、従来公知の材料及び素子構成を上記有機EL素子に適用することができる。
 上記第1の化合物が含まれる有機層及び上記第2の化合物が含まれる有機層の例としては、陽極と発光層との間に設けられる正孔輸送帯域(正孔注入層、正孔輸送層、電子阻止層、励起子阻止層等)、発光帯域(発光層、スペース層等)、陰極と発光層との間に設けられる電子輸送帯域(電子注入層、電子輸送層、正孔阻止層等)等が挙げられるが、これらに限定されるものではない。
 上記第1の化合物及び第2の化合物は、好ましくは蛍光又は燐光EL素子の正孔輸送帯域又は発光帯域の材料として用いられる。
 本発明の好ましい実施態様において、上記有機層は陽極と発光帯域との間に正孔輸送帯域を含み、上記第1の層は上記正孔輸送帯域に含まれる。換言すれば、上記第1の化合物は好ましくは正孔輸送帯域の材料として用いられる。
 上記正孔輸送帯域は、正孔輸送機能を有する少なくとも1層以上の層からなる。上記正孔輸送帯域を構成する層としては、正孔注入層、正孔輸送層、電子阻止層、励起子阻止層等が挙げられる。上記第1の層が上記正孔輸送帯域に含まれる場合、上記第1の層は、正孔輸送帯域を構成する単一の層であってもよいし、正孔輸送帯域を構成する複数の層の少なくとも一つの層であってもよい。
 本発明の好ましい実施態様において、上記第1の層は上記正孔輸送層である。換言すれば、上記第1の化合物は、好ましくは正孔輸送層の材料として用いられる。
 本発明の一実施態様において、上記正孔輸送帯域は、上記第1の層とは異なる第3の層を含む。
 この場合、上記第3の層が上記陽極と上記第1の層との間に配置され、上記第3の層が上記第1の化合物を含まないものであってもよい。
 本発明の好ましい実施態様において、後述するように正孔輸送層が2以上の層を含む多層構造であって、正孔輸送層が、第1正孔輸送層(陽極側)と第2正孔輸送層(陰極側)を含む2層構造であり、第1正孔輸送層が上記第3の層であり、第2正孔輸送層が上記第1の層である。
 本発明の一実施態様において、上記第1の層と上記発光帯域との間には他の層が含まれない。換言すれば、本発明の一実施態様において、上記第1の層に上記発光帯域が直接接している。
 本発明の好ましい実施態様において、上記発光帯域が上記第2の化合物を含む。換言すれば、上記第2の層は好ましくは上記発光帯域に含まれる層であり、また、上記第2の化合物は、好ましくは蛍光又は燐光EL素子の発光帯域の材料として用いられる。
 更に好ましくは、上記第2の層は上記発光層であり、また、上記第2の化合物は発光層の材料として用いられる。上記第2の化合物は、より更に好ましくは発光層のホスト材料として用いられる。
 本発明の一実施態様において、前記発光帯域が蛍光ドーパント材料を含む。
 本発明の一実施態様において、前記発光帯域が燐光ドーパント材料を含む。
 本発明の好ましい実施態様において、上記正孔輸送帯域が上記第1の層を含み、上記発光帯域が前記第2の層を含む。
 より好ましくは、上記正孔輸送層が上記第1の層であり、上記発光層が上記第2の層であり、更に好ましくは、上記第2正孔輸送層が上記第1の層であり、上記発光層が上記第2の層である。
 上記有機EL素子は、蛍光又は燐光発光型の単色発光素子であっても、蛍光/燐光ハイブリッド型の白色発光素子であってもよいし、単独の発光ユニットを有するシンプル型であっても、複数の発光ユニットを有するタンデム型であってもよく、中でも、蛍光発光型の素子であることが好ましい。ここで、「発光ユニット」とは、有機層を含み、そのうちの少なくとも一層が発光層であり、注入された正孔と電子が再結合することにより発光する最小単位をいう。
 例えば、シンプル型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(1)陽極/発光ユニット/陰極
 また、上記発光ユニットは、燐光発光層や蛍光発光層を複数有する積層型であってもよく、その場合、各発光層の間に、燐光発光層で生成された励起子が蛍光発光層に拡散することを防ぐ目的で、スペース層を有していてもよい。シンプル型発光ユニットの代表的な層構成を以下に示す。括弧内の層は任意である。
(a)(正孔注入層/)正孔輸送層/蛍光発光層(/電子輸送層/電子注入層)
(b)(正孔注入層/)正孔輸送層/燐光発光層(/電子輸送層/電子注入層)
(c)(正孔注入層/)正孔輸送層/第1蛍光発光層/第2蛍光発光層(/電子輸送層/電子注入層)
(d)(正孔注入層/)正孔輸送層/第1燐光発光層/第2燐光発光層(/電子輸送層/電子注入層)
(e)(正孔注入層/)正孔輸送層/燐光発光層/スペース層/蛍光発光層(/電子輸送層/電子注入層)
(f)(正孔注入層/)正孔輸送層/第1燐光発光層/第2燐光発光層/スペース層/蛍光発光層(/電子輸送層/電子注入層)
(g)(正孔注入層/)正孔輸送層/第1燐光発光層/スペース層/第2燐光発光層/スペース層/蛍光発光層(/電子輸送層/電子注入層)
(h)(正孔注入層/)正孔輸送層/燐光発光層/スペース層/第1蛍光発光層/第2蛍光発光層(/電子輸送層/電子注入層)
(i)(正孔注入層/)正孔輸送層/電子阻止層/蛍光発光層(/電子輸送層/電子注入層)
(j)(正孔注入層/)正孔輸送層/電子阻止層/燐光発光層(/電子輸送層/電子注入層)
(k)(正孔注入層/)正孔輸送層/励起子阻止層/蛍光発光層(/電子輸送層/電子注入層)
(l)(正孔注入層/)正孔輸送層/励起子阻止層/燐光発光層(/電子輸送層/電子注入層)
(m)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/蛍光発光層(/電子輸送層/電子注入層)
(n)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/燐光発光層(/電子輸送層/電子注入層)
(o)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/蛍光発光層/第1電子輸送層/第2電子輸送層(/電子注入層)
(p)(正孔注入層/)第1正孔輸送層/第2正孔輸送層/燐光発光層/第1電子輸送層/第2電子輸送層(/電子注入層)
(q)(正孔注入層/)正孔輸送層/蛍光発光層/正孔阻止層(/電子輸送層/電子注入層)
(r)(正孔注入層/)正孔輸送層/燐光発光層/正孔阻止層(/電子輸送層/電子注入層)
(s)(正孔注入層/)正孔輸送層/蛍光発光層/励起子阻止層(/電子輸送層/電子注入層)
(t)(正孔注入層/)正孔輸送層/燐光発光層/励起子阻止層(/電子輸送層/電子注入層)
 上記各燐光又は蛍光発光層は、それぞれ互いに異なる発光色を示すものとすることができる。具体的には、上記積層発光ユニット(f)において、(正孔注入層/)正孔輸送層/第1燐光発光層(赤色発光)/第2燐光発光層(緑色発光)/スペース層/蛍光発光層(青色発光)/電子輸送層といった層構成等が挙げられる。
 なお、各発光層と正孔輸送層あるいはスペース層との間には、適宜、電子阻止層を設けてもよい。また、各発光層と電子輸送層との間には、適宜、正孔阻止層を設けてもよい。電子阻止層や正孔阻止層を設けることで、電子又は正孔を発光層内に閉じ込めて、発光層における電荷の再結合確率を高め、発光効率を向上させることができる。
 タンデム型有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができる。
(2)陽極/第1発光ユニット/中間層/第2発光ユニット/陰極
 ここで、上記第1発光ユニット及び第2発光ユニットとしては、例えば、それぞれ独立に上述の発光ユニットから選択することができる。
 上記中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、第1発光ユニットに電子を、第2発光ユニットに正孔を供給する、公知の材料構成を用いることができる。
 なお、本発明において、蛍光ドーパント(蛍光発光材料)と組み合わされたホストを蛍光ホストと称し、燐光ドーパントと組み合わされたホストを燐光ホストと称する。蛍光ホストと燐光ホストは分子構造のみにより区分されるものではない。すなわち、燐光ホストとは、燐光ドーパントを含有する燐光発光層を形成する材料を意味し、蛍光発光層を形成する材料として利用できないことを意味しているわけではない。蛍光ホストについても同様である。
 以下、本発明の実施形態に係る有機EL素子に用いられる部材、及び、各層を構成する、上記化合物以外の材料等について説明する。
(基板)
 基板は、有機EL素子の支持体として用いられる。基板としては、例えば、ガラス、石英、プラスチックなどの板を用いることができる。また、可撓性基板を用いてもよい。可撓性基板としては、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニルからなるプラスチック基板等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(陽極)
 基板上に形成される陽極には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、及びこれらの混合物などを用いることが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン及び酸化亜鉛を含有した酸化インジウム、グラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、又は前記金属の窒化物(例えば、窒化チタン)等が挙げられる。
 これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1~10wt%の酸化亜鉛を加えたターゲットを、酸化タングステン及び酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5~5wt%、酸化亜鉛を0.1~1wt%含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、スピンコート法などにより作製してもよい。
 陽極に接して形成される正孔注入層は、陽極の仕事関数に関係なく正孔注入が容易である材料を用いて形成されるため、電極材料として一般的に使用される材料(例えば、金属、合金、電気伝導性化合物、及びこれらの混合物、元素周期表の第1族又は第2族に属する元素)を用いることができる。
 仕事関数の小さい材料である、元素周期表の第1族又は第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、及びマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、及びこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属及びこれらを含む合金等を用いることもできる。なお、アルカリ金属、アルカリ土類金属、及びこれらを含む合金を用いて陽極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
(正孔輸送帯域)
 正孔輸送帯域は、正孔注入層、正孔輸送層、電子阻止層等から構成される。これらのいずれかの層に上記第1の化合物を含むことが好ましく、特に正孔輸送層に上記第1の化合物を含むことがより好ましい。
(正孔注入層)
 正孔注入層は、正孔注入性の高い材料(正孔注入性材料)を含む層である。正孔注入性材料を単独で又は複数組み合わせて正孔注入層に用いることができる。
 正孔注入性材料としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、マンガン酸化物等を用いることができる。
 低分子の有機化合物である4,4’,4’’-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等も正孔注入層材料として挙げられる。
 高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いることもできる。例えば、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)などの高分子化合物が挙げられる。また、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることもできる。
