WO2022121771A1 - 储液器的检查方法和检查装置 - Google Patents

储液器的检查方法和检查装置 Download PDF

Info

Publication number
WO2022121771A1
WO2022121771A1 PCT/CN2021/135080 CN2021135080W WO2022121771A1 WO 2022121771 A1 WO2022121771 A1 WO 2022121771A1 CN 2021135080 W CN2021135080 W CN 2021135080W WO 2022121771 A1 WO2022121771 A1 WO 2022121771A1
Authority
WO
WIPO (PCT)
Prior art keywords
accumulator
inner tube
shape
sound pressure
sound generated
Prior art date
Application number
PCT/CN2021/135080
Other languages
English (en)
French (fr)
Inventor
町田典正
Original Assignee
重庆海尔制冷电器有限公司
海尔智家股份有限公司
青岛海尔电冰箱有限公司
Aqua 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆海尔制冷电器有限公司, 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, Aqua 株式会社 filed Critical 重庆海尔制冷电器有限公司
Priority to CN202180018840.9A priority Critical patent/CN115244346B/zh
Publication of WO2022121771A1 publication Critical patent/WO2022121771A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids

Definitions

  • the present invention relates to an inspection method of a liquid accumulator, in particular to an inspection method of a liquid accumulator for inspecting the shape of an inner tube.
  • the refrigerator is equipped with a refrigeration cycle.
  • the refrigeration cycle has a compressor, a condenser, an expansion device and an evaporator.
  • the cold air cooled by the evaporator is blown to each storage compartment of the refrigerator, and each storage compartment is cooled to a predetermined refrigeration temperature. range or freezing temperature range.
  • the accumulator 100 is composed of a hollow container 101 , an outlet pipe 102 and an inlet pipe 103 .
  • the hollow container 101 is a substantially cylindrical container.
  • the outlet pipe 102 is connected to the upper end of the hollow container 101 to connect the accumulator 100 and the compressor.
  • the inlet pipe 103 is inserted into the hollow container 101 from the lower end, and connects the accumulator 100 and the evaporator.
  • the upper end portion 104 of the inlet pipe 103 is arranged inside the hollow container 101 .
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-232880.
  • the present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a method for inspecting an accumulator that can easily and accurately estimate the shape of the inner tube.
  • the inspection method of the accumulator according to the present invention is an inspection method for inspecting the shape of the inner tube inside the accumulator, and includes the step of preparing the accumulator having a container portion and being built in the accumulator. the inner tube in the container portion; the step of measuring the sound generated from the accumulator while blowing gas into the interior of the container portion of the accumulator; and based on the sound generated from the accumulator The sound is used to determine whether the shape of the inner tube is good or bad.
  • the shape of the inner tube can be easily and accurately inspected. Specifically, it can be determined whether or not the shape of the inner tube is within the allowable range inside the accumulator based on the sound generated from the inside of the accumulator, and the accumulator that deviates from the allowable range can be treated as a defective product. Therefore, the quality of the shape of the inner tube can be judged without visually checking the inside of the accumulator, and the inspection of the inner tube can be performed with low cost and high accuracy.
  • the gas in the step of measuring, is introduced into the container of the accumulator from the side of the refrigerant discharge portion of the accumulator interior of the department. Therefore, according to the inspection method of the accumulator of the present invention, by introducing the gas from the refrigerant discharge part of the accumulator into the accumulator, the gas can be blown toward the upper end of the inner pipe, and the inner pipe can be inspected more accurately. position of the end.
  • a sound pressure value of the inner tube is determined based on a sound pressure value of a specific frequency band among the sounds generated from the accumulator. Good or bad shape. Therefore, according to the inspection method of the accumulator of the present invention, it is possible to sense the shape of the inner tube with high accuracy by determining whether the shape of the inner tube is good or not based on the sound pressure value of the specific frequency band.
  • the inner tube in the step of determining, is determined based on sound pressure values of a plurality of frequency bands among the sounds generated from the accumulator. good or bad shape. Therefore, according to the inspection method of the accumulator of the present invention, by determining whether the shape of the inner tube is good or bad based on the sound pressure values of the plurality of frequency bands, the shape of the inner tube can be sensed with further high accuracy.
  • the internal sound pressure value of a specific frequency and AP is determined based on the sound generated from the reservoir.
  • the shape of the tube is good or bad. Therefore, according to the inspection method of the accumulator of the present invention, by determining whether the shape of the inner tube is good or bad based on the specific frequency and the sound pressure value of the AP, the shape of the inner tube can be sensed more accurately.
  • an inert gas is introduced into the accumulator. Therefore, according to the inspection method of the accumulator of the present invention, by introducing the inert gas into the accumulator, the inside of the accumulator can be prevented from being oxidized in the inspection process.
  • FIG. 1 is a side cross-sectional view illustrating an internal structure of a refrigerator including a liquid accumulator according to an embodiment of the present invention
  • FIG. 2A is a front view illustrating an evaporator according to an embodiment of the present invention.
  • 2B is a cross-sectional view illustrating a reservoir according to an embodiment of the present invention.
  • 3A is a block diagram showing the structure of an inspection apparatus according to an embodiment of the present invention.
  • 3B is a flow chart illustrating a method for checking a reservoir according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing the internal structure of the reservoir and the configuration of the microphone, relating to the reservoir inspection method according to the embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a method for inspecting a reservoir according to an embodiment of the present invention, and is a table summarizing the internal structures and sound pressure values of samples of each reservoir used in the inspection.
  • 6A is a table showing the results of a summary inspection of the reservoir according to an embodiment of the present invention
  • 6B is a graph showing the sound pressure value of each sample of the reservoir inspection according to the embodiment of the present invention
  • 6C is a graph showing sound pressure values for each sample in two frequency bands for a reservoir inspection according to an embodiment of the present invention
  • FIG. 7 is a cross-sectional view showing the structure of a liquid reservoir according to the background art.
  • FIG. 1 is a side cross-sectional view showing the internal structure of the refrigerator 10 including the accumulator 23 .
  • the refrigerator 10 has a heat insulation box 11 and a storage compartment formed inside the heat insulation box 11 .
