WO2022121878A1 - 碱金属反应堆电源 - Google Patents

碱金属反应堆电源 Download PDF

Info

Publication number
WO2022121878A1
WO2022121878A1 PCT/CN2021/135991 CN2021135991W WO2022121878A1 WO 2022121878 A1 WO2022121878 A1 WO 2022121878A1 CN 2021135991 W CN2021135991 W CN 2021135991W WO 2022121878 A1 WO2022121878 A1 WO 2022121878A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali metal
reactor
liquid
power supply
core
Prior art date
Application number
PCT/CN2021/135991
Other languages
English (en)
French (fr)
Inventor
陈其昌
叶成
汤春桃
林千
赵金坤
卑华
张维忠
袁春田
钱雅兰
李锦明
王伟
Original Assignee
上海核工程研究设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海核工程研究设计院有限公司 filed Critical 上海核工程研究设计院有限公司
Priority to JP2023557480A priority Critical patent/JP7485860B2/ja
Priority to US18/256,232 priority patent/US20240021334A1/en
Priority to EP21902583.0A priority patent/EP4345843A1/en
Priority to KR1020237022910A priority patent/KR20230118616A/ko
Publication of WO2022121878A1 publication Critical patent/WO2022121878A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D7/00Arrangements for direct production of electric energy from fusion or fission reactions
    • G21D7/04Arrangements for direct production of electric energy from fusion or fission reactions using thermoelectric elements or thermoionic converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N3/00Generators in which thermal or kinetic energy is converted into electrical energy by ionisation of a fluid and removal of the charge therefrom
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/32Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/32Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core
    • G21C1/326Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core wherein the heat exchanger is disposed next to or beside the core
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/045Pellets
    • G21C3/047Pellet-clad interaction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/854Thermoelectric active materials comprising inorganic compositions comprising only metals
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C11/00Shielding structurally associated with the reactor
    • G21C11/06Reflecting shields, i.e. for minimising loss of neutrons
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/257Promoting flow of the coolant using heat-pipes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/28Control of nuclear reaction by displacement of the reflector or parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of nuclear reactor power generation, in particular to an alkali metal reactor power source.
  • Microreactor is a unique small reactor system, usually its thermal power is less than 20MW and electric power is less than 10MW. It is mainly used to meet the power or power requirements of special application scenarios such as space, ocean, and land bases. Compared with traditional reactors, micro-reactors are significantly reduced in power, size, and weight. Its main features include factory prefabrication, transportable devices, and self-regulation in operation. Micro-reactors are greatly simplified in system design and can be Realize rapid installation and deployment in different application environments, so that it can be widely used in energy security in various remote areas. At present, the specific applications of micro-reactors include space reactor power supply, deep-sea nuclear power supply, vehicle-mounted reactor power supply, etc.
  • Alkali metal thermoelectric conversion is an efficient static thermoelectric conversion technology, which utilizes gaseous or liquid alkali metals (lithium, sodium , potassium, etc. ) Selective ion permeation membrane, which uses the migration process of alkali metal ions in BASE to realize the conversion of heat energy to electricity, and the thermoelectric conversion efficiency can reach more than 30% in theory.
  • AMTEC is a closed loop system filled with alkali metal, which is separated by BASE As two parts with different pressures, the alkali metal on the high pressure side absorbs heat through the heat source, and the alkali metal vapor on the low pressure side is condensed into a liquid state through a condenser, and then returned to the high pressure side through an electromagnetic pump or a liquid wick.
  • the alkali metal thermoelectric conversion technology can be applied in various fields such as nuclear energy, and has application potential in outer space and remote areas.
  • the invention provides an alkali metal reactor power supply, which can directly convert the heat generated by the reactor into electricity through an alkali metal thermoelectric converter, and provides power guarantee for remote areas, underwater submersible devices, space vehicles and the like.
  • the alkali metal reactor power source of the present invention includes: a reactor vessel, the bottom of which is provided with liquid alkali metal; A radial reflection layer on the periphery of each fuel rod, the surface of the fuel rod is provided with a first liquid-absorbing wick, and the bottom of the reactor core is provided with a second liquid-absorbing wick, and the second liquid-absorbing wick covers the reactor reactor a wick bottom, connected to the first wick, the second wick capable of contacting the liquid alkali metal; and an alkali metal thermoelectric converter arranged along the circumference of the radial reflective layer is arranged between the outer side of the radial reflection layer and the inner wall of the reactor vessel, and divides the reactor vessel into a high-pressure steam chamber located above the alkali metal thermoelectric converter and a high pressure steam chamber located above the alkali metal thermoelectric converter low pressure steam chamber below the boiler.
  • a condenser is provided in the low-pressure steam chamber.
  • the alkali metal thermoelectric converter comprises an anode, a cathode, and a BASE tube disposed between the anode and the cathode, and the alkali metal vapor in the high-pressure steam chamber passes through the anode, the The BASE tube and the cathode, create a potential difference between the anode and the cathode.
  • vacuuming is performed on the reactor vessel, so that the inside of the reactor vessel is in a negative pressure state.
  • the fuel rod includes fuel pellets and a cladding shell covering the fuel pellets, the first liquid-absorbing wick is arranged on the outer surface of the cladding shell, and the outer surface of the cladding shell is provided with grooves groove.
  • a control rod is arranged in the middle of the reactor core for controlling the reactor.
  • control drums are arranged in the radial reflection layer for reactor power control.
  • the alkali metal reactor power supply of the present invention uses the capillary force of the first liquid absorbing wick and the second liquid absorbing wick to pump the liquid alkali metal to the surface of the fuel rod, and utilizes the heat generated by the nuclear fuel fission of the fuel rod to make the liquid alkali metal Vaporization, the alkali metal vapor enters the high-pressure steam chamber, enters the alkali metal thermoelectric converter to generate electricity due to the high pressure, and then enters the low-pressure steam chamber, where the alkali metal vapor condenses into a liquid state in the low-pressure steam chamber, realizing the liquid alkali metal cycle power, canceling the Pumps, valves and other components in the traditional reactor system, thereby greatly improving its reliability.
  • the system of the invention is simplified and the structure is simple, the reactor and the thermoelectric conversion are integrated as a whole, and the same working medium and the same circulation system are used to directly generate electricity.
  • the device of the alkali metal reactor power source of the present invention has the characteristics of small size, light weight, flexible arrangement and high power generation efficiency, and can be transported, installed and deployed as a whole.
  • Fig. 1 is the schematic diagram of the alkali metal reactor power source of the present invention
  • FIG. 2 is a schematic top view of the reactor core in FIG. 1;
  • Fig. 3 is the radial structure schematic diagram of fuel rod
  • Fig. 4 is the partial schematic diagram of the alkali metal thermoelectric converter in Fig. 1;
  • FIG. 5 is a partial top plan view of the alkali metal thermoelectric converter in FIG. 1 .
  • 1-reactor vessel 2-liquid alkali metal, 3-fuel rod, 4-reactor core, 5-first liquid suction wick, 6-high pressure steam chamber, 7-alkali metal thermoelectric converter, 8-low pressure steam chamber, 9-condenser, 10-control rod, 11-radial reflector, 12-control drum, 13-groove, 14-cladding, 15-fuel pellet, 16-BASE tube, 17-cathode, 18-anode , 19-Second wick.
  • FIG. 1 is a schematic diagram of an alkali metal reactor power supply of the present invention
  • FIG. 2 is a schematic top view of the reactor core 4 in FIG. 1 .
  • the alkali metal reactor power source of the present invention includes a reactor vessel 1 , a reactor core 4 and an alkali metal thermoelectric converter 7 .
  • the bottom of the reactor vessel 1 is provided with a liquid alkali metal 2; the reactor core 4 is placed in the reactor vessel 1, specifically, can be arranged in the middle of the reactor vessel 1, and the reactor core 4 includes a plurality of fuel rods 3 and is arranged in a plurality of fuel rods 3.
  • the bottom is connected to the first liquid-absorbing core 5, and the second liquid-absorbing core 19 can be in contact with the liquid alkali metal 2;
  • the alkali metal thermoelectric converter 7 is arranged along the circumferential direction of the radial reflection layer 11, and is arranged on the radial reflection layer 11 and the inner wall of the reactor vessel 1 , and divide the reactor vessel 1 into a high pressure steam chamber 6 located above the alkali metal thermoelectric converter 7 and a low pressure steam chamber 8 located below the alkali metal thermoelectric converter 7 .
  • the reactor vessel 1 is a closed pressure-bearing structure. Before the reactor is started, the reactor vessel 1 is evacuated to make the inside of the reactor vessel in a negative pressure state, that is, the pressure inside the reactor vessel 1 is lower than the atmospheric pressure, which is beneficial to the liquid alkali metal 2 evaporation.
  • the second wick 19 at the bottom of the reactor core 4 covers the bottom of the reactor core 4, can cover all the pores between the bottoms of the fuel rods 3, and is connected with the first wick 5.
  • the second wick 19 and the first wick A liquid-absorbing wick 5 has a porous and loose capillary liquid-absorbing structure, through the capillary force of the second liquid-absorbing wick 19 and the first liquid-absorbing wick 5, the liquid alkali metal 2 is pumped to the surface of the fuel rod 3, and the fuel rod 3
  • the heat generated by the fission of the nuclear fuel causes the liquid alkali metal 2 pumped to the surface of the fuel rod 3 to be vaporized into alkali metal vapor, and the alkali metal vapor enters the high-pressure steam chamber 6 in the direction indicated by the dashed arrow in FIG.
  • the direction indicated by the arrow enters the alkali metal thermoelectric converter 7 to generate electricity, and then enters the low-pressure steam chamber 8, where the alkali metal steam condenses into a liquid state in the low-pressure steam chamber 8, and flows to the bottom of the reactor vessel 1, where it interacts with the liquid alkali metal 2 at the bottom. confluence.
  • the liquid alkali metal 2 at the bottom is pumped to the surface of the fuel rod 3 by the capillary force of the second wick 19 and the first wick 5 to complete the alkali metal flow cycle.
  • the pressure in the high-pressure steam chamber 6 is greater than the pressure in the low-pressure steam chamber 8 . It should be noted that the high pressure in the high pressure steam chamber 6 and the low pressure in the low pressure steam chamber 8 are only for comparison, and the pressure in the high pressure steam chamber 6 is higher than the pressure in the low pressure steam chamber 8 .
  • the alkali metal reactor power supply of the present invention adopts alkali metal as the coolant of the reactor, utilizes the alkali metal to evaporate under low pressure to take away the heat of the reactor core, and utilizes the capillary force of the second liquid absorbing wick 19 and the first liquid absorbing wick 5, Provide the driving force for the flow of the liquid alkali metal 2, and use the alkali metal thermoelectric converter 7 to directly convert the heat of the reactor core into electricity.
  • a condenser 9 is arranged in the low-pressure steam chamber 8 , and the number of condensers 9 may be one or more, and the condenser 9 is beneficial to accelerate the condensation of alkali metal vapor into a liquid state.
  • a control rod 10 is provided in the middle of the reactor core 4 for controlling the reactor.
  • the control rod 10 is made of neutron absorbing material and is used for emergency shutdown of the reactor. In case of an accident, the control rod is inserted into the center of the core 4 of the reactor, which can absorb neutrons in the core and shut down the reactor.
  • the radial reflection layer 11 is used to reduce the neutron leakage of the reactor core 4 , and a plurality of control drums 12 are arranged in the radial reflection layer 11 for controlling the power of the reactor.
  • the control drum 12 is made of neutron absorbing material and neutron reflecting material.
  • the neutron absorbing material of the control drum 12 is the part of the control drum 12 that is painted black in FIG. 2
  • the neutron reflecting material of the control drum 12 is the control drum 12 in FIG. 2 .
  • the control drum 12 is mainly used for power control or shutdown of the reactor.
  • the side of the neutron absorbing material (the blackened part) of the control drum 12 faces the center of the core, it can absorb neutrons in the core and make the reactor Shutdown, when the side of the neutron reflective material (unpainted part) faces the center of the core, can reduce the leakage of core neutrons, thereby realizing the power control of the reactor.
  • FIG. 3 is a schematic diagram of the radial structure of the fuel rod 3 .
  • the fuel rod 3 includes fuel pellets 15 and a cladding 14 covering the fuel pellets 15 .
  • the first liquid-absorbing wick 5 is arranged on the outer surface of the cladding 14 , and the outer surface of the cladding 14 is provided with grooves.
  • the groove 13 is used to provide a flow channel for the liquid alkali metal 2 to flow.
  • the fuel pellets 15 are made of nuclear fuel, and the nuclear fuel of the fuel pellets 15 generates heat by fission.
  • the cladding 14 is used to cover the fuel pellets 15 to prevent leakage of radioactive substances in the nuclear fuel.
  • the heat generated by the fuel rods 3 makes the liquid alkali metal 2 continuously vaporize, and at the same time, the second liquid absorbing wick 19 and the first liquid absorbing wick 5 continuously absorb the liquid alkali metal 2 for replenishment.
  • FIG. 4 is a partial schematic view of the alkali metal thermoelectric converter 7 in FIG. 1
  • FIG. 5 is a partial top schematic view of the alkali metal thermoelectric converter 7 in FIG. 1 .
  • the alkali metal thermoelectric converter 7 includes an anode 18, a cathode 17, and a BASE tube (Beta alumina solid electrolyte tube, BASE tube) 16 disposed between the anode 18 and the cathode 17, and the alkali metal vapor
  • BASE tube Beta alumina solid electrolyte tube, BASE tube
  • the alkali metal vapor in the high pressure steam chamber 6 passes through the anode 18 , the BASE tube 16 and the cathode 17 in sequence as shown by the dashed arrow in FIG. 4 and enters the low pressure steam chamber 8 , a potential difference is generated between the anode 18 and the cathode 17 to realize electrical energy conversion.
  • the alkali metal thermoelectric converter 7 includes a plurality of independent thermoelectric heat exchange elements, each thermoelectric heat exchange element including an anode 18 , a cathode 17 , and a BASE tube 16 disposed between the anode 18 and the cathode 17 .
  • the alkali metal reactor power supply of the present invention utilizes the alkali metal phase change heat transfer, adopts the capillary liquid absorbing core to provide the liquid alkali metal circulating power, and eliminates the pumps, valves and other components in the traditional reactor system, thereby greatly improving its reliability.
  • the system of the invention is simplified and the structure is simple, the reactor and the thermoelectric conversion are integrated as a whole, and the same working medium and the same circulation system are used to directly generate electricity.
  • the device of the alkali metal reactor power source of the present invention has the characteristics of small size, light weight, flexible arrangement and high power generation efficiency, and can be transported, installed and deployed as a whole.

Abstract

一种碱金属反应堆电源,包括:反应堆容器(1),其底部设置有液态碱金属(2);反应堆堆芯(4),其置于反应堆容器(1)内,反应堆堆芯(4)包括多个燃料棒(3)和设置在多个燃料棒(3)外围的径向反射层(11),燃料棒(3)的表面设置有第一吸液芯(5),反应堆堆芯(4)底部设置有第二吸液芯(19),并且与第一吸液芯(5)相连接,第二吸液芯(19)能够与液态碱金属(2)接触;以及碱金属热电转换器(7),其沿径向反射层(11)的周向布置,并将反应堆容器(1)内分割为位于碱金属热电转换器(7)上方的高压蒸汽腔(6)和位于碱金属热电转换器(7)下方的低压蒸汽腔(8)。利用碱金属相变传热,采用吸液芯提供液态碱金属(2)循环动力,结构简单,布置灵活,发电效率高。

Description

碱金属反应堆电源 技术领域
本发明涉及核反应堆发电技术领域,特别是涉及一种碱金属反应堆电源。
背景技术
微型反应堆是一种独特的小型反应堆系统,通常其热功率小于20MW,电功率小于10MW。其主要用于满足宇宙空间、海洋、陆上基地等特殊应用场景的电力或动力需求。与传统反应堆相比,微型反应堆在功率、尺寸、重量等方面都显著减小,其主要特点包括可进行工厂预制、装置可运输、运行自调节等,微型反应堆在系统设计上大为简化,可实现不同应用环境下快速安装部署,从而可广泛应用于各类偏远地区的能源保障。目前,微型反应堆具体应用包括空间反应堆电源、深海核动力电源、车载式反应堆电源等。
碱金属热电转换(AMTEC)是一种高效的静态热电转换技术,其利用气态或液态碱金属(锂、钠、钾等)作为工质,以β”-Al 2O 3固体电解质(BASE)为选择性离子渗透膜,利用碱金属离子在BASE中的迁移过程实现热能到电能的转换,理论上热电转换效率可达30%以上。AMTEC是一个充有碱金属的密闭回路系统,BASE将其分隔为压力不同的两个部分,高压侧的碱金属通过热源吸收热量,低压侧的碱金属蒸汽则通过冷凝器冷凝为液态,然后通过电磁泵或吸液芯回到高压侧。由于兼具了静态和 高热电转换效率特点,使碱金属热电转换技术可应用于核能等各领域,并在外层空间、偏远地区等具有应用潜力。
发明内容
本发明提供一种碱金属反应堆电源,能够将反应堆产生的热量通过碱金属热电转换器直接转换为电力,为偏远地区、水下潜航装置、空间飞行器等提供电力保障。
本发明的碱金属反应堆电源,包括:反应堆容器,其底部设置有液态碱金属;反应堆堆芯,其置于所述反应堆容器内,所述反应堆堆芯包括多个燃料棒和设置在所述多个燃料棒外围的径向反射层,所述燃料棒的表面设置有第一吸液芯,所述反应堆堆芯底部设置有第二吸液芯,所述第二吸液芯覆盖所述反应堆堆芯底部,并且与所述第一吸液芯相连接,所述第二吸液芯能够与所述液态碱金属接触;以及碱金属热电转换器,其沿所述径向反射层的周向布置,设置于所述径向反射层的外侧与所述反应堆容器内壁之间,并将所述反应堆容器内分割为位于所述碱金属热电转换器上方的高压蒸汽腔和位于所述碱金属热电转换器下方的低压蒸汽腔。
优选地,所述低压蒸汽腔内设置有冷凝器。
优选地,所述碱金属热电转换器包括阳极、阴极、以及设置在所述阳极和所述阴极之间的BASE管,所述高压蒸汽腔内的碱金属蒸汽依次穿过所述阳极、所述BASE管和所述阴极,在所述阳极和所述阴极之间产生电势差。
优选地,在反应堆启动前,对所述反应堆容器进行抽真空处理,使所述反应堆容器内呈负压状态。
优选地,所述燃料棒包括燃料芯块和包覆所述燃料芯块的包壳,所述第一吸液芯设置在所述包壳的外表面,所述包壳的外表面设置有沟槽。
优选地,所述反应堆堆芯的中部设置有控制棒,用于反应堆的控制。
优选地,所述径向反射层内设置有若干控制鼓,用于反应堆功率控制。
本发明的碱金属反应堆电源,利用第一吸液芯和第二吸液芯的毛细力作用,将液态碱金属泵送至燃料棒的表面,利用燃料棒的核燃料裂变产生的热量使液态碱金属汽化,碱金属蒸汽进入高压蒸汽腔,由于高压作用进入碱金属热电转换器进行发电,随后进入低压蒸汽腔,碱金属蒸汽在低压蒸汽腔内冷凝为液态,实现了液态碱金属循环动力,取消了传统反应堆系统中泵、阀等部件,从而大大提高其可靠性。本发明系统简化、结构简单,反应堆与热电转换为一个整体,采用同一种工质、同一个循环系统,直接产生电力。本发明的碱金属反应堆电源的装置具有体积小、重量轻、布置灵活、发电效率高等特点,可以进行整体运输、安装和部署。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本发明的碱金属反应堆电源的示意图;
图2为图1中反应堆堆芯的俯视示意图;
图3为燃料棒的径向结构示意图;
图4为图1中碱金属热电转换器的局部示意图;
图5为图1中碱金属热电转换器的局部俯视示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
1-反应堆容器,2-液态碱金属,3-燃料棒,4-反应堆堆芯,5-第一吸液芯,6-高压蒸汽腔,7-碱金属热电转换器,8-低压蒸汽腔,9-冷凝器,10-控制棒,11-径向反射层,12-控制鼓,13-沟槽,14-包壳,15-燃料芯块,16-BASE管,17-阴极,18-阳极,19-第二吸液芯。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
图1为本发明的碱金属反应堆电源的示意图,图2为图1中反应堆堆芯4的俯视示意图。
如图1和图2所示,本发明的碱金属反应堆电源,包括反应堆容器1、反应堆堆芯4和碱金属热电转换器7。反应堆容器1的底部设置有液态碱金属2;反应堆堆芯4置于反应堆容器1内,具体地,可以设置在反应堆容器1的中部,反应堆堆芯4包括多个燃料棒3和设置在多个燃料棒3外围的径向反射层11,燃料棒3的表面设置有第一吸液芯5,反应堆堆芯4底部设置有第二吸液芯19,第二吸液芯19覆盖反应堆堆芯4底部,并且与第一吸液芯5相连接,第二吸液芯19能够与液态碱金属2接触;碱金属热电转换器7沿径向反射层11的周向布置,设置于径向反射层11的外侧与反应堆容器1内壁之间,并将反应堆容器1内分割为位于碱金属热电转换器7上方的高压蒸汽腔6和位于碱金属热电转换器7下方的低压蒸汽腔8。
反应堆容器1为密闭承压结构,在反应堆启动前,对反应堆容器1进行抽真空处理,使反应堆容器内呈负压状态,也就是使反应堆容器1内的压力低于大气压,有利于液态碱金属2的蒸发。
反应堆堆芯4底部的第二吸液芯19覆盖反应堆堆芯4底部,能够覆盖燃料棒3底部之间的所有孔隙,并且与第一吸液芯5相连接,第二吸液芯19和第一吸液芯5具有多孔疏松的毛细吸液结构,通过第二吸液芯19和第一吸液芯5的毛细力作用,将液态碱金属2泵送至燃料棒3的表面,燃料棒3的核燃料裂变产生热量使泵送到燃料棒3的表面的液态碱金属2汽化为碱金属蒸汽,碱金属蒸汽沿图1中虚线箭头所示的方向进入高压蒸汽腔6,并且沿图1中虚线箭头所示的方向进入碱金属热电转换器7进行发电,随后进入低压蒸汽腔8,碱金属蒸汽在低压蒸汽腔8内冷凝为液态, 流动至反应堆容器1的底部,与底部的液态碱金属2汇合。同时,底部的液态碱金属2通过第二吸液芯19和第一吸液芯5的毛细力作用,将液态碱金属2泵送至燃料棒3的表面,完成碱金属流动循环。
由于液态碱金属2受热汽化进入高压蒸汽腔6,使高压蒸汽腔6内的压力大于低压蒸汽腔8的压力。需要说明的是,高压蒸汽腔6内的高压和低压蒸汽腔8内的低压仅仅是两者进行比较,高压蒸汽腔6内的压力高于低压蒸汽腔8的压力。
本发明的碱金属反应堆电源,采用碱金属作为反应堆的冷却剂,利用碱金属在低压下蒸发带走反应堆堆芯热量,利用第二吸液芯19和第一吸液芯5的毛细力作用,提供液态碱金属2流动的驱动力,利用碱金属热电转换器7将反应堆堆芯热量直接转化为电力。
如图1所示,低压蒸汽腔8内设置有冷凝器9,冷凝器9的数量可以是一个或多个,冷凝器9有利于加速碱金属蒸汽冷凝为液态。
如图2所示,反应堆堆芯4的中部设置有控制棒10,用于反应堆的控制。控制棒10由中子吸收材料制作,用于反应堆紧急停堆,在事故情况下将控制棒插入反应堆堆芯4的中心,可以吸收堆芯中子,使反应堆停堆。
如图2所示,径向反射层11用于减少反应堆堆芯4的中子泄漏,径向反射层11内设置有若干控制鼓12,用于反应堆功率控制。控制鼓12由中子吸收材料和中子反射材料制作,控制鼓12的中子吸收材料为图2中控制鼓12涂黑的部分,控制鼓12的中子反射材料为图2中控制鼓12未涂黑的部分,控制鼓12主要用于反应堆功率控制或停堆,当控制鼓12的中子吸收材料(涂黑部分)一侧面向堆芯中心时,可以吸收堆芯中子,使反应 堆停堆,当中子反射材料(未涂黑部分)一侧面向堆芯中心时则能够减少堆芯中子泄漏,由此实现反应堆的功率控制。
图3为燃料棒3的径向结构示意图。
如图3所示,燃料棒3包括燃料芯块15和包覆燃料芯块15的包壳14,第一吸液芯5设置在包壳14的外表面,包壳14的外表面设置有沟槽13,用于提供液态碱金属2流动的流道。燃料芯块15由核燃料制成,燃料芯块15的核燃料通过裂变发热。包壳14用于包覆燃料芯块15,防止核燃料中的放射性物质泄漏。燃料棒3产生的热量使得液态碱金属2不断汽化,同时第二吸液芯19和第一吸液芯5不断汲取液态碱金属2进行补充。
图4为图1中碱金属热电转换器7的局部示意图,图5为图1中碱金属热电转换器7的局部俯视示意图。
如图4和图5所示,碱金属热电转换器7包括阳极18、阴极17、以及设置在阳极18和阴极17之间的BASE管(Beta alumina solid electrolyte tube,BASE管)16,碱金属蒸汽在碱金属热电转换器7上下两侧压差驱动下,高压蒸汽腔6内的碱金属蒸汽如图4中虚线箭头所示方向依次穿过阳极18、BASE管16和阴极17进入低压蒸汽腔8,在阳极18和阴极17之间产生电势差,实现电能转化。碱金属热电转换器7包括多个独立的热电换热元件,每个热电换热元件均包括阳极18、阴极17、以及设置在阳极18和阴极17之间的BASE管16。
本发明的碱金属反应堆电源,利用碱金属相变传热,采用毛细吸液芯提供液态碱金属循环动力,取消了传统反应堆系统中泵、阀等部件,从而大大提高其可靠性。本发明系统简化、结构简单,反应堆与热电转换为一个整体,采用同一种工质、同一个循环系统,直接产生电力。本发明的碱 金属反应堆电源的装置具有体积小、重量轻、布置灵活、发电效率高等特点,可以进行整体运输、安装和部署。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (7)

  1. 一种碱金属反应堆电源,其特征在于,包括:
    反应堆容器,其底部设置有液态碱金属;
    反应堆堆芯,其置于所述反应堆容器内,所述反应堆堆芯包括多个燃料棒和设置在所述多个燃料棒外围的径向反射层,所述燃料棒的表面设置有第一吸液芯,所述反应堆堆芯底部设置有第二吸液芯,所述第二吸液芯覆盖所述反应堆堆芯底部,并且与所述第一吸液芯相连接,所述第二吸液芯能够与所述液态碱金属接触;以及
    碱金属热电转换器,其沿所述径向反射层的周向布置,设置于所述径向反射层的外侧与所述反应堆容器内壁之间,并将所述反应堆容器内分割为位于所述碱金属热电转换器上方的高压蒸汽腔和位于所述碱金属热电转换器下方的低压蒸汽腔。
  2. 根据权利要求1所述的碱金属反应堆电源,其特征在于,所述低压蒸汽腔内设置有冷凝器。
  3. 根据权利要求1或2所述的碱金属反应堆电源,其特征在于,所述碱金属热电转换器包括阳极、阴极、以及设置在所述阳极和所述阴极之间的BASE管,所述高压蒸汽腔内的碱金属蒸汽依次穿过所述阳极、所述BASE管和所述阴极,在所述阳极和所述阴极之间产生电势差。
  4. 根据权利要求1或2所述的碱金属反应堆电源,其特征在于,在反应堆启动前,对所述反应堆容器进行抽真空处理,使所述反应堆容器内呈负压状态。
  5. 根据权利要求1或2所述的碱金属反应堆电源,其特征在于,所述燃料棒包括燃料芯块和包覆所述燃料芯块的包壳,所述第一吸液芯设置在所述包壳的外表面,所述包壳的外表面设置有沟槽。
  6. 根据权利要求1或2所述的碱金属反应堆电源,其特征在于,所述反应堆堆芯的中部设置有控制棒,用于反应堆的控制。
  7. 根据权利要求1或2所述的碱金属反应堆电源,其特征在于,所述径向反射层内设置有若干控制鼓,用于反应堆功率控制。
PCT/CN2021/135991 2020-12-08 2021-12-07 碱金属反应堆电源 WO2022121878A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023557480A JP7485860B2 (ja) 2020-12-08 2021-12-07 アルカリ金属原子炉電源
US18/256,232 US20240021334A1 (en) 2020-12-08 2021-12-07 Alkali metal reactor power supply
EP21902583.0A EP4345843A1 (en) 2020-12-08 2021-12-07 Alkali metal reactor power supply
KR1020237022910A KR20230118616A (ko) 2020-12-08 2021-12-07 알칼리 금속 원자로 전력 공급 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011422901.1 2020-12-08
CN202011422901.1A CN112865606B (zh) 2020-12-08 2020-12-08 一种碱金属反应堆电源

Publications (1)

Publication Number Publication Date
WO2022121878A1 true WO2022121878A1 (zh) 2022-06-16

Family

ID=75997035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135991 WO2022121878A1 (zh) 2020-12-08 2021-12-07 碱金属反应堆电源

Country Status (5)

Country Link
US (1) US20240021334A1 (zh)
EP (1) EP4345843A1 (zh)
KR (1) KR20230118616A (zh)
CN (1) CN112865606B (zh)
WO (1) WO2022121878A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865606B (zh) * 2020-12-08 2022-07-22 上海核工程研究设计院有限公司 一种碱金属反应堆电源
CN113217312A (zh) * 2021-06-02 2021-08-06 清华大学 钠流体热能发电装置及使用其实现热能转化为电能的方法
CN115171924B (zh) * 2022-07-08 2023-05-09 上海交通大学 铅铋冷却固体反应堆堆芯系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132994A (ja) * 1996-11-01 1998-05-22 Mitsubishi Heavy Ind Ltd 熱電発電用黒鉛減速型原子炉
CN102568623A (zh) * 2012-02-28 2012-07-11 华北电力大学 外星球用快中子反应堆和碱金属热电转换器一体化装置
CN202772811U (zh) * 2011-12-08 2013-03-06 华北电力大学 碱金属循环流动式热电转换装置
JP2018179886A (ja) * 2017-04-04 2018-11-15 佐藤 誠 炉心異常蒸気発生のない高速増殖炉型原子力発電用原子炉システム
CN111600512A (zh) * 2020-06-04 2020-08-28 哈尔滨工程大学 一种能量梯级利用的核反应堆电源系统
CN112865606A (zh) * 2020-12-08 2021-05-28 上海核工程研究设计院有限公司 一种碱金属反应堆电源
CN113593734A (zh) * 2021-07-27 2021-11-02 西安交通大学 一种机动式微小型核动力系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05191989A (ja) * 1992-01-14 1993-07-30 Mitsubishi Heavy Ind Ltd アルカリ金属熱電発電装置
JP4320445B2 (ja) * 2005-07-25 2009-08-26 独立行政法人 日本原子力研究開発機構 アルカリ金属熱電発電装置を備えた液体金属冷却型原子炉
JPWO2013094196A1 (ja) * 2011-12-20 2015-04-27 日本ネイチャーセル株式会社 小型原子力発電システム
CN109119174B (zh) * 2018-09-06 2023-09-29 中国原子能科学研究院 一种基于铀氢锆燃料和静态热电转换的热管冷却式核反应堆电源系统
CN209216594U (zh) * 2018-09-06 2019-08-06 中国原子能科学研究院 基于铀氢钇燃料和动态热电转换的热管冷却式反应堆电源
CN111128412B (zh) * 2019-12-31 2023-01-03 中国核动力研究设计院 一种用于多种发电模式的热管反应堆堆芯结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132994A (ja) * 1996-11-01 1998-05-22 Mitsubishi Heavy Ind Ltd 熱電発電用黒鉛減速型原子炉
CN202772811U (zh) * 2011-12-08 2013-03-06 华北电力大学 碱金属循环流动式热电转换装置
CN102568623A (zh) * 2012-02-28 2012-07-11 华北电力大学 外星球用快中子反应堆和碱金属热电转换器一体化装置
JP2018179886A (ja) * 2017-04-04 2018-11-15 佐藤 誠 炉心異常蒸気発生のない高速増殖炉型原子力発電用原子炉システム
CN111600512A (zh) * 2020-06-04 2020-08-28 哈尔滨工程大学 一种能量梯级利用的核反应堆电源系统
CN112865606A (zh) * 2020-12-08 2021-05-28 上海核工程研究设计院有限公司 一种碱金属反应堆电源
CN113593734A (zh) * 2021-07-27 2021-11-02 西安交通大学 一种机动式微小型核动力系统

Also Published As

Publication number Publication date
CN112865606B (zh) 2022-07-22
CN112865606A (zh) 2021-05-28
US20240021334A1 (en) 2024-01-18
EP4345843A1 (en) 2024-04-03
JP2024511400A (ja) 2024-03-13
KR20230118616A (ko) 2023-08-11

Similar Documents

Publication Publication Date Title
WO2022121878A1 (zh) 碱金属反应堆电源
US3302042A (en) Nuclear reactor with thermionic converter
CN109147966A (zh) 一种基于铀氢钇燃料和动态热电转换的热管冷却式核反应堆电源系统
CA3066241C (en) Reactor core
CN101630931B (zh) 一种核能与碱金属热电转换装置联合发电装置
CN112117016A (zh) 一种热管堆堆芯传热方案
US11710577B2 (en) Nuclear reactors having liquid metal alloy fuels and/or moderators
CN115662659B (zh) 一种热管堆高比功堆芯结构
RU2809235C1 (ru) Щелочнометаллический реакторный источник электропитания
JP7485860B2 (ja) アルカリ金属原子炉電源
CN113593734A (zh) 一种机动式微小型核动力系统
CN211903867U (zh) 一种应用热管作为导热元件的余热排出换热器装置
Wahlquist et al. A Critical Review of Heat Pipe Experiments in Nuclear Energy Applications
US20180351181A1 (en) Energy Storage and Conversion Systems
JP2021179313A (ja) 原子炉および原子炉の除熱方法
CN115682795B (zh) 用于太阳能光伏光热系统的复合式热管系统及制造方法
CN108631649B (zh) 基于二维薄膜的碱金属热电转换器和同位素电池
CN116230261B (zh) 一种适用于微型海洋堆电源系统
JPH06245558A (ja) 熱電発電装置
RU2724919C1 (ru) Реактор-преобразователь
RU2009142081A (ru) Второе устройство богданова для термоядерного реактора
JP3481959B2 (ja) アルカリ金属熱電発電装置
RU2074452C1 (ru) Термоэмиссионный реактор-преобразователь
Paramonov et al. Novel Integrated Reactor/Energy Conversion System Concept
CN115424743A (zh) 一种用于卧式堆的非能动热量导出系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902583

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023557480

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18256232

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237022910

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021902583

Country of ref document: EP

Effective date: 20230710