WO2022121850A1 - 带嵌入式漏水传感器的制冷电器水过滤器 - Google Patents

带嵌入式漏水传感器的制冷电器水过滤器 Download PDF

Info

Publication number
WO2022121850A1
WO2022121850A1 PCT/CN2021/135793 CN2021135793W WO2022121850A1 WO 2022121850 A1 WO2022121850 A1 WO 2022121850A1 CN 2021135793 W CN2021135793 W CN 2021135793W WO 2022121850 A1 WO2022121850 A1 WO 2022121850A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water filter
flow
sensor
rate
Prior art date
Application number
PCT/CN2021/135793
Other languages
English (en)
French (fr)
Inventor
凯里亚库·斯蒂芬诺斯
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Publication of WO2022121850A1 publication Critical patent/WO2022121850A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • F25D23/126Water cooler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/14Safety devices specially adapted for filtration; Devices for indicating clogging
    • B01D35/143Filter condition indicators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/008Alarm devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3227Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators for radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/121General constructional features not provided for in other groups of this subclass the refrigerator is characterised by a water filter for the water/ice dispenser

Definitions

  • the present invention relates generally to refrigeration appliances, and more particularly to systems and methods for detecting water leaks in refrigeration appliances.
  • Refrigeration appliances typically include a cabinet defining a refrigerated compartment. A variety of food items can be stored in the refrigerated compartment. The low temperature of the refrigerated compartment relative to the ambient atmosphere helps to extend the shelf life of food products stored in the refrigerated compartment.
  • refrigeration appliances typically include a dispensing assembly for providing water and/or ice to a user, and a water filter assembly is often used to filter this water prior to use.
  • some water filtration assemblies include a cartridge having a housing and filter media therein. Unfiltered water flows into the cartridge housing, while filtered water flows out of the cartridge housing.
  • the filter media can be activated carbon blocks, pleated polymer sheets, spun string materials, or meltblown materials.
  • a filter medium is disposed within the housing and filters water passing therethrough.
  • Water leaks may develop or occur at one or more different locations in or around the water filtration assembly, such as where the cartridge is mounted to the manifold. Such leaks may arise, for example, if the water filter assembly is improperly installed or exposed to relatively high water pressure or freezing conditions. Such leaks can negatively affect the operation of the water filter assembly and/or refrigeration appliance, and may cause damage if not prevented. Such leaks are also difficult to detect. In particular, water filter assemblies are often located in relatively remote locations within refrigeration appliances, so that visual monitoring of water filter assembly leaks may be difficult or infrequent. As another example, existing leak detection systems and methods typically rely on direct detection of leaks, eg, the leaking water must be in direct physical contact with the sensor in order for the sensor to detect the leak. As a result, leaks at locations remote from the sensor may be delayed in detection or not detected at all.
  • a refrigeration appliance with an improved filter assembly would be useful. More specifically, filters that can be used to detect water leaks would be particularly beneficial.
  • a method of detecting a water leak in a refrigeration appliance includes: a cabinet; a food storage compartment defined in the cabinet; a water supply pipe; a water filter coupled to the water supply pipe; and a sensor embedded in the water filter.
  • the method includes: measuring, by a sensor embedded in the water filter, water pressure in the water filter; and measuring, by a sensor embedded in the water filter, flow through the water filter.
  • the method also includes receiving, by a controller of the refrigeration appliance, pressure measurements and flow measurements from the sensors.
  • the method also includes detecting a leak based on the received pressure measurements and flow measurements.
  • a refrigeration appliance in another exemplary embodiment, includes a box body defining a food storage compartment therein.
  • the refrigeration appliance also includes a water supply line having a water filter coupled to the water supply line.
  • the sensor is embedded in the water filter.
  • the sensor is configured to measure water pressure in the water filter and flow through the water filter.
  • the refrigeration appliance also includes a controller in operative communication with the sensor. The controller is configured to receive pressure and flow measurements from the sensor, and to detect leaks based on the received pressure and flow measurements.
  • a method of detecting a leak in a refrigeration appliance includes: a case; a food storage compartment defined in the case; a water supply pipe; a water filter coupled to the water supply pipe; and a sensor embedded in the water filter.
  • the method includes measuring at least one of water pressure in the water filter and flow through the water filter with a sensor embedded in the water filter.
  • the method also includes calculating a rate of change over time of at least one of water pressure in the water filter and flow through the water filter.
  • the method includes determining whether a system demand for water exists. When there is no system demand for water, the method detects leaks based on an increase in the rate of change over time.
  • Figure 1 provides a front view of a refrigeration appliance according to an exemplary embodiment of the present invention.
  • FIG. 2 provides a perspective view of the refrigeration appliance of FIG. 1 .
  • Figure 3 provides a front view of the refrigeration appliance of Figure 1 with the door in an open position.
  • FIG. 4 provides a simplified cross-sectional view of a water filter with an embedded sensor that may be incorporated into a refrigeration appliance, such as the exemplary refrigeration appliance of FIG. 1, in accordance with one or more embodiments of the present invention.
  • FIG. 5 provides a flowchart of an exemplary method of detecting leaks in a refrigeration appliance in accordance with one or more embodiments of the present invention.
  • FIG. 6 provides a flowchart of another exemplary method of detecting a leak in a refrigeration appliance in accordance with one or more additional embodiments of the present invention.
  • FIG. 1 is a front view of an exemplary embodiment of a refrigeration appliance 100 .
  • FIG. 2 is a perspective view of the refrigeration appliance 100 .
  • Figure 3 is a front view of the refrigeration appliance 100 with its food preservation door 128 in an open position.
  • the refrigeration appliance 100 extends along the vertical direction V between the top 101 and the bottom 102 .
  • the refrigeration appliance 100 also extends in the lateral direction L between the first side 105 and the second side 106 .
  • the lateral direction T may additionally be defined as being perpendicular to the vertical V and the lateral direction L.
  • the refrigeration appliance 100 extends in the transverse direction T between the front portion 108 and the rear portion 110 .
  • Refrigeration appliance 100 includes a case or housing 120 that defines an upper food preservation compartment 122 (FIG. 3) and a lower freezer or frozen food storage compartment 124 disposed vertically V below the food preservation compartment 122 (figure 1). Because the freezer compartment 124 is disposed below the food preservation compartment 122, the refrigeration appliance 100 is often referred to as a bottom-mounted refrigerator.
