WO2022121264A1 - 一种高压输电线路越障机器人的巡检方法及相关设备 - Google Patents

一种高压输电线路越障机器人的巡检方法及相关设备 Download PDF

Info

Publication number
WO2022121264A1
WO2022121264A1 PCT/CN2021/099421 CN2021099421W WO2022121264A1 WO 2022121264 A1 WO2022121264 A1 WO 2022121264A1 CN 2021099421 W CN2021099421 W CN 2021099421W WO 2022121264 A1 WO2022121264 A1 WO 2022121264A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
robot
record
records
instruction
Prior art date
Application number
PCT/CN2021/099421
Other languages
English (en)
French (fr)
Inventor
李培俊
李方
贾绍春
付守海
Original Assignee
广东科凯达智能机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东科凯达智能机器人有限公司 filed Critical 广东科凯达智能机器人有限公司
Publication of WO2022121264A1 publication Critical patent/WO2022121264A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/02Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for overhead lines or cables

Definitions

  • the invention relates to the technical field of detection robots, in particular to an inspection method and related equipment of a robot for crossing obstacles of high-voltage transmission lines.
  • high-voltage transmission lines are set in the open air, and it is easy to mount obstacles such as garbage.
  • the obstacle-crossing robot can cross obstacles such as high-voltage towers or garbage, walk through high-voltage transmission lines, and detect obstacles in high-voltage transmission lines and high-voltage towers in high-voltage transmission lines.
  • Existing obstacle crossing robots are equipped with on-site control terminals.
  • the inspectors need to use the on-site control terminal to control the obstacle-surmounting robot to travel on the high-voltage transmission line step by step, and control the PTZ on the obstacle-traversing robot to record the scene.
  • the analysts in the background can analyze the garbage loading situation of the high-voltage transmission line according to the scene picture.
  • the high-voltage transmission lines are distributed in the open air with harsh environment, which is not conducive to the safety of on-site operation of the inspectors and increases the difficulty of operation; on the other hand, the recording quality of the scene is limited by the experience of the inspectors, which is relatively unstable.
  • the purpose of the present invention is to provide a patrol inspection method and related equipment of a high-voltage transmission line obstacle-surmounting robot, which realizes the increased reliability and safety of patrol inspection in an automated manner, and also improves the accuracy of the obstacle-traversing robot's response to control commands. Sexual technical effects.
  • a first aspect of the present application provides an inspection method for a high-voltage transmission line obstacle crossing robot, including:
  • the obtaining of the operation records generated by the obstacle-crossing robot during the pre-inspection of the preset high-voltage transmission line includes:
  • the on-site control terminal responds to the pre-inspection instruction to control the obstacle-crossing robot to perform pre-inspection on the preset high-voltage transmission line, and records the action parameters of each execution component in the obstacle-crossing robot as running records;
  • the operation record is received from the obstacle-surmounting robot.
  • abnormal records include interference records
  • the abnormal records in the operation records are excluded, and the normal operation records are obtained, including:
  • the on-site control terminal responds to the recapture instruction to recapture the action parameters of the obstacle-surmounting robot, and generates a recapture operation record;
  • the abnormal record is replaced with the recaptured operation record to obtain the normal operation record.
  • the interference record includes: a first interference record generated by transmission control protocol communication interference;
  • the determining whether each operation record is an interference record includes:
  • the interference record includes: a second interference record generated by the interference of the serial port reading of the obstacle crossing robot and each execution component;
  • the method also includes:
  • the interference notification is a notification issued by the obstacle-surmounting robot when it is determined that the motion parameter continuously exceeds the threshold range
  • the operation record is a second interference record.
  • abnormal records include: redundant records;
  • the abnormal records in the operation records are excluded, and the normal operation records are obtained, including:
  • the unique identification number of the current operation record is the same as the unique identification number of the previous operation record, it is determined that the current operation record is a redundant record;
  • the duplicate current redundant records are deleted to obtain normal operation records.
