WO2022121435A1 - 电子设备 - Google Patents

电子设备 Download PDF

Info

Publication number
WO2022121435A1
WO2022121435A1 PCT/CN2021/119612 CN2021119612W WO2022121435A1 WO 2022121435 A1 WO2022121435 A1 WO 2022121435A1 CN 2021119612 W CN2021119612 W CN 2021119612W WO 2022121435 A1 WO2022121435 A1 WO 2022121435A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
electronic device
coil
metal coil
conductor structure
Prior art date
Application number
PCT/CN2021/119612
Other languages
English (en)
French (fr)
Inventor
黄武鑫
万小勇
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022121435A1 publication Critical patent/WO2022121435A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • H01Q1/244Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas extendable from a housing along a given path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an electronic device.
  • NFC Near Field Communication
  • the present application provides an electronic device, which can increase the NFC signal radiation area of the electronic device while ensuring the integrity of the metal back shell.
  • This application provides an electronic device, including:
  • the metal rear shell is provided with a camera hole, and the camera hole is used for installing a camera module
  • a near field communication chip comprising a first differential signal terminal and a second differential signal terminal, the first differential signal terminal and the second differential signal terminal are used for providing differential excitation current;
  • the first conductor structure includes a first electrical connection point and a second electrical connection point, the first electrical connection point is electrically connected to the first differential signal terminal;
  • a first metal coil the first metal coil at least partially covers a partial area of the camera hole, the first end of the first metal coil is electrically connected to the second electrical connection point, and the first end of the first metal coil is electrically connected to the second electrical connection point.
  • the second terminal is electrically connected to the second differential signal terminal;
  • the first conductor structure and the first metal coil are used to jointly transmit the differential excitation current.
  • FIG. 1 is a schematic diagram of a first structure of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a rear view of an electronic device provided by an embodiment of the present application.
  • FIG. 3 is a first structural schematic diagram of a casing of an electronic device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a second structure of an electronic device provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a third structure of an electronic device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a fourth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a camera module of an electronic device according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a second structure of a housing of an electronic device provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a fifth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a sixth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a first metal coil of an electronic device provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a seventh structure of an electronic device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a first metal coil, a flexible circuit board, and a radiation field enhancer of an electronic device provided in an embodiment of the present application.
  • FIG. 14 is a schematic diagram of an eighth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a ninth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a tenth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of an eleventh structure of an electronic device provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a twelfth structure of an electronic device provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a first principle of an antenna device of an electronic device provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of a second principle of an antenna device of an electronic device provided by an embodiment of the present application.
  • Embodiments of the present application provide an electronic device.
  • the electronic device may be a smartphone, a tablet computer, etc., or a game device, an AR (Augmented Reality, augmented reality) device, a car device, a data storage device, an audio playback device, a video playback device, a notebook computer, or a desktop computing device. Wait.
  • AR Augmented Reality, augmented reality
  • FIG. 1 is a schematic diagram of a first structure of an electronic device 100 provided by an embodiment of the present application.
  • the electronic device 100 includes a display screen 11 , a housing 12 , a circuit board 13 and a battery 14 .
  • the display screen 11 is disposed on the casing 12 to form a display surface of the electronic device 100 for displaying images, texts and other information.
  • the display screen 11 may include a liquid crystal display (Liquid Crystal Display, LCD) or an organic light-emitting diode (Organic Light-Emitting Diode, OLED) type display screen.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • a cover plate may also be provided on the display screen 11 to protect the display screen 11 and prevent the display screen 11 from being scratched or damaged by water.
  • the cover plate may be a transparent glass cover plate, so that the user can observe the content displayed on the display screen 11 through the cover plate.
  • the cover plate can be a glass cover plate made of sapphire.
  • the housing 12 is used to form the outer contour of the electronic device 100 so as to accommodate the electronic devices, functional components, etc. of the electronic device 100 , and at the same time form a seal and protect the electronic devices and functional components inside the electronic device.
  • functional components such as a circuit board, a battery, a motor, an acceleration sensor, and the like of the electronic device 100 may be arranged inside the housing 12 .
  • the circuit board 13 is provided inside the housing 12 .
  • the circuit board 13 may be the main board of the electronic device 100 .
  • the circuit board 13 may be integrated with one or more functional components such as a processor, an earphone interface, an acceleration sensor, a gyroscope, and a motor.
  • the display screen 11 can be electrically connected to the circuit board 13 to control the display of the display screen 11 by the processor on the circuit board 13 .
  • the battery 14 is provided inside the casing 12 . Meanwhile, the battery 14 is electrically connected to the circuit board 13 , so that the battery 14 supplies power to the electronic device 100 .
  • the circuit board 13 may be provided with a power management circuit. The power management circuit is used to distribute the voltage provided by the battery 14 to the various electronic devices in the electronic device 100 .
  • FIG. 2 is a rear view of the electronic device 100 provided by the embodiments of the present application.
  • the electronic device 100 further includes a camera module 15 .
  • the camera module 15 can be used to realize the photographing function of the electronic device 100 .
  • the camera module 15 can be, for example, a rear camera module, so as to realize the rear camera function of the electronic device 100 .
  • FIG. 3 is a first structural schematic diagram of the housing 12 of the electronic device provided by the embodiment of the present application.
  • the housing 12 includes a metal rear shell 121 and a metal frame 122 .
  • the metal rear case 121 can be used as a rear cover of the electronic device 100 to seal electronic devices or functional components such as the circuit board 13 and the battery 14 inside the electronic device 100 .
  • the material of the metal back shell 121 may include, for example, magnesium alloy, aluminum alloy and other materials.
  • the metal frame 122 surrounds the outer periphery of the electronic device 100 to form a side frame of the electronic device 100 .
  • the material of the metal frame 122 may also include materials such as magnesium alloy, aluminum alloy, and the like.
  • the housing 12 may also include a middle frame.
  • the middle frame can be a thin plate-like or flake-like structure, and can also be a hollow frame structure.
  • the middle frame is used to provide support for the electronic devices or functional components of the electronic device 100 , so as to mount the electronic devices and functional components of the electronic device 100 together.
  • the material of the middle frame may include metal or plastic. It can be understood that, in order to enhance the structural strength of the middle frame, a metal material such as magnesium alloy, aluminum alloy and the like can be selected to form the middle frame.
  • the metal back shell 121 can be connected with the middle frame, for example, can be connected with the middle frame by means of pasting, clipping or the like.
  • the metal frame 122 may surround the periphery of the middle frame, thereby forming the side frame of the electronic device 100 .
  • the metal rear case 121 is provided with a camera hole 1211 .
  • the camera hole 1211 can be used to install the camera module 15, so that the camera module 15 can collect external light through the camera hole 1211, so as to realize the photographing function. It can be understood that the size and shape of the camera hole 1211 can be adapted to the camera module 15 .
  • the electronic device 100 is further provided with an antenna device.
  • the antenna device is used to implement the wireless communication function of the electronic device 100, for example, it can be used to implement the Near Field Communication (Near Field Communication, NFC) function.
  • NFC Near Field Communication
  • FIG. 4 is a schematic diagram of a second structure of the electronic device 100 according to an embodiment of the present application.
  • the electronic device 100 further includes a near field communication chip (Near Field Communication Integrated Circuit, NFC IC) 21 , a first conductor structure 22 and a first metal coil 23 .
  • NFC IC Near Field Communication Integrated Circuit
  • the NFC IC 21 can be used to provide differential excitation current.
  • the differential excitation current includes two current signals. The amplitudes of the two current signals are the same and the phases are opposite, or it is understood that the phases of the two current signals differ by 180 degrees.
  • the differential excitation current is a balanced signal. It is understandable that in the process of transmission, if the analog signal is directly transmitted, it is an unbalanced signal; if the original analog signal is inverted, then the inverted analog signal and the original analog signal are transmitted at the same time, and the inverted analog signal and the original analog signal are transmitted at the same time. The analog signal is called a balanced signal. Compared with unbalanced signals, balanced signals have better anti-interference performance.
  • the NFC IC 21 may be provided on the circuit board 13 of the electronic device 100, or a smaller independent circuit board may also be provided in the electronic device 100, and the NFC IC 21 may be integrated on the independent circuit board.
  • the independent circuit board may be, for example, a flexible circuit board in the electronic device 100 .
  • the NFC IC 21 includes a first differential signal terminal 211 and a second differential signal terminal 212 .
  • the first differential signal terminal 211 may be the positive (+) port of the NFC IC 21
  • the second differential signal terminal 212 may be the negative (-) port of the NFC IC 21.
  • the first differential signal terminal 211 and the second differential signal terminal 212 are used to provide the differential excitation current.
  • the differential excitation current provided by the NFC IC 21 can be output via the first differential signal terminal 211 and returned to the NFC IC 21 via the second differential signal terminal 212, thereby forming a current loop.
  • the first conductor structure 22 may be a metal structure in the electronic device 100 or a structure such as a metal trace on the circuit board 13 .
  • the first conductor structure 22 includes a first electrical connection point 221 and a second electrical connection point 222 .
  • the first electrical connection point 221 is spaced apart from the second electrical connection point 222 .
  • the first electrical connection point 221 and the second electrical connection point 222 can be used to feed the excitation current to the first conductor structure 22 .
  • the first electrical connection point 221 is electrically connected to the first differential signal terminal 211 of the NFC IC 21. Therefore, the first differential signal terminal 211 can feed the differential excitation current to the first conductor structure 22 through the first electrical connection point 221 .
  • the first metal coil 23 may be a coil formed of a metal material such as a wire.
  • the number of turns of the first metal coil 23 may be one or more turns, such as 10 turns, 20 turns, and so on.
  • the first metal coil 23 includes two free ends, namely, a first end 231 and a second end 232 .
  • the first terminal 231 is electrically connected to the second electrical connection point 222 of the first conductor structure 22, and the second terminal 232 is electrically connected to the second differential signal terminal 212 of the NFC IC 21.
  • the NFC IC 21, the first conductor structure 22 and the first metal coil 23 can form a current loop, so that the first conductor structure 22 and the first metal coil 23 can be used to jointly transmit the differential excitation current provided by the NFC IC 21, and send the current to the differential excitation current provided by the NFC IC 21.
  • the first conductor structure 22 and the first metal coil 23 can be used as the NFC antenna of the electronic device 100 to realize the NFC function of the electronic device 100 .
  • the first metal coil 23 and the first conductor structure 22 are arranged at intervals, that is, the first metal coil 23 and the first conductor structure 22 are arranged at different parts of the electronic device 100 .
  • the first conductor structure 22 transmits the differential excitation current, it can radiate the NFC signal to the outside.
  • the first metal coil 23 at least partially covers a partial area of the camera hole 1211 , for example, the first metal coil 23 may partially or completely cover the area of the camera hole 1211 on the side close to the NFC IC 21 . Therefore, when the first metal coil 23 transmits the differential excitation current, the NFC signal can be radiated to the outside through the camera hole 1211 .
  • the camera hole 1211 may be arranged in the center of the metal back shell 121, or may be arranged close to the side of the metal back shell 121, that is, not centrally arranged.