  • housing 120 also defines a mechanical compartment (not shown) for receiving a sealed cooling system (not shown).
  • a sealed cooling system not shown.
  • the refrigerator doors 128 are each rotatably hinged to an edge of the housing 120 for access to the food preservation compartment 122 . It should be noted that while two door bodies 128 in a "French door" configuration are illustrated, any suitable door body arrangement utilizing one, two or more door bodies is within the scope and spirit of the present invention.
  • the freezing door 130 is arranged below the refrigerating door 128 so as to enter the freezing compartment 124 .
  • freezer door 130 is coupled to a freezer drawer (not shown) slidably mounted within freezer compartment 124 .
  • An auxiliary door body 127 is also provided, and is slidably installed in an auxiliary chamber (not shown) provided between the fresh food storage chamber 122 and the freezing chamber 124 .
  • a plurality of food storage drawers 140 may be arranged within the fresh food storage compartment 122 .
  • additional exemplary food storage components such as boxes and shelves can also be seen in Figure 3 .
  • the refrigeration appliance 100 may include a water supply conduit 150 .
  • Water supply conduit 150 may be configured to couple refrigeration appliance 100 to a water supply system, such as plumbing, whereby water supply conduit 150 receives water from the water supply system and delivers water to various other components of refrigeration appliance 100, such as ice making machine and/or water dispenser).
  • the refrigeration appliance 100 may also include a main valve 152 that allows water to flow through the water supply conduit 150 when the main valve 152 is in the open position and prevents or impedes the flow of water through the water supply conduit 150 when the main valve 152 is in the closed position .
  • Operation of the refrigeration appliance 100 may be regulated by a controller 134 ( FIG. 1 ) that is operably coupled to the user interface panel 136 .
  • Interface panel 136 provides selections for the user to manipulate the operation of refrigeration appliance 100 to modify environmental conditions therein, such as temperature selections and the like.
  • the user interface panel 136 may be accessible to the dispenser assembly 132 .
  • the controller 134 operates various components of the refrigeration appliance 100 in response to user manipulation of the user interface panel 136 .
  • Operation of refrigeration appliance 100 may be regulated by controller 134, which may, for example, regulate the operation of various components of refrigeration appliance 100 in response to programming and/or user manipulation of user interface panel 136.
  • the controller 134 may include memory and one or more microprocessors, CPUs, etc., such as a general-purpose or special-purpose microprocessor, for executing programmed instructions or microcontroller code associated with the operation of the refrigeration appliance 100 .
  • the memory may represent random access memory such as DRAM or read only memory such as ROM or FLASH.
  • the processor executes programming instructions stored in the memory.
  • the memory may be a separate component from the processor, or may be contained on a board within the processor. It should be noted that the controller 134 as disclosed herein is capable and operable to perform any of the methods and associated method steps as disclosed herein.
  • the controller 134 may be located in various locations throughout the refrigeration appliance 100 . In the illustrated embodiment, the controller 134 may be located within the door body 128 . In such an embodiment, input/output (“I/O”) signals may be routed between the controller 150 and various operating components of the refrigeration appliance 100 .
  • the user interface panel 136 may represent a general purpose I/O ("GPIO") device or functional block.
  • user interface 136 may include input components such as one or more of various electrical, mechanical, or electromechanical input devices including rotary dials, buttons, and touch pads.
  • User interface 136 may include display components, such as digital or analog display devices designed to provide operational feedback to the user. For example, user interface 136 may include a touch screen that provides both input and display functions. User interface 136 may communicate with the controller via one or more signal lines or a shared communication bus.
  • the refrigeration appliance 100 may include a water filter 200 connected thereto.
  • water filter 200 may be coupled to water supply conduit 150 ( FIG. 2 ) such that water filter 200 receives water flow 1000 (eg, may be referred to as raw or unfiltered water) from water supply conduit 150 and divides water flow 1002 (eg, , filtered water) is provided to the portion of the water supply line 150 downstream of the filter 200 and/or to various fixtures or components of the refrigeration appliance 100 (such as an ice maker or water dispenser, etc.).
  • the water filter 200 may include a housing 202 defining an interior volume, the housing having an inlet 204 through the housing 202 to the interior volume and an outlet 208 out of the interior volume.
  • unfiltered water 1000 may flow into filter 200 via inlet 204 .
  • the water may then pass through filter media 206 (eg, membrane, activated carbon, or other suitable filter media including a combination of more than one media), resulting in filtered water 1002 that exits water filter 200 via outlet 208 .
  • filter media 206 eg, membrane, activated carbon, or other suitable filter media including a combination of more than one media
  • the sensor 210 may be embedded in the water filter 200 .
  • the sensor 210 may be embedded in the housing 202 of the water filter 200 .
  • sensor 210 may be embedded within housing 202 such that sensor 210 is surrounded by the material of housing 202 on at least four sides.
  • the sensor 210 may be embedded within the housing 202 such that the sensor 210 is surrounded by the material of the housing 202 on five sides and exposed on only one side of the sensor 210 .
  • the only exposed side of the sensor 210 may be exposed to the interior of the filter 200 such that the only exposed side of the sensor 210 is exposed to a portion of the intended water flow path through the refrigeration appliance 100 and the sensor 210 is thus partially blocked by water flowing along the intended water flow path wetting.
  • the sensor 210 is exposed on one side to water flowing through the inlet 204 of the filter 200, where the inlet 204 is part of the intended water flow path.
  • the water flow path may be defined at least in part by water supply conduit 150 and water filter 200, such as by water supply conduit 150 and various fittings, fixtures and/or components coupled thereto (eg, water filter 200, valve 152, ice making machine, water dispenser, etc.)
  • intended water flow paths and water therein are to be understood as distinct from possible leak paths and leaked water, eg, leaked water may include water escaping from and outside the intended water flow path.
  • the leaked water may escape at any point along the intended water flow path (either upstream or downstream of the sensor 210 ) and, as described in more detail below, may be detected by the sensor 210 regardless of where the leaked water is from along the Which point or points of the water flow path are expected to escape.
  • the sensor 210 may be exposed on both sides, including one side exposed to the intended flow path as described above and a second side that is partially exposed to allow for physical connection between the sensor 210 and the controller 134 (such as via pin 212 as described below).
  • sensor 210 may be configured to communicate wirelessly with controller 136, eg, sensor 210 may be connected to controller 134 wirelessly, such as through a Bluetooth connection.
  • one or more power pins 212 or other suitable wired connection points may be provided in communication with the sensor 210, whereby the sensor 210 may be in operative communication with the controller 134 via a wired connection.