  • the refrigerator 10 has a refrigerator compartment 13 and a freezer compartment 14 as a storage compartment from above.
  • the upper part of the front opening of the refrigerating compartment 13 is closed by the heat insulation door 16
  • the lower part is closed by the heat insulation door 17 .
  • the upper part of the front opening of the freezer compartment 14 is closed by the heat insulation door 18
  • the lower part is closed by the heat insulation door 19 .
  • the heat insulating box 11 has a heat insulating structure including a heat insulating material.
  • a cooling chamber 12 is formed behind the freezing chamber 14 . Inside the cooling chamber 12, an evaporator 20 as a cooler is arranged. Moreover, in the back of the lower end side of the heat insulation box 11, the machine room 22 is partitioned and formed, and the compressor 21 is arrange
  • the evaporator 20 and the compressor 21 form a refrigerant compression type refrigeration cycle 15 .
  • the refrigeration cycle 15 includes a compressor 21 , a condenser, an expansion device, and an evaporator 20 .
  • the respective components constituting the refrigerating cycle 15 are connected to each other by refrigerant pipes made of metal pipes such as copper pipes. Thereby, the refrigerant circulates in the order of the compressor 21 , the condenser, the expansion device, and the evaporator 20 .
  • the evaporator 20 cools the air inside the cooling chamber 12, and the cooling air is blown to each storage chamber by a blower so that the internal temperature of each storage chamber becomes a predetermined cooling temperature range. That is, the refrigerator compartment 13 is cooled to the refrigeration temperature range, and the freezer compartment 14 is cooled to the freezing temperature range.
  • FIG. 2(A) is a front view showing the evaporator 20
  • FIG. 2(B) is a cross-sectional view showing the accumulator 23 .
  • the evaporator 20 is of a so-called fin-and-tube type, and has radiating fins 28 and refrigerant pipes 291 .
  • the radiating fins 28 are metal plates made of metal such as copper or aluminum, and a plurality of the radiating fins 28 are arranged at predetermined intervals.
  • the refrigerant pipe 291 is a metal pipe made of copper or aluminum, penetrates the heat dissipation fins 28, and is formed meandering in the up-down direction.
  • the accumulator 23 is arranged on the upper left side of the evaporator 20 .
  • the accumulator 23 is arranged on the downstream side of the evaporator 20 in the flow of the refrigerant.
  • the lower end of the accumulator 23 is connected to a refrigerant pipe 291 of the evaporator 20 via a refrigerant pipe 292 .
  • the upper end of the accumulator 23 is connected to the compressor 21 (not shown here) via a refrigerant pipe 293 .
  • the accumulator 23 is inclined and arranged so that the upper part is arranged on the right side.
  • the accumulator 23 has the container portion 30 and the inner tube 24 .
  • the container part 30 is a substantially cylindrical container, and the refrigerant discharge part 26 as the diameter-reduced part is formed at the upper end, and the refrigerant suction part 27 as the diameter-reduced part is formed at the lower end.
  • the upper part of the center line 32 of the container part 30 is inclined rightward.
  • the center line 32 also serves as the center axis of the inner tube 24 .
  • the inner pipe 24 is a pipe continuous with the above-mentioned refrigerant pipe 292 , and is arranged inside the container portion 30 . Most of the inner tube 24 extends along the centerline 32 inside the container portion 30 . In addition, the upper end portion of the inner pipe 24 is arranged on the upper left side of the center line 32 so as to prevent the refrigerant from returning to the evaporator 20 side. In other words, the vicinity of the distal end portion of the inner tube 24 is bent to the left.
  • the design value of the distance L10 between the upper end center portion 31 which is the center of the upper end of the inner tube 24 and the center line 32 is, for example, 5.0 mm.
  • FIG. 3(A) is a block diagram showing the configuration of the inspection device 35
  • FIG. 3(B) is a flowchart showing a method of inspecting the accumulator 23
  • FIG. 4 is a block diagram showing the accumulator during sound pressure measurement 23 A cross-sectional view of the internal structure.
  • the inspection device 35 is a device for inspecting the shape of the inner tube 24 inside the accumulator 23 , and includes a microphone 25 , an arithmetic control device 33 and a notification device 34 .
  • the arithmetic control device 33 is an arithmetic device including a CPU, a RAM, and the like, and executes predetermined arithmetic processing based on a read program.
  • the microphone 25 is connected to the input-side terminal of the arithmetic control device 33, and the notification device 34 is connected to the output-side terminal.
  • the microphone 25 is disposed on or near the surface of the container portion 30 of the accumulator 23 , collects sound generated when gas is blown into the container portion 30 , and transmits information indicating the sound pressure value to the arithmetic control device 33 .
  • the notification device 34 is a device that notifies the operator of the inspection result based on the calculation of the calculation control device 33 by sound or image. Specifically, the notification device 34 notifies whether or not the inner tube 24 has a predetermined shape inside the container portion 30 .
  • step S10 the accumulator 23 having the structure shown in FIG. 2(B) is prepared.
  • the accumulator 23 may be prepared in a state of being connected to the evaporator 20, or only the accumulator 23 may be prepared.
  • step S11 the gas is blown to the accumulator 23 .
  • gas is blown to the container portion 30 from a refrigerant pipe 293 connected to the refrigerant discharge portion 26 of the container portion 30 .
  • the gas cylinder is connected to the refrigerant pipe 293 , and the gas whose pressure and flow rate are adjusted on the gas cylinder side is blown to the container portion 30 via the refrigerant pipe 293 and the refrigerant discharge portion 26 .
  • the pressure regulator and the flow meter are connected to the gas cylinder, and noise is generated from these devices when the gas is blown.
  • the extension pipe is attached to the protruding side, and the discharge side end of the extension pipe is separated from the microphone 25, thereby reducing the amount of noise in the air. Influence of noise generated at the end of the discharge side.
  • the blown gas is discharged to the outside via the refrigerant discharge part 26 , the inner pipe 24 , the refrigerant suction part 27 , the refrigerant pipe 292 shown in FIG. 2(A) , and the refrigerant pipe 291 of the evaporator 20 .
  • an inert gas such as nitrogen gas is preferable.
  • the inner pipe 24 acts like a whistle inside the container portion 30, so that a louder sound can be emitted, and the difference in the position of the upper end center portion 31 can be reflected in the sound. middle.
  • step S12 the sound generated from the accumulator 23 is collected.
  • the microphone 25 is arranged on the surface of the container portion 30 or its vicinity, and the sound generated by the blowing is collected by the microphone 25 .
  • the microphone 25 is arranged on the surface of the container portion 30 and in the vicinity of the upper end center portion 31 .
  • Data based on the collected sound is sent to the arithmetic control device 33 .