  • the traditional method of arranging the NFC coil around the camera hole cannot achieve good NFC performance, and the structure of the electronic device cannot achieve good NFC performance.
  • the solution of the present application can also provide good NFC performance.
  • FIG. 5 is a third schematic structural diagram of the electronic device 100 provided by the embodiments of the present application.
  • the electronic device 100 also includes a second conductor structure 26 .
  • the second conductor structure 26 may also be a metal structure in the electronic device 100 or a structure such as a metal trace on the circuit board 13 .
  • the second conductor structure 26 includes a third electrical connection point 261 and a fourth electrical connection point 262 .
  • the third electrical connection point 261 is electrically connected to the second terminal 232 of the first metal coil 23, and the fourth electrical connection point 262 is electrically connected to the second differential signal terminal 212 of the NFC IC 21, so that the second terminal 212 of the first metal coil 23 is electrically connected.
  • the terminal 232 is electrically connected to the second differential signal terminal 212 .
  • the differential excitation current provided by the NFC IC 21 can be jointly transmitted through the first conductor structure 22, the first metal coil 23 and the second conductor structure 26, which can effectively increase the transmission path length of the differential excitation current.
  • the coverage of the NFC signal can also be increased, and the area of the NFC card swiping area can be increased.
  • FIG. 6 is a schematic diagram of a fourth structure of the electronic device 100 provided by the embodiments of the present application.
  • the electronic device 100 also includes a second metal coil 27 .
  • the second metal coil 27 may also be a coil formed of a metal material such as a wire.
  • the number of turns of the second metal coil 27 may also be one or more turns.
  • the second metal coil 27 includes two free ends, namely a third end 271 and a fourth end 272 .
  • the third end 271 is electrically connected to the second end 232 of the first metal coil 23
  • the fourth end 272 is electrically connected to the third electrical connection point 261 , so that the third electrical connection point 261 is electrically connected to the second end of the first metal coil 23 232 electrical connections.
  • the differential excitation current provided by the NFC IC 21 can be jointly transmitted through the first conductor structure 22, the first metal coil 23, the second metal coil 27 and the second conductor structure 26, which can further increase the transmission path length of the differential excitation current.
  • the second metal coil 27 at least partially covers a partial area of the camera hole 1211 .
  • the second metal coil 27 may partially or completely cover the area on one side of the camera hole 1211 . Therefore, when the second metal coil 27 transmits the differential excitation current, it can also radiate the NFC signal to the outside through the camera hole 1211 .
  • the first metal coil 23 and the second metal coil 27 cover different areas of the camera hole 1211 respectively.
  • the first metal coil 23 may cover the right area of the camera hole 1211
  • the second metal coil 27 may cover the left area of the camera hole 1211 .
  • the first metal coil 23 and the second metal coil 27 and the second conductor structure 26 jointly transmit the differential excitation current provided by the NFC IC 21, the first metal coil 23 and the second metal coil 23 can be connected to each other.
  • the current direction in the coil 27 is the same, so that the NFC radiation field generated by the first metal coil 23 is in the same direction as the NFC radiation field generated by the second metal coil 27 . Therefore, the NFC radiation field generated by the first metal coil 23 and the NFC radiation field generated by the second metal coil 27 can be superimposed on each other to enhance the NFC field strength at the camera hole 1211, thereby increasing the NFC signal strength.
  • the metal back shell 121 is made of metal material, and the metal material can shield wireless signals such as NFC signals, the NFC signals radiated by the first metal coil 23 cannot be transmitted to the outside through the metal back shell 121 .
  • the NFC signal radiated by the first metal coil 23 can be transmitted to the outside through the camera hole 1211 , which can prevent the NFC signal from being shielded by the metal rear shell 121 . , and can avoid setting additional openings on the metal rear shell 121 to affect the structural strength and aesthetics of the metal rear shell 121 , and can realize the NFC function through the position where the camera hole 1211 is located.
  • the electronic device 100 provided in this embodiment of the present application can radiate NFC signals to the outside through the part where the first conductor structure 22 is located, and can also radiate the NFC signal through the part where the camera hole 1211 is located.
  • Different parts can radiate NFC signals to the outside, so that the NFC signal radiation area of the electronic device 100 can be increased, and there is no need to provide additional openings on the metal rear shell 121 , so that the integrity of the metal rear shell 121 can be ensured.
  • the first conductor structure 22 forms a first near field communication radiation field (first NFC radiation field) when the differential excitation current is transmitted, and the first NFC radiation field may cover a certain space around the electronic device 100 .
  • the first metal coil 23 forms a second near field communication radiation field (second NFC radiation field) when transmitting the differential excitation current, and the second NFC radiation field may also cover a certain space around the electronic device 100 .
  • the second NFC radiation field and the first NFC radiation field at least partially overlap. It can be understood that according to the current direction in the first conductor structure 22 and the current direction in the first metal coil 23, the second NFC radiation field and the first NFC radiation field have components in the same direction.
  • both the range of the NFC radiation field around the electronic device 100 and the NFC field strength in the overlapping area can be enhanced. Therefore, the effective read/write (card swipe) area of the NFC antenna of the electronic device 100 can be increased, and the stability of the NFC antenna of the electronic device 100 during read/write (card swipe) can be improved.
  • the first NFC radiation field formed by the first conductor structure 22 is used as the main radiation field, and the first The second NFC radiation field formed by the metal coil 23 can compensate the main radiation field, so as to compensate the position with weaker field strength in the main radiation field, so as to enhance the field strength of the entire area of the main radiation field.
  • the NFC receiver reads the NFC signal at a position close to the first metal coil 23, that is, when the NFC signal is read at a position close to the camera hole 1211, the second NFC radiation field formed by the first metal coil 23 serves as the main radiation field, the first NFC radiation field formed by the first conductor structure 22 can compensate the main radiation field. Therefore, any position of the NFC radiation field formed by the first conductor structure 22 and the first metal coil 23 can realize the sending and receiving of NFC signals, thereby realizing NFC communication between the electronic device 100 and other electronic devices.
  • FIG. 7 is a schematic structural diagram of a camera module 15 of an electronic device according to an embodiment of the present application.
  • the camera module 15 includes one or more cameras 151 and a non-metallic element 152 .
  • the number of cameras 151 may be, for example, 1, 2, 3, or 4, and so on.
  • the non-metallic element 152 may be, for example, a non-metallic decorative ring, such as a plastic decorative ring, and the non-metallic decorative ring 152 may be disposed on the periphery of one or more cameras 151 .
  • the first metal coil 23 at least partially covers a part of the non-metal element 152 , for example, the first metal coil 23 at least partially covers a part of the non-metal decorative ring. Therefore, when the first metal coil 23 transmits the differential excitation current, the radiated NFC signal can be transmitted to the outside through a part of the covered non-metal element 152 to realize NFC communication between the electronic device 100 and other electronic devices.
  • FIG. 8 is a schematic diagram of a second structure of the housing 12 of the electronic device provided in the embodiments of the present application.
  • metal branches 1221 are formed on the metal frame 122 of the housing 12 , for example, metal branches 1221 of magnesium alloy or aluminum alloy can be formed. Metal branches 1221 may form the first conductor structure 22 . Therefore, the first conductor structure 22 can be formed by the metal frame 122 of the electronic device 100, and there is no need to separately set the first conductor structure or the NFC antenna in the electronic device 100, so the multiplexing of the metal frame 122 can be realized, and the design of the NFC antenna can be simplified. .
  • a first slit 1222 and a second slit 1223 may be provided at intervals on the metal frame 122 , and both the first slit 1222 and the second slit 1223 penetrate through the metal frame 122 .
  • the metal branch 1221 may be formed between the first slit 1222 and the second slit 1223 .
  • FIG. 9 is a schematic diagram of a fifth structure of the electronic device 100 according to an embodiment of the present application.
  • the number of turns of the first metal coil 23 is one turn, and the first metal coil 23 can be understood as an unclosed coil. At this time, there is no overlapping portion between the two ends of the first metal coil 23 .
  • the circle of the first metal coil 23 covers a partial area of the camera hole 1211 .
  • the first metal coil 23 may be a linear section of wire or a section of printed circuit.
  • the current direction may be the direction shown by the arrow in FIG. 9 .
  • the current flowing in the first metal coil 23 may be denoted as I 1 , and the direction of I 1 flows from the first conductor structure 22 to the NFC IC 21 via the first metal coil 23 .
  • the first metal coil 23 when the number of turns of the first metal coil 23 is one turn, the first metal coil 23 can be distributed in the non-metallic area as much as possible, and the diameter of the wire of the first metal coil 23 may or may not carry the first metal coil.
  • the flexible circuit board 23 can be set as wide as possible to enhance the current strength, thereby enhancing the field strength of the NFC radiation field generated by the first metal coil 23, so as to enhance the NFC signal strength.
  • FIG. 10 is a schematic diagram of the sixth structure of the electronic device 100 provided by the embodiment of the application
  • FIG. 11 is the first metal coil 23 of the electronic device provided by the embodiment of the application. Schematic diagram of the structure.
  • the number of turns of the first metal coil 23 is multiple turns, for example, 10 turns, 20 turns, and the like.
  • the first metal coil 23 can be understood as a closed coil, and in this case, there is an overlapping portion between two ends of the first metal coil 23 .
  • a first coil part 233 and a second coil part 234 are formed by multiple turns of the first metal coil 23 , and each coil in the first coil part 233 is connected end to end in turn with each coil in the second coil part 234 .
  • the first coil part 233 covers a partial area of the camera hole 1211
  • the second coil part 234 covers a partial area of the metal rear case 121 .
  • the first coil part 233 and the second coil part 234 both pass current.
  • the current flowing in the first coil portion 233 is referred to as I 1
  • the current flowing in the second coil portion 234 is referred to as I 2 .
  • the direction of the current I 1 in the first coil part 233 is opposite to the direction of the current I 2 in the second coil part 234 .
  • the direction of the current I 1 is from the first conductor structure 22 towards the first metal coil 23
  • the direction of the current I 2 is from the first metal coil 23 towards the first conductor structure 22 .
  • the second coil part 234 covers part of the area of the metal rear case 121 , that is, the distance between the second coil part 234 and the covered part of the metal rear case 121 is very close, so the flow through the second coil part 234
  • the part of the metal back shell 121 covered by the second coil part 234 will generate an induced current, such as an eddy current, under the action of the current I 2 , and the induced current can be denoted as I 3 .
  • the direction of the induced current I3 is opposite to the direction of the current I2 flowing in the second coil part 234 , so the direction of the induced current I3 is the same as the direction of the current I1 flowing in the first coil part 233 .
  • the NFC signal When the first coil part 233 transmits the differential excitation current, the NFC signal is radiated outward, thereby generating an NFC radiation field, such as a third NFC radiation field, which can cover a certain space around the electronic device 100 .
  • the induced current I3 When the induced current I3 is transmitted from the partial area of the metal back shell 121 covered by the second coil part 234, the partial area will also radiate NFC signals outward, thereby generating an NFC radiation field, such as the fourth NFC radiation field, the fourth NFC radiation
  • the field may also cover an area of a certain space around the electronic device 100 . Wherein, the fourth NFC radiation field and the third NFC radiation field at least partially overlap.
  • the direction of the induced current I3 is the same as the direction of the current I1 flowing in the first coil part 233
  • the direction of the fourth NFC radiation field is the same as the direction of the third NFC radiation field. Therefore, the fourth NFC radiation field and the third NFC radiation field may overlap each other, thereby further enhancing the range of the NFC radiation field around the electronic device 100 and enhancing the NFC field strength in the overlapping area. Therefore, the effective read/write (card swipe) area of the NFC antenna of the electronic device 100 can be further increased, and the stability of the NFC antenna of the electronic device 100 during read/write (card swipe) can be improved.
  • FIG. 12 is a seventh structural schematic diagram of the electronic device 100 provided by the embodiments of the present application.
  • the electronic device 100 further includes a flexible printed circuit (Flexible Printed Circuit, FPC) 241 .
  • the FPC 241 is electrically connected to the circuit board 13 .
  • the FPC 241 may be, for example, the FPC of the display screen, the FPC of the camera, the FPC of the motor, etc., or the FPC 241 may be an independent FPC for realizing the NFC antenna function.