 さらに、下記式(K)で表されるヘキサアザトリフェニレン(HAT)化合物などのアクセプター材料を他の化合物と組み合わせて用いることも好ましい。
Figure JPOXMLDOC01-appb-C000475
(上記式(K)において、R401~R406は、それぞれ独立にシアノ基、-CONH、カルボキシ基、又は-COOR407(R407は炭素数1~20のアルキル基又は炭素数3~20のシクロアルキル基を表す)を表す。また、R401及びR402、R403及びR404、及び、R405及びR406から選ばれる隣接する2つが互いに結合して-CO-O-CO-で示される基を形成してもよい。)
 R407としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
(正孔輸送層)
 正孔輸送層は、正孔輸送性の高い材料(正孔輸送性材料)を含む層である。正孔輸送材料を単独又は複数組み合わせて用いることができる。正孔輸送性材料としては、例えば、芳香族アミン化合物、カルバゾール誘導体、アントラセン誘導体等を使用する事ができる。
 芳香族アミン化合物としては、例えば、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)やN,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BAFLP)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4”-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4”-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、及び、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)が挙げられる。これらの芳香族アミン化合物は、10-6cm/Vs以上の正孔移動度を有する。
 カルバゾール誘導体としては、例えば、4,4’-ジ(9-カルバゾリル)ビフェニル(略称:CBP)、9-[4-(9-カルバゾリル)フェニル]-10-フェニルアントラセン(略称:CzPA)、及び、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:PCzPA)が挙げられる。
 アントラセン誘導体としては、例えば、2-t-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、及び、9,10-ジフェニルアントラセン(略称:DPAnth)が挙げられる。
 ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
 但し、電子輸送性よりも正孔輸送性の方が高い化合物であれば、上記以外の化合物を用いてもよい。
 正孔輸送層は、単層構造でもよく、2以上の層を含む多層構造でもよい。例えば、正孔輸送層は第1正孔輸送層(陽極側)と第2正孔輸送層(陰極側)を含む2層構造であってもよい。以上の正孔輸送層は、それぞれ上記正孔輸送性材料により形成される。
 2層構造の正孔輸送層において、第1の化合物は第1正孔輸送層と第2正孔輸送層の一方に含まれていてもよいし、双方に含まれていてもよい、但し、第1正孔輸送層に含まれる第1の化合物と第2正孔輸送層に含まれる第1の化合物は互いに異なる。
 本発明の好ましい一態様においては、第1の化合物が第2正孔輸送層に含まれる。他の態様においては、第1の化合物が第1正孔輸送層と第2正孔輸送層に含まれる。その他の態様においては、第1の化合物が第1正孔輸送層に含まれる。
 上記有機EL素子において、正孔輸送層に第1の化合物を含む場合、その含有率は、好ましくは10質量%以上、より好ましくは30質量%以上、更に好ましくは50質量%以上である。正孔輸送層における第1の化合物の含有率の上限は100質量%である。換言すれば、正孔輸送層に第1の化合物を含む場合、その含有率は、好ましくは50~100質量%である。なお、本実施形態は、正孔輸送層に、第1の化合物以外の材料が含まれることを除外しない。
(発光帯域)
 発光帯域は、単独の発光層、複数の発光層、複数の発光層と各発光層の間に位置するスペース層等により構成される。これらのいずれかの層に上記第2の化合物を含むことが好ましく、特に発光層に上記第2の化合物を含むことがより好ましい。
(発光層のドーパント材料)
 発光層は、発光性の高い材料(ドーパント材料)を含む層であり、種々の材料を用いることができる。例えば、蛍光発光材料や燐光発光材料をドーパント材料として用いることができる。蛍光発光材料は一重項励起状態から発光する化合物であり、燐光発光材料は三重項励起状態から発光する化合物である。
 発光層に用いることができる青色系の蛍光発光材料として、ピレン誘導体、スチリルアミン誘導体、クリセン誘導体、フルオランテン誘導体、フルオレン誘導体、ジアミン誘導体、トリアリールアミン誘導体等が使用できる。具体的には、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン(略称:YGAPA)、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPA)などが挙げられる。
 発光層に用いることができる緑色系の蛍光発光材料として、芳香族アミン誘導体等を使用できる。具体的には、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCABPhA)、N-(9,10-ジフェニル-2-アントリル)-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPABPhA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)]-N-[4-(9H-カルバゾール-9-イル)フェニル]-N-フェニルアントラセン-2-アミン(略称:2YGABPhA)、N,N,9-トリフェニルアントラセン-9-アミン(略称:DPhAPhA)などが挙げられる。
 発光層に用いることができる赤色系の蛍光発光材料として、テトラセン誘導体、ジアミン誘導体等が使用できる。具体的には、N,N,N’,N’-テトラキス(4-メチルフェニル)テトラセン-5,11-ジアミン(略称:p-mPhTD)、7,14-ジフェニル-N,N,N’,N’-テトラキス(4-メチルフェニル)アセナフト[1,2-a]フルオランテン-3,10-ジアミン(略称:p-mPhAFD)などが挙げられる。
 発光層に用いることができる青色系の燐光発光材料として、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体が使用される。具体的には、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)テトラキス(1-ピラゾリル)ボラート(略称:FIr6)、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス[2-(3’,5’ビストリフルオロメチルフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:Ir(CF3ppy)2(pic))、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)アセチルアセトナート(略称:FIracac)などが挙げられる。
 発光層に用いることができる緑色系の燐光発光材料として、イリジウム錯体等が使用される。トリス(2-フェニルピリジナト-N,C2’)イリジウム(III)(略称:Ir(ppy)3)、ビス(2-フェニルピリジナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(ppy)2(acac))、ビス(1,2-ジフェニル-1H-ベンゾイミダゾラト)イリジウム(III)アセチルアセトナート(略称:Ir(pbi)2(acac))、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:Ir(bzq)2(acac))などが挙げられる。
 発光層に用いることができる赤色系の燐光発光材料として、イリジウム錯体、白金錯体、テルビウム錯体、ユーロピウム錯体等の金属錯体が使用される。具体的には、ビス[2-(2’-ベンゾ[4,5-α]チエニル)ピリジナト-N,C3’]イリジウム(III)アセチルアセトナート(略称:Ir(btp)2(acac))、ビス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(piq)2(acac))、(アセチルアセトナート)ビス[2,3-ビス(4-フルオロフェニル)キノキサリナト]イリジウム(III)(略称:Ir(Fdpq)2(acac))、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:PtOEP)等の有機金属錯体が挙げられる。
 また、トリス(アセチルアセトナート)(モノフェナントロリン)テルビウム(III)(略称:Tb(acac)3(Phen))、トリス(1,3-ジフェニル-1,3-プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:Eu(DBM)3(Phen))、トリス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:Eu(TTA)3(Phen))等の希土類金属錯体は、希土類金属イオンからの発光(異なる多重度間の電子遷移)であるため、燐光発光材料として用いることができる。
(発光層のホスト材料)
 発光層は、上述したドーパント材料を他の材料(ホスト材料)に分散させた構成としてもよい。ホスト材料としては、ドーパント材料よりも最低空軌道準位(LUMO準位)が高く、最高占有軌道準位(HOMO準位)が低い材料を用いることが好ましい。本発明の好ましい実施態様においては、上記第2の化合物が発光層のホスト材料として用いられる。
 ホスト材料としては、例えば、
(1)アルミニウム錯体、ベリリウム錯体、又は亜鉛錯体等の金属錯体、
(2)オキサジアゾール誘導体、ベンゾイミダゾール誘導体、又はフェナントロリン誘導体等の複素環化合物、
(3)カルバゾール誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、又はクリセン誘導体等の縮合芳香族化合物、
(4)トリアリールアミン誘導体又は縮合多環芳香族アミン誘導体等の芳香族アミン化合物が使用される。
 例えば、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(III)(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体;
 2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称:TPBI)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)などの複素環化合物;
 9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:CzPA)、3,6-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:DPCzPA)、9,10-ビス(3,5-ジフェニルフェニル)アントラセン(略称:DPPA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、9,9’-ビアントリル(略称:BANT)、9,9’-(スチルベン-3,3’-ジイル)ジフェナントレン(略称:DPNS)、9,9’-(スチルベン-4,4’-ジイル)ジフェナントレン(略称:DPNS2)、3,3’,3’’-(ベンゼン-1,3,5-トリイル)トリピレン(略称:TPB3)、9,10-ジフェニルアントラセン(略称:DPAnth)、6,12-ジメトキシ-5,11-ジフェニルクリセンなどの縮合芳香族化合物;及び