  • the cover by covering the microphone 25 with a cover (not shown), the sound collecting performance of the microphone 25 can be improved, and the shape estimation of the inner tube 24 described later can be performed more accurately.
  • step S13 the arithmetic control device 33 analyzes the collected sound, and confirms whether or not the sound pressure value in the specific frequency band is equal to or greater than a predetermined level.
  • a frequency band of 2000 Hz is used as the specific frequency band, and if the sound pressure value at 2000 Hz is, for example, 35 dB(A) or more, it is determined that the position of the upper end center portion 31 inside the container portion 30 is likely to be outside the allowable range.
  • step S13 that is, if the sound pressure value at 2000 Hz is 35 dB or more, the arithmetic control device 33 proceeds to step S14 to more accurately estimate the position of the upper end center portion 31 .
  • step S13 that is, the sound pressure value at 2000 Hz is less than 35 dB(A)
  • the arithmetic control device 33 estimates that the position of the upper end center portion 31 is within the allowable range, and proceeds to step S16.
  • step S14 the arithmetic control device 33 confirms whether the sound pressure value of another specific frequency band or AP is equal to or higher than a certain value.
  • another specific frequency band the frequency band of the AP is adopted.
  • AP does not perform frequency analysis, which means the integrated value of each frequency.
  • step S14 if the sound pressure value of the AP is equal to or higher than a certain level, for example, 40 dB(A) or higher, the arithmetic control device 33 estimates that the position of the upper end center portion 31 is not within the allowable range, and proceeds to step S15 .
  • a certain level for example, 40 dB(A) or higher
  • step S14 that is, if the sound pressure value of the AP is insufficient, for example, 40 dB(A)
  • the arithmetic control device 33 estimates that the position of the upper end center portion 31 is within the allowable range, and shifts to Step S16.
  • step S15 the arithmetic control device 33 determines that the position of the upper end center portion 31 inside the container portion 30 , that is, the curved shape of the inner tube 24 is outside the allowable range.
  • the arithmetic control device 33 indicates to the operator via the notification device 34 that the curved shape of the inner tube 24 is outside the allowable range.
  • step S16 the arithmetic control device 33 determines that the position of the upper end center portion 31 inside the container portion 30 , that is, the curved shape of the inner tube 24 is within the allowable range.
  • the arithmetic control device 33 notifies the operator via the notification device 34 that the curved shape of the inner tube 24 is within the allowable range. Thereby, the operator can manufacture the refrigerator 10 by incorporating the accumulator 23 as an acceptable product into the refrigerator 10 .
  • FIG. 5 shows the results of experiments conducted on conforming products and nonconforming products.
  • six accumulators 23 having different distances L10 were prepared. Specifically, from the left, the first to sixth samples are prepared. The distance L10 of the first sample is 7.0mm, the distance L10 of the second sample is 3.8mm, the distance L10 of the third sample is 5.9mm, the distance L10 of the fourth sample is 3.0mm, and the distance L10 of the fifth sample is 5.0mm , the distance L10 of the sixth sample is 5.9mm.
  • the design value of the distance L10 is 5.0 mm, and the allowable error is +2.5 mm to -1.5 mm. Therefore, the allowable range of the distance L10 is 7.5 mm to 3.5 mm.
  • the distance L10 of the fourth sample is outside the allowable range, and therefore, the fourth sample is a defective product.
  • the distance L10 of the other samples ie, the first sample, the second sample, the third sample, the fifth sample, and the sixth sample, is within the allowable range, and therefore, it is an acceptable product.
  • Fig. 6(A) is a table showing the sound pressure value of each sample by frequency band
  • Fig. 6(B) is a graph showing the sound pressure value of each sample by frequency band
  • Fig. 6(C) is a graph showing the sound pressure value of each sample in two frequency bands. A graph of the sound pressure values for each sample.
  • FIG. 6(A) and FIG. 6(B) are applied to the first sample to the sixth sample using the above-described method for inspecting the accumulator, and the sound generated from the first sample to the sixth sample is shown for each frequency band. pressure value.
  • the fourth sample is an unqualified product, and the other samples are qualified products.
  • the difference in the sound pressure value between the fourth sample and the other samples is most obvious at 2000 Hz.
  • the sound pressure value of the fourth sample is the largest. Therefore, a sample whose sound pressure value at 2000 Hz is equal to or higher than a certain value can also be judged as a defective product.
  • the sound pressure value at 2000 Hz is shown in detail.
  • the sample can be judged as a defective product.
  • the fifth sample which is a non-conforming product, may be erroneously judged as a non-conforming product.
  • the sound pressure value of the AP is also used to determine whether the distance L10 is within the allowable range.
  • the sound pressure value of one frequency band can also be used to judge the quality of the shape of the inner tube 24, but the sound pressure value of a specific frequency band and AP can be used to judge the quality of the shape of the inner tube 24.
  • the sound pressure value of a specific frequency band, ie, 2000 Hz, and AP is used to judge whether the shape of the inner tube 24 is good or bad. That is, when the sound pressure value of 2000 Hz is 35 dB(A) or more and the sound pressure value of AP is 40 dB(A) or more, it is determined that the distance L10 is outside the allowable range, that is, the shape of the inner tube 24 is not within the allowable range. .
  • the distance L10 is within the allowable range, that is, the shape of the inner tube 24 is within the allowable range. within the range.
  • the inspection method of the accumulator of the present invention it is possible to judge whether the shape of the inner tube 24 in the accumulator 23 is within the allowable range based on the sound generated from the interior of the accumulator 23, and the accumulator that will deviate from the allowable range can be determined. 23 are treated as substandard products. Therefore, the quality of the inner tube 24 can be judged without visually checking the inside of the accumulator 23, and the inspection of the inner tube 24 can be performed with low cost and high accuracy.
  • the inspection method according to the present embodiment is a so-called nondestructive test, in the manufacturing process of the refrigerator 10, the above-mentioned inspection can be performed on all the accumulators 23 manufactured, and the yield of the refrigerator 10 can be improved.
  • the gas can be blown toward the upper end of the inner pipe 24, and the position of the end of the inner pipe 24 can be checked more accurately.
  • the shape of the inner tube 24 can be sensed with higher accuracy.
  • the shape of the inner tube 24 can be sensed more accurately.
  • the inside of the accumulator 23 can be prevented from being oxidized in the inspection process.
  • the sound generated from the accumulator 23 is collected while blowing the gas from the side of the refrigerant discharge portion 26 , but the gas can also be blown from the side of the refrigerant suction portion 27 . .