  • the sensor 210 may be embedded within the housing 202 except for wired connection points (eg, power pins 212 ), where the wired connection points of the sensor 210 are exposed from and/or extend through the housing 202 Or extend outside the housing 202 .
  • sensor 210 may be a microelectromechanical system (MEMS) sensor.
  • Sensor 210 may be any suitable sensor that may be small enough to be embedded within housing 202 while also measuring and/or monitoring (eg, repeatedly or continuously over time) water pressure and/or flow in the filter flow through the filter. By measuring pressure and/or flow, the sensor 210 can detect a leak without directly detecting the leak, eg, without direct physical contact between the sensor 210 and the leaking water. Thus, sensor 210 can detect leaks anywhere in the water system (upstream or downstream of sensor 210) with a single sensor, eg, as opposed to requiring multiple sensors to be installed in multiple locations in order to detect most or all possible leaks.
  • MEMS microelectromechanical system
  • sensor 210 is embedded in housing 202 at inlet 204 such that sensor 210 measures inlet pressure and flow through the inlet.
  • the sensor 210 may be embedded in any other portion of the housing 202 to measure the local pressure at such other portion of the housing 202 .
  • the leak detection described herein is based on changes in pressure over time without regard to where the pressure is measured or what the absolute pressure is.
  • the sensor 210 may detect leaks based on changes over time, such as an increase in flow and/or a decrease in pressure over time as measured by the sensor 210 .
  • sensor 210 may be in operative communication with controller 134, as described above, thereby enabling sensor 210 and controller 134 to detect leaks, such as by measuring pressure and/or flow with sensor 210 and calculating pressure and/or flow with controller 134 The rate of change in traffic. A leak may then be detected, eg, based on an increase in the rate of change of pressure (eg, the pressure drops faster) and/or the rate of change of the flow (eg, the flow increases more quickly).
  • embodiments of the present invention may include a method 300 of detecting a leak in a refrigeration appliance, such as the exemplary refrigeration appliance 100 described above.
  • a refrigeration appliance may include a controller and a water filter with embedded sensors.
  • method 300 may include steps 301: measuring water pressure in the water filter with a sensor embedded in the water filter; and step 302: measuring with a sensor embedded in the water filter Flow through the water filter. The measured values can then be sent to and received by the controller of the refrigeration appliance.
  • the method 300 may further include step 304: receiving pressure measurements and flow measurements from sensors, and the receiving step may be performed by a controller of the refrigeration appliance.
  • method 300 may then include detecting a leak based on the received pressure measurements and flow measurements. For example, leaks may be detected in response to and as a result of received pressure and flow measurements (eg, as a result of identified changes in pressure and flow measurements). Additionally, a leak can be detected regardless of whether the leak reaches the sensor or the sensor-embedded portion of the filter. For example, it is possible to detect leaks without requiring the leaking water to contact the sensor before the leak is detected.
  • an exemplary method of detecting a leak may further include monitoring water pressure in a water filter by receiving a plurality of pressure measurements over time; and monitoring flow through a water filter by receiving a plurality of flow measurements over time The flow of the water filter.
  • the method may further include calculating a rate of change of the plurality of received pressure measurements over time; and calculating a rate of change of the plurality of received flow measurements over time.
  • the step of detecting a leak may be based on an increase in the rate of change of the plurality of received pressure measurements over time (eg, a faster drop in pressure) and the plurality of received flow measurements over time at least one of an increase in the rate of change (eg, a faster increase in flow).
  • an increase in at least one of the plurality of received pressure measurement rates over time and the plurality of received flow measurement rates over time may be based on (eg, in response to) additional conditions to detect leaks. For example, when there is no demand for water from the water system, such as only when there is no demand for water and in response to an increase in the rate of change of pressure (eg, the pressure drops faster) and/or a change in flow A leak can be detected when the rate increases (eg, the flow accelerates faster) without demand for water.
  • an exemplary method of detecting a leak in a refrigeration appliance may further include at least one of a rate of change of the received pressure measurement over time and a rate of change of the received flow measurement over time After an increase, and before a leak is detected, it is determined whether there is a system demand for water.
  • the method may also include one or more remedial steps when a leak is detected, eg, as a result of and in response to the detected leak.
  • the method may include closing a main valve of the refrigeration appliance after detecting a leak.
  • the method may also or alternatively include providing a user notification via a user interface of the refrigeration appliance, such as the user interface panel 136 described above, or a display component of the user interface panel 136 after a leak is detected.
  • FIG. 6 illustrates an additional exemplary method 400 of detecting leaks in refrigeration appliances.
  • the refrigeration appliance may include a water supply pipe, a water filter coupled to the water supply pipe, and a sensor embedded in the water filter.
  • the method 400 may include step 402: measuring at least one of water pressure in the water filter and flow through the water filter by a sensor embedded in the water filter.
  • the measuring step 402 may include measuring the water pressure in the water filter and the flow rate through the water filter using sensors embedded in the water filter.
  • the method 400 may further include a step 404 of calculating a rate of change over time of at least one of the water pressure in the water filter and the flow rate through the water filter.
  • Steps 402 and 404 may be iterative or repetitive, eg, pressure and/or flow may be measured continuously or repeatedly, and the rate of change may be monitored or tracked, eg, the rate of change may be periodically recalculated based on new measurements.
  • the method may include responding to the water pressure and flow rate in the water filter
  • the rate of change over time of at least one of the flows through the water filter increases to determine whether there is a system demand for water, eg, as exemplified by step 408 in FIG. 6 .
  • an increase in the rate of change may include, for example, a pressure drop that begins to decrease more quickly and/or a flow acceleration that begins to accelerate more quickly.
  • calculating step 404 may include calculating the rate of change of water pressure in the water filter over time and flow through the water filter The rate of change of the flow over time.
  • determining step 408 may be responsive to either an increase in the rate of change of water pressure in the water filter over time or an increase in the rate of change of flow through the water filter over time or both to execute.
  • method 400 may then include an increase based on the rate of change over time when there is no system demand for water to detect leaks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