 N,N-ジフェニル-9-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:CzA1PA)、4-(10-フェニル-9-アントリル)トリフェニルアミン(略称:DPhPA)、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:PCAPA)、N,9-ジフェニル-N-{4-[4-(10-フェニル-9-アントリル)フェニル]フェニル}-9H-カルバゾール-3-アミン(略称:PCAPBA)、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB又はα-NPD)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4,4’-ビス[N-(9,9-ジメチルフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物を用いることができる。ホスト材料は複数種用いてもよい。
 特に、青色蛍光素子の場合には、下記のアントラセン化合物をホスト材料として用いることが好ましい。
Figure JPOXMLDOC01-appb-C000476
Figure JPOXMLDOC01-appb-C000477
Figure JPOXMLDOC01-appb-C000478
 上記有機EL素子における発光帯域の膜厚は、好ましくは5nm以上50nm以下、より好ましくは7nm以上50nm以下、さらに好ましくは10nm以上50nm以下である。発光帯域の膜厚が5nm以上であれば、発光帯域を形成し易くなり、色度も調整し易くなる。発光帯域の膜厚が50nm以下であれば、駆動電圧の上昇を抑制しやすくなる。
 上記有機EL素子1の発光帯域に第2の化合物を含む場合、その含有率は、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上である。なお、本実施形態は、発光帯域に第2の化合物以外の材料が含まれることを除外しない。
(電子輸送帯域)
 電子輸送帯域は、電子注入層、電子輸送層、正孔阻止層等から構成される。電子輸送帯域のいずれかの層、特に電子輸送層は、好ましくは、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属を含有する有機錯体、アルカリ土類金属を含有する有機錯体、及び希土類金属を含有する有機錯体からなる群から選択される1以上を含有する。
(電子輸送層)
 電子輸送層は電子輸送性の高い材料(電子輸送性材料)を含む層である。電子輸送層に用いられる電子輸送性材料としては、例えば、
(1)アルミニウム錯体、ベリリウム錯体、亜鉛錯体等の金属錯体、
(2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、フェナントロリン誘導体等の複素芳香族化合物、
(3)高分子化合物を使用することができる。
 金属錯体としては、例えば、トリス(8-キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4-メチル-8-キノリノラト)アルミニウム(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)、(8-キノリノラト)リチウム(略称:Liq)が挙げられる。
 複素芳香族化合物としては、例えば、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、1,3-ビス[5-(ptert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベン(略称:BzOs)が挙げられる。
 高分子化合物としては、例えば、ポリ[(9,9-ジヘキシルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)が挙げられる。
 上記材料は、10-6cm/Vs以上の電子移動度を有する材料である。なお、正孔輸送性よりも電子輸送性の高い材料であれば、上記以外の材料を電子輸送層に用いてもよい。
 電子輸送層は、単層でもよく、2以上の層を含む多層でもよい。例えば、電子輸送層は第1電子輸送層(陽極側)と第2電子輸送層(陰極側)を含む層であってもよい。2以上の電子輸送層は、それぞれ前記電子輸送性材料により形成される。
(電子注入層)
 電子注入層は、電子注入性の高い材料を含む層である。電子注入層には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF2)、リチウム酸化物(LiOx)等のアルカリ金属、アルカリ土類金属、又はそれらの化合物を用いることができる。その他、電子輸送性を有する材料にアルカリ金属、アルカリ土類金属、又はそれらの化合物を含有させたもの、具体的にはAlq中にマグネシウム(Mg)を含有させたもの等を用いてもよい。なお、この場合には、陰極からの電子注入をより効率よく行うことができる。
 あるいは、電子注入層に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、有機化合物が電子供与体から電子を受け取るため、電子注入性及び電子輸送性に優れている。この場合、有機化合物としては、受け取った電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層を構成する材料(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す材料であればよい。具体的には、アルカリ金属、アルカリ土類金属及び希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
(陰極)
 陰極には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、及びこれらの混合物などを用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族又は第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、及びマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、及びこれらを含む合金(例えば、MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属及びこれらを含む合金等が挙げられる。
 なお、アルカリ金属、アルカリ土類金属、これらを含む合金を用いて陰極を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
 なお、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、珪素もしくは酸化珪素を含有した酸化インジウム-酸化スズ等様々な導電性材料を用いて陰極を形成することができる。これらの導電性材料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することができる。
(絶縁層)
 有機EL素子は、超薄膜に電界を印加するために、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層からなる絶縁層を挿入してもよい。
 絶縁層に用いられる材料としては、例えば、酸化アルミニウム、弗化リチウム、酸化リチウム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カルシウム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられる。なお、これらの混合物や積層物を用いてもよい。
(スペース層)
 上記スペース層とは、例えば、蛍光発光層と燐光発光層とを積層する場合に、燐光発光層で生成する励起子を蛍光発光層に拡散させない、あるいは、キャリアバランスを調整する目的で、蛍光発光層と燐光発光層との間に設けられる層である。また、スペース層は、複数の燐光発光層の間に設けることもできる。なお、ここで言う「キャリア」とは、物質中の電荷担体の意味である。
 スペース層は発光層間に設けられるため、電子輸送性と正孔輸送性を兼ね備える材料であることが好ましい。また、隣接する燐光発光層内の三重項エネルギーの拡散を防ぐため、三重項エネルギーが2.6eV以上であることが好ましい。スペース層に用いられる材料としては、上述の正孔輸送層に用いられるものと同様のものが挙げられる。
(阻止層)
 電子阻止層、正孔阻止層、励起子阻止層などの阻止層を発光層に隣接して設けてもいい。電子阻止層とは発光層から正孔輸送層へ電子が漏れることを防ぐ層であり、正孔阻止層とは発光層から電子輸送層へ正孔が漏れることを防ぐ層である。励起子阻止層は発光層で生成した励起子が周辺の層へ拡散することを防止し、励起子を発光層内に閉じ込める機能を有する。
 上述した各層の膜厚は特に制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い駆動電圧が必要となり効率が悪くなりやすいため、通常5nm~10μmであり、10nm~0.2μmがより好ましい。なお、発光帯域の厚さは上述したとおりである。
(層形成方法)
 本発明の実施形態に係る有機EL素子の各層の形成方法としては、特に制限されず、例えば、真空蒸着法、分子線蒸着法(MBE法)、スパッタリング法、プラズマ法、イオンプレーティング法などの乾式成膜法や、スピンコーティング法、ディッピング法、フローコーティング法、バーコート法、ロールコート法、インクジェット法などの湿式成膜法等の公知の方法を採用することができる。
[電子機器]
 本発明の一実施形態に係る有機EL素子は、表示装置や発光装置等の電子機器に使用できる。表示装置としては、例えば、有機ELパネルモジュール等の表示部品、テレビ、携帯電話、タブレットもしくはパーソナルコンピュータ等が挙げられる。発光装置としては、例えば、照明、もしくは車両用灯具等が挙げられる。
 前記有機EL素子は、有機ELパネルモジュール等の表示部品、テレビ、携帯電話、パーソナルコンピュータ等の表示装置、及び、照明、車両用灯具の発光装置等の電子機器に使用できる。
 以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 後述する実施例1、2及び比較例2、5の有機EL素子の製造に用いた、式(1)で表される化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000479
 後述する実施例1、2及び比較例3、6の有機EL素子の製造に用いた、式(2)で表される化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000480
 後述する実施例3、4、7及び比較例8、11、20の有機EL素子の製造に用いた、式(1)で表される化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000481
 後述する実施例3、4及び比較例9、12の有機EL素子の製造に用いた、式(2)で表される化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000482
 後述する実施例5、6及び比較例14、17の有機EL素子の製造に用いた、式(1)で表される化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000483
 後述する実施例5、6及び比較例15、18の有機EL素子の製造に用いた、式(2)で表される化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000484
 後述する実施例7及び比較例21の有機EL素子の製造に用いた、式(2)で表される化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000485
 比較例1~21の有機EL素子の製造に用いた化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000486