  • the FPC 241 can be fixed in the housing of the electronic device 100 .
  • the FPC 241 is provided with metal traces, and the metal traces are used to transmit signals, such as the control signals of the display screen, the control signals of the camera, the control signals of the motor, and the like.
  • the metal traces on the FPC 241 form the first metal coil 23 . Therefore, the first metal coil 23 can be formed by the metal wiring on the existing FPC in the electronic device 100, without the need to separately set the first metal coil, and the function multiplexing of the FPC can be realized, so the design of the NFC antenna can be further simplified .
  • FIG. 13 is a schematic structural diagram of the first metal coil 23 , the flexible circuit board 241 , and the radiation field enhancer 242 of the electronic device provided in the embodiments of the present application.
  • the electronic device 100 also includes a radiation field enhancer 242 .
  • the material of the radiation field enhancer 242 may include insulating material.
  • the radiation field enhancer 242 may include a ferrite layer.
  • the ferrite layer is formed of a ferrite material, and the ferrite material may be a nickel-copper-zinc-based material having predetermined contents of iron oxide, copper oxide, zinc oxide, and nickel oxide.
  • the ferrite material may also include some auxiliary materials, such as bismuth oxide, silicon oxide, magnesium oxide, cobalt oxide and other materials with a specified content.
  • the radiation field enhancer 242 may be used to enhance the intensity of the NFC radiation field.
  • the radiation field enhancer 242 is arranged on one side of the FPC 241, for example, on the side where the FPC 241 radiates the NFC signal to the outside world, and the radiation field enhancer 242 is in contact with the FPC 241.
  • the radiation field enhancer 242 can be used to enhance the intensity of the NFC radiation field generated when the first metal coil 23 transmits the differential excitation current, thereby increasing the intensity of the NFC signal radiated to the outside by the first metal coil 23, thereby improving the performance of the NFC antenna.
  • FIG. 14 is a schematic diagram of an eighth structure of the electronic device 100 provided by the embodiments of the present application.
  • Ground plane 251 is used to form a common ground.
  • the ground plane 251 may be formed by a conductor, a printed circuit, or a metal printed layer in the electronic device 100 .
  • the ground plane 251 may be provided on the circuit board 13 of the electronic device 100 .
  • the ground plane 251 may also be formed by a middle frame made of metal material.
  • the metal connector 252 may be a rib formed of a metal material such as magnesium alloy, aluminum alloy, or the like.
  • the first conductor structure 22 further includes a grounding point 223 , and the grounding point 223 is used to realize the grounding of the first conductor structure 22 .
  • the ground point 223 is located between the first electrical connection point 221 and the second electrical connection point 222 . It can be understood that when the first conductor structure 22 is grounded, the intensity of the NFC signal radiated by the first conductor structure 22 can be enhanced, thereby enhancing the performance of the NFC antenna.
  • the ground point 223 is connected to the ground plane 251 through the metal connector 252 to realize the grounding of the first conductor structure 22 .
  • the ground plane 251 may be a middle frame
  • the first conductor structure 22 may be a metal branch formed on the metal frame 122
  • the metal connector 252 may be a rib formed between the middle frame and the metal frame 122
  • the grounding of the first conductor structure 22 can be realized by the ribs
  • the connection stability between the middle frame and the metal frame 122 can be enhanced by the ribs.
  • FIG. 15 is a schematic diagram of a ninth structure of the electronic device 100 provided by the embodiments of the present application.
  • the metal connecting piece 252 is provided with a slit 2521 , and the metal connecting piece 252 is divided into two parts, namely a first part 2522 and a second part 2523 , through the slit 2521 .
  • the first part 2522 can supply the current on the first conductor structure 22 back to ground
  • the second part 2523 can supply the current back to the ground and then return to the first conductor structure 22 .
  • the current returning to the ground on the first part 2522 is greater than the current returning to the first conductor structure 22 from the second part 2523 .
  • the metal connector 252 is divided into a first part 2522 and a second part 2523 by the gap 2521, the second part 2523 can make the current returning to the ground return to the first conductor structure 22, so the final return can be reduced.
  • the magnitude of the ground current that is, the current loss of the first conductor structure 22 when transmitting the differential excitation current can be reduced, so the field strength of the NFC radiation field generated by the first conductor structure 22 when transmitting the differential excitation current can be increased, thereby enhancing the NFC signal strength.
  • FIG. 16 is a schematic diagram of a tenth structure of the electronic device 100 according to an embodiment of the present application.
  • the electronic device 100 also includes a non-near field communication chip IC1.
  • IC1 may be one of a cellular communication chip, a Wi-Fi (Wireless Fidelity, wireless fidelity) chip, a GPS (Global Positioning System, global positioning system) chip, and a BT (Bluetooth, Bluetooth) chip.
  • IC1 is used to provide non-NFC excitation current.
  • the non-near field communication excitation current may be one of cellular communication excitation current, Wi-Fi communication excitation current, GPS communication excitation current, and BT communication excitation current.
  • the non-near field communication chip IC1 may be disposed on the circuit board 13 of the electronic device 100 , or may also be integrated on an independent circuit board in the electronic device 100 .
  • the first conductor structure 22 also includes a fifth electrical connection point 224 .
  • the fifth electrical connection point 224 can also be used to feed the excitation current to the first conductor structure 22 .
  • the fifth electrical connection point 224 may be disposed between the first electrical connection point 221 and the second electrical connection point 222 .
  • the fifth electrical connection point 224 is electrically connected to the non-near field communication chip IC1.
  • the non-near field communication chip IC1 can feed the non-near field communication excitation current to the first conductor structure 22 through the fifth electrical connection point 224 .
  • the first conductor structure 22 can also be used to transmit the non-near field communication excitation current and radiate the corresponding wireless signal outward to realize the corresponding communication function.
  • the non-near field communication chip IC1 and the NFC IC 21 can realize the multiplexing of the first conductor structure 22, so that the first conductor structure 22 can realize the functions of two antennas at the same time, so that the number of antennas in the electronic device 100 can be reduced, The overall antenna design of the electronic device 100 is facilitated.
  • FIG. 17 is a schematic diagram of an eleventh structure of an electronic device 100 according to an embodiment of the present application.
  • the electronic device 100 further includes a first matching circuit M1 and a second matching circuit M2.
  • the matching circuit may also be called a matching network, a tuning circuit, a tuning network, and the like. It can be understood that both the first matching circuit M1 and the second matching circuit M2 may include a circuit formed by a series or parallel connection of capacitors and inductors.
  • the NFC IC 21 is electrically connected to the first conductor structure 22 and the first metal coil 23 through the first matching circuit M1.
  • the first electrical connection point 221 of the first conductor structure 22 is electrically connected to the first differential signal terminal 211 of the NFC IC 21 through the first matching circuit M1.
  • the second end 232 of the first metal coil 23 is electrically connected to the second differential signal end 212 of the NFC IC 21 through the first matching circuit M1.
  • the first matching circuit M1 is used to match the impedances of the first conductor structure 22 and the first metal coil 23 when they transmit differential excitation currents.
  • the first matching circuit M1 includes a first input terminal P1, a second input terminal P2, a first output terminal P3, and a second output terminal P4.
  • the first input terminal P1 is electrically connected to the first differential signal terminal 211 .
  • the second input terminal P2 is electrically connected to the second differential signal terminal 212 .
  • the first output terminal P3 is electrically connected to the first electrical connection point 221 of the first conductor structure 22 .
  • the second output terminal P4 is electrically connected to the second terminal 232 of the first metal coil 23 .
  • the fifth electrical connection point 224 of the first conductor structure 22 is electrically connected to the non-near field communication chip IC1 through the second matching circuit M2.
  • the second matching circuit M2 is used to match the impedance when the first conductor structure 22 transmits the excitation current for non-near field communication.
  • FIG. 18 is a schematic diagram of a twelfth structure of the electronic device 100 provided by the embodiments of the present application.
  • the electronic device 100 further includes a first filter circuit LC1, a second filter circuit LC2, and a third filter circuit LC3.
  • the filter circuit can also be called a filter network. It can be understood that, the first filter circuit LC1 , the second filter circuit LC2 and the third filter circuit LC3 may all include circuits composed of capacitors and inductors in series or in parallel.
  • the first filter circuit LC1 is disposed between the first differential signal terminal 211 and the first input terminal P1.
  • the first filter circuit LC1 is used to filter out the first interference signal between the first differential signal terminal 211 and the first input terminal P1.
  • the first interference signal is an electrical signal other than the differential excitation current provided by the NFC IC 21 .
  • the second filter circuit LC2 is disposed between the second differential signal terminal 212 and the second input terminal P2.
  • the second filter circuit LC2 is used to filter out the second interference signal between the second differential signal terminal 212 and the second input terminal P2.
  • the second interference signal is an electrical signal other than the differential excitation current provided by the NFC IC 21 .
  • the third filter circuit LC3 is provided between the non-near field communication chip IC1 and the second matching circuit M2.
  • the third filter circuit LC3 is used to filter the third interference signal between the non-near field communication chip IC1 and the second matching circuit M2.
  • the third interference signal is an electrical signal other than the non-near field communication excitation current provided by the non-near field communication chip IC1.
  • FIG. 19 is a schematic diagram of the first principle of the antenna apparatus of the electronic device 100 according to the embodiment of the present application.
  • the first matching circuit M1 may include, for example, capacitors C1 , C2 , C3 , C4 , C5 and C6 .
  • the capacitor C1 is connected in series with the first differential signal terminal 211 of the NFC IC 21, and the capacitor C2 is connected in series with the second differential signal terminal 212 of the NFC IC 21.
  • the capacitor C3 is connected in series with the capacitor C4, and is connected in parallel with the NFC IC 21 after being connected in series, and the capacitor C3 and the capacitor C4 are grounded.
  • the capacitor C5 is connected in series with the capacitor C6, and is connected in parallel with the NFC IC 21 after being connected in series, and the capacitor C5 and the capacitor C6 are grounded. It can be understood that the capacitance values of the capacitors C1, C2, C3, C4, C5, and C6 can be set according to actual needs.
  • the first filter circuit LC1 may include, for example, an inductor L1 and a capacitor C7.
  • the inductor L1 is connected in series between the first differential signal terminal 211 and the first matching circuit M1, and the capacitor C7 is connected in parallel with the NFC IC 21 and grounded. It can be understood that the inductance value of the inductor L1 and the capacitance value of the capacitor C7 can be set according to actual needs.
  • the second filter circuit LC2 may include, for example, an inductor L2 and a capacitor C8.
  • the inductor L2 is connected in series between the second differential signal terminal 212 and the first matching circuit M1, and the capacitor C8 is connected in parallel with the NFC IC 21 and grounded. It can be understood that the inductance value of the inductor L2 and the capacitance value of the capacitor C8 can be set according to actual needs.
  • the second matching circuit M2 may include capacitors C9 and C10, for example.
  • the capacitor C9 is connected in series between the fifth electrical connection point 224 of the first conductor structure 22 and the non-near field communication chip IC1, and the capacitor C10 is connected in parallel with the non-near field communication chip IC1 and grounded. It can be understood that the capacitance values of the capacitors C9 and C10 can be set according to actual needs.
  • the third filter circuit LC3 may include, for example, an inductor L3 and a capacitor C11.
  • the inductor L3 is connected in series between the non-near field communication chip IC1 and the second matching circuit M2, and the capacitor C11 is connected in parallel with the non-near field communication chip IC1 and grounded. It can be understood that the inductance value of the inductor L3 and the capacitance value of the capacitor C11 can be set according to actual needs.
  • FIG. 20 is a schematic diagram of the second principle of the antenna apparatus of the electronic device 100 according to the embodiment of the present application.
  • the first matching circuit M1 only includes capacitors C1, C2, C3, and C5.
  • the capacitor C1 is connected in series with the first differential signal terminal 211 of the NFC IC 21, and the capacitor C2 is connected in series with the second differential signal terminal 212 of the NFC IC 21.
  • the capacitor C3 is connected in parallel with the NFC IC 21, and the capacitor C5 is also connected in parallel with the NFC IC 21. It can be understood that the capacitance values of the capacitors C1, C2, C3, and C5 can be set according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