  • an instruction set of control instructions including the action parameters according to the normal operation record including:
  • the instruction set is saved as a functional instruction subset having the function; each of the functional instruction subsets is used for integrating with other functional instruction subsets to form an instruction set.
  • the patrol instruction carrying the instruction set is sent to the obstacle crossing robot, it also includes:
  • a second aspect of the present application provides an inspection device for a high-voltage transmission line obstacle-crossing robot, including:
  • the operation record acquisition module is used to acquire the operation records generated by the obstacle-crossing robot during the pre-inspection of the preset high-voltage transmission line, and the operation records are used to record the actions of each execution component in the obstacle-crossing robot. parameter;
  • an abnormality exclusion module used for excluding abnormal records in the operation records to obtain normal operation records
  • an instruction set generating module configured to generate an instruction set including the control instructions of the action parameters according to the normal operation record
  • An inspection module configured to send an inspection instruction carrying the instruction set to the obstacle-surmounting robot, so that the obstacle-surmounting robot responds to the inspection instruction to perform all preset inspections according to the control instruction.
  • the above-mentioned high-voltage transmission lines are inspected.
  • a third aspect of the present application provides an inspection equipment for a high-voltage transmission line obstacle-crossing robot, including: a memory and one or more processors;
  • the memory for storing one or more programs
  • the inspection method for a high-voltage power transmission line obstacle crossing robot is implemented.
  • a fourth aspect of the present application provides a storage medium containing computer-executable instructions, when executed by a computer processor, the computer-executable instructions are used to implement the high voltage according to any one of the first aspects. Inspection method for obstacle-crossing robots of transmission lines.
  • the technical solution provided by the present application uses the one-time acquired operation record to generate an instruction set, and in subsequent inspections, the instruction set can be used multiple times to automatically patrol the preset high-voltage transmission lines. Inspection is an automated way to achieve the technical effect of increasing the reliability and safety of inspections; on the other hand, the abnormal records in the operation records are eliminated to obtain the normal operation records; The command set of the parameter control command can improve the accuracy of the obstacle-crossing robot's response to the control command.
  • FIG. 1 is a flowchart of an inspection method for a high-voltage transmission line obstacle crossing robot provided in Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a patrol inspection device for a high-voltage transmission line obstacle crossing robot provided in Embodiment 2 of the present invention
  • FIG. 3 is a schematic structural diagram of an inspection equipment of a high-voltage transmission line obstacle crossing robot provided in Embodiment 3 of the present invention.
  • FIG. 1 is a flowchart of an inspection method for an obstacle-crossing robot of a high-voltage transmission line provided in Embodiment 1 of the present invention.
  • the present application provides an inspection method of a high-voltage transmission line obstacle-surmounting robot.
  • the method can be performed by an inspection device of a high-voltage transmission line obstacle-surmounting robot. It is implemented in hardware and integrated in the inspection equipment of the high-voltage transmission line obstacle crossing robot.
  • the inspection equipment of the high-voltage transmission line obstacle crossing robot is a host computer, which may include but not limited to terminals such as computers and servers.
  • a detailed description is given by taking the inspection equipment of the high-voltage transmission line obstacle-crossing robot as a server as an example.
  • the method may include the following steps:
  • S110 Acquire an operation record generated by the obstacle-crossing robot in the process of pre-inspecting the preset high-voltage transmission line.
  • the operation record is used to record the action parameters of each executing component in the obstacle-surmounting robot.
  • obstacle-crossing robots are mainly used to cross obstacles such as high-voltage towers or garbage, travel on high-voltage transmission lines, and detect obstacles in high-voltage transmission lines and high-voltage towers in high-voltage transmission lines.
  • the execution part of the obstacle-surmounting robot may include: a traveling part and a video recording part.
  • the traveling components may include: a composite robotic arm, traveling wheels, and pinch wheels.
  • the two composite manipulators can be used to support the robot platform of the obstacle-crossing robot, and the video parts can be installed in the robot platform.
  • the pressing wheel can be used for pressing the power line, so that the composite manipulator on the obstacle-surmounting robot is fixed on the power line.