Figure JPOXMLDOC01-appb-C000487
Figure JPOXMLDOC01-appb-C000488

Figure JPOXMLDOC01-appb-C000489

Figure JPOXMLDOC01-appb-C000490
 実施例1~7及び比較例1~21の有機EL素子の製造に用いた、他の化合物を以下に示す。
Figure JPOXMLDOC01-appb-C000491

Figure JPOXMLDOC01-appb-C000492

Figure JPOXMLDOC01-appb-C000493
<有機EL素子の作製>
 有機EL素子を以下のように作製した。
(実施例1)
 25mm×75mm×1.1mmのITO透明電極付きガラス基板(ジオマテック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行った。ITO透明電極の厚さは130nmとした。
 洗浄後のITO透明電極付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まずITO透明電極を覆うようにして上記化合物HT-1と上記化合物HI-1とを共蒸着して膜厚10nmの正孔注入層を形成した。正孔注入層中の化合物HI-1の濃度は3.0質量%であった。
 次に、この正孔注入層上に、上記化合物HT-1(第1正孔輸送層材料)を蒸着して膜厚85nmの第1正孔輸送層を形成した。
 次に、この第1正孔輸送層上に、下記の合成例1で合成した化合物1(B’HT-1(D)、第2正孔輸送層材料)を蒸着して膜厚5nmの第2正孔輸送層を形成した。
 次に、この第2正孔輸送層上に、下記の合成例2で合成した化合物2(BH-1(D)、ホスト材料)と上記化合物BD-1(ドーパント材料)とを共蒸着し、膜厚20nmの発光層を形成した。発光層中の化合物BD-1の濃度は2.0質量%であった。
 次に、この発光層の上に、下記化合物HBL-1を蒸着して膜厚5nmの正孔阻止層を形成した。
 次に、この正孔阻止層の上に、上記化合物ET-1(電子輸送層材料)と上記化合物Liqとを共蒸着して膜厚25nmの電子輸送層を形成した。電子輸送層における化合物ET-1とLiqの濃度は50.0質量%であった。
 次に、この電子輸送層上に金属Alを蒸着して膜厚80nmの金属Al陰極を形成した。
 実施例1の素子構成を略式的に示すと、次のとおりである。
ITO(130)/HT-1:HI-1(10:3%)/HT-1(85)/B’HT-1(D)(5)/BH-1(D):BD-1(20:2%)/HBL-1(5)/ET-1:Liq(25:50%)/Al(80)
 なお、括弧内の数字は、膜厚(単位:nm)を示す。また、同じく括弧内において、パーセント表示された数字は、その層における、右側に記載した化合物の割合(質量%)を示す。なお、下記実施例2~7、及び、比較例1~21は、実施例1で用いたB’HT-1(D)及びBH-1(D)のうち少なくとも1つが異なる以外は実施例1と同様の素子構成であるため、これらの実施例及び比較例については、素子構成の概略の記載は省略する。
(実施例2)
 実施例1の発光層のホスト材料に用いた化合物2に代えて、下記合成例3で合成した化合物3(BH-2(D))を用いた以外は実施例1と同様にして有機EL素子を作製し、実施例2の有機EL素子とした。
(比較例1)
 実施例1の第2正孔輸送層に用いた化合物1(B’HT-1(D))に代えて、上記比較化合物1(B’HT-1)を用い、実施例1の発光層のホスト材料に用いた化合物2(BH-1(D))に代えて、上記比較化合物2(BH-1)を用いた以外は実施例1と同様にして有機EL素子を作製し、比較例1の有機EL素子とした。
(比較例2)
 実施例1の発光層のホスト材料に用いた化合物2(BH-1(D))に代えて、上記比較化合物2(BH-1)を用いた以外は実施例1と同様にして有機EL素子を作製し、比較例2の有機EL素子とした。
(比較例3)
 実施例1の第2正孔輸送層に用いた化合物1(B’HT-1(D))に代えて、上記比較化合物1(B’HT-1)を用いた以外は実施例1と同様にして有機EL素子を作製し、比較例1の有機EL素子とした。
(比較例4)
 実施例2の第2正孔輸送層に用いた化合物1(B’HT-1(D))に代えて、上記比較化合物1(B’HT-1)を用い、実施例2の発光層のホスト材料に用いた化合物3(BH-2(D))に代えて、上記比較化合物3(BH-2)を用いた以外は実施例2と同様にして有機EL素子を作製し、比較例4の有機EL素子とした。
(比較例5)
 実施例2の発光層のホスト材料に用いた化合物3(BH-2(D))に代えて、上記比較化合物3(BH-2)を用いた以外は実施例2と同様にして有機EL素子を作製し、比較例5の有機EL素子とした。
(比較例6)
 実施例2の第2正孔輸送層に用いた化合物1(B’HT-1(D))に代えて、上記比較化合物1(B’HT-1)を用いた以外は実施例2と同様にして有機EL素子を作製し、比較例6の有機EL素子とした。
(実施例3)
 実施例1の第2正孔輸送層に用いた化合物1(B’HT-1(D))に代えて、上記化合物4(B’HT-1(D2))を用い、実施例1の発光層のホスト材料に用いた化合物2(BH-1(D))に代えて、上記化合物5(BH-3(D))を用いた以外は実施例1と同様にして有機EL素子を作製し、実施例3の有機EL素子とした。
(比較例7)
 実施例3の第2正孔輸送層に用いた化合物4に代えて、上記比較化合物1(B’HT-1)を用い、実施例3の発光層のホスト材料に用いた化合物5に代えて、上記比較化合物5(BH-3)を用いた以外は実施例3と同様にして有機EL素子を作製し、比較例7の有機EL素子とした。
(比較例8)
 実施例3の発光層のホスト材料に用いた化合物5に代えて、上記比較化合物5(BH-3)を用いた以外は実施例3と同様にして有機EL素子を作製し、比較例8の有機EL素子とした。
(比較例9)
 実施例3の第2正孔輸送層に用いた化合物4に代えて、上記比較化合物1(B’HT-1)を用いた以外は実施例3と同様にして有機EL素子を作製し、比較例9の有機EL素子とした。
(実施例4)
 実施例1の第2正孔輸送層に用いた化合物1(B’HT-1(D))に代えて、上記化合物4(B’HT-1(D2))を用い、実施例1の発光層のホスト材料に用いた化合物2(BH-1(D))に代えて、上記化合物6(BH-4(D))を用いた以外は実施例1と同様にして有機EL素子を作製し、実施例4の有機EL素子とした。
(比較例10)
 実施例4の第2正孔輸送層に用いた化合物4に代えて、上記比較化合物1(B’HT-1)を用い、実施例4の発光層のホスト材料に用いた化合物6に代えて、上記比較化合物6(BH-4)を用いた以外は実施例4と同様にして有機EL素子を作製し、比較例10の有機EL素子とした。
(比較例11)
 実施例4の発光層のホスト材料に用いた化合物6に代えて、上記比較化合物6(BH-4)を用いた以外は実施例4と同様にして有機EL素子を作製し、比較例11の有機EL素子とした。
(比較例12)
 実施例4の第2正孔輸送層に用いた化合物4に代えて、上記比較化合物1(B’HT-1)を用いた以外は実施例4と同様にして有機EL素子を作製し、比較例12の有機EL素子とした。
(実施例5)
 実施例1の第2正孔輸送層に用いた化合物1(B’HT-1(D))に代えて、上記化合物7(B’HT-2(D))を用い、実施例1の発光層のホスト材料に用いた化合物2(BH-1(D))に代えて、上記化合物8(BH-2(D2))を用いた以外は実施例1と同様にして有機EL素子を作製し、実施例5の有機EL素子とした。