一种电子设备,包括:金属后壳,金属后壳上设置有摄像头孔,摄像头孔用于安装摄像头模组;近场通信芯片,用于提供差分激励电流;第一导体结构;第一金属线圈,至少部分覆盖摄像头孔的部分区域;第一导体结构和第一金属线圈用于共同传输差分激励电流。

Description

电子设备
本申请要求于2020年12月07日提交中国专利局、申请号为202011437225.5、发明名称为“电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种电子设备。
背景技术
随着通信技术的发展,诸如智能手机等电子设备能够实现的功能越来越多,电子设备的通信模式也更加多样化。例如,近来电子设备逐渐可以实现近场通信(Near Field Communication,NFC)功能。
发明内容
本申请提供一种电子设备,可以增大电子设备的NFC信号辐射面积,同时保证金属后壳的完整性。
本申请提供一种电子设备,包括:
金属后壳,所述金属后壳上设置有摄像头孔,所述摄像头孔用于安装摄像头模组;
近场通信芯片,包括第一差分信号端和第二差分信号端,所述第一差分信号端和所述第二差分信号端用于提供差分激励电流;
第一导体结构,所述第一导体结构包括第一电连接点和第二电连接点,所述第一电连接点与所述第一差分信号端电连接;
第一金属线圈,所述第一金属线圈至少部分覆盖所述摄像头孔的部分区域,所述第一金属线圈的第一端与所述第二电连接点电连接,所述第一金属线圈的第二端与所述第二差分信号端电连接;
其中,所述第一导体结构和所述第一金属线圈用于共同传输所述差分激励电流。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的电子设备的第一种结构示意图。
图2为本申请实施例提供的电子设备的后视图。
图3为本申请实施例提供的电子设备的壳体的第一种结构示意图。
图4为本申请实施例提供的电子设备的第二种结构示意图。
图5为本申请实施例提供的电子设备的第三种结构示意图。
图6为本申请实施例提供的电子设备的第四种结构示意图。
图7为本申请实施例提供的电子设备的摄像头模组的结构示意图。
图8为本申请实施例提供的电子设备的壳体的第二种结构示意图。
图9为本申请实施例提供的电子设备的第五种结构示意图。
图10为本申请实施例提供的电子设备的第六种结构示意图。
图11为本申请实施例提供的电子设备的第一金属线圈的结构示意图。
图12为本申请实施例提供的电子设备的第七种结构示意图。
图13为本申请实施例提供的电子设备的第一金属线圈、柔性电路板以及辐射场增强体的结构示意图。
图14为本申请实施例提供的电子设备的第八种结构示意图。
图15为本申请实施例提供的电子设备的第九种结构示意图。
图16为本申请实施例提供的电子设备的第十种结构示意图。
图17为本申请实施例提供的电子设备的第十一种结构示意图。
图18为本申请实施例提供的电子设备的第十二种结构示意图。
图19为本申请实施例提供的电子设备的天线装置的第一种原理示意图。
图20为本申请实施例提供的电子设备的天线装置的第二种原理示意图。
具体实施方式
下面将结合本申请实施例中的附图1至20,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种电子设备。该电子设备可以是智能手机、平板电脑等设备,还可以是游戏设备、AR(Augmented Reality,增强现实)设备、汽车装置、数据存储装置、音频播放装置、视频播放装置、笔记本电脑、桌面计算设备等。
参考图1,图1为本申请实施例提供的电子设备100的第一种结构示意图。
电子设备100包括显示屏11、壳体12、电路板13以及电池14。
其中,显示屏11设置在壳体12上,以形成电子设备100的显示面,用于显示图像、文本等信息。显示屏11可以包括液晶显示屏(Liquid Crystal Display,LCD)或有机发光二极管显示屏(Organic Light-Emitting Diode,OLED)等类型的显示屏。
可以理解的,显示屏11上还可以设置盖板,以对显示屏11进行保护,防止显示屏11被刮伤或者被水损坏。其中,盖板可以为透明玻璃盖板,从而用户可以透过盖板观察到显示屏11显示的内容。例如,盖板可以为蓝宝石材质的玻璃盖板。
壳体12用于形成电子设备100的外部轮廓,以便于容纳电子设备100的电子器件、功能组件等,同时对电子设备内部的电子器件和功能组件形成密封和保护作用。例如,电子设备100的电路板、电池、马达、加速度传感器等功能组件都可以设置在壳体12内部。
电路板13设置在壳体12内部。其中,电路板13可以为电子设备100的主板。电路板13上可以集成有处理器、耳机接口、加速度传感器、陀螺仪、马达等功能组件中的一个或多个。同时,显示屏11可以电连接至电路板13,以通过电路板13上的处理器对显示屏11的显示进行控制。
电池14设置在壳体12内部。同时,电池14电连接至电路板13,以实现电池14为电子设备100供电。其中,电路板13上可以设置有电源管理电路。电源管理电路用于将电池14提供的电压分配到电子设备100中的各个电子器件。
在一些实施例中,参考图2,图2为本申请实施例提供的电子设备100的后视图。
其中,电子设备100还包括摄像头模组15。摄像头模组15可以用于实现电子设备100 的拍照功能。摄像头模组15例如可以为后置摄像头模组,以实现电子设备100的后置拍照功能。
在一些实施例中,同时参考图3,图3为本申请实施例提供的电子设备的壳体12的第一种结构示意图。其中,壳体12包括金属后壳121和金属边框122。
金属后壳121可以作为电子设备100的后盖,用于将诸如电路板13、电池14等电子器件或功能组件密封在电子设备100内部。金属后壳121的材质例如可以包括镁合金、铝合金等材质。
金属边框122围设在电子设备100的外部周缘,从而形成电子设备100的侧边框。金属边框122的材质也可以包括诸如镁合金、铝合金等材质。
可以理解的,壳体12还可以包括中框。中框可以为薄板状或薄片状的结构,也可以为中空的框体结构。中框用于为电子设备100的电子器件或功能组件提供支撑作用,以将电子设备100的电子器件、功能组件安装到一起。其中,中框的材质可以包括金属或塑胶等。可以理解的,为了增强中框的结构强度,可以选择诸如镁合金、铝合金等金属材质形成中框。金属后壳121可以与中框连接,例如可以通过粘贴、卡接等方式与中框连接。金属边框122可以围设在中框的周缘,从而形成电子设备100的侧边框。
在一些实施例中,金属后壳121上设置有摄像头孔1211。摄像头孔1211可以用于安装摄像头模组15,以使得摄像头模组15可以经由该摄像头孔1211采集外部光线,从而实现拍照功能。可以理解的,摄像头孔1211的大小、形状可以与摄像头模组15相适配。
在一些实施例中,电子设备100中还设置有天线装置。天线装置用于实现电子设备100的无线通信功能,例如可以用于实现近场通信(Near Field Communication,NFC)功能。以下从天线装置集成在电子设备100中的多种实现方式进行说明。
参考图4,图4为本申请实施例提供的电子设备100的第二种结构示意图。
电子设备100还包括近场通信芯片(Near Field Communication Integrated Circuit,NFC IC)21、第一导体结构22以及第一金属线圈23。
其中,NFC IC 21可以用于提供差分激励电流。该差分激励电流包括两个电流信号。两个电流信号的振幅相同,并且相位相反,或者理解为该两个电流信号的相位相差180度。此外,该差分激励电流为平衡信号。可以理解的,模拟信号在传输过程中,如果被直接传送就是非平衡信号;如果把原始的模拟信号反相,然后同时传送反相的模拟信号和原始的模拟信号,反相的模拟信号和原始的模拟信号就叫做平衡信号。相较于非平衡信号而言,平衡信号的抗干扰性能更好。
NFC IC 21可以设置在电子设备100的电路板13上,或者也可以在电子设备100中设置一个较小的独立电路板,并将NFC IC 21集成到该独立电路板上。该独立电路板例如可以为电子设备100中的柔性电路板。
NFC IC 21包括第一差分信号端211和第二差分信号端212。例如,第一差分信号端211可以为NFC IC 21的正(+)端口,第二差分信号端212可以为NFC IC 21的负(-)端口。第一差分信号端211和第二差分信号端212用于提供该差分激励电流。例如,NFC IC 21提供的差分激励电流可以经由第一差分信号端211输出,并经由第二差分信号端212回流到NFC IC 21中,从而形成电流回路。
在本申请实施例的描述中,需要理解的是,诸如“第一”、“第二”等术语仅用于区分类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
第一导体结构22可以为电子设备100中的金属结构或者电路板13上的金属走线等结构。其中,第一导体结构22包括第一电连接点221和第二电连接点222。第一电连接点221与第二电连接点222间隔设置。第一电连接点221和第二电连接点222可以用于向第一导体结构22馈入激励电流。其中,第一电连接点221与NFC IC 21的第一差分信号端211电连接。从而,第一差分信号端211可以通过第一电连接点221向第一导体结构22馈入差分激励电流。
第一金属线圈23可以为诸如导线等金属材质形成的线圈。第一金属线圈23的圈数可以为一圈或多圈,例如10圈、20圈等等。其中,第一金属线圈23包括两个自由端,即第一端231和第二端232。第一端231与第一导体结构22的第二电连接点222电连接,第二端232与NFC IC 21的第二差分信号端212电连接。