提供了用于制冷电器的水过滤器以及检测制冷电器中的泄漏的相关方法,该水过滤器具有嵌入在水过滤器中的传感器。这种方法包括并且制冷电器可以用于:通过嵌入在水过滤器中的传感器测量水过滤器中的水压和流经水过滤器的流量中的至少一个。计算水过滤器中的水压和流经水过滤器的流量中的至少一个随时间的变化率。当不存在对水的系统需求时,基于随时间的变化率的增大来检测到泄漏。

Description

带嵌入式漏水传感器的制冷电器水过滤器 技术领域
本发明总体涉及制冷电器,更具体地涉及用于检测制冷电器中的漏水的系统和方法。
背景技术
制冷电器通常包括限定制冷间室的箱体。多种食品可以储存在制冷间室内。制冷间室相对于环境大气的低温有助于延长储存在制冷间室内的食品的保质期。
另外,制冷电器通常包括用于向用户提供水和/或冰的分配组件,并且水过滤组件经常用于在使用之前过滤这种水。例如,某些水过滤组件包括具有壳体和在其中的过滤介质的滤芯。未过滤的水流入滤芯的壳体,而过滤的水流出滤芯的壳体。过滤介质可以是活性炭块、折叠聚合物片材、纺制细绳材料或者熔喷材料。过滤介质设置在壳体内,并过滤通过其中的水。
在水过滤组件中或周围的一个或多个不同位置(诸如在滤芯安装到歧管的位置)处可能形成或产生漏水。作为示例,如果水过滤组件不正确地安装或者暴露于相对高的水压或冷冻条件,则可能产生这种泄漏。这种泄漏会对水过滤组件和/或制冷电器的运行产生负面影响,并且如果不加以防止,可能会造成损坏。这种泄漏也很难检测到。特别地,水过滤组件通常设置在制冷电器内的相对远处的位置,使得视觉地监测水过滤组件的泄漏可能是困难的或很少发生的。作为另一个示例,现有的泄漏检测系统和方法通常依赖于泄漏的直接检测,例如,泄漏的水必须与传感器直接物理接触,以便传感器检测泄漏。由此,在远离传感器的位置处的泄漏可能延迟检测或根本检测不到。
因此,具有改进的过滤组件的制冷电器将是有用的。更具体地,可以用于检测漏水的过滤器将是特别有益的。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到。
在示例性实施方式中,提供了一种检测制冷电器中漏水的方法。制冷电器包括:箱体;食物储存室,限定在箱体中;供水管道;水过滤器,联接到供水管道; 以及传感器,嵌入在水过滤器中。该方法包括:通过嵌入在水过滤器中的传感器测量水过滤器中的水压;以及通过嵌入在水过滤器中的传感器测量流经水过滤器的流量。方法还包括:通过制冷电器的控制器从传感器接收压力测量值和流量测量值。方法还包括:基于所接收的压力测量值和流量测量值来检测泄漏。
在另一示例性实施方式中,提供了一种制冷电器。制冷电器包括箱体,箱体中限定有食物储存室。制冷电器还包括供水管道,该供水管道具有联接到供水管道的水过滤器。传感器嵌入在水过滤器中。传感器被配置为测量水过滤器中的水压和流经水过滤器的流量。制冷电器还包括与传感器可操作地通信的控制器。控制器被配置为从传感器接收压力测量值和流量测量值,并且基于接收到的压力测量值和流量测量值来检测泄漏。
在另一示例性实施方式中,提供了一种检测制冷电器中的泄漏的方法。制冷电器包括:箱体;食物储存室,限定在箱体中;供水管道;水过滤器,联接到供水管道;以及传感器,嵌入在水过滤器中。方法包括:通过嵌入在水过滤器中的传感器测量水过滤器中的水压和流经水过滤器的流量中的至少一个。方法还包括:计算水过滤器中的水压和通过水过滤器的流量中的至少一个随时间的变化率。响应于水过滤器中的水压和流经水过滤器的流量中的至少一个随时间的变化率的增大,方法包括:确定是否存在对水的系统需求。当不存在对水的系统需求时,方法基于随时间的变化率的增大来检测到泄漏。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更容易理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1提供了根据本发明的示例性实施方式的制冷电器的前视图。
图2提供了图1的制冷电器的立体图。
图3提供了图1的制冷电器的前视图,其中门体处于打开位置。
图4提供了根据本发明的一个或多个实施方式的具有嵌入式传感器的水过滤器的简化剖视图,该水过滤器可以并入到诸如图1的示例性制冷电器的制冷电器中。
图5提供了根据本发明的一个或多个实施方式的检测制冷电器中的泄漏的示例 性方法的流程图。
图6提供了根据本发明的一个或多个另外实施方式的检测制冷电器中的泄漏的另一示例性方法的流程图。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围或者精神的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
图1是制冷电器100的示例性实施方式的前视图。图2是制冷电器100的立体图。图3是制冷电器100的前视图,其中其食物保鲜门体128处于打开位置。制冷电器100在顶部101与底部102之间沿着竖向V延伸。制冷电器100也在第一侧105与第二侧106之间沿着侧向L延伸。如图2所示,横向T可以另外被限定为垂直于竖直V和侧向L。制冷电器100在前部108与后部110之间沿着横向T延伸。
制冷电器100包括箱体或壳体120,该箱体或壳体限定上部食物保鲜室122(图3)和沿着竖向V布置在食物保鲜室122下方的下部冷冻室或冷冻食物储存室124(图1)。因为冷冻室124设置在食物保鲜室122下方,所以制冷电器100通常被称为底置式冰箱。在示例性实施方式中,壳体120还限定了用于接收密封冷却系统(未示出)的机械室(未示出)。使用本文所公开的示教,本领域技术人员应当理解,本技术也可以与其它类型的冰箱(例如,对开门式)或冷冻电器一起使用。因此,本文阐述的描述仅出于例示目的,而无意于在任何方面限制该技术。
