WO2022123632A1 - オゾン発生装置 - Google Patents

オゾン発生装置 Download PDF

Info

Publication number
WO2022123632A1
WO2022123632A1 PCT/JP2020/045489 JP2020045489W WO2022123632A1 WO 2022123632 A1 WO2022123632 A1 WO 2022123632A1 JP 2020045489 W JP2020045489 W JP 2020045489W WO 2022123632 A1 WO2022123632 A1 WO 2022123632A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
ozone generator
modules
units
unit
Prior art date
Application number
PCT/JP2020/045489
Other languages
English (en)
French (fr)
Inventor
皓貴 内藤
学 生沼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=76540430&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022123632(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202080103031.3A priority Critical patent/CN115836026A/zh
Priority to JP2021512468A priority patent/JP6896200B1/ja
Priority to PCT/JP2020/045489 priority patent/WO2022123632A1/ja
Publication of WO2022123632A1 publication Critical patent/WO2022123632A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon

Definitions

  • This application relates to an ozone generator.
  • Ozone has a strong oxidizing power, and is used in a wide range of fields such as water environment purification such as water and sewage treatment, sterilization, deodorization, and semiconductor cleaning by utilizing the strong oxidizing power.
  • water environment purification such as water and sewage treatment, sterilization, deodorization, and semiconductor cleaning by utilizing the strong oxidizing power.
  • O2 oxygen
  • a raw material gas containing oxygen is supplied to a discharge void, a high voltage is applied to the discharge void to generate silent discharge, and ozone is generated by this discharge energy. The method of doing is common.
  • the temperature of the discharge void is determined by the balance between the cooling capacity of the refrigerant and the power input to the discharge, there is an upper limit to the discharge power and ozone generation amount that can be input per unit volume of the void. Therefore, in order to obtain a desired ozone generation amount, a plurality of discharge units are generally provided in the ozone generator. Further, the cooling performance of the discharge unit depends on the contact area between the discharge unit and the refrigerant. Therefore, in order to obtain high cooling performance, it is preferable to space the discharge units, which leads to an increase in the size of the device. That is, there is a trade-off relationship between device dimensions and cooling performance.
  • an ozone generator equipped with a plurality of discharge units, a high voltage power source that applies a high voltage to the discharge unit, and a cooler that sends out a refrigerant to cool the discharge unit, and a plurality of ozone generation modules are provided.
  • a multi-module ozone generator is disclosed. Then, a plurality of columnar discharge units are arranged in an arrangement direction parallel to the axis of the cylinder, and the refrigerant is delivered in the arrangement direction of the discharge units.
  • a plurality of discharge units are connected to a high voltage power supply in parallel. As a result, even when the number of discharge units is increased in order to increase the amount of ozone generated, the size of the ozone generator is suppressed (see, for example, Patent Document 1).
  • Patent No. 6608571 (Claims, FIGS. 1 to 10)
  • each module is equipped with a high voltage power supply and a cooler, and ozone generation and cooling of the discharge unit are performed independently for each module. Therefore, for example, when one module is stopped, the amount of ozone generated by the stopped module is reduced without affecting the operation of the other modules. That is, there is a problem that the space utilization rate of the ozone generator as a whole is lowered.
  • the present application discloses a technique for solving the above-mentioned problems, and suppresses a decrease in ozone generation amount even when a certain discharge module is stopped in an ozone generator provided with a plurality of discharge modules.
  • the purpose is to provide an ozone generator that can effectively utilize the space of the device.
  • the ozone generator disclosed in the present application is Multiple discharge modules containing a plurality of discharge units that generate ozone by discharging from the raw material gas are stacked and arranged in the stacking direction.
  • Each of the discharge modules is provided with a discharge control unit that controls the discharge of all the discharge units.
  • a power supply unit that applies a voltage to the discharge unit to form the discharge, It is equipped with a cooling unit that sends out refrigerant to cool each discharge unit.
  • the cooling unit is installed on one end side in the stacking direction, and discharges the refrigerant in the same direction as the stacking direction of the discharge module.
  • ozone generator In an ozone generator provided with a plurality of discharge modules, even when a certain discharge module is stopped, it is possible to suppress a decrease in the amount of ozone generated and effectively utilize the space of the device.
  • FIG. It is a figure which shows the structure of the ozone generator by Embodiment 1.
  • FIG. It is sectional drawing which shows the structure of the ozone generator shown in FIG. It is a figure which shows the structure of the ozone generator shown in FIG. 2A. It is a perspective view which shows the structure of the discharge module of the ozone generator shown in FIG. It is a top view which shows the structure of the discharge module shown in FIG. 3A.
  • Embodiment 2 It is a figure which shows the structure of the ozone generator by Embodiment 2.
  • FIG. It is a figure which shows the structure of the ozone generator by Embodiment 3.
  • FIG. It is a figure which shows the structure of the ozone generator according to Embodiment 4. It is a figure which shows the flow of the raw material gas in the ozone generator shown in FIG.
  • the present application relates to an ozone generator that industrially generates an ozone-forming gas used in, for example, a water treatment facility.
  • the ozone generator supplies oxygen (O2) gas as a raw material gas and generates ozone (O3) gas by discharge will be described, but other ozone generators, for example, Similarly, the present application is applicable to the exhaust gas treatment device.
  • FIG. 1 is a diagram showing a configuration of an ozone generator according to the first embodiment.
  • FIG. 2A is a cross-sectional view showing the configuration of the ozone generator shown in FIG. 1 as viewed from the direction of line AA.
  • FIG. 2B is a diagram showing a configuration seen from the direction of arrow B of the ozone generator shown in FIG. 2A.
  • FIG. 3A is a perspective view showing the configuration of one discharge module of the ozone generator shown in FIG. 1.
  • FIG. 3B is a top view showing the configuration of the discharge module shown in FIG. 3A.
  • the ozone generator 100 has a plurality of discharge modules 101, 102, 103, 104 (hereinafter, when these are collectively referred to, they are referred to as discharge module 1) in the stacking direction Y. It is stacked and arranged in.
  • Each discharge module 1 has a plurality of discharge units 201, 202, 203, 204 arranged in an orthogonal direction X orthogonal to the stacking direction Y, and four discharge units 201, 202, 203, 204 in the figure (hereinafter, when these are collectively shown, they are referred to as a discharge unit 2). Shown.).
  • the four discharge units 201, 202, 203, and 204 are arranged side by side with a preset interval in the orthogonal direction X. Further, although the discharge units 201, 202, 203, and 204 will be described later, they are formed in a cylindrical shape, and the axes of the cylinders are arranged in the coaxial direction.
  • the number of stacked discharge modules 1 and the number of discharge units 2 of the discharge module 1 are not limited to four, and the same can be performed as long as there are a plurality of them.
  • high voltage power supplies 301, 302, 303, 304 (hereinafter, these are collectively referred to) as a power supply unit for forming a discharge by applying a voltage to the discharge units 201, 202, 203, 204.
  • a high-voltage power supply 3 even when there is only one high-voltage power supply
  • all discharge units 201, 202 It includes switch elements 401, 402, 403, and 404 (hereinafter, collectively referred to as switch element 4) as discharge control units for controlling the discharge of 203 and 204.
  • All the discharge units 201, 202, 203, and 204 in the discharge modules 101, 102, 103, and 104 are connected in parallel to the switch elements 401, 402, 403, and 404.
  • the blower fan 5, which is a cooling unit, is installed at one end side Y1 of the ozone generator 100 in the stacking direction Y, here at the uppermost portion. Therefore, the blower fan 5 sends the cooling air 6 as a refrigerant from the one end side Y1 to the other end side Y2 in the stacking direction Y to the discharge unit 2 to cool the air.
  • the discharge unit 2 generates ozone by discharging from oxygen gas as a raw material gas.
  • the discharge unit 2 includes a glass tube 10, an outer peripheral electrode 8, a heat sink 7, a conductive layer 11, and a feeding unit 12.
  • the glass tube 10 is formed in a columnar shape having an axis in the axial direction Z orthogonal to the stacking direction Y and the orthogonal direction X, and is formed by closing one end.
  • a conductive layer 11 is formed on the inner surface of the glass tube 10, and a feeding portion 12 is installed in the vicinity of the other end of the axial direction Z on the unblocked side.
  • the outer peripheral electrode 8 is installed while holding the glass tube 10 and the discharge gap 9.
  • the heat sink 7 is installed so as to cover the outer surface of the outer peripheral electrode 8.
  • One of the outputs of the high voltage power supply 3 is connected to the feeding unit 12 via the switch element 4, and the other is connected to the outer peripheral electrode 8.
  • the oxygen gas exposed to the discharge flows from one end of the axial Z of the discharge gap 9 to the other end.
  • the ozone generator 100 of the first embodiment has four discharge modules 1, a total of 16 discharge units 2 having the same shape are provided. Further, as shown in FIGS. 3A and 3B, the appearance of one discharge module 1 provided with the four discharge units 2 is formed as shown in the figure. Then, the discharge modules 1 as shown in FIG. 3 are stacked and arranged in the stacking direction Y as shown in FIG. Then, as shown in FIG. 3, the discharge units 2 adjacent to the orthogonal direction X are arranged at a preset interval, and the discharge units 2 adjacent to the orthogonal direction X are arranged in the stacking direction Y. It is formed through. Therefore, the cooling air 6 can pass between the discharge units 2 adjacent to the orthogonal direction X in the stacking direction Y.
  • oxygen gas is supplied to each of the discharge units 2 from the outside.
  • the blower fan 5 is operated to flow the cooling air 6 from the one end side Y1 in the stacking direction Y to the other end side Y2 in the ozone generator 100.
  • a high voltage is applied to all the discharge units 2 to generate a discharge in the discharge gap 9.
  • a part of oxygen gas which is a raw material gas, is converted into ozone.
  • the discharge of the discharge unit 2 included in each discharge module 1 is generated and controlled by the high voltage power supply 3 and the switch element 4 provided in the same discharge module 1.
  • the discharge module 101 by driving the high voltage power supply 301 and turning on the switch element 401, discharge is generated in all of the discharge units 201, 202, 203, and 204 in the discharge module 101.
  • the cooling air 6 By removing a part of the heat generated by the discharge from the heat sink 7 by the cooling air 6, overheating of the discharge units 201, 202, 203, and 204 in the discharge module 101 is suppressed.
  • the cooling air 6 forms a series of flows from the discharge module 104 located on the one end side Y1 toward the discharge module 101 on the other end side Y2. Therefore, the temperature of the cooling air 6 when passing through the discharge module 104 is the lowest, the temperature rises as it goes downstream, and the temperature when passing through the discharge module 101 becomes the highest. Therefore, the cooling capacity by the cooling air 6 is the highest in the discharge module 104, and decreases as the discharge module is located in the lower stage.
  • the cooling of the discharge modules 103, 102, 101 when the discharge module 104 is stopped is improved, and the ozone generation performance is higher than that when the discharge module 104 is in operation.
  • the ozone generator 100 as a whole, the decrease in the amount of ozone generated due to the shutdown of the discharge module 104 is suppressed as compared with the case where the first embodiment is not applied.
  • independent high voltage power supplies 301, 302, 303, 304 are connected to each of the discharge modules 101, 102, 103, 104. Therefore, the operating conditions of the high voltage power supplies 301, 302, 303, and 304 can be individually controlled. For example, it is possible to operate so that the electric power supplied to the discharge module 1 decreases from the one end side Y1 to the other end side Y2 of the flow of the cooling air 6. In this case, overheating of the discharge units 201, 202, 203, 204 of the discharge module 101 at the other end side Y2 of the cooling air 6 can be suppressed, and the ozone generation performance of the ozone generator 100 as a whole can be improved.
  • the high voltage power supply 3 is not limited to a sine wave as long as it can stably generate an AC high voltage, and may have a waveform such as a rectangle, a triangle, or a pulse. Further, the voltage wave height value and the duty ratio of the AC high voltage can be appropriately determined according to various conditions such as the structure of the discharge unit 2 such as the width of the discharge gap 9 or the thickness of the glass tube 10 and the composition of the raw material gas. Generally, the voltage peak value is preferably 1 kV to 20 kV. If it is 1 kV or less, a stable discharge is not formed, and if it exceeds 50 kV, it is necessary to increase the size of the power supply and the sophistication of electrical insulation, and the manufacturing and maintenance costs are significantly increased.
  • the outer peripheral electrode 8 is made of a conductive material, and it is particularly desirable to use a metal material having excellent corrosion resistance such as stainless steel or titanium.
  • the outer peripheral electrode 8 can be made thin as long as its mechanical strength can be maintained. By making the outer peripheral electrode 8 thinner, heat conduction in the thickness direction of the outer peripheral electrode 8 can be promoted, and the cooling performance of the discharge unit 2 can be improved. Further, the range of the outer peripheral electrode 8 facing the discharge gap 9 can be covered with an insulating material having excellent corrosion resistance. By coating the outer peripheral electrode 8 with an insulating material having excellent corrosion resistance, a general-purpose conductive material having inferior corrosion resistance can be used for the outer peripheral electrode 8, and the manufacturing cost of the discharge unit 2 can be reduced.
  • thermal paste or conductive grease between the outer peripheral electrode 8 and the heat sink 7, it is possible to suppress the formation of a minute gap between the outer peripheral electrode 8 and the heat sink 7, and the outer peripheral electrode 8 and the heat sink are prevented from being formed.
  • the heat conduction with 7 can be improved.
  • glass tube 10 for example, quartz or borosilicate glass can be used. Further, it is not always necessary to use glass, and ceramics having excellent corrosion resistance such as alumina can be used.
  • the conductive layer 11 is made of a conductive material, and it is particularly desirable that the conductive thin film is formed on the inner surface of the glass tube 10 by a wet coating or plating, thermal spraying, vacuum deposition, sputtering, or the like.
  • a wet coating or plating thermal spraying, vacuum deposition, sputtering, or the like.
  • the feeding unit 12 is made of a conductive material, and it is particularly desirable to use a metal material having excellent corrosion resistance such as stainless steel or titanium.
  • a metal material having excellent corrosion resistance such as stainless steel or titanium.
  • the tip of the feeding portion 12 into a brush shape having a plurality of bristles, when the feeding portion 12 is inserted into the glass tube 10, the conductive layer 11 and the feeding portion 12 come into contact with each other at a plurality of places, and electricity is more reliably performed. It is preferable because it can secure a specific connection.
  • the conductive layer 11 high voltage application portion
  • the width of the discharge gap 9 is 0.1 mm to 10 mm. If it is 0.1 mm or less, it becomes difficult to keep the width of the discharge gap 9 uniform in the circumferential direction of the discharge unit 2, and the manufacturing cost of the discharge unit 2 increases. Further, if it is 10 mm or more, a high voltage is required to form a discharge, which increases the manufacturing cost.
  • the width of the discharge gap 9 is particularly preferably 0.2 mm to 0.6 mm. By setting the width of the discharge void 9 to 0.6 mm or less, the specific surface area of the discharge void 9 can be increased, and the cooling efficiency of the discharge void 9 can be improved.
  • oxygen gas is shown as an example as the raw material gas, but the present invention is not limited to this, and the raw material gas may contain at least oxygen as the raw material gas, and air, oxygen, or a rare gas or carbon dioxide.
  • a mixed gas of an inert gas such as oxygen and oxygen is used.
  • the pressure of the raw material gas supplied to the discharge void 9 is preferably 0.05 MPaG to 0.2 MPaG. At 0.05 MPaG or less, the number of oxygen molecules is small and the amount of ozone generated decreases. Further, when it is 0.2 MPaG or more, the discharge pressure required for the raw material gas supply device installed outside becomes high, and the ozone generation cost increases.
  • the ozone generation efficiency can be economically improved.
  • the ozone generator 100 is enlarged, by setting it to less than 0.2 MPaG, the ozone generator 100 does not fall under the "Type 2 pressure vessel regulation", and legal restrictions are reduced for handling. There are also advantages such as ease of use.
  • the heat sink 7 is made of a material having excellent thermal conductivity, and it is preferable to use a conductive material having excellent thermal conductivity such as aluminum. In particular, by using aluminum which is inexpensive and has excellent workability, the manufacturing cost of the heat sink 7 can be reduced. Further, when the heat sink 7 is made of a conductive material, the outer peripheral electrode 8 and the heat sink 7 are electrically connected and kept at the same potential, so that the ground potential of the high voltage power supply 3 is connected to the heat sink 7. The outer peripheral electrode 8 can be set to the same potential as the ground potential of the high voltage power supply 3.
  • the surface of the heat sink 7 may be treated with black paint or black alumite processing. By making the surface of the heat sink 7 black, heat radiation on the surface can be promoted and the cooling performance of the discharge unit 2 can be improved. Further, by forming the heat sink 7 with a conductive material having excellent corrosion resistance, the outer peripheral electrode 8 and the heat sink 7 can be integrally formed. By integrally forming the outer peripheral electrode 8 and the heat sink 7, the heat conduction between the outer peripheral electrode 8 and the heat sink 7 can be enhanced, the number of parts of the ozone generator 100 can be reduced, and the manufacturing cost can be reduced.
  • the outer peripheral electrode 8 and the heat sink 7 are covered by covering the range of the surface facing the discharge void 9 with an insulating material having excellent corrosion resistance. Can be used for both.
  • the switch element 4 only needs to be able to open and close the electrical connection between the high voltage power supply 3 and the discharge unit 2, and a mechanical switch, a semiconductor switch, or a fuse can be used. Further, the high voltage power supply 3 and the switch element 4 do not necessarily have to be provided independently, as long as the discharge generation can be controlled. For example, the discharge generation can be controlled by operating the inverter included in the high voltage power supply 3.
  • the columnar configuration in which the discharge unit 2 is arranged in the coaxial direction is shown as the discharge unit 2 of the first embodiment, the shape of the discharge unit 2 is not limited to this, and may be configured as, for example, a parallel flat plate type. It is possible.
  • the glass tube 10 may be provided so as to be in contact with the inner surface of the outer peripheral electrode 8.
  • the conductive layer 11 is installed as an independent tube, and a discharge is formed between the voids formed between the outer surface of the tube of the conductive layer 11 and the inner surface of the glass tube 10.
  • Each of the discharge modules is provided with a discharge control unit that controls the discharge of all the discharge units.
  • a power supply unit that applies a voltage to the discharge unit to form the discharge, It is equipped with a cooling unit that sends out refrigerant to cool each discharge unit.
  • the cooling unit Since the cooling unit is installed on one end side in the stacking direction and discharges the refrigerant in the same direction as the stacking direction of the discharge module, Since the stacking direction of multiple discharge modules and the flow direction of the refrigerant are in the same direction, even if a certain discharge module is stopped, the amount of heat generated is reduced accordingly, and the amount of temperature rise of the refrigerant is reduced. However, the cooling characteristics of the discharge unit of the other discharge modules are improved, the space of the ozone generator is effectively utilized, and the decrease in the ozone generation amount of the ozone generator as a whole is suppressed.
  • the power supply unit is installed in each of the discharge modules, It becomes easier to control each discharge module.
  • each of the discharge control units since the operation of each of the discharge control units is performed individually between the discharge modules, the operation of each of the discharge control units is performed individually.
  • the operation of each discharge module can be controlled individually, and the optimum operation according to the cooling condition becomes possible.
  • each discharge control unit can control the discharge of all the discharge units in one discharge module.
  • the discharge units of one discharge module are arranged side by side at a preset interval in the orthogonal direction orthogonal to the stacking direction, the discharge units are arranged side by side. Refrigerant can pass between adjacent discharge units in the orthogonal direction, and cooling efficiency can be improved.
  • FIG. 4 is a diagram showing the configuration of the ozone generator according to the second embodiment.
  • a power supply module 13 including one high-voltage power supply 3 as a power supply unit is provided on the other end side Y2 in the stacking direction Y.
  • Switch elements 401, 402, 403, and 404 are installed outside the four discharge modules 101, 102, 103, and 104, respectively.
  • the switch elements 401, 402, 403, and 404 are connected in parallel to the high voltage power supply 3, and the electrical connection between one high voltage power supply 3 and the discharge modules 101, 102, 103, and 104 can be opened and closed. Be controlled.
  • one high-voltage power supply 3 drives the discharge units 2 in all the discharge modules 1.
  • the operation of the discharge modules 101, 102, 103, 104 is independently controlled by the switch elements 401, 402, 403, 404. Therefore, for example, the operation of the discharge module 104 can be stopped by operating the switch element 404 to stop the power supply to the discharge module 104.
  • each of the discharge modules is connected in parallel to the power supply unit. It is not necessary to provide a power supply unit for each of the plurality of discharge modules, resulting in low cost.
  • FIG. 5 is a diagram showing the configuration of the ozone generator according to the third embodiment.
  • the same parts as those of the above embodiments are designated by the same reference numerals and the description thereof will be omitted.
  • the discharge units 2 provided in the discharge modules 1 adjacent to the stacking direction Y are arranged at positions displaced from each other in the orthogonal direction X.
  • the discharge units 2 of the discharge modules 1 adjacent to the stacking direction Y are arranged at the same positions in the orthogonal direction X. Therefore, the cooling air 6 heated by the discharge unit 2 on the one end side Y1 in the stacking direction Y passes through the discharge unit 2 on the other end side Y2, and the temperature of the cooling air 6 rises locally. Cooling performance deteriorates.
  • the discharge unit 2 of the discharge module 1 adjacent to the stacking direction Y is arranged at a position shifted in the orthogonal direction X. Therefore, the cooling air 6 is heated uniformly as a whole, and deterioration of cooling performance can be suppressed.
  • the third embodiment can be easily configured by preparing a plurality of types of discharge modules 1 having different arrangements of the discharge units 2 and arranging them alternately in the stacking direction Y.
  • the same effect as that of each of the above-described embodiments can be obtained, and the discharge modules of each of the discharge modules can be located between the discharge modules adjacent to each other in the stacking direction. Since the discharge units are located offset from each other in the orthogonal direction, It is possible to suppress the deterioration of cooling performance.
  • FIG. 6 is a diagram showing the configuration of the ozone generator according to the fourth embodiment.
  • FIG. 7 is a diagram showing a flow of a raw material gas in the ozone generator shown in FIG.
  • the same parts as those of the above embodiments are designated by the same reference numerals and the description thereof will be omitted.
  • the stacking direction Y of the discharge modules 1 is configured in the vertical direction
  • the stacking direction Y of the discharge modules 1 is configured in the left-right direction. An example is shown.
  • the discharge modules 101, 102, 103, and 104 are laminated in the stacking direction Y, here in the left-right direction.
  • the discharge units 2 of each discharge module 1 are installed at intervals in the orthogonal direction X, here in the vertical direction.
  • one end side Y1 in the stacking direction Y, here, on the left side a plurality of blower fans 501, 502, 503, 504 as cooling portions (hereinafter, when these are collectively shown, they are referred to as blower fans 5. ) Is arranged at a position corresponding to each discharge unit 201, 202, 203, 204 in the orthogonal direction X.
  • fuses 141, 142, 143, 144 as discharge control units are installed in the four discharge modules 101, 102, 103, 104, respectively.
  • the output of one high voltage power supply 3 is divided into four parallel circuits, and fuses 141, 142, 143, and 144 are connected to each.
  • Each parallel circuit is further divided into four parallel circuits, each of which is connected to the discharge unit 2. Therefore, the electrical connection to each of the discharge modules 101, 102, 103, 104 is controlled by the normality or breakage of one high voltage power supply 3 and the fuses 141, 142, 143, 144.
  • the ozone generator 100 is supplied with the raw material gas from the supply device 16 installed outside.
  • Valves 151, 152, 153, and 154 are installed in each of the four branched systems in the ozone generator 100.
  • Each of the branched pipes is further branched into four systems, and oxygen gas as a raw material gas is supplied to the 16 discharge units 2.
  • the ozone gas generated by each discharge unit 2 is merged and transported to the outside of the ozone generator 100.
  • the cooling air 6 is sent from the blower fan 5 in the stacking direction Y to cool the discharge units 2 arranged therein.
  • a blower fan 5, which is a cooling unit, is installed on one end side Y1 of the ozone generator 100 in the stacking direction Y, here on the left side.
  • the blower fan 5 sends out cooling air 6, which is a refrigerant, from one end side Y1 in the stacking direction Y toward the other end side Y2, that is, from the left side to the right side.
  • the blower fans 501, 502, 503, 504 continue to operate.
  • the cooling capacity of the discharge unit 2 that continues the operation is improved as compared with the case where the entire discharge unit 2 is in operation, and the decrease in the ozone generation amount of the ozone generator 100 as a whole is suppressed.
  • the supply of the raw material gas to the discharge unit 2 whose operation has stopped is stopped, the consumption of the excess raw material gas is suppressed.
  • the same effect as that of each of the above-described embodiments is obtained, and all the discharges in the discharge module are linked with the operation of the discharge module. Since the raw material gas is supplied to the unit, The raw material gas can be used effectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

原料ガスから放電によりオゾンを発生させる放電ユニット(201~204)を複数個内包する放電モジュール(101~104)が、積層方向(Y)に複数個積層して配置され、各放電モジュール(101~104)には、各放電モジュール(101~104)内の全放電ユニット(201~204)の放電を制御する放電制御部(401~404)がそれぞれ設置され、放電ユニット(201~204)に電圧を印加して放電を形成する電源部(3)と、冷媒を送出して各放電ユニット(201~204)を冷却する冷却部(5)とを備え、冷却部(5)は、積層方向(Y)の一端側に設置され、放電モジュール(101~104)の積層方向(Y)と同一方向に冷媒を送出する。

Description

オゾン発生装置
 本願は、オゾン発生装置に関するものである。
 オゾン(O3)は強い酸化力を有し、その強い酸化力を利用して上下水処理等の水環境浄化、殺菌滅菌、脱臭、および半導体洗浄等、多岐に亘る分野で利用されている。近年の環境意識の高まりおよび電子機器の需要増加に伴い、コンパクトかつ多量のオゾンを発生可能なオゾン発生装置の需要が高まっている。オゾンを工業的に発生する方法としては、酸素(O2)または酸素を含む原料ガスを放電空隙に供給し、放電空隙に高電圧を印加して無声放電を発生し、この放電エネルギーによりオゾンを生成する方法が一般的である。
 しかし従来のオゾン発生装置では、投入電力のうちオゾン生成に寄与するエネルギーが10%程度であり、残りの90%は放電空隙に熱として放出される。ここで、放出された熱により放電空隙が高温になると、発生したオゾンが熱分解されオゾンの発生効率が低下する。そこで、水または空気などの冷媒を用いて放電空隙を冷却する手法が用いられている。
 放電空隙の温度は冷媒による冷却能力と放電に投入される電力のバランスで決まることから、空隙単位容積あたりに投入可能な放電電力およびオゾン発生量には上限がある。このため、所望するオゾン発生量を得るため、一般にオゾン発生装置内に複数の放電ユニットが設けられる。また、放電ユニットの冷却性能は放電ユニットと冷媒の接触面積に依存する。従って、高い冷却性能を得るには放電ユニットの間隔を空けることが好ましいが、これは装置寸法の増大につながる。すなわち装置寸法と冷却性能はトレードオフの関係にある。
 従来は、複数の放電ユニットと、放電ユニットに高電圧を印加する高電圧電源と、冷媒を送出して放電ユニットを冷却する冷却器とを備えるオゾン発生装置、および複数のオゾン発生モジュールを備えたマルチモジュール式オゾン発生装置が開示されている。そして、複数の円柱状の放電ユニットが円柱の軸に平行な配列方向に配列され、放電ユニットの配列方向に冷媒が送出される。複数の放電ユニットは並列に高電圧電源に接続されている。これにより、オゾン生成量を増やすために放電ユニットの数を増やした場合でもオゾン発生装置の大型化を抑制している(例えば、特許文献1参照)。
特許第6608571号(特許請求の範囲、図1~図10)
 従来のマルチモジュール式のオゾン発生装置では、各モジュールに高電圧電源と冷却器とが備えられており、モジュール毎に独立にオゾン発生と放電ユニットの冷却が行われていた。そのため、例えば1つのモジュールが停止した場合、他のモジュールの運転に影響することなく、停止したモジュール分のオゾン生成量が低下する。すなわち、オゾン発生装置の全体としての空間利用率が低下するという問題点があった。
 本願は、上記のような課題を解決するための技術を開示するものであり、複数の放電モジュールを備えるオゾン発生装置において、ある放電モジュールが停止した場合においても、オゾン発生量の低下を抑制し、装置の空間を有効に活用できるオゾン発生装置を提供することを目的とする。
 本願に開示されるオゾン発生装置は、
原料ガスから放電によりオゾンを発生させる放電ユニットを複数個内包する放電モジュールが、積層方向に複数個積層して配置され、
各前記放電モジュールには、全前記放電ユニットの放電を制御する放電制御部がそれぞれ設置され、
前記放電ユニットに電圧を印加して前記放電を形成する電源部と、
冷媒を送出して各前記放電ユニットを冷却する冷却部とを備え、
前記冷却部は、積層方向の一端側に設置され、前記放電モジュールの積層方向と同一方向に冷媒を送出するものである。
 本願に開示されるオゾン発生装置によれば、
複数の放電モジュールを備えるオゾン発生装置において、ある放電モジュールが停止した場合においても、オゾン発生量の低下を抑制し、装置の空間を有効に活用できる。
実施の形態1によるオゾン発生装置の構成を示す図である。 図1に示したオゾン発生装置の構成を示す断面図である。 図2Aに示したオゾン発生装置の構成を示す図である。 図1に示したオゾン発生装置の放電モジュールの構成を示す斜視図である。 図3Aに示した放電モジュールの構成を示す上面図である。 実施の形態2によるオゾン発生装置の構成を示す図である。 実施の形態3によるオゾン発生装置の構成を示す図である。 実施の形態4によるオゾン発生装置の構成を示す図である。 図6に示したオゾン発生装置における原料ガスの流れを示す図である。
 本願は、例えば、水処理設備等に利用されるオゾン化ガスを工業的に生成するオゾン発生装置に関するものである。尚、以下の実施の形態では、オゾン発生装置は、原料ガスとして酸素(O2)ガスを供給して放電によりオゾン(O3)ガスを生成する場合について説明するが、これ以外のオゾン発生装置、例えば、排ガス処理装置についても同様に本願は適用可能である。
実施の形態1.
 図1は実施の形態1によるオゾン発生装置の構成を示す図である。図2Aは図1に示したオゾン発生装置のA-A線方向から見た構成を示す断面図である。図2Bは図2Aに示したオゾン発生装置の矢印Bの方向から矢視した構成を示す図である。図3Aは図1に示したオゾン発生装置の1台の放電モジュールの構成を示す斜視図である。図3Bは図3Aに示した放電モジュールの構成を示す上面図である。
 図1において、オゾン発生装置100は、複数、図では4個の放電モジュール101、102、103、104(以下、これらを総称して示す場合には、放電モジュール1と示す。)を積層方向Yに積層して配置される。各放電モジュール1は、積層方向Yに直交する直交方向Xに並ぶ複数、図では4個の放電ユニット201、202、203、204(以下、これらを総称して示す場合には、放電ユニット2と示す。)を有する。4個の放電ユニット201、202、203、204は、直交方向Xにあらかじめ設定された間隔を隔てて並んで配置される。また、放電ユニット201、202、203、204は後述にて説明するが、円柱状にて形成されており、円柱の軸が同軸方向に配置される。尚、放電モジュール1の積層個数、および、放電モジュール1の放電ユニット2の個数は、4個に限られるものはなく、複数個であれば同様に行うことができる。
 さらに、各放電モジュール1内には、放電ユニット201、202、203、204に電圧を印加して放電を形成する電源部としての高電圧電源301、302、303、304(以下、これらを総称して示す場合には、高電圧電源3と示す。また、以下の実施の形態においては、高電圧電源が1台の場合においても高電圧電源3と示す。)と、全放電ユニット201、202、203、204の放電を制御する放電制御部としてのスイッチ素子401、402、403、404(以下、これらを総称して示す場合には、スイッチ素子4と示す。)とをそれぞれ備える。そして、各放電モジュール101、102、103、104内の全放電ユニット201、202、203、204は、各スイッチ素子401、402、403、404に並列に接続される。冷却部である送風ファン5は、オゾン発生装置100の積層方向Yの一端側Y1、ここでは最上部に設置される。よって、送風ファン5は、積層方向Yの一端側Y1から他端側Y2に向かって、冷媒としての冷却空気6を放電ユニット2に送出して冷却する。
 図2において、放電ユニット2は、原料ガスとしての酸素ガスから放電によりオゾンを発生させるものである。具体的に、放電ユニット2は、ガラス管10と、外周電極8と、ヒートシンク7と、導電層11と、給電部12とを備える。ガラス管10は、積層方向Yと直交方向Xと直交する軸方向Zに軸を有する円柱状にて形成され、一端が塞がれ形成される。また、ガラス管10の内面には導電層11が形成され、軸方向Zの他端の塞がれていない側近傍には給電部12が設置される。外周電極8は、ガラス管10と放電空隙9を保持して設置される。ヒートシンク7は、外周電極8の外面を覆うように設置される。高電圧電源3の出力の一方がスイッチ素子4を介して給電部12に接続され、もう一方は外周電極8に接続される。放電に曝される酸素ガスは放電空隙9の軸方向Zの一方の端部から他方の端部へと流れる。
 本実施の形態1のオゾン発生装置100は、4個の放電モジュール1を有しているため、同様の形状を有する放電ユニット2を合計16個備える。また、図3A、図3Bに示すように、4個の放電ユニット2を備えた1台の放電モジュール1の外観は、図に示したように形成されている。そして、図3に示したような放電モジュール1が、図1に示したように積層方向Yに積層して配置される。そして、図3に示すように、直交方向Xに隣接する放電ユニット2間は、あらかじめ設定された間隔を隔てて配置されており、直交方向Xに隣接する放電ユニット2間は、積層方向Yにおいて貫通して形成される。よって、直交方向Xに隣接する放電ユニット2間には、冷却空気6が積層方向Yにおいて通過可能である。
 次に、上記のように構成された実施の形態1のオゾン発生装置100の動作について説明する。まず、外部から放電ユニット2のそれぞれに酸素ガスを供給する。次に、送風ファン5を動作させ、オゾン発生装置100内において冷却空気6を積層方向Yの一端側Y1から他端側Y2に流す。そして、全ての高電圧電源3を駆動させ、全てのスイッチ素子4をONすることで全ての放電ユニット2に高電圧を印加し、放電空隙9に放電を発生させる。これにより、原料ガスである酸素ガスの一部がオゾンへと変換される。
 このように、各放電モジュール1に内包される放電ユニット2の放電は、同一の放電モジュール1に備えられる高電圧電源3とスイッチ素子4とにより生成制御される。例えば、放電モジュール101においては、高電圧電源301を駆動させスイッチ素子401をONすることで、放電モジュール101内の放電ユニット201、202、203、204の全てに放電が生成される。放電で生じた熱の一部が冷却空気6によりヒートシンク7から除去されることで、放電モジュール101内の放電ユニット201、202、203、204の過熱が抑制される。
 そして、冷却空気6は、一端側Y1に位置する放電モジュール104から他端側Y2の放電モジュール101に向けて一連の流れを形成する。このため、放電モジュール104を通過する際の冷却空気6の温度が最も低く、下流に進むに従って温度が上昇し、放電モジュール101を通過する際の温度が最も高くなる。このため、冷却空気6による冷却能力は、放電モジュール104において最も高く、下段に位置する放電モジュールほど低下する。
 次に、いずれかの放電ユニット2の動作が停止した場合のオゾン発生について説明する。例えば、放電モジュール104内のいずれかの放電ユニット2の不具合、あるいはオゾン需要の減少により放電モジュール104を停止させた場合を想定する。この場合、冷却空気6の温度は、放電モジュール104を通過しても、放電モジュール104内の放電ユニット2が駆動していないため発熱源がなく上昇しない。従って、下段に位置する放電モジュール103、102、101を通過する冷却空気6の温度は、放電モジュール104が駆動している場合と比較して低くなる。
 このため放電モジュール104が停止した際の放電モジュール103、102、101の冷却は向上し、それによりオゾン発生性能は、放電モジュール104が稼働している場合と比較して高くなる。結果的に、オゾン発生装置100全体としては、放電モジュール104停止によるオゾン発生量の低下が、本実施の形態1を適用しない場合と比較して抑制される。
 実施の形態1では、各放電モジュール101、102、103、104に対して独立した高電圧電源301、302、303、304が接続されている。このため、高電圧電源301、302、303、304の動作条件を個別に制御できる。例えば、冷却空気6の流れの一端側Y1から他端側Y2に向けて、放電モジュール1に供給される電力が低下するように動作することも可能である。この場合、冷却空気6の他端側Y2における放電モジュール101の放電ユニット201、202、203、204の過熱を抑制し、オゾン発生装置100全体としてのオゾン発生性能を向上できる。
 尚、高電圧電源3は安定して交流高電圧が発生できればよく、正弦波に限らず、矩形、三角、パルスなどの波形であってもよい。また、交流高電圧の電圧波高値およびデューティ比などは、放電空隙9の幅またはガラス管10の厚さなど放電ユニット2の構造、原料ガスの組成等の諸条件に応じて適宜決定できる。一般に、電圧波高値は1kV~20kVが望ましい。1kV以下では安定した放電が形成されず、また50kV超とするには、電源の大型化および電気絶縁の高度化が必要になり、製造および保守のコストが著しく増大する。
 外周電極8は導電性材料で構成され、特にステンレス鋼またはチタンなどの耐腐食性に優れた金属材料を用いることが望ましい。外周電極8は、その機械強度が維持できる範囲で薄くできる。外周電極8を薄くすることで、外周電極8の厚さ方向の熱伝導を促進し、放電ユニット2の冷却性能を向上できる。また、外周電極8の放電空隙9と面している範囲を耐食性に優れた絶縁材料で被覆することもできる。外周電極8を耐腐食性に優れた絶縁材料で被覆することで、外周電極8に耐腐食性の劣る汎用の導電性材料を使用でき、放電ユニット2の製造コストを低下できる。
 また、外周電極8とヒートシンク7との間に放熱グリースまたは伝導性グリースなどを塗布することで、外周電極8とヒートシンク7との間に微小な空隙ができるのを抑制し、外周電極8とヒートシンク7との間の熱伝導を向上できる。
 ガラス管10としては例えば石英、ホウ珪酸のガラスを用いることができる。また、必ずしもガラスである必要はなく、アルミナなどの耐腐食性に優れたセラミックスなどを用いることができる。
 導電層11は導電性材料で構成され、特にガラス管10の内面に湿式のコーティングまたはメッキ、溶射、真空蒸着、スパッタリングなどの方法で形成された導電性薄膜であることが望ましい。これらの方法で導電層11を形成することで、ガラス管10と導電層11とを密着でき、ガラス管10と導電層11との間での異常放電の発生を抑制できる。また、薄膜の導電層11とすることで、導電層11の重量を削減できる。
 給電部12は導電性材料で構成され、特にステンレス鋼またはチタンなどの耐腐食性に優れた金属材料を用いることが望ましい。特に、給電部12の先端を複数の毛を有するブラシ形状とすることで、給電部12をガラス管10に挿入した際に複数個所で導電層11と給電部12が接触し、より確実に電気的な接続が確保できるため好ましい。放電ユニット2と高電圧電源3との接続において、導電層11に高電圧を印加し外周電極8を接地すると、導電層11(高電圧印加部)が外周電極8で覆われるため好適である。但し、接続を逆にしても動作上は問題ない。
 放電空隙9の幅は0.1mm~10mmとすることが望ましい。0.1mm以下では、放電ユニット2の周方向に放電空隙9の幅を均一に保つことが困難になり、放電ユニット2の製造コストが増加する。また、10mm以上では放電を形成するために高い電圧が必要になり、製造コストが増加する。放電空隙9の幅は、特に0.2mm~0.6mmとすることが好ましい。放電空隙9の幅を0.6mm以下に設定することにより、放電空隙9の比表面積が増加し、放電空隙9の冷却効率を向上できる。
 上記例においては、原料ガスとして酸素ガスを例に示したが、これに限られることはなく、原料ガスとして少なくとも酸素を含んでいればよく、空気、または、酸素、または、希ガスまたは二酸化炭素などの不活性ガスと酸素との混合ガスなどが用いられる。放電空隙9に供給する原料ガスの圧力は0.05MPaG~0.2MPaGとすることが望ましい。0.05MPaG以下では酸素分子の数が少なく、オゾン発生量が低下する。また、0.2MPaG以上では、外部に設置される原料ガスの供給装置に求められる吐出圧が高くなり、オゾン発生コストが増加する。
 原料ガスの圧力を0.05MPaG~0.2MPaGとすることで、経済的にオゾン発生効率を向上できる。また、オゾン発生装置100を大型化した際にも、0.2MPaG未満とすることで、オゾン発生装置100が“第2種圧力容器規定”に該当しなくなり、法令上の制約が軽減されて取り扱いが容易になるなどの利点もある。
 ヒートシンク7は熱伝導性に優れた材料で構成され、アルミニウムなどの熱伝導性に優れた導電性材料を用いることが好ましい。特に、安価で加工性に優れたアルミニウムを利用することで、ヒートシンク7の製造コストを低下できる。また、ヒートシンク7を導電性材料で構成した場合、外周電極8とヒートシンク7とを電気的に接続して同電位に保つことで、高電圧電源3の接地電位をヒートシンク7に接続することで、外周電極8を高電圧電源3の接地電位と同電位にできる。
 ヒートシンク7の表面に黒色の塗装または黒アルマイト加工などの処理を行ってもよい。ヒートシンク7の表面を黒色とすることで、表面の熱輻射を促進し、放電ユニット2の冷却性能を向上できる。また、ヒートシンク7を耐腐食性に優れた導電性材料で構成することで、外周電極8とヒートシンク7を一体で形成できる。外周電極8とヒートシンク7を一体で形成することで、外周電極8とヒートシンク7との間の熱伝導を高めることができるとともに、オゾン発生装置100の部品を削減し、製造コストを低下できる。
 ヒートシンク7に耐腐食性の劣る汎用の導電性材料を使用する場合であっても、放電空隙9と対向する面の範囲を耐食性に優れた絶縁材料で被覆することで、外周電極8とヒートシンク7とを兼用できる。
 スイッチ素子4は高電圧電源3と放電ユニット2の電気接続を開閉できればよく、メカニカルスイッチまたは半導体スイッチ、または、ヒューズを用いることができる。また、高電圧電源3とスイッチ素子4は必ずしも独立に設ける必要はなく、放電生成を制御できればよい。例えば高電圧電源3に含まれるインバータを操作することで放電生成を制御できる。本実施の形態1の放電ユニット2として同軸方向に配置される円柱状の構成を示したが、放電ユニット2の形状はこれに限定されるものではなく、例えば平行平板型にて構成することも可能である。
 また、ガラス管10を外周電極8の内面に接するように設けてもよい。この場合、導電層11は独立した管として設置され、導電層11の管の外面とガラス管10の内面の間に形成された空隙の間で放電が形成される。
 上記のように構成された実施の形態1のオゾン発生装置によれば、
原料ガスから放電によりオゾンを発生させる放電ユニットを複数個内包する放電モジュールが、積層方向に複数個積層して配置され、
各前記放電モジュールには、全前記放電ユニットの放電を制御する放電制御部がそれぞれ設置され、
前記放電ユニットに電圧を印加して前記放電を形成する電源部と、
冷媒を送出して各前記放電ユニットを冷却する冷却部とを備え、
前記冷却部は、積層方向の一端側に設置され、前記放電モジュールの積層方向と同一方向に冷媒を送出するので、
複数の放電モジュールの積層方向と、冷媒の流れ方向とが同一方向であるため、ある放電モジュールが停止した場合であっても、それに応じて発熱量が減少することで冷媒の温度上昇量が減少し、他の放電モジュールの放電ユニットの冷却特性は改善され、オゾン発生装置の空間を有効に活用され、オゾン発生装置全体としてのオゾン発生量の減少量が抑制される。
 また、前記電源部は、各前記放電モジュールにそれぞれ設置されるので、
各放電モジュールの制御が行い易くなる。
 また、各前記放電制御部の動作は、各前記放電モジュール間で個別に行われるので、
各放電モジュールを個別に運転制御でき、冷却状況に応じた最適な運転が可能となる。
 また、各前記放電モジュール内の全前記放電ユニットは、前記放電制御部に並列に接続されるので、
 各放電制御部は、1つの放電モジュール内の全放電ユニットの放電を制御できる。
 また、1つの前記放電モジュールの各前記放電ユニットは、積層方向と直交する直交方向にあらかじめ設定された間隔を隔てて並んで配置されるので、
直交方向に隣接する放電ユニット間においても冷媒が通過可能となり、冷却効率が向上できる。
実施の形態2.
 図4は実施の形態2によるオゾン発生装置の構成を示す図である。図において、上記実施の形態1と同様の部分は同一の符号を付し説明を省略する。積層方向Yの他端側Y2に電源部としての1台の高電圧電源3を内包する電源モジュール13を備える。4個の放電モジュール101、102、103、104の外には、それぞれスイッチ素子401、402、403、404が設置される。そして、スイッチ素子401、402、403、404は高電圧電源3に対して並列に接続されており、1台の高電圧電源3と放電モジュール101、102、103、104との電気接続の開閉が制御される。
 上記のように構成された実施の形態2のオゾン発生装置100の動作について、上記実施の形態1と異なる点を中心に説明する。まず、本実施の形態2においては、1つの高電圧電源3により全ての放電モジュール1内の放電ユニット2を駆動させる。その際、スイッチ素子401、402、403、404により放電モジュール101、102、103、104の動作を独立に制御する。よって例えば、スイッチ素子404を操作し放電モジュール104への給電を停止させることで例えば放電モジュール104の動作を停止できる。
 上記のように構成された実施の形態2のオゾン発生装置によれば、上記実施の形態1と同様の効果を奏するとともに、各前記放電モジュールが、前記電源部に並列に接続されるので、
複数の放電モジュールのそれぞれに電源部を備える必要がなく低コストとなる。
実施の形態3.
 図5は実施の形態3によるオゾン発生装置の構成を示す図である。図において、上記各実施の形態と同様の部分は同一の符号を付し説明を省略する。本実施の形態3は、上記各実施の形態と異なり、積層方向Yに隣接する放電モジュール1に備えられた放電ユニット2は、互いが直交方向Xにおいてずれた位置に配置されている。
 上記実施の形態1では、積層方向Yに隣接する放電モジュール1の放電ユニット2が、直交方向Xに同一位置に配備される。このため、積層方向Yの一端側Y1の放電ユニット2によって加熱された冷却空気6が、他端側Y2の放電ユニット2を通過することになり、冷却空気6の温度が局所的に上昇して冷却性能が低下する。
 これに対し、実施の形態3によれば、積層方向Yに隣接する放電モジュール1の放電ユニット2が、直交方向Xにずれた位置に配置される。このため、冷却空気6が全体的に均一に加熱され、冷却性能の低下を抑制できる。この場合、放電ユニット2の配置が異なる複数種の放電モジュール1を用意し、積層方向Yに互い違いに並べることで本実施の形態3を容易に構成できる。
 上記のように構成された実施の形態3のオゾン発生装置によれば、上記各実施の形態と同様の効果を奏するとともに、積層方向に隣接する前記放電モジュール間において、各前記放電モジュールの各前記放電ユニットは、直交方向において互いにずれた位置に配置されるので、
冷却性能の低下を抑制できる。
実施の形態4.
 図6は実施の形態4によるオゾン発生装置の構成を示す図である。図7は図6に示したオゾン発生装置における原料ガスの流れを示す図である。図において、上記各実施の形態と同様の部分は同一の符号を付し説明を省略する。上記各実施の形態においては、放電モジュール1の積層方向Yが上下方向に構成される例を示したが、本実施の形態5においては、放電モジュール1の積層方向Yが左右方向に構成される例について示す。
 図6において、オゾン発生装置100は、放電モジュール101、102、103、104が積層方向Y、ここでは左右方向に積層される。そして、各放電モジュール1の放電ユニット2は、直交方向X、ここでは上下方向に間隔を隔てて設置される。さらに、積層方向Yの一端側Y1、ここでは、左側に、冷却部としての複数の送風ファン501、502、503、504(以下、これらを総称して示す場合には、送風ファン5と示す。)が直交方向Xの各放電ユニット201、202、203、204と対応する位置に配置される。
 さらに、4個の放電モジュール101、102、103、104内には、放電制御部としてのそれぞれヒューズ141、142、143、144が設置される。1台の高電圧電源3の出力は、4つの並列回路に分割され、それぞれにヒューズ141、142、143、144が接続される。各並列回路はさらに4つの並列回路に分割され、それぞれ放電ユニット2に接続される。よって、1台の高電圧電源3と、ヒューズ141、142、143、144の正常または破断により各放電モジュール101、102、103、104への電気接続が制御される。
 図7において、オゾン発生装置100には外部に設置された供給装置16から原料ガスが供給される。オゾン発生装置100内で分岐された4系統のそれぞれにバルブ151、152、153、154が設置される。分岐された配管のそれぞれは、さらに4系統に分岐され、16個の放電ユニット2に対して原料ガスとしての酸素ガスの供給が行われる。各放電ユニット2で生成されたオゾンガスは合流され、オゾン発生装置100の外に搬送される。
 次に上記のように構成された実施の形態4におけるオゾン発生装置100の動作について説明する。冷却空気6は送風ファン5から積層方向Yに送出され、それぞれ配置された放電ユニット2を冷却する。オゾン発生装置100の積層方向Yの一端側Y1、ここでは、左側には、冷却部である送風ファン5が設置される。送風ファン5は、積層方向Yの一端側Y1から他端側Y2に向かって、すなわち、左側から右側に向かって冷媒である冷却空気6を送出する。
 そして、1つの放電ユニット2(例えば、左最上部に位置するもの)において電極の破損などにより短絡が生じた場合、ヒューズ144が破断し、放電モジュール104の4個の放電ユニット201、202、203、204への給電が停止する。そして、他の放電モジュール101、102、103の放電ユニット2は運転を継続する。さらに、この動作と連動して、バルブ154を閉じることで、給電が停止した放電モジュール104の放電ユニット201、202、203、204への原料ガスの供給を停止させる。
 この時、送風ファン501、502、503、504は運転を継続する。これにより、全放電ユニット2が運転している場合と比較して運転を継続する放電ユニット2の冷却能力が向上し、オゾン発生装置100全体としてオゾン発生量の低下が抑制される。また、運転が停止した放電ユニット2への原料ガスの供給が停止されることから、余分な原料ガスの消費が抑制される。
 上記のように構成された実施の形態4のオゾン発生装置によれば、上記各実施の形態と同様の効果を奏するとともに、前記放電モジュールの動作と連動して、前記放電モジュール内の全前記放電ユニットに前記原料ガスが供給されるので、
原料ガスを有効に使用できる。
 本願は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 放電モジュール、101 放電モジュール、102 放電モジュール、103 放電モジュール、104 放電モジュール、10 ガラス管、100 オゾン発生装置、11 導電層、12 給電部、13 電源モジュール、141 ヒューズ、142 ヒューズ、143 ヒューズ、144 ヒューズ、151 バルブ、152 バルブ、153 バルブ、154 バルブ、16 供給装置、2 放電ユニット、201 放電ユニット、202 放電ユニット、203 放電ユニット、204 放電ユニット、3 高電圧電源、301 高電圧電源、302 高電圧電源、303 高電圧電源、304 高電圧電源、4 スイッチ素子、401 スイッチ素子、402 スイッチ素子、 403 スイッチ素子、404 スイッチ素子、5 送風ファン、6 冷却空気、7 ヒートシンク、8 外周電極、9 放電空隙、X 直交方向、Y 積層方向、Z 軸方向。

Claims (8)

  1. 原料ガスから放電によりオゾンを発生させる放電ユニットを複数個内包する放電モジュールが、積層方向に複数個積層して配置され、
    各前記放電モジュールには、全前記放電ユニットの放電を制御する放電制御部がそれぞれ設置され、
    前記放電ユニットに電圧を印加して前記放電を形成する電源部と、
    冷媒を送出して各前記放電ユニットを冷却する冷却部とを備え、
    前記冷却部は、積層方向の一端側に設置され、前記放電モジュールの積層方向と同一方向に冷媒を送出するオゾン発生装置。
  2. 前記電源部は、各前記放電モジュールにそれぞれ設置された請求項1に記載のオゾン発生装置。
  3. 各前記放電モジュールが、前記電源部に並列に接続される請求項1に記載のオゾン発生装置。
  4. 各前記放電制御部の動作は、各前記放電モジュール間で個別に行われる請求項1から請求項3のいずれか1項に記載のオゾン発生装置。
  5. 各前記放電モジュール内の全前記放電ユニットは、前記放電制御部に並列に接続される請求項1から請求項4のいずれか1項に記載のオゾン発生装置。
  6. 1つの前記放電モジュールの各前記放電ユニットは、積層方向と直交する直交方向にあらかじめ設定された間隔を隔てて並んで配置される請求項1から請求項5のいずれか1項に記載のオゾン発生装置。
  7. 積層方向に隣接する前記放電モジュール間において、各前記放電モジュールの各前記放電ユニットは、直交方向において互いにずれた位置に配置される請求項6に記載のオゾン発生装置。
  8. 前記放電モジュールの動作と連動して、前記放電モジュール内の全前記放電ユニットに前記原料ガスが供給される請求項1から請求項7のいずれか1項に記載のオゾン発生装置。
PCT/JP2020/045489 2020-12-07 2020-12-07 オゾン発生装置 WO2022123632A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080103031.3A CN115836026A (zh) 2020-12-07 2020-12-07 臭氧产生装置
JP2021512468A JP6896200B1 (ja) 2020-12-07 2020-12-07 オゾン発生装置
PCT/JP2020/045489 WO2022123632A1 (ja) 2020-12-07 2020-12-07 オゾン発生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/045489 WO2022123632A1 (ja) 2020-12-07 2020-12-07 オゾン発生装置

Publications (1)

Publication Number Publication Date
WO2022123632A1 true WO2022123632A1 (ja) 2022-06-16

Family

ID=76540430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045489 WO2022123632A1 (ja) 2020-12-07 2020-12-07 オゾン発生装置

Country Status (3)

Country Link
JP (1) JP6896200B1 (ja)
CN (1) CN115836026A (ja)
WO (1) WO2022123632A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160312A (ja) * 2001-11-22 2003-06-03 Mitsubishi Electric Corp オゾン発生器
JP2009179556A (ja) * 1999-01-29 2009-08-13 Sumitomo Precision Prod Co Ltd オゾン発生装置用放電セル及びその放電セルを使用したオゾン発生装置
JP6608571B1 (ja) * 2019-04-17 2019-11-20 三菱電機株式会社 オゾン発生装置およびオゾン発生装置セット

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067464A (ja) * 2013-09-27 2015-04-13 三菱電機株式会社 オゾン発生装置
CN104192809B (zh) * 2014-08-26 2016-08-17 深圳市信诚高科科技开发有限公司 一种模块化板式臭氧发生器
CN204079483U (zh) * 2014-08-26 2015-01-07 深圳市信诚高科科技开发有限公司 一种模块化板式臭氧发生器
CN104477852A (zh) * 2014-12-07 2015-04-01 深圳市信诚高科科技开发有限公司 一种模块化板式臭氧发生器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179556A (ja) * 1999-01-29 2009-08-13 Sumitomo Precision Prod Co Ltd オゾン発生装置用放電セル及びその放電セルを使用したオゾン発生装置
JP2003160312A (ja) * 2001-11-22 2003-06-03 Mitsubishi Electric Corp オゾン発生器
JP6608571B1 (ja) * 2019-04-17 2019-11-20 三菱電機株式会社 オゾン発生装置およびオゾン発生装置セット

Also Published As

Publication number Publication date
JPWO2022123632A1 (ja) 2022-06-16
CN115836026A (zh) 2023-03-21
JP6896200B1 (ja) 2021-06-30

Similar Documents

Publication Publication Date Title
US9067788B1 (en) Apparatus for highly efficient cold-plasma ozone production
US5411713A (en) Ozone generating apparatus
US20080131333A1 (en) Lateral-flow waste gas treatment device using nonthermal plasma
US7453682B2 (en) Discharge device and air conditioner having said device
JP6433487B2 (ja) 燃料電池のための冷却システム
US8568664B2 (en) Modular quad cell electro-mechanical ozone generation device
CN108322990A (zh) 一种等离子体发生组件及空气净化装置
CN1749663A (zh) 表面放电型空气净化装置
US20190259637A1 (en) Gas generation apparatus
WO2022123632A1 (ja) オゾン発生装置
US20010046459A1 (en) High efficiency ozone generator
KR101354145B1 (ko) 오존발생장치
US20220009777A1 (en) Systems and methods for generating ozone
JP6608571B1 (ja) オゾン発生装置およびオゾン発生装置セット
WO2018153278A1 (zh) 一种新型臭氧生成板
CN110526218B (zh) 一种臭氧发生模块及臭氧发生器
US10695740B2 (en) Method and device for controlling an ozone generator power supply
CN113099599A (zh) 一种滑动弧放电反应装置及杀菌方法
CN213738612U (zh) 一种具有流量与压力控制功能的臭氧发生器
KR100600755B1 (ko) 연면 방전형 공기정화장치
CN213738613U (zh) 具有冷却功能的臭氧发生器
CN220087746U (zh) 一种臭氧发生器电源冷却结构
CN221409197U (zh) 大面积介质阻挡射流等离子表面处理装置
CN107770939A (zh) 极容串联式等离子发生器
JP2023118185A (ja) 電力変換器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021512468

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965018

Country of ref document: EP

Kind code of ref document: A1