从而,NFC IC 21、第一导体结构22以及第一金属线圈23可以形成电流回路,使得第一导体结构22和第一金属线圈23可以用于共同传输NFC IC 21提供的差分激励电流,并向外辐射NFC信号。因此,第一导体结构22和第一金属线圈23可以作为电子设备100的NFC天线,实现电子设备100的NFC功能。
其中,第一金属线圈23与第一导体结构22间隔设置,也即第一金属线圈23与第一导体结构22设置在电子设备100的不同部位。第一导体结构22在传输差分激励电流时,可以向外界辐射NFC信号。第一金属线圈23至少部分覆盖摄像头孔1211的部分区域,例如第一金属线圈23可以部分或者全部覆盖摄像头孔1211靠近NFC IC 21一侧的区域。从而,第一金属线圈23在传输差分激励电流时,可以通过摄像头孔1211向外界辐射NFC信号。
本申请实施例中,摄像头孔1211在金属后壳121上既可以居中设置,也可以靠近金属后壳121的侧边设置,也即不居中设置。当摄像头孔1211在金属后壳121上非居中设置时,例如靠近金属后壳121的侧边设置时,传统的环绕摄像头孔设置NFC线圈的方式无法实现良好的NFC性能,并且在电子设备的结构堆叠上也无法提供足够的空间供NFC线圈走线,而通过本申请的方案可以很好地解决这些问题。此外,当摄像头孔1211在金属后壳121上居中设置时,本申请的方案同样可以提供良好的NFC性能。
在一些实施例中,参考图5,图5为本申请实施例提供的电子设备100的第三种结构示意图。
电子设备100还包括第二导体结构26。第二导体结构26也可以为电子设备100中的金属结构或者电路板13上的金属走线等结构。
其中,第二导体结构26包括第三电连接点261和第四电连接点262。第三电连接点261与第一金属线圈23的第二端232电连接,第四电连接点262与NFC IC 21的第二差分信号端212电连接,以使第一金属线圈23的第二端232与第二差分信号端212电连接。
因此,可以通过第一导体结构22、第一金属线圈23以及第二导体结构26共同传输NFC IC 21提供的差分激励电流,能够有效增加差分激励电流的传输路径长度。此外,由于第一导体结构22、第二导体结构26可以形成在电子设备中的不同位置,因此也可以增加NFC信号的覆盖范围,增加NFC刷卡区域面积。
在一些实施例中,参考图6,图6为本申请实施例提供的电子设备100的第四种结构示意图。
电子设备100还包括第二金属线圈27。第二金属线圈27也可以为诸如导线等金属材质形成的线圈。第二金属线圈27的圈数也可以为一圈或多圈。
第二金属线圈27包括两个自由端,即第三端271和第四端272。第三端271与第一金属线圈23的第二端232电连接,第四端272与第三电连接点261电连接,以使第三电连接点261与第一金属线圈23的第二端232电连接。
因此,可以通过第一导体结构22、第一金属线圈23、第二金属线圈27以及第二导体结构26共同传输NFC IC 21提供的差分激励电流,可以进一步增加差分激励电流的传输路径长度。
其中,第二金属线圈27至少部分覆盖摄像头孔1211的部分区域。例如,第二金属线圈27可以部分或者全部覆盖摄像头孔1211一侧的区域。因此,第二金属线圈27在传输差分激励电流时,也可以通过摄像头孔1211向外界辐射NFC信号。
在实际应用中,第一金属线圈23、第二金属线圈27分别覆盖摄像头孔1211的不同区域。例如,第一金属线圈23可以覆盖摄像头孔1211的右侧区域,第二金属线圈27可以覆盖摄像头孔1211的左侧区域。
可以理解的,第一导体结构22、第一金属线圈23、第二金属线圈27以及第二导体结构26共同传输NFC IC 21提供的差分激励电流时,可以使第一金属线圈23与第二金属线圈27中的电流方向相同,以使第一金属线圈23产生的NFC辐射场与第二金属线圈27产生的NFC辐射场的方向相同。因此,第一金属线圈23产生的NFC辐射场与第二金属线圈27产生的NFC辐射场可以互相叠加,以增强摄像头孔1211处的NFC场强,从而提高NFC信号强度。
可以理解的,由于金属后壳121为金属材质,而金属材质会对无线信号诸如NFC信号形成屏蔽作用,因此第一金属线圈23辐射的NFC信号无法透过金属后壳121传输到外界。同时,由于金属后壳121上需要设置摄像头孔1211来安装摄像头模组15,因此第一金属线圈23辐射的NFC信号可以通过摄像头孔1211传输到外界,既能够避免NFC信号被金属后壳121屏蔽,又能够避免在金属后壳121上设置额外的开孔而影响金属后壳121的结构强度和美观性,并且能够通过摄像头孔1211所在的部位实现NFC功能。
因此,本申请实施例提供的电子设备100,既可以通过第一导体结构22所在的部位向外辐射NFC信号,又能够通过摄像头孔1211所在的部位向外辐射NFC信号,因此通过电子设备100的不同部位都能够向外辐射NFC信号,从而可以增大电子设备100的NFC信号辐射面积,并且无需在金属后壳121上设置额外的开孔,从而可以保证金属后壳121的完整性。
可以理解的,第一导体结构22在传输差分激励电流时形成第一近场通信辐射场(第一NFC辐射场),第一NFC辐射场可以覆盖电子设备100周围一定空间的区域。第一金属线圈23在传输差分激励电流时形成第二近场通信辐射场(第二NFC辐射场),第二NFC辐射场也可以覆盖电子设备100周围一定空间的区域。其中,第二NFC辐射场与第一NFC辐射场至少部分重叠。可以理解的,根据第一导体结构22中的电流方向和第一金属线圈 23中的电流方向可知,第二NFC辐射场与第一NFC辐射场存在方向相同的分量。因此,既可以增强电子设备100周围的NFC辐射场的范围,又可以增强重叠区域的NFC场强。从而,既可以增加电子设备100的NFC天线有效读写(刷卡)面积,又可以提高电子设备100的NFC天线在读写(刷卡)时的稳定性。
例如,在实际应用中,当NFC接收机(例如地铁刷卡机)靠近第一导体结构22的位置读取NFC信号时,第一导体结构22形成的第一NFC辐射场作为主辐射场,第一金属线圈23形成的第二NFC辐射场可以对主辐射场进行补偿,从而可以对主辐射场中场强较弱的位置进行补偿,以增强主辐射场整个区域的场强。同样的,当NFC接收机靠近第一金属线圈23的位置读取NFC信号时,也即靠近摄像头孔1211的位置读取NFC信号时,第一金属线圈23形成的第二NFC辐射场作为主辐射场,第一导体结构22形成的第一NFC辐射场可以对主辐射场进行补偿。因此,第一导体结构22和第一金属线圈23形成的NFC辐射场的任意位置都可以实现NFC信号的收发,从而实现电子设备100与其它电子设备之间的NFC通信。
在一些实施例中,参考图7,图7为本申请实施例提供的电子设备的摄像头模组15的结构示意图。
摄像头模组15包括一个或多个摄像头151以及非金属元件152。摄像头151的数量例如可以为1个、2个、3个或者4个,等等。非金属元件152例如可以为非金属装饰圈,例如塑胶装饰圈,非金属装饰圈152可以设置在一个或多个摄像头151的周缘。
其中,第一金属线圈23至少部分覆盖非金属元件152的一部分,例如第一金属线圈23至少部分覆盖非金属装饰圈的一部分。从而,第一金属线圈23在传输差分激励电流时,辐射的NFC信号可以通过所覆盖的非金属元件152的一部分向外界传输,以实现电子设备100与其它电子设备之间的NFC通信。
在一些实施例中,参考图8,图8为本申请实施例提供的电子设备的壳体12的第二种结构示意图。
其中,壳体12的金属边框122上形成有金属枝节1221,例如可以形成镁合金或铝合金的金属枝节1221。金属枝节1221可以形成该第一导体结构22。从而,通过电子设备100的金属边框122即可形成第一导体结构22,无需在电子设备100中单独设置第一导体结构或NFC天线,因此可以实现金属边框122的复用,简化NFC天线的设计。
例如,在一些实施例中,可以在金属边框122上间隔设置第一缝隙1222和第二缝隙1223,第一缝隙1222和第二缝隙1223均贯穿金属边框122。从而,金属枝节1221可以形成在第一缝隙1222和第二缝隙1223之间。
在一些实施例中,参考图9,图9为本申请实施例提供的电子设备100的第五种结构示意图。
其中,第一金属线圈23的圈数为一圈,第一金属线圈23可以理解为未封闭的线圈,此时第一金属线圈23的两端之间没有重叠部分。该一圈第一金属线圈23覆盖摄像头孔1211的部分区域。例如,实际应用中,第一金属线圈23可以为直线型的一段导线或者一段印刷线路。
NFC IC 21、第一导体结构22以及第一金属线圈23形成电流回路时,电流方向可以为 如图9中的箭头所示方向。其中,第一金属线圈23中流过的电流可以记为I 1,I 1的方向由第一导体结构22经由第一金属线圈23流向NFC IC 21。
可以理解的,在实际应用中,当第一金属线圈23的圈数为一圈时,第一金属线圈23可以尽量分布在非金属区域,第一金属线圈23的导线直径或者承载第一金属线圈23的柔性电路板可以尽量设置的比较宽,以增强电流强度,从而增强第一金属线圈23产生的NFC辐射场的场强,以增强NFC信号强度。
在一些实施例中,同时参考图10和图11,图10为本申请实施例提供的电子设备100的第六种结构示意图,图11为本申请实施例提供的电子设备的第一金属线圈23的结构示意图。