Abstract

一种储液器(23)的检查方法,包括:准备具有容器部(30)和内置于容器部(30)中的内管(24)的储液器(23)的步骤、一边将气体吹送到储液器(23)的容器部(30)内部一边测量从储液器(23)产生的声音的步骤、以及基于从储液器(23)产生的声音来判定内管(24)的形状的好坏的步骤。其能够简易且正确地估计内管(24)的形状。

Description

储液器的检查方法和检查装置 技术领域
本发明涉及一种储液器的检查方法,尤其涉及一种对内管的形状进行检查的储液器的检查方法。
背景技术
在冰箱中配设有冷冻循环,冷冻循环具有压缩机、冷凝器、膨胀装置和蒸发器,经蒸发器冷却的冷空气被吹送到冰箱的各储藏室,各储藏室被冷却到预定的冷藏温度范围或冷冻温度范围。
在蒸发器附近,配置有图7所示的结构的储液器100。储液器100由中空容器101、出口管102和入口管103构成。中空容器101是大致圆筒状的容器。出口管102连接到中空容器101的上端,将储液器100和压缩机相连接。入口管103从下端插入到中空容器101,将储液器100和蒸发器相连接。入口管103的上端部104配置在中空容器101内部。通过在蒸发器的后级,配置储液器100,能够在储液器100内部储存液体状的制冷剂,能够防止在压缩机中发生液体压缩。
现有技术文献
专利文献1:日本特开2004-232880号公报。
然而,在根据背景技术的储液器100中,存在如下的问题,即:在中空容器101内部,入口管103的上端部104的位置有时会偏离设计值,当该偏离较大时,对冰箱的性能造成坏影响。
具体地,当上端部104的位置偏离到纸面上左侧上方时,存在充电不足症状即冷却力减弱的问题。另一方面,当上端部104的位置偏离到纸面上右侧下方时,存在过度充电症状即吸入管(suction pipe)结露、对压缩机造成坏影响的问题。目前,当分析冷却力减弱或吸入管结露等问题发生的冰箱时,在储液器100内部,内管的形状有时偏离公差。
此外,作为对中空容器101内部的入口管103的形状进行检查的方法,还存在对入口管103照射X射线的方法。然而,通过照射X射线的方法来正确地检测中空容器101内部的上端部104的位置并不是简单的。
发明内容
本发明鉴于上述情况而完成,其目的在于提供一种储液器的检查方法,能够简易且正确地估计内管的形状。
本发明的储液器的检查方法是对储液器内部的内管的形状进行检查的检查方法,包括:准备所述储液器的步骤,所述储液器具有容器部和内置于所述容器部中的所述内管;一边将气体吹送到所述储液器的所述容器部的内部一边测量从所述储液器产生的声音的步骤;以及基于从所述储液器产生的所述声音来判定所述内管的形状的好坏的步骤。
发明效果
根据本发明的储液器的检查方法,能够简易且正确地检查内管的形状。具体地,能够基于从储液器内部产生的声音来判断在储液器内部,内管的形状是否为容许范围内,将偏离容许范围的储液器处理为不合格品。因此,无需对储液器的内部进行视觉确认,就能够判断内管的形状的好坏,并且能够以低成本且高精度进行内管的检查。
此外,在本发明的储液器的检查方法中,在所述测量的步骤中,将所述气体从所述储液器的制冷剂排出部的侧导入到所述储液器的所述容器部的内部。因此,根据本发明的储液器的检查方法,通过从储液器的制冷剂排出部向储液器内部导入气体,能够将气体吹向内管的上端,从而能够更正确地检查内管的端部的位置。
此外,在本发明的储液器的检查方法中,在所述判定的步骤中,基于从所述储液器产生的所述声音中的、特定频段的声压值来判定所述内管的形状的好坏。因此,根据本发明的储液器的检查方法,通过基于特定频段的声压值来判定内管的形状的好坏,能够高精度地感测内管的形状。
此外,在本发明的储液器的检查方法中,在所述判定的步骤中,基于从所述储液器产生的所述声音中的、多个频段的声压值来判定所述内管的形状的好坏。因此,根据本发明的储液器的检查方法,通过基于多个频段的声压值来判定内管的形状的好坏,能够进一步高精度地感测内管的形状。
此外,在本发明的储液器的检查方法中,在所述判定的步骤中,基于从所述储液器产生的所述声音中的、特定频率和AP的声压值来判定所述内管的形状的好坏。因此,根据本发明的储液器的检查方法,通过基于特定频率和AP的声压值来判定内管的形状的好坏,能够进一步高精度地感测内管的形状。
此外,在本发明的储液器的检查方法中,在所述测量的步骤中,将惰性气体导入到所述储液器中。因此,根据本发明的储液器的检查方法,通过将惰性气体导入到储液器中,能够防止储液器的内部在检查工序中氧化。
附图说明
图1是示出根据本发明实施例的包括储液器的冰箱的内部结构的侧剖视图;
图2A是示出根据本发明实施例的蒸发器的前视图;
图2B是示出根据本发明实施例的储液器的剖视图;
图3A是示出根据本发明实施例的检查装置的结构的框图;
图3B是示出根据本发明实施例的储液器检查方法的流程图;
图4涉及根据本发明实施例的储液器检查方法,是示出储液器的内部结构和麦克风的配置的剖视图。
图5是示出根据本发明实施例的储液器检查方法的图,是对检查中使用的各储液器的样本的内部结构和声压值进行汇总的表。
图6A是示出根据本发明实施例的储液器汇总检查结果的表
图6B是示出根据本发明实施例的储液器检查的各样本的声压值的图形
图6C是示出根据本发明实施例的储液器检查的两个频段中的各样本的声压值的图形;
图7是示出根据背景技术的储液器的结构的剖视图。
具体实施方式
以下,基于附图来详细说明根据本发明实施例的储液器的检查方法。在以下的说明中,原则上,对相同的构件标注相同的附图标记,省略重复的说明。
图1是示出包括储液器23的冰箱10的内部结构的侧剖视图。