(比較例13)
 実施例5の第2正孔輸送層に用いた化合物7に代えて、上記比較化合物4(B’HT-2)を用い、実施例5の発光層のホスト材料に用いた化合物8に代えて、上記比較化合物7(BH-5)を用いた以外は実施例5と同様にして有機EL素子を作製し、比較例13の有機EL素子とした。
(比較例14)
 実施例5の発光層のホスト材料に用いた化合物8に代えて、上記比較化合物7(BH-5)を用いた以外は実施例5と同様にして有機EL素子を作製し、比較例14の有機EL素子とした。
(比較例15)
 実施例5の第2正孔輸送層に用いた化合物7に代えて、上記比較化合物4(B’HT-2)を用いた以外は実施例5と同様にして有機EL素子を作製し、比較例15の有機EL素子とした。
(実施例6)
 実施例1の第2正孔輸送層に用いた化合物1(B’HT-1(D))に代えて、上記化合物7(B’HT-2(D))を用い、実施例1の発光層のホスト材料に用いた化合物2(BH-1(D))に代えて、上記化合物9(BH-5(D))を用いた以外は実施例1と同様にして有機EL素子を作製し、実施例6の有機EL素子とした。
(比較例16)
 実施例6の第2正孔輸送層に用いた化合物7に代えて、上記比較化合物4(B’HT-2)を用い、実施例6の発光層のホスト材料に用いた化合物9に代えて、上記比較化合物7(BH-5)を用いた以外は実施例6と同様にして有機EL素子を作製し、比較例16の有機EL素子とした。
(比較例17)
 実施例6の発光層のホスト材料に用いた化合物9に代えて、上記比較化合物7(BH-5)を用いた以外は実施例6と同様にして有機EL素子を作製し、比較例17の有機EL素子とした。
(比較例18)
 実施例6の第2正孔輸送層に用いた化合物7に代えて、上記比較化合物4(B’HT-2)を用いた以外は実施例6と同様にして有機EL素子を作製し、比較例18の有機EL素子とした。
(実施例7)
 実施例1の第2正孔輸送層に用いた化合物1(B’HT-1(D))に代えて、上記化合物4(B’HT-1(D2))を用い、実施例1の発光層のホスト材料に用いた化合物2(BH-1(D))に代えて、上記化合物10(BH-6(D))を用いた以外は実施例1と同様にして有機EL素子を作製し、実施例7の有機EL素子とした。
(比較例19)
 実施例7の第2正孔輸送層に用いた化合物4に代えて、上記比較化合物1(B’HT-1)を用い、実施例7の発光層のホスト材料に用いた化合物10に代えて、上記比較化合物8(BH-6)を用いた以外は実施例7と同様にして有機EL素子を作製し、比較例19の有機EL素子とした。
(比較例20)
 実施例7の発光層のホスト材料に用いた化合物10に代えて、上記比較化合物8(BH-6)を用いた以外は実施例7と同様にして有機EL素子を作製し、比較例20の有機EL素子とした。
(比較例21)
 実施例7の第2正孔輸送層に用いた化合物4に代えて、上記比較化合物1(B’HT-1)を用いた以外は実施例7と同様にして有機EL素子を作製し、比較例21の有機EL素子とした。
<有機EL素子の評価>
 作製した有機EL素子について、電流密度が50mA/cmとなるように有機EL素子に電圧を印加し、95%寿命(LT95)の評価を行った。ここで95%寿命(LT95)とは、定電流駆動時において、輝度が初期輝度の95%に低下するまでの時間(hr)をいう。
 結果を表1~表7に示す。
Figure JPOXMLDOC01-appb-T000494
Figure JPOXMLDOC01-appb-T000495
Figure JPOXMLDOC01-appb-T000496
Figure JPOXMLDOC01-appb-T000497
Figure JPOXMLDOC01-appb-T000498
Figure JPOXMLDOC01-appb-T000499
Figure JPOXMLDOC01-appb-T000500
 表1から明らかなように、第2正孔輸送層を、特定の構造を有する式(1)に包含される化合物B’HT-1(D)と、特定の構造を有する式(2)に包含される化合物BH-1(D)とを有する有機EL素子とすることにより、上記式(1)に包含されない化合物B’HT-1及び上記式(2)に包含されない化合物BH-1のうちいずれかを用いている比較例1~3の有機EL素子に比べてLT95の値が顕著に大きくなることが判る。
 また、表2から明らかなように、第2正孔輸送層を、特定の構造を有する式(1)に包含される化合物B’HT-1(D)と、特定の構造を有する式(2)に包含される化合物BH-2(D)とを有する有機EL素子とすることにより、上記式(1)に包含されない化合物B’HT-1及び上記式(2)に包含されない化合物BH-2のうちいずれかを用いている比較例4~6の有機EL素子に比べてLT95の値が顕著に大きくなることが判る。
 また、表3から明らかなように、第2正孔輸送層を、特定の構造を有する式(1)に包含される化合物B’HT-1(D2)と、特定の構造を有する式(2)に包含される化合物BH-3(D)とを有する有機EL素子とすることにより、上記式(1)に包含されない化合物B’HT-1及び上記式(2)に包含されない化合物BH-3のうちいずれかを用いている比較例7~9の有機EL素子に比べてLT95の値が顕著に大きくなることが判る。
 また、表4から明らかなように、第2正孔輸送層を、特定の構造を有する式(1)に包含される化合物B’HT-1(D2)と、特定の構造を有する式(2)に包含される化合物BH-4(D)とを有する有機EL素子とすることにより、上記式(1)に包含されない化合物B’HT-1及び上記式(2)に包含されない化合物BH-4のうちいずれかを用いている比較例10~12の有機EL素子に比べてLT95の値が顕著に大きくなることが判る。
 また、表5から明らかなように、第2正孔輸送層を、特定の構造を有する式(1)に包含される化合物B’HT-2(D)と、特定の構造を有する式(2)に包含される化合物BH-2(D)とを有する有機EL素子とすることにより、上記式(1)に包含されない化合物B’HT-2及び上記式(2)に包含されない化合物BH-2のうちいずれかを用いている比較例13~15の有機EL素子に比べてLT95の値が顕著に大きくなることが判る。
 また、表6から明らかなように、第2正孔輸送層を、特定の構造を有する式(1)に包含される化合物B’HT-2(D)と、特定の構造を有する式(2)に包含される化合物BH-5(D)とを有する有機EL素子とすることにより、上記式(1)に包含されない化合物B’HT-2及び上記式(2)に包含されない化合物BH-5のうちいずれかを用いている比較例16~18の有機EL素子に比べてLT95の値が顕著に大きくなることが判る。
 また、表7から明らかなように、第2正孔輸送層を、特定の構造を有する式(1)に包含される化合物B’HT-1(D2)と、特定の構造を有する式(2)に包含される化合物BH-6(D)とを有する有機EL素子とすることにより、上記式(1)に包含されない化合物B’HT-1及び上記式(2)に包含されない化合物BH-6のうちいずれかを用いている比較例19~21の有機EL素子に比べてLT95の値が顕著に大きくなることが判る。
<化合物の合成>
 下記の合成例1~6で合成した化合物1~4、7、8を以下に示す。
Figure JPOXMLDOC01-appb-C000501