其中,第一金属线圈23的圈数为多圈,例如10圈、20圈等。第一金属线圈23的圈数为多圈时,第一金属线圈23可以理解为封闭的线圈,此时第一金属线圈23的两端之间存在重叠的部分。多圈第一金属线圈23形成第一线圈部233和第二线圈部234,第一线圈部233中的每一圈线圈与第二线圈部234中的每一圈线圈依次首尾相连。第一线圈部233覆盖摄像头孔1211的部分区域,第二线圈部234覆盖金属后壳121的部分区域。
NFC IC 21、第一导体结构22以及第一金属线圈23形成电流回路时,第一线圈部233、第二线圈部234中均有电流通过。例如,第一线圈部233中流过的电流记为I 1,第二线圈部234中流过的电流记为I 2。可以理解的,第一线圈部233中的电流I 1的方向与第二线圈部234中的电流I 2的方向相反。例如,电流I 1的方向由第一导体结构22朝向第一金属线圈23,而电流I 2的方向由第一金属线圈23朝向第一导体结构22。NFC IC 21、第一导体结构22以及第一金属线圈23形成电流回路时的电流方向如图10中的箭头所示方向。
可以理解的,由于第二线圈部234覆盖金属后壳121的部分区域,也即第二线圈部234与所覆盖的金属后壳121的部分区域的距离很近,因此第二线圈部234中流过电流I 2时,第二线圈部234所覆盖的金属后壳121的该部分区域在电流I 2的作用下会产生感应电流,例如涡流,感应电流可以记为I 3。可以理解的,感应电流I 3的方向与第二线圈部234中流过的电流I 2的方向相反,因此感应电流I 3的方向与第一线圈部233中流过的电流I 1的方向相同。
第一线圈部233传输差分激励电流时,向外辐射NFC信号,从而产生NFC辐射场,例如第三NFC辐射场,第三NFC辐射场可以覆盖电子设备100周围一定空间的区域。金属后壳121被第二线圈部234覆盖的部分区域传输该感应电流I 3时,该部分区域也会向外辐射NFC信号,从而产生NFC辐射场,例如第四NFC辐射场,第四NFC辐射场也可以覆盖电子设备100周围一定空间的区域。其中,第四NFC辐射场与第三NFC辐射场至少部分重叠。可以理解的,由于感应电流I 3的方向与第一线圈部233中流过的电流I 1的方向相同,因此第四NFC辐射场的方向与第三NFC辐射场的方向是相同的。因此,第四NFC辐射场与第三NFC辐射场可以互相叠加,从而进一步增强电子设备100周围的NFC辐射场的范围,又可以增强重叠区域的NFC场强。从而,可以进一步增加电子设备100的NFC天线有效读写(刷卡)面积,以及提高电子设备100的NFC天线在读写(刷卡)时的稳定性。
在一些实施例中,参考图12,图12为本申请实施例提供的电子设备100的第七种结 构示意图。
电子设备100还包括柔性电路板(Flexible Printed Circuit,FPC)241。FPC 241与电路板13电连接。其中,FPC 241例如可以为显示屏的FPC、摄像头的FPC、马达的FPC等结构,或者FPC 241可以为用于实现NFC天线功能的独立的FPC。FPC 241可以固定于电子设备100的壳体内。FPC 241上设置有金属走线,该金属走线用于传输信号,例如可以用于传输显示屏的控制信号、摄像头的控制信号、马达的控制信号等。其中,FPC 241上的金属走线形成该第一金属线圈23。因此,通过电子设备100内既有的FPC上的金属走线即可形成第一金属线圈23,无需单独设置第一金属线圈,并且可以实现FPC的功能复用,因此可以进一步简化NFC天线的设计。
在一些实施例中,参考图13,图13为本申请实施例提供的电子设备的第一金属线圈23、柔性电路板241以及辐射场增强体242的结构示意图。
电子设备100还包括辐射场增强体242。辐射场增强体242的材质可以包括绝缘材料。例如,辐射场增强体242可以包括铁氧体层。铁氧体层由铁氧体材料形成,铁氧体材料可以是具有规定含量的氧化铁、氧化铜、氧化锌以及氧化镍的镍铜锌系材料。此外,铁氧体材料还可以包括一些辅助材料,例如规定含量的氧化铋、氧化硅、氧化镁、氧化钴等材料。辐射场增强体242可以用于增强NFC辐射场的强度。
其中,辐射场增强体242设置在FPC 241一侧,例如设置在FPC 241向外界辐射NFC信号的一侧,并且辐射场增强体242与FPC 241抵接。辐射场增强体242可以用于增强第一金属线圈23传输差分激励电流时产生的NFC辐射场的强度,从而提高第一金属线圈23向外界辐射的NFC信号的强度,进而提高NFC天线的性能。
在一些实施例中,参考图14,图14为本申请实施例提供的电子设备100的第八种结构示意图。
电子设备100还包括接地平面251和金属连接件252。接地平面251用于形成公共地。其中,接地平面251可以通过电子设备100中的导体、印刷线路或者金属印刷层等形成。例如,接地平面251可以设置在电子设备100的电路板13上。再例如,接地平面251还可以通过金属材质的中框类形成。金属连接件252可以为诸如镁合金、铝合金等金属材质形成的筋位。
第一导体结构22还包括接地点223,接地点223用于实现第一导体结构22接地。其中,接地点223位于第一电连接点221与第二电连接点222之间。可以理解的,第一导体结构22接地时,相对于第一导体结构22未接地,能够增强第一导体结构22辐射NFC信号的强度,从而增强NFC天线的性能。
其中,接地点223通过该金属连接件252与接地平面251连接,以实现第一导体结构22接地。例如,实际应用中,接地平面251可以为中框,第一导体结构22可以为金属边框122上形成的金属枝节,金属连接件252可以为形成在中框与金属边框122之间的筋位,一方面可以通过筋位实现第一导体结构22接地,另一方面也可以通过筋位增强中框与金属边框122之间的连接稳定性。
在一些实施例中,参考图15,图15为本申请实施例提供的电子设备100的第九种结构示意图。
金属连接件252上设置有缝隙2521,通过缝隙2521将金属连接件252分割成两个部分,即第一部分2522和第二部分2523。其中,第一部分2522可以供第一导体结构22上的电流回地,第二部分2523可以供回地的电流再回流至第一导体结构22上。其中,第一部分2522上回地的电流大于第二部分2523上回流至第一导体结构22上的电流。
可以理解的,由于通过缝隙2521将金属连接件252分割成第一部分2522和第二部分2523,第二部分2523可以使回地的电流部分回流到第一导体结构22上,因此可以减小最终回地的电流大小,也即减小第一导体结构22在传输差分激励电流时的电流损耗,因此可以提高第一导体结构22在传输差分激励电流时产生的NFC辐射场的场强,从而增强NFC信号强度。
在一些实施例中,参考图16,图16为本申请实施例提供的电子设备100的第十种结构示意图。
电子设备100还包括非近场通信芯片IC1。IC1可以为蜂窝通信芯片、Wi-Fi(Wireless Fidelity,无线保真)芯片、GPS(Global Positioning System,全球定位系统)芯片、BT(Bluetooth,蓝牙)芯片中的一种。IC1用于提供非近场通信激励电流。相应的,该非近场通信激励电流可以为蜂窝通信激励电流、Wi-Fi通信激励电流、GPS通信激励电流、BT通信激励电流中的一种。其中,非近场通信芯片IC1可以设置在电子设备100的电路板13上,或者也可以集成在电子设备100中的独立电路板上。
第一导体结构22还包括第五电连接点224。第五电连接点224也可以用于向第一导体结构22馈入激励电流。第五电连接点224可以设置在第一电连接点221与第二电连接点222之间。其中,第五电连接点224与非近场通信芯片IC1电连接。从而,非近场通信芯片IC1可以通过第五电连接点224向第一导体结构22馈入非近场通信激励电流。第一导体结构22还可以用于传输该非近场通信激励电流,并向外辐射对应的无线信号,以实现对应的通信功能。
因此,非近场通信芯片IC1和NFC IC 21可以实现对第一导体结构22的复用,使第一导体结构22同时实现两种天线的功能,从而可以减少电子设备100中的天线的数量,有利于电子设备100的整体天线设计。
在一些实施例中,参考图17,图17为本申请实施例提供的电子设备100的第十一种结构示意图。
电子设备100还包括第一匹配电路M1和第二匹配电路M2。其中,匹配电路也可以称为匹配网络、调谐电路、调谐网络等。可以理解的,第一匹配电路M1和第二匹配电路M2都可以包括由电容、电感的串联或者并联所组成的电路。
其中,NFC IC 21通过第一匹配电路M1与第一导体结构22和第一金属线圈23电连接。在一些实施例中,第一导体结构22的第一电连接点221通过第一匹配电路M1与NFC IC 21的第一差分信号端211电连接。第一金属线圈23的第二端232通过第一匹配电路M1与NFC IC 21的第二差分信号端212电连接。第一匹配电路M1用于对第一导体结构22和第一金属线圈23传输差分激励电流时的阻抗进行匹配。
在一些实施例中,第一匹配电路M1包括第一输入端P1、第二输入端P2、第一输出端P3以及第二输出端P4。第一输入端P1与第一差分信号端211电连接。第二输入端P2与第 二差分信号端212电连接。第一输出端P3与第一导体结构22的第一电连接点221电连接。第二输出端P4与第一金属线圈23的第二端232电连接。
第一导体结构22的第五电连接点224通过第二匹配电路M2与非近场通信芯片IC1电连接。第二匹配电路M2用于对第一导体结构22传输非近场通信激励电流时的阻抗进行匹配。
在一些实施例中,参考图18,图18为本申请实施例提供的电子设备100的第十二种结构示意图。