  • the walking wheels connected to the composite manipulator can make the obstacle-surmounting robot travel on high-voltage power lines.
  • the video recording component may include a video recording component, and the video recording component may be a camera device set up in the pan/tilt head.
  • action parameters are parameters that can be adjusted when each execution component is in action.
  • the action parameters corresponding to the composite manipulator may include: locking arm, releasing arm, spreading arm and retracting arm, etc.
  • the action parameters corresponding to the pressing wheel may include: pressing, loosening, and the like.
  • the action parameters corresponding to the walking wheel may include: speed, position, walking time, and the like.
  • the traveling wheel may be set to run from position 1 (eg, high-voltage line tower 1 ) to position 2 (eg, high-voltage line tower 2 ) at a preset speed.
  • adjusting the speed of the walking wheel is to adjust the running speed of the composite mechanical arm or the obstacle-crossing robot on the high-voltage transmission line; adjusting the pressure of the pinch wheel Tighten or loosen, that is, adjust the composite arm of the obstacle-surmounting robot to fix or leave the high-voltage power line.
  • the action parameters corresponding to the gimbal may include: coordinates, speed, focal length, multiple, etc. in the gimbal control disk.
  • the coordinates in the control disk of the PTZ can control the PTZ to perform multi-dimensional rotation, so as to control the camera angle of the camera device therein; the focal length and the double speed are the parameters of the camera device.
  • the pre-inspection means that the inspection personnel can use the on-site control terminal to inspect the preset high-voltage transmission lines, and transmit the operation records generated by the obstacle-crossing robot during the inspection process back to the upper computer.
  • the host computer After that, the host computer generates an instruction set corresponding to the preset high-voltage transmission line according to the operation record, which can be used for subsequent automatic inspections for many times.
  • a pre-inspection instruction may be sent to the on-site control terminal of the obstacle-crossing robot; wherein, the on-site control terminal responds to the pre-inspection instruction to control the obstacle-crossing robot to perform pre-inspection on the preset high-voltage transmission line, And record the action parameters of each executive component in the obstacle-surmounting robot as a running record; receive the running record from the obstacle-traversing robot.
  • the upper computer may send a pre-inspection instruction to the on-site control terminal.
  • the on-site control terminal can display a control interface, which displays the control modules of each execution component, such as a pan-tilt control disc, which can include control directions of up, down, left, and right, which are used to control the camera angle of the camera device;
  • There is an action parameter setting area for related components such as composite manipulators, which can be used to set action parameters such as arm locking, arm release, arm extension, arm retraction, compression, release, speed, position, and travel time.
  • the inspection personnel can set action parameters through the control interface, and the on-site control terminal can generate control commands according to the action parameters, and send them to the obstacle-surmounting robot, so that the obstacle-surmounting robot responds to the control commands and executes the components.
  • the action is performed according to the action parameter.
  • the obstacle-surmounting robot may record the action parameters of each executing component as a running record during the action process, and send it to the upper computer.
  • the set action parameters can be directly recorded as running records by the on-site control terminal, and sent to the upper computer.
  • the operation record can be set as "operation-backward, speed: 300; the robot starts to reverse; operation-stop; the robot stops; 0), zoom: 2300, delay: 5000; camera device 1 starts recording” and so on.
  • "operation - back, speed: 300; robot starts to back” can be used as a running record, including the operation part of "operation-back, speed: 300" and the status part of "robot starts to back”.
  • abnormal records Due to the limited experience of the inspectors, the limitation of the working environment of the obstacle-crossing robot, the influence of communication quality and many other factors, abnormal records are prone to appear in the operation records. Further, in this embodiment, the abnormal records may include interference records and redundant records.
  • step S120 can be refined as follows:
  • the interference record can be further divided into a first interference record and a second interference record.
  • the first interference record is the operation record generated by the communication interference of the transmission control protocol between the upper computer and the obstacle-surmounting robot;
  • the second interference record is the operation record generated by the serial port reading interference of the obstacle-surmounting robot and each execution component. .