Figure JPOXMLDOC01-appb-C000502

Figure JPOXMLDOC01-appb-C000503

Figure JPOXMLDOC01-appb-C000504

Figure JPOXMLDOC01-appb-C000505

Figure JPOXMLDOC01-appb-C000506
<合成例1(化合物1(B’HT-1(D))の合成)>
中間体合成例1:中間体Aの合成
Figure JPOXMLDOC01-appb-C000507
 アルゴン雰囲気下、アニリン-2,3,4,5,6-d5(2.19g、22.33mmol)、ブロモベンゼン-d5(3.29g、20.3mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(372mg、0.41mmol)、BINAP(506mg、0.812mmol)、ナトリウム-t-ブトキシド(2.15g、22.33mmol)、トルエン(200ml)を加え100℃にて3時間加熱撹拌した。放冷後、ろ過し得られた残渣をカラムクロマトグラフィーにて精製し中間体A(3.59g)を得た。収率は99%であった。
中間体合成例2:中間体Cの合成
Figure JPOXMLDOC01-appb-C000508

 アルゴン雰囲気下、中間体A(2.9g、16.18mmol)、DMF(55ml)を混合させ、0℃でN-ブロモスクシンイミド(5.76g、32.4mmol)を加えた。水と酢酸エチルを加え抽出し得られた有機層を減圧下留去し中間体Bを得た。中間体Bは精製せずに次の反応に付した。
 アルゴン雰囲気下、中間体B(6.41g、19.12mmol)、フェニルボロン酸(5.83g、47.8mmol)、ビス(ジ-t-ブチル(4-ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)(406mg、0.574mmol)、1,4-ジオキサン(100ml)を混合させ、リン酸カリウム水溶液を加えた。110℃で5時間加熱撹拌し放冷後、混合物をろ過しカラムクロマトグラフィーおよび再結晶にて精製し中間体C(3.9g)を得た。収率は62%(2工程)であった。
中間体合成例3:中間体1の合成
Figure JPOXMLDOC01-appb-C000509
 アルゴン雰囲気下、1,4-ジブロモベンゼン-2,3,5,6-d4(2.5g、10.42mmol)、THF(105ml)を混合させ-78℃下でn-ブチルリチウム(1.59M、6.55ml)を滴下した。その後-78℃でヨウ素(3.97g、15.63mmol)とTHF(25ml)の混合物を滴下し30分間撹拌した。その後、水とチオ硫酸ナトリウム水溶液を加え室温まで昇温させジクロロメタンにて抽出し得られた有機層を減圧下留去し1-ブロモ-4-ヨードベンゼン-2,3,5,6-d4を得た。
 アルゴン雰囲気下、中間体C(4.12g、12.5mmol)、1-ブロモ-4-ヨードベンゼン-2,3,5,6-d4(4.3g、15.0mmol)、酢酸パラジウム(II)(56mg、0.25mmol)、4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(145mg、0.25mmol)、ナトリウム-t-ブトキシド(1.68g、17.5mmol)、トルエン(120ml)を混合させ100℃にて3時間加熱撹拌した。放冷後ろ過し得られた残渣をメタノールで懸洗し中間体1を得た。収率98%(2工程)だった。
中間体合成例4:中間体2の合成
Figure JPOXMLDOC01-appb-C000510
 アルゴン雰囲気下、中間体1(4.5g、9.21mmol)、ビス(ピナコレート)ジボロン(2.81g、11.05mmol)、[1、1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(226mg、0.28mmol)、カリウムアセテート(2.71g、27.6mmol)、1,4-ジオキサン(47ml)を混合させ110℃で4時間加熱撹拌した。放冷後、水と酢酸エチルを入れ抽出した。得られた有機層を減圧下留去し中間体2を得た。
合成実施例1:化合物1(B’HT-1(D))の合成
Figure JPOXMLDOC01-appb-C000511
 アルゴン雰囲気下、中間体2(4.93g、9.21mmol)、9-(3-ブロモフェニル)カルバゾール(4.45g、13.82mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(169mg、0.18mmol)、[4-(N、N-ジメチルアミノ)フェニル]ジ-t-ブチルホスフィン(196mg、0.74mmol)、リン酸カリウム(5.87g、27.6mmol)、1,4-ジオキサン(75ml)、水(15ml)を混合させ110℃で4時間加熱撹拌した。放冷後、トルエンにて抽出し得られた有機層を減圧下留去した。残渣はカラムクロマトグラフィーおよび再結晶にて精製し、化合物B’HT-1(D)を得た。収率は40%(2工程)であった。マススペクトル分析の結果、化合物1(B’HT-1(D))であり、分子量650.89に対しm/e=650であった。
<合成例2(化合物2(BH-1(D))の合成)>
中間体合成例5:中間体3の合成
 アルゴン雰囲気下、9-ブロモアントラセン-d9 13.3g(50.0mmol)、フェニルボロン酸6.4g(52.5mmol)、Pd[PPh 1.2g(1.00mmol)にトルエン75ml、ジメトキシエタン75ml、2M NaCO水溶液75ml(150.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機層をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、10.9gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体3と同定した(収率83%)。
Figure JPOXMLDOC01-appb-C000512
中間体合成例6:中間体4の合成
 中間体3 5.3g(20.0mmol)をジクロロメタン120mlに溶解させた溶液を、臭素3.2g(20.0mmol)をジクロロメタン12mlに溶解させた溶液に、室温で滴下して加え、1時間撹拌した。
 反応終了後、試料を分液ロートに移し、2M Na水溶液で洗浄した。さらに、有機相を10% NaCOで洗浄し、その後に水で洗浄し、分離した有機相をMgSOで乾燥後、ろ過、濃縮した。
 濃縮残渣をメタノール(100mL)中に分散させ析出した結晶をし、6.5gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体4と同定した(収率95%)。
Figure JPOXMLDOC01-appb-C000513
合成実施例2:化合物2(BH-1(D))の合成
 アルゴン雰囲気下、中間体4 1.7g(5.0mmol)、ベンゾ[b]ナフト[2,1-d]フラン-7-ボロン酸1.4g(5.3mmol)、Pd[PPh 0.1g(0.1mmol)にトルエン7.5ml、ジメトキシエタン7.5ml、2M NaCO水溶液7.5ml(15.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機相をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、1.6gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記化合物BH-1(D)と同定した(収率75%)。
Figure JPOXMLDOC01-appb-C000514
<合成例3(化合物3(BH-2(D))の合成)>
中間体合成例7:中間体5の合成
 アルゴン雰囲気下、9-ブロモアントラセン-d9 13.3g(50.0mmol)、3-ビフェニルボロン酸10.4g(52.5mmol)、Pd[PPh 1.2g(1.00mmol)にトルエン75ml、ジメトキシエタン75ml、2M NaCO水溶液75ml(150.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機相をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、13.6gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体5と同定した(収率80%)。
Figure JPOXMLDOC01-appb-C000515
中間体合成例8:中間体6の合成
 中間体6 6.8g(20.0mmol)をジクロロメタン120mlに溶解させた溶液を、臭素3.2g(20.0mmol)をジクロロメタン12mlに溶解させた溶液に、室温で滴下して加え、1時間撹拌した。
 反応終了後、試料を分液ロートに移し、2M Na水溶液で洗浄した。さらに、有機相を10% NaCOで洗浄し、その後に水で3回洗浄した。有機相をMgSOで乾燥後、ろ過、濃縮した。
 濃縮残渣をメタノール(100mL)中に分散させ析出した結晶をし、8.0gの白色固体を得た。得られた化合物についてFD-MS分析を行い、下記中間体6と同定した(収率96%)。
Figure JPOXMLDOC01-appb-C000516
合成実施例3:化合物3(BH-2(D))の合成
 アルゴン雰囲気下、中間体6 2.1g(5.0mmol)、ベンゾ[b]ナフト[2,1-d]フラン-7-ボロン酸1.4g(5.3mmol)、Pd[PPh 0.1g(0.1mmol)にトルエン7.5ml、ジメトキシエタン7.5ml、2M NaCO水溶液7.5ml(15.0mmol)を加え、10時間加熱還流攪拌した。
 反応終了後、室温に冷却し、試料を分液ロートに移しジクロロメタンにて抽出した。有機相をMgSOで乾燥後、ろ過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し、1.5gの白色固体を得た。得られた化合物についてFD-MS分析を行い、上記化合物3(BH-2(D))と同定した(収率59%)。
Figure JPOXMLDOC01-appb-C000517
<合成例4(化合物4(B’HT-1(D2))の合成)>
 下記合成経路で化合物B’HT-1(D2)を合成した。
Figure JPOXMLDOC01-appb-C000518
合成実施例4:化合物4(B’HT-1(D2))の合成
 アルゴン雰囲気下、中間体C(2.9g、8.8mmol)、文献既知の方法によって合成した中間体D(2.83g、8.0mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(147mg、0.16mmol)、ナトリウム-t-ブトキシド(1.07g、11.2mmol)、キシレン(50ml)を加え140℃で1時間加熱撹拌した。放冷後混合物をろ過しカラムクロマトグラフィーにて精製し化合物B’HT-1(D2)(3.6g)を合成した。収率は70%であった。得られたものは、マススペクトル分析の結果、化合物B’HT-1(D2)であり、分子量646.86に対しm/e=646であった。
<合成例5(化合物7(B’HT-2(D))の合成)>
中間体合成例9:中間体Eの合成
Figure JPOXMLDOC01-appb-C000519
 アルゴン雰囲気下、中間体B(6.41g、19.12mmol)、1-ナフチルボロン酸(8.22g、47.8mmol)、ビス(ジ-t-ブチル(4-ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)(406mg、0.574mmol)、1,4-ジオキサン(100mL)を混合させ、リン酸カリウム水溶液を加えた。110℃で7時間加熱撹拌し放冷後、混合物をろ過しカラムクロマトグラフィー及び再結晶にて精製し中間体E(4.9g)得た。収率は71%(2工程)であった。
中間体合成例10:中間体Fの合成
Figure JPOXMLDOC01-appb-C000520
 アルゴン雰囲気下、3-ブロモ-6-ヨードベンゼン-1,2,4,5-d4 25.2g(52.3mmol)、ジベンゾフラン-4-ボロン酸 11.1g(52.4mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0) 1.81g(1.57mmol)、2M リン酸カリウム水溶液 65.4mL、1,4-ジオキサン 300mLの混合物を80℃にて8時間撹拌した。反応液を室温に冷却したのち、水を加え1時間撹拌し析出した固体をろ取した。得られた固体をシリカゲルカラムクロマトグラフィーにて精製し、12.4gの白色固体(中間体F)を得た。収率は73%であった。
合成実施例5:化合物7(B’HT-2(D))の合成
Figure JPOXMLDOC01-appb-C000521
 アルゴン雰囲気下、中間体E 3.01g(7.00mmol)、中間体F 2.41g (7.35mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0) 0.128g,(0.140mmol)、トリ-t-ブチルホスホニウムテトラフルオロほう酸塩 0.162g(0.560mmol)、ナトリウム-t-ブトキシド 0.942g(9.80mmol)、トルエン 70mLの混合物を100℃にて6時間撹拌した。反応液を室温に冷却したのち、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー及び再結晶にて精製し、3.90gの白色固体を得た。収率は82%であった。
 得られたものは、マススペクトル分析の結果、化合物B’HT-2(D)であり、分子量675.89に対しm/e=676であった。
<合成例6((化合物8(BH-2(D2))の合成>
 下記合成経路で化合物BH-2(D2)を合成した。
Figure JPOXMLDOC01-appb-C000522
合成実施例6:化合物8(BH-2(D2))の合成
 アルゴン雰囲気下、既知の方法で合成した1.93gのナフト[1,2-b]ベンゾフラン-7-イル トリフルオロメタンスルホナート、既知の方法で合成した2.00gのボロン酸誘導体(中間体G)、0.24gのテトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh)、1.21gの炭酸ナトリウム、40mLのトルエン、及び13mLのイオン交換水をフラスコに加え、18時間還流撹拌した。室温まで冷却した後、析出した固体を濾集した。得られた固体を水、アセトンで洗浄した後、トルエンとヘキサンの混合溶媒で再結晶し、2.02gの淡黄色固体(収率69%)を得た。この淡黄色固体は、マススペクトル分析の結果、化合物BH-2(D2)であり、分子量551.70に対し、m/e=552であった。
 なお、化合物BH-3(D)、化合物BH-4(D)、化合物BH-5(D)、及び、化合物BH-6(D)は、公知の合成技術に従って合成可能であるため、合成手順の詳細な説明は省略する。
 1、11 有機EL素子
 2 基板
 3 陽極
 4 陰極
 5 発光帯域(発光層)
 6 正孔輸送帯域(正孔輸送層)
 6a 第1正孔輸送層
 6b 第2正孔輸送層
 7 電子輸送帯域(電子輸送層)
 7a 第1電子輸送層
 7b 第2電子輸送層
 10、20 発光ユニット