冰箱10具有隔热箱体11和形成在隔热箱体11内部的储藏室。冰箱10从上方起,具有冷藏室13和冷冻室14,作为储藏室。冷藏室13的前开口的上部由隔热门16封闭,下部由隔热门17封闭。冷冻室14的前开口的上部由隔热门18封闭,下部由隔热门19封闭。隔热箱体11具有包括隔热材料的隔热构造。
在冷冻室14的后方,形成有冷却室12。在冷却室12内部,配设有作为冷却器的蒸发器20。此外,在隔热箱体11的下端侧后方,划分形成有机器室22,在机器室22中配置有压缩机21。
蒸发器20和压缩机21形成了制冷剂压缩式的冷冻循环15。具体地,冷冻循环15包括压缩机21、冷凝器、膨胀装置和蒸发器20。构成冷冻循环15的各构成设备通过制冷剂配管彼此连接,所述制冷剂配管由铜管等金属管构成。由此,制冷剂按压缩机21、冷凝器、膨胀装置和蒸发器20的顺序进行循环。
通过运行冷冻循环15,由蒸发器20对冷却室12内部的空气进行冷却,由送风机将该冷空气吹送到各储藏室,以使各储藏室的内部温度变为预定的冷却温度范围。即,将冷藏室13冷却到冷藏温度范围,将冷冻室14冷却到冷冻温度范围。
图2(A)是示出蒸发器20的前视图,图2(B)是示出储液器23的剖视图。
参照图2(A),蒸发器20是所谓的翅片管型,具有散热翅片28和制冷剂管道291。散热翅片28是由铜或铝等金属构成的金属板,隔开预定的间隔而配置有多个散热翅片28。制冷剂管道291是由铜或铝构成的金属管,贯通散热翅片28,并且,在上下方向上蜿蜒形成。
储液器23配置在蒸发器20的上方左侧。此外,储液器23配置在制冷剂的流动中的、蒸发器20的下游侧。储液器23的下端经由制冷剂管道292连接到蒸发器20的制冷剂管道291。储液器23的上端经由制冷剂管道293连接到压缩机21(此处未图示)。此外,储液器23倾斜配置成上部被配置在右方侧。
参照图2(B),储液器23具有容器部30和内管24。
容器部30是大致圆筒状的容器,在上端形成有作为缩径部位的制冷剂排出部26,在下端形成有作为缩径部位的制冷剂吸入部27。容器部30的中心线32的上部向右方倾斜。此外,中心线32也兼作内管24的中心轴。
内管24是与上述的制冷剂管道292连续的导管,配置在容器部30的内部。大部分的内管24在容器部30内部沿中心线32延伸。此外,内管24的上端部配置在中心线32的上 方左方侧,以便防止制冷剂返回到蒸发器20侧。换言之,内管24的前端部附近向左方侧弯曲。在此,作为内管24的上端的中心的上端中心部31与中心线32之间的距离L10的设计值例如是5.0mm。
参照图3和图4来说明对上述结构的储液器23内部的内管24的形状进行检查的方法。图3(A)是示出检查装置35的结构的框图,图3(B)是示出对储液器23进行检查的方法的流程图,图4是示出声压测定时的储液器23的内部结构的剖视图。
参照图3(A),检查装置35是对上述储液器23内部的内管24的形状进行检查的装置,具有麦克风25、运算控制装置33和通知装置34。
运算控制装置33是包括CPU、RAM等的运算装置,基于读入的程序来执行预定的运算处理。麦克风25连接到运算控制装置33的输入侧端子,通知装置34连接到输出侧端子。
麦克风25配置在上述储液器23的容器部30的表面或其附近,收集向容器部30内部吹送气体时产生的声音,将示出声压值的信息传送至运算控制装置33。
通知装置34是通过声音或图像将检查结果通知给操作者的装置,所述检查结果基于运算控制装置33的运算。具体地,通知装置34通知内管24在容器部30内部是否为预定的形状。
参照图3(B)来说明本实施例的储液器的检查方法中的各步骤。
在步骤S10中,准备图2(B)所示结构的储液器23。在这种状态下,储液器23既可以在连接到蒸发器20的状态下准备,也可以仅以储液器23来准备。
在步骤S11中,将气体吹送到储液器23。参照图4,从制冷剂管道293向容器部30吹送气体,所述制冷剂管道293连接到容器部30的制冷剂排出部26。具体地,将气瓶连接至制冷剂管道293,在气瓶侧调整了压力和流量的气体经由制冷剂管道293和制冷剂排出部26吹送到容器部30。在此,压力调整器和流量计连接到气瓶,在气体吹送时,从这些设备产生噪声。因此,为了防止麦克风25收集噪声,优选的是,将气瓶、压力调整器和流量计设置在储液器23所配置的测定室的外部。此外,考虑到在气体经由制冷剂吸入部27排出到外部时也会产生噪声,而将延长管安装到突出侧,将延长管的排出侧端部与麦克风25分离,由此,能够减小在排出侧端部处产生的噪声的影响。
吹送的气体经由制冷剂排出部26、内管24、制冷剂吸入部27、图2(A)中所示的制冷剂管道292和蒸发器20的制冷剂管道291,而排出到外部。作为封入到储液器23中的气体,氮气等惰性气体是优选的。由此,能够防止由铜或铝构成的容器部30氧化。在本步骤中,通过从制冷剂排出部26侧吹送气体,内管24在容器部30内部如哨子那样发挥作用,能够发出更响亮的声音,能够将上端中心部31的位置的不同反映在声音中。
在步骤S12中,收集从储液器23产生的声音。具体地,参照图4,一边进行步骤S11中的吹送,一边将麦克风25配置在容器部30的表面或其附近,通过麦克风25收集由于吹送而产生的声音。在此,为了正确地估计上端中心部31的位置,在容器部30的表面且上端中心部31附近,配置麦克风25。基于所收集的声音的数据被传送到运算控制装置33。 在此,用盖体(未图示)覆盖麦克风25,由此,能够提高麦克风25的集音性,从而更正确地进行后述的内管24的形状估计。
在步骤S13中,运算控制装置33分析所收集的声音,确认特定频段中的声压值是否为规定水平以上。在此,作为特定频段,采用2000Hz的频段,如果2000Hz的声压值为例如35dB(A)以上,则判断为在容器部30内部,上端中心部31的位置很可能为容许范围外。
在步骤S13中为“是”的情况下,即,如果2000Hz的声压值为35dB以上,则运算控制装置33转移到步骤S14,以更正确地估计上端中心部31的位置。