电子设备100还包括第一滤波电路LC1、第二滤波电路LC2以及第三滤波电路LC3。其中,滤波电路也可以称为滤波网络。可以理解的,第一滤波电路LC1、第二滤波电路LC2以及第三滤波电路LC3都可以包括由电容、电感的串联或者并联所组成的电路。
其中,第一滤波电路LC1设置在第一差分信号端211与第一输入端P1之间。第一滤波电路LC1用于滤除第一差分信号端211与第一输入端P1之间的第一干扰信号。第一干扰信号即为NFC IC 21提供的差分激励电流之外的电信号。
第二滤波电路LC2设置在第二差分信号端212与第二输入端P2之间。第二滤波电路LC2用于滤除第二差分信号端212与第二输入端P2之间的第二干扰信号。第二干扰信号即为NFC IC 21提供的差分激励电流之外的电信号。
第三滤波电路LC3设置在非近场通信芯片IC1与第二匹配电路M2之间。第三滤波电路LC3用于滤除非近场通信芯片IC1与第二匹配电路M2之间的第三干扰信号。第三干扰信号即为非近场通信芯片IC1提供的非近场通信激励电流之外的电信号。
在一些实施例中,参考图19,图19为本申请实施例提供的电子设备100的天线装置的第一种原理示意图。
第一匹配电路M1例如可以包括电容C1、C2、C3、C4、C5以及C6。其中,电容C1与NFC IC 21的第一差分信号端211串联,电容C2与NFC IC 21的第二差分信号端212串联。电容C3与电容C4串联,并且串联之后与NFC IC 21并联,并且电容C3与电容C4之间接地。电容C5与电容C6串联,并且串联之后与NFC IC 21并联,并且电容C5与电容C6之间接地。可以理解的,电容C1、C2、C3、C4、C5、C6的电容值可以根据实际需要进行设置。
第一滤波电路LC1例如可以包括电感L1和电容C7。其中,电感L1串联在第一差分信号端211与第一匹配电路M1之间,电容C7与NFC IC 21并联并接地。可以理解的,电感L1的电感值、电容C7的电容值都可以根据实际需要进行设置。
第二滤波电路LC2例如可以包括电感L2和电容C8。其中,电感L2串联在第二差分信号端212与第一匹配电路M1之间,电容C8与NFC IC 21并联并接地。可以理解的,电感L2的电感值、电容C8的电容值都可以根据实际需要进行设置。
第二匹配电路M2例如可以包括电容C9、C10。其中,电容C9串联在第一导体结构22的第五电连接点224与非近场通信芯片IC1之间,电容C10与非近场通信芯片IC1并联并接地。可以理解的,电容C9、C10的电容值可以根据实际需要进行设置。
第三滤波电路LC3例如可以包括电感L3和电容C11。其中,电感L3串联在非近场通信芯片IC1与第二匹配电路M2之间,电容C11与非近场通信芯片IC1并联并接地。可以 理解的,电感L3的电感值、电容C11的电容值都可以根据实际需要进行设置。
在一些实施例中,参考图20,图20为本申请实施例提供的电子设备100的天线装置的第二种原理示意图。
图20与图19的区别在于:第一匹配电路M1只包括电容C1、C2、C3、C5。其中,电容C1与NFC IC 21的第一差分信号端211串联,电容C2与NFC IC 21的第二差分信号端212串联。电容C3与NFC IC 21并联,电容C5也与NFC IC 21并联。可以理解的,电容C1、C2、C3、C5的电容值可以根据实际需要进行设置。
以上对本申请实施例提供的电子设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种电子设备,包括:
    金属后壳,所述金属后壳上设置有摄像头孔,所述摄像头孔用于安装摄像头模组;
    近场通信芯片,包括第一差分信号端和第二差分信号端,所述第一差分信号端和所述第二差分信号端用于提供差分激励电流;
    第一导体结构,所述第一导体结构包括第一电连接点和第二电连接点,所述第一电连接点与所述第一差分信号端电连接;
    第一金属线圈,所述第一金属线圈至少部分覆盖所述摄像头孔的部分区域,所述第一金属线圈的第一端与所述第二电连接点电连接,所述第一金属线圈的第二端与所述第二差分信号端电连接;
    其中,所述第一导体结构和所述第一金属线圈用于共同传输所述差分激励电流。
  2. 根据权利要求1所述的电子设备,其中,所述第一导体结构传输所述差分激励电流时形成第一近场通信辐射场,所述第一金属线圈传输所述差分激励电流时形成第二近场通信辐射场,所述第二近场通信辐射场与所述第一近场通信辐射场至少部分重叠。
  3. 根据权利要求1所述的电子设备,其中,所述第一金属线圈的圈数为多圈,所述多圈第一金属线圈形成第一线圈部和第二线圈部,所述第一线圈部覆盖所述摄像头孔的部分区域,所述第二线圈部覆盖所述金属后壳的部分区域,所述第一线圈部中的电流的方向与所述第二线圈部中的电流的方向相反。
  4. 根据权利要求3所述的电子设备,其中,所述金属后壳的所述部分区域在所述第二线圈部中的电流的作用下产生感应电流,所述感应电流的方向与所述第一线圈部中的电流的方向相同。
  5. 根据权利要求4所述的电子设备,其中,所述第一线圈部传输所述差分激励电流时产生第三近场通信辐射场,所述感应电流在所述金属后壳中传输时产生第四近场通信辐射场,所述第四近场通信辐射场与所述第三近场通信辐射场至少部分重叠。
  6. 根据权利要求1所述的电子设备,其中,所述第一金属线圈的圈数为一圈,所述一圈第一金属线圈覆盖所述摄像头孔的部分区域。
  7. 根据权利要求1所述的电子设备,其中,还包括:
    柔性电路板,所述柔性电路板上设置有金属走线,所述金属走线形成所述第一金属线圈。
  8. 根据权利要求7所述的电子设备,其中,还包括:
    辐射场增强体,所述辐射场增强体设置在所述柔性电路板一侧,所述辐射场增强体用于增强所述第一金属线圈传输所述差分激励电流时产生的近场通信辐射场的强度。
  9. 根据权利要求1所述的电子设备,其中,还包括:
    第二导体结构,所述第二导体结构包括第三电连接点和第四电连接点,所述第三电连接点与所述第一金属线圈的第二端电连接,所述第四电连接点与所述第二差分信号端电连接,以使所述第一金属线圈的第二端与所述第二差分信号端电连接;
    其中,所述第一导体结构、所述第一金属线圈以及所述第二导体结构用于共同传输所述差分激励电流。
  10. 根据权利要求9所述的电子设备,其中,还包括:
    第二金属线圈,所述第二金属线圈至少部分覆盖所述摄像头孔的部分区域,所述第二金属线圈的第三端与所述第一金属线圈的第二端电连接,所述第二金属线圈的第四端与所述第三电连接点电连接,以使所述第三电连接点与所述第一金属线圈的第二端电连接;
    其中,所述第一导体结构、所述第一金属线圈、所述第二金属线圈以及所述第二导体结构用于共同传输所述差分激励电流,所述第一金属线圈、所述第二金属线圈覆盖所述摄像头孔的不同区域。
  11. 根据权利要求1所述的电子设备,其中,还包括:
    摄像头模组,所述摄像头模组安装在所述摄像头孔中,所述摄像头模组包括非金属元件,所述第一金属线圈至少部分覆盖所述非金属元件的一部分。
  12. 根据权利要求11所述的电子设备,其中,所述摄像头模组为后置摄像头模组。
  13. 根据权利要求1所述的电子设备,其中,还包括:
    接地平面;
    所述第一导体结构还包括接地点,所述接地点通过金属连接件与所述接地平面连接。
  14. 根据权利要求13所述的电子设备,其中,所述接地点位于所述第一电连接点与所述第二电连接点之间。
  15. 根据权利要求1所述的电子设备,其中,还包括:
    第一匹配电路,所述第一电连接点通过所述第一匹配电路与所述第一差分信号端电连接,所述第一金属线圈的第二端通过所述第一匹配电路与所述第二差分信号端电连接,所述第一匹配电路用于对所述第一导体结构和所述第一金属线圈传输所述差分激励电流时的阻抗进行匹配。
  16. 根据权利要求15所述的电子设备,其中:
    所述第一匹配电路包括第一输入端、第二输入端、第一输出端以及第二输出端;
    所述第一输入端与所述第一差分信号端电连接,所述第二输入端与所述第二差分信号端电连接,所述第一输出端与所述第一电连接点电连接,所述第二输出端与所述第一金属线圈的第二端电连接。
  17. 根据权利要求1所述的电子设备,其中,还包括:
    非近场通信芯片,用于提供非近场通信激励电流;
    所述第一导体结构还包括第五电连接点,所述第五电连接点与所述非近场通信芯片电连接,所述第一导体结构还用于传输所述非近场通信激励电流。
  18. 根据权利要求17所述的电子设备,其中,还包括:
    第二匹配电路,所述第五电连接点通过所述第二匹配电路与所述非近场通信芯片电连接,所述第二匹配电路用于对所述第一导体结构传输所述非近场通信激励电流时的阻抗进行匹配。
  19. 根据权利要求1所述的电子设备,其中,还包括:
    金属边框,所述金属边框上形成有金属枝节,所述金属枝节形成所述第一导体结构。
  20. 根据权利要求19所述的电子设备,其中,所述金属边框上间隔设置有第一缝隙和第二缝隙,所述金属枝节形成在所述第一缝隙与所述第二缝隙之间。
PCT/CN2021/119612 2020-12-07 2021-09-22 电子设备 WO2022121435A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011437225.5A CN114597631A (zh) 2020-12-07 2020-12-07 电子设备
CN202011437225.5 2020-12-07