Claims (31)

  1.  陽極と、陰極と、前記陽極と陰極との間に配置された、発光帯域を含む有機層とを備え、
     前記有機層は、第1の化合物を含む第1の層と、第2の化合物を含む第2の層とを有し、
     前記第1の層と前記第2の層は異なる層であり、
     前記第1の化合物は、下記の式(1)で表される化合物において1つ以上の重水素原子を有する化合物を1質量%以上含み、
     前記第2の化合物は、下記の式(2)で表される化合物において1つ以上の重水素原子を有する化合物を1質量%以上含む、有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001

    [式(1)において、
     Nは中心窒素原子である。
     L~Lは、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は、置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
     a1~a3は、それぞれ独立に、1~3の整数である。
     Ar~Arは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30の1価の複素環基である。]
    Figure JPOXMLDOC01-appb-C000002

    [式(2)において、
     Xは、酸素原子、硫黄原子、又は、NR100である。
     L、Lは、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は、置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
     Arは、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30の1価の複素環基である。
     R~R16及びR100のうち一つは*xと結合する。
     R~R、及び、*xと結合しないR~R16及びR100は、それぞれ独立に、水素原子又は置換基Aである。
     前記置換基Aは、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
     *xと結合しないR~R16から選ばれる隣接する2つは環を形成してもよいし、環を形成しなくてもよい。]
  2.  前記式(1)で表される化合物が、下記の式(1-1a)、式(1-1b)、又は、式(1-1c)で表される、請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003

    [式(1-1a)において、
     環Aは、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は、置換もしくは無置換の環形成原子数5~50の複素環である。
     R17a~R20aのうち一つは*yに結合する。*yに結合しないR17a~R20aは、それぞれ独立に、水素原子又は置換基Bである。
     前記置換基Bは、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
     *yに結合しないR17a~R20aから選ばれる隣接する2つは環を形成してもよく、環を形成しなくてもよい。
     式(1-1b)において、
     環Bは、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は、置換もしくは無置換の環形成原子数5~50の複素環である。
     式(1-1c)において、
     環C及び環Dは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素環、又は、置換もしくは無置換の環形成原子数5~50の複素環である。
     式(1-1a)~式(1-1c)において、N、L~L、Ar、Ar、及び、a1~a3は、前記式(1)で定義したとおりである。]
  3.  前記式(1)で表される化合物が、下記の式(1-2)で表される、請求項1又は2に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004

    [式(1-2)において、
     Yは、酸素原子、硫黄原子、NR101、又は、CR102103を示す。
     R17b~R24b及びR101のうち一つは*yに結合する。R102、R103、*yに結合しないR17b~R24b及びR101は、それぞれ独立に、水素原子又は置換基Cである。
     前記置換基Cは、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
     N、L~L、Ar、Ar、及び、a1~a3は、前記式(1)で定義したとおりである。]
  4.  前記式(1-2)において、Lに結合しないR17b~R24bは、それぞれ独立に、水素原子、又は、炭素数1~10のアルキル基であり、Lに結合しないR17b~R24bのうち少なくとも1つは炭素数1~10のアルキル基である、請求項3に記載の有機エレクトロルミネッセンス素子。
  5.  前記式(1)で表される化合物が、下記の式(1-3a)又は式(1-3b)で表される、請求項1~4のいずれか1つに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005

    [式(1-3a)及び式(1-3b)において、
     L11は、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は、置換もしくは無置換の環形成原子数5~30の2価の複素環基である。
     a11は、1又は2の整数である。
     Yは、酸素原子、硫黄原子、NR101、又は、CR102103を示す。
     式(1-3a)におけるR17c~R24c及びR101のうち一つは*yに結合し、R102、R103、*yに結合しないR17c~R24c及びR101は、それぞれ独立に、水素原子又は置換基Cである。
     式(1-3b)におけるR17d~R24d及びR101のうち一つは*yに結合し、R102、R103、*yに結合しないR17d~R24d及びR101は、それぞれ独立に、水素原子又は置換基Cである。
     式(1-3a)におけるR25~R28、及び、式(1-3b)におけるR25~R27、R29は、それぞれ独立に、水素原子又は置換基Dである。
     前記置換基Dは、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
     式(1-3a)のR26とR27、R27とR28、及び、式(1-3b)のR26とR27、R25とR29は、それぞれ独立に、環を形成してもよいし、環を形成しなくてもよい。
     式(1-3a)及び(1-3b)のR25又はR26は隣接するL11の環形成炭素原子と結合してもよいし、結合しなくてもよい。
     N、L、L、Ar、Ar、a2、及び、a3は、前記式(1)において定義したとおりである。Y、及び、置換基Cは、前記式(1-2)において定義したとおりである。]
  6.  前記式(1)で表される化合物が、前記式(1-3a)で表される、請求項5に記載の有機エレクトロルミネッセンス素子。
  7.  前記式(1)で表される化合物において、中心窒素原子に結合する各基の合計炭素数は10以上である、請求項1~6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  8.  前記式(1)で表される化合物が下記の式(1-4)で表される、請求項1~4のいずれか1つに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000006

    [式(1-4)において、
     R104は、水素原子又は置換基Eである。
     前記置換基Eは、置換もしくは無置換の炭素数1~50のアルキル基、又は、置換もしくは無置換の環形成炭素数6~50のアリール基である。
     Yは、酸素原子、硫黄原子、NR101、又は、CR102103を示す。
     R17e~R24e及びR101のうち一つは*yに結合し、R102、R103、*yに結合しないR17e~R24e及びR101は、それぞれ独立に、水素原子又は置換基Cである。
     N、L~L、Ar、Ar、及び、a1~a3は、前記式(1)において定義したとおりである。置換基Cは、前記式(1-2)において定義したとおりである。]
  9.  前記式(1)で表される化合物が下記の式(1-5)で表される、請求項1~4、8のいずれか1つに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000007

    [式(1-5)において、
     R17~R24は、それぞれ独立に、水素原子又は置換基Cである。
     N、L~L、Ar、Ar、及び、a1~a3は、前記式(1)において定義したとおりである。置換基Cは、前記式(1-2)において定義したとおりである。]
  10.  前記式(1)で表される化合物が下記の式(1-6a)又は式(1-6b)で表される、請求項1~9のいずれか1つに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000008

    [式(1-6a)及び式(1-6b)において、N、L、L、Ar、Ar、a2、及び、a3は、前記式(1)において定義したとおりである。R17~R24は、前記式(1-5)において定義したとおりである。
     式(1-6a)におけるR25~R28、及び、式(1-6b)におけるR25~R27、R29は、それぞれ、前記式(1-3a)及び式(1-3b)において定義したとおりである。]
  11.  前記式(1)で表される化合物が前記式(1-6a)で表される、請求項10に記載の有機エレクトロルミネッセンス素子。
  12.  前記式(2)で表される化合物が下記の式(2-1)で表される、請求項1~11のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000009

    [式(2-1)において、
     Xは、酸素原子、硫黄原子、又は、NR100である。
     R9a~R16a及びR100のうち一つは*xと結合する。
     *xと結合しないR9a~R16a及びR100は、それぞれ独立に、水素原子又は置換基Aである。
     L、Ar、X、R~R、及び、置換基Aは、式(2)において定義したとおりである。]
  13.  前記式(2)で表される化合物が、下記の式(2-2a)~式(2-2c)のいずれかで表される、請求項1~12のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000010