在步骤S13中为“否”的情况下,即,2000Hz的声压值为35dB(A)不足,则运算控制装置33估计上端中心部31的位置在容许范围内,转移到步骤S16。
在步骤S14中,运算控制装置33确认另一特定频段或AP的声压值是否为一定以上。在此,作为另一特定频段,采用AP的频段。AP不进行频率分析,意指各频率的综合值。
在步骤S14中为“是”的情况下,如果AP的声压值为一定以上,例如40dB(A)以上,则运算控制装置33估计上端中心部31的位置不在容许范围内,转移到步骤S15。
在步骤S14中为“否”的情况下,即,如果AP的声压值为一定不足,例如40dB(A)不足,则运算控制装置33估计上端中心部31的位置在容许范围内,转移到步骤S16。
在步骤S15中,运算控制装置33判断为容器部30内部的上端中心部31的位置、即内管24的弯曲形状在容许范围外。运算控制装置33经由通知装置34向操作者示出内管24的弯曲形状在容许范围外。由此,操作者不会将非合格品的储液器23编入到冰箱10中,因此,能够提高冰箱10的成品率。
在步骤S16中,运算控制装置33判断为容器部30内部的上端中心部31的位置、即内管24的弯曲形状在容许范围内。运算控制装置33经由通知装置34向操作者示出内管24的弯曲形状在容许范围内。由此,操作者能够将作为合格品的储液器23编入到冰箱10中以制造冰箱10。
图5示出了将合格品和不合格品作为对象进行的实验结果。在此,作为样本,准备了使上述距离L10不同的6个储液器23。具体地,从左侧起,准备了第一样本至第六样本。第一样本的距离L10为7.0mm,第二样本的距离L10为3.8mm,第三样本的距离L10为5.9mm,第四样本的距离L10为3.0mm,第五样本的距离L10为5.0mm,第六样本的距离L10为5.9mm。
在此,距离L10的设计值为5.0mm,容许误差为+2.5mm至-1.5mm,因此,距离L10的容许范围为7.5mm至3.5mm。
考虑到前述内容,第四样本的距离L10在容许范围外,因此,第四样本为不合格品。另一方面,其他样本即第一样本、第二样本、第三样本、第五样本和第六样本的距离L10在容许范围内,因此,是合格品。
图6(A)是按频带示出各样本的声压值的表,图6(B)是按频带示出各样本的声压值的图形,图6(C)是示出两个频段中的各样本的声压值的图形。
图6(A)和图6(B)针对第一样本至第六样本,应用了上述储液器的检查方法,按各频带示出了从第一样本至第六样本所产生的声压值。
如上所述,第四样本为不合格品,其他样本为合格品。在此,第四样本与其他样本之间的声压值的差异在2000Hz时最为明显。在2000Hz时,第四样本的声压值最大。因此,也能够将2000Hz的声压值为一定以上的样本判断为不合格品。
在图6(C)左侧的图形中,详细示出了2000Hz的声压值。在此,当2000Hz的声压值为35dB以上时,也能够将该样本判断为不合格品。然而,如果这样做,则有可能将原本是合格品的第五样本错误判断为不合格品。
因此,在本实施例中,如上所述,使用多个频带或AP的声压值来高精度地判断距离L10是否在容许范围内。具体地,除了2000Hz带的声压值之外,也使用AP的声压值来判断距离L10是否在容许范围内。
在图6(C)右侧的图形中,示出了AP的各样本的声压值。参照该图形,在AP中,第四样本和第六样本的声压值示出比其他样本高的值。
在本实施例中,也能够使用一个频带的声压值来判断内管24的形状的好坏,但使用特定频带和AP的声压值来判断内管24的形状的好坏。具体地,利用特定频带即2000Hz和AP的声压值来判断内管24的形状的好坏。即,当2000Hz的声压值为35dB(A)以上且AP的声压值为40dB(A)以上时,判断为,上述距离L10在容许范围外,即,内管24的形状不在容许范围内。另一方面,当2000Hz的声压值为35dB(A)不足或AP的声压值为40dB(A)不足时,判断为,上述距离L10在容许范围内,即,内管24的形状在容许范围内。通过这样做,能够高精度地检查储液器23内部的内管24的形状,从而能够仅将合格品编入到冰箱10中,提高冰箱10的品质。
根据本实施例,能够实现以下记载的主要效果。
根据本发明的储液器的检查方法,能够基于从储液器23内部产生的声音来判断在储液器23内部,内管24的形状是否为容许范围内,将偏离容许范围的储液器23处理为不合格品。因此,无需视觉确认储液器23的内部,就能够判断内管24的好坏,并且能够以低成本且高精度进行内管24的检查。此外,由于根据本实施例的检查方法是所谓的非破坏试验,所以在冰箱10的制造工序中,能够对制造的所有储液器23进行上述的检查,能够提高冰箱10的成品率。
此外,通过从储液器23的制冷剂排出部26向储液器23内部导入气体,能够将气体吹向内管24的上端,从而能够更正确地检查内管24的端部的位置。
此外,通过基于特定频段的声压值来判定内管24的形状的好坏,能够更高精度地感测内管24的形状。
此外,通过基于多个频段的声压值来判定内管24的形状的好坏,能够进一步高精度地感测内管24的形状。
此外,通过将惰性气体导入到储液器23中,能够防止储液器23的内部在检查工序中 氧化。
本发明不限定于上述实施例,在其他情况下,能够在不脱离本发明的主旨的范围内进行各种变更实施。此外,上述各实施例能够相互组合。
例如,参照图4(A),在本实施例中,一边从制冷剂排出部26侧吹送气体,一边收集从储液器23产生的声音,但是,也能够从制冷剂吸入部27侧吹送气体。
此外,在图3所示的储液器的检查方法中,在特定频段和AP中从储液器23产生的声音为预定值以上的情况下,判断为上端中心部31的位置在容许范围外。在此,也能够在包括一个或两个以上频段或AP的从储液器23产生的声音为预定值以上的情况下,判断为上端中心部31的位置在容许范围外。