  • the interference record is the first interference record
  • the action parameter of each execution component can be determined from each operation record; the preset threshold range of the action parameter for each execution component is obtained; when the action parameter exceeds the threshold range, the operation record is determined as the first interference record.
  • the execution part has its own movement range, and the threshold range can be determined according to the movement range.
  • the action parameter exceeds the threshold range, it is determined that the operation record is the first disturbance record.
  • the composite manipulator when the composite manipulator performs the actions of locking the arm, releasing the arm, extending the arm and retracting the arm, it is affected by the connection position of the motor, bearing, screw and other components in the composite manipulator, and its action is limited within the preset range.
  • the preset range can be determined by controlling the rotation angle or the number of rotations of the motor of the composite manipulator.
  • the threshold ranges of the locking arm, the releasing arm, the extending arm and the retracting arm can be represented by the rotation angle or the number of rotations of the motor controlling the composite mechanical arm.
  • the pressing wheel when the pressing wheel performs pressing and loosening actions, it is also limited within a preset range.
  • the preset range of the pinch wheel can be determined by controlling the rotation angle or the number of turns of the motor of the pinch wheel.
  • the threshold range of the action parameters for pressing and releasing the pinch wheel can be represented by the rotation angle or the number of turns of the motor that controls the pinch wheel.
  • the execution component has its own allowable error range, which can be used as the threshold range.
  • a corresponding error range can be set for each action parameter.
  • the actual motion parameters of the walking wheels can be detected, and when the actual motion parameters exceed the error range of the motion parameters, the running record is considered as the first disturbance record. If the set speed is 500 and the error range is ⁇ 1%, when the actual speed is between 495 and 505, it means that the actual speed is within the error range. When the actual speed is 506, it is determined that the action parameter corresponding to the speed exceeds the error range of the action parameter, and the operation record is considered as the first disturbance record.
  • the interference record is the second interference record
  • an interference notification can be received from the obstacle-crossing robot, wherein the interference notification is a notification sent by the obstacle-crossing robot when it determines that an action parameter continuously exceeds the threshold range; when receiving the interference notification, it is determined that the operation record is the second Interfere with recording.
  • the action parameters of the execution part can be read from the execution part by the obstacle crossing robot through the serial port.
  • the obstacle-crossing robot can read again.
  • the obstacle-crossing robot can send a disturbance notification to the upper computer to notify the upper computer that there is an error in the operation record.
  • the on-site control terminal responds to the recollection instruction to recollect the action parameters of the obstacle-surmounting robot, and generates a recollection operation record.
  • the host computer when it determines that the running record currently being recorded is an abnormal record, it can send a re-sampling instruction to the on-site control terminal to instruct the inspector to re-collect the running record currently being recorded.
  • the normal operation record can be obtained by integrating multiple operation records.
  • the abnormal record can be replaced with the re-collected operation record; when the abnormal record has not been uploaded to the upper computer, the re-collected operation record is directly used to integrate the normal operation record.
  • the host computer (PC-side software): set a threshold range for each action parameter (for example, the threshold range of the pressing wheel can be the range of the number of turns of the motor. : 0 ⁇ value ⁇ 36000), when the feedback of the obstacle crossing robot exceeds the threshold range, the operation record corresponding to the action parameter will not be recorded, and the inspector will be reminded that the value is incorrect, and please re-operate the steps corresponding to the action parameter.
  • a threshold range for each action parameter for example, the threshold range of the pressing wheel can be the range of the number of turns of the motor. : 0 ⁇ value ⁇ 36000
  • the lower computer (the body program of the obstacle-surmounting robot): set a threshold range for each action parameter (for example, the threshold range of the pinch wheel may correspond to the rotation circle of the motor)
  • the range of the number 0 ⁇ value ⁇ 36000
  • the action parameter can be not fed back to the upper computer, and the motor value can be read 5 times repeatedly. If it still exceeds the threshold range, remind the host computer that there is a problem with the step feedback corresponding to the action parameter.