Publications (1)

Publication Number Publication Date
WO2022121435A1 true WO2022121435A1 (zh) 2022-06-16

Family

ID=81812163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119612 WO2022121435A1 (zh) 2020-12-07 2021-09-22 电子设备

Country Status (2)

Country Link
CN (1) CN114597631A (zh)
WO (1) WO2022121435A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976589A (zh) * 2022-06-27 2022-08-30 Oppo广东移动通信有限公司 天线装置及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160099700A1 (en) * 2014-10-03 2016-04-07 Armin Tavakol CMOS Tuner And Related Tuning Algorithm For A Passive Adaptive Antenna Matching Network Suitable For Use With Agile RF Transceivers
WO2017074729A1 (en) * 2015-10-30 2017-05-04 Extenet Systems, Inc. Lighting fixture having an integrated communications system
WO2019194363A1 (en) * 2018-04-05 2019-10-10 Lg Electronics Inc. Mobile terminal
CN210805996U (zh) * 2019-12-31 2020-06-19 Oppo广东移动通信有限公司 天线装置及电子设备
CN210838090U (zh) * 2019-12-26 2020-06-23 Oppo广东移动通信有限公司 天线装置及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160099700A1 (en) * 2014-10-03 2016-04-07 Armin Tavakol CMOS Tuner And Related Tuning Algorithm For A Passive Adaptive Antenna Matching Network Suitable For Use With Agile RF Transceivers
WO2017074729A1 (en) * 2015-10-30 2017-05-04 Extenet Systems, Inc. Lighting fixture having an integrated communications system
WO2019194363A1 (en) * 2018-04-05 2019-10-10 Lg Electronics Inc. Mobile terminal
CN210838090U (zh) * 2019-12-26 2020-06-23 Oppo广东移动通信有限公司 天线装置及电子设备
CN210805996U (zh) * 2019-12-31 2020-06-19 Oppo广东移动通信有限公司 天线装置及电子设备

Also Published As

Publication number Publication date
CN114597631A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
CN210838090U (zh) 天线装置及电子设备
US20210066797A1 (en) Antenna Device, Electronic Apparatus and Method for Antenna Switching
EP4152516A1 (en) Antenna apparatus and electronic device
CN112038773B (zh) 近场通信天线及电子设备
CN112952358B (zh) 天线装置及电子设备
WO2023134337A1 (zh) 天线装置及电子设备
CN212874746U (zh) 电子设备
CN211929698U (zh) 天线装置及电子设备
CN112448145B (zh) 电子设备
CN114389032A (zh) 天线装置及电子设备
WO2022121435A1 (zh) 电子设备
WO2021036986A1 (zh) 天线装置及电子设备
CN212874752U (zh) 电子设备
WO2022048342A1 (zh) 电子设备
US11949152B2 (en) Antenna device and electronic device
CN112448126B (zh) 天线装置及电子设备
CN111740210B (zh) 天线组件及电子设备
CN112993541B (zh) 天线装置及电子设备
CN112449035B (zh) 电子设备
CN113054406A (zh) 天线装置及电子设备
US11251517B2 (en) Antenna assembly and electronic device
US11848506B2 (en) Antenna apparatus and electronic device
CN112993540A (zh) 电子设备
CN112751179B (zh) 电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902143

Country of ref document: EP

Kind code of ref document: A1