冷藏门体128各自可旋转地铰接到壳体120的边缘,以便进入食物保鲜室122。应当注意,虽然示例了“法式门”构造的两个门体128,但是利用一个、两个或更多个门体的任意合适的门体布置都在本发明的范围和精神内。在冷藏门体128的下方布置冷冻门体130,以便进入冷冻室124。在示例性实施方式中,冷冻门体130联接至可滑动地安装在冷冻室124内的冷冻抽屉(未示出)。还设置有辅助门体127,并且辅助门体127可滑动地安装在设置在新鲜食物储存室122与冷冻室124之间的辅助室(未示出)内。如在图3中可以看到的,多个食物储存抽屉140可以布置在新鲜食物储存室122内。尽管没有特别标记,但是在图3中还可以看到诸如盒和层 架的额外示例性食物储存部件。
如图2示例,在一些实施方式中,制冷电器100可以包括供水管道150。供水管道150可以被构造为将制冷电器100联接至供水系统(诸如管道系统),由此,供水管道150从供水系统接收水,并将水输送至制冷电器100的各种其他部件(诸如制冰机和/或水分配器)。制冷电器100还可以包括主阀152,当主阀152处于打开位置时,该主阀152允许水流过供水管道150,并且当主阀152处于关闭位置时,该主阀152防止或阻碍水流过供水管道150。
制冷电器100的操作可以由控制器134(图1)来调节,该控制器134可操作地联接到用户界面面板136。界面面板136提供用于用户操纵制冷电器100的操作以修改其中的环境条件的选择,诸如温度选择等。在一些实施方式中,用户界面面板136可以接近分配器组件132。响应于用户对用户界面面板136的操作,控制器134操作制冷电器100的各种部件。制冷电器100的操作可以由控制器134调节,例如,控制器134可以响应于用户界面面板136的编程和/或用户操纵来调节制冷电器100的各种部件的操作。
控制器134可以包括存储器和一个或多个微处理器、CPU等,诸如通用或专用微处理器,该微处理器用于执行与制冷电器100的运行关联的编程指令或微控制代码。存储器可以表示诸如DRAM的随机存取存储器或诸如ROM或FLASH的只读存储器。在一个实施方式中,处理器执行存储在存储器中的编程指令。存储器可以是与处理器分开的部件,或者可以包含在处理器内的板上。应当注意,如本文所公开的控制器134能够并且可以运行为执行如本文所公开的任意方法和关联的方法步骤。
控制器134可以设置在整个制冷电器100中的各种位置。在所示例的实施方式中,控制器134可以位于门体128内。在这种实施方式中,输入/输出(“I/O”)信号可以在控制器150与制冷电器100的各种操作部件之间路由。在一个实施方式中,用户界面面板136可以表示通用I/O(“GPIO”)装置或功能块。在一个实施方式中,用户界面136可以包括输入部件,诸如包括旋转拨号盘、按钮以及触摸板的各种电气、机械或机电输入装置中的一个或多个。用户界面136可以包括显示部件,诸如设计为向用户提供操作反馈的数字或模拟显示装置。例如,用户界面136可以包括提供输入和显示功能两者的触摸屏。用户界面136可以经由一条或多条信号线或共享的通信总线与控制器通信。
使用本文公开的示教,本领域技术人员应当理解,本发明可以与其它类型的冰箱一起使用,诸如冰箱/冰柜组合、对开门式、底置式、紧凑型和任意其它样式或 型号的制冷电器。因此,可以提供制冷电器100的其它构造,应当理解,附图所示的构造和本文中阐述的描述仅作为示例性目的。
在一些实施方式中,例如,如图4示例,制冷电器100可以包括连接到其的水过滤器200。例如,水过滤器200可联接到供水管道150(图2),使得水过滤器200从供水管道150接收水流1000(例如,可被称为生水或未过滤水),并且将水流1002(例如,过滤水)提供到供水管道150的在过滤器200下游的部分和/或制冷电器100的各种固定装置或部件(诸如制冰机或水分配器等)。水过滤器200可包括限定内部容积的壳体202,该壳体具有通过壳体202通向内部容积的入口204和从内部容积出来的出口208。如图4示例,未过滤的水1000可经由入口204流入过滤器200。然后,水可以穿过过滤介质206(例如膜、活性炭或包括多于一种介质的组合的其他合适的过滤介质),从而产生过滤水1002,该过滤水经由出口208离开水过滤器200。
传感器210可以嵌入在水过滤器200中。特别地,传感器210可以嵌入在水过滤器200的壳体202中。例如,在一些实施方式中,传感器210可以嵌入在壳体202内,使得传感器210在至少四侧上被壳体202的材料围绕。在一些实施方式中,传感器210可以嵌入在壳体202内,使得传感器210在五侧上被壳体202的材料围绕并且仅在传感器210的一侧上暴露。传感器210的唯一暴露侧可暴露于过滤器200的内部,使得传感器210的唯一暴露侧暴露于通过制冷电器100的预期水流路的一部分,并且传感器210因此被沿着预期水流路流动的水部分地润湿。例如,在图4所示例的实施方式中,传感器210在一侧暴露于流过过滤器200的入口204的水,其中,入口204是预期水流路的一部分。预期水流路可至少部分地由供水管道150和水过滤器200限定,诸如由供水管道150和联接到其的各种配件、固定装置和/或部件(例如水过滤器200、阀152、制冰机、水分配器等)限定。而且,预期水流路和其中的水将被理解为与可能的泄漏路径和泄漏的水不同,例如,泄漏的水可以包括从预期的水流路逸出并在预期的水流路之外的水。泄漏的水可能在沿着预期水流路的任何点(在传感器210的上游或下游)处逸出,并且如下文更详细地描述的,可被传感器210检测到,而不管泄漏的水从沿着预期水流路的哪个或哪些点逸出。在其它实施方式中,传感器210可在两侧暴露,包括如上所述暴露于预期流路的一侧和部分暴露的第二侧,以便允许传感器210与控制器134之间的物理连接(诸如经由如下所述的引脚212)。
在一些实施方式中,传感器210可以被配置为与控制器136无线通信,例如, 传感器210可以无线地(诸如通过蓝牙连接)连接到控制器134。在其它实施方式中,可以设置与传感器210通信的一个或多个电源引脚212或其它合适的有线连接点,由此,传感器210可以经由有线连接与控制器134可操作地通信。在这样的实施方式中,传感器210可以嵌入在壳体202内,除了有线连接点(例如电源引脚212),其中,传感器210的有线连接点从壳体202暴露和/或延伸通过壳体202或延伸到壳体202外部。
在一些实施方式中,传感器210可以是微机电系统(MEMS)传感器。传感器210可以是任何合适的传感器,其可以足够小以嵌入在壳体202内,同时还测量和/或监测(例如,随时间重复地或连续地测量)过滤器中的水压和/或流经过滤器的流量。通过测量压力和/或流量,传感器210可以在不直接检测泄漏的情况下检测到泄漏,例如,在传感器210与泄漏的水之间没有直接的物理接触。由此,传感器210可以用单个传感器检测水系统中任何位置(传感器210的上游或下游)处的泄漏,例如,与需要在多个位置安装多个传感器以便检测大多数或所有可能的泄漏相反。在所示例的示例性实施方式中,传感器210在入口204处嵌入在壳体202中,使得传感器210测量入口压力和流经入口的流量。在另外的实施方式中,传感器210可以嵌入在壳体202的任何其它部分中,以测量壳体202的这种其它部分处的局部压力。在至少一些实施方式中,本文所述的泄漏检测基于压力随时间的变化,而不考虑测量压力的位置或绝对压力如何。传感器210可以基于随时间的变化来检测泄漏,例如由传感器210测量的随时间的流量增大和/或压力的减小。例如,传感器210可以与控制器134可操作地通信,如上所述,从而使传感器210和控制器134检测泄漏,诸如通过用传感器210测量压力和/或流量,并用控制器134计算压力和/或流量的变化率。然后,例如基于压力变化率的增大(例如压力更快地下降)和/或流量变化率的增大(例如流量更快地增大),可检测到泄漏。
现在转到图5,本发明的实施方式可以包括检测制冷电器中的泄漏的方法300,该制冷电器诸如为上述示例性制冷电器100。例如,如上所述,制冷电器可以包括控制器和具有嵌入式传感器的水过滤器。如图5示例,在一些实施方式中,方法300可包括步骤301:利用嵌入在水过滤器中的传感器测量水过滤器中的水压;和步骤302:利用嵌入在水过滤器中的传感器测量流经水过滤器的流量。然后,可以将测量值发送到制冷电器的控制器并由其接收。例如,如图5示例,方法300还可以包括步骤304:从传感器接收压力测量值和流量测量值,并且接收步骤可以由制冷电器的控制器执行。在一些实施方式中,例如,如图5中的步骤306示例,方法300随后 可包括基于所接收的压力测量值和流量测量值来检测泄漏。例如,可以响应于并且由于所接收的压力测量值和流量测量值(例如作为压力测量值和流量测量值的识别的变化的结果)来检测泄漏。另外,无论泄漏是否到达传感器或者过滤器的嵌入传感器的部分,都可检测到泄漏。例如,可以到检测泄漏,而不要求泄露的水在检测泄漏之前接触到传感器。
如上所述,可以基于压力和/或流量的变化来检测泄漏。例如,在一些实施方式中,检测泄漏的示例性方法还可包括通过随时间接收多个压力测量值来监测水过滤器中的水压;以及通过随时间接收多个流量测量值来监测流经水过滤器的流量。在这样的实施方式中,方法还可以包括计算多个所接收的压力测量值随时间的变化率;以及计算多个所接收的流量测量值随时间的变化率。由此,在一些实施方式中,检测泄漏的步骤可以基于多个所接收的压力测量值随时间的变化率的增大(例如压力更快地下降)以及多个所接收的流量测量值随时间的变化率的增大(例如流量更快地增加)中的至少一个。
在一些实施方式中,可以基于(例如响应于)附加条件以及多个所接收的压力测量值随时间的变化率和多个所接收的流量测量值随时间的变化率中的至少一个的增大来检测泄漏。例如,当不存在对来自水系统的水的需求时,诸如仅当不存在对水的需求时并且响应于压力的变化率的增大(例如,压力更快地下降)和/或流量的变化率的增大(例如,流量更快地加速)而对水没有需求时,可检测到泄漏。由此,在一些实施方式中,检测制冷电器中的泄漏的示例性方法还可以包括:在所接收的压力测量值随时间的变化率和所接收的流量测量值随时间的变化率中的至少一个增加之后,且在检测到泄漏之前,确定是否存在对水的系统需求。
在一些实施方式中,方法还可以包括当检测到泄漏时的一个或多个补救步骤,例如,作为所检测的泄漏的结果并响应于所检测的泄漏。例如,方法可以包括在检测到泄漏之后关闭制冷电器的主阀。作为另一示例,该方法还可以或替代地包括在检测到泄漏之后经由制冷电器的用户界面提供用户通知,该用户界面例如可以是上述用户界面面板136或可以是用户界面面板136的显示部件。
图6示例了检测制冷电器中的泄漏的另外的示例性方法400。制冷电器可包括供水管道、联接到供水管道的水过滤器、以及嵌入在水过滤器中的传感器。如图6示例,方法400可包括步骤402:通过嵌入在水过滤器中的传感器测量水过滤器中的水压和流经水过滤器的流量中的至少一个。在一些实施方式中,测量步骤402可包括利用嵌入在水过滤器中的传感器测量水过滤器中的水压和流经水过滤器的流量。
方法400还可包括步骤404:计算水过滤器中的水压和流经水过滤器的流量中的至少一个随时间的变化率。步骤402和404可以是迭代的或重复的,例如,可以连续地或重复地测量压力和/或流量,并且可以监测或跟踪变化率,例如,基于新的测量值周期性地重新计算变化率。在监测变化率的同时,当水过滤器中的水压和流经水过滤器的流量中的至少一个随时间的变化率增大时,方法可包括响应于水过滤器中的水压和流经水过滤器的流量中的至少一个随时间的变化率增大来确定是否存在对水的系统需求,例如,如图6中的步骤408示例。如上所述,变化率的增大可以包括例如开始更快地下降的压力下降和/或开始更快地加速的流量加速。在一些实施方式中,例如,在测量步骤402包括如上所述测量压力和流量两者的情况下,计算步骤404可包括计算水过滤器中的水压随时间的变化率和流经水过滤器的流量随时间的变化率。在这样的实施方式中,确定步骤408可以响应于水过滤器中的水压随时间的变化率的增大或者流经水过滤器的流量随时间的变化率的增大中的任一者或两者来执行。
在步骤408确定是否存在对水的系统需求之后,并且当确定为“否”时,如图6示例,方法400随后可包括当不存在对水的系统需求时基于随时间的变化率的增大来检测泄漏。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任意装置或系统并且执行所包含的任意方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (18)

  1. 一种检测制冷电器中的泄漏的方法,其特征在于,所述制冷电器包括:箱体;食物储存室,限定在所述箱体中;供水管道;水过滤器,联接到所述供水管道;以及传感器,嵌入在所述水过滤器中,所述方法包括:
    通过嵌入在所述水过滤器中的传感器测量水过滤器中的水压;
    通过嵌入在所述水过滤器中的传感器测量流经水过滤器的流量;
    通过所述制冷电器的控制器从所述传感器接收压力测量值和流量测量值;以及
    基于接收到的所述压力测量值和流量测量值来检测泄漏。
  2. 根据权利要求1所述的方法,其特征在于,所述方法在检测泄漏之前不需要所述泄漏接触所述传感器。
  3. 根据权利要求1所述的方法,其特征在于,还包括:
    通过随时间接收多个压力测量值来监测所述水过滤器中的水压;
    通过随时间接收多个流量测量值来监测流经所述水过滤器的流量;
    计算多个接收到的所述压力测量值随时间的变化率;以及
    计算多个接收到的所述流量测量值随时间的变化率;
    其中,所述检测泄漏的步骤基于多个接收的所述压力测量值随时间的变化率和多个接收到的所述流量测量值随时间的变化率中的至少一个的增大。
  4. 根据权利要求3所述的方法,其特征在于,还包括:在接收到的所述压力测量值随时间的变化率和接收到的所述流量测量值随时间的变化率中的至少一个增大之后以及在检测到泄漏之前确定是否存在对水的系统需求。
  5. 根据权利要求1所述的方法,其特征在于,所述传感器嵌入所述水过滤器的入口中,其中,所述测量水压的步骤包括:测量所述水过滤器的入口中的水压,并且所述测量流经水过滤器的流量的步骤包括:测量流经所述水过滤器的入口的流量。
  6. 根据权利要求1所述的方法,其特征在于,还包括:在检测到泄漏之后关闭所述制冷电器的主阀。
  7. 根据权利要求1所述的方法,其特征在于,还包括在检测到泄漏之后经由所述制冷电器的用户界面提供用户通知。
  8. 一种制冷电器,其特征在于,所述制冷电器包括:
    箱体;
    食物储存室,限定在所述箱体中;
    供水管道;
    水过滤器,联接到所述供水管道;
    传感器,嵌入在所述水过滤器中,所述传感器被配置为测量所述水过滤器中的水压和流经所述水过滤器的流量;以及
    控制器,与所述传感器可操作地通信,所述控制器被配置为:
    从所述传感器接收压力测量值和流量测量值;以及
    基于接收到的所述压力测量值和流量测量值来检测泄漏。
  9. 根据权利要求8所述的制冷电器,其特征在于,所述控制器还被配置为监测接收到的压力测量值,监测接收到的所述流量测量值,计算接收到的所述压力测量值随时间的变化率,并且计算接收到的所述流量测量随时间的变化率,其中,所述控制器被配置为基于所接收到的所述压力测量值随时间的变化率和接收到的所述流量测量值随时间的变化率中的至少一个的增大来检测泄漏。
  10. 根据权利要求9所述的制冷电器,其特征在于,所述控制器还被配置为:在所述所接收到的所述压力测量值随时间的所述变化率和所述所接收到的所述流量测量值随时间的所述变化率中的至少一个增大之后并且在检测到所述泄漏之前确定是否存在对水的系统需求。
  11. 根据权利要求8所述的制冷电器,其特征在于,所述传感器嵌入在所述水过滤器的入口中,由此,所述传感器被配置为测量所述水过滤器的所述入口中的水压和流经所述水过滤器的所述入口的流量。
  12. 根据权利要求8所述的制冷电器,其特征在于,所述传感器无线地连接到所述控制器。
  13. 根据权利要求8所述的制冷电器,其特征在于,所述传感器包括连接引脚,所述连接引脚延伸到所述水过滤器的外部。
  14. 根据权利要求8所述的制冷电器,其特征在于,所述控制器还被配置为在检测到所述泄漏之后关闭所述制冷电器的主阀。
  15. 根据权利要求8所述的制冷电器,其特征在于,所述控制器还被配置为在检测到所述泄漏之后经由所述制冷电器的用户界面提供用户通知。
  16. 根据权利要求8所述的制冷电器,其特征在于,嵌入在所述水过滤器中的所述传感器是MEMS传感器。
  17. 一种检测制冷电器中的泄漏的方法,其特征在于,所述制冷电器包括:箱 体;食物储存室,限定在所述箱体中;供水管道;水过滤器,联接到所述供水管道;以及传感器,嵌入在所述水过滤器中,所述方法包括:
    通过嵌入在所述水过滤器中的传感器测量水过滤器中的水压和流经所述水过滤器的流量中的至少一个;
    计算所述水过滤器中的水压和流经所述水过滤器的流量中的至少一个随时间的变化率;
    响应于所述水过滤器中的水压和流经所述水过滤器的流量中的所述至少一个随时间的所述变化率的增大,确定是否存在对水的系统需求;以及
    当不存在对水的系统需求时,基于随时间的所述变化率的所述增大来检测泄漏。
  18. 根据权利要求17所述的方法,其特征在于,所述测量步骤包括:通过嵌入在所述水过滤器中的传感器测量水过滤器中的水压和流经所述水过滤器的流量,所述计算步骤包括:计算所述水过滤器中的水压随时间的变化率和流经所述水过滤器的流量随时间的变化率,并且,所述确定步骤响应于所述水过滤器中的水压随时间的所述变化率的增大或流经所述水过滤器的流量随时间的所述变化率的增大来执行。
PCT/CN2021/135793 2020-12-08 2021-12-06 带嵌入式漏水传感器的制冷电器水过滤器 WO2022121850A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/115,192 2020-12-08
US17/115,192 US11879812B2 (en) 2020-12-08 2020-12-08 Refrigerator appliance water filter with embedded leak sensor