    [式(2-2a)~式(2-2c)において、
     Xは、酸素原子、硫黄原子、又は、NR100である。
     式(2-2a)における、R9b~R14b、R30b~R33b、及びR100のうち一つは*xと結合する。*xと結合しないR9b~R14b、R30b~R33b、及びR100は、それぞれ独立に、水素原子又は置換基Aである。
     式(2-2b)における、R9c~R13c、R16c、R30c~R33c、及びR100のうち一つは*xと結合する。*xと結合しないR9c~R13c、R16c、R30c~R33c、及びR100は、それぞれ独立に、水素原子又は置換基Aである。
     式(2-2c)における、R9d~R12d、R15d、R16d、R30d~R33d、及びR100のうち一つは*xと結合する。*xと結合しないR9d~R12d、R15d、R16d、R30d~R33d、及びR100は、それぞれ独立に、水素原子又は置換基Aである。
     式(2-2a)~式(2-2c)における、L、L、Ar、及び、置換基Aは、式(2)において定義したとおりである。]
  14.  Arが置換もしくは無置換の環形成炭素数6~30のアリール基である、請求項1~13のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  15.  前記「置換もしくは無置換」というときの置換基は、
    シアノ基、
    ハロゲン原子、
    炭素数1~30のアルキル基、
    環形成炭素数3~30のシクロアルキル基、
    炭素数7~36のアラルキル基、
    炭素数1~30のアルコキシ基、
    環形成炭素数6~30のアリールオキシ基、
    炭素数1~30のアルキル基から選ばれる置換基を有するトリ置換シリル基、
    炭素数1~30のハロアルキル基、
    環形成炭素数6~30のアリール基、
    炭素数1~30のアルキルチオ基、及び、
    環形成炭素数6~30のアリールチオ基
    からなる群から選ばれる少なくとも一つの置換基である、請求項1~14のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  16.  前記第1の化合物として、式(1)で表される化合物であって、互いに異なる構造を有する複数の化合物を含み、かつ、
     前記第2の化合物として、式(2)で表される化合物であって、互いに異なる構造を有する複数の化合物を含む、請求項1~15のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  17.  前記式(1)で表される化合物において、前記少なくとも1つの重水素原子が、Lが表すアリーレン基に直結する水素原子、Lが表す2価の複素環基に直結する水素原子、Lが表すアリーレン基に直結する水素原子、Lが表す2価の複素環基に直結する水素原子、Lが表すアリーレン基に直結する水素原子、Lが表す2価の複素環基に直結する水素原子、Arが表すアリール基に直結する水素原子、Arが表す1価の複素環基に直結する水素原子、Arが表すアリール基に直結する水素原子、Arが表す1価の複素環基に直結する水素原子、Arが表すアリール基に直結する水素原子、Arが表す1価の複素環基に直結する水素原子の少なくともいずれかである、請求項1~16のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  18.  前記式(1)で表される化合物において、前記少なくとも1つの重水素原子が、Lが表すアリーレン基に直結する水素原子、Lが表す2価の複素環基に直結する水素原子、Lが表すアリーレン基に直結する水素原子、Lが表す2価の複素環基に直結する水素原子、Lが表すアリーレン基に直結する水素原子、及び、Lが表す2価の複素環基に直結する水素原子の少なくともいずれかである、請求項1~17のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  19.  前記第1の化合物は、前記式(1)で表される化合物において、Lが表すアリーレン基に直結する水素原子、Lが表す2価の複素環基に直結する水素原子、Lが表すアリーレン基に直結する水素原子、Lが表す2価の複素環基に直結する水素原子、Lが表すアリーレン基に直結する水素原子、及び、Lが表す2価の複素環基に直結する水素原子の少なくともいずれかが重水素原子である化合物を10質量%以上含む、請求項1~18のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  20.  前記第1の化合物が下記の化合物A1及びA2からなり、前記第2の化合物が下記の化合物B1及びB2、又は、化合物C1及びC2からなる、請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000011
  21.  前記第1の化合物が下記の化合物D1及びD2からなり、前記第2の化合物が下記の化合物E1及びE2、F1及びF2、又は、化合物G1及びG2からなる、請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000012
  22.  前記第1の化合物が下記の化合物H1及びH2からなり、前記第2の化合物が下記の化合物I1及びI2、又は、化合物J1及びJ2からなる、請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000013
  23.  前記有機層が前記陽極と前記発光帯域との間に正孔輸送帯域を含み、前記第1の層は前記正孔輸送帯域に含まれる請求項1~22のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  24.  前記正孔輸送帯域は、前記第1の層とは異なる第3の層を含む請求項23に記載の有機エレクトロルミネッセンス素子。
  25.  前記第3の層は前記陽極と前記第1の層との間に配置され、前記第3の層が前記第1の化合物を含まない請求項24に記載の有機エレクトロルミネッセンス素子。
  26.  前記第1の層と前記発光帯域との間には他の層が含まれない請求項24又は25に記載の有機エレクトロルミネッセンス素子。
  27.  前記正孔輸送帯域が前記第1の層を含み、前記発光帯域が前記第2の層を含む、請求項24~26のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  28.  前記発光帯域が蛍光ドーパント材料を含む請求項1~27のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  29.  前記発光帯域が燐光ドーパント材料を含む請求項1~27のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  30.  前記発光帯域が前記第2の化合物を含む、請求項1~29のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  31.  請求項1~30のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えた電子機器。
PCT/JP2021/045024 2020-12-09 2021-12-08 有機エレクトロルミネッセンス素子、及び、電子機器 WO2022124320A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/256,036 US20240147846A1 (en) 2020-12-09 2021-12-08 Organic electroluminescent element and electronic device
KR1020237018605A KR20230118092A (ko) 2020-12-09 2021-12-08 유기 전기발광 소자, 및 전자 기기
CN202180081834.8A CN116547363A (zh) 2020-12-09 2021-12-08 有机电致发光元件以及电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020204531 2020-12-09
JP2020-204531 2020-12-09

Publications (1)

Publication Number Publication Date
WO2022124320A1 true WO2022124320A1 (ja) 2022-06-16

Family

ID=81974514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045024 WO2022124320A1 (ja) 2020-12-09 2021-12-08 有機エレクトロルミネッセンス素子、及び、電子機器

Country Status (4)

Country Link
US (1) US20240147846A1 (ja)
KR (1) KR20230118092A (ja)
CN (1) CN116547363A (ja)
WO (1) WO2022124320A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115057849A (zh) * 2022-06-24 2022-09-16 长春海谱润斯科技股份有限公司 一种三芳胺类有机化合物及其有机发光器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527021A (ja) * 2011-04-01 2014-10-09 ドクサン ハイ メタル カンパニー リミテッド 化合物及びこれを用いた有機電気素子、その電子装置
US20170200899A1 (en) * 2016-01-13 2017-07-13 Samsung Display Co., Ltd. Organic light-emitting device
WO2020075784A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
JP2020083896A (ja) * 2018-11-30 2020-06-04 エスエフシー カンパニー リミテッド 多環芳香族誘導体化合物及びこれを用いた有機発光素子
JP2020527550A (ja) * 2017-11-10 2020-09-10 エルジー・ケム・リミテッド 新規な化合物およびこれを利用した有機発光素子
KR20210067970A (ko) * 2019-11-29 2021-06-08 주식회사 엘지화학 유기 발광 소자

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009823A1 (ja) 2014-07-16 2016-01-21 東レ株式会社 モノアミン誘導体、それを用いた発光素子材料および発光素子
US10832031B2 (en) 2016-08-15 2020-11-10 Apple Inc. Command processing using multimodal signal analysis
KR20200065952A (ko) 2018-11-30 2020-06-09 주식회사 엘지화학 유기 발광 소자
KR20200111986A (ko) 2019-03-20 2020-10-05 권혁우 옹벽 블록 및 이를 이용한 중력식 옹벽

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527021A (ja) * 2011-04-01 2014-10-09 ドクサン ハイ メタル カンパニー リミテッド 化合物及びこれを用いた有機電気素子、その電子装置
US20170200899A1 (en) * 2016-01-13 2017-07-13 Samsung Display Co., Ltd. Organic light-emitting device
JP2020527550A (ja) * 2017-11-10 2020-09-10 エルジー・ケム・リミテッド 新規な化合物およびこれを利用した有機発光素子
WO2020075784A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2020075783A1 (ja) * 2018-10-09 2020-04-16 出光興産株式会社 新規な化合物、有機エレクトロルミネッセンス素子、電子機器
JP2020083896A (ja) * 2018-11-30 2020-06-04 エスエフシー カンパニー リミテッド 多環芳香族誘導体化合物及びこれを用いた有機発光素子
KR20210067970A (ko) * 2019-11-29 2021-06-08 주식회사 엘지화학 유기 발광 소자

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115057849A (zh) * 2022-06-24 2022-09-16 长春海谱润斯科技股份有限公司 一种三芳胺类有机化合物及其有机发光器件
CN115057849B (zh) * 2022-06-24 2024-05-17 长春海谱润斯科技股份有限公司 一种三芳胺类有机化合物及其有机发光器件

Also Published As

Publication number Publication date
CN116547363A (zh) 2023-08-04
KR20230118092A (ko) 2023-08-10
US20240147846A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
WO2021070965A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP7196363B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022114115A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2021157635A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022114114A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022071424A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2021200876A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2021070963A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2021033730A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022124320A1 (ja) 有機エレクトロルミネッセンス素子、及び、電子機器
WO2022250103A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2022071350A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022181072A1 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
WO2021157580A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2021070964A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2021131657A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP7411122B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022250028A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022230967A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP7482263B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022163735A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2023210698A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2023195482A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2023199960A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2023223855A1 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903419

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18256036

Country of ref document: US

Ref document number: 202180081834.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP