WO2022123096A1 - Medio electrolítico, proceso de electropulido usando dicho medio electrolítico y dispositivo para llevarlo a cabo - Google Patents

Medio electrolítico, proceso de electropulido usando dicho medio electrolítico y dispositivo para llevarlo a cabo Download PDF

Info

Publication number
WO2022123096A1
WO2022123096A1 PCT/ES2021/070864 ES2021070864W WO2022123096A1 WO 2022123096 A1 WO2022123096 A1 WO 2022123096A1 ES 2021070864 W ES2021070864 W ES 2021070864W WO 2022123096 A1 WO2022123096 A1 WO 2022123096A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic medium
particles
polished
piece
conductive
Prior art date
Application number
PCT/ES2021/070864
Other languages
English (en)
French (fr)
Inventor
Marc Sarsanedas Gimpera
Pau Romagosa Calatayud
Miguel Francisco PEREZ PLANAS
Joan David GUTIERREZ CASTILLO
Marc Soto Hernandez
Original Assignee
Drylyte, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Drylyte, S.L. filed Critical Drylyte, S.L.
Priority to IL303496A priority Critical patent/IL303496A/en
Priority to US18/266,376 priority patent/US20240102197A1/en
Priority to EP21854809.7A priority patent/EP4249647A1/en
Priority to AU2021397840A priority patent/AU2021397840A1/en
Priority to MX2023006788A priority patent/MX2023006788A/es
Priority to CA3201056A priority patent/CA3201056A1/en
Priority to KR1020237023428A priority patent/KR20230118929A/ko
Priority to JP2023534379A priority patent/JP2023553052A/ja
Priority to CN202180093323.8A priority patent/CN116829769A/zh
Publication of WO2022123096A1 publication Critical patent/WO2022123096A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating

Definitions

  • This invention falls within the industry sector dedicated to the treatment of metal surfaces. Especially in the sector of smoothing, burnishing and polishing of metals.
  • the solid electrolyte for this electropolishing process is made up of an ion exchange resin that retains a liquid electrolyte.
  • Document ES2604830 describes an electropolishing process with a solid electrolyte by means of ionic transport, and a solid electrolyte in which the retained liquid electrolyte includes hydrofluoric acid.
  • Document ES2721170 describes a solid electrolyte in which the retained electrolyte is a sulfuric acid solution. This electrolyte is described as especially useful for stainless steels and cobalt chrome alloys.
  • Document ES2734500 describes a solid electrolyte in which the retained electrolyte is a solution of hydrochloric acid as a solution to the specific problem that polishing titanium represents.
  • Document ES2734415 describes a solid electrolyte containing a solution of a sulfonic acid, preferably methanesulfonic acid. This composition is useful for a wide range of alloys and metals.
  • these are formulations based on two elements: on the one hand, a set of non-conductive inert support particles, and on the other, an aqueous solution of strong acid.
  • compositions have a number of limitations:
  • the particles generate acidic exudates on the metal surface that often cause pitting.
  • the final roughness cannot be reduced beyond a limit, which depends on the part (initial roughness, metal, shape, etc.) and the solid electrolyte (size, composition, concentration, etc.)
  • This invention discloses a new electrolytic medium, an electropolishing process that uses it, as well as devices to carry out this process.
  • an electrolytic medium comprising:
  • solid electrolyte particle assembly refers to the assembly formed by the solid particles and the conductive solution.
  • electrolytic medium of this aspect of the invention will be referred to as the electrolytic medium of the invention.
  • fluid in this text fluid is understood in a broad sense, materials with very high viscosities are considered fluids, such as Vaseline, with a viscosity at room temperature close to 0.05 m 2 /s. Both Newtonian and non-Newtonian fluids are considered fluids within the scope of this invention.
  • a second aspect of the invention relates to the use of the electrolytic medium of the invention in an electropolishing process.
  • Another aspect of the invention relates to an electropolishing process comprising the steps of: connecting at least one piece to be polished to a power source; connect at least one electrode to the opposite pole of the power supply; contacting the piece to be polished and the solid electrolyte particles of the electrolytic medium defined in the invention with a relative movement between the piece and the particles; apply a potential difference between the piece to be polished and the electrode, which produces a passage of current between both through the electrolytic medium defined in the present invention.
  • Relative movement is understood as that movement that changes the relative position of two points. This includes oscillating or vibrating motion between two points, such as the motion that occurs between a vibrating surface and a particle.
  • a final aspect of the invention relates to an electropolishing device comprising: a power supply; an electrode that transmits the electrical charge from the power supply to the electrolytic medium; means for generating relative movement between at least one metal part to be polished and an electrolytic medium according to the invention, where the means for generating relative movement are selected from: means for projecting the electrolytic medium on the part, connected to the power supply, and a container with the electrolytic medium, and a system that provides the piece with electrical connectivity and movement.
  • a non-conductive fluid to a set of solid electrolyte particles improves the results of the electrochemical solid electrolyte polishing process of metals.
  • a metal workpiece connected to one electrode is introduced into a medium of solid electrolyte particles that also contain a second electrode.
  • the potential difference applied between the electrodes causes redox reactions at the particle-metal contact points (metal roughness peaks), these metal oxides are eliminated by the particles in the form of cations, producing a polishing effect.
  • the solid electrolyte particles conduct electricity through the contact areas between them. When the particles contact the metal surface, due to pressure, they leave acid exudates on the surface.
  • the solid electrolyte described in this invention includes a non-conductive fluid immiscible with the liquid electrolyte contained in the particles. This fluid has surprising effects on the connectivity between particles, as well as on the particle-metal surface interaction.
  • each particle has a part of its surface that contacts other particles and another part that contacts the gaseous medium (usually air).
  • the non-conductive fluid contacts the surface of the spherical particles, without significantly penetrating the interior, avoiding the areas where the particle contacts another particle.
  • the liquid electrolyte in the particles is concentrated.
  • the immiscibility between the two fluids (conducting and non-conducting) makes the particle-particle conducting liquid menisci more concentrated in space, and therefore stronger. All this translates into greater connectivity of the particles.
  • the metal surface is covered with non-conductive fluid, except at the particle-metal contact points. This has several positive effects on the final finishes: - Protects from localized acid attacks. As the surface is covered with immiscible liquid, the aqueous acid exudates from the particles do not accumulate on the metal surface, which prevents pitting.
  • the solid electrolyte particles by themselves behave like a granular material.
  • the fact that the solid electrolyte can be formulated with a non-conductive fluid allows the assembly to be treated as a fluid in certain formulations, which allows the polishing process to be carried out by immersion, but also by projection of the assembly towards the piece to be polished. .
  • this invention describes: an electrolytic medium comprising a non-conductive fluid and a set of solid electrolyte particles, comprised of particles that retain a conductive solution, where the non-conductive fluid and the conductive solution are not miscible.
  • Figure 1 shows an exemplary scheme of an electropolishing device of the invention by immersion.
  • Figure 2 shows an exemplary scheme of an electropolishing device of the invention by means of projection.
  • Figure 3 shows a schematic view of a device of the invention in which the pieces to be polished are not firmly held, but rather are found in a compartment that provides them with electrical connectivity.
  • Figure 4 shows a schematic view of a device of the invention in which the electrolytic medium is projected towards the piece to be polished, receiving electrical connectivity from the output nozzle connected to the cathode.
  • Figure 5 shows a device of the invention in which the multiple pieces to be polished are located in a drum with the capacity to rotate.
  • a fundamental aspect of the invention relates to an electrolytic medium formed by an "assembly of solid electrolyte particles with non-conductive fluid" for electropolishing comprising:
  • a set of solid electrolyte particles comprising solid particles that retain a conductive solution
  • Solid electrolyte particles are made up of solid particles that have the ability to retain a conductive liquid solution so that this gives them conductivity.
  • the electrolyte solid particle set, a conductive liquid solution has an electrical conductivity greater than 10micronS/cm.
  • Liquid retention can occur due to a porosity of the material or due to the molecular structure such as a gel-like structure.
  • the particles are preferably porous, this porosity being selected from: microporosity, mesoporosity, macroporosity and fractal porosity.
  • the retention mechanisms can be: permeation, absorption, adsorption, retention in the interlaminar space.
  • These particles can be made of any material that is capable of retaining liquid, such as mineral, ceramic, polymeric materials, organic compounds, inorganic compounds, of plant origin.
  • these particles are made of polymeric material.
  • the particles are spheres or spheroids.
  • the particles preferably have a liquid retention capacity between 1% and 80% of the mass of water with respect to the total mass, which is the mass of particles plus the mass of water.
  • These solid particles capable of retaining liquid are preferably polymeric material, since it is a material with a hardness lower than that of metals, so the process does not have an abrasive component. As they must flow over the metal surface, they have a shape that favors their movement over the surface to be polished. Because of that, the preferred shape of the polymeric material particles is a spherical or spheroidal shape.
  • the initial roughness R a to be reduced are usually between 1 and 10 micrometres, so that the spheres can roll over the roughness, without following it, preferably the particle sizes have a very high sphere-roughness ratio (large spheres in relation to roughness). For this reason, the optimal average diameter of the particles is preferably between 100 micrometers and 1 millimeter.
  • the preferred polymeric material is ion exchange resins selected from: cationic resins, strongly and weakly acidic, anionic exchange resins, strongly and weakly basic, and chelating resins. More preferably cation exchange resins, since in this way they have the capacity to capture the metal ions extracted in the electropolishing processes.
  • the particles of polymeric material are made of a sulfonated styrene and divinylbenzene S-DVB copolymer, since it is a material resistant to acid and to the oxidizing action of the process. It has the ability to act as an ion exchanger, which favors the extraction of metal from the surface to be polished by storing the ions.
  • the polymeric material particles are of a copolymer containing units derived from acrylic acid or methacrylic acid. This includes derivatives with different functional groups such as acrylic acid, acrylamide, cyanoacrylate, alkyl acrylates, among others, and the corresponding analogs with methacrylate.
  • the particles based on these materials have a high elasticity which is suitable for processing parts with open geometries without cavities.
  • the particles can have a porous structure, which facilitates the exchange of fluids, resulting in a faster process.
  • the particles may have a gel-like structure.
  • the exchange of fluids is more restricted, which results in a slower process, however, the particle-surface contact is more defined, resulting in a lower final roughness.
  • the polymeric material particles include functional groups that are capable of capturing or retaining the metal ions generated during the process, such as acid, amino, or chelating groups.
  • These functional groups can be of the acid type, such as sulfonic or carboxylic groups. These acidic functional groups are especially useful in this application as they have good chemical resistance and are capable of retaining a wide variety of metal ions.
  • chelating type such as, for example, iminodiacetic, aminophosphonic, polyamine, 2-picolylamine, thiourea, amidoxime, isothiouronium, bispicolylamine, among others.
  • functional groups of the chelating type such as, for example, iminodiacetic, aminophosphonic, polyamine, 2-picolylamine, thiourea, amidoxime, isothiouronium, bispicolylamine, among others.
  • These chelating groups have a high selectivity for transition metals over alkali metals or alkaline earth, which allows to be more flexible in the formulation and does not require the use of distilled water.
  • the conductive liquid solution that is retained in the particles is a conductive liquid.
  • the function of the conductive liquid solution in an electropolishing process is twofold: on the one hand, it conducts electricity, and on the other, it must be capable of dissolving the oxides that form on the surface to be treated. Therefore, the composition of this liquid is key and depends on the process to which it is to be applied, on the type of surface to be treated.
  • the conductive liquid solution can be an ionic liquid, a liquid acid, a conductive solution, or a conductive liquid polymer.
  • the conductive solution can include a polar solvent such as, without limitation, water, ethanol, isopropanol, DMSO, DMF, ionic liquids, among others.
  • a polar solvent such as, without limitation, water, ethanol, isopropanol, DMSO, DMF, ionic liquids, among others.
  • the conductive solution includes water, since it is a solvent that is capable of effectively dissolving metal salts and oxides.
  • the conductive solution contains at least one acid, for example an aqueous solution comprising an acid.
  • This has the technical effect of increasing conductivity by increasing the number of protons (which are highly conductive) in the medium, and simultaneously increasing the solubility of metal oxides, which are mostly acidic.
  • acids that can be used are sulfuric acid, sulfonic acids, phosphoric acid, carboxylic acids, citric acid, hydrochloric acid, hydrofluoric acid.
  • a preferred acid for use is sulfuric acid, since it is a strong non-volatile acid.
  • a family of acids for preferred use are the sulfonic acids, due to their high acidity and the solubility of their salts.
  • the sulfonic acid used is methanesulfonic acid, since it is the one with the highest solubility of its salts.
  • Phosphoric acid is also preferably used in cases of metals that are highly sensitive to corrosion, since it facilitates the formation of passive layers of protective metal phosphates.
  • An acid of preferred use, very active and with a high rate of attack, is hydrochloric acid.
  • the acids can be used alone or in combination of several of them.
  • a preferred combination is the combination of strong acids with phosphoric acid.
  • Acids can be combined with complexing agents, salts, etc. to improve the conductivity of the particles and the solubility of oxides and salts.
  • the total concentration by mass of the acids in the conductive solution is in the range of 0.1 to 70% by mass with respect to the total mass of the water plus the acid. Preferably from 1% to 40% by mass of acid with respect to the mass of water plus acid. It is a very wide range due to the great difference in the chemical properties of metals. The lower range is used in cases of metals that are very sensitive to acid attack. The upper range is similar to the concentrations used in conventional electropolishing.
  • an acid concentration between 1% and 10% by mass with respect to the mass of water plus acid is preferably used, since this provides high conductivity and a dissolution of enough oxides.
  • an acid concentration by mass between 20% and 35% of the total mass of water plus acid is preferably used, since the titanium oxides formed require a higher concentration to be dissolved.
  • the conductive solution can include a complexing agent such as ETDA, citrate/citric acid, polyethylene glycols, polyethers, polyamines, among others.
  • a complexing agent such as ETDA, citrate/citric acid, polyethylene glycols, polyethers, polyamines, among others.
  • Citric acid or citrate is useful in the process due to its chelating effect, which is effective in removing oxides and salts from the surface to be polished.
  • the conducting liquid solution can also be neutral. In this case, it must include dissolved ions to increase conductivity.
  • the conducting liquid solution can also be basic.
  • the use of amines as a base favors the solution of metals due to their ability to coordinate with metal cations.
  • These basic conductive solution formulations are especially suitable for metals that form anionic complexes.
  • the conductive solution ratio between the set of solid electrolyte particles is preferably between 25% and 60% by mass/total mass, the total mass being the mass of the conductive solution and the electrolyte particles, since in this range there is enough conductive liquid to observe measurable conductivity of the solid electrolyte particles, with no free conductive liquid observed from the solid electrolyte particles. More preferably, it is between 35% and 50% by mass electrolyte particles/total mass, the total mass being the mass of the conductive solution and the electrolyte particles.
  • free liquid or free fluid is understood as that which separates by itself from the solid part under normal conditions of pressure and temperature. Normal conditions imply that the pressure is 1 atm and the temperature is 0°C. It can be determined, for example, by the "Method 9095 (Paint Filter Liquids Test)" described by the U.S. Pat. Environmental Protection Agency in publication SW-846.
  • the material of the particles is an ion exchange resin based on a copolymer of styrene and sulfonated divinylbenzene
  • a ratio between the conductive solution and the set of solid electrolyte particles of between 34% and 52% mass/mass total provides an optimal electropolishing process.
  • the non-conductive fluid is a defining element of this invention. It is a fluid that at rest at room temperature does not significantly conduct electric current. In order to fulfill its function, it must be immiscible with the liquid electrolyte contained in the solid electrolyte particles. In this way, by affinity, the liquid electrolyte is kept inside the particles and the non-conductive fluid outside. As it must withstand the presence of a liquid electrolyte that can be an acid solution, in addition to considerable voltages, the non-conductive fluid must be a stable compound, or kinetically stable, under working conditions.
  • the nonconducting fluid occupies interstitial space between the particles, either partially, totally, or in excess.
  • the non-conductive fluid is in a concentration between 1% and 80% referred to by mass with respect to the total mass represented by the mass of the solid electrolyte particles plus non-conductive fluid.
  • An advantage of this electrolytic medium is that as the surface exposed to the air of liquid electrolyte is reduced, the evaporation of liquid electrolyte is also reduced, which increases the stability of the process, achieving more reproducible results between new electrolytes and with several hours of use. .
  • the conductive liquid is concentrated at the points of contact with the other spheres, generating stronger menisci that produce a higher connectivity between the particles.
  • a main effect of the non-conductive fluid of the solid electrolyte particles is to coat the metal surface of the workpiece with non-conductive liquid. This has various technical effects that result in a better finish of the electropolishing process with solid electrolyte:
  • the process can be carried out with very high viscosity fluids, such as Vaseline, which has a viscosity close to 0.05 m 2 /s.
  • very high viscosity fluids such as Vaseline
  • a system with a high cohesiveness between particles is generated.
  • a high-viscosity part coating is also produced that efficiently protects the surface from atmospheric oxidation and acid residues, making it suitable for very sensitive metals, such as carbon steels.
  • the non-conductive fluid has a viscosity in the range between 1 ⁇ 10' 7 and 1 ⁇ 10' 4 m 2 /s, such as, for example, hydrocarbons without groups functional Ce-C ⁇ e, low viscosity silicone oils, among others.
  • the range of viscosities of the non-conductive fluid is very wide, from 1 ⁇ 10' 7 to 0.05 m 2 /s, preferably centered in the range 1 ⁇ 10' 7 and 1 ⁇ 10' 4 m 2 /s .
  • the non-conductive fluid may have some volatility, in this case it must be replaced periodically to maintain its properties. To avoid this process, it is preferable that the non-conductive fluid has low volatility.
  • the fluid has a boiling temperature greater than 100°C, for example in the range of 100 to 1000°C.
  • non-conductive fluids There is a limited number of types of non-conductive fluids that meet the characteristics of volatility, viscosity, toxicity, etc. that make them viable for use in this application: hydrocarbons, organic solvents, essential oils, silicone and silicone oils, fluorinated solvents, among others. They can be used purely or in combination with each other.
  • hydrocarbon-based fluids find use in a wide variety of applications, such as lubricants, fuels, solvents, etc.
  • hydrocarbons are understood as those compounds that include only carbon and hydrogen in their structure. Due to this great variety of existing hydrocarbons, those that present the properties that best fit the needs can be selected.
  • Aliphatic hydrocarbons are preferably used since, in general, they have less toxicity than aromatic hydrocarbons and greater electrochemical stability.
  • Aliphatic hydrocarbons with a molecular weight and structure that allow them to be in a fluid or semi-fluid state at the working temperature are preferably used, which places the potential candidates in the C5-C30 range.
  • Hydrocarbons in the Ce-C ⁇ e range with a linear structure are preferably used, since these have very low viscosities, even below 5-10' 6 m 2 /s while they have a high volatility, above 80 °C
  • Low volatility water-immiscible organic solvents and compounds can also be used in this process, for example, aliphatic alcohols such as 1-octanol, organic carbonates such as propylene carbonate, ethylene carbonate, among others.
  • Silicones and silicone oils have various applications in relation to the protection and lubrication of metal parts, so they have been optimized for their interaction with different metal surfaces as lubricants and other uses.
  • silicones or silicone oils are understood as those oligomers, polymers, cycles or other structures that include O-S ⁇ bonds in their main chain.
  • Silicone oils that include dimethylsiloxane units -OSi(Me2)-. Those with a linear structure are especially useful due to their low viscosities, as well as those that are cyclic, such as hexamethylcyclothsiloxane. In general, polydimethylsiloxanes are good candidates for the process and have a good variety, allowing the non-conductive fluid to be tailored to the application. Fluorinated
  • fluorinated solvent is understood as one that incorporates at least one fluorine atom in its chemical structure.
  • Fluorinated solvents have a much lower surface tension than other liquids. This is due to fluorine's high electronegativity coupled with its low polarity.
  • emulsions are expressly a non-conductive non-polar continuous phase containing micelles of conductive polar solution.
  • conductive polar solution of the micelles has the same composition as the conductive solution that is retained by the solid electrolyte particles. Since the nonpolar continuous phase is nonconducting, the emulsion at rest without solid electrolyte particles is nonconducting.
  • the conductivity of the total mixture of the electrolyte medium, emulsion plus solid electrolyte particles, is clearly superior to formulations with non-emulsified fluids. This is due to the fact that the micelles of the emulsion are structured around the particles, which retain polar conductive solution, locally destabilizing the micelles, thus increasing the hydrophilic bridges between particles. On the metal surface, the micelles absorb the remains of the polar solution (which may contain acid depending on the formulation), which reduces points of preferential attack, which would become pitting.
  • An emulsion-based non-conductive fluid comprises:
  • the percentages by mass of the non-conductive fluid are with respect to the total mass of the non-conductive fluid: the sum of the apolar continuous phase, the dispersed polar phase and the surfactants.
  • the continuous apolar phase is in a range between 50% and 99%, the dispersed polar phase in a range between 1% and 50%, and the surfactants in a range between 0.01% and 1%. 30%. More preferably, the apolar phase is continuous between 70% and 80%, the polar phase dispersed between 20% and 30%, and the surfactant between 1.5% and 3%.
  • the surfactant is a mixture of nonionic surfactant and anionic surfactant such that the nonionic surfactant is in a range between 0% and 20%, more preferably between 1% and 2%, the anionic surfactant between 0% and 10%, more preferably between 0.5% and 1% and always the sum of the surfactants is at least 0.01%.
  • the conductivity of the liquid emulsion is lower than the conductivity of the solid electrolyte particles.
  • the polar disperse phase micelles interact with the conductive bridges that are established between the particles, contributing to the overall conductivity.
  • the continuous apolar phase can be composed of apolar liquids such as, for example, without limitation, hydrocarbons, organic solvents, liquid polymers, fluorinated solvents, silicones, mineral oils, vegetable oils, etc.
  • apolar liquids such as, for example, without limitation, hydrocarbons, organic solvents, liquid polymers, fluorinated solvents, silicones, mineral oils, vegetable oils, etc.
  • the continuous apolar phase comprises hydrocarbons within the C5-C20 fraction since they meet the required technical characteristics of viscosity and volatility.
  • the continuous apolar phase is selected from a hydrocarbon, silicone and their mixture, the mixture comprises a hydrocarbon and a silicone with a mass percentage between 80% and 99% hydrocarbon with respect to the total mass represented by mass of hydrocarbon plus silicone mass.
  • the dispersed polar phase is made up of colloids, micelles, microdroplets, etc. dispersed in the nonpolar continuous phase.
  • the dispersed polar phase is miscible with the conductive liquid solution retained in the particles. For this reason, the dispersed polar phase interacts with the conducting liquid bridges between the solid electrolyte particles, regulating the conductivity of the medium.
  • the dispersed polar phase is a mixture of water and an acid where the water represents a percentage by mass between 30% and 99.9% with respect to the total mass of water and acid, more preferably a percentage by mass between 90 % and 98%.
  • Formulations that make it easier for the dispersed polar phase to interact with conductive liquid bridges have higher conductivity.
  • These formulations preferably include a hydrophilic surfactant or one with a high HLB (Hydrophilic Lipophilic Balance), that is, preferably with ionic or strongly polar groups, with a relatively small non-polar chain.
  • HLB Hydrophilic Lipophilic Balance
  • Formulations that stabilize the dispersed polar phase within the continuous apolar phase have a lower conductivity.
  • These formulations preferably include surfactants that stabilize the polar dispersed phase in the non-polar continuous phase. These surfactants preferably have a relatively low HLB, with non-ionized polar groups and one or more large non-polar chains. Although the conductivity is lower, the conductive liquid bridges They are more stabilized than without emulsion, which keeps the conductivity more constant when there is movement.
  • surfactant is used in the broad sense to encompass all those surfactants, detergents, emulsifiers, emulsifiers, humectants, soaps, solubilizers, softeners, surfactants, defoamers, among others, that reduce the surface tension between two phases, and that , for the most part, have a chemical structure with a polar part and a nonpolar part.
  • a parameter that defines a surfactant is its hydrophilic-lipophilic balance or HLB (Hydrophilic-Lipophilic Balance). High HLB corresponds to more soluble surfactants in polar phases, while low HLB corresponds to more soluble surfactants in nonpolar phases.
  • HLB Hydrophilic-lipophilic Balance
  • the surfactant or mixture of surfactants used are key to defining the structure of the emulsion, which dictates its behavior and affects the interaction between the liquid emulsion and the particles, and the interaction between the liquid emulsion and the surface to be treated. treat in polishing processes.
  • One effect of the surfactant in this invention is to control the interaction of the polar dispersed phase with the interparticle conductive liquid bridges, indirectly controlling conductivity.
  • the surfactant controls the stability of the polar dispersed phase in the continuous apolar phase, the lower the stability, the greater the interaction with the conductive liquid bridges.
  • an additional effect is that the surfactant can form a layer on the surface of the metal part in electropolishing processes. This acts as a protector and leveler of the surface, since in the roughness valleys the layer is more stable, favoring a greater exposure of the roughness peaks, which results in smoother finishes when using this invention.
  • the surfactant controls the availability of the dispersed polar phase to intervene in the conductive liquid bridges.
  • Electrolytic media with less restriction of the discontinuous polar phase favor greater conductivity. This conductivity makes the system more aggressive and faster, favoring the removal of material. This type of system is especially focused on metals that are self-passivated, such as stainless steel, titanium, aluminum, among others. Surfactants that do not especially stabilize polar emulsions in apolar phases are indicated in this case, that is, with high HLB, making the emulsion less stable and facilitating a greater amount of aqueous bridges.
  • This combination can be, for example, without limitation, an ethoxylated chain-attached nonionic surfactant and an anionic surfactant with sulfonic or carboxyl group(s).
  • Surfactants comprise at least one polar head and one nonpolar tail. Depending on the polar head, one can speak of cationic, anionic, zwitterionic, or neutral surfactants. All of them can be used in this process.
  • the apolar tail can include an aliphatic chain of formula C n H 2 n + i that is linear or branched. Preferably, it includes a linear aliphatic chain. Even more preferably, this chain is in the Ce-C range.
  • the apolar tail can also include aromatic groups. In addition, it can also include a combination of both in which the aliphatic chain is linked to an aromatic ring and this in turn is linked to the polar group.
  • Anionic surfactants have the advantage of not interacting with sulfonic or carboxylic functional groups, so they are preferably used when the polymeric material includes these functional groups.
  • Anionic surfactants comprise at least one polar head formed by a negatively charged functional group, an apolar chain, and a cation.
  • the negatively charged polar group comprises a sulphate, sulphonate, phosphate or carboxylate group.
  • anionic surfactants include, but are not limited to, alkylbenzene sulfonates, lignin sulfonates, alkyl sulfates, alkyl ether sulfates, docusate, perfluoroactonesulfonate, perfluorobutanesulfonate, alkyl aryl ether phosphate, alkyl ether phosphate, alkyl carboxylates, among many others.
  • Preferred use cationic surfactants are based on nitrogen-containing groups, such as amino, ammonium, alkanolamine, or pyridinium. These surfactants include primary, secondary or tertiary amines with alkyl or aryl groups.
  • neutral surfactants are those that include polyether chains as the polar part, since these chains are more voluminous than the ionic groups and favor good stability of the water-in-oil emulsion.
  • Zwitterionic surfactants also called amphoteric, present simultaneously in the same molecule a cation and an anion, as well as a hydrophobic tail.
  • groups present in zwitterionic surfactants that can be used in this process include alkyl amine oxides, betaines, sultaine, phosphocholine group, among others.
  • the amount of non-conductive fluid must be sufficient to coat the surface of the spherical particle assembly and the parts to be polished. If the proportion of non-conductive fluid is too low, the desired effects are not achieved in the process.
  • the minimum value of non-conductive fluid to carry out the process is 0.05% of non-conductive fluid with respect to the total electrolytic medium.
  • the mass percentage of solid electrolyte particles is between 20% and 99% with respect to the total mass that is represented by solid electrolyte particles plus non-conductive fluid, more preferably between 50% and 80%.
  • a conceptually interesting point is the amount that fills the interstitial spaces of the set of solid electrolyte particles.
  • the formulation may have more or less than this value. A higher quantity facilitates the pumping and fluidity of the medium.
  • This first type includes those embodiments in which the amount of non-conductive fluid is not sufficient for the electrolyte of this invention to have free liquid.
  • the non-conductive liquid is distributed on the surface of the spheres.
  • This proportion of conductive fluid is usually below 10% by weight of the non-conductive liquid with respect to the total electrolytic medium so that there is no free liquid, and above 0.05% so that there is an appreciable effect.
  • the electrolytic medium behaves like a granular material. Its mobility can be favored and controlled by means of vibrating systems or fluidization by means of the injection of a gas, such as air, for example.
  • the non-conductive fluid is distributed over the surface of the solid electrolyte particles with no free liquid observed. It is especially located in the less polar areas, which are those that are in contact with the air. In the areas of the surface of each particle that contact other particles, there is mainly less non-conducting fluid and more electrolyte liquid. In this way, hydrophilic bridges are established between the particles that act as cohesive forces between the particles. To achieve this distribution it is necessary that the electrolyte liquid and the non-conductive fluid are immiscible. Conductivity across the particles occurs through these hydrophilic bridges.
  • the electrolytic medium When the electrolytic medium is in motion, it becomes homogenized, keeping the particles in suspension, and the whole behaves like a fluid as long as the movement is maintained.
  • This formulation has the advantage of being able to handle the assembly as a fluid, which allows it to be projected towards the areas to be polished that most require it or that are difficult to access. This is a great advantage as it allows the process to attack areas and nooks and crannies that would not otherwise be processed well.
  • Non-conductive fluids based on emulsions are especially useful for these applications, since they have greater fluidity and conductivity. In this case, it is possible to work under conditions in which the moving liquid behaves like an organic phase with aqueous micelles, but in a state of rest a separation of the organic phase and the aqueous phase occurs.
  • a partial liquid separation process can be incorporated to ensure particle contact. For example, you can pump using excess non-conductive liquid and remove the excess non-conductive liquid before spraying the medium onto the part. electropolishing process
  • the electrolytic medium described is specially designed to be used in an electropolishing process for metal parts.
  • an electric current is applied between the piece and a cathode through the described electrolytic medium.
  • This generates redox processes on the metal surface, which generate oxides and salts at the roughness peaks.
  • the solid electrolyte particles dissolve or remove these oxides and salts, removing material from roughness peaks, producing a smoothing effect on the surface.
  • the electropolishing process comprises the steps of: a) connecting at least one piece to be polished to a power source; b) connecting at least one electrode to the opposite pole of the power supply; c) contacting the piece to be polished and the solid electrolyte particles of the electrolytic medium defined above with a relative movement between the piece and the particles; d) apply a potential difference between the piece to be polished and the electrode, which produces a current passing between them through the defined electrolytic medium.
  • Electrolytic medium comprising a set of solid electrolyte particles and a non-conductive fluid
  • a final aspect of the invention relates to an electropolishing device comprising: a power supply (1); an electrode (3) capable of transmitting the electric charge from the power source to the electrolytic medium; means for generating relative movement between at least one metallic piece (2) to be polished and an electrolytic medium as defined above selected from: projection means, connected to the power supply (1), of the electrolytic medium on the piece ( 2) and a cage (14) with the means of movement where the part (2) and the electrolytic medium are, cage (14) that provides the part (2) with electrical connectivity and a container that contains the electrolytic medium and a electrode (3) and a system that provides the piece with movement and electrical connectivity with the source.
  • the power supply (1) is connected to the piece (2) to be polished and to the electrode (3).
  • a mechanism produces a relative movement between the piece (2) to be polished and the electrolytic medium.
  • the power supply provides a potential difference between the piece (2) to be polished and the electrode (3).
  • the current that circulates between the piece (2) and the electrode (3) produces oxidation effects in the piece that transform the surface metal into oxides or salts.
  • the solid electrolyte particles when in contact with the oxidized metal dissolve or remove it from the surface. When the particles are spherical, they can only contact the roughness peaks, oxidation occurs only at these points and metal is removed only at these peaks. In this way, the roughness is gradually reduced by the removal of metal from the roughness peaks.
  • the power supply (1) provides a potential difference between the piece (2) to be polished and the electrode (3).
  • the piece is connected to the positive pole or anode, and the negative pole is connected to the electrode.
  • the applied current can be controlled in an amperiostatic way or in a potentiostatic way.
  • the applied voltage depends on experimental parameters that vary in each case: metal to be polished, exposed metal surface, conductivity of the electrolytic medium, among others.
  • polarity inversion intervals In metals and geometries in which there is an accumulation of oxides and metal salts, in these cases, it is recommended to apply polarity inversion intervals. These polarity reversals can occur in the order of the seconds, milliseconds or microseconds. Each metal, depending on its characteristics and those of the salts and oxides it produces, requires optimized polarity inversion times. For example, for the electropolishing of titanium, polarity reversal intervals in the order of tens of microseconds will preferably be applied.
  • the polarity inversion can be symmetrical, that is, using the same voltage, or asymmetrical, that is, the positive voltage is different from the negative, which allows better adaptation to each phase.
  • An electrical current divided into four sections is preferably applied: Direct — Pause 1 — Reverse — Pause 2.
  • Each section has a time that can be adjusted independently, so that it can be adapted to each case.
  • the duration of each frame can be in the order of seconds, milliseconds or microseconds.
  • the electrical current pauses serve to give the electrolytic medium time to dissolve the oxides formed during the direct current stage.
  • a key aspect of the process is the relative movement of the solid electrolyte particles and the part to be polished. This can be achieved in different ways, which will affect the formulation of the electrolytes used, as well as the machinery necessary to carry out this process.
  • Relative motion of the part vs solid electrolyte particles The relative movement between the pieces and the solid electrolyte particles is a characteristic necessity or limitation of this invention that is not found in conventional liquid electropolishing.
  • Exemplary modes of relative motion are:
  • the two modes can occur both with granular material and with a fluid medium.
  • this relative movement consists of moving the part in a container containing the particles. In this way, there is a contact of the piece with the particles that causes a friction force.
  • This movement can be macroscopic, that is, a movement of translation, or it can be a movement of vibration, millimetric or submillimetric. Vibration is preferably applied in all cases, as it enhances local motion with no negative effects observed.
  • the optimal macroscopic movement to apply depends on the geometry of the part.
  • a horizontal circular translational movement is preferably applied, which may additionally be accompanied by a vertical oscillatory movement.
  • solid electrolyte particles When used with granular material, solid electrolyte particles are used with a relatively low amount of non-conductive fluid, less than 10% by weight of the overall electrolyte medium. This results in a formulation in which mostly no free liquid is observed.
  • non-conductive fluid acts as a lubricant, improving the mobility of the particles and preventing them from sticking to the surface to be polished due to hydrophilic effects. This extra mobility is an advantage over non-fluid systems. conductive, since it allows polishing delicate pieces without the resistance of the medium damaging them.
  • the part moves in an electrolytic medium that behaves like a fluid due to a movement of the solid electrolyte particles in the non-conductive fluid.
  • the amount of nonconducting fluid is around the volume needed to cover the interstitial spaces of the particles, but it can be higher or lower.
  • the volume of the non-conductive fluid is greater than that necessary to cover the interstitial spaces.
  • the movement to keep the particles in suspension can be achieved by agitation, by insufflation of a gas, by means of a drum, etc.
  • the piece-medium relative movement is achieved by projecting the electrolytic medium in the form of a jet against the surface of the metal piece to be polished.
  • this system is much more viable by taking advantage of the properties of fluid-type formulations.
  • it is possible to pump it and project it against the surface of the piece to be polished, as if it were a hose.
  • the end of a projection nozzle acts as a cathode.
  • the electrolytic medium is projected onto the piece to be polished, a potential difference is applied between the piece and the nozzle, which causes a current between the piece and the cathode-nozzle through the solid electrolyte particles of the jet.
  • the electrolyte medium falls into a container and can be pumped out again.
  • This system requires constant agitation to maintain fluidity.
  • This agitation can be achieved by different means, such as stirring the medium, applying bubbling gas injection, etc.
  • the electropolishing process that uses the electrolytic medium composed of solid electrolyte particles with non-conductive fluid requires devices that are adapted to the specificities of this new medium.
  • These devices must include, at a minimum: a power supply (1); an electrode (3) capable of transmitting the electrical charge from the power supply to the electrolytic medium; means for generating relative movement between at least one metal part (2) to be polished and an electrolytic medium as defined above, selected from: projection means, connected to the power supply (1), of the electrolytic medium on the part (2); and a cage (14) with the means of movement where the part (2) and the electrolytic medium are located, cage (14) that provides the part (2) with electrical connectivity; a container containing the electrolytic medium and an electrode (3). and a system that provides the piece with movement and electrical connectivity with the source.
  • the power supply provides enough voltage to produce electrolytic effects on the part.
  • the applied voltage can be direct, alternating, alternating rectified, pulsed, square wave, etc.
  • the power supply is capable of providing a current that includes polarity reversals.
  • Polarity reversals can occur at frequencies with a period in the order of seconds, milliseconds, or microseconds. Empirically and not predictable a priori, it has been observed that electropolishing processes that include polarity reversals in the order of microseconds, from 1 to 1000 microseconds, provide final finishes with lower roughness and higher gloss.
  • a fundamental part of the process is the relative movement between the piece to be polished and the electrolytic medium.
  • Different systems are envisaged for this purpose, each one adapted to different needs, whether by size, shape, type of part, number of parts to be polished at the same time, among other parameters.
  • the means for generating relative movement consist of a system capable of moving the piece to be polished submerged in the electrolytic medium. This system has the advantage that the entire piece to be polished is in contact with the electrolytic medium, so the entire piece is processed at the same time.
  • a preferred movement of the piece in the middle is that of circular translation. This movement is optimal since it causes a pressure zone in all orientations, so that there are no orientations that receive more pressure than others.
  • an alternately ascending-descending vertical movement can be used that generates a relative movement in that direction.
  • the choice of the movement to apply will depend on the geometry of the part to be processed. In this system, the pieces to be polished can have a firm hold that ensures permanent electrical contact and proper orientation. This clamping is suitable for parts with high added value, complicated geometries or delicate details.
  • the pieces are not firmly held but are placed in a compartment that allows the electrolytic medium with its particles to pass through, but does not allow the pieces to be polished to come out.
  • This compartment has a perforated metal grid or plate that is connected to the power supply. When the pieces come into contact with this grid, they are provided with electrical connectivity with the power supply.
  • This device is called a cage device.
  • Figure 3 shows a schematic view of a caged device for electropolishing in which the pieces to be polished are not firmly held, but rather are in a container that provides them with electrical connectivity.
  • the pieces to be polished are located in a container whose limits allow the passage of solid electrolyte particles, but do not allow the pieces to be polished to escape.
  • Part of the container that contacts the parts to be polished is made of a conductive material, and connects the electrical source with the parts, so that they receive electrical connectivity to the parts without a permanent fixation.
  • the parts may be resting on a conductive grid that is connected to the power supply.
  • This device causes a relative movement of the pieces to be polished with respect to the solid electrolyte particles.
  • this effect can be achieved by moving the container of the pieces to be polished in the electrolytic medium, which produces a relative movement between the particles and the pieces to be polished.
  • there may be a system which causes a flow of solid electrolyte particles through the container.
  • the means for generating a relative movement between the piece to be polished and the electrolytic medium comprise a system that propels the electrolytic medium onto the piece in the form of a jet.
  • the solid electrolyte particles must maintain connectivity with each other.
  • This system has the advantage of being able to process the pieces in sections and reach internal areas that are difficult to access.
  • this system can be applied for polishing in the cabin.
  • a jet of electrolytic medium comes out of a nozzle that is connected to the power supply and acts as an electrode. The jet contacts the piece to be polished and falls into a collection container. This container keeps the solid electrolyte particles in suspension by means of agitation, bubbling or another system.
  • a pumping system such as a peristaltic pump, drives the medium back into the part.
  • Figure 4 shows a schematic representation of this device for an electropolishing process using an electrolytic medium with a non-conductive fluid that causes the relative movement of the solid electrolyte particles with respect to the piece to be polished by means of the projection of a jet of the electrolytic medium, by means of a nozzle (9).
  • the device comprises a power supply, a system to provide electrical connectivity to the piece to be polished, an electrolytic medium delivery system and an electrode with opposite polarity to the piece to be polished at the outlet of the electrolytic medium jet.
  • This system benefits from the advantages provided by a liquid-type electrolytic medium, since this medium can be pumped and propelled towards the piece to be polished and affect areas that are difficult to polish.
  • the device preferably comprises a nozzle (9) as projection means attached to the cathode (3). More preferably, it further comprises a pump for pumping the electrolyte medium that falls into the container (10) towards the nozzle (9).
  • the projected particles tend to lose contact with each other, which limits electrical conductivity.
  • this limitation is overcome especially with the formulas of electrolytic medium with solid electrolyte particles with emulsion since, in this case, the polar dispersed phase reinforces the conductive liquid bridges that are established between particles, improving the electrical conductivity of the electrolyte. system, so it is a novel solution to how to maintain electrical connectivity between projected conductive particles.
  • the means to generate a relative movement between the piece to be polished and the electrolytic medium comprise a system formed by a drum that has openings of such a size that it is capable of allowing the solid electrolyte particles of the medium to pass through. electrolytic, but retains the pieces to be polished.
  • the drum can be fully or partially rotated, which results in the parts flipping so that they are processed in all orientations.
  • the drum can be cylindrical or be a prism with a triangular, square, hexagonal section among others.
  • This drum has an element connected to the power supply that contacts the pieces to be polished.
  • This element can form part of the walls of the drum, or it can be a flexible element directed towards the interior of the drum that contacts the pieces. This embodiment is especially useful for processing parts in large quantities.
  • FIG 5 shows a diagram of a device for electropolishing by means of solid electrolyte with non-conductive fluid in which the multiple pieces (2) to be polished are located in a cage (14) with the capacity to rotate.
  • This device comprises a power supply (1), an electrode (in black), a cage (14) with walls that allow the passage of the electrolytic medium (hexagon).
  • This system allows the treatment of multiple pieces (2) at the same time, which is indicated for industrial series.
  • a key point of this device is the container cage (14).
  • the walls of the cage (14) must keep the parts inside, but allow the free circulation of the solid electrolyte particles therethrough.
  • the solid electrolyte particles are preferably spheres with a size between 0.1 and 1 mm, there must be openings in the walls of, preferably, more than 4mm For this reason, this device is not suitable for parts that are smaller than that size.
  • the movement is generated by a global movement of the system.
  • the electrolytic medium, the electrode and the piece to be polished are located in a closed container.
  • the piece to be polished is held firmly, as well as the electrode.
  • An external mechanism causes sufficient movement to produce a global movement of the entire medium contained inside.
  • this movement can be a shaker type, a sudden shake.
  • this movement can be a repeated lying down in one or several axes, such as a gyroscopic mixer type movement.
  • the polymer particles are made of an ion exchange resin based on a macroporous sulfonated styrene and divinylbenzene S-DVB copolymer with a shape that tends to be spherical with a size distribution centered around 0.7 mm, with trade name Mitsubishi Relite CFS.
  • These particles contain 40% by weight of a conductive solution consisting of a 10% solution of methanesulfonic acid in distilled water.
  • compositions are shown in Table 1 and Table 2.
  • Table 1 shows a preferred composition of the electrolytic medium of the invention
  • Table 2 shows a preferred composition of the electrolytic medium of the invention with ranges:
  • the concentration of methanesulfonic acid is preferably in a range of 1 to 45% by mass.
  • the solid electrolyte with non-conductive fluid is composed of a set of solid electrolyte particles based on spherical polymer particles of sulfonated styrene-divinylbenzene ion exchange resin with a gel-like structure, without defined porosity, with a diameter medium about 0.7mm, Mitsubishi Relite CFH.
  • the polymer particles contain 45% of a conductive solution of 5% sulfuric acid in water.
  • Hydroseal G 232 H or a silicone oil based on polydimethylsiloxane with a viscosity of 3 10' 6 m 2 /s (3 cSt) at 3% is used.
  • This formulation controls many acid exudates, which if used in an electropolishing process with solid electrolyte results in a final surface obtained with specular finishes.
  • Table 3 shows a preferred composition of the electrolyte medium of the invention
  • Table 4 shows a preferred composition of the electrolyte medium of the invention
  • the conductive solution is a sulfuric acid solution with a concentration of 0.5 to 30% by mass.
  • Table 5 shows a preferred composition of the electrolyte medium of the invention
  • Table 6 shows a preferred composition of the electrolyte medium of the invention
  • Another preferred embodiment of this invention consists of an ion exchange resin with acrylic acid units in a spherical shape with a gel-like structure, which reduces exudates in combination with an aqueous electrolyte solution containing 5% citric acid that provides the necessary conductivity.
  • a low viscosity, high boiling point fluorinated solvent is used as non-conductive fluid, in this case the fluorinated solvent is FC96500. This low viscosity solvent improves movement between particles.
  • Fluid electrolyte medium formulation with methanesulfonic acid
  • non-conductive fluid there is an amount of non-conductive fluid to fill the interstitial spaces of the particles at rest and an additional amount.
  • the particles When the particles are at rest, there is a portion of nonconducting fluid. supernatant.
  • the assembly is in motion, a homogeneous suspension of the solid electrolyte particles is obtained in the non-conductive fluid, which as a whole is a conductor of electricity.
  • the solid electrolyte is made up of a Mitsubishi Relite CFH ion exchange resin containing 45% by weight of a 10% methanesulfonic acid solution as liquid electrolyte.
  • Table 7 shows a preferred composition of the electrolyte medium of the invention
  • Table 8 shows a preferred composition of the electrolyte medium of the invention
  • the concentration of methanesulfonic acid is preferably in a range of 1 to 45% by mass.
  • Table 9 Example of emulsified formula for stainless steels
  • Table 10 Example of emulsified formula for carbon steels
  • This prototype device is designed to treat gears and pinions of different sizes.
  • the suitable electrolytic medium is the "emulsified formula for carbon steels”.
  • It has a power supply (1) that connects the positive pole with the piece to be polished (2) and the negative pole with the cathode (3).
  • the power supply (1) is capable of providing a pulsed current with polarity inversion, with or without pauses between the different polarities.
  • the pulses can be of high frequency, being able to have a duration in the order of microseconds to seconds. It is capable of applying asymmetric voltages, that is, applying a different voltage value to each polarity.
  • the piece to be polished (2) is held by a holder (4).
  • This holder has the function of holding the part during the process and providing it with the electrical connection with the power supply. Likewise, it can incorporate a vibrating system to improve the relative movement of the part-electrolytic medium.
  • the holder (4) is connected to a system that provides a movement of the piece(s) it holds with the medium.
  • This movement system in this embodiment consists of a guide-axis (5) activated by a pneumatic piston (6) that provides a vertical oscillatory movement timed with a turn so that the movement produced coincides with the inclination of the teeth of the pinion or gear to be polished. In this way there is a fluid movement of the particles through the interstitial space.
  • the fluid movement of the particles in the interstitial space is achieved by the vibrator of the holder (4), the movement provided by the guide (5) and the pneumatic piston (6) and the injection of air in the lower part of the electrolytic medium by means of a compressor (7).
  • All the process machinery is integrated into a structure (8) that stiffens the entire system to prevent unwanted movements between the electrolytic medium and the piece to be polished.
  • Electrolytic medium projection device on the piece
  • This device is designed for a process in which a fluid-type electrolytic medium of the invention is projected onto the surface to be polished. Any electrolytic medium of the invention can be used, but the best results are obtained with an electrolytic medium with an emulsified formulation.
  • a power supply (1) connects the positive pole to the piece to be polished (2) and the negative pole to a cathode-nozzle (9).
  • the power supply (1) is capable of providing a pulsed current with polarity inversion, with or without pauses between the different polarities.
  • the pulses can be of high frequency, being able to have a duration in the order of microseconds to seconds. It is capable of applying asymmetric voltages, that is, applying a different voltage value to each polarity.
  • This device produces a jet of electrolytic medium that exits through the cathode-nozzle (9), which has the function of directing the jet towards the piece and serving as electrical contact with the electrolytic medium.
  • the electrolytic medium After contacting the part, the electrolytic medium is collected in a tank (10). In this tank there is a medium agitator (11) that keeps the solid electrolyte particles in suspension in the electrolytic medium. Alternatively or additionally, the medium can be kept in suspension by bubbling a gas such as air.
  • a peristaltic pump (12) drives the electrolytic medium with sufficient pressure from the tank (10) to the cathode-nozzle (9).
  • the impulse of the electrolytic medium from the tank (10) to (9) can be produced by other means such as suction, an endless screw, pistons, etc.
  • the device preferably includes a system for analyzing the electrical current that is effectively passing through the system, such as an oscilloscope (13).
  • a system for analyzing the electrical current that is effectively passing through the system such as an oscilloscope (13).
  • the piece to be polished is a 25 cm 2 flat stainless steel surface.
  • the movement is achieved by the projection of the electrolytic medium on the surface to be polished.
  • the electrolytic medium has the following composition: Table 15. Composition of the electrolyte medium
  • the distance between the jet outlet nozzle and the piece is 3 cm.
  • the jet covers the entire surface of the piece A current divided into four sections is applied between them: Direct - Pause 1 -
  • the direct phase is the one that applies positive voltage to the part, the reverse phase applies negative, and the pauses do not apply electrical voltage.
  • a potential difference of 35 V symmetrical is applied, with a duration of each section of 2 - 0.1 - 3 - 0.1 in milliseconds. These conditions are applied for 35 minutes to produce a reduction in the
  • R a from 2.1 pm to 0.5 pm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Esta invención se enmarca en el sector de la industria dedicado al tratamiento de superficies metálicas y se refiere a un medio electrolítico que comprende partículas sólidas y un fluid no conductor, al procedimiento que utiliza dicho medio y al dispositivo para llevar a cabo el procedimiento.

Description

MEDIO ELECTROLÍTICO, PROCESO DE ELECTROPULIDO USANDO DICHO MEDIO ELECTROLÍTICO Y DISPOSITIVO PARA LLEVARLO A
CABO
Campo de la invención
Esta invención se enmarca en el sector de la industria dedicado al tratamiento de superficies metálicas. Especialmente en el sector del alisado, bruñido y pulido de metales.
Antecedentes
En 2016 se dio a conocer una nueva tecnología de pulido de superficies metálicas basada en un proceso electroquímico mediante un electrolito sólido descrito en el documento patente con número de publicación ES2604830. Al realizarse mediante un novedoso electrolito sólido, este proceso mejoraba sustancialmente el proceso de electropulido convencional en líquido. Desde un punto de vista práctico, se evita el uso de soluciones ácidas concentradas corrosivas y no se generan residuos líquidos. Por otro, los resultados obtenidos sobrepasan a los esperados de un proceso de electropulido convencional, ya que los cuerpos sólidos libres de electrolito sólido aumentan la selectividad concentrando el efecto electroquímico en los picos de rugosidad.
De un modo general, el electrolito sólido para este proceso de electropulido se compone de una resina de intercambio iónico que retiene un electrolito líquido. Varios documentos describen diferentes composiciones de estos electrolitos sólidos para realizar este proceso.
El documento ES2604830 describe un proceso de electropulido con electrolito sólido mediante transporte iónico, y un electrolito sólido en el cual el electrolito líquido retenido incluye ácido fluorhídrico.
El documento ES2721170 describe un electrolito sólido en el cual el electrolito retenido es una solución de ácido sulfúrico. Se describe a este electrolito como especialmente útil para aceros inoxidables y aleaciones de cobalto cromo. El documento ES2734500 describe un electrolito sólido en el cual el electrolito retenido es una solución de ácido clorhídrico como solución al problema específico que representa el pulido de titanio.
El documento ES2734415 describe un electrolito sólido que contiene una solución de un ácido sulfónico, preferentemente ácido metanosulfónico. Esta composición es útil para un gran rango de aleaciones y metales.
En todos los casos descritos, se trata de formulaciones que se basan en dos elementos: por un lado, un conjunto de partículas de soporte inerte no conductor, y por otro una solución acuosa de ácido fuerte.
Sin embargo, estas composiciones tienen una serie de limitaciones:
- Cuando se llega a los niveles más bajos de rugosidad que el sistema alcanza, se genera una ondulación característica, comúnmente llamada “piel de naranja”.
- Las partículas generan exsudados ácidos en la superficie del metal que provocan a menudo picadas y marcas (pitting).
- Lo exsudados ácidos, junto con el oxígeno atmosférico, oxidan la superficie de forma no controlada.
- La rugosidad final no se puede reducir más allá de un límite, que depende de la pieza (rugosidad inicial, metal, forma, etc.) y del electrólito sólido (tamaño, composición, concentración, etc.)
- La evaporación del líquido electrolito contenido genera una deriva de resultados en el proceso.
- La alta resistencia mecánica del medio evita que se puedan pulir piezas delicadas.
Las soluciones más o menos evidentes a estas limitaciones para un experto en la materia incluyen vahar los parámetros eléctricos usados en el proceso, reducir la concentración de la solución ácida que se incluye en el electrólito sólido o reducir la cantidad de solución acuosa. Esto puede producir una cierta mejora en alguno de los problemas, pero no representa ningún salto cualitativo. Descripción de la invención
Esta invención da a conocer un nuevo medio electrolítico, un proceso de electropulido que lo utiliza, así como dispositivos para llevar a cabo este proceso.
La diferencia fundamental de esta invención es la presencia de un fluido no conductor junto con partículas de electrolito sólido. De un modo contraintuitivo, esto presenta unas ventajas en un proceso de electropulido con electrolito sólido que se exponen a continuación.
Así pues, un aspecto de la invención se refiere a un medio electrolítico que comprende:
• Conjunto de partículas de electrolito sólido que comprenden partículas sólidas que retienen una solución conductora, y
• Un fluido no conductor no miscible en la solución conductora.
En la presente invención el término “conjunto de partículas de electrolito sólido” se refiere al conjunto formado por las partículas sólidas y la solución conductora.
En este texto el medio electrolítico de este aspecto de la invención se denominará medio electrolítico de la invención.
En este texto se entiende fluido en un sentido amplio, materiales con viscosidades muy altas se consideran fluidos, como por ejemplo la vaselina, con una viscosidad a temperatura ambiente cerca de los 0,05 m2/s. Se consideran fluidos dentro del ámbito de esta invención tanto los fluidos newtonianos como los no newtonianos.
En este texto se entiende que dos fluidos son no miscibles o inmiscibles en el caso de que no formen una sola fase en alguna proporción entre ellos dentro del rango de temperatura de trabajo del proceso, como referencia, de 0 a 100 °C.
Un segundo aspecto de la invención se refiere al uso del medio electrolítico de la invención en un proceso de electropulido. Otro aspecto de la invención se refiere a un proceso de electropulido que comprende las etapas de: conectar al menos una pieza a pulir a una fuente de alimentación; conectar al menos un electrodo al polo opuesto de la fuente de alimentación; poner en contacto la pieza a pulir y las partículas de electrolito sólido del medio electrolítico definido en la invención con un movimiento relativo entre la pieza y las partículas; aplicar una diferencia de potencial entre la pieza a pulir y el electrodo, lo que produce un paso de corriente entre ambos a través del medio electrolítico definido en la presente invención.
Se entiende como movimiento relativo aquel movimiento que cambia la posición relativa de dos puntos. Esto incluye un movimiento de oscilación o vibración entre dos puntos como, por ejemplo, el movimiento que ocurre entre una superficie que vibra y una partícula.
Un último aspecto de la invención se refiere a un dispositivo para electropulido que comprende: una fuente de alimentación; un electrodo que transmite la carga eléctrica de la fuente de alimentación al medio electrolítico; unos medios para generar movimiento relativo entre al menos una pieza metálica a pulir y un medio electrolítico según la invención donde los medios para generar movimiento relativo se seleccionan entre: medios de proyección del medio electrolítico sobre la pieza, conectados a la fuente de alimentación, y un recipiente con el medio electrolítico, y un sistema que dota a la pieza de conectividad eléctrica y movimiento.
Efecto técnico
La adición de un fluido no conductor a un conjunto de partículas de electrolito sólido mejora los resultados del proceso electroquímico de pulido con electrolito sólido de metales. En los procesos de electropulido con electrolito sólido previos a esta invención, se introduce una pieza metálica a pulir conectada a un electrodo en un medio de partículas de electrolito sólido que también contienen un segundo electrodo. La diferencia de potencial aplicada entre los electrodos provoca reacciones redox en los puntos de contacto partícula-metal (picos de rugosidad del metal), estos óxidos metálicos son eliminados por las partículas en forma de cationes, produciendo un efecto de pulido. Las partículas de electrolito sólido conducen la electricidad a través de las áreas de contacto entre ellas. Cuando las partículas contactan con la superficie metálica, debido a la presión, estas dejan exsudados ácidos en la superficie.
El electrolito sólido que se describe en esta invención incluye un fluido no conductor no miscible en el líquido electrolito que contienen las partículas. Este fluido tiene unos efectos sorprendentes en la conectividad entre las partículas, así como en la interacción partícula-superficie metálica.
Efecto entre las partículas
Sin el líquido no conductor, cada partícula tiene una parte de su superficie que contacta a otras partículas y otra parte que contacta al medio gaseoso (habitualmente aire). En cambio, en esta invención, el fluido no conductor contacta la superficie de las partículas esféricas, sin penetrar significativamente en el interior, evitando las áreas en las que la partícula contacta con otra partícula.
En las áreas de contacto partícula-partícula, se concentra el electrólito líquido que hay en las partículas. La inmiscibilidad entre los dos fluidos (conductor y no- conductor) hace que los meniscos de líquido conductor partícula-partícula estén más concentrados en el espacio, y por lo tanto sean más fuertes. Todo esto se traduce en una mayor conectividad de las partículas.
Efecto en la superficie a pulir
Durante un proceso de electropulido con esta invención, la superficie metálica queda cubierta con fluido no conductor, excepto en los puntos de contacto partícula-metal. Esto tiene varios efectos positivos en los acabados finales: - Protege de ataques ácidos localizados. Al estar la superficie recubierta de líquido no miscible, los exsudados ácidos acuosos de las partículas no se acumulan en la superficie metálica, lo que evita el pitting.
- Evita la oxidación atmosférica, al prevenir el contacto del oxígeno ambiental con el metal.
- Como la oxidación del metal es debida exclusivamente al contacto de las partículas y el paso de corriente eléctrico, se aumenta el control sobre el proceso electroquímico.
- Concentra la acción electroquímica donde es más efectiva, en los picos de rugosidad. Si visualizamos la rugosidad superficial como una sucesión de picos y valles, el fluido no conductor deja los valles inactivos frente al proceso electroquímico.
- Rugosidad y ondulación finales más bajas. Como el fluido se distribuye preferentemente en los valles, el proceso es capaz de discernir mejor la rugosidad y lograr acabados más lisos.
- Reducción de la “piel de naranja” final.
- Proceso más selectivo: menos metal eliminado para alcanzar la misma reducción de rugosidad.
Las partículas de electrolito sólido por si solas se comportan como un material granular. El hecho de que el electrolito sólido se pueda formular con un fluido no conductor permite tratar al conjunto como un fluido en ciertas formulaciones, lo que permite llevar a cabo el proceso de pulido por inmersión, pero también por proyección del conjunto hacia la pieza a pulir.
Así pues, esta invención describe: un medio electrolítico que comprende un fluido no conductor y un conjunto partículas de electrólito sólido, comprendido por partículas que retienen una solución conductora, donde el fluido no conductor y la solución conductora no son miscibles.
Descripción de las Figuras
La Figura 1 muestra un esquema ejemplar de un dispositivo de electropulido de la invención mediante inmersión. La Figura 2 muestra un esquema ejemplar de un dispositivo de electropulido de la invención mediante proyección.
La Figura 3 muestra una visión esquemática de un dispositivo de la invención en el cual las piezas a pulir no se encuentran sujetas firmemente, si no que se encuentran en un compartimento que las dota de conectividad eléctrica.
La Figura 4 muestra una visión esquemática de un dispositivo de la invención en el que el medio electrolítico es proyectado hacia la pieza a pulir recibiendo conectividad eléctrica desde la boquilla de salida conectada al cátodo.
La Figura 5 muestra un dispositivo de la invención en el cual las múltiples piezas a pulir se encuentran situadas en un bombo con la capacidad de girar.
Descripción detallada de la invención
Un aspecto fundamental de la invención se refiere a un medio electrolítico formado por un “conjunto de partículas de electrolito sólido con fluido no conductor” para electropulido que comprende:
• Un conjunto de partículas de electrolito sólido, que comprende unas partículas sólidas que retienen una solución conductora;
• Un fluido no conductor no miscible en la solución conductora.
Partículas de electrolito sólido
Las partículas de electrolito sólido están compuestas por partículas sólidas que tienen la capacidad de retener una solución líquida conductora de modo que esto les otorga conductividad. El conjunto partícula sólida de electrolito, solución líquida conductora, presenta una conductividad eléctrica mayor de 10micronS/cm. La retención de líquido se puede producir debido a una porosidad del material o debido a la estructura molecular como, por ejemplo, una estructura tipo gel. Preferentemente las partículas son porosas, esta porosidad es seleccionada entre: microporosidad, mesoporosidad, macroporosidad y porosidad fractal. Los mecanismos de retención pueden ser: permeación, absorción, adsorción, retención en el espacio interlaminar. Estas partículas pueden ser de cualquier material que sea capaz de retener líquido, como por ejemplo materiales minerales, cerámicos, poliméricos, compuestos orgánicos, compuestos inorgánicos, de origen vegetal.
Preferentemente estás partículas son de material polimérico.
Preferentemente las partículas son esferas o esferoides.
Preferentemente las partículas tienen una capacidad de retención del líquido situada entre el 1 % y el 80% de masa de agua respecto a la masa total que es la masa de partículas más la masa de agua.
En este texto, los % expresan relaciones de masa del componente X respecto a la masa total referenciado.
Material polimérico
Estas partículas sólidas capaces de retener liquido son preferentemente de material polimérico, ya que es un material con una dureza inferior a la de los metales, por lo que el proceso no tiene componente abrasiva. Como deben fluir por la superficie metálica, tienen una forma que favorece su movimiento por encima de la superficie a pulir. Debido a eso, la forma preferente de las partículas de material polimérico es una forma esférica o esferoidal.
Las rugosidades iniciales Ra a reducir se encuentran habitualmente entre 1 y 10 micrometres, para que las esferas puedan rodar por encima de la rugosidad, sin reseguirla, preferentemente los tamaños de partícula presentan una relación esfera- rugosidad muy alta (esferas grandes en relación a la rugosidad). Por eso, el diámetro óptimo medio de las partículas se encuentra preferentemente entre 100 micrometres y 1 milímetro.
El material polimérico preferente son resinas de intercambio iónico seleccionadas entre: resinas catiónicas, fuerte y débilmente ácidas, resinas de intercambio aniónico, fuerte y débilmente básicas y resinas quelantes. Más preferentemente de resinas de intercambio catiónico, ya que de este modo tienen capacidad de capturar los iones de metal extraídos en los procesos de electropulido. De manera particular, las partículas de material polimérico son de un copolimero de estireno y divinilbenzeno S-DVB sulfonado, ya que es un material resistente al ácido y a la acción oxidante del proceso. Posee la capacidad de actuar como intercambiador iónico, lo que favorece la extracción de metal de la superficie a pulir al almacenar los iones.
Alternativamente, las partículas de material polimérico son de un copolimero que contiene unidades derivadas de ácido acrílico o ácido metacrílico. Esto incluye los derivados con diferentes grupos funcionales como ácido acrílico, acrilamida, cianoacrilato, acrilatos de alquilo, entre otros y los correspondientes análogos con metacrilato. Las partículas basadas en estos materiales presentan una elasticidad elevada lo que es adecuado para procesar piezas con geometrías abiertas sin cavidades.
Las partículas pueden tener una estructura porosa, lo que facilita el intercambio de fluidos resultando en un proceso más rápido.
Alternativamente las partículas pueden tener una estructura tipo gel. En este caso el intercambio de fluidos está más restringido, lo que resulta en un proceso más lento, sin embargo, el contacto partícula-superficie queda más definido, resultando en una menor rugosidad final.
Preferentemente, las partículas de material polimérico incluyen grupos funcionales que son capaces de capturar o retener los iones metálicos generados durante el proceso, como grupos ácido, amino, o quelantes.
Estos grupos funcionales pueden ser del tipo ácido, como grupos sulfónico o carboxílico. Estos grupos funcionales ácidos son especialmente útiles en esta aplicación ya que tienen una buena resistencia química y son capaces de retener una gran variedad de iones metálicos.
También es posible usar grupos funcionales son del tipo quelante como, por ejemplo, iminodiacético, aminofosfónico, poliamina, 2-picolilamina, tiourea, amidoxima, isotiouronium, bispicolilamina, entre otros. Estos grupos quelantes tienen una selectividad alta sobre los metales de transición enfrente a los metales alcalinos o alcalinotérreos, lo que permite ser más flexible en la formulación y no requiere el uso de agua destilada.
Convenientemente, vahas resinas de intercambio iónico comerciales cumplen con las características requeridas para ser usadas como partículas material poliméhco.
Solución conductora
La solución líquida conductora que se encuentra retenida en las partículas es un líquido conductor. La función de la solución líquida conductora en un proceso de electropulido es doble: por un lado, conduce la electricidad, y por otro, ha de ser capaz de disolver los óxidos que se forman en la superficie a tratar. Por ello, la composición de este líquido es clave y depende del proceso al que se quiere aplicar, del tipo de superficie a tratar. Para procesos de electropulido la solución liquida conductora puede ser un líquido iónico, un ácido líquido, una solución conductora, un polímero líquido conductor.
La solución conductora puede incluir un disolvente polar como, por ejemplo, sin propósito de limitación, agua, etanol, isopropanol, DMSO, DMF, líquidos iónicos, entre otros. Preferentemente, la solución conductora incluye agua, ya que es un disolvente que es capaz de disolver efectivamente sales y óxidos metálicos.
De un modo aún más preferente, la solución conductora contiene al menos un ácido, por ejemplo, una solución acuosa que comprenda un ácido. Esto tiene el efecto técnico de aumentar la conductividad al aumentar el número de protones (que son altamente conductores) en el medio, y simultáneamente aumentar la solubilidad de óxidos metálicos, que mayoritahamente son ácidos. Por ejemplo, sin propósito de limitación, los ácidos que se pueden usar son ácido sulfúrico, ácidos sulfónicos, ácido fosfórico, ácidos carboxílicos, ácido cítrico, ácido clorhídrico, ácido fluorhídrico. Un ácido de uso preferente es el ácido sulfúrico, ya que es un ácido fuerte no volátil.
Una familia de ácidos de uso preferente son los ácidos sulfónicos, debido a su elevada acidez y a la solubilidad de sus sales. Preferentemente, el ácido sulfónico usado es ácido metanosulfónico, ya que es el que tiene mayor solubilidad de sus sales. El ácido fosfórico también es de uso preferente en casos de metales muy sensibles a la corrosión, ya que facilita la formación de capas pasivas de fosfatos metálicos protectores.
Un ácido de uso preferente muy activo y con una gran velocidad de ataque es el ácido clorhídrico.
Los ácidos se pueden usar solos o en combinación de varios de ellos. Una combinación preferente es la combinación de ácidos fuertes con ácido fosfórico.
Los ácidos se pueden combinar con agentes complejantes, sales, etc. para mejorar la conductividad de las partículas y la solubilidad de los óxidos y sales.
La concentración total en masa de los ácidos en la solución conductora está en el rango de 0,1 al 70 % en masa respecto a la masa total del agua más el ácido. Preferentemente del 1 % al 40% en masa de ácido respecto a la masa agua más ácido. Es un rango muy amplio debido a la gran diferencia de las propiedades químicas de los metales. El rango inferior se usa en casos de metales muy sensibles al ataque ácido. El rango superior es parecido a las concentraciones usadas en el electropulido convencional.
Por ejemplo, para pulir aceros y aleaciones basadas en hierro, se usa, preferentemente una concentración del ácido entre el 1 % y el 10 % en masa respecto a la masa de agua más ácido, ya que esto proporciona una conductividad alta y una disolución de óxidos suficiente. En cambio, para pulir titanio, preferentemente se usa una concentración de ácido en masa entre el 20% y el 35 % respecto a la masa total agua más ácido, ya que los óxidos de titanio formados requieren una concentración más alta para ser disueltos.
La solución conductora puede incluir un agente complejante como por ejemplo ETDA, citrato/ácido cítrico, polietilenglicoles, poliéteres, poliaminas, entre otros.
El ácido cítrico o citrato es útil en el proceso por su efecto quelante, lo que es efectivo en la eliminación de óxidos y sales de la superficie a pulir. La solución líquida conductora también puede ser neutra. En este caso debe incluir iones disueltos para aumentar la conductividad.
La solución líquida conductora también puede ser básica. El uso de aminas como base favorece la solución de los metales debido a su capacidad de coordinarse con cationes metálicos. Estas formulaciones con solución conductora básica son especialmente adecuadas para metales que forman complejos aniónicos.
Es posible añadir otros compuestos a la solución liquida conductora. Es posible añadir sales que aumenten la conductividad del líquido, como por ejemplo sales de metales alcalinos.
La relación de solución conductora entre el conjunto de partículas de electrolito sólido se encuentra preferentemente entre un 25%y un 60 % en masa/masa total, siendo la masa total la masa de la solución conductora y las partículas de electrolito, ya que en este rango hay suficiente líquido conductor como para observar una conductividad medible de las partículas de electrolito sólido, sin que se observe líquido conductor libre de las partículas de electrolito sólido. Más preferentemente se encuentra entre 35% y el 50% en masa partículas de electrolito/masa total, siendo la masa total la masa de la solución conductora y las partículas de electrolito.
En este texto se entiende líquido libre o fluido libre como aquel que se separa por si solo de la parte sólida en condiciones normales de presión y temperatura. Las condiciones normales implican que la presión es de 1 atm y la temperatura es 0°C. Se puede determinar, por ejemplo, mediante el “Method 9095 (Paint Filter Liquids Test)” descrito por la U.S. Environmental Protection Agency en la publicación SW- 846.
Preferentemente, cuando el material de las partículas es resina de intercambio iónico basada en un copolímero de estireno y divinilbenzeno sulfonado, una relación entre la solución conductora y el conjunto de partículas de electrolito sólido de entre el 34% y un 52% en masa/masa total proporciona un proceso de electropulido óptimo. Fluido no conductor
El fluido no conductor es un elemento definitorio de esta invención. Se trata de un fluido que en reposo a temperatura ambiente no conduce significativamente la corriente eléctrica. Para cumplir su función debe ser inmiscible en el electrolito líquido contenido en las partículas de electrolito sólido. De este modo, por afinidad el electrolito líquido se mantiene en el interior de las partículas y el fluido no conductor en el exterior. Como debe soportar la presencia de un líquido electrolito que puede ser una solución ácida, además de voltajes considerables, el fluido no conductor debe ser un compuesto estable, o cinéticamente estable, en las condiciones de trabajo.
El fluido no conductor ocupa espacio intersticial entre las partículas, ya sea en parte, totalmente o en exceso.
El fluido no conductor está en una concentración entre el 1% y el 80% referido en masa respecto a la masa total representada por la masa de las partículas de electrolito sólido más fluido no conductor.
Una ventaja de este medio electrolítico es que como la superficie expuesta al aire de líquido electrolito se reduce, se reduce también la evaporación de líquido electrolito, lo que aumenta la estabilidad del proceso, consiguiéndose resultados más reproducibles entre electrolitos nuevos y con vahas horas de uso.
En la superficie de la esfera, el líquido conductor se encuentra concentrado en los puntos de contacto con las otras esferas, generando unos meniscos más fuertes que producen una conectividad entre las partículas más alta.
Un efecto principal del fluido no conductor de las partículas de electrolito sólido es cubrir la superficie metálica de la pieza a pulir con líquido no conductor. Esto tiene vahos efectos técnicos que resultan en un mejor acabado del proceso de electropulido con electrolito sólido:
- Protección del metal frente ataques ácidos localizados
- Reducción de la oxidación atmosférica
- Mayor control sobre el proceso electroquímico - Mayor selectividad en los picos
- Acabado final con rugosidad más baja
Viscosidad
El proceso se puede llevar a cabo con fluidos de muy alta viscosidad, como por ejemplo vaselina, que tiene una viscosidad cerca de 0,05 m2/s. En estos casos se genera un sistema con una cohesividad entre partículas alta. Además, también se produce un recubrimiento de la pieza de alta viscosidad que protege eficientemente la superficie de oxidación atmosférica y los restos ácidos, por lo que es indicado para metales muy sensibles, como aceros al carbono.
En la mayoría de casos, interesa tener una capa homogénea de fluido no conductor que se aparte cuando la partícula contacta con la superficie, y que se recupere rápidamente cuando la partícula se va. Para conseguir esta distribución del fluido no conductor sobre la superficie a pulir, preferentemente el fluido no conductor tiene una viscosidad en el rango entre 1 ■ 10'7 y 1 ■ 10'4 m2/s, como, por ejemplo, hidrocarburos sin grupos funcionales Ce-Cíe, aceites de siliconas de baja viscosidad, entre otros. Así pues, el rango de viscosidades del fluido no conductor es muy amplio, de 1 ■ 10'7 a 0,05 m2/s, preferentemente centrado en el rango 1 ■ 10’7y 1 ■ 10’4 m2/s.
Volatilidad
El fluido no conductor puede tener cierta volatilidad, en este caso se deberá ir reponiendo periódicamente para mantener las propiedades. Para evitar este proceso, es preferible que el fluido no conductor sea poco volátil. Preferentemente el fluido tiene una temperatura de ebullición superior a 100 °C, por ejemplo, en el rango de 100 a 1000 °C.
Tipos
Hay un número limitado de tipos de fluidos no conductores que cumplan unas características de volatilidad, viscosidad, toxicidad, etc que los hagan viables para su uso en esta aplicación: hidrocarburos, disolventes orgánicos, aceites esenciales, silicona y aceites de silicona, disolventes fluorados, entre otros. Se pueden usar de forma pura o en combinación entre ellos.
Hidrocarburos Los fluidos basados en hidrocarburos encuentran uso en una gran variedad de aplicaciones, como por ejemplo lubricantes, combustibles, disolventes, etc. En este texto se entiende como hidrocarburos como aquellos compuestos que incluyen en su estructura solo carbono e hidrogeno. Debido a esta gran variedad de hidrocarburos existente, se pueden seleccionar aquellos que presenten las propiedades que mejor se ajusten a las necesidades.
Preferentemente se usan hidrocarburos alifáticos ya que, de un modo general, presentan una menor toxicidad que los hidrocarburos aromáticos y mayor estabilidad electroquímica.
Preferentemente se usan hidrocarburos alifáticos con un peso molecular y estructura que les permita estar en estado fluido o semifluido en la temperatura de trabajo, lo que sitúa a los potenciales candidatos en el rango C5-C30.
Preferentemente se usan hidrocarburos en el rango Ce-Cíe con una estructura lineal, ya que estos presentan unas viscosidades muy bajas, incluso por debajo de los 5-10’ 6 m2/s mientras que poseen una volatilidad alta, por encima de los 80 °C.
Los disolventes y compuestos orgánicos no miscibles en agua de baja volatilidad también se pueden usar en este proceso, por ejemplo, alcoholes alifáticos como 1- octanol, carbonates orgánicos como propilencarbonato, etilencarbonato, entre otros.
Siliconas
Las siliconas y aceites de silicona tienen vahas aplicaciones en relación a protección y lubricación de piezas metálicas, por lo que han sido optimizados para su interacción con diferentes superficies metálicas como lubricantes y otros usos. En este texto se entiende como siliconas o aceites de silicona aquellos oligómeros, polímeros, ciclos o demás estructuras que en su cadena principal incluyan enlaces O-S¡.
Estos líquidos presentan unas características útiles para esta invención. Los aceites de silicona que incluyen unidades de dimetilsiloxano -OSi(Me2)-. Los que tienen una estructura lineal son especialmente útiles debido a sus bajas viscosidades, así como aquellos cíclicos como por ejemplo el hexametilciclothsiloxano. En general, los polidimetilsiloxanos son buenos candidatos para el proceso y presentan una buena variedad, lo que permite ajustar el fluido no conductor a la aplicación. Fluorados
Otra familia de disolventes que proporciona unos resultados de alta calidad son los fluidos fluorados y perfluorados. En este texto se entiende disolvente fluorado como aquel que como mínimo incorpora un átomo de fluor en su estructura química.
Estos líquidos se encuentran entre los que presentan una menor energía superficial, por lo que su interacción con las partículas y con la superficie metálica es muy débil. Esto presenta la ventaja de no bloquear la superficie metálica, pero el inconveniente de tener un efecto menos marcado que otras familias de líquidos. Por eso esta familia de líquido está indicado para reducir la piel de naranja.
Los disolventes fluorados tienen una tensión superficial mucho menor que otros líquidos. Esto se debe a la alta electronegatividad del flúor junto con su poca polahzabilidad.
Emulsiones
Una mención especial merece los fluidos no conductores basados en sistemas emulsionados. Estos sistemas presentan una velocidad de erosión alta, fluidez elevada que facilita su bombeo, y además proporcionan acabados de alta calidad. Una ventaja adicional es la posibilidad de adaptar más fácilmente la fórmula a diferentes necesidades.
Estas emulsiones son, de forma expresa, una fase continua apolar no conductora que contiene micelas de solución polar conductora. Según la terminología usada habitualmente en emulsiones, estamos hablando de emulsiones tipo agua en aceite (water-in-oil, w/ó). La solución polar conductora de las micelas presenta la misma composición que la solución conductora que se encuentra retenida por las partículas de electrolito sólido. Como la fase continua apolar es no conductora, la emulsión en reposo sin partículas de electrólito sólido es no conductora.
Aunque la emulsión no sea conductora, la conductividad de la mezcla total del medio electrolítico, emulsión más partículas de electrólito sólido, es claramente superior a las formulaciones con fluidos no emulsionados. Esto es debido a que las micelas de la emulsión se estructuran alrededor de las partículas, que retienen solución conductora polar, desestabilizando localmente las micelas, aumentando de este modo los puentes hidrófilos entre partículas. En la superficie metálica, las micelas absorben los restos de solución polar (que puede contener ácido según la formulación), lo que reduce puntos de ataque preferencial, que se convertirían en picados (pitting).
Un fluido no conductor basado en emulsiones comprende:
• Un fluido no conductor como fase continua apolar basado en cualquiera de los fluidos no conductores mencionados en este texto
• Una solución conductora como fase dispersa polar
• Tensioactivos para estabilizar la emulsión
Preferentemente los porcentajes en masa del fluido no conductor son respecto a la masa total del fluido no conductor: la suma de la fase continua apolar, fase polar dispersa y tensioactivos. La fase apolar continua se encuentra en un rango comprendido entre el 50% y el 99%, la fase polar dispersa en un rango comprendido entre el 1 % y el 50% y los tensoactivos en un rango comprendido entre un 0,01 % y el 30%. Más preferentemente la fase apolar continua entre ¡n 70% y un 80%, la fase polar dispersa entre un 20% y un 30%, y el tensioactivo entre un 1 ,5% y un 3%.
Aún más preferentemente el tensioactivo es una mezcla de tensioactivo no iónico y tensioactivo aniónico de manera que el tensioactivo no iónico está en un rango comprendido entre el 0% y el 20% más preferentemente entre el 1 % y el 2%, el tensioactivo aniónico entre el 0% y el 10 % más preferentemente entre el 0,5% y el 1 % y siempre la suma de los tensioactivos es al menos el 0,01 %.
Para fomentar el efecto geométrico de la interacción superficie-partículas, preferentemente, la conductividad de la emulsión líquida es inferior a la conductividad de las partículas de electrolito sólido. Cuando se combina una emulsión de este tipo con un conjunto de partículas conductoras, las micelas de fase dispersa polar interaccionan con los puentes conductores que se establecen entre las partículas, contribuyendo a la conductividad global. Ajustando la cantidad y la estabilidad de las micelas de fase dispersa polar mediante la formulación y los tensioactivos, se ajusta la conductividad global y el efecto del medio electrolítico en el proceso y sobre la superficie a tratar. Preferentemente la fase apolar continua puede estar compuesta de líquidos apolares como, por ejemplo, sin propósito de limitación, hidrocarburos, disolventes orgánicos, polímeros líquidos, disolventes fluorados, siliconas, aceites minerales, aceites vegetales, etc. Preferentemente, la fase apolar continua comprende hidrocarburos dentro de la fracción C5-C20 ya que cumplen con las características técnicas requeridas de viscosidad y volatilidad.
De manera preferente la fase apolar continua se selecciona entre un hidrocarburo, silicona y su mezcla, la mezcla comprende un hidrocarburo y una silicona con un porcentaje en masa entre un 80 % y un 99% de hidrocarburo respecto a la masa total representada por masa de hidrocarburo más masa de silicona.
En la emulsión líquida, la fase polar dispersa está formada por coloides, micelas, microgotas, etc. dispersas en la fase apolar continua. La fase polar dispersa es miscible con la solución liquida conductora retenida en las partículas. Por eso, la fase polar dispersa interacciona con los puentes líquidos conductores que hay entre las partículas de electrólito sólido, regulando la conductividad del del medio.
Preferentemente la fase polar dispersa es una mezcla de agua y un ácido donde el agua representa en un porcentaje en masa entre el 30% y el 99,9 % respecto a la masa total agua y ácido, más preferente un porcentaje en masa entre el 90% y el 98%.
Formulaciones que facilitan que la fase polar dispersa interaccione con los puentes líquidos conductores presentan una conductividad más alta. Estas formulaciones preferentemente incluyen un tensioactivo hidrofílico o con HLB, (Balance hidrofílico lipofílico) alto, es decir, preferentemente con grupos iónicos o fuertemente polares, con una cadena apolar relativamente pequeña.
Formulaciones que estabilizan la fase polar dispersa en el seno de la fase apolar continua presentan una conductividad más baja. Estas formulaciones preferentemente incluyen tensioactivos que estabilizan la fase dispersa polar en la fase continua apolar. Estos tensioactivos preferentemente tienen un HLB relativamente bajo, con grupos polares no ionizados y una o vahas cadenas apolares grandes. Aunque la conductividad sea más baja, los puentes líquidos conductores se encuentran más estabilizados que sin emulsión, lo que mantiene la conductividad más constante cuando hay movimiento.
En este texto se usa el termino tensoactivo en el sentido amplio para englobar todos aquellos tensioactivos, detergentes, emulgentes, emulsionantes, humectantes, jabones, solubilizantes, suavizantes, surfactantes, antiespumantes, entre otros, que reducen la tensión superficial entre dos fases, y que, mayoritariamente, presentan una estructura química con parte polar y parte apolar. Un parámetro que define a un tensioactivo es su equilibrio hidrófilo— lipófilo o HLB (Hydrophilic-Lipophilic Balance). HLB alto corresponde a tensioactivos más soluble en fases polares, mientras que HLB bajo a tensioactivos más solubles en fases apolares.
En esta invención, el tensioactivo o mezcla de tensioactivos usados son claves para definir la estructura de la emulsión, lo que dicta su comportamiento y afecta a la interacción entre la emulsión líquida y las partículas, y la interacción entre la emulsión líquida y la superficie a tratar en los procesos de pulido.
Un efecto del tensioactivo en esta invención es controlar la interacción de la fase dispersa polar con los puentes de líquido conductor entre partículas, controlando indirectamente la conductividad. El tensioactivo controla la estabilidad de la fase dispersa polar en la fase apolar continua, a menor estabilidad, la interacción con los puentes líquidos conductores es mayor.
Además, un efecto adicional es que el tensioactivo puede formar una capa en la superficie de la pieza metálica en los procesos de electropulido. Esto actúa como protector y nivelador de la superficie, ya que en los valles de rugosidad la capa es más estable, favoreciendo una mayor exposición de los picos de rugosidad, lo que resulta en acabados más lisos cuando se usa esta invención.
El tensioactivo controla la disponibilidad de la fase polar dispersa a intervenir en los puentes líquidos conductores.
A mayor restricción de la fase polar dispersa en las emulsiones, el medio electrolítico es más lento, hay menos ataque a la superficie a tratar, y se producen mejores acabados. Mayor restricción se consigue con emulsionantes que estabilizan efectivamente la fase polar dispersa en la fase apolar continua. Tensioactivos con HLB bajos favorecen esta restricción.
Medios electrolíticos con menor restricción de la fase polar discontinua favorecen una mayor conductividad. Esta conductividad hace que el sistema sea más agresivo también más rápido, favoreciendo la eliminación de material. Este tipo de sistemas está especialmente enfocado a metales que se autopasivan, como por ejemplo aceros inoxidables, titanio, aluminio, entre otros. Tensioactivos que no estabilizan especialmente emulsiones polares en fases apolares son indicados en este caso, es decir, con HLB alto, haciendo menos estable la emulsión y facilitando una mayor cantidad de puentes acuosos.
Para obtener un electrolito versátil es interesante usar una mezcla de tensioactivos con diferentes propiedades. Usando una combinación de tensioactivos no iónicos (HLB relativamente bajo) con tensioactivos aniónicos (con HLB más alto), se consigue un sistema capaz de trabajar en un amplio rango de condiciones y proporcionar buenos resultados.
Esta combinación puede ser, por ejemplo, sin propósito limitativo, un tensioactivo no iónico con cadena etoxilada unida y un tensioactivo aniónico con grupo o grupos sulfónico o carboxilo.
Los tensioactivos comprenden mínimo una cabeza polar y una cola apolar. Según la cabeza polar se puede hablar de tensioactivos catiónicos, aniónicos, zwitterionicos, o neutros. Todos ellos pueden ser usados en este proceso.
La cola apolar puede incluir una cadena alifática de formula CnH2n+i que sea lineal o ramificada. Preferentemente, incluye una cadena alifática lineal. Aún más preferentemente está cadena se encuentra en el rango Ce-C .
La cola apolar puede incluir también grupos aromáticos. Además, también puede incluir una combinación de ambos en los que la cadena alifática está enlazada a un anillo aromático y este a su vez enlazado al grupo polar. Los tensioactivos aniónicos tienen la ventaja de no interaccionar con los grupos funcionales sulfónico ni carboxílico, por lo que son de uso preferente cuando el material polimérico incluye estos grupos funcionales. Los tensioactivos aniónicos comprenden mínimo una cabeza polar formada por grupo funcional cargado negativamente, una cadena apolar, y un catión. Preferentemente, el grupo polar cargado negativamente comprende un grupo sulfato, sulfonato, fosfato o carboxilato. Ejemplos de tensioactivos aniónicos incluyen, pero no se limitan, a sulfonatos de alquilbenzeno, sulfonatos de lignina, alquil sulfatos, alquil éter sulfatos, docusato, perfluoroactonosulfonato, perfluorobutanosulfonato, alquil-aril éter fosfato, alquil éter fosfato, alquil carboxilatos, entre muchos otros.
Los tensioactivos catiónicos de uso preferente se basan en grupos que contienen nitrógeno, como son amino, amonio, alcanolamina, o piridinio. Estos tensioactivos incluyen aminas primarias, secundarias o terciarias con grupos alquilo o arilo.
Los tensioactivos neutros de uso preferente son los que incluyen como parte polar cadenas de poliéteres, ya que estas cadenas son más voluminosas que los grupos iónicos y favorecen una buena estabilidad de la emulsión agua en aceite. Por ejemplo, cadenas con unidades de etilenglicol, etoxilatos de alquilfenol, alcoholes grasos, amidas, derivados del sorbitano, entre otros.
Los tensioactivos zwitteriónicos también llamados anfóteros presentan simultáneamente en la misma molécula un catión y un anión, así como una cola hidrofóbica. Ejemplos no limitantes de grupos presentes en tensioactivos zwitteriónicos que pueden ser usados en este proceso incluyen a óxidos de alquil amina, betainas, sultaina, grupo fosfocolina, entre otros.
Proporción de “Fluido no conductor” respecto “Partículas de electrólito sólido”
La cantidad de fluido no conductor debe ser suficientemente para que se recubra la superficie del conjunto de partículas esferas y las piezas que se vayan a pulir. Si la proporción de fluido no conductor es demasiado baja no se consigue los efectos deseados en el proceso. El valor mínimo de fluido no conductor para llevar a cabo el proceso es de 0,05 % de fluido no conductor respecto el total del medio electrolítico. De manera preferente el porcentaje en masa de partículas de electrolito sólido está entre el 20% y el 99% respecto a la masa total que se representa por partículas de electrolito sólido más fluido no conductor, más preferentemente entre el 50% y el 80%.
Un punto conceptualmente interesante es la cantidad que llena los espacios intersticiales del conjunto de partículas de electrolito sólido. La formulación puede tener más cantidad o menos cantidad que este valor. Una cantidad superior facilita el bombeado y la fluidez del medio.
En función de la proporción del fluido no conductor respecto las partículas de electrólito sólido, las propiedades físicas del conjunto vaha significativamente, esto afecta a la fluidez, pero también a la conductividad. A continuación, se describen dos casos ejemplares extremos: tipo material granular y tipo fluido.
Material granular
Este primer tipo incluye aquellas realizaciones en las que la cantidad de fluido no conductor no es suficiente para que el electrolito de esta invención presente líquido libre. El líquido no conductor se distribuye en la superficie de las esferas.
Esta proporción de fluido conductor se encuentra habitualmente por debajo del 10 % en peso del líquido no conductor respecto el total del medio electrolítico para que no haya líquido libre, y por encima de 0,05 % para que haya un efecto apreciable. En esta conformación, el medio electrolítico se comporta como un material granular. La movilidad de éste se puede favorecer y controlar mediante sistemas vibradores o fluidificación mediante inyección de un gas, como por ejemplo aire.
En estas cantidades, el fluido no conductor se distribuye por la superficie de las partículas de electrolito sólido sin que se observe líquido libre. Especialmente se sitúa en las zonas menos polares, que son las que están en contacto con el aire. En las zonas de la superficie de cada partícula que contactan con otras partículas, aquí principalmente hay menos fluido no conductor y más líquido electrolito. De este modo, entre las partículas se establecen unos puentes hidrófilos que actúan como fuerzas cohesivas entre las partículas. Para conseguir esta distribución es necesario que el líquido electrolito y el fluido no conductor sean inmiscibles. La conductividad a través de las partículas se produce a través de estos puentes hidrófilos.
Fluido
Cuando la cantidad de fluido no conductor supera al volumen intersticial ente las partículas de electrolito sólido, el exceso de líquido se sitúa como sobrenadante. Lo interesante de este tipo de formulaciones es que, al ser removidas, las partículas se sitúan en suspensión en el fluido no conductor, mientras que la existencia de la fuerza cohesiva de los puentes hidrófilos mantiene a las partículas en contacto, lo que mantiene la conductividad. En este estado, tenemos un conjunto que se comporta como un fluido conductor, lo que permite que sea transportado y bombeado como un fluido.
Cuando el medio electrolítico está en reposo, las partículas decantan, dejando al líquido distribuido entre los intersticios y el sobrenadante.
Cuando el medio electrolítico se encuentra en movimiento, éste se homogeneiza, manteniendo las partículas en suspensión, y el conjunto se comporta como un fluido mientras el movimiento se mantenga.
Esta formulación tiene la ventaja de poder manejar el conjunto como un fluido, lo que permite que sea proyectado hacia las zonas a pulir que más lo requieran o de difícil acceso. Esto supone una gran ventaja ya que permite al proceso atacar zonas y recovecos que de otro modo no quedarían bien procesados. Para estas aplicaciones son especialmente útiles los fluidos no conductores basados en emulsiones, ya que presentan una mayor fluidez y conductividad. En este caso, es posible trabajar en condiciones en las que el líquido en movimiento se comporte como una fase orgánica con micelas acuosas, pero que en estado de reposo se produzca una separación de la fase orgánica y la fase acuosa.
Estos sistemas también permiten el uso de ultrasonidos simultáneamente al proceso de electropulido que ayuden al proceso de limpieza de la superficie.
Si la conectividad se pierde debido al exceso de líquido y al movimiento, problema habitual en sistemas de proyección, se puede incorporar un proceso de separación parcial del líquido para asegurar el contacto de las partículas. Por ejemplo, se puede bombear usando un exceso de líquido no conductor y eliminar el exceso de líquido no conductor antes de proyectar el medio sobre la pieza. Proceso de electropulido
El medio electrolítico descrito esta especialmente pensado para ser usado en un proceso de electropulido de piezas metálicas.
En este proceso se aplica una corriente eléctrica entre la pieza y un cátodo a través del medio electrolítico descrito. Esto genera unos procesos redox en la superficie del metal, que generan óxidos y sales en los picos de rugosidad. Las partículas de electrolito sólido disuelven o eliminan estos óxidos y sales, eliminando material de los picos de rugosidad, produciendo un efecto de alisado de la superficie.
Por lo tanto, el proceso de electropulido comprende las etapas de: a) conectar al menos una pieza a pulir a una fuente de alimentación; b) conectar al menos un electrodo al polo opuesto de la fuente de alimentación; c) poner en contacto la pieza a pulir y las partículas de electrolito sólido del medio electrolítico definido anteriormente con un movimiento relativo entre la pieza y las partículas; d) aplicar una diferencia de potencial entre la pieza a pulir y el electrodo, lo que produce un paso de corriente entre ambos a través del medio electrolítico definido.
Los elementos mínimos para llevar a cabo este proceso son:
- Medio electrolítico que comprende un conjunto de partículas de electrolito sólido y un fluido no conductor
- Una pieza metálica para pulir
- Una fuente de alimentación
- Un electrodo
- Un mecanismo que provoca un movimiento relativo de la pieza vs las partículas del medio.
Por lo tanto, un último aspecto de la invención se refiere a un dispositivo para electropulido que comprende: una fuente de alimentación (1); un electrodo (3) capaz que transmite la carga eléctrica de la fuente de alimentación al medio electrolítico; unos medios para generar movimiento relativo entre mínimo una pieza (2) metálica a pulir y un medio electrolítico según se ha definido más arriba seleccionado entre: medios de proyección, conectados a la fuente de alimentación (1), del medio electrolítico sobre la pieza (2) y una jaula (14) con los medios de movimiento donde está la pieza (2) y el medio electrolítico, jaula (14) que dota a la pieza (2) de conectividad eléctrica y un recipiente que contiene el medio electrolítico y un electrodo (3) y un sistema que dota a la pieza de movimiento y conectividad eléctrica con la fuente.
La fuente de alimentación (1) se conecta a la pieza (2) a pulir y al electrodo (3). Un mecanismo produce un movimiento relativo entre la pieza (2) a pulir y el medio electrolítico. La fuente de alimentación proporciona una diferencia de potencial entre la pieza (2) a pulir y el electrodo (3). La corriente que circula entre la pieza (2) y el electrodo (3) produce efectos de oxidación en la pieza que transforman el metal superficial en óxidos o sales. Las partículas de electrólito sólido cuando contactan con el metal oxidado lo disuelven o eliminan de la superficie. Cuando las partículas son esféricas solo pueden contactar con los picos de rugosidad, solo en estos puntos se produce oxidación y solo en estos picos se elimina metal. De este modo, se va reduciendo la rugosidad por la eliminación de metal de los picos de rugosidad.
Corriente aplicada
La fuente de alimentación (1) aporta una diferencia de potencial entre la pieza (2) a pulir y el electrodo (3). De un modo general, la pieza va conectada al polo positivo o ánodo, y el polo negativo va conectado al electrodo.
La corriente aplicada se puede controlar de un modo amperioestático o de un modo potencioestático.
El voltaje aplicado depende de parámetros experimentales que varían en cada caso: metal a pulir, superficie metálica expuesta, conductividad del medio electrolítico, entre otros.
En metales y geometrías en las que se produce una acumulación de óxidos y sales metálicas, en estos casos, es recomendable aplicar intervalos de inversión de polaridad. Estas inversiones de polaridad se pueden producir en el orden de los segundos, de los milisegundos o de los microsegundos. Cada metal, en función de sus características y las de las sales y óxidos que produce, requiere unos tiempos optimizados de inversión de polaridad. Por ejemplo, para el electropulido de titanio, preferentemente se aplicarán intervalos de inversión de polaridad en el orden de las decenas de microsegundo. La inversión de polaridad puede ser de un modo simétrico, es decir, usando el mismo voltaje, o de un modo asimétrico, es decir, el voltaje positivo diferente al negativo, lo que permite adaptarse mejor a cada fase.
También es posible usar tiempos de pausa en los que no circula corriente en los que sigue habiendo un movimiento relativo de las partículas vs la pieza a pulir, para dar tiempo al proceso disolutivo.
Preferentemente se aplica una corriente eléctrica dividida en cuatro tramos: Directa — Pausa 1 — Inversa — Pausa 2. Cada tramo con un tiempo que es posible regular de manera independiente, de modo que se puede adaptar a cada caso. La duración de cada tramo puede estar en el orden de los segundos, de los milisegundos o de los microsegundos.
Las pausas de corriente eléctrica sirven para dar tiempo al medio electrolítico a disolver los óxidos formados durante la etapa de corriente directa.
De un modo empírico y no predecible a priori, se ha observado que los procesos de electropulido que incluyen inversiones de polaridad del orden de los microsegundos, de 1 a 1000 microsegundos, proporcionan acabados finales con una rugosidad menor y un brillo superior. Probablemente esto sea debido a que las capas de óxido generado por la corriente directa son de menor grosor y son más fácilmente eliminadles en la etapa inversa y las pausas.
Movimiento
Un aspecto clave del proceso es el movimiento relativo de las partículas de electrolito sólido y la pieza a pulir. Este se puede conseguir de diferentes maneras, que afectaran a la formulación de los electrolitos usados, así como de la maquinaria necesaria para llevar a cabo este proceso.
Movimiento relativo de la pieza vs partículas de electrólito sólido El movimiento relativo entre las piezas y las partículas de electrolito sólido es una necesidad o limitación característica de esta invención que no se encuentra en los electropulidos convencionales en líquido.
El movimiento relativo entre las piezas y las partículas se puede conseguir de vahas maneras diferentes. A continuación, se explican dos posibilidades, sin que esto suponga ninguna limitación a otras posibles conformaciones. Cada movimiento aprovecha los beneficios de las diferentes formulaciones posibles del electrolito.
Los modos ejemplares del movimiento relativo son:
— Movimiento de la pieza en el medio electrolítico
— Proyección del medio electrolítico sobre la pieza
Los dos modos pueden darse tanto con material granular como con medio fluido.
Movimiento de la pieza en medio electrolítico
En la estrategia de movimiento de la pieza en medio electrolítico, este movimiento relativo consiste en mover la pieza en un recipiente que contenga las partículas. De este modo, hay un contacto de la pieza con las partículas que provoca una fuerza de fricción. Este movimiento puedo ser macroscópico, es decir un movimiento de traslación, o puede ser un movimiento de vibración, milimétrico o submiliméthco. Preferentemente se aplica una vibración en todos los casos, ya que mejora el movimiento local sin que se hayan observado efectos negativos.
El movimiento macroscópico óptimo para aplicar depende de la geometría de la pieza. Por ejemplo, para piezas de geometría cilindrica, tipo brocas, punzones, barras, etc. preferentemente se aplica un movimiento de traslación circular horizontal, que adicionalmente puede ir acompañado de un movimiento oscilatorio vertical.
Cuando se usa con material granular, se usan partículas de electrolito sólido con una cantidad relativamente baja de fluido no conductor, menor al 10% en peso de conjunto del medio electrolítico. Esto resulta en una formulación en la que mayohtahamente no se observa liquido libre. La presencia de fluido no conductor actúa como lubricante, mejorando la movilidad de las partículas y evitando que se puedan quedar enganchadas en la superficie a pulir debido a efectos hidrofílicos. Esta movilidad extra supone una ventaja respecto a los sistemas sin fluido no conductor, ya que permite pulir piezas delicadas sin que la resistencia del medio las dañe.
En otras conformaciones, la pieza se mueve en medio electrolítico que se comporta como un fluido debido a un movimiento de las partículas de electrolito sólido en el fluido no conductor. La cantidad de fluido no conductor esta alrededor del volumen necesario para cubrir los espacios intersticiales de las partículas, pero puede ser superior o inferior. Preferentemente, el volumen del fluido no conductor es superior al necesario para cubrir los espacios intersticiales.
El movimiento para mantener a las partículas en suspensión se puede conseguir mediante agitación, mediante insuflación de un gas, mediante un bombo, etc.
Proyección del medio electrolítico sobre la pieza
En esta estrategia el movimiento relativo pieza-medio se consigue mediante la proyección del medio electrolítico en forma de jet o de chorro contra la superficie de la pieza metálica a pulir.
Es posible usar este sistema con el medio granular. En este caso, las partículas deben mantener cierto contacto entre ellas. Esto se puede conseguir mediante el impulso sincopado del material granular.
Sin embargo, este sistema es mucho más viable aprovechando las propiedades de las formulaciones tipo fluido. En estos casos, es posible bombearlo y proyectarlo contra la superficie de la pieza a pulir, como si fuese una manguera. El extremo de una boquilla de proyección hace las veces de cátodo. El medio electrolítico se proyecta sobre la pieza a pulir, se aplica una diferencia de potencial entre la pieza y la boquilla, lo que provoca una corriente entre la pieza y el cátodo-boquilla a través de las partículas de electrolito sólido del chorro. El medio electrolítico cae en un recipiente y puede ser bombeado de nuevo.
Este sistema requiere una agitación constante para mantener la fluidez. Esta agitación se puede conseguir mediante diferentes medios, como remover el medio, aplicar inyección de un gas burbujeando, etc. Como se ha dicho el proceso de electropulido que usa el medio electrolítico compuesto de partículas de electrolito sólido con fluido no conductor requiere unos dispositivos que se adapten a las especificidades de este nuevo medio.
Estos dispositivos deben comprender, como mínimo: una fuente de alimentación (1); un electrodo (3) capaz de transmitir la carga eléctrica de la fuente de alimentación al medio electrolítico; unos medios para generar movimiento relativo entre, mínimo una pieza (2) metálica a pulir y un medio electrolítico según se ha definido más arriba, seleccionados entre: medios de proyección, conectados a la fuente de alimentación (1), del medio electrolítico sobre la pieza (2); y una jaula (14) con los medios de movimiento donde está la pieza (2) y el medio electrolítico, jaula (14) que dota a la pieza (2) de conectividad eléctrica; un recipiente que contiene el medio electrolítico y un electrodo (3). y un sistema que dota a la pieza de movimiento y conectividad eléctrica con la fuente.