Publications (1)

Publication Number Publication Date
WO2022121850A1 true WO2022121850A1 (zh) 2022-06-16

Family

ID=81848838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135793 WO2022121850A1 (zh) 2020-12-08 2021-12-06 带嵌入式漏水传感器的制冷电器水过滤器

Country Status (2)

Country Link
US (1) US11879812B2 (zh)
WO (1) WO2022121850A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060027267A1 (en) * 2004-07-26 2006-02-09 Karl Fritze Systems and methods for detecting and eliminating leaks in water delivery systems for use with appliances
US20110025511A1 (en) * 2009-07-31 2011-02-03 Abraham Wien Leak sensor monitor
CN102466136A (zh) * 2010-11-05 2012-05-23 江苏正本净化节水科技实业有限公司 一种与净水器配套使用的水泄漏检测与控制系统及其方法
CN102768104A (zh) * 2012-06-25 2012-11-07 苏州华爱电子有限公司 饮水机的水系统检漏装置及其检漏方法
CN203955051U (zh) * 2014-06-18 2014-11-26 深圳市沃泰克环保设备有限公司 一种超滤机检漏装置
CN104949805A (zh) * 2014-12-03 2015-09-30 佛山市云米电器科技有限公司 漏水检测方法及装置
CN108503087A (zh) * 2018-04-28 2018-09-07 佛山市雅洁源科技股份有限公司 一种漏水可视化监测的智能净水机、漏水监测系统及方法
CN210251888U (zh) * 2019-06-25 2020-04-07 南京丹恒科技有限公司 一种管式膜组件快速测漏装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6823718B2 (en) * 2002-10-28 2004-11-30 Pti Technologies, Inc. Single-body multiple sensing device
US11033898B2 (en) 2014-02-01 2021-06-15 Ezmems Ltd. Fluidic microelectromechanical sensors/devices and fabrication methods thereof
US10286343B2 (en) 2016-10-28 2019-05-14 Pall Corporation Filter including RFID tag
CN206512009U (zh) 2017-01-17 2017-09-22 东莞市海源水处理有限公司 一种新型多功能饮用水净化设备
US9857803B1 (en) 2017-02-02 2018-01-02 Water Dimmer, LLC Water conservation system
US11504657B2 (en) * 2019-03-27 2022-11-22 Haier Us Appliance Solutions, Inc. Leak detection assembly for use with a filter assembly for a refrigerator appliance
CN110101310A (zh) 2019-04-09 2019-08-09 佛山市美的清湖净水设备有限公司 净饮水机漏水检测装置、方法及净饮水机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060027267A1 (en) * 2004-07-26 2006-02-09 Karl Fritze Systems and methods for detecting and eliminating leaks in water delivery systems for use with appliances
US20110025511A1 (en) * 2009-07-31 2011-02-03 Abraham Wien Leak sensor monitor
CN102466136A (zh) * 2010-11-05 2012-05-23 江苏正本净化节水科技实业有限公司 一种与净水器配套使用的水泄漏检测与控制系统及其方法
CN102768104A (zh) * 2012-06-25 2012-11-07 苏州华爱电子有限公司 饮水机的水系统检漏装置及其检漏方法
CN203955051U (zh) * 2014-06-18 2014-11-26 深圳市沃泰克环保设备有限公司 一种超滤机检漏装置
CN104949805A (zh) * 2014-12-03 2015-09-30 佛山市云米电器科技有限公司 漏水检测方法及装置
CN108503087A (zh) * 2018-04-28 2018-09-07 佛山市雅洁源科技股份有限公司 一种漏水可视化监测的智能净水机、漏水监测系统及方法
CN210251888U (zh) * 2019-06-25 2020-04-07 南京丹恒科技有限公司 一种管式膜组件快速测漏装置

Also Published As

Publication number Publication date
US20220178784A1 (en) 2022-06-09
US11879812B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
US20060027267A1 (en) Systems and methods for detecting and eliminating leaks in water delivery systems for use with appliances
US11493401B2 (en) Arrangement and method for detecting leaks in a water pipe system
US20060196212A1 (en) Water delivery system with water flow sensor for a refrigerator
SE538526C2 (sv) System och metod för övervakning av rörledningssystem
CN110822760B (zh) 一种空调冷媒系统、冷媒泄漏检测方法及空调
CN101657244B (zh) 具有水过滤器的制冷装置
CN104075533B (zh) 一种冰箱供水系统控制方法
CN110895019B (zh) 一种空调冷媒泄漏检测方法及使用该方法的空调
WO2022121850A1 (zh) 带嵌入式漏水传感器的制冷电器水过滤器
BRPI0812950B1 (pt) Aparelho para determinar uma posição de uma válvula e método para utilização em um aparelho de válvula
US9146048B2 (en) Chemical state monitor for refrigeration system
KR20140040395A (ko) 냉장고 및 그 제어 방법
US9533894B2 (en) Water filtering system with temperature sensing
JP2009008045A (ja) ドレン排出異常の検出装置および圧縮空気除湿装置
JP2008249226A (ja) 冷凍装置の冷媒漏れ検出方法
CN111720751A (zh) 水路的异常检测方法与装置
JP2008267740A (ja) ガス遮断装置
CN212966614U (zh) 一种电冰箱制冷系统实训装置
JP4806793B2 (ja) 冷凍装置の冷媒漏れ検出方法
WO2022261270A1 (en) Apparatus and method for sensing water level
CN211373739U (zh) 一种可以测试通过节流装置后气液比例的装置
KR101612814B1 (ko) 자기 진단 기능을 갖는 정수기
KR101962130B1 (ko) 냉장고
JP2011247606A (ja) 漏洩検知システム、漏洩検知装置及び漏洩検知方法
KR101659465B1 (ko) 복합 냉각장치 및 필터 세정방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902555

Country of ref document: EP

Kind code of ref document: A1