  • the unique identification number corresponding to each operation record can be determined; if the unique identification number of the current operation record is the same as the unique identification number of the previous operation record, it is determined that the current operation record is Redundant records; delete duplicate current redundant records to get normal operation records.
  • the lower computer of the obstacle-crossing robot can add a unique identification number (Identity document, ID) for the operation record of each action parameter, and when the repeated ID received by the upper computer, only one operation record is recorded, and discard the excess.
  • ID a unique identification number
  • the inspection personnel are reminded that the operation is wrong.
  • the corresponding control instruction may be "the composite manipulator moves backward at a speed of 300, counts 15000 (Among them, 15000 can correspond to the number of revolutions of the walking wheel) to stop".
  • the operation record is "Operation-Camera device 1 takes pictures, PTZ coordinates: (32283,34612,0), zoom: 2300, delay: 5000; camera device 1 starts taking pictures"
  • the corresponding control command can be "camera number 1, pan/tilt XYZ(32283,34612,0); zoom, camera number 1, multiple 2300, delay 5000; take photo, camera number 1, name X, delay 1500".
  • the instruction set can also be saved as a functional instruction subset with functions according to the functions implemented by the instruction set; wherein, the functional instruction subset is used for integrating with other functional instruction subsets into an instruction set.
  • a first subset of functional instructions for controlling the obstacle-traversing robot to travel, and a second subset of functional instructions for controlling the camera of the obstacle-traversing robot may be generated. Further, a second functional instruction subset can be placed under the first functional instruction subset, so that the obstacle-crossing robot can be controlled to move to a preset position, and then the PTZ can be controlled to move, and pictures or videos can be recorded. .
  • the correctness of the control commands in the instruction set can be verified, and the stability and safety of controlling the obstacle-surmounting robot can be increased.
  • control instructions in the instruction set can be sent to the obstacle-surmounting robot in sequence, and the obstacle-surmounting robot responds to the control instructions to perform actions according to the action parameters specified in the control instructions; receives the actual motion parameters from the obstacle-traversing robot; when the actual motion parameters When it is different from the action parameter specified by the current control instruction, it is determined that the current control instruction has an error; after adjusting the erroneous control instruction, the adjusted control instruction is used to replace the current control instruction in the instruction set.
  • the control instructions in the instruction set can be sequentially sent to the obstacle surmounting robot for execution; on the other hand, the actual motion parameters or real-time recorded scene images can be obtained from the obstacle surmounting robot. Further, the host computer can analyze the actual action parameters or real-time recorded scene images. When the actual action parameters are the same as the action parameters corresponding to the current control command, it can be determined that the control command corresponding to the action parameter is executed correctly. meet expectations. When the actual action parameter is different from the action parameter corresponding to the current control command, it means that the control command corresponding to the action parameter is executed incorrectly and needs to be adjusted.
  • a specific adjustment method may be to re-send an adjustment instruction with adjustment parameters to the obstacle-surmounting robot, so as to control the obstacle-surmounting robot to move to meet expectations.
  • the control instructions in the instruction set can be adjusted according to the above-mentioned adjustment parameters, so as to adjust to the correct action parameters.
  • the preset high-voltage transmission line may be set as a high-voltage transmission line from the high-voltage line tower M to the high-voltage line tower N, where M and N are the serial numbers of the high-voltage line towers. Further, it is also possible to set whether the obstacle-crossing robot will cross the high-voltage line tower, and the control instruction in the instruction set may control the obstacle-crossing robot to perform the action of crossing the high-voltage line tower.
  • the obstacle-crossing robot when the obstacle-crossing robot receives the preset command set for the high-voltage transmission line, it can perform actions in response to the control commands in the command set to complete the inspection task.
  • an instruction set is generated by using the operation record obtained once, and in subsequent inspections, the instruction set can be used for many times to automatically inspect the preset high-voltage transmission lines.
  • the technical effect of increasing the reliability and safety of the inspection is realized in an automated way; on the other hand, the abnormal records in the operation records are eliminated, and the normal operation records are obtained; according to the normal operation records, the control including the action parameters is generated.