La fuente de alimentación proporciona la tensión suficiente para producir unos efectos electrolíticos sobre la pieza. La tensión aplicada puede ser continua, alterna, alterna rectificada, pulsada, de onda cuadrada, etc. Preferentemente, la fuente de alimentación es capaz de proporcionar una corriente que incluye inversiones de polaridad. Las inversiones de polaridad se pueden dar en frecuencias con un periodo en el orden de los segundos, milisegundos o microsegundos. De un modo empírico y no predecible a priori, se ha observado que los procesos de electropulido que incluyen inversiones de polaridad del orden de los microsegundos, de 1 a 1000 microsegundos, proporcionan acabados finales con una rugosidad menor y un brillo superior.
Una parte fundamental para el proceso es el movimiento relativo entre la pieza a pulir y el medio electrolítico. Se prevén diferentes sistemas para este fin, cada uno adaptado a diferentes necesidades, ya sea por tamaño, forma, tipo de pieza, número de piezas a pulir a la vez, entre otros parámetros. En una realización preferente, los medios para generar movimiento relativo consisten en un sistema capaz de mover la pieza a pulir sumergida en el medio electrolítico. Este sistema tiene la ventaja de que toda la pieza a pulir está en contacto con el medio electrolítico, así que se procesa toda la pieza a la vez. Un movimiento preferente de la pieza en el medio es el de traslación circular. Este movimiento resulta óptimo ya que provoca zona de presión en todas las orientaciones, de modo que no hay orientaciones que reciban más presión que otras. Alternativa o complementariamente, se puede usar un movimiento vertical alternativamente ascendente-descendente que genere un movimiento relativo en esa dirección. La elección del movimiento a aplicar dependerá de la geometría de la pieza a procesar. En este sistema las piezas a pulir pueden tener una sujeción firme que asegure un contacto eléctrico permanente y una orientación adecuada. Esta sujeción es adecuada para piezas de alto valor añadido, de geometrías complicadas o detalles delicados.
Alternativamente, en este sistema las piezas no están sujetas firmemente si no que están colocadas en un compartimento que deja pasar el medio electrolítico con sus partículas, pero no permite que salgan las piezas a pulir. Este compartimento dispone de una red o una plancha metálicas perforada que está conectada a la fuente de alimentación, las piezas al contactar con esta red se dotan de conectividad eléctrica con la fuente. A este dispositivo se denomina dispositivo en jaula
La Figura 3 muestra una visión esquemática de un dispositivo en jaula para electropulido en el cual las piezas a pulir no se encuentran sujetas firmemente, sino que se encuentran en un contenedor que las dota de conectividad eléctrica. Las piezas para pulir se encuentran emplazadas en un contenedor cuyos límites permiten el paso de las partículas de electrólito sólido, pero no dejan escapar las piezas a pulir. Parte del contenedor que contacta con las piezas a pulir es de un material conductor, y conecta la fuente eléctrica con las piezas, de modo que estas reciben conectividad eléctrica a las piezas sin una fijación permanente.
De manera preferente, las piezas pueden estar reposando sobre una rejilla conductora que está conectada a la fuente de alimentación. Este dispositivo provoca un movimiento relativo de las piezas a pulir respecto las partículas de electrolito sólido. Por ejemplo, este efecto puede conseguirse moviendo el contenedor de las piezas a pulir en el medio electrolítico, lo que produce un movimiento relativo entre las partículas y las piezas a pulir. Alternativamente, puede haber un sistema que provoca un flujo de partículas de electrólito sólido a través del contenedor.
En otra realización preferente, los medios para generar un movimiento relativo entre la pieza a pulir y el medio electrolítico comprenden un sistema que impulsa el medio electrolítico sobre la pieza en forma de chorro o de jet. Dentro de este chorro, las partículas de electrolito sólido deben mantenerse con conectividad entre ellas. Este sistema tiene la ventaja de poder procesar las piezas por secciones y llegar a zonas internas de difícil acceso. Además, este sistema puede aplicarse para pulidos en cabina. En este sistema, un chorro de medio electrolítico sale de una boquilla que está conectada a la fuente de alimentación y hace la función de electrodo. El chorro contacta con la pieza a pulir y cae a un recipiente de recogida. Este recipiente mantiene las partículas de electrolito sólido en suspensión mediante agitación, burbujeo u otro sistema. Un sistema de bombeo, como por ejemplo una bomba peristáltica, impulsa al medio de nuevo hacia la pieza.
La Figura 4 muestra una representación esquemática de este dispositivo para un proceso de electropulido mediante medio electrolítico con fluido no conductor que provoca el movimiento relativo de las partículas de electrolito sólido respecto la pieza a pulir mediante la proyección de un chorro del medio electrolítico, mediante una boquilla (9). El dispositivo comprende una fuente de alimentación, un sistema para dotar de conectividad eléctrica a la pieza a pulir, un sistema de impulsión del medio electrolítico y un electrodo con polaridad opuesta a la pieza a pulir en la salida del chorro de medio electrolítico.
Este sistema se beneficia de las ventajas que aporta un medio electrolítico tipo líquido, ya que este medio puede ser bombeado y propulsado hacia la pieza a pulir e incidir en zonas difíciles de pulir.
Por lo tanto, preferentemente el dispositivo comprende una boquilla (9) como medio de proyección unida al cátodo (3). Más preferentemente comprende además una bomba para bombear el medio electrolítico que cae al recipiente (10) hacia la boquilla (9). En general las partículas proyectadas tienden a perder contacto entre ellas, lo que limita la conductividad eléctrica. En esta invención, esta limitación se supera especialmente con las formula de medio electrolítico con partículas de electrolito sólido con emulsión ya que, en este caso, la fase dispersa polar refuerza los puentes de líquido conductor que se establecen entre partículas, mejorando la conductividad eléctrica del sistema, por lo que es una solución novedosa a como mantener la conectividad eléctrica entre partículas conductoras proyectadas.
En otra realización preferente, los medios para generar un movimiento relativo entre la pieza a pulir y el medio electrolítico comprenden un sistema formado por un bombo que dispone de aperturas de una medida tal que es capaz de dejar pasar a las partículas de electrolito sólido del medio electrolítico, pero retiene a las piezas a pulir. El bombo puede girar completa o parcialmente, lo que produce un volteo de las piezas de modo que se procesan en todas las orientaciones. El bombo puede ser cilindrico o ser un prisma de sección triangular, cuadrada, hexagonal entre otros.
Este bombo dispone de un elemento conectado a la fuente de alimentación que contacta con las piezas a pulir. Este elemento puede formar parte de las paredes del bombo, o puede ser un elemento flexible que dirigido hacia el interior del bombo que contacte las piezas. Esta realización es especialmente útil para procesar piezas en grandes cantidades.
La Figura 5 muestra un esquema de dispositivo para el electropulido mediante electrolito sólido con fluido no conductor en el cual las múltiples piezas (2) a pulir se encuentran situadas en una jaula (14) con la capacidad de girar. Este dispositivo comprende una fuente de alimentación (1), un electrodo (en negro), una jaula (14) con paredes que permiten el paso del medio electrolítico (hexágono).
Este sistema permite el tratamiento de múltiples piezas (2) a la vez, lo que es indicado para series industriales. Un punto clave de este dispositivo es la jaula (14) contenedor. Las paredes de la jaula (14) deben mantener las piezas dentro, pero permitir la libre circulación de las partículas de electrólito sólido a su través. Como preferentemente las partículas de electrolito sólido son esferas de un tamaño entre 0.1 y 1 mm, debe haber unas aperturas en las paredes de, preferentemente, más de 4 mm. Por este motivo, este dispositivo no es adecuado para piezas que sean menores de ese tamaño.
En otra realización preferente, el movimiento se genera mediante un movimiento global del sistema. En esta realización, el medio electrolítico, el electrodo y la pieza a pulir se encuentran situadas en un contenedor cerrado. La pieza a pulir se encuentra sujeta firmemente, así como el electrodo. Un mecanismo externo provoca un movimiento suficiente como para producir un movimiento global de todo el medio contenido en el interior. Por ejemplo, este movimiento puede ser tipo “coctelera”, una agitación brusca. Así mismo, este movimiento puede ser un tumbado repetido en uno o varios ejes, como sería un movimiento tipo mezclador giroscópico.
Realizaciones ejemplares
Formulación de un medio electrolítico tipo material granular con ácido metanosulfónico
En una realización preferente, las partículas de polímero son de una resina de intercambio iónico basadas en un copolímero de estireno y divinilbenzeno S-DVB sulfonado macroporoso con forma que tiende a esférica con una distribución de tamaños centrada alrededor de los 0,7 mm, con nombre comercial Mitsubishi Relite CFS.
Estas partículas contienen un 40 % en peso de una solución conductora que consiste en una solución de ácido metanosulfónico al 10 % en agua destilada.
Sobre estas partículas se ha añadido un 0,3 % en peso de una mezcla de hidrocarburos Cg-C de baja viscosidad, con nombre comercial HYDROSEAL G 232 H.
Composiciones preferentes se muestran en la tabla 1 y en la tabla 2.
Tabla 1 : muestra una composición preferente del medio electrolítico de la invención
Figure imgf000034_0001
Tabla 2: muestra una composición preferente del medio electrolítico de la invención con rangosango:
Figure imgf000035_0001
*La concentración de ácido metanosulfónico preferentemente se encuentra en un rango del 1 al 45 % en masa.
Formulación de un medio electrolítico tipo material granular con ácido sulfúrico
En esta realización el electrolito sólido con fluido no conductor está compuesto por un conjunto de partículas de electrolito sólido basadas en unas partículas de polímero esféricas de resina de intercambio iónico de estireno-divinilbenzeno sulfonado con una estructura tipo gel, sin porosidad definida, con un diámetro medio alrededor de 0,7 mm, Mitsubishi Relite CFH.
Las partículas de polímero contienen un 45 % de una solución conductora de ácido sulfúrico al 5 % en agua. Como fluido no conductor, se usa Hydroseal G 232 H o un aceite de silicona basado en polidimetilsiloxano con una viscosidad de 3 10'6 m2/s (3 cSt) en un 3 %.
Esta formulación controla muchos los exsudados ácidos, lo que si se usa en un proceso de electropulido con electrolito sólido resulta en una superficie final obtenida con acabados especulares.
Tabla 3: muestra una composición preferente del medio electrolítico de la invención
Figure imgf000035_0002
Tabla 4: muestra una composición preferente del medio electrolítico de la invención
Figure imgf000036_0001
*La solución conductora es una solución de ácido sulfúrico con una concentración de 0,5 al 30 % en masa.
Tabla 5: muestra una composición preferente del medio electrolítico de la invención
Figure imgf000036_0002
Tabla 6: muestra una composición preferente del medio electrolítico de la invención
Figure imgf000036_0003
Partícula de electrolito sólido con fluido no conductor
Otra realización preferente de esta invención consiste en resina de intercambio iónico de con unidades de ácido acrílico en forma esférica con estructura tipo gel, que reduce los exsudados en combinación con una solución acuosa electrolítica que contiene ácido cítrico 5% que proporciona la conductividad necesaria.
Como fluido no conductor se usa una disolvente fluorado de baja viscosidad y alto punto de ebullición, en este caso el disolvente fluorado es FC96500. Este disolvente de baja viscosidad mejora el movimiento entre las partículas.
Formulación medio electrolítico fluido con ácido metanosulfónico
En una realización preferente, hay una cantidad de fluido no conductor para llenar los espacios intersticiales de las partículas en reposo y una cantidad adicional. Cuando las partículas se encuentran reposo, hay una parte de fluido no conductor sobrenadante. Cuando el conjunto está en movimiento, se obtiene una suspensión homogénea de las partículas de electrolito sólido en el fluido no conductor que en conjunto es conductor de la electricidad.
En esta realización preferente el electrolito sólido está formado por una resina de intercambio iónico Mitsubishi Relite CFH que contiene como electrolito líquido un 45 % en peso de una solución de ácido metanosulfónico al 10 %. Sobre estas partículas de electrolito se añade un fluido no conductor basado en hidrocarburos Cg-C , como por ejemplo el comercial llamado Hydroseal G 232 H para que cubra todo el volumen de partículas de electrólito (rellene los espacios intersticiales), y luego se añade un 10 % más del volumen añadido.
Tabla 7: muestra una composición preferente del medio electrolítico de la invención
Figure imgf000037_0001
Tabla 8: muestra una composición preferente del medio electrolítico de la invención
Figure imgf000037_0002
*La concentración de ácido metanosulfónico preferentemente se encuentra en un rango del 1 al 45 % en masa.
Formulaciones de medio electrolítico tipo fluido con emulsión
Tabla 9 — Ejemplo de fórmula emulsionada para aceros inoxidables
Figure imgf000037_0003
Tabla 10 — Ejemplo de fórmula emulsionada para aceros al carbono
Figure imgf000038_0001
Tabla 11 — Rango general ejemplar de formulaciones emulsionadas
Figure imgf000038_0002
*La suma de los tres ácidos es superior a 0,5%
A continuación, se muestran las Tablas 12 a 14 del — Detergente A citado en las tablas anteriores
Tabla 12- Fórmula ejemplar del detergente A, A1
Figure imgf000038_0003
Tabla 13- Fórmula ejemplar del detergente A, A2
Figure imgf000039_0001
Tabla 14. Fórmula ejemplar de detergente A en rango:
Figure imgf000039_0002
Dispositivo de movimiento de la pieza en medio electrolítico con sujeción firme
Este dispositivo prototipo está diseñada para tratar engranajes y piñones de diferentes tamaños. Para esta aplicación, el medio electrolítico adecuado es la “fórmula emulsionada para aceros al carbono”.
Dispone de una fuente de alimentación (1) que conecta el polo positivo con la pieza a pulir (2) y el negativo con el cátodo (3).
La fuente de alimentación (1) es capaz de proporcionar una corriente pulsada y con inversión de polaridad, con o sin pausas entre las diferentes polaridades. Los pulsos pueden ser de alta frecuencia, pudiendo tener una duración en el orden de los microsegundos a los segundos. Es capaz de aplicar voltajes asimétricos, es decir, aplicar a cada polaridad un valor de voltaje diferente.
La pieza a pulir (2) se sujeta mediante un holder (soporte) (4). Este holder tiene la función de sujetar la pieza durante el proceso y otorgarla de la conexión eléctrica con la fuente de alimentación. Asimismo, puede incorporar un sistema vibrador para mejorar el movimiento relativo pieza-medio electrolítico.
El holder (4) va conectado a un sistema que proporciona un movimiento de la o las piezas que sujeta con el medio. Este sistema de movimiento en esta realización consta de una guía-eje (5) accionada por un pistón neumático (6) que proporciona un movimiento oscilatorio vertical acompasado con un giro de modo que el movimiento producido coincide con la inclinación de los dientes del piñón o engranaje a pulir. De este modo hay un movimiento fluido de las partículas por el espacio intersticial.
El movimiento fluido de las partículas en el espació intersticial se consigue mediante el vibrador del holder (4), el movimiento proporcionado por la guía (5) y el pistón neumático (6) y la inyección de aire en el inferior del medio electrolítico mediante un compresor (7).
Toda la maquinaria del proceso va integrada en una estructura (8) que rigidiza todo el sistema para evitar movimientos no deseados entre el medio electrolítico y la pieza a pulir.
(1) Fuente de alimentación
(2) Pieza a pulir
(3) Cátodo
(4) Holder
(5) Guía-eje
(6) Pistón neumático
(7) Compresor
(8) Estructura
Dispositivo de proyección del medio electrolítico sobre la pieza
Este dispositivo está diseñado para un proceso en el que un medio electrolítico de la invención tipo fluido se proyecta sobre la superficie a pulir. Puede usarse cualquier medio electrolítico de la invención, pero los mejores resultados se obtienen con un medio electrolítico con formulación emulsionada.
Un ejemplo esquemático de este tipo de dispositivo puede verse en la figura 2.
Una fuente de alimentación (1) conecta el polo positivo a la pieza a pulir (2) y el negativo a un cátodo-boquilla (9).
La fuente de alimentación (1) es capaz de proporcionar una corriente pulsada y con inversión de polaridad, con o sin pausas entre las diferentes polaridades. Los pulsos pueden ser de alta frecuencia, pudiendo tener una duración en el orden de los microsegundos a los segundos. Es capaz de aplicar voltajes asimétricos, es decir, aplicar a cada polaridad un valor de voltaje diferente. Este dispositivo produce un chorro del medio electrolítico que sale por el cátodo- boquilla (9), que tiene las funciones de dirigir el chorro hacia la pieza y de servir de contacto eléctrico con el medio electrolítico.
Después de contactar con la pieza, el medio electrolítico se recoge en una cuba (10). En esta cuba hay un agitador (11) del medio que mantiene a las partículas de electrólito sólido en suspensión en el medio electrolítico. Alternativamente o complementariamente, el medio se puede mantener en suspensión mediante el burbujeo de un gas como por ejemplo aire.
Una bomba peristáltica (12) impulsa al medio electrolítico con presión suficiente desde la cuba (10) hasta el cátodo-boquilla (9). Alternativamente, el impulso del medio electrolítico de la cuba (10) hasta (9) se puede producir por otros medios como aspiración, un tornillo sin fin, pistones, etc.
El dispositivo preferentemente incluye un sistema de análisis de la corriente eléctrica que esta efectivamente pasando a través del sistema, como por ejemplo un osciloscopio (13).
(1) Fuente de alimentación
(2) Pieza a pulir
(9) Cátodo-boquilla
(10) Cuba
(11) Agitador
(12) Bomba peristáltica
(13) Osciloscopio
Ejemplo de proceso de pulido con proyección
En este caso ejemplar, la pieza a pulir es una superficie plana de acero inoxidable de 25 cm2. El movimiento se consigue mediante la proyección del medio electrolítico sobre la superficie a pulir. El medio electrolítico tiene la siguiente composición: Tabla 15. Composición del medio electrolítico
Figure imgf000042_0001
La distancia entre la boquilla de salida del chorro y la pieza es de 3 cm. El chorro recorre toda la superficie de la pieza Se aplica entre ellas una corriente dividida en cuatro tramos: Directa - Pausa 1 -
Inversa - Pausa 2. La fase directa es la que aplica la tensión positiva a la pieza, la inversa aplica la negativa, y las pausas no aplican tensión eléctrica. Se aplica una diferencia de potencial de 35 V simétricos, con una duración de cada tramo de 2 - 0.1 - 3 - 0.1 en milisegundos. Estas condiciones se aplican durante 35 minutos para producir una reducción de la
Ra de 2.1 pm a 0.5 pm.

Claims

42 REIVINDICACIONES
1 . Medio electrolítico caracterizado porque comprende:
• Un conjunto de partículas de electrolito sólido, que comprenden partículas sólidas que retienen una solución conductora, y
• Un fluido no conductor no miscible en la solución conductora.
2. Medio electrolítico según la reivindicación 1 caracterizado porque las partículas que retienen una solución conductora tienen una estructura porosa o una estructura tipo gel.
3. Medio electrolítico según la reivindicación 2 caracterizado porque las partículas que retienen una solución conductora son de material polimérico está formulado con mínimo uno de estos monómeros: estireno, divinilbenzeno, ácido acrílico, monómero derivado de ácido acrílico, ácido metacrílico, monómero derivado de ácido metacrílico y/o incluye grupos funcionales seleccionados de entre los siguientes: ácido sulfónico, carboxilato, iminodiacético, aminofosfónico, poliamina, 2-picolilamina, tiourea, amidoxima, isotiouronium o bispicolilamina.
4. Medio electrolítico según alguna de las reivindicaciones 1 a 3 caracterizado porque la solución conductora se selecciona entre: una solución acuosa o una solución acuosa que comprende un ácido seleccionado de los siguientes: ácido sulfúrico, ácidos sulfónicos, ácido metanosulfónico, ácido clorhídrico o ácido fosfórico.
5. Medio electrolítico según alguna de las reivindicaciones 1 a 4 caracterizado porque el fluido no conductor comprende un fluido seleccionado de entre: hidrocarburos de cinco a dieciséis carbonos, siliconas o aceites de silicona, disolventes fluorados.
6. Medio electrolítico según alguna de las reivindicaciones 1 a 5 caracterizado porque el fluido no conductor es una emulsión que comprende:
• Un fluido no conductor basado en hidrocarburos, siliconas, o disolventes fluorados 43
• Una solución conductora
• un tensioactivo.
7. Medio electrolítico según la reivindicación 6 caracterizado porque el tensioactivo comprende un tensioactivo no iónico y un tensioactivo aniónico y la solución conductora es una solución acuosa con pH ácido.
8. Uso del medio electrolítico según alguna de las reivindicaciones 1 a 7 en un proceso de electropulido.
9. Proceso de electropulido que comprende las etapas de: a) conectar al menos una pieza a pulir a una fuente de alimentación; b) conectar al menos un electrodo al polo opuesto de la fuente de alimentación; c) poner en contacto la pieza a pulir y las partículas de electrolito sólido del medio electrolítico definido en alguna de las reivindicaciones 1 a 7 con un movimiento relativo entre la pieza y las partículas; d) aplicar una diferencia de potencial entre la pieza a pulir y el electrodo, lo que produce un paso de corriente entre ambos a través del medio electrolítico definido en alguna de las reivindicaciones 1 a 7.
10. Proceso de electropulido según la reivindicación 9 caracterizado porque el movimiento relativo entre la pieza a pulir y el medio electrolítico comprende la proyección del medio electrolítico sobre la pieza a pulir o el movimiento de la pieza dentro del medio electrolítico.
11 . Dispositivo para electropulido caracterizado porque comprende:
• una fuente de alimentación (1);
• Un electrodo (3) que transmite la carga eléctrica de la fuente de alimentación (1) al medio electrolítico;
• unos medios para generar movimiento relativo entre al menos una pieza metálica (2) a pulir y un medio electrolítico según alguna de las reivindicaciones 1 a 7 seleccionados entre: medios de proyección, conectados a la fuente de alimentación (1), del medio electrolítico sobre la pieza (2); 44 una jaula (14) con los medios de movimiento donde está la pieza (2) y el medio electrolítico, jaula (14) que dota a la pieza (2) de conectividad eléctrica; y un recipiente que contiene el medio electrolítico y un electrodo (3) y un sistema que dota a la pieza de movimiento y conectividad eléctrica con la fuente.
12. Dispositivo para electropulido según la reivindicación 11 caracterizado porque comprende el recipiente (10) para emplazar el medio electrolítico y porque comprende un sistema para ubicar la pieza (4) a pulir dentro de dicho recipiente y dotarla de conectividad eléctrica.
13. Dispositivo para electropulido según la reivindicación 11 caracterizado porque los medios para generar movimiento relativo se seleccionan entre: un medio para generar un movimiento de traslación circular de la pieza a pulir dentro del medio electrolítico y/o un medio para generar un movimiento vertical alternativamente ascendente-descendente.
14. Dispositivo para electropulido según la reivindicación 11 caracterizado porque el medio de proyección es una boquilla (9) unida al cátodo (3).
15. Dispositivo para electropulido según la reivindicación 14 caracterizado porque presenta una bomba para bombear el medio electrolítico que cae al recipiente (10) hacia la boquilla (9).
PCT/ES2021/070864 2020-12-09 2021-11-30 Medio electrolítico, proceso de electropulido usando dicho medio electrolítico y dispositivo para llevarlo a cabo WO2022123096A1 (es)

Priority Applications (9)

Application Number Priority Date Filing Date Title
IL303496A IL303496A (en) 2020-12-09 2021-11-30 Electrolytic medium, an electrolytic polishing process using such an electrolytic medium and a device for performing it
US18/266,376 US20240102197A1 (en) 2020-12-09 2021-11-30 Electrolytic medium, electropolishing process using such electrolytic medium and device to carry it out
EP21854809.7A EP4249647A1 (en) 2020-12-09 2021-11-30 Electrolytic medium, electropolishing process using such electrolytic medium and device to carry it out
AU2021397840A AU2021397840A1 (en) 2020-12-09 2021-11-30 Electrolytic medium, electropolishing process using such electrolytic medium and device to carry it out
MX2023006788A MX2023006788A (es) 2020-12-09 2021-11-30 Proceso de electropulido usando particulas de electrolito solido con fluido no conductor.
CA3201056A CA3201056A1 (en) 2020-12-09 2021-11-30 Electrolytic medium, electropolishing process using such electrolytic medium and device to carry it out
KR1020237023428A KR20230118929A (ko) 2020-12-09 2021-11-30 전해 매질, 이러한 전해 매질를 사용하는 전해연마공정 및 이를 수행하기 위한 장치
JP2023534379A JP2023553052A (ja) 2020-12-09 2021-11-30 電解質媒体、該電解質媒体を用いた電解研磨プロセス、及び該電解研磨プロセスを実行する装置
CN202180093323.8A CN116829769A (zh) 2020-12-09 2021-11-30 电解介质、使用该电解介质的电解抛光过程以及实施该过程的设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20383069 2020-12-09
EP20383069.0 2020-12-09

Publications (1)

Publication Number Publication Date
WO2022123096A1 true WO2022123096A1 (es) 2022-06-16

Family

ID=80222611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070864 WO2022123096A1 (es) 2020-12-09 2021-11-30 Medio electrolítico, proceso de electropulido usando dicho medio electrolítico y dispositivo para llevarlo a cabo

Country Status (10)

Country Link
US (1) US20240102197A1 (es)
EP (1) EP4249647A1 (es)
JP (1) JP2023553052A (es)
KR (1) KR20230118929A (es)
CN (1) CN116829769A (es)
AU (1) AU2021397840A1 (es)
CA (1) CA3201056A1 (es)
IL (1) IL303496A (es)
MX (1) MX2023006788A (es)
WO (1) WO2022123096A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2942541A1 (es) * 2022-11-15 2023-06-02 Steros Gpa Innovative S L Dispositivo para pulir superficies de piezas metalicas mediante proyeccion de particulas solidas electricamente activas
DE102022123211A1 (de) 2022-09-12 2024-03-14 Otec Präzisionsfinish GmbH Elektrolytmedium und Verfahren zum elektrochemischen Polieren von metallischen Werkstücken unter Verwendung eines solchen Elektrolytmediums
ES2963027A1 (es) * 2023-06-02 2024-03-22 Steros Gpa Innovative S L Metodo y equipo para control de la temperatura de las particulas en procesos de pulido mediante particulas solidas

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2604830A1 (es) 2016-04-28 2017-03-09 Drylyte, S.L. Proceso para alisado y pulido de metales por transporte iónico mediante cuerpos sólidos libres, y cuerpos sólidos para llevar a cabo dicho proceso.
ES2721170A1 (es) 2018-01-26 2019-07-29 Drylyte Sl Uso de so4h2 como electrolito para procesos de alisado y pulido de metales por transporte ionico mediante cuerpos solidos libres.
ES2734415A1 (es) 2018-11-12 2019-12-05 Drylyte Sl Uso de acidos sulfonicos en electrolitos secos para pulir superficies metalicas a traves del transporte de iones
ES2734500A1 (es) 2018-11-12 2019-12-10 Drylyte Sl Uso de un HCl en electrolitos secos para pulir Ti y otras superficies de metales y aleaciones a través de transporte iónico
ES2754876A1 (es) * 2019-08-01 2020-04-20 Steros Gpa Innovative S L Dispositivo para el tratamiento en seco de superficies metalicas mediante particulas solidas electricamente activas
ES2756948A1 (es) * 2020-02-04 2020-04-27 Drylyte Sl Electrolito solido para el electropulido en seco de metales con moderador de actividad

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2604830A1 (es) 2016-04-28 2017-03-09 Drylyte, S.L. Proceso para alisado y pulido de metales por transporte iónico mediante cuerpos sólidos libres, y cuerpos sólidos para llevar a cabo dicho proceso.
EP3372711A1 (en) * 2016-04-28 2018-09-12 Drylyte, S.L. Method for smoothing and polishing metals via ion transport by means of free solid bodies, and solid bodies for carrying out said method
ES2721170A1 (es) 2018-01-26 2019-07-29 Drylyte Sl Uso de so4h2 como electrolito para procesos de alisado y pulido de metales por transporte ionico mediante cuerpos solidos libres.
ES2734415A1 (es) 2018-11-12 2019-12-05 Drylyte Sl Uso de acidos sulfonicos en electrolitos secos para pulir superficies metalicas a traves del transporte de iones
ES2734500A1 (es) 2018-11-12 2019-12-10 Drylyte Sl Uso de un HCl en electrolitos secos para pulir Ti y otras superficies de metales y aleaciones a través de transporte iónico
ES2754876A1 (es) * 2019-08-01 2020-04-20 Steros Gpa Innovative S L Dispositivo para el tratamiento en seco de superficies metalicas mediante particulas solidas electricamente activas
ES2756948A1 (es) * 2020-02-04 2020-04-27 Drylyte Sl Electrolito solido para el electropulido en seco de metales con moderador de actividad

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022123211A1 (de) 2022-09-12 2024-03-14 Otec Präzisionsfinish GmbH Elektrolytmedium und Verfahren zum elektrochemischen Polieren von metallischen Werkstücken unter Verwendung eines solchen Elektrolytmediums
WO2024056315A1 (de) 2022-09-12 2024-03-21 Otec Präzisionsfinish GmbH Elektrolytmedium und verfahren zum elektrochemischen polieren von metallischen werkstücken unter verwendung eines solchen elektrolytmediums
ES2942541A1 (es) * 2022-11-15 2023-06-02 Steros Gpa Innovative S L Dispositivo para pulir superficies de piezas metalicas mediante proyeccion de particulas solidas electricamente activas
ES2963027A1 (es) * 2023-06-02 2024-03-22 Steros Gpa Innovative S L Metodo y equipo para control de la temperatura de las particulas en procesos de pulido mediante particulas solidas

Also Published As

Publication number Publication date
CA3201056A1 (en) 2022-06-16
KR20230118929A (ko) 2023-08-14
CN116829769A (zh) 2023-09-29
US20240102197A1 (en) 2024-03-28
MX2023006788A (es) 2023-06-20
IL303496A (en) 2023-08-01
EP4249647A1 (en) 2023-09-27
JP2023553052A (ja) 2023-12-20
AU2021397840A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
WO2022123096A1 (es) Medio electrolítico, proceso de electropulido usando dicho medio electrolítico y dispositivo para llevarlo a cabo
Worthen et al. Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles
Eastoe et al. Surfactants and nanoscience
JP6931661B2 (ja) 遊離固形物によるイオン輸送を介して金属を平滑化し、研磨する方法、および前記方法を実施するための固形物
Xue et al. Ultradry carbon dioxide-in-water foams with viscoelastic aqueous phases
Demissie et al. Effects of electrolytes on the surface and micellar characteristics of Sodium dodecyl sulphate surfactant solution
Gao et al. Seawater-driven magnesium based Janus micromotors for environmental remediation
Sarkar et al. Properties and applications of amphoteric surfactant: A concise review
Yang et al. Electrolytically generated nanobubbles on highly orientated pyrolytic graphite surfaces
CN103301782B (zh) 一种具有开关性的复合乳化剂
Yang et al. Alternating electric field actuated oscillating behavior of liquid metal and its application
WO2020099699A1 (es) USO DE UN HCI EN ELECTROLITOS SECOS PARA PULIR Ti Y OTRAS SUPERFICIES DE METALES Y ALEACIONES A TRAVÉS DE TRANSPORTE IÓNICO
JP5787265B1 (ja) 塗料残渣の捕集システムおよび塗料残渣の捕集方法
Chen et al. Oil-induced viscoelasticity in micellar solutions of alkoxy sulfate
Ise Like likes like: counterion-mediated attraction in macroionic and colloidal interaction
JP7418733B2 (ja) 気体供給装置、電気化学反応装置および気体供給方法
ES2754876A1 (es) Dispositivo para el tratamiento en seco de superficies metalicas mediante particulas solidas electricamente activas
Graciaa et al. Measurement of the zeta potential of oil drops with the spinning tube zetameter
Acosta et al. Surface activity of mixtures of dodecyl trimethyl ammonium bromide with sodium perfluorooctanoate and sodium octanoate
Karimi et al. Hydrodynamic Study of a Rising Bubble in the Presence of Cetyltrimethylammonium Bromide Surfactant
US6495617B1 (en) Methods to control phase inversions and enhance mass transfer in liquid-liquid dispersions
Graciaa et al. ζ Potential at an Air− Water Surface Related to the Critical Micelle Concentration of Aqueous Mixed Surfactant Systems
Lotfi et al. Hydrodynamics of rising air bubbles in mixture of proteins with non-ionic surfactants to declare their interaction at the air-water interface
Bhattarai et al. CONDUCTANCE OF SODIUM DODECYLSULFATE IN PRESENCE AND ABSENCE OF Na
ES2239912B1 (es) Pulido electrolitico de metales en emulsiones de moleculas anfipaticas.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3201056

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023534379

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/006788

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 18266376

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023011221

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021854809

Country of ref document: EP

Effective date: 20230620

ENP Entry into the national phase

Ref document number: 2021397840

Country of ref document: AU

Date of ref document: 20211130

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237023428

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023011221

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230607

WWE Wipo information: entry into national phase

Ref document number: 202180093323.8

Country of ref document: CN