WO2022121901A1 - 校正控制装置、校正系统和校正控制方法、校正方法 - Google Patents

校正控制装置、校正系统和校正控制方法、校正方法 Download PDF

Info

Publication number
WO2022121901A1
WO2022121901A1 PCT/CN2021/136119 CN2021136119W WO2022121901A1 WO 2022121901 A1 WO2022121901 A1 WO 2022121901A1 CN 2021136119 W CN2021136119 W CN 2021136119W WO 2022121901 A1 WO2022121901 A1 WO 2022121901A1
Authority
WO
WIPO (PCT)
Prior art keywords
image information
basic image
influencing factors
correction
data
Prior art date
Application number
PCT/CN2021/136119
Other languages
English (en)
French (fr)
Inventor
王浩
Original Assignee
王浩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王浩 filed Critical 王浩
Publication of WO2022121901A1 publication Critical patent/WO2022121901A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/90Testing, inspecting or checking operation of radiation pyrometers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • H04N23/23Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only from thermal infrared radiation

Definitions

  • the correction control device and the correction control method of the invention relate to the application field of infrared thermal imaging.
  • the correction processing of the thermal imaging data is an important link; it plays the role of reducing temperature drift and correcting images.
  • the original thermal image data is obtained by taking a file, and the AD value of each pixel of the thermal image data is corrected to a uniform specified value according to an algorithm (the K value obtained by calibration is usually combined in the algorithm), including the correction of each pixel.
  • a correction parameter (often referred to as the B-value) is obtained from a large amount of data; such image and thermometric correction techniques are well known in the art.
  • the shutter is an important component, and the basic image is generated by blocking the optical path of the detector by the file (the thermal image data representing the basic image is also often called the background image, etc., and is generally used.
  • the original AD value image can be used to generate correction parameters), which is used to obtain correction parameters related to the thermal image data of the subsequent shooting of the subject scene.
  • the stopper is located at the front of the infrared detector, which can be located in front of the lens, between the lens lenses, or between the lens and the detector; the stopper (stopper) can be enabled to block the detector by timing, manual, etc.
  • the shutter is generally activated or closed by the shutter motor, manual and other driving methods.
  • thermal imaging devices with baffles have many disadvantages, and there are three obvious disadvantages:
  • One disadvantage is that when observing an external target, the live image will be interrupted and missing frames during the start of the file;
  • Another disadvantage is that the file is used for a long time, and it is prone to failures such as stuck;
  • the temperature drift is large.
  • the temperature curve is generated by continuous temperature measurement
  • the calibration interval is 1 minute.
  • the temperature value obtained by shooting the measured object may drift slowly.
  • Accurate value can be reached, at this time, it is easy to produce a significant step in temperature, as shown in Figure 10; users are easily confused, is it due to the step caused by shifting gears or the temperature of the measured object itself has changed?
  • the steps can be reduced by more intensive shifting, but in practice, another problem arises that the shield motor heats up, which causes uneven temperature of the shield, which affects the accuracy of the temperature, and also causes frequent image interruptions, which is not feasible.
  • the present invention provides a correction control device, a correction system and a correction control method
  • a scheme, a correction control device includes:
  • the shooting part is used for shooting to obtain thermal image data
  • a correction control unit which controls the correction processing according to the basic image information
  • the basic image information used for correction processing includes the following two cases, and one of them is executed each time:
  • Case 1 Basic image information obtained based on the optical path of the occlusion detector or the thermal image data obtained during shooting based on the standard reference body;
  • Case 2 including at least one of the following:
  • the basic image information obtained in Case 1 and its corresponding influencing factors are recorded; or the corresponding relationship is also added to the corresponding relationship between the influencing factors and the basic image information.
  • the correction control device includes:
  • the shooting part is used for shooting to obtain thermal image data
  • a correction control unit which controls the correction processing according to the basic image information
  • the basic image information When based on the corresponding relationship between the influencing factors and the basic image information, according to the acquired data of the influencing factors, and according to the corresponding relationship, the basic image information can be determined; then the basic image information is used as the basic image information for correction processing;
  • the basic image information acquisition instruction is generated, based on the occlusion detector optical path or the shooting standard reference
  • the thermal image data acquired during the body is used to obtain basic image information, which is used as the basic image information for correction processing. Or obtain basic image information through the Communications Department;
  • the correction control unit controls the correction process based on the determined basic image information according to the correction instruction; Then, according to the corresponding relationship, the basic image information corresponding to the influence factor is determined to control the correction processing;
  • the basic image information can be re-acquired; including one or more of the following situations
  • the obtained basic image information may include one or more of thermal image data and correction parameters
  • Thermal image data includes one of the following situations, thermal image data obtained by shooting based on occlusion of the detector light path, or based on a standard reference object, or thermal image data obtained through processing based on the thermal image data, or based on the shooting. Thermal image data is involved in processing the obtained thermal image data;
  • the correction parameter includes one or a combination of the following conditions:
  • the thermal image data is one or a combination of the above conditions
  • Correction parameters obtained with the participation of thermal image data for example, according to the situation 1) to obtain correction parameters, and based on the currently obtained influencing factors, the correction parameters corresponding to the adjacent influencing factors will be obtained according to a specific algorithm such as averaging.
  • Correction parameters for example, the correction parameters obtained by calculating the thermal image data, and the correction parameters obtained after manual modification;
  • the influencing factors include one of the following factors:
  • the acquired influencing factors and their corresponding basic image information include one or a combination of the following situations:
  • the calibration control device includes:
  • the shooting part is used for shooting to obtain thermal image data
  • a correction control unit which controls the correction processing according to the basic image information
  • the basic image information used for the correction processing is the basic image information determined based on the corresponding relationship between the influencing factors and the basic image information, according to the acquired data of the influencing factors, and according to the corresponding relationship.
  • a calibration control device comprising:
  • the shooting part is used for shooting to obtain thermal image data
  • a correction control unit for performing control of correction processing according to the first basic image information
  • the first basic image information used for the correction processing is the first basic image information determined based on the corresponding relationship between the influencing factors and the basic image information, according to the acquired data of the influencing factors, and according to the corresponding relationship;
  • the correction control unit performs correction processing according to the second basic image information control.
  • a calibration control device comprising:
  • the shooting part is used for shooting to obtain thermal image data
  • a correction control unit for performing correction processing according to the basic image information
  • the correction control unit based on the corresponding relationship between the sensor data and the basic image information in the storage medium, according to the sensor data obtained by the sensing device, and using the basic image information corresponding to the sensor data to perform correction processing;
  • the sensor data is obtained based on the calibration control device itself or a sensor connected to it.
  • the processing unit when performing correction processing according to the first basic image information, uses the determined first basic image information to process the subsequent thermal image data, and obtains the processed first image and/or the first analysis data; when The correction processing is performed according to the second basic image information, and the processed second image and/or the second analysis data are obtained; at this time, the pause of the image may not be generated.
  • the correction control unit controls the correction process based on the determined basic image information according to the correction instruction; Then, according to the corresponding relationship, the basic image information corresponding to the influence factor is determined to control the correction processing;
  • the basic image information may include one or more of thermal image data, correction parameters, and correction algorithms;
  • the basic image information used for correction processing may include one or more of thermal image data, correction parameters, and correction algorithms ;
  • the basic image information includes one or a combination of the following:
  • the basic image information is not limited to being obtained locally, but can also be obtained by other thermal imaging devices;
  • thermal image data as basic image information includes one of the following situations:
  • the thermal imaging data corresponding to the specified range of influencing factors will be obtained according to a specific algorithm
  • the correction parameter includes one or a combination of the following conditions:
  • the influencing factors include one of the following factors:
  • Internal influencing factors including at least one of the temperature of an internal space, the temperature of a device, the local temperature of a lens, the temperature of a circuit board, and the temperature of a structural part; it may include one or more sensors. data;
  • the acquired data of influencing factors can be in various situations, including one or a combination of the following situations:
  • the specified time can be the specified time when the correction instruction is received, and the specified time includes the data of the influencing factors acquired or obtained after processing based on the data before, at, or after the correction instruction, or during a certain period of time.
  • Data of influencing factors can be issued according to a certain frequency, triggered by trigger conditions, manually triggered, etc.; the frequency can be configured as one of less than 1 minute, 30 seconds, 20 seconds, 10 seconds, and 5 seconds ;
  • Sources of influencing factor data include one or a combination of the following
  • the corresponding relationship between the influencing factors and the basic image information may include one or more of the following situations:
  • the corresponding basic image information will form a corresponding relationship , prepared in advance and stored in the storage medium; the basic image information can be obtained based on the thermal image data obtained by calibrating the control device before filing;
  • the corresponding relationship between the influencing factors and the basic image information can have one or more groups.
  • the determined basic image information can be based on the corresponding relationship stored by the correction control device itself, or the corresponding relationship obtained through the communication section, or based on the communication section in other devices connected Store the corresponding relationship to determine the basic image information;
  • a calibration control device comprising:
  • the acquisition part is used to acquire thermal image data
  • Influencing factor acquisition department which is used to acquire data on influencing factors
  • the basic image information recording unit is configured to associate and record the basic image information obtained based on the photographing during the activation of the file or the photographing of the standard reference body and the data of the corresponding image factors.
  • a corresponding relationship generating unit which extracts a plurality of influencing factors and corresponding basic image information according to a specific rule or algorithm to form a corresponding relationship.
  • the basic image information recording unit continuously records the obtained influencing factors and the corresponding basic image information according to a specified frequency; the corresponding relationship generating unit is used for extracting the basic image information exceeding the specified difference range according to the continuously recorded data.
  • the basic image information recording part records the obtained influencing factors and their corresponding basic image information; the corresponding relationship generating part extracts the basic image information that exceeds the specified difference range and the corresponding influencing factors, and constructs the influencing factors and the basic image information. relationship of image information.
  • control system includes:
  • At least one calibration control device and the processing device in communication with it;
  • the calibration control device includes:
  • the shooting part is used for shooting to obtain thermal image data
  • a correction control unit which controls the correction processing according to the basic image information
  • the basic image information used for the correction processing is the basic image information determined based on the corresponding relationship between the influencing factors and the basic image information, according to the acquired data of the influencing factors, and according to the corresponding relationship.
  • part of the influencing factors is derived from the processing device; part of the corresponding relationship is derived from the processing device;
  • processing device is used for providing the influencing factors and/or basic image information to the correction control device;
  • the correction control device determines the basic image information according to the information provided by the processing device, and controls the correction processing
  • the correction control device has a shutter mechanism, which can obtain thermal image data obtained by blocking the optical path of the detector or by shooting the calibration reference object.
  • the part of the influencing factors is derived from the processing device; the part of the corresponding relationship is derived from the processing device.
  • the processing device for providing the influencing factors and/or basic image information to the correction control device
  • the correction control device determines basic image information according to the information provided by the processing device, and controls the correction process.
  • Another calibration control device of the present invention includes:
  • the shooting part is used for shooting to obtain thermal image data
  • the correction instruction part is used to issue correction instructions
  • a correction control unit configured to perform correction processing according to the basic image information based on the correction instruction
  • the correction control unit based on the corresponding relationship between the sensor data and the basic image information, according to the sensor data obtained by the sensor device, uses the basic image information corresponding to the sensor data to perform correction processing; the sensor data is based on the correction control device itself or sensor connected to it, to obtain.
  • the sensor data includes at least one temperature sensing data.
  • temperature sensing data located at the lens cover, lens, shutter, detector, detector acquisition circuit, shell, outside of the shell, front shell, heat sink, processing circuit board, and control circuit board, among which at least two positions ;
  • Another calibration control device of the present invention includes:
  • the shooting part is used for shooting to obtain thermal image data
  • a correction control unit for performing correction processing according to the basic image information
  • the correction control part if the temperature sensing data obtained based on the temperature sensing device conforms to the corresponding relationship between the temperature sensing data and the basic image information, the basic image information is used; if the corresponding basic image information is not found, a file is issued. an activation instruction; the shutter control part is used to control the action of the shutter; the shutter is located at the front of the infrared detector; based on the activation instruction of the shutter, the shutter is controlled to block the infrared detector;
  • the basic image information recording part is used to record basic image information based on the recording instruction, and the basic image information is the thermal image data or related parameters obtained when the shield blocks the infrared detector;
  • the temperature-sensing data obtained by the temperature-sensing device of the control device is associated and recorded;
  • the basic image information recording unit is used to obtain the relationship between the temperature-sensing data obtained by the temperature-sensing device and the basic image information.
  • the correction control method of the present invention includes:
  • the basic image information used for correction processing includes the following two cases, and one of them is executed each time:
  • Case 1 Basic image information obtained based on the optical path of the occlusion detector or the thermal image data obtained during shooting based on the standard reference body;
  • Case 2 including at least one of the following:
  • Another correction control method of the present invention includes:
  • the basic image information used for the correction processing is the basic image information determined based on the corresponding relationship between the influencing factors and the basic image information, according to the acquired data of the influencing factors, and according to the corresponding relationship.
  • the correction control step is to control the correction processing according to the first basic image information
  • the first basic image information used for the correction processing is the first basic image information determined based on the corresponding relationship between the influencing factors and the basic image information, according to the acquired data of the influencing factors, and according to the corresponding relationship;
  • the correction control unit performs correction processing according to the second basic image information control.
  • the correction control method of the present invention includes:
  • the basic image information step is used to associate and record the basic image information obtained based on the occlusion detector (eg, during the activation of the shutter) or the standard reference body, and the data of the corresponding image factors. Or it also includes an extraction step, according to a specific rule or algorithm, to extract a plurality of influencing factors and corresponding basic image information to form a corresponding relationship.
  • the calibration method of the present invention includes:
  • Applied to the calibration system including at least one calibration control device and a processing device that communicates with it;
  • the steps performed by the calibration control device include:
  • the basic image information used for the correction processing is the basic image information determined based on the corresponding relationship between the influencing factors and the basic image information, according to the acquired data of the influencing factors, and according to the corresponding relationship.
  • the correction control method of the present invention includes:
  • the basic image information step is used to associate and record the basic image information obtained based on the occlusion detector shooting or the standard reference body shooting and the data of the corresponding image factors. Or it also includes an extraction step, according to a specific rule or algorithm, to extract a plurality of influencing factors and corresponding basic image information to form a corresponding relationship.
  • FIG. 1 is a block diagram showing the electrical configuration of the calibration control device of the first embodiment.
  • FIG. 2 is a diagram showing an example of the correction control device of the first embodiment.
  • FIG. 3 represents an example of a relationship table corresponding to temperature sensing data and basic image information.
  • FIG. 4 represents another example of the relationship table corresponding to influencing factors and basic image information.
  • FIG. 5 is an example of a flow showing a control procedure.
  • Fig. 6 is the schematic diagram of hinge type baffle
  • Fig. 7 is the schematic diagram of single pendulum type baffle
  • FIG. 8 represents another example of the relationship table corresponding to influencing factors and basic image information.
  • Figure 9 represents an example of a correction control device sensor arrangement.
  • Fig. 10 represents the temperature curve obtained by prior art file-shifting correction
  • Figure 11 represents the temperature curve obtained after correcting the basic image corresponding to the influencing factors
  • FIG. 12 represents an example diagram of Embodiment 2 and Embodiment 3;
  • the first embodiment of the present invention exemplifies a calibration control device with a thermal imaging function (hereinafter referred to as calibration control device 9), it can be various portable thermal imaging devices, online thermal imaging devices, etc. imaging devices, thermal imaging devices mounted on drones, vehicles, robots, etc. It is not limited to thermal imaging devices, but can also be applied to various photographing devices with shutter sensors for correction.
  • calibration control device 9 a calibration control device with a thermal imaging function
  • it can be various portable thermal imaging devices, online thermal imaging devices, etc. imaging devices, thermal imaging devices mounted on drones, vehicles, robots, etc. It is not limited to thermal imaging devices, but can also be applied to various photographing devices with shutter sensors for correction.
  • the correction control device includes: a photographing part, used for photographing to obtain thermal image data;
  • a correction control unit which controls the correction processing according to the basic image information
  • the basic image information used for the correction processing is the basic image information determined based on the corresponding relationship between the influencing factors and the basic image information, according to the acquired data of the influencing factors, and according to the corresponding relationship.
  • a preferred solution, the calibration control device includes:
  • the shooting part is used for shooting to obtain thermal image data
  • a correction control unit which controls the correction processing according to the basic image information
  • Basic image information for correction processing including the following two cases, and one of them is executed each time:
  • Case 1 Basic image information obtained based on the optical path of the occlusion detector (such as during filing) or the thermal image data obtained during the shooting of the standard reference body; Basic image information obtained by one or a combination of methods such as the prescribed processing of the image data, or the participation of the acquired thermal image data in the prescribed processing;
  • Case 2 including at least one of the following:
  • the basic image information may include one or more of thermal image data, correction parameters, and correction algorithms;
  • the basic image information used for correction processing may include one or more of thermal image data, correction parameters, and correction algorithms;
  • Basic image information includes one or more of the following:
  • the basic image information may be one or more of them, and the basic image information obtained by processing the basic image information according to an algorithm;
  • the basic image information is not limited to being obtained locally, but can also be obtained by other thermal imaging devices; for example, basic image information obtained by other thermal imaging devices is applied to all thermal imaging devices in the batch, or is also processed by human configuration.
  • the thermal image data includes one of the following situations:
  • thermal image data obtained by blocking the optical path of the detector, or based on the standard reference object for example, the thermal image data obtained during the activation of the shutter; for example, the basic image information obtained based on the standard reference object, such as the uniform temperature field radiation Targets that can be filled with detector pixels, such as a uniform wall, etc.;
  • the thermal image data obtained by shooting based on the optical path of the occlusion detector or based on the standard reference object is preferably instructed to obtain the original AD value thermal image data by shooting, but it can also be designed to use the previous correction. parameters to shoot the obtained thermal image data; when the two are subsequently converted into correction parameters, the algorithms are slightly different.
  • obtaining multiple frames of thermal image data and processing one frame of thermal image data for example, in order to reduce the amount of stored data, the obtained thermal image data is reduced by pixels as the basic image information;
  • the specified range such as the thermal image data corresponding to the adjacent influencing factors before and after, is averaged to obtain the thermal image data as the basic image information;
  • thermal image data of case 1) is obtained before leaving the factory, and the thermal image data obtained after manual modification;
  • the thermal image data corresponding to the influencing factors of the specified range one or more of the thermal image data can be selected, and the thermal image data obtained according to the algorithm; for example, based on the currently obtained influencing factors, the specified range such as
  • the thermal image data corresponding to the adjacent influencing factors is obtained according to a specific algorithm such as averaging; for example, a frame of thermal image data obtained when the shield blocks the infrared detector, and the basic image involved and prepared in advance Among the information, the closest basic image information (such as the thermal image data with the closest influencing factors), the thermal image data obtained after averaging;
  • the thermal image data when used as the basic image information, the thermal image data also needs to be calculated later to obtain the correction parameters.
  • the shield blocks the infrared detector
  • one or more frames of thermal image data (such as the original AD value thermal image data) obtained can be used as the basic image information, and the correction parameters can be calculated according to the algorithm, which can be used for subsequent thermal imaging. Correct the image data.
  • the correction control device may be configured with an algorithm that calculates the thermal image data as correction parameters.
  • the correction parameters include one or more of the following conditions:
  • one or more frames of thermal image data are obtained, and correction parameters can be calculated according to an algorithm to correct subsequent thermal image data.
  • the multiple frames of thermal image data obtained after processing can calculate the correction parameters according to the algorithm to correct the subsequent thermal image data.
  • a frame of thermal image data is obtained when the shield blocks the infrared detector, the correction coefficient of thermal image acquisition or the control parameter of the detector is calculated, and subsequent thermal image data acquisition is corrected;
  • the obtained thermal image data participates in the obtained correction parameters; for example, according to the correction parameters obtained by calculating and processing the obtained thermal image data, and based on the currently obtained influencing factors, the correction parameters are combined with a specified range, such as adjacent to the front and back.
  • the correction parameters corresponding to the influencing factors are obtained according to a specific algorithm, such as averaging;
  • one or more of the correction parameters can be selected, and the correction parameters obtained by the algorithm; for example, based on the currently obtained influencing factors, the specified range, for example, adjacent
  • the correction parameters corresponding to the influencing factors are obtained according to a specific algorithm such as averaging;
  • the correction parameters may include correction parameters for each pixel in the thermal image data, or may only be correction parameters for each pixel or part of pixels in a specific area.
  • the thermal image data or correction parameters may not be pre-stored, but only the correction algorithm is included; for example, the correction parameters obtained according to the correction algorithm according to the correction parameters corresponding to the influencing factors in a specified range; in one example, based on For the currently obtained influencing factors, the calibration parameters corresponding to the specified range, such as the adjacent influencing factors, are obtained according to a specific algorithm such as the weighted ratio of average or proximity; the data amount for storing calibration parameters can be reduced.
  • the basic image information may include at least two kinds of the above-mentioned information; according to different correction implementations and different applications, there may be multiple forms of the basic image information.
  • Influencing factors include one of the following factors:
  • the temperature of the internal space such as the temperature of the detector cavity (such as the space between the detector and the lens), the temperature of the space where the processing circuit board is located, etc.; the temperature of the device such as the temperature of the detector, the temperature of the baffle Temperature (for example, if a stopper is installed), the temperature of the processing chip; the temperature of the lens, such as the temperature of each lens, the temperature of the lens structure; the temperature of the circuit board, such as the movement acquisition circuit board (signal preprocessing circuit), the main control circuit
  • the temperature of the board and the processing circuit board; the temperature of the structural parts, such as the heat sink, the inner wall of the thermal imaging device housing, etc.; may include the data of one or more sensors;
  • it includes 1 sense of warmth; in one case, it includes 2 senses of warmth; in 1 case, it includes 3 senses of warmth; in 1 case, it includes 4 senses of warmth;
  • State influencing factors that affect the change of basic image information such as one or more of specific algorithms or programs such as temperature files, frame rates, acquisition pixels, lenses with different field of view, and startup time of thermal imaging devices, etc. ;
  • the state can be determined according to the settings of the thermal imaging device (it can be manual, or triggered, automatic, etc.); of course, according to different implementations, the same state influencing factors have different influences on the basic image information.
  • the detection The frame rate of the detector itself is divided into multiple ranges, such as 30HZ, 60HZ. Due to the different integration times of the acquisition, the corresponding basic image information may be different when the frame rate of 30HZ and 60HZ is selected.
  • the detector Its own frame rate is 60HZ, even if the acquisition frame rate can be set to 30HZ, 60HZ, but the corresponding basic image information can still be the same.
  • the above-mentioned influencing factors may have a changing influence on the basic image information. Therefore, the corresponding relationship between the influencing factors and the basic image information can be targeted. (For establishing a corresponding relationship, see Example 3 for details)
  • the data based on the calibration control device itself or a sensor connected to it which can be obtained by being equipped with a thermal imaging device or connected with a corresponding sensor; in one example, in the outer shell of the thermal imaging device A temperature sensor is installed on the body to obtain data representing the ambient temperature, and a temperature sensor is installed on the control circuit board to obtain data representing the local temperature field of the internal control circuit board of the instrument; specifically, in one example, the following steps can be followed to obtain Influencing factors related to changes in basic image information; deploy more sensors inside and outside the instrument, and make as detailed a correspondence between changes and basic image information as possible; Finally, the sensor that has a great influence on the change of the basic image information is left as the basis for the final production of the corresponding relationship table and the deployment of sensors inside and outside the instrument. According to different applications and different structures of thermal imaging devices, different sensor configurations may result.
  • the temperature sensor is arranged on the outside of the casing W1, the lens part W2, and the heat sink W3 of the calibration control device, and the storage medium as shown in Fig. 8 is stored in the storage medium of the calibration control device. Correspondence.
  • some of the data can be obtained through the communication part of the thermal imaging device, such as ambient temperature, humidity, wind speed, etc.
  • the corresponding sensor data is collected into a specific control device, and the thermal imaging device can be controlled through the communication part. The data collected by the device.
  • the temperature sensing data includes 3 temperature sensing data, such as the lens temperature, the temperature of the cavity between the detector and the lens, and the temperature of the processor. Temperature; the data of the temperature sensor can be derived from the temperature obtained by the temperature sensor of some chips. In another example, the temperature can be obtained through a configured temperature sensor (such as a temperature sensor). Data such as temperature sensation can reflect the change of the internal temperature field of the thermal imaging device. When the change exceeds the specified range, the corresponding basic image information should also change accordingly.
  • the thermal imaging device may cause changes in the basic image information under different ambient operating temperatures and thermal radiation inside the thermal imaging device. Therefore, the preferred way is to use the possible influencing factors, including the external influencing factors of the thermal imaging device and the thermal imaging device.
  • the internal influencing factors of the device and the corresponding basic image information are made into a corresponding table according to a certain data format, which is convenient for subsequent calls.
  • the influencing factors and their corresponding basic image information are pre-stored in the storage medium; another preferred way, the data of the acquired influencing factors and the corresponding basic image information can be controlled and archived and stored in the storage medium middle.
  • Influence factors include one of internal influence factors, external influence factors, and state influence factors; the influence factors to be considered are preferably at least internal influence factors, such as
  • Another preferred one includes internal influencing factors and external influencing factors, such as
  • Another preferred method includes internal, external, and state influencing factors, so as to facilitate the configuration of high-precision thermal imaging devices, such as
  • the acquired data of influencing factors can be in various situations, for example, including one or more of the following situations:
  • the control unit detects the influencing factors obtained by the sensor according to a specified frequency (such as the detection frequency of once per second), and when it exceeds the specified range, it includes the types of influencing factors, or the data of the influencing factors, one of which exceeds the specified range. If the specified range is exceeded, the corresponding basic image information is obtained according to the corresponding relationship and applied to the subsequent correction processing.
  • the data of influencing factors (such as multiple sets of temperature senses) are detected every second, and when one of them exceeds the specified range by 0.5°C, the basic image information corresponding to the influencing factors beyond the specified range is selected.
  • the data of the corresponding influencing factors are obtained, and the obtained influencing factors include one or more of the following situations;
  • the predetermined time may include the acquired data of influencing factors before, at the time of, or at a predetermined time after, or during a certain period of time, or after processing based on the data. Data on influencing factors obtained;
  • the temperature sense is stored in the temporary storage unit at a frequency of 1 second and is stored in a cycle of 5 refreshes, when a correction instruction is received, the data closest to the time of the correction instruction will be obtained, then the previous data may be selected;
  • the data of the influencing factors can be the data obtained by multiple data obtained within a certain period of time according to a specific algorithm; for example, 4 pieces of temperature-sensing data before and 1 piece of temperature-sensing data after receiving the correction instruction are averaged.
  • the obtained temperature sensing data for example, 4 pieces of temperature-sensing data before and 1 piece of temperature-sensing data after receiving the correction instruction are averaged.
  • the control part 8 can be used as an example of a calibration instruction part; the calibration instruction can be issued according to a certain frequency, triggered by a trigger condition, manually triggered, etc.; according to a certain frequency, it can be a fixed frequency, such as timing (such as 1 minute) to issue a calibration instruction ; It can also be the frequency of change, for example, the calibration instruction will be issued within 5 minutes of power on for 20 seconds, and the calibration instruction will be issued for 1 minute after 5 minutes of power on; triggered by conditions, such as detection of sensor data changes, or external trigger instructions, etc. instruct;
  • the correction frequency can be increased; in one example, the frequency of correction instructions can be configured to be one of 1 minute, 30 seconds, 20 seconds, 10 seconds, and 5 seconds; thus , which can reduce the temperature drift, and avoid defects such as heating of the shutter motor, etc. caused by frequent filing to obtain basic image information.
  • various correction frequencies or even higher correction frequencies can be configured; in one example, each frame can theoretically be based on the detected influencing factors.
  • the frequency of correction can be increased; in one example, the frequency of correction instructions can be configured to be one of 1 minute, 30 seconds, 20 seconds, 10 seconds, and 5 seconds; thus , which can reduce the temperature drift, and avoid defects such as heating of the shutter motor, etc. caused by frequent filing to obtain basic image information.
  • various correction frequencies or even higher correction frequencies can be configured; in one example, each frame can theoretically be based on the detected influencing factors.
  • Figure 10 is the temperature trend curve of the temperature-controlled object captured by the prior art through file-shifting correction, in which the generation of the step is due to the temperature drift caused by the inability of intensive correction;
  • Figure 11 is obtained by using the corresponding relationship
  • the temperature trend curve obtained by correcting the basic image information can greatly reduce the drift because the corresponding basic image information can be transformed in time according to the change of the influencing factors for correction processing.
  • a preferred solution, the calibration control device includes:
  • the shooting part is used for shooting to obtain thermal image data
  • a correction control unit for performing control of correction processing according to the first basic image information
  • the first basic image information used for the correction processing is the first basic image information determined based on the corresponding relationship between the influencing factors and the basic image information, according to the acquired data of the influencing factors, and according to the corresponding relationship;
  • the correction control unit performs correction processing according to the second basic image information control.
  • the first basic image information and the second basic image information mentioned here represent different basic image information
  • the processing unit 2 when performing correction processing according to the first basic image information, uses the determined first basic image information to process the thermal image data obtained by subsequent shooting, and obtains the processed first image and/or the first analysis data ;
  • When performing correction processing according to the second basic image information use the determined second basic image information to process the thermal image data obtained by subsequent shooting, and obtain the processed second image and or second analysis data; No pauses in the image are produced.
  • Sources of impact factor data include one or more of the following
  • the data of influencing factors obtained by the communication department can reduce the configuration quantity of the sensors of the calibration control device itself.
  • the corresponding relationship between the influencing factors and the basic image information can be one or more of the following situations:
  • Pre-prepared such as pre-stored in the storage medium; in one example, the corresponding relationship shown in Figure 3, Figure 5, Figure 8, can be pre-stored in the storage medium of the calibration control device;
  • the corresponding basic image information is formed into a corresponding relationship, prepared in advance and stored in the storage medium; preferably, the basic image information can be obtained based on the thermal image data obtained by calibrating the control device before filing;
  • the basic image information corresponds to influencing factors such as temperature sensing data, etc., and is stored in the storage medium of the calibration control device 9 for subsequent use; in one example, it is prepared in advance before leaving the factory;
  • thermo imaging devices for example, the corresponding relationship obtained by other thermal imaging devices in the same batch
  • the correction control device pre-stores the corresponding relationship, and the corresponding relationship can be updated after a specified period of operation or update instructions; for example, every three months, the basic image is re-filed in a specified period
  • the newly obtained basic image information is compared with the pre-prepared basic image information, or the corrected thermal image data or analysis values of the two are compared.
  • the corresponding relationship between the influencing factors and the basic image information is updated; part or all of the update may be performed according to the newly obtained corresponding relationship between the influencing factors and the basic image information.
  • the corresponding relationship can be gradually accumulated by the correction control device (preferably with a shutter mechanism) to achieve the effect of self-learning.
  • the correction control device preferably with a shutter mechanism
  • the corresponding relationship can be reconstructed according to the new combination of influencing factors, that is, the basic image information obtained by file matching.
  • the corresponding relationship between the influencing factors and the basic image information can have one or more groups; for example, under different working conditions, the corresponding relationship of different components is prepared; generally, the corresponding relationship can be configured according to the types of influencing factors
  • the corresponding relationship of the basic image information is grouped; in one example, the correction control device preliminarily prepares the corresponding relationship between the influencing factors and the basic image information respectively applied to ground use and airborne use.
  • the basic image information is determined based on the corresponding relationship between the influencing factors and the basic image information; it can be based on the corresponding relationship stored by the correction control device itself, or the corresponding relationship obtained through the communication unit, or based on the corresponding relationship stored in other devices connected to the communication unit.
  • Correspondence, to determine the basic image information including one or more of the following:
  • the obtained influencing factors can directly select the corresponding basic image information from the corresponding relationship; for example, as shown in FIG. Relation table; the specified range is 0.5°C, when the data of the detected influence factor is between the two groups of influence factors in the relation table, the basic image information corresponding to the closest influence factor is selected; the influence factor (temperature sense 1:1°C) , Sensitivity 2: 1°C; Sensitivity 3: 1°C) corresponds to basic image information 1, assuming that the data of the influencing factors obtained at a certain time are (Sensitivity 1:1°C, Sensitivity 2:1°C; Sensitivity 3: 1.6°C), the corresponding basic image information 2 is determined.
  • the basic image information corresponding to multiple groups of influencing factors located in a specified range select one or more groups, and obtain through algorithm calculation; in one example, the obtained influencing factors are located between the two groups of influencing factor data.
  • the basic image information corresponding to the acquired influencing factors can be determined by an algorithm such as the weighting of the two basic image information;
  • the basic image information can be re-acquired;
  • the obtained thermal image data is used to obtain basic image information; the basic image information and the corresponding influencing factors are associated and recorded to form a corresponding relationship between the two.
  • the obtained basic image information may include one or more of thermal image data and correction parameters;
  • the thermal image data includes one or more of the following:
  • the thermal image data and the thermal image data corresponding to the specified range of the influence factors, such as the adjacent influence factors, are averaged and obtained.
  • the thermal image data is used as the basic image information
  • the correction parameters include one or more of the following conditions:
  • the thermal image data calculate and process the obtained correction parameters and/or correction algorithm; the thermal image data is one or more of the above situations;
  • one or more frames of thermal image data are obtained, and correction parameters can be calculated according to an algorithm to correct subsequent thermal image data.
  • the shield blocks the infrared detector
  • the obtained multiple frames of thermal image data, and one frame obtained after averaging processing can calculate the correction parameters according to the algorithm, which can be used to correct the subsequent thermal image data.
  • a frame of thermal image data is obtained when the shield blocks the infrared detector, the correction coefficient of thermal image acquisition or the control parameter of the detector is calculated, and subsequent thermal image data acquisition is corrected;
  • the thermal image data is involved in the obtained correction parameters; based on the currently obtained influencing factors, the correction parameters corresponding to the specified range, such as the adjacent influencing factors, are obtained according to a specific algorithm, such as averaging, to obtain the correction parameters;
  • the correction parameters obtained by calculating the thermal image data, and the correction parameters obtained after undergoing manual modification are identical to the correction parameters obtained after undergoing manual modification
  • the influencing factors include one of the following factors:
  • the acquired influencing factors and their corresponding basic image information can be implemented in multiple ways, for example, including one or more of the following situations:
  • the time obtained by the two corresponding to each other should be as close as possible, and some or all of the data of the influencing factors can be obtained before, when, and after the thermal imaging data is obtained, and it also includes multiple data obtained within a certain period of time after a specific algorithm. obtained data.
  • the data of the influencing factors are acquired; if the correction instruction is received, the acquired data of the temperature sensor of the correction control device is acquired;
  • one of the detector control parameters, signal reading acquisition parameters, and subsequently acquired thermal image data can be corrected. It may contain one or more correction parameters, such as uniformity correction, temperature measurement correction and other related correction parameters; Multiple correction processing; for the thermal image data obtained subsequently, for example, the thermal image data obtained between the determination of the basic image information this time and the re-determination of the basic image information next time, the processing is performed according to the basic image information determined this time.
  • the correction processing will be for each frame of thermal image data obtained subsequently; in another example, the correction processing may only be performed on the thermal image data of part of the subsequent frames; in another example, the correction processing may only be performed on the thermal image data Thermal image data of a local area in the frame;
  • control of correction processing is performed, including at least one of the above;
  • the control parameters of the detector and/or the signal reading parameters can be used to correct and control at least one of various related parameters of the collected thermal image data; for example, basic image information can be used to obtain various parameters.
  • Various correction coefficients are used to control various parameters related to the acquisition of thermal image data; detector control parameters such as acquisition integration time, gain, bias voltage, etc.; signal reading parameters such as image resolution, frame rate, etc.
  • the basic image information can be called and corrected, it can increase the frequency of correction and ensure that there is no screen pause caused by image occlusion during file shifting, and there is no possibility of file shifting due to frequent shifting.
  • the motor heats up and causes errors in the image or infrared temperature measurement.
  • the infrared thermal image at a certain moment is corrected by obtaining the correction coefficient from the basic image information, and the continuous images before and after the correction may not be interrupted.
  • the calibration control device includes:
  • the shooting part is used for shooting to obtain thermal image data
  • a correction control unit which controls the correction processing according to the basic image information
  • Basic image information for correction processing including the following two cases, and one of them is executed each time:
  • Case 1 Basic image information obtained based on the optical path of the occlusion detector (such as during filing) or the thermal image data obtained during the shooting of the standard reference body; Basic image information obtained by one or a combination of methods such as the prescribed processing of the image data, or the participation of the acquired thermal image data in the prescribed processing;
  • Case 2 including at least one of the following:
  • process the obtained basic image information For example, the basic image information obtained by processing the basic image information obtained in two ways, such as averaging, is obtained;
  • the basic image information used for the correction processing is the basic image information determined based on the corresponding relationship between the influencing factors and the basic image information, according to the acquired data of the influencing factors, and according to the corresponding relationship; Acquired thermal image data to obtain basic image information.
  • the corresponding relationship is stored in the processing device communicated by the calibration control device.
  • the processing device provides the basic image information to the calibration control device according to the corresponding relationship. ; or obtain basic image information based on the thermal image data acquired during the filing period.
  • the basic image information used for the correction processing is the basic image information determined based on the corresponding relationship between the influencing factors and the basic image information, according to the acquired data of the influencing factors, and according to the corresponding relationship; or obtained based on filing
  • the basic image information of , and the basic image information obtained in Case 2 are processed, such as the basic image information obtained after averaging.
  • the basic image information based on the corresponding relationship between the influencing factors and the basic image information, according to the acquired data of the influencing factors, and according to the corresponding relationship, the basic image information can be determined; then the basic image information is used as the basic image for correction processing. information; when the basic image information cannot be determined based on the corresponding relationship between the influencing factors and the basic image information, according to the obtained data of the influencing factors, and the corresponding relationship, the basic image information cannot be determined; The thermal image data obtained during the filing period) or during the shooting of the standard reference body to obtain basic image information, which is used as the basic image information for correction processing.
  • the basic image information will be obtained based on the thermal image data obtained during the occlusion of the detector optical path (such as during filing) or during the shooting of the standard reference body, associated and recorded with the corresponding influencing factors, and the corresponding relationship will be increased at most.
  • the corresponding relationship between the group influencing factors and the basic image information is shown in the corresponding tables as shown in FIG. 3 , FIG. 4 , and FIG. 8 for subsequent use.
  • the flap control part is used to control the activation of the flap
  • a correction control unit configured to control the correction process according to the determined basic image information based on the correction instruction
  • the determined basic image information includes one of the following two situations. According to the corresponding relationship between the influencing factors and the basic image information, and according to the data obtained from the influencing factors (such as the temperature sensing data obtained based on the temperature sensing device), the corresponding basic image information is determined. Image information; the basic image information is determined based on the thermal image data acquired during the activation of the shutter according to the instruction of the activation of the shutter.
  • an instruction to activate the file is generated, and the basic image information is determined according to the thermal image data acquired during the activation;
  • the basic image information and the corresponding influencing factors are recorded based on the recording instruction; the corresponding relationship can also be added to the original corresponding relationship such as a relationship table.
  • control system includes: at least one calibration control device, and a processing device in communication with it;
  • the calibration control device includes:
  • the shooting part is used for shooting to obtain thermal image data
  • a correction control unit which controls the correction processing according to the basic image information
  • the basic image information used for the correction processing is the basic image information determined based on the corresponding relationship between the influencing factors and the basic image information, according to the acquired data of the influencing factors, and according to the corresponding relationship; it can be determined by the correction control device or the processing device One or a combination to determine the underlying image information. See Example 2 for details;
  • the calibration control device includes:
  • the acquisition part is used to acquire thermal image data
  • the influence factor acquisition part is used to acquire the data of influence factors
  • the basic image information recording unit is configured to associate and record the basic image information obtained based on the occlusion detector photographing or the standard reference body photographing and the data of the corresponding image factors. See Example 3 for details;
  • FIG. 1 is a block diagram showing the electrical configuration of the calibration control device 9 according to the first embodiment.
  • FIG. 2 is an external view of the calibration control device 9 according to the first embodiment.
  • the calibration control device 9 has an imaging unit 1, a processing unit 2, a flash memory 3, a file control unit 4, a temporary storage unit 5, a communication I/F6, a memory card I/F7, and a control unit 8, and the control unit 8 communicates with a data bus through a control and data bus. It is connected with the above-mentioned corresponding parts and is responsible for the overall control of the correction control device 9 .
  • the infrared imaging unit is composed of an optical component, a lens driving component, a shutter mechanism, an infrared detector, a signal preprocessing circuit, and the like, which are not shown in the figure.
  • the optics consist of infrared optical lenses for focusing the received infrared radiation onto an infrared detector.
  • the lens driving section drives the lens according to the control signal of the control section 8 to perform a focusing or zooming operation.
  • the shutter mechanism is located between the infrared detector and the lens, but it can also be configured in the optical path of the lens, such as between the lenses or in front of the lens; the shutter can be a hinged shutter (as shown in Figure 6), Single pendulum baffles (as shown in Figure 7), etc., are driven by the baffle motor to open and close.
  • the baffle material can be made of a metal sheet with black body material attached to the surface; when it is not activated, the baffle is not suitable for the detector. Block, when the shutter is enabled, the infrared detector or its optical path will be blocked.
  • Infrared detectors such as cooled or uncooled infrared focal plane detectors, convert infrared radiation passing through optical components into electrical signals.
  • the signal preprocessing circuit includes sampling circuit, AD conversion circuit, etc.
  • the signal read from the infrared detector is sampled and processed by automatic gain control and other signal processing in a specified period, and is converted into digital thermal image data by the AD conversion circuit.
  • the processing part 2 is used to perform prescribed processing on the thermal image data obtained by the infrared photographing part 1, and the thermal image data is, for example, 14-bit or 16-bit binary data (also known as thermal image AD value data, referred to as AD value data) .
  • the processing of the processing unit 2 such as correction, interpolation, pseudo-color, compression, decompression, etc., is performed to convert it into data suitable for display, recording, and the like.
  • the processing of generating infrared thermal images from thermal image data is such as pseudo-color processing.
  • the corresponding range of pseudo-color plates is determined according to the range of AD values of thermal image data or the set range of AD values, and the range of thermal image data is The specific color value corresponding to the AD value in the range of the pseudo-color plate is used as the image data of the corresponding pixel position in the infrared thermal image.
  • the processing unit 2 may be implemented by DSP, other microprocessors, programmable FPGA, etc., or may be integrated with the control unit 8 or be the same microprocessor. Based on the control of the control unit 8 , the processing unit 2 is used to process the thermal image data obtained by the photographing unit 1 and the like in accordance with the regulations, and record it to a recording medium such as a memory card. For various types of photographing devices, the processing of the processing unit 2 is to convert the thermal image data obtained by the photographing unit 1 into data suitable for display, recording, and communication. The processing unit 2 can be used as an example of performing correction processing on the acquired thermal image data.
  • the flash memory 3 stores a program for control and various data used in the control of each part.
  • a storage medium it is used to store temperature sensing data, basic image information and the corresponding relationship between the two; the storage medium can be, for example, a storage medium in the calibration control device 9, such as a flash memory 3, a memory card, etc.
  • Non-volatile storage media volatile storage media such as temporary storage unit 5; other storage media connected to the correction control device 9 by wire or wirelessly, such as the communication through the wired or wireless connection with the communication I/F6 Other devices such as other storage devices, or storage media in other photographing devices, computers, servers, etc.; the correction control device 9 can obtain the basic image information stored, obtained, and processed in other devices through wired or wireless means, and stored in the In the correction control device 9 or in a non-volatile storage medium connected thereto.
  • the table shown in Figure 3 represents the relationship table corresponding to the temperature-sensing data and the basic image information; wherein different temperature-sensing data corresponds to different basic image information, for example, the temperature-sensing data 1 corresponds to the basic image information 1;
  • the sensory data includes at least one temperature sensor (referred to as temperature sensor) data, which can be the temperature value of the temperature sensor (such as 24 degrees), or the range of temperature values (such as the range of 10% above and below 24 degrees); in other examples can also contain multiple values of temperature sensor data, and there can be one or more temperature sensors, such as the temperature sensor inside the detector, the temperature sensor in the external environment, the temperature of the processor (such as the chip temperature of the processing unit 2 or the control unit 8) ), the temperature of the detector, the temperature of the shield, the temperature of the lens, the temperature of the heat sink, one or a combination of them;
  • the temperature sense data obtained by the temperature sense.
  • Calibration-related prescribed parameters may include various calibration coefficients, compensation parameters, control parameters, etc. related to calibration, and in different implementations, calibration parameters may include one or more parameters), at least One of them serves as the base image information.
  • the basic image information is used to correct and control the control parameters of the detector, or to correct and control at least one of various related parameters of the acquired thermal image, or to process the subsequently acquired thermal image data (for example, uniformity correction). , temperature measurement correction, etc.) to perform correction control.
  • the table shown in Figure 4 represents the relationship table corresponding to the sensor data and basic image information of various related influencing factors, representing a more detailed correspondence.
  • Other sensors such as sensors for humidity, inclination, air pressure, wind speed, etc.
  • the influencing factors representing a certain state, such as the power-on time, various setting parameters of the detector or thermal image (for example, the set frame rate, the acquired pixels), and various compensation coefficients of the target background can be used.
  • the shutter control part 4 is used to control the action of the shutter, such as the drive control processor of the shutter motor; the shutter can be located in the front of the infrared detector; based on the instruction of shutter activation, the shutter motor is controlled to drive the shutter
  • the separate shutter control part 4 can be eliminated, and the control part 8 can be used as an example of the shutter control part 4 .
  • the temporary storage unit 5 acts as a buffer memory for temporarily storing the image data and thermal image data output by the shooting unit 1, and at the same time, acts as the working memory of the processing unit 2 and the control unit 8,
  • the data processed by the processing unit 2 and the control unit 8 are temporarily stored.
  • the memory or registers included in the processors such as the control unit 8 and the processing unit 2 can also be interpreted as a kind of temporary storage unit.
  • the communication I/F6 (an example of the communication part) is, for example, an interface for connecting and exchanging data with an external device according to wired or wireless communication specifications such as USB, 1394, Bluetooth, network such as WIFI, communication network such as 4G, 5G, etc., as an external device
  • wired or wireless communication specifications such as USB, 1394, Bluetooth, network such as WIFI, communication network such as 4G, 5G, etc.
  • WLAN wireless local area network
  • the memory card I/F7 is used as an interface of the memory card.
  • a memory card as a rewritable non-volatile memory is connected to the memory card I/F7, and is detachably installed in the card slot of the main body of the calibration control device 9. Inside, the thermal imaging data and other data are recorded according to the control of the control unit 8 .
  • a display unit may be provided, and display of the image data for display stored in the temporary storage unit 5 on the display unit may be executed under the control of the control unit 8 .
  • the control unit 8 can continuously display the images generated by the thermal image data obtained by shooting, display the images read and expanded from the memory card, and also display various setting information.
  • the display unit may be another display device connected to the calibration control device 9, and the calibration control device 9 itself may not have a display device in its electrical structure.
  • an operation unit may also be provided for the user to perform various operations such as inputting setting information, and the control unit 8 executes the corresponding program according to the operation signal of the operation unit.
  • the operation part can be a key, a touch screen, a voice recognition part, etc. to realize the operation.
  • the control unit 8 controls the entire operation of the calibration control device 9, and the control unit 8 is realized by, for example, a CPU, an MPU, an SOC, a programmable FPGA, or the like.
  • the flash memory 3 stores a program for control and various data used in the control of each part.
  • the control unit 8 can be used as a correction instruction unit to issue a correction instruction; for example, it can issue a correction instruction based on timing, an operator's instruction, a change trigger of sensor data, and the like.
  • the control unit 8 can be used as a correction control unit to control the correction processing according to the basic image information; the correction control unit determines the basic image information.
  • the basic image information corresponding to the sensor data is used to determine the basic image information; to control the correction processing; specifically, in one example, the control unit 8 may control the processing unit 2 according to the determined basic image information.
  • Correction processing is performed on the thermal image data obtained by subsequent shooting; in another example, the control unit 8 may control the control parameters of the detector to perform correction processing. If the control unit 8 and the processing unit 2 are integrated into a processing device, the control unit 8 can also perform correction processing.
  • the sensor data is obtained based on the calibration control device itself or a sensor connected to it.
  • the sensor data includes at least one temperature sensing data.
  • the correction processing may be to perform correction processing on the thermal image data obtained by shooting or the control parameters of the detector.
  • the calibration control unit if the calibration instruction is based on the temperature sensing data obtained by the temperature sensing device at a specified time, conforms to the corresponding relationship between the temperature sensing data and the basic image information in the storage medium, the corresponding basic image information is used; Corresponding basic image information, the control unit 8 can issue an instruction to enable the file;
  • the shutter control part 4, or the control part 8 is used as the shutter control part to control the action of the shutter; the shutter can be located in the front of the infrared detector; based on the instruction of shutter activation, the shutter motor is controlled to drive the shutter film to block the infrared detector;
  • the control unit 8 functions as a base image information recording unit for recording base image information based on the recording instruction.
  • the basic image information is the thermal image data obtained when the shield blocks the infrared detector or the correction parameters obtained based on the thermal image data; Sensing data correlation record; the basic image information recording part is used to record the corresponding relationship between the temperature sensing data obtained by the temperature sensing device and the basic image information, so as to facilitate subsequent use.
  • the above-mentioned correction instruction, filing instruction, and recording instruction can be configured as linkages, so that when the user starts to use the thermal imaging device 9, according to different application environments, the basic image information obtained by filing and the temperature sensor and other sensors can be automatically recorded.
  • the corresponding relationship of the data is convenient to call the corresponding basic image information according to the sensor data later.
  • the calibration control method will be described below, and the present embodiment will be described with reference to FIG. 5 .
  • the control steps are as follows:
  • Step A01 based on the correction instruction, perform correction processing according to the basic image information corresponding to the sensor data;
  • the photographing part of the correction control device 9 is used for photographing to obtain thermal image data; when receiving the correction instruction, the correction control part controls the correction processing according to the basic image information;
  • the correction control unit uses the sensor based on the sensor data obtained by the sensing device at a predetermined time of the correction instruction based on the correspondence between the sensor data and the basic image information in the storage medium.
  • the basic image information corresponding to the data is controlled for correction processing; the sensor data is obtained based on the correction control device itself or a sensor connected to it; the sensor data includes at least one temperature sensing data.
  • step A01 may constitute a complete solution, and subsequent steps may be omitted.
  • step A02 can be entered;
  • Step A02 Based on the instruction that the shutter control is enabled, enable the shutter;
  • the control unit 8 sends an instruction to activate the shutter, and the shutter motor drives the shutter to block the infrared detector.
  • the shutter control part is used to control the action of the shutter; the shutter is located at the front of the infrared detector; based on the instruction of the shutter activation, the shutter is controlled to block the infrared detector;
  • the A02 step can be removed; if it is replaced with an instruction based on basic image information collection, based on the instruction, obtain the shooting standard reference object to obtain The thermal image data or the correction parameters obtained after processing are used as the basic image information;
  • Step A03 Based on the recording instruction of the basic image information, store data obtained by sensors such as temperature sensing data in association with the basic image information;
  • the basic image information recording part is used to record basic image information based on the recording instruction, the basic image information is the thermal image data or related correction parameters obtained when the shield blocks the infrared detector; the basic image information and at least one The temperature sensing data obtained by the temperature sensing device of the calibration control device is recorded in association with each other; in this way, the relationship between the temperature sensing data obtained by the temperature sensing device and the basic image information can be obtained. In other preferred examples, the relationship between the data obtained by various sensors and the basic image information can be obtained.
  • the data obtained by various sensors can be stored in association with the basic image information obtained when the multi-files are blocked respectively; in order to obtain more precise Basic image information; further, for example, when using a double stop, such as an external stop such as a lens cover, an internal stop such as a single-swing stop between the lens and the detector, the basic image information of one stop can be used to correct Basic image information obtained from another file.
  • a double stop such as an external stop such as a lens cover
  • an internal stop such as a single-swing stop between the lens and the detector
  • the basic image obtained by looking up the table can be compared with the basic image obtained by filing, by means of regular or manual instructions. If the two are different, the latter can be replaced by the former, or It is also possible to further use remote upgrade measures to increase correction parameters, so as to achieve the purpose of timely correction of the thermal imaging device.
  • the file can be archived and basic image information can be obtained, and correction processing can be performed.
  • the sensor data can be stored in association with the basic image information to enrich the corresponding relationship and facilitate subsequent use.
  • control system includes:
  • At least one calibration control device and the processing device in communication with it;
  • the calibration control device includes:
  • the shooting part is used for shooting to obtain thermal image data
  • a correction control unit which controls the correction processing according to the basic image information
  • the basic image information used for the correction processing is the basic image information determined based on the corresponding relationship between the influencing factors and the basic image information, according to the acquired data of the influencing factors, and according to the corresponding relationship.
  • the base image information may be determined by one or a combination of correction control means or processing means.
  • the processing device 10 is an example of a processing device, which can be a computer, a server, a cloud server or other processing devices.
  • the processing device 10 communicates and exchanges data with the thermal imaging device 11 through the communication part; the thermal imaging device 11 is used as a calibration control device. Examples of devices;
  • the thermal imaging device 11 obtains the thermal image data captured during the occlusion detector, and provides it to the processing device 10 through the communication part.
  • the processing device 10 processes the thermal image data into correction parameters, and provides the correction parameters to the thermal imager.
  • the imaging device 11 is used to perform correction processing.
  • the thermal imaging device 11 obtains the data of the image factors, and provides it to the processing device 10 (such as a cloud server) through the communication part, and the corresponding relationship is stored in the processing device 10. According to the obtained data of the influencing factors, the processing device 10 will Corresponding basic image information is provided to the thermal imaging device 11 .
  • the processing device 10 such as a cloud server
  • the thermal imaging device 11 is configured in an environment for on-site use, and the influencing factors obtained by the thermal imaging device 11 or the sensors connected to it can be provided to the processing device 10 through the communication unit, and through processing, for example, the processing device 10 Query the correspondence between the influencing factors and the basic image information, and provide the corresponding basic image information to the thermal imaging device 11; When instructed, provide the obtained influencing factors to the processing device 10;
  • part of the influencing factors originates from the processing device 10, and part originates from the thermal imaging device 11 itself;
  • the correction control device can determine the basic image information according to the information provided by the processing device, and control the correction processing.
  • part of the corresponding relationship originates from the processing device 10, and part is located in the storage medium of the thermal imaging device 11;
  • the processing device 10 is used to provide the influencing factors to the thermal imaging device 11; the thermal imaging device 11, according to the corresponding relationship between the influencing factors stored in the thermal imaging device and the basic image information, and the The information provided by the processing device 10 is used to determine the basic image information and to control the correction processing.
  • the thermal imaging device 11 receives the regularly updated correspondence provided by the processing device 10 through the communication part;
  • the processing device 10 can greatly improve the reliability and flexibility of the correction control device. It can improve the performance of the calibration control device, reduce the technical requirements of the calibration control device, reduce the cost, and can provide the fineness of the corresponding relationship between the influencing factors and the basic image information without increasing the burden on the storage medium of the calibration control device, thereby greatly improving the measurement accuracy.
  • the corresponding relationship between the influencing factors and the basic image information can be updated.
  • the influencing factors when the use environment is changed, the influencing factors will change more, and the basic image information can be updated in time or regularly, especially when the communication connection of the processing device 10 has
  • rich corresponding relationships can be constructed based on a large number of aggregated data; and the corresponding relationships can also be configured into multiple sets of corresponding relationships according to different application influencing factors, which will cause significant changes in the impact environment.
  • the corresponding relationship of related groups can be called in time; the intelligence and reliability of the system can be greatly improved.
  • Correction controls including:
  • the acquisition part is used to acquire thermal image data
  • Influencing factor acquisition department which is used to acquire data on influencing factors
  • the basic image information recording unit is configured to associate and record the basic image information obtained based on the occlusion detector (eg, during the activation of the shutter) or the standard reference body, and the data of the corresponding image factors. Or it also includes an extraction unit, which extracts a plurality of influencing factors and corresponding basic image information according to a specific rule or algorithm to form a corresponding relationship.
  • Correction control methods including:
  • the basic image information step is used to associate and record the basic image information obtained based on the occlusion detector (eg, during the activation of the shutter) or the standard reference body, and the data of the corresponding image factors. Or it also includes an extraction step, according to a specific rule or algorithm, to extract a plurality of influencing factors and corresponding basic image information to form a corresponding relationship.
  • the processing device 10 is an example of a calibration control device. In one example, it can be a processing device such as a computer or a server. The processing device 10 obtains the thermal image data captured by the thermal imaging device through the communication part, and obtains image factors; In another example, the calibration control device 10 may be a thermal imaging device with a camera;
  • the processing device 10 is configured in an environment that simulates on-site use, and the thermal imaging device 11 or other sensors of influencing factors connected to the thermal imaging device 11 or the processing device 10 can be obtained through the communication part, and the thermal imaging device 11 can be obtained.
  • the shutter is activated or based on the thermal image data and/or correction parameters captured by the calibration reference object; preferably, the activation control can be issued through a file-setting instruction or the shutter of the thermal imaging device 11 can be kept in an always enabled state; preferably can change and adjust environmental conditions to obtain a variety of influencing factors; preferably, the processing device 10 can obtain the correction parameters according to the algorithm of the thermal image data obtained by the communication part;
  • the processing device 10 records the obtained influencing factors and their corresponding basic image information; one of the following methods may be adopted:
  • the trigger indication includes timing, detected changes in influencing factors exceeding the specified range (for example, a temperature of 0.5 degrees is within the specified range), changes in the obtained thermal image data and/or correction parameters exceeding the specified range, manual triggering, and reaching the set value. value, etc. one or more of them.
  • the corresponding relationship generating unit is configured to extract a plurality of influencing factors and corresponding basic image information according to the recorded data and according to a specific rule or algorithm to form a corresponding relationship. There may be some or all of them extracted.
  • the basic image information and its corresponding influencing factors that exceed the specified difference range are extracted, and the relationship between the influencing factors and the basic image information is constructed.
  • it is used to extract the basic image information and the corresponding influencing factors that exceed the specified difference range according to the continuously recorded influencing factors and the data of the corresponding basic image information obtained, and construct the relationship between the influencing factors and the basic image information. .
  • the corresponding basic image information is extracted to form a corresponding relationship
  • the data of the basic image information and its corresponding influencing factors are extracted to form a corresponding relationship
  • the corresponding relationship between the influencing factors and the basic image information can be constructed before leaving the factory or during operation. for subsequent calls.
  • the calibration frequency can be increased, which provides a basis for improving temperature accuracy and reducing temperature drift
  • the corresponding basic image information is automatically called, which provides a feasible technical solution for greatly improving the temperature measurement accuracy and reducing the temperature measurement drift;
  • the corresponding basic image information can correspondingly increase the correction frequency and greatly improve the temperature measurement accuracy;
  • the basic image information corresponding to the closest person in the two sets of influencing factor data can be used; or the basis corresponding to the two sets of influencing factor data respectively.
  • Image information to calculate the basic image information corresponding to the newly obtained influencing factor data which will obtain better results;
  • Different temperature files correspond to different tables of basic image information, which simplifies the operation and can greatly improve the shifting speed of different temperature files;
  • the correspondence between image factors, influencing factors and basic image information, and basic images can be obtained through the communication department.
  • the thermal imaging device used in the field can be remotely corrected on the server side, which is suitable for the appearance of files.
  • the malfunctioning thermal imaging device provides an alternative solution in the case of inconvenient repair; and the complexity of the thermal imaging device is reduced and the reliability is improved;
  • the present invention can be applied not only to various detection and portable calibration control devices, but also to robots, in-vehicle devices, and the like.
  • processing and control functions of some or all of the components in the embodiments of the present invention may also be implemented with dedicated circuits, general-purpose processors, or programmable FPGAs.
  • the embodiment is suitable for wide application in various industries of infrared detection.
  • the calibration control device of the present invention when used as a part of the calibration control device 9 with the display control part, the display control part can be omitted, and the invention is also constituted.
  • the present calibration control device can also remove the processing unit, which also constitutes the present invention.
  • processing and control functions of some or all of the components in the embodiments of the present invention may also be implemented with dedicated circuits, general-purpose processors, or programmable FPGAs.
  • the functional blocks in the drawings can be implemented by hardware, software or a combination thereof, it is generally not necessary to set the structure to implement the functional blocks in a one-to-one correspondence manner; for example, one software or hardware unit can implement multiple A functional block, or a functional block can also be implemented by multiple software or hardware units.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

一种校正控制装置,包括:拍摄部,用于拍摄获得热像数据;校正控制部,用于根据基础图像信息来进行校正处理;所述校正控制部,基于存储介质中传感器数据与基础图像信息的对应关系,采用所述传感器数据对应的基础图像信息,进行校正处理;由此,来解决现存的问题。

Description

校正控制装置、校正系统和校正控制方法、校正方法 技术领域
本发明的校正控制装置和校正控制方法,涉及红外热像的应用领域。
背景技术
热像装置中,对热像数据进行校正处理,是一个重要环节;起到降低温度漂移、校正图像等校正作用。由遮挡光路或标准参照体拍摄获得的热像数据,来产生校正参数,有多种实施方案。例如通过拍摄档片获得原始的热像数据,将所述热像数据的各像素AD值,按照算法(算法中通常结合标定获得的K值)校正至均匀的规定值,包含每个像素的校正量的数据来构成校正参数(常称为B值);这种图像和测温校正技术为本领域公知。
带有拍摄功能的热像装置中,档片是一个重要部件,通过打档对探测器的光路遮挡来产生基础图像(该代表基础图像的热像数据也常称为本底图像等,一般采用原始AD值图像,可用于产生校正参数),用来获得校正后续拍摄被测体场景的热像数据相关的校正参数。
档片位于红外探测器的前部,可以位于镜头前部、镜头镜片之间、或还可以位于镜头和探测器之间;通过定时、手动等方式来启用档片(打档片)遮挡探测器的光路,档片一般通过档片电机、手动等驱动方式进行启用或关闭。
目前,带有档片的热像装置,有很多缺点,明显的3个缺点:
一个缺点是观察外部目标时,档片启动过程中实景图像会中断缺帧;
另一个缺点是档片长时间使用,容易出现卡死等故障;
又一个缺点是温度漂移大,例如在连续测温生成温度曲线时,当采用档片校正,假定校正的间隔为1分钟,期间拍摄被测体获得的温度值可能将慢慢漂移,校正后又可以达到精确值,这时容易产生温度明显阶跃,如图10所示;使用者容易产生困惑,到底是由于打档产生的阶跃呢还是被测体本身的温度发生了变化?理论上可以通过更为密集的打档来减少阶跃,但实际随之产生另一个问题是档片电机发热导致档片温度不均匀影响温度的精度,并且还导致图像中断频繁而不可行。
因此,所理解需要一种校正控制装置,来解决目前存在的部分问题或全部问题。
发明内容
本发明提供一种校正控制装置、校正系统和校正控制方法,
一个方案,校正控制装置,包括:
拍摄部,用于拍摄获得热像数据;
校正控制部,根据基础图像信息来进行校正处理的控制;
用于校正处理的基础图像信息,包括如下二种情况,且每次执行其中之一:
情况1:基于遮挡探测器光路或基于标准参照体期间拍摄获取的热像数据,来获得的基础图像信息;
情况2,包括如下至少之一:
1)基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息;
2)基于从通讯部获得的基础图像信息;
3)根据上述任意二项,处理获得的基础图像信息。
进一步,记录情况1获得的基础图像信息及其对应的影响因素;或还将所述对应关系,增加至影响因素与基础图像信息对应关系中。
又一个方案,校正控制装置,包括:
拍摄部,用于拍摄获得热像数据;
校正控制部,根据基础图像信息来进行校正处理的控制;
当基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,可确定基础图像信息;则所述基础图像信息作为用于校正处理的基础图像信息;
当基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,无法确定基础图像信息;则产生基础图像信息获取指示,基于遮挡探测器光路或拍摄标准参照体期间获取的热像数据,来获得基础图像信息,作为用于校正处理的基础图像信息。或者通过通讯部获取基础图像信息;
进一步,校正控制部,根据校正指示,基于所确定的基础图像信息,来进行校正处理的控制;或者,所述校正控制部,根据检测获得的影响因素,当所述影响因素超过规定的范围,则根据对应关系,来确定所述影响因素对应的基础图像信息,来进行校正处理的控制;。
进一步,当根据获得的影响因素,无法找到对应的基础图像信息,可重新获取基础图像信息;包括如下情况之一或多个
1)产生打档指示,并根据遮挡探测器光路拍摄获取的热像数据,来获得基础图像信息;
2)产生打档指示,并根据遮挡探测器光路拍摄获取的热像数据,来获得基础图像信息;将所述基础图像信息与对应的影响因素关联记录,构成二者对应关系。
3)基于遮挡探测器光路、或基于标准参照物,获得的基础图像信息可以包括热像数据、校正参数其中之一或多个;
热像数据包括如下情况之一,基于遮挡探测器光路、或基于标准参照物,拍摄获得的热像数据,或基于所述热像数据经历处理获得的热像数据,或基于所述拍摄获得的热像数据参与处理获得的热像数据;
进一步,所述校正参数包括如下情况之一或组合:
1)根据获取的热像数据,计算处理获得的校正参数和/或校正算法;
所述热像数据为上述情况之一或组合;
2)热像数据参与获得的校正参数;例如根据情况1)获得校正参数,还将基于当前获得的影响因素,将前后相邻的影响因素对应的校正参数,按照特定算法如平均,来获得的校正参数;例如对热像数据计算获得的校正参数,并经历人工修饰后获得的校正参数;
根据不同的校正实施方式和不同的应用,可以有多种基础图像信息的构成方式。
进一步,影响因素包括如下因素其中之一:
1)内部影响因素,2)外部影响因素;3)状态影响因素;
为获取上述影响因素的数据的获取方式:
1)基于校正控制装置自身或与之连接的传感器来获得;
2)可以通过热像装置的通讯接口来获取;
3)通过校正控制装置相关的设置状态或功能模块,来获得状态影响因素;
进一步,所获取的影响因素及其对应的基础图像信息,包括如下情况之一或组合:
1)根据检测获得的影响因素,根据对应关系,如未获得相应的基础图像信息,则打档获取基 础图像信息;将相对应的影响因素和基础图像信息二者关联记录获得对应关系;
2)接收到规定指示,获取相应的影响因素的数据和对应的基础图像信息;并关联记录获得对应关系。
另一方案,校正控制装置,包括:
拍摄部,用于拍摄获得热像数据;
校正控制部,根据基础图像信息来进行校正处理的控制;
用于校正处理的基础图像信息,为基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息。
又一方案,校正控制装置,包括:
拍摄部,用于拍摄获得热像数据;
校正控制部,根据第一基础图像信息来进行校正处理的控制;
用于校正处理的第一基础图像信息,为基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的第一基础图像信息;
当基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的第二基础图像信息;则校正控制部,根据第二基础图像信息来进行校正处理的控制。
又一方案,校正控制装置,包括:
拍摄部,用于拍摄获得热像数据;
校正控制部,用于根据基础图像信息来进行校正处理;
所述校正控制部,基于存储介质中传感器数据与基础图像信息的对应关系,根据传感器件获得的传感器数据,采用所述传感器数据对应的基础图像信息,进行校正处理;
所述传感器数据,为基于校正控制装置自身或与之连接的传感器,来获得。
进一步,处理部,当根据第一基础图像信息来进行校正处理,采用确定的第一基础图像信息对后续的热像数据进行处理,获得处理后的第一图像和/或第一分析数据;当根据第二基础图像信息来进行校正处理,获得处理后的第二图像和/或第二分析数据;这时可以不产生图像的停顿。
进一步,校正控制部,根据校正指示,基于所确定的基础图像信息,来进行校正处理的控制;或者,所述校正控制部,根据检测获得的影响因素,当所述影响因素超过规定的范围,则根据对应关系,来确定所述影响因素对应的基础图像信息,来进行校正处理的控制;。
进一步,所述基础图像信息可以包括热像数据、校正参数、校正算法其中之一或多个;用于校正处理的基础图像信息可以包括热像数据、校正参数、校正算法其中之一或多个;
进一步,基础图像信息包括如下情况之一或组合:
1)基于遮挡探测器光路、或基于标准参照物,拍摄获得的热像数据,或基于所述热像数据经历处理,或基于所述拍摄获得的热像数据参与处理,获得的基础图像信息;
2)人工配置的基础图像信息;
3)根据规定范围的影响因素对应的基础图像信息,按算法获得的基础图像信息;
4)基础图像信息不限于本机获得,也可以是其他热像装置获得的;
进一步,作为基础图像信息的热像数据包括如下情况之一:
1)遮挡探测器光路、或基于标准参照物,拍摄获得的热像数据,或所述热像数据经历处理后获得的热像数据;或拍摄获得的热像数据参与处理获得的热像数据;
2)档片启用期间获取的热像数据,或所述热像数据经历处理或参与处理后获得的热像数据;
3)人工配置的热像数据;
4)根据规定范围的影响因素对应的热像数据,按算法获得的热像数据;
5)将基于当前获得的影响因素,将规定范围的影响因素对应的热像数据,按照特定算法,来获得的热像数据;
进一步,所述校正参数包括如下情况之一或组合:
1)根据获取的热像数据,计算处理获得的校正参数;所述热像数据为上述情况之一或组合;
2)档片遮挡红外探测器时,获得的一帧或多帧热像数据,按算法计算出校正参数;
3)热像数据参与获得的校正参数;
3)人工配置的校正参数;
4)根据规定范围的影响因素对应的校正参数,按算法获得的校正参数;
进一步,所述影响因素包括如下因素其中之一:
1)内部影响因素;至少包括代表一个内部空间的温度、一个器件的温度、一个镜头局部的温度、一个电路板的温度、一个结构件的温度之一;可以包括1个或1个以上传感器的数据;
2)外部影响因素,包括环境温度、湿度、风速、风向、季节、地域、海拔、高度、仪器的倾角、朝向、气压、压力、挂载时的速度、振动、载体、日期、时间等之一或多个的数据;
3)状态影响因素,包括特定算法或程序、温度档、帧频、采集像素、采用不同视场角的镜头,热像装置的开机运行时间等之一或多个;
进一步,所获取的影响因素的数据,可以有多种情况,包括如下情况之一或组合:
1)根据检测获得的影响因素,当超过规定的范围,则根据对应关系,来获得相应的基础图像信息;
2)接收到规定指示,获取相应的影响因素的数据;例如接收到校正指示,获取相应的影响因素的数据,这时获得的影响因素包括如下情况之一或多个;
可以是接收到校正指示的规定时刻,规定时刻包括可以是校正指示之前、之时、之后的规定时间、或一定的时间期间,所获取的影响因素的数据或基于所述数据进行处理后获得的影响因素的数据;所述校正指示,可以按照一定频率、按触发条件触发、人工触发等来发出;所述频率可配置为小于1分钟、30秒、20秒、10秒、5秒其中之一;
影响因素数据的来源包括如下情况之一或组合
1)通过传感器获取的;
2)基于校正控制装置自身或与之连接的传感器,来获得;
3)可以通过状态因素的功能部件获得的影响因素;
4)通过通讯部获取的影响因素的数据;
5)人工设置的影响因素的数据;
进一步,影响因素与基础图像信息的对应关系,可以包括如下情况之一或多个:
1)预先准备的,
2)预先存储在校正控制装置的存储介质中;
3)根据校正控制装置自身或与其连接的传感器等获得的影响因素,或根据校正控制装置自身或与其连接的传感器,并结合其他方式获得的影响因素,将与其对应的基础图像信息,构成对应关系,预先准备并存储在存储介质中;所述基础图像信息可以是基于校正控制装置本机之前打档获得的热像数据来获得;
4)通过通讯部获取的对应关系;
5)对应关系的部分信息由通讯部获得,部分信息由校正控制装置自身获得;
6)通过其他影响因素与基础图像信息的对应关系,计算获得;
7)按照一定条件更新的;
8)通过校正控制装置自身获得;
9)影响因素与基础图像信息的对应关系,可以有1组或多组。
进一步,基于影响因素与基础图像信息的对应关系,确定的基础图像信息;可以根据校正控制装置自身存储的对应关系,或通过通讯部获得的所述对应关系,或基于通讯部连接的其他装置中存储的对应关系,来确定的基础图像信息;
包括如下情况之一或多个:
1)直接对应的;
2)位于允许的规定范围中选择的;
3)计算获得的;
4)位于规定范围的多组影响因素各自对应的基础图像信息,经历算法计算获得;
又一方案,校正控制装置,包括:
获取部,用于获取热像数据;
影响因素获取部,用于获取影响因素的数据;
基础图像信息记录部,用于将基于档片启用期间拍摄、或标准参照体拍摄获得的基础图像信息,和对应的影像因素的数据关联记录。
进一步,具有对应关系生成部,按照特定规则或算法,抽取多个影响因素及对应的基础图像信息,构成对应关系。
进一步,所述基础图像信息记录部,按照规定频率,连续记录获得的影响因素及对应的基础图像信息;对应关系生成部,用于根据所述连续记录的数据,抽取其中超过规定差异范围的基础图像信息及其对应的影响因素,构建影响因素与基础图像信息的关系;
或者,所述基础图像信息记录部,记录获得的影响因素及其对应的基础图像信息;对应关系生成部,抽取其中超过规定差异范围的基础图像信息及其对应的影响因素,构建影响因素与基础图像信息的关系。
又一方案,控制系统,包括:
至少1台校正控制装置,及与其通讯的处理装置;
所述校正控制装置,包括:
拍摄部,用于拍摄获得热像数据;
校正控制部,根据基础图像信息来进行校正处理的控制;
影响因素、基础图像信息、影响因素与基础图像信息的对应关系,其中之一或部分,来源于所述处理装置;
用于校正处理的基础图像信息,为基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息。
进一步,所述影响因素的部分来源于处理装置;对应关系的部分来源于处理装置;
进一步,所述处理装置,用于将影响因素和/或基础图像信息,提供给校正控制装置;
进一步,所述校正控制装置,根据所述处理装置提供的信息,来确定基础图像信息,并进行校正处理的控制;
进一步,所述校正控制装置具有档片机构,可获得遮挡探测器光路或校准参考物拍摄获得的热像数据。
进一步,所述影响因素的部分来源于处理装置;对应关系的部分来源于处理装置。
所述处理装置,用于将影响因素和/或基础图像信息,提供给校正控制装置;
所述校正控制装置,根据所述处理装置提供的信息,来确定基础图像信息,并进行校正处理的控制。
本发明的又一校正控制装置,包括:
拍摄部,用于拍摄获得热像数据;
校正指示部,用于发出校正指示;
校正控制部,用于基于校正指示,根据基础图像信息来进行校正处理;
所述校正控制部,基于传感器数据与基础图像信息的对应关系,根据传感器件获得的传感器数据,采用所述传感器数据对应的基础图像信息,进行校正处理;传感器数据,为基于校正控制装置自身或与之连接的传感器,来获得。
进一步,所述传感器数据至少包括1个温感数据。或者包括位于镜头盖、镜头、档片、探测器、探测器的采集电路、壳体、壳体外部、前壳、散热片、处理电路板、控制电路板,其中至少二个位置的温感数据;
本发明的又一校正控制装置,包括:
拍摄部,用于拍摄获得热像数据;
校正控制部,用于根据基础图像信息来进行校正处理;
所述校正控制部,如基于温感器件获得的温感数据,符合温感数据与基础图像信息的对应关系,则采用所述基础图像信息;如未找到对应的基础图像信息,则发出档片启用的指示;档片控制部,用于控制档片的动作;所述档片位于红外探测器的前部;基于档片启用的指示,控制档片遮挡红外探测器;
基础图像信息记录部,用于基于记录指示来记录基础图像信息,所述基础图像信息为档片遮挡红外探测器时,获得的热像数据或相关参数;所述基础图像信息与至少一个位于校正控制装置的温感器件获得的温感数据关联记录;所述基础图像信息记录部,用于获得所述温感器件获得的温感数据与基础图像信息的关系。
本发明的校正控制方法,包括:
拍摄获得热像数据并根据基础图像信息来进行校正处理的控制步骤;
或根据基础图像信息来进行校正处理并拍摄获得热像数据的控制步骤;
用于校正处理的基础图像信息,包括如下二种情况,且每次执行其中之一:
情况1:基于遮挡探测器光路或基于标准参照体期间拍摄获取的热像数据,来获得的基础图像信息;
情况2,包括如下至少之一:
1)基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息;
2)基于从通讯部获得的基础图像信息;
3)根据上述任意二项,处理获得的基础图像信息。
本发明的又一校正控制方法,包括:
拍摄获得热像数据并根据基础图像信息来进行校正处理的控制步骤;
或根据基础图像信息来进行校正处理并拍摄获得热像数据的控制步骤;
用于校正处理的基础图像信息,为基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息。
进一步的校正控制方法
校正控制步骤,根据第一基础图像信息来进行校正处理的控制;
用于校正处理的第一基础图像信息,为基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的第一基础图像信息;
当基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的第二基础图像信息;则校正控制部,根据第二基础图像信息来进行校正处理的控制。
本发明的校正控制方法,包括:
获取热像数据和影响因素的步骤;
基础图像信息步骤,用于将基于遮挡探测器(如档片启用期间)拍摄、或标准参照体拍摄获得的基础图像信息,和对应的影像因素的数据关联记录。或还包括抽取步骤,按照特定规则或算法,抽取多个影响因素及对应的基础图像信息,构成对应关系。
本发明的校正方法,包括:
应用于校正系统,包括至少1台校正控制装置,及与其通讯的处理装置;
所述校正控制装置执行的步骤,包括:
拍摄获得热像数据并根据基础图像信息来进行校正处理的控制步骤;
或根据基础图像信息来进行校正处理并拍摄获得热像数据的控制步骤;
影响因素、基础图像信息、影响因素与基础图像信息的对应关系,其中之一或部分,来源于所述处理装置与校正控制装置的通讯步骤;
用于校正处理的基础图像信息,为基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息。
本发明的校正控制方法,包括:
获取热像数据和影响因素的步骤;
基础图像信息步骤,用于将基于遮挡探测器拍摄、或标准参照体拍摄获得的基础图像信息,和对应的影像因素的数据关联记录。或还包括抽取步骤,按照特定规则或算法,抽取多个影响因素及对应的基础图像信息,构成对应关系。
本发明的其他方面和优点将通过下面的说明书进行阐述。
附图说明:
图1是实施例1的校正控制装置的电气结构框图。
图2是实施例1的校正控制装置的示例图。
图3代表了温感数据、基础图像信息对应的关系表一个示例。
图4代表了影响因素、基础图像信息对应的关系表的另一个示例。
图5是表示控制步骤的流程一个示例。
图6是合页式档片的示意;
图7是单摆式档片的示意;
图8代表了影响因素、基础图像信息对应的关系表的另一个示例。
图9代表了校正控制装置传感器布置的一个示例。
图10代表了现有技术打档校正获得的温度曲线;
图11代表了采用影响因素对应的基础图像校正后获得的温度曲线;
图12代表了实施例2、实施例3的示例图;
下面介绍本发明的实施例,虽然本发明在实施例1中,示例带有热像拍摄功能的校正控制装置(下文中简称校正控制装置9),可以是各种便携式热像装置、在线式热像装置、搭载于无人机、车载、机器人等的热像装置。不限于热像装置,也可适用于各种带有档片遮挡传感器进行校正的拍摄装置。
优选的方案,校正控制装置,包括:拍摄部,用于拍摄获得热像数据;
校正控制部,根据基础图像信息来进行校正处理的控制;
用于校正处理的基础图像信息,为基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息。
优选的方案,校正控制装置,包括:
拍摄部,用于拍摄获得热像数据;
校正控制部,根据基础图像信息来进行校正处理的控制;
用于校正处理的基础图像信息,包括如下2种情况,且每次执行其中之一:
情况1:基于遮挡探测器光路(如打档期间)或拍摄标准参照体期间获取的热像数据,来获得的基础图像信息;这种情况包括基于所获取的热像数据、或所获取的热像数据经历规定处理、或所获取的热像数据参与规定处理等方式之一或组合,来获得的基础图像信息;
情况2,包括如下至少之一:
1)基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息;
2)基于从通讯部获得的基础图像信息;
3)根据上述任意二项,处理获得的基础图像信息。
基础图像信息可以包括热像数据、校正参数、校正算法其中之一或多个;用于校正处理的基础图像信息可以包括热像数据、校正参数、校正算法其中之一或多个;
基础图像信息包括如下情况之一或多个:
1)基于遮挡探测器光路、或基于标准参照物,拍摄获得的热像数据,或基于所述热像数据经历处理,或基于所述拍摄获得的热像数据参与处理,获得的基础图像信息;
2)人工配置的基础图像信息;
3)根据规定范围的影响因素对应的基础图像信息,所述基础图像信息可以是其中之一或多个,按算法对所述基础图像信息进行处理获得的基础图像信息;
基础图像信息不限于本机获得,也可以是其他热像装置获得的;例如其他热像装置获得的基础图像信息,应用于该批次所有热像装置中使用,或还经历人为配置等处理。
具体而言,所述热像数据包括如下情况之一:
1)遮挡探测器光路、或基于标准参照物,拍摄获得的热像数据;例如档片启用期间获取的热像数据;例如基于标准参照物获得的基础图像信息,标准参照物例如温度场辐射均匀并可充满探测器像素的目标如均匀的墙面等;
需要注意,用来获得基础图像信息时,基于遮挡探测器光路、或基于标准参照物,拍摄获得的热像数据,优选指示为拍摄获得原始AD值热像数据,但也可设计为采用之前校正参数来拍摄获得的热像数据;二者在后续换算为校正参数时,算法略有不同。
2)情况1)获得的热像数据处理后的热像数据;
在一例,获得多帧热像数据并经历处理获得的一帧热像数据;例如,为减少存储的数据量,将获取的热像数据降像素后的作为基础图像信息;
包括也可以是获得的热像数据,参与获得的热像数据;例如,根据在遮挡探测器光路(如档片启用期间)获得的影响因素及获得的热像数据,将所述热像数据与规定范围例如前后相邻影响因素对应的热像数据,进行平均后获得的热像数据,作为基础图像信息;
3)人工配置的热像数据;例如,在出厂前获得情况1)的热像数据,并经历人工修饰后获得的热像数据;
4)根据规定范围的影响因素对应的热像数据,所述热像数据可以选择其中之一或多个,按算法获得的热像数据;例如,将基于当前获得的影响因素,将规定范围例如前后相邻的影响因素对应的热像数据,按照特定算法如平均,来获得的热像数据;例如,档片遮挡红外探测器时,获得的一帧热像数据,参与和预先准备的基础图像信息中,最接近的基础图像信息(如影响因素最接近的热像数据),进行平均后获得的热像数据;
一般而言,当将热像数据作为基础图像信息时,后续还需要对该热像数据进行计算来获得校正参数。在一例,档片遮挡红外探测器时,获得的一帧或多帧热像数据(例如原始AD值热像数据),作为基础图像信息,可按算法计算出校正参数,用来对后续的热像数据进行校正。校正控制装置可配置有将热像数据计算为校正参数的算法。
具体而言,所述校正参数包括如下情况之一或多个:
1)根据获取的热像数据,计算处理获得的校正参数;所述热像数据为上述情况之一或多个;
在一例,档片遮挡红外探测器时,获得的一帧或多帧热像数据,可按算法计算出校正参数,用来对后续的热像数据进行校正。
在一例,档片遮挡红外探测器时,获得的多帧热像数据,经历处理例如平均处理后获得的一帧,可按算法计算出校正参数,用来对后续的热像数据进行校正。
在一例,档片遮挡红外探测器时,获得的一帧热像数据,计算出热像采集的校正系数或探测器的控制参数,对后续热像数据的采集进行修正;
在一例,获得的热像数据参与获得的校正参数;例如根据根据获取的热像数据计算处理获得的校正参数,还将基于当前获得的影响因素,将所述校正参数结合规定范围例如前后相邻的影响因素对应的校正参数,按照特定算法,如平均,来获得的校正参数;
2)人工配置的校正参数,例如对热像数据计算获得的校正参数,并经历人工修饰后获得的校正参数;
3)根据规定范围的影响因素对应的校正参数,所述校正参数可以选择其中之一或多个,按算法获得的校正参数;例如,将基于当前获得的影响因素,将规定范围例如前后相邻的影响因素对应的校正参数,按照特定算法如平均,来获得的校正参数;
校正参数可以包括针对热像数据中每一个像素的校正参数,也可以仅针对特定区域中每一像素或部分像素的校正参数。
校正算法;在一些情况下,可以不预存热像数据或校正参数,而仅包括校正算法;例如根据规定范围的影响因素对应的校正参数,按校正算法来获得的校正参数;在一例,将基于当前获得的影响因素,将规定范围例如前后相邻的影响因素对应的校正参数,按照特定算法如平均或接近度的加权比例,来获得校正参数;可以降低存储校正参数的数据量。
在优选的例子中,可基础图像信息包括上述信息至少二种;根据不同的校正实施方式和不同的应用,可以有多种基础图像信息的构成方式。
影响因素(外部、内部、状态,通讯部获得的)包括如下因素其中之一:
1)内部影响因素,如体现内部温度场状态的空间或部件的温度,至少包括一个内部空间的温度、一个器件的温度、一个镜头局部的温度、一个电路板的温度、一个结构件的温度之一;所述内部空间的温度例如探测器腔体(如探测器与镜头之间的空间)的温度、处理电路板所在空间的温度等之一;器件的温度例如探测器的温度、档片的温度(如安装有档片)、处理芯片的温度;镜头的温度,例如各镜片的温度、镜头结构的温度;电路板的温度,例如机芯采集电路板(信号预处理电路)、主控制电路板、处理电路板的温度;结构件的温度,例如散热片、热像装置壳体内壁等;可以包括1个或1个以上传感器的数据;
在一例,包括1个温感;在一例,包括2个温感;在1例,包括3个温感;在1例,包括4个温感;
2)外部影响因素,例如环境温度、湿度、风速、风向、季节、地域、海拔、高度、仪器的倾角、朝向、气压、压力、挂载时的速度、振动、载体、日期、时间等之一或多个;
3)对基础图像信息产生变化影响的状态影响因素,例如特定算法或程序如温度档、帧频、采集像素、采用不同视场角的镜头,热像装置的开机运行时间等之一或多个;状态可以是根据热像装置的设置(可以是人工、或触发、自动等设置)来决定;当然,根据不同的实施方式,相同的状态影响因素对基础图像信息的影响不同,在一例,探测器自身帧频分为多个范 围如30HZ,60HZ,由于采集的积分时间不同,那么选择30HZ、60HZ帧频的状态下对应的基础图像信息可能不同,而在另一例中,在一例,探测器自身帧频为60HZ,即便采集帧频可以设为30HZ,60HZ,但对应的基础图像信息还是可以一样的。
在不同的应用场景下,上述影响因素都有可能对基础图像信息产生变化影响,因此,可以针对影响因素与基础图像信息的对应关系。(建立对应关系,详见实施例3)
为获取上述影响因素的数据,例如优选基于校正控制装置自身或与之连接的传感器来获得,可以通过装配于热像装置或连接有相应的传感器来获取;在一例,在热像装置的外部壳体加装温感来获取代表环境温度的数据,在控制电路板上加装温感,来获取代表仪器内部控制电路板局部温度场的数据;具体而言,在一例,可以按照如下步骤来获得与基础图像信息变化相关的影响因素;在仪器内部和外部,部署较多的传感器,做出尽量细密的变化与基础图像信息的对应关系;而后将数值变化对基础图像信息变化小的传感器去除,最终留下对基础图像信息变化影响大的传感器,作为最终制作对应关系表和仪器内外部署传感器的依据。根据不同的应用、不同的结构的热像装置,可能导致不同的传感器配置。
如图8-图9所示的例子,在校正控制装置的机壳外部W1、镜头部位W2、散热片W3配置了温感,并在校正控制装置的存储介质中保存了如图8所示的对应关系。
不限于此,其中部分数据可以通过热像装置的通讯部来获取,例如环温、湿度、风速等,如相应的传感器数据集中汇集至特定的控制装置,热像装置可以通过通讯部来获得控制装置采集的上述数据。
如果配置了较多的传感器,将提供基础图像信息更为丰富的对应关系,也可以提高测温和图像校正的准确性,但也可能导致装配中的复杂性;根据热像装置不同的应用场景,一般会把最大影响的因素配置了相应的传感器;在优选的例子中,温感数据包括了3个温感的数据,例如镜头温度、探测器与镜头之间腔体的温度、处理器的温度;温感的数据可以来源于某些芯片自身温感获取的温度,在另一例,通过配置的温感(如温度传感器)来获取温度。温感等数据可以反映热像装置内部温度场的变化,当变化超过规定范围,则相应的基础图像信息的也应随之变化。
热像装置在不同的环境工作温度及热像装置内部热辐射下,可能导致基础图像信息发生变化,因此,优选的方式,将可能导致的影响因素,包括热像装置的外部影响因素和热像装置的内部影响因素,与相应的基础图像信息按照一定数据格式做成对应表,便于后续调用。优选的,影响因素与其对应的基础图像信息,预先存储在存储介质中;另一优选的,可以通过获取的影响因素的数据与相对应的基础图像信息,通过控制打档,来存储在存储介质中。
影响因素包括内部影响因素、外部影响因素、状态影响因素其中之一;优选考虑的影响因素,至少包括内部影响因素,例如
另一优选的,包括内部影响因素和外部影响因素,例如
另一优选的,包括内部、外部、状态影响因素,便于配置高精度的热像装置,例如
可以根据应用需要,进行不同的配置,但至少包括上述因素至少之一。
所获取的影响因素的数据,可以有多种情况,例如包括如下情况之一或多个:
1)根据控制部检测获得的影响因素,如按照规定频率或按照条件触发指示来获取并检测获得的影响因素,当超过规定的范围,则根据对应关系,来获得相应的基础图像信息;
例如控制部按照规定频率(如1秒1次的检测频率),检测传感器所获得的影响因素,当超过规定的范围,包括可以是影响因素的种类,或影响因素的数据,其中之一,超过了规定的范围,则根据对应关系,来获得相应的基础图像信息,应用于后续的校正处理。在一例,每秒检测一次影响因素(如多组温感)的数据,当其中之一超过规定范围0.5℃,则选择超过规定范围后的影响因素相对应的基础图像信息。
2)接收到规定指示,获取影响因素的数据;
例如接收到校正指示,获取相应的影响因素的数据,这时获得的影响因素包括如下情况之一或多个;
例如可以是接收到校正指示的规定时刻,规定时刻包括可以是校正指示之前、之时、之后的规定时间、或一定的时间期间,所获取的影响因素的数据,或基于所述数据进行处理后获得的影响因素的数据;
在一例,当获得校正指示,则获取新获得的温感数据;
在一例,如温感按照1秒的频率存储在临时存储部并5个刷新一次循环存储,当接收到校正指示,将获取最接近校正指示时刻的那个数据,那么可能选用了之前的数据;
在一例,对于影响因素的数据,可以是一定时间内获得的多个数据按照特定算法后获得的数据;例如接收到校正指示前的4个温感数据和之后的1个温感数据,进行平均获得的温感数据;
控制部8可以作为校正指示部的例子;校正指示,可以按照一定频率、按触发条件触发、人工触发等来发出;按照一定频率可以是固定频率,如按定时(如1分钟)来发出校正指示;也可以是变化的频率,如开机5分钟内为20秒发出校正指示,开机5分钟后按照1分钟来发出校正指示;按条件触发例如检测到传感器数据变化、或外部触发指示等则产生校正指示;
优选的,当采用预先准备的基础图像信息来进行校正时,可以提高校正频率;在一例,校正指示的频率可配置为1分钟、30秒、20秒、10秒、5秒其中之一;这样,可以降低温度的漂移,并避免了频繁打档获取基础图像信息导致的档片电机等的发热等缺陷。根据不同的应用需要,如预先配置好影响因素与基础图像信息对应关系,可以配置有各种校正频率,甚至更高的校正频率;在一例,理论上可以做到每帧根据检测到的影响因素对应的基础图像信息,进行校正的频率。
如图10-11所示,图10为现有技术通过打档校正来拍摄恒温物体的温度趋势曲线,其中阶跃的产生是由于无法密集校正导致温度的漂移;图11为采用对应关系获得的基础图像信息进行校正,来获得的温度趋势曲线,由于可以根据影响因素的变化,及时变换对应的基础图像信息,用来校正处理,因此可以大幅减低漂移。
优选方案,校正控制装置,包括:
拍摄部,用于拍摄获得热像数据;
校正控制部,根据第一基础图像信息来进行校正处理的控制;
用于校正处理的第一基础图像信息,为基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的第一基础图像信息;
当基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的第二基础图像信息;则校正控制部,根据第二基础图像信息来进行校正处理的控制。
这里所说的第一基础图像信息和第二基础图像信息,代表不同的基础图像信息;
处理部2,当根据第一基础图像信息来进行校正处理,采用所确定的第一基础图像信息对后续拍摄获得的热像数据进行处理,获得处理后的第一图像和/或第一分析数据;当根据第二基础图像信息来进行校正处理,采用所确定的第二基础图像信息对后续拍摄获得的热像数据进行处理,获得处理后的第二图像和或第二分析数据;这时可以不产生图像的停顿。
影响因素数据的来源包括如下情况之一或多个
1)通过传感器获取的;传感器件获得的传感器数据,例如基于校正控制装置自身或与之连接的传感器,来获得;
2)可以通过状态因素的功能部件如控制部8获得的影响因素,如时间、设置的测温档、镜头识别部件等获得的状态影响因素;
3)通过通讯部获取的影响因素的数据;例如通讯部获得的所在环境中环温、湿度、风速等其他外部传感器获取的影响因素的数据,可以减少校正控制装置自身传感器的配置数量。例如通过气象台数据获得的影响因素等。
4)人工设置的影响因素的数据;
影响因素与基础图像信息的对应关系,可以是如下情况之一或多个:
1)预先准备的,如预先存储在存储介质中的;在一例,如图3、图5、图8所示的对应关系,可以预先存储在校正控制装置的存储介质中;
优选的,根据校正控制装置自身或与其连接的传感器等获得的影响因素,或根据校正控制装置自身或与其连接的传感器,并结合其他方式获得的影响因素,将与其对应的基础图像信息,构成对应关系,预先准备并存储在存储介质中;优选的,所述基础图像信息可以是基于校正控制装置本机之前打档获得的热像数据来获得;
在一例,基础图像信息与影响因素如与温感数据等相对应,保存在校正控制装置9的存储介质中,供后续使用;在一例,在出厂前预先准备;
在一例,不限于本机,也可以是其他热像装置获取的(例如同一批次其他热像装置获取的对应关系);
2)通过通讯部获取的对应关系;在一例,如图3、图5、图8所示的对应关系,可以通过通讯部获得;例如,例如其他热像装置获得的基础图像信息,应用于该批次所有热像装置中使用。在一例,热像装置自身的档片机构故障或没有档片机构时,可以将类似结构或还具有类似影响因素如工作环境的热像装置(优选具有档片机构)获得的对应关系,应用于该热像装置;
不限于通过通讯部获得完整的对应关系,也可以是其中的部分信息由通讯部获得,其余的信息由校正控制装置自身获得;在一例,影响因素的数据根据通讯部获得,而基础图像信息根据校正控制装置自身打档获得,将二者对应来获得对应关系;
3)通过其他影响因素与基础图像信息的对应关系,计算获得;例如,根据规定范围已有的影响因素及其对应的基础图像信息,对符合该规定范围中的新获得的影响因素数据,根据 相邻的二个影响因素的基础图像信息的加权,来计算获得所述影响因素与其对应的基础图像信息;
4)按照一定条件更新的;在一例,校正控制装置预先存储了对应关系,经历规定时期的运行或更新指示,可以更新所述对应关系;例如每三个月规定周期,重新打档获得基础图像信息,根据相应影响因素对应的基础图像信息,将新获得的基础图像信息与预先准备的基础图像信息进行比较,或二者校正后的热像数据或分析值进行比较,当超过允许值,则更新影响因素与基础图像信息的对应关系;可以按照新获得的影响因素与基础图像信息的对应关系,进行部分或全部更新。
5)通过校正控制装置自身获得;例如通过校正控制装置自身传感器或连接的传感器获得影响因素,并结合遮挡探测器或基于标准参照体拍摄获得的热像数据,来获得的二者对应关系;例如打档获取的基础图像信息,与打档期间相对应的影响因素关联记录,以获得二者之间的对应关系;便于后续调用。
因此,即便预先没有准备对应关系,但可以通过校正控制装置(优选带有档片机构)逐渐积累,达到自学习的作用。在另一例,影响因素发生改变,则可以根据新的影响因素组合,即可打档对应获得的基础图像信息,来重新构建对应关系。
6)影响因素与基础图像信息的对应关系,可以有1组或多组;例如为不同的工况情况下,准备了不同的构成的对应关系;一般可根据影响因素的种类不同来配置对应的基础图像信息的对应关系分组;在一例,校正控制装置预先准备了分别应用于地面使用和机载使用时的影响因素与基础图像信息的对应关系。
基于影响因素与基础图像信息的对应关系,确定的基础图像信息;可以根据校正控制装置自身存储的对应关系,或通过通讯部获得的所述对应关系,或基于通讯部连接的其他装置中存储的对应关系,来确定的基础图像信息;包括如下情况之一或多个:
1)直接对应的;获得的影响因素可直接从对应关系中找到对应的基础图像信息;如图8所示,当获得的影响因素(温感1:1℃,温感2:1℃;温感3:1℃),则确定基础图像信息1;
2)从允许的规定范围中选择的;包括允许缺省某个传感器数据的情况;获得的影响因素可直接从对应关系中选择对应的基础图像信息;例如,图8所示,预先准备的对应关系表;规定范围为0.5℃,当检测到的影响因素的数据位于关系表中二组影响因素之间时,则选择接近的影响因素对应的基础图像信息;影响因素(温感1:1℃,温感2:1℃;温感3:1℃)对应基础图像信息1,假定某时刻获取的影响因素的数据为(温感1:1℃,温感2:1℃;温感3:1.6℃),则确定对应的基础图像信息2。
3)计算获得的,例如位于规定范围的多组影响因素各自对应的基础图像信息,选择其中之一或多组,经历算法计算获得;在一例,获取的影响因素位于二组影响因素数据之间,如(温感1:1℃,温感2:1℃;温感3:1℃,对应基础图像信息1)和(温感1:1℃,温感2:1℃;温感3:2℃,对应基础图像信息2)之间,可以通过算法如二个基础图像信息的加权,来确定获取的影响因素对应的基础图像信息;
根据校正控制装置获得对应关系的实施方式;
当根据获得的影响因素,无法找到对应的基础图像信息,如超过规定范围或新增类型不同的传感器数据等原因,则可重新获取基础图像信息;例如产生打档指示,并根据打档期间 拍摄获取的热像数据,来获得基础图像信息;将所述基础图像信息与对应的影响因素关联记录,构成二者对应关系。
其中,基于遮挡探测器光路、或基于标准参照物,获得的基础图像信息可以包括热像数据、校正参数其中之一或多个;热像数据包括如下情况之一或多个:
1)基于遮挡探测器光路、或基于标准参照物,拍摄获得的热像数据,或基于所述热像数据经历处理获得的热像数据,或基于所述拍摄获得的热像数据参与处理获得的热像数据;
在一例,通过校正控制装置9自身的打档时获得的热像数据;可基于基础图像信息的采集指示,可将档片遮挡红外探测器光路时,获得的热像数据、或所述热像数据经历各种算法处理后的热像数据;遮挡探测器光路时,获得的热像数据,可以包括1或多帧的热像数据;优选为拍摄获得原始AD值热像数据;
在一例,根据在档片启用期间获得的影响因素及获得的热像数据,将所述热像数据,与所述影响因素规定范围例如前后相邻影响因素对应的热像数据,进行平均后获得的热像数据,作为基础图像信息;
所述校正参数包括如下情况之一或多个:
1)根据获取的热像数据,计算处理获得的校正参数和/或校正算法;所述热像数据为上述情况之一或多个;
例如由于温度档(测温不同量程范围)的参数(例如K值不同)不同,采用了不同的特定算法,可能导致基于所述热像数据获得的校正参数不同的情况;
在一例,档片遮挡红外探测器时,获得的一帧或多帧热像数据,可按算法计算出校正参数,用来对后续的热像数据进行校正。
在一例,档片遮挡红外探测器时,获得的多帧热像数据,经历平均处理后获得的一帧,可按算法计算出校正参数,用来对后续的热像数据进行校正。
在一例,档片遮挡红外探测器时,获得的一帧热像数据,计算出热像采集的校正系数或探测器的控制参数,对后续热像数据的采集进行修正;
在一例,热像数据参与获得的校正参数;还将基于当前获得的影响因素,将规定范围例如前后相邻的影响因素对应的校正参数,按照特定算法如平均,来获得的校正参数;
在一例,对热像数据计算获得的校正参数,并经历人工修饰后获得的校正参数;
根据不同的校正实施方式和不同的应用,可以有多种基础图像信息的构成方式。
其中,影响因素包括如下因素其中之一:
1)内部影响因素,2)外部影响因素;3)状态影响因素;
为获取上述影响因素的数据的获取方式:
1)基于校正控制装置自身或与之连接的传感器来获得;
2)可以通过热像装置的通讯部来获取;
3)通过校正控制装置相关的设置状态或功能模块,来获得状态影响因素;
所获取的影响因素及其对应的基础图像信息,可以有多种实施方式,例如包括如下情况之一或多个:
1)根据控制部检测获得的影响因素,根据对应关系,如未获得相应的基础图像信息,则打档获取基础图像信息;将相对应的影响因素如温感数据等和基础图像信息二者关联记录获得对应关系;
2)接收到规定指示,获取相应的影响因素的数据和对应的基础图像信息;
其中,相互对应的二者获得的时间应尽量接近,影响因素的部分或全部数据可以是获取热像数据之前、之时、之后获得的,还包括一定时间内获得的多个数据按照特定算法后获得的数据。
在一例,当获得校正指示,则执行获取影响因素的数据;如接收到校正指示,获取的校正控制装置的温感传感器的数据;
在一例,当获取基础图像信息后,立即重新获取影响因素的数据;
在一例,打档期间,通过传感器或设置状态获取的影响因素的数据;
其中,校正处理,可以对探测器控制参数、信号读取采集参数、后续获取的热像数据其中之一,进行校正。可包含有一种或多种校正参数,例如均匀性校正、测温校正等相关的校正参数;具体而言,如对后续获取的热像数据进行原始AD值、图像、测温数据等之一或多个的校正处理;对后续获取的热像数据,例如本次确定基础图像信息,至下一次重新确定基础图像信息之间获取的热像数据,按照本次所确定的基础图像信息进行处理。在一例,校正处理将针对后续获得的每一帧热像数据;在另一例中,校正处理可仅针对后续获得的部分帧的热像数据;在另一例中,校正处理可仅针对热像数据帧中的局部区域的热像数据;
根据所述基础图像信息,进行校正处理的控制,包括以上至少之一;
1)例如可用来对探测器的控制参数、和/或信号读取参数进行校正控制,对采集热像数据的各种相关参数至少之一进行校正控制;如可以通过基础图像信息,来获得各种校正系数,对采集热像数据的各种相关参数进行控制;探测器控制参数例如采集积分时间、增益、偏置电压等;信号读取参数控制例如图像分辨率、帧频等。
2)例如对获取的热像数据进行处理的相关参数(例如均匀性校正、测温校正等)至少之一进行校正控制。
并且,当各种影响因素(影响热像装置工作温度或测温精度的影响因素)与基础图像信息相对应,以便后续调用,可以很好的起到校正的作用,并可以大幅提高测温精度。
另一个优点是,由于基础图像信息可以调用,并进行校正处理,因此可以提高校正的频率并确保不出现打档时图像遮挡导致的画面暂停,也不会出现因为频繁打档时可能导致打档电机发热而使图像或红外测温发生误差。具体而言,在一例,通过基础图像信息获取校正系数对某一时刻的红外热像进行校正,校正前后的连续图像可以不会出现中断的情况。
优选的方案中,校正控制装置,包括:
拍摄部,用于拍摄获得热像数据;
校正控制部,根据基础图像信息来进行校正处理的控制;
用于校正处理的基础图像信息,包括如下2种情况,且每次执行其中之一:
情况1:基于遮挡探测器光路(如打档期间)或拍摄标准参照体期间获取的热像数据,来获得的基础图像信息;这种情况包括基于所获取的热像数据、或所获取的热像数据经历规定处理、或所获取的热像数据参与规定处理等方式之一或组合,来获得的基础图像信息;
情况2,包括如下至少之一:
1)基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息;
2)基于从通讯部获得的基础图像信息;
3)根据上述任意二项,处理获得的基础图像信息。例如将二种方式获得的基础图像信息进行处理例如平均后,获得的基础图像信息;
在一例,用于校正处理的基础图像信息,为基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息;或根据打档期间获取的热像数据,来获得基础图像信息。
在一例,对应关系存储在于校正控制装置通讯的处理装置中,当校正控制装置将获得的影响因素的数据,提供给处理装置,由处理装置根据对应关系,将基础图像信息,提供给校正控制装置;或根据打档期间获取的热像数据,来获得基础图像信息。
在一例,用于校正处理的基础图像信息,为基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息;或基于打档获得的基础图像信息,和情况2中获得的基础图像信息(例如通讯部获得的基础图像信息),二者进行处理,如平均后获得的基础图像信息。
优选例,当基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,可确定基础图像信息;则所述基础图像信息作为用于校正处理的基础图像信息;当基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,无法确定基础图像信息;则产生基础图像信息获取指示,基于遮挡探测器光路(如打档期间)或拍摄标准参照体期间获取的热像数据,来获得基础图像信息,作为用于校正处理的基础图像信息。
进一步优选的,将基于遮挡探测器光路(如打档期间)或拍摄标准参照体期间获取的热像数据,来获得基础图像信息,与对应的影响因素关联记录,并将该对应关系,增加至多组影响因素与基础图像信息的对应关系中,如图3、图4、图8等的对应表中,以便后续使用。
另一优选的,档片控制部,用于控制档片的启用;
校正控制部,用于基于校正指示,根据所确定的基础图像信息来进行校正处理的控制;
所确定的基础图像信息包括如下二种情况之一,根据影响因素与基础图像信息的对应关系,根据获得影响因素的数据(如基于温感器件获得的温感数据),所确定相对应的基础图像信息;根据档片启用的指示,根据档片启用期间获取的热像数据,来确定基础图像信息。
优选的,如未能确定相对应的基础图像信息或需要比较找到所确定的,则产生档片启用的指示,根据在启用期间获取的热像数据,来确定基础图像信息;
进一步优选的,基于记录指示来记录所述基础图像信息和对应的影响因素;还可将所述对应关系,增加至原有的对应关系如关系表中。
优选的例子,控制系统,包括:至少1台校正控制装置,及与其通讯的处理装置;
所述校正控制装置,包括:
拍摄部,用于拍摄获得热像数据;
校正控制部,根据基础图像信息来进行校正处理的控制;
影响因素、基础图像信息、影响因素与基础图像信息的对应关系,其中之一或部分,来源于所述处理装置;校正控制装置的运行过程中,部分或全部的影响因素、部分或全部的基础图像信息、部分或全部的影响因素与基础图像信息的对应关系,其中之一,来源于所述处理装置;
用于校正处理的基础图像信息,为基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息;可以由校正控制装置或处理装置之一或组合,来确定基础图像信息。详见实施例2;
优选的例子,校正控制装置,包括:
获取部,用于获取热像数据;影响因素获取部,用于获取影响因素的数据;
基础图像信息记录部,用于将基于遮挡探测器拍摄、或标准参照体拍摄获得的基础图像信息,和对应的影像因素的数据关联记录。详见实施例3;
实施例1
现在将根据附图详细说明本发明的典型实施例。注意,以下要说明的实施例用于更好地理解本发明,所以不限制本发明的范围,并且可以改变本发明的范围内的各种形式。
图1是实施例1的校正控制装置9的电气结构框图。图2是实施例1的校正控制装置9的外型图。
校正控制装置9具有拍摄部1、处理部2、闪存3、档片控制部4、临时存储部5、通信I/F6、存储卡I/F7、控制部8,控制部8通过控制与数据总线与上述相应部分进行连接,负责校正控制装置9的总体控制。
拍摄部1如为红外拍摄部,一种实施方式,红外拍摄部由未图示的光学部件、镜头驱动部件、档片机构、红外探测器、信号预处理电路等构成。光学部件由红外光学透镜组成,用于将接收的红外辐射聚焦到红外探测器。镜头驱动部件根据控制部8的控制信号驱动透镜来执行聚焦或变焦操作。
在一例,档片机构位于红外探测器与镜头之间,但也可配置在镜头的光路中,例如镜片之间或镜头前部;档片可以采用合页式档片(如图6所示)、单摆式档片(如图7所示)等,受档片电机的驱动进行开合的动作,一般档片材料可采用表面附着黑体材料的金属片;在未启用状态,档片不对探测器遮挡,当启用档片,则对红外探测器或其光路进行遮挡。
红外探测器如制冷或非制冷类型的红外焦平面探测器,把通过光学部件的红外辐射转换为电信号。信号预处理电路包括采样电路、AD转换电路等,将从红外探测器读出的信号在规定的周期下进行取样、自动增益控制等信号处理,经AD转换电路转换为数字热像数据。处理部2用于对通过红外拍摄部1获得的热像数据进行规定的处理,该热像数据例如为14位或16位的二进制数据(又称为热像AD值数据,简称AD值数据)。
处理部2的处理如修正、插值、伪彩、压缩、解压等处理,进行转换为适合于显示用、记录用等数据的处理。其中,热像数据生成红外热像的处理如伪彩处理,一种实施方式,根据热像数据AD值的范围或AD值的设定范围来确定对应的伪彩板范围,将热像数据的AD值在伪彩板范围中对应的具体颜色值作为红外热像中对应像素位置的图像数据。处理部2可以采用DSP或其他微处理器或可编程的FPGA等来实现,或者,也可与控制部8为一体或为同一的微处理器。基于控制部8的控制,处理部2用于将拍摄部1获得的热像数据等按照规定的处理, 记录到如存储卡等记录介质。对于各种类型的拍摄装置,处理部2的处理是将拍摄部1获得的热像数据等,进行转换为适合于显示用、记录用、通信用等数据的处理。处理部2可以用作对获取的热像数据进行校正处理的例子。
闪存3中存储有用于控制的程序,以及各部分控制中使用的各种数据。在实施例1中,作为存储介质的例子,用于存储温感数据、基础图像信息及2者的对应关系;存储介质例如可以是校正控制装置9中的存储介质,如闪存3、存储卡等非易失性存储介质,临时存储部5等易失性存储介质;还可以是与校正控制装置9有线或无线连接的其他存储介质,如通过与通信I/F6有线或无线连接的进行通讯的其他装置如其他存储装置、或其他拍摄装置、计算机、服务器等中的存储介质;校正控制装置9可通过有线或无线方式,来获得其他装置中存储、获得、处理得到的基础图像信息,存储在校正控制装置9中或与其连接的非易失性存储介质中。
如图3所示的表,代表了温感数据、基础图像信息对应的关系表;其中不同的温感数据对应了不同的基础图像信息,例如温感数据1对应的是基础图像信息1;温感数据至少包括有1个温度传感器(简称温感)的数据,可以是温感的温度值(如24度),或温度值的范围(如24度上下10%的范围);在其他的例子中,也可以包含多个温感数据的值,温感可以有1个或多个,例如探测器内部的温感、外部环境温感、处理器(如处理部2或控制部8的芯片温度)的温感、探测器的温感、档片的温感、镜头的温感、散热片温感,其中之一或多个的组合;优选的,采用校正控制装置9自身带有的多个温感所获取的温感数据。
基于基础图像信息的采集指示,可将档片遮挡红外探测器时,获得的热像数据、或所述热像数据经历各种算法处理后的热像数据、或基于所述热像数据获得的校正相关的规定参数(文中称为的校正参数,可以包括与校正相关的各种校正系数、补偿参数、控制参数等,不同的实施方式中,校正参数可以包括1个或多个参数),至少其中之一作为基础图像信息。
所述基础图像信息,用来对探测器的控制参数进行校正控制、或对采集热像的各种相关参数至少之一进行校正控制、或对后续获取的热像数据进行处理(例如均匀性校正、测温校正等)至少之一进行校正控制。
如图4所示的表,代表了各种相关影响因素的传感器数据、基础图像信息对应的关系表,代表更为细密的对应关系。其他传感器,例如湿度、倾斜度的传感器、气压、风速等。进一步,在一例,可将代表某种状态的影响因素,如开机时间、探测器或热像的各种设定参数(例如设定的帧频、采集的像素)、目标背景的各种补偿系数或算法(例如天空背景补偿的开与关)、各种设置的修正算法(例如滤波、增强等算法)、各种分析处理算法(例如不同的温度档)等,作为与基础图像信息相关的状态影响因素,也作为对应关系表中的项;以便于根据影像因素获得更为合适的基础图像信息,加快后续处理的速度和控制处理的效果。
档片控制部4,用于控制档片的动作,例如档片电机的驱动控制处理器;所述档片可位于红外探测器的前部;基于档片启用的指示,控制档片电机驱动档片,来遮挡红外探测器或其光路;在另一例,可以取消单独的档片控制部4,控制部8可作为档片控制部4的例子。
临时存储部5如RAM、DRAM等易失性存储器,作为对拍摄部1输出的图像数据、热像数据进行临时存储的缓冲存储器,同时,作为处理部2和控制部8的工作存储器起作用,暂时 存储由处理部2和控制部8进行处理的数据。不限与此,控制部8、处理部2等处理器内部包含的存储器或者寄存器等也可以解释为一种临时存储部。
通信I/F6(通讯部的例子)是例如按照USB、1394、蓝牙、网络如WIFI、通讯网络例如4G,5G等有线或无线通信规范,与外部装置进行连接并数据交换的接口,作为外部装置,例如可以列举个人计算机、服务器、云端服务器、PDA(个人数字助理装置)、其他的热像装置、可见光拍摄装置、存储装置等。
存储卡I/F7,作为存储卡的接口,在存储卡I/F7上,连接有作为可改写的非易失性存储器的存储卡,可自由拆装地安装在校正控制装置9主体的卡槽内,根据控制部8的控制记录热像数据等数据。
此外,也可带有显示部,基于控制部8的控制,执行将临时存储部5所存储的显示用的图像数据显示在显示部。例如可连续显示拍摄获得的热像数据生成的影像、显示从存储卡读出和扩展的影像、还可显示各种设定信息。不限于此,显示部还可以是与校正控制装置9连接的其他显示装置,而校正控制装置9自身的电气结构中可以没有显示装置。
此外,也可带有操作部:用于使用者进行操作,如输入设定信息等各种操作,控制部8根据操作部的操作信号等,执行相应的程序。操作部可以是按键、触摸屏、语音识别部件等来实现操作。
控制部8控制了校正控制装置9的整体的动作,控制部8例如由CPU、MPU、SOC、可编程的FPGA等来实现。闪存3中存储有用于控制的程序,以及各部分控制中使用的各种数据。
控制部8可作为校正指示部,用于发出校正指示;例如可以基于定时、操作者的指示、传感器数据的变化触发等,来发出校正指示。
控制部8可作为校正控制部,根据基础图像信息来进行校正处理的控制;所述校正控制部,确定基础图像信息,在一例,可基于传感器数据与基础图像信息的对应关系,基于传感器件获得的传感器数据,采用所述传感器数据对应的基础图像信息,确定所述基础图像信息;进行校正处理的控制;具体而言,在一例,控制部8可以控制处理部2按照所确定的基础图像信息对后续拍摄获得的热像数据进行校正处理;在另一例,控制部8可以控制探测器的控制参数进行校正处理。如控制部8与处理部2为一体的处理器件,控制部8也可以进行校正处理。优选的,所述传感器数据,为基于校正控制装置自身或与之连接的传感器,来获得。所述传感器数据至少包括1个温感数据。所述校正处理,可以是对拍摄获得的热像数据或探测器控制参数等进行校正处理。
优选的例子,所述校正控制部,如校正指示规定时刻基于温感器件获得的温感数据,符合存储介质中温感数据与基础图像信息的对应关系,则采用对应的基础图像信息;如未找到对应的基础图像信息,控制部8则可发出档片启用的指示;
档片控制部4,或控制部8作为档片控制部,用于控制档片的动作;所述档片可位于红外探测器的前部;基于档片启用的指示,控制档片电机驱动档片,来遮挡红外探测器;
控制部8作为基础图像信息记录部,用于基于记录指示来记录基础图像信息。所述基础图像信息为档片遮挡红外探测器时,获得的热像数据或基于所述热像数据获得的校正参数;所述基础图像信息与至少一个位于校正控制装置的温感器件获得的温感数据关联记录;所述 基础图像信息记录部,用于记录获得所述温感器件获得的温感数据与基础图像信息的对应关系;以便于后续采用。
优选的,上述校正指示、打档指示、记录指示可以配置为联动,以便热像装置9在使用者开始使用时,根据不同的应用环境,自动记录打档获得的基础图像信息与温感等传感器数据的对应关系,便于后续可根据传感器数据,来调用相应的基础图像信息。
以下将对校正控制方法进行说明,参考图5来说明本实施例,控制步骤如下:
步骤A01,基于校正指示,根据与传感器数据对应的基础图像信息进行校正处理;
校正控制装置9的拍摄部,用于拍摄获得热像数据;当接收到校正指示,校正控制部,根据基础图像信息来进行校正处理的控制;
具体而言,例如当接收到校正指示,所述校正控制部,基于存储介质中传感器数据与基础图像信息的对应关系,根据校正指示的规定时刻,基于传感器件获得的传感器数据,采用所述传感器数据对应的基础图像信息,进行校正处理的控制;所述传感器数据,为基于校正控制装置自身或与之连接的传感器,来获得;所述传感器数据至少包括1个温感数据。
在实施例中,步骤A01可构成完整的方案,可省略后续的步骤。
如当前获得的传感器信息,例如温感数据,未找到对应的基础图像信息,则可进入步骤A02;
步骤A02;基于档片控制启用的指示,启用档片;
如未找到对应的基础图像信息,控制部8发出档片启用的指示,档片电机驱动档片遮挡红外探测器。档片控制部,用于控制档片的动作;所述档片位于红外探测器的前部;基于档片启用的指示,控制档片遮挡红外探测器;
如采用标准参照物如外部遮挡物作为标准参照体,如人工关闭镜头盖作为档片时,可去除A02步骤;如替换为基于基础图像信息采集的指示,基于该指示,获取拍摄标准参照物获得的热像数据或处理后获得的校正参数作为基础图像信息;
步骤A03;基于基础图像信息的记录指示,将温感数据等传感器获得的数据,与基础图像信息关联保存;
基础图像信息记录部,用于基于记录指示来记录基础图像信息,所述基础图像信息为档片遮挡红外探测器时,获得的热像数据或相关校正参数;所述基础图像信息与至少一个位于校正控制装置的温感器件获得的温感数据关联记录;这样,就可获得所述温感器件获得的温感数据与基础图像信息的关系。在其他优选的例子中,可获得各种传感器获得的数据与基础图像信息的关系。
在其他优选的例子中,如采用多档片技术的热像装置,可以将各种传感器获得的数据与多档片分别遮挡时获得的基础图像信息,进行关联保存;以便于获得更为精细的基础图像信息;进一步,例如采用双档片时,例如外部档片如镜头盖、内部档片如位于镜头和探测器之间的单摆式档片,可以采用1个档片基础图像信息去校正另一档片获得的基础图像信息。
此外,根据相同的传感器等参数,可定期或人工指示的方式,可将查表获得的基础图像、与打档获得的基础图像进行比对,如2者不同,可将后者替换前者,或还可以进一步采用远端升级的措施来增加修正参数,达到热像装置及时修正的目的。
如上所述,通过获得相关传感器等的数据,查找图3或图4中传感器数据对应的基础图像信息,如能查到相符合的,则可以不打档片,从而解决了打档产生的图像中断、档片故障等弊端。进一步,如未查找到相符合的,则可以打档片并获得基础图像信息,进行校正处理,进一步优选的,可将传感器的数据与基础图像信息关联保存,丰富对应关系,便于后续采用。这样的有益效果,在仪器交付用户前,可以大幅降低生产环节的基础图像信息的准备工作量,并且可以根据不同的使用环境,根据环境温度的变化自动获取并方便后续选择相应的基础图像信息。
这样,热像装置即便装配应用于不同的复杂环境下,例如装配在不同搭载时构成的修正;通过上述方式,仍然可以实现逐渐减少打档频率甚至不打档片,达到自动校正的目的,将基础图像信息及对应的传感器数据对应关系获得更为方便。
实施例2
本实施例中,控制系统,包括:
至少1台校正控制装置,及与其通讯的处理装置;
所述校正控制装置,包括:
拍摄部,用于拍摄获得热像数据;
校正控制部,根据基础图像信息来进行校正处理的控制;
影响因素、基础图像信息、影响因素与基础图像信息的对应关系,其中之一或部分,来源于所述处理装置;校正控制装置的运行过程中,部分或全部的影响因素、部分或全部的基础图像信息、部分或全部的影响因素与基础图像信息的对应关系,其中之一,来源于所述处理装置;
用于校正处理的基础图像信息,为基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息。可以由校正控制装置或处理装置之一或组合,来确定基础图像信息。
如图12所示,处理装置10作为处理装置的例子,可以是计算机、服务器、云服务器等处理装置,处理装置10通过通讯部与热像装置11通讯和数据交互;热像装置11作为校正控制装置的例子;
在一例,热像装置11获得遮挡探测器期间拍摄获得的热像数据,通过通讯部提供给处理装置10,处理装置10将所述热像数据处理为校正参数,将所述校正参数提供给热像装置11,用来进行校正处理。
在一例,热像装置11获得影像因素的数据,通过通讯部提供给处理装置10(如云服务器),所述对应关系存储在处理装置10中,根据获得的影响因素的数据,处理装置10将对应的基础图像信息提供给该热像装置11。
在一例,热像装置11配置在现场使用的环境中,可以通过通讯部,将热像装置11或与其连接的传感器获得的影响因素,提供给处理装置10,并通过处理,例如该处理装置10查询影响因素与基础图像信息的对应关系,并将对应的基础图像信息提供给热像装置11;热像装置11可以基于条件触发,例如在检测到影响因素超过规定范围、或定时到来、或控制指示时,将获得的影响因素,提供给处理装置10;
在一例,所述影响因素的部分来源于处理装置10,部分来源于热像装置11自身;
所述校正控制装置,可根据所述处理装置提供的信息,来确定基础图像信息,并进行校正处理的控制。
在一例,对应关系的部分来源于处理装置10,部分位于热像装置11的存储介质;
在一例,所述处理装置10,用于将影响因素,提供给热像装置11;所述热像装置11,根据存储在热像装置中的影响因素与基础图像信息的对应关系,及所述处理装置10提供的信息,来确定基础图像信息,并进行校正处理的控制。
在一例,热像装置11通过通讯部接收处理装置10提供的定期更新的对应关系;
如上所述,通过处理装置10来提供部分或全部影响因素、部分或全部的影响因素与基础图像信息的对应关系、部分或全部的基础图像信息,可以大幅度提高校正控制装置的可靠性、灵活性、降低校正控制装置的技术要求、降低成本,并且可以提供影响因素和基础图像信息对应关系的细密程度而不至于增加校正控制装置存储介质的负担,由此还可大幅提高测量的精度。通过通讯部的数据交互,可达到更新影响因素与基础图像信息的对应关系,如变更使用环境时,导致影响因素变化更多,及时或定期更新基础图像信息,特别是当处理装置10通讯连接有大量的热像装置时,可以根据大量汇总的数据,来构建丰富的对应关系;并且对应关系还可根据不同的应用影响因素,配置为多组的对应关系,当出现影响环境大幅变化时导致影响因素的类型变化,可及时调用相关组的对应关系;可大幅提高系统的智能化、可靠性。
实施例3
在本实施例中,对获得影响因素与基础图像对应关系的方法进行说明;
校正控制装置,包括:
获取部,用于获取热像数据;
影响因素获取部,用于获取影响因素的数据;
基础图像信息记录部,用于将基于遮挡探测器(如档片启用期间)拍摄、或标准参照体拍摄获得的基础图像信息,和对应的影像因素的数据关联记录。或还包括抽取部,按照特定规则或算法,抽取多个影响因素及对应的基础图像信息,构成对应关系。
校正控制方法,包括:
获取热像数据和影响因素的步骤;
基础图像信息步骤,用于将基于遮挡探测器(如档片启用期间)拍摄、或标准参照体拍摄获得的基础图像信息,和对应的影像因素的数据关联记录。或还包括抽取步骤,按照特定规则或算法,抽取多个影响因素及对应的基础图像信息,构成对应关系。
如图12所示,处理装置10作为校正控制装置的例子,在一例,可以是计算机、服务器等处理装置,处理装置10通过通讯部获取热像装置拍摄获得的热像数据,及获得影像因素;在另一例,校正控制装置10可以是带有拍摄部的热像装置;
在一例,处理装置10配置在模拟现场使用的环境中,可以通过通讯部获得热像装置11或其他与热像装置11或处理装置10连接的影响因素的传感器,并可获得热像装置11的档片启用时或基于校正参照物拍摄的热像数据和/或校正参数;优选的,可以发出通过打档指示来进行启用控制或将热像装置11的档片保持在始终启用的状态;优选的,可以改变调节环境条件来获得多种影响因素;其中优选的,处理装置10可以将通讯部获得的热像数据根据算法获得校正参数;
在一例,所述处理装置10,记录获得的影响因素及其对应的基础图像信息;可以采用如下方式之一:
1)按照规定频率,连续记录影像因素,及档片启用期间拍摄的热像数据和/或校正参数;
2)按照规定频率,连续记录影像因素及对应的热像数据和/或校正参数;
3)按照规定条件产生的触发指示,来记录影像因素及其对应的热像数据和/或校正参数;
所述触发指示,包括定时、检测到影响因素超过规定范围的变化(例如0.5度的温度为规定范围)、获得的热像数据和或校正参数超过规定范围的变化、人工的触发、达到设定值等其中之一或多个。
对应关系生成部,用于根据所述记录的数据,按照特定规则或算法,抽取多个影响因素及对应的基础图像信息,构成对应关系。可能存在抽取其中部分或全部。
在一例,抽取其中超过规定差异范围的基础图像信息及其对应的影响因素,构建影响因素与基础图像信息的关系。
在一例,用于根据所述连续记录的影响因素及其对应获得的基础图像信息的数据,抽取其中超过规定差异范围的基础图像信息及其对应的影响因素,构建影响因素与基础图像信息的关系。
在一例,按照影响因素多个设定值,抽取各自对应的基础图像信息,构成对应关系;
在一例,按照基础图像信息超过规定差异范围,则抽取所述基础图像信息及其对应的影响因素的数据,构成对应关系;
如上所述,通过本实施例介绍的方法,可以在出厂前或运行中,构建影响因素和基础图像信息的对应关系。便于后续调用。
本发明的上述实施例,带来的有益效果之一或多个的总结如下:
1)通过各种影响因素,例如传感器数据找到对应的基础图像信息,进行校正处理时,可降低或避免图像中断;
2)可以提高校正频率,为提高温度精度减少温度漂移,提供了基础;
3)可以减少档片机械运动的次数和频率,提高整机可靠性;并且大幅减少档片电机等工作的温度影响;
4)根据相关影响因素数据的变化,来自动调用相对应的基础图像信息,为大幅提高测温精度和减少温度测量的漂移,提供了可行的技术方案;并且,当配置有细密的传感器数据及其对应的基础图像信息,可相应提高校正的频率,能大幅提高测温精度;
5)当获取的影响因素的数据,未找到对应的基础图像信息,则进行打档并获取相应的基础图像信息,并可进一步增加对应关系;本质性降低了生产和应用的难度,相当于具有基础图像信息的自动获取和学习功能;并随着运行时间的延长,热像装置的精度也可能随之提高;
6)规定时间,通过重新采集基础图像信息,例如每3个月清空或修改传感器与基础图像信息的对应关系表,则减小了环境变化或热像装置自身变化导致的漂移。
7)当新获得的影响因素数据,正好位于二组影响因素数据之间时,可以采用二组影响因素数据中最接近者所对应的基础图像信息;或基于二组影响因素数据分别对应的基础图像信息,来推算所述新获得的影响因素数据其所对应的基础图像信息,将获得较好的效果;
8)不同的温度档,对应了不同的基础图像信息的表,简化了运算,可以大幅提高不同温度档的换挡速度;
9)结合了外部影响因素、内部影响因素、状态影响因素及其对应的基础图像信息,可以全面地对图像和测温进行精确校正;
10)可以通过通讯部,来获得影像因素、影响因素与基础图像信息的对应关系、基础图像,这样,可以在服务器端对现场使用的热像装置,进行远距离校正,适用于对出现档片故障的热像装置,在不便修理的情况下,提供了可替代的方案;以及降低了热像装置的复杂性提高可靠性;
当然,每个实施例并不必须达到上述所有的优点;采用本发明的实施方式带来的效果显著。
本发明不仅可应用于各种检测用、便携式的校正控制装置,也可应用于机器人、车载装置等。
此外,也可以用专用电路或通用处理器或可编程的FPGA实现本发明的实施方式中的部分或全部部件的处理和控制功能。
此外,实施例适用在红外检测的各行业广泛运用。
显然,将上述工作步骤进行不同的组合可获得更多的实施方式。显然,根据将上述工作模式进行不同的组合可获得更多的实施方式。
显然,当本发明的校正控制装置作为带有显示控制部的校正控制装置9的某一部件时,可省去显示控制部,也构成本发明。
此外,本校正控制装置也可去除处理部,也构成本发明;
此外,也可以用专用电路或通用处理器或可编程的FPGA实现本发明的实施方式中的部分或全部部件的处理和控制功能。虽然,可以通过硬件、软件或其结合来实现附图中的功能块,但通常不需要设置以一对一的对应方式来实现功能块的结构;例如可通过一个软件或硬件单元来实现多个功能的块,或也可通过多个软件或硬件单元来实现一个功能的块。
上述所描述的仅为发明的具体实施方式,各种例举说明不对发明的实质内容构成限定,所属领域的技术人员在阅读了说明书后可对具体实施方式进行其他的修改和变化,而不背离发明的实质和范围。

Claims (13)

  1. 校正控制装置,包括:
    拍摄部,用于拍摄获得热像数据;
    校正控制部,根据基础图像信息来进行校正处理的控制;
    用于校正处理的基础图像信息,包括如下二种情况,且每次执行其中之一:
    情况1:基于遮挡探测器光路或基于标准参照体期间拍摄获取的热像数据,来获得的基础图像信息;
    情况2,包括如下至少之一:
    1)基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息;
    2)基于从通讯部获得的基础图像信息;
    3)根据上述任意二项,处理获得的基础图像信息。
  2. 校正控制装置,包括:
    拍摄部,用于拍摄获得热像数据;
    校正控制部,根据基础图像信息来进行校正处理的控制;
    用于校正处理的基础图像信息,为基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息。
  3. 校正控制装置,包括:
    获取部,用于获取热像数据;
    影响因素获取部,用于获取影响因素的数据;
    基础图像信息记录部,用于将基于档片启用期间拍摄、或标准参照体拍摄获得的基础图像信息,和对应的影像因素的数据关联记录。
  4. 校正系统,包括:
    至少1台校正控制装置,及与其通讯的处理装置;
    所述校正控制装置,包括:
    拍摄部,用于拍摄获得热像数据;
    校正控制部,根据基础图像信息来进行校正处理的控制;
    影响因素、基础图像信息、影响因素与基础图像信息的对应关系,其中之一或部分,来源于所述处理装置;
    用于校正处理的基础图像信息,为基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息。
  5. 如权利要求1所述的校正控制装置,其特征在于,
    记录情况1获得的基础图像信息及其对应的影响因素;或还将所述对应关系,增加至影响因素与基础图像信息对应关系中。
  6. 如权利要求1-3任意一项所述的校正控制装置,其特征在于,
    所述基础图像信息可以包括热像数据、校正参数、校正算法其中之一或多个;用于校正处理的基础图像信息可以包括热像数据、校正参数、校正算法其中之一或多个;
    基础图像信息包括如下情况之一或组合:
    1)基于遮挡探测器光路、或基于标准参照物,拍摄获得的热像数据,或基于所述热像数据经历处理,或基于所述拍摄获得的热像数据参与处理,获得的基础图像信息;
    2)人工配置的基础图像信息;
    3)根据规定范围的影响因素对应的基础图像信息,按算法获得的基础图像信息;
    4)基础图像信息不限于本机获得,也可以是其他热像装置获得的;
    作为基础图像信息的热像数据包括如下情况之一:
    1)遮挡探测器光路、或基于标准参照物,拍摄获得的热像数据,或所述热像数据经历处理后获得的热像数据;或拍摄获得的热像数据参与处理获得的热像数据;
    2)档片启用期间获取的热像数据,或所述热像数据经历处理或参与处理后获得的热像数据;
    3)人工配置的热像数据;
    4)根据规定范围的影响因素对应的热像数据,按算法获得的热像数据;
    5)将基于当前获得的影响因素,将规定范围的影响因素对应的热像数据,按照特定算法,来获得的热像数据;
    所述校正参数包括如下情况之一或组合:
    1)根据获取的热像数据,计算处理获得的校正参数;所述热像数据为上述情况之一或组合;
    2)档片遮挡红外探测器时,获得的一帧或多帧热像数据,按算法计算出校正参数;
    3)热像数据参与获得的校正参数;
    3)人工配置的校正参数;
    4)根据规定范围的影响因素对应的校正参数,按算法获得的校正参数;
    所述影响因素包括如下因素其中之一:
    1)内部影响因素;至少包括代表一个内部空间的温度、一个器件的温度、一个镜头局部的温度、一个电路板的温度、一个结构件的温度之一;可以包括1个或1个以上传感器的数据;
    2)外部影响因素,包括环境温度、湿度、风速、风向、季节、地域、海拔、高度、仪器的倾角、朝向、气压、压力、挂载时的速度、振动、载体、日期、时间等之一或多个的数据;
    3)状态影响因素,包括特定算法或程序、温度档、帧频、采集像素、采用不同视场角的镜头,热像装置的开机运行时间等之一或多个;
    所获取的影响因素的数据,可以有多种情况,包括如下情况之一或组合:
    1)根据检测获得的影响因素,当超过规定的范围,则根据对应关系,来获得相应的基础图像信息;
    2)接收到规定指示,获取相应的影响因素的数据;例如接收到校正指示,获取相应的影响因素的数据,这时获得的影响因素包括如下情况之一或多个;
    可以是接收到校正指示的规定时刻,规定时刻包括可以是校正指示之前、之时、之后的规定时间、或一定的时间期间,所获取的影响因素的数据或基于所述数据进行处理后获得的影响因素的数据;所述校正指示,可以按照一定频率、按触发条件触发、人工触发等来发出;所述频率可配置为小于或等于1分钟、30秒、20秒、10秒、5秒其中之一;
    影响因素数据的来源包括如下情况之一或组合:
    1)通过传感器获取的;
    2)基于校正控制装置自身或与之连接的传感器,来获得;
    3)可以通过状态因素的功能部件获得的影响因素;
    4)通过通讯部获取的影响因素的数据;
    5)人工设置的影响因素的数据;
    影响因素与基础图像信息的对应关系,可以包括如下情况之一或多个:
    1)预先准备的,
    2)预先存储在校正控制装置的存储介质中;
    3)根据校正控制装置自身或与其连接的传感器等获得的影响因素,或根据校正控制装置自身或与其连接的传感器,并结合其他方式获得的影响因素,将与其对应的基础图像信息,构成对应关系,预先准备并存储在存储介质中;所述基础图像信息可以是基于校正控制装置本机之前打档获得的热像数据来获得;
    4)通过通讯部获取的对应关系;
    5)对应关系的部分信息由通讯部获得,部分信息由校正控制装置自身获得;
    6)通过其他影响因素与基础图像信息的对应关系,计算获得;
    7)按照一定条件更新的;
    8)通过校正控制装置自身获得;
    9)影响因素与基础图像信息的对应关系,可以有1组或多组。
    基于影响因素与基础图像信息的对应关系,确定的基础图像信息;可以根据校正控制装置自身存储的对应关系,或通过通讯部获得的所述对应关系,或基于通讯部连接的其他装置中存储的对应关系,来确定的基础图像信息;
    包括如下情况之一或多个:
    1)直接对应的;
    2)位于允许的规定范围中选择的;
    3)计算获得的;
    4)位于规定范围的多组影响因素各自对应的基础图像信息,经历算法计算获得;
  7. 如权利要求1所述的校正控制装置,其特征在于,
    当根据获得的影响因素,无法找到对应的基础图像信息,可重新获取基础图像信息;包括如下情况之一或多个
    1)产生打档指示,并根据遮挡探测器光路拍摄获取的热像数据,来获得基础图像信息;
    2)产生打档指示,并根据遮挡探测器光路拍摄获取的热像数据,来获得基础图像信息;将所述基础图像信息与对应的影响因素关联记录,构成二者对应关系。
    3)基于遮挡探测器光路、或基于标准参照物,获得的基础图像信息可以包括热像数据、校正参数其中之一或多个;
    热像数据包括如下情况之一,基于遮挡探测器光路、或基于标准参照物,拍摄获得的热像数据,或基于所述热像数据经历处理获得的热像数据,或基于所述拍摄获得的热像数据参与处理获得的热像数据;
    所述校正参数包括如下情况之一或组合:
    1)根据获取的热像数据,计算处理获得的校正参数和/或校正算法;
    所述热像数据为上述情况之一或组合;
    2)热像数据参与获得的校正参数;例如根据情况1)获得校正参数,还将基于当前获得的影响因素,将前后相邻的影响因素对应的校正参数,按照特定算法如平均,来获得的校正参数;例如对热像数据计算获得的校正参数,并经历人工修饰后获得的校正参数;
    根据不同的校正实施方式和不同的应用,可以有多种基础图像信息的构成方式。
    其中,影响因素包括如下因素其中之一:
    1)内部影响因素,2)外部影响因素;3)状态影响因素;
    为获取上述影响因素的数据的获取方式:
    1)基于校正控制装置自身或与之连接的传感器来获得;
    2)可以通过热像装置的通讯接口来获取;
    3)通过校正控制装置相关的设置状态或功能模块,来获得状态影响因素;
    其中,所获取的影响因素及其对应的基础图像信息,包括如下情况之一或组合:
    1)根据检测获得的影响因素,根据对应关系,如未获得相应的基础图像信息,则打档获取基础图像信息;将相对应的影响因素和基础图像信息二者关联记录获得对应关系;
    2)接收到规定指示,获取相应的影响因素的数据和对应的基础图像信息;并关联记录获得对应关系。
  8. 如权利要求3所述的校正控制装置,其特征在于,
    具有对应关系生成部,按照特定规则或算法,抽取多个影响因素及对应的基础图像信息,构成对应关系。
  9. 校正控制方法,包括:
    拍摄获得热像数据并根据基础图像信息来进行校正处理的控制步骤;
    或根据基础图像信息来进行校正处理并拍摄获得热像数据的控制步骤;
    用于校正处理的基础图像信息,包括如下二种情况,且每次执行其中之一:
    情况1:基于遮挡探测器光路或基于标准参照体期间拍摄获取的热像数据,来获得的基础图像信息;
    情况2,包括如下至少之一:
    1)基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息;
    2)基于从通讯部获得的基础图像信息;
    3)根据上述任意二项,处理获得的基础图像信息。
  10. 校正控制方法,包括:
    拍摄获得热像数据并根据基础图像信息来进行校正处理的控制步骤;
    或根据基础图像信息来进行校正处理并拍摄获得热像数据的控制步骤;
    用于校正处理的基础图像信息,为基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息。
  11. 校正控制方法
    校正控制步骤,根据第一基础图像信息来进行校正处理的控制;
    用于校正处理的第一基础图像信息,为基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的第一基础图像信息;
    当基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的第二基础图像信息;则校正控制部,根据第二基础图像信息来进行校正处理的控制。
  12. 校正控制方法,包括:
    获取热像数据和影响因素的步骤;
    基础图像信息步骤,用于将基于遮挡探测器(如档片启用期间)拍摄、或标准参照体拍摄获得的基础图像信息,和对应的影像因素的数据关联记录。或还包括抽取步骤,按照特定规则或算法,抽取多个影响因素及对应的基础图像信息,构成对应关系。
  13. 校正方法,包括:
    应用于校正系统,包括至少1台校正控制装置,及与其通讯的处理装置;
    所述校正控制装置执行的步骤,包括:
    拍摄获得热像数据并根据基础图像信息来进行校正处理的控制步骤;
    或根据基础图像信息来进行校正处理并拍摄获得热像数据的控制步骤;
    影响因素、基础图像信息、影响因素与基础图像信息的对应关系,其中之一或部分,来源于所述处理装置与校正控制装置的通讯步骤;
    用于校正处理的基础图像信息,为基于影响因素与基础图像信息的对应关系,根据所获取的影响因素的数据,根据所述对应关系,确定的基础图像信息。
PCT/CN2021/136119 2020-12-07 2021-12-07 校正控制装置、校正系统和校正控制方法、校正方法 WO2022121901A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011440943 2020-12-07
CN202011440943.8 2020-12-07

Publications (1)

Publication Number Publication Date
WO2022121901A1 true WO2022121901A1 (zh) 2022-06-16

Family

ID=81264677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136119 WO2022121901A1 (zh) 2020-12-07 2021-12-07 校正控制装置、校正系统和校正控制方法、校正方法

Country Status (2)

Country Link
CN (2) CN114414071B (zh)
WO (1) WO2022121901A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115371822B (zh) * 2022-10-24 2023-01-24 南京智谱科技有限公司 一种红外相机的校准方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610984B2 (en) * 2000-03-17 2003-08-26 Infrared Components Corporation Method and apparatus for correction of microbolometer output
CN103900711A (zh) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 红外挑选装置和红外挑选方法
CN104751445A (zh) * 2013-12-29 2015-07-01 杭州美盛红外光电技术有限公司 热像分析配置装置和热像分析配置方法
CN108240863A (zh) * 2016-12-23 2018-07-03 南京理工大学 用于非制冷红外热像仪的实时两点非均匀性校正方法
CN108353135A (zh) * 2015-10-29 2018-07-31 富士胶片株式会社 红外线摄像装置及基于红外线摄像装置的信号校正方法
CN110553739A (zh) * 2018-12-19 2019-12-10 中科和光(天津)应用激光技术研究所有限公司 一种红外热成像的无挡片非均匀性校正方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103674270A (zh) * 2012-09-21 2014-03-26 杭州美盛红外光电技术有限公司 热像信息记录装置和热像信息记录方法
CN103674273A (zh) * 2012-09-21 2014-03-26 杭州美盛红外光电技术有限公司 热像信息显示控制装置和热像信息显示控制方法
CN103792011B (zh) * 2014-01-27 2016-05-25 无锡艾立德智能科技有限公司 一种自适应红外热像仪温漂补偿方法及装置
CN105208299A (zh) * 2014-04-29 2015-12-30 杭州美盛红外光电技术有限公司 热像拍摄装置、热像处理装置和热像拍摄方法、热像处理方法
CN107421643B (zh) * 2017-07-19 2019-10-18 沈阳上博智像科技有限公司 红外图像的校正方法及装置
JP7033928B2 (ja) * 2018-01-12 2022-03-11 キヤノン株式会社 防振制御装置、撮像システム、制御方法及びプログラム
CN110631706B (zh) * 2018-06-22 2021-04-27 杭州海康微影传感科技有限公司 红外图像的校正方法、装置及存储介质
CN109870239B (zh) * 2019-03-12 2020-04-07 北京环境特性研究所 非制冷红外焦平面探测器自适应定标方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610984B2 (en) * 2000-03-17 2003-08-26 Infrared Components Corporation Method and apparatus for correction of microbolometer output
CN103900711A (zh) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 红外挑选装置和红外挑选方法
CN104751445A (zh) * 2013-12-29 2015-07-01 杭州美盛红外光电技术有限公司 热像分析配置装置和热像分析配置方法
CN108353135A (zh) * 2015-10-29 2018-07-31 富士胶片株式会社 红外线摄像装置及基于红外线摄像装置的信号校正方法
CN108240863A (zh) * 2016-12-23 2018-07-03 南京理工大学 用于非制冷红外热像仪的实时两点非均匀性校正方法
CN110553739A (zh) * 2018-12-19 2019-12-10 中科和光(天津)应用激光技术研究所有限公司 一种红外热成像的无挡片非均匀性校正方法

Also Published As

Publication number Publication date
CN114414071B (zh) 2024-01-05
CN114414070B (zh) 2024-04-19
CN114414070A (zh) 2022-04-29
CN114414071A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
CN109341864A (zh) 一种轻小型宽动态空间红外定量测量装置
CN109218627B (zh) 图像处理方法、装置、电子设备及存储介质
JP2014042272A (ja) デジタルカメラデバイスのホワイトバランス較正
CN108419017A (zh) 控制拍摄的方法、装置、电子设备及计算机可读存储介质
US10506175B2 (en) Method for processing image and electronic device supporting the same
CN108292075A (zh) 拍摄设备及其操作方法
WO2022121901A1 (zh) 校正控制装置、校正系统和校正控制方法、校正方法
JP6796789B2 (ja) 映像撮影装置
CN103913242A (zh) 用于消除热目标热图像的重影效应的热感相机和方法
CN113875219A (zh) 图像处理方法和装置、电子设备、计算机可读存储介质
TWI708192B (zh) 影像處理方法、電子設備、電腦可讀儲存媒體
US6826361B1 (en) Systems and methods for estimating lens temperature
WO2016011871A1 (zh) 拍摄方法、拍摄装置和计算机存储介质
WO2020095630A1 (ja) 温度推定装置、温度推定方法及び温度推定プログラム
CN109120846B (zh) 图像处理方法和装置、电子设备、计算机可读存储介质
JP2008124725A (ja) 固体撮像素子の駆動装置及びその駆動方法
JP2014052335A (ja) 画像処理装置及びステレオカメラ装置
JP2022188753A (ja) 画像キャプチャデバイス部品における経時的な光学的変化の補償
WO2019183759A1 (zh) 图像融合方法、拍摄设备和可移动平台系统
CN116248806A (zh) 校正装置、校正系统和校正方法
TWI803335B (zh) 紅外線攝像裝置及固定型樣雜訊資料的生成方法
JP2020072392A (ja) 撮像装置、撮像装置の制御方法およびプログラム
US20240040215A1 (en) Image processing apparatus, image capturing apparatus, image processing method, and storage medium
CN112351226B (zh) 图像传感器
TWI820633B (zh) 不受快門干擾熱影像模組測溫校正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902606

Country of ref document: EP

Kind code of ref document: A1