Claims (10)

  1. 一种储液器的检查方法,是对储液器内部的内管的形状进行检查的检查方法,其特征在于,包括:
    准备所述储液器的步骤,所述储液器具有容器部和内置于所述容器部中的所述内管;
    一边将气体吹送到所述储液器的所述容器部的内部一边测量从所述储液器产生的声音的步骤;以及
    基于从所述储液器产生的所述声音来判定所述内管的形状的质量的步骤。
  2. 根据权利要求1所述的储液器的检查方法,其特征在于,在所述测量的步骤中,
    将所述气体从所述储液器的制冷剂排出部的侧导入到所述储液器的所述容器部的内部。
  3. 根据权利要求1所述的储液器的检查方法,其特征在于,在所述判定的步骤中,
    基于从所述储液器产生的所述声音中的特定频段的声压值来判定所述内管的形状的质量。
  4. 根据权利要求1所述的储液器的检查方法,其特征在于,在所述判定的步骤中,
    基于从所述储液器产生的所述声音中的AP的特定频率和声压值来判定所述内管的形状的质量。
  5. 根据权利要求1所述的储液器的检查方法,其特征在于,在所述判定的步骤中,
    基于从所述储液器产生的所述声音中的多个频段的声压值来判定所述内管的形状的质量。
  6. 根据权利要求5所述的储液器的检查方法,其特征在于,所述步骤“基于从所述储液器产生的所述声音中的多个频段的声压值来判定所述内管的形状的质量”包括:
    当基于从所述储液器产生的所述声音中的特定频段的声压值来判定所述内管的形状的质量为合格时,判断该储液器合格;
    当基于从所述储液器产生的所述声音中的特定频段的声压值来判定所述内管的形状的质量为不合格时,继续下一步;
    当基于从所述储液器产生的所述声音中的AP的声压值来判定所述内管的形状的质量为合格时,判断该储液器合格;
    当基于从所述储液器产生的所述声音中的AP的声压值来判定所述内管的形状的质量为不合格时,判断该储液器不合格。
  7. 根据权利要求1所述的储液器的检查方法,其特征在于,在所述测量的步骤中,
    将惰性气体导入到所述储液器中。
  8. 一种储液器的检查装置,所述储液器具有容器部和内置于所述容器部中的内管,其特征在于,所述检查装置包括:麦克风和运算控制装置,所述麦克风用于在气体吹送到所述储液器的所述容器部的内部时测量从所述储液器产生的声音,所述运算控制装置用于基于从所述储液器产生的所述声音来判定所述内管的形状的质量。
  9. 根据权利要求8所述的储液器的检查装置,其特征在于,所述麦克风配置在所述容 器部的表面或其附近,用于收集向所述容器部内部吹送气体时产生的声音,所述麦克风将示出声压值的信息传送至所述运算控制装置。
  10. 根据权利要求8所述的储液器的检查装置,其特征在于,还包括通知装置,所述通知装置用于通过声音或图像将检查结果通知给操作者,所述检查结果基于所述运算控制装置的运算。
PCT/CN2021/135080 2020-12-08 2021-12-02 储液器的检查方法和检查装置 WO2022121771A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180018840.9A CN115244346B (zh) 2020-12-08 2021-12-02 储液器的检查方法和检查装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020203221A JP2022090739A (ja) 2020-12-08 2020-12-08 アキュムレータの検査方法
JP2020-203221 2020-12-08

Publications (1)

Publication Number Publication Date
WO2022121771A1 true WO2022121771A1 (zh) 2022-06-16

Family

ID=81974187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135080 WO2022121771A1 (zh) 2020-12-08 2021-12-02 储液器的检查方法和检查装置

Country Status (3)

Country Link
JP (1) JP2022090739A (zh)
CN (1) CN115244346B (zh)
WO (1) WO2022121771A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175601A (ja) * 1983-03-22 1984-10-04 Hitachi Ltd 蓄圧器のピストン位置検出方法
CN102889968A (zh) * 2012-10-12 2013-01-23 河海大学常州校区 低浓度六氟化硫气体检测的声学方法及其装置
CN102954635A (zh) * 2012-12-10 2013-03-06 合肥华凌股份有限公司 储液器组件和具有其的蒸发器装置以及制冷设备
CN106765673A (zh) * 2016-11-30 2017-05-31 美的集团武汉制冷设备有限公司 热泵系统及其除霜控制方法
CN106987688A (zh) * 2017-04-18 2017-07-28 上海交通大学 通过声音信号判断淬火裂纹产生的方法及装置
CN109596709A (zh) * 2018-12-19 2019-04-09 张磊 一种固定式压力容器的检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998015789A1 (en) * 1996-10-09 1998-04-16 York International A/S Separator for separating a liquid from a gas
JP2001147059A (ja) * 1999-11-19 2001-05-29 Fujitsu General Ltd 電気冷蔵庫
JP4265982B2 (ja) * 2004-02-25 2009-05-20 三菱電機株式会社 機器診断装置、冷凍サイクル装置、冷凍サイクル監視システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175601A (ja) * 1983-03-22 1984-10-04 Hitachi Ltd 蓄圧器のピストン位置検出方法
CN102889968A (zh) * 2012-10-12 2013-01-23 河海大学常州校区 低浓度六氟化硫气体检测的声学方法及其装置
CN102954635A (zh) * 2012-12-10 2013-03-06 合肥华凌股份有限公司 储液器组件和具有其的蒸发器装置以及制冷设备
CN106765673A (zh) * 2016-11-30 2017-05-31 美的集团武汉制冷设备有限公司 热泵系统及其除霜控制方法
CN106987688A (zh) * 2017-04-18 2017-07-28 上海交通大学 通过声音信号判断淬火裂纹产生的方法及装置
CN109596709A (zh) * 2018-12-19 2019-04-09 张磊 一种固定式压力容器的检测方法

Also Published As

Publication number Publication date
CN115244346B (zh) 2023-05-12
JP2022090739A (ja) 2022-06-20
CN115244346A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
US20120186745A1 (en) Plasma processing apparatus
US20040111239A1 (en) Apparatus and method for detecting faults and providing diagnostics in vapor compression cycle equipment
US20040144106A1 (en) Estimating evaporator airflow in vapor compression cycle cooling equipment
BRPI0713897A2 (pt) mÉtodo e aparelho para testar condicionador de ar
WO2022121771A1 (zh) 储液器的检查方法和检查装置
KR20010092303A (ko) 공냉식 칠러의 응축기 코일 성능 표시 방법 및 장치
Li et al. Virtual refrigerant pressure sensors for use in monitoring and fault diagnosis of vapor-compression equipment
CN111140990A (zh) 一种空调换热器脏堵检验方法和空调器
CN111051841B (zh) 泄漏检查装置及泄漏检查方法
KR101372144B1 (ko) 에어컨의 전자팽창밸브 이상 유무 점검방법
KR20050096343A (ko) 냉장고
JP2006183953A (ja) 冷凍機の測定装置
US7841825B2 (en) Method for predicting surge in compressor
US7630064B2 (en) Prediction method and apparatus for substrate processing apparatus
US3831430A (en) Device for measuring density and dew point of a gas
JPS58218671A (ja) 圧力差ゲ−ジ及び冷凍システム内の非凝縮性ガスの存在の検出方法
US20050109050A1 (en) Refrigerant charge level determination
TWI759757B (zh) 光學特性檢測裝置及其製造方法
CN113701873A (zh) 冷媒流动声检测装置、系统及方法
JPH0493567A (ja) 冷凍機の性能診断装置
JP2015158522A (ja) 差圧式リークテスト装置によるリークテスト方法
US20230048434A1 (en) Environment detection system
JP2005207994A (ja) 内部リーク検査方法
CN114738934B (zh) 一种空调器故障检测方法、检测装置及空调器
KR101718281B1 (ko) 압력 센서, 압력 측정 방법 및 칠러 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902478

Country of ref document: EP

Kind code of ref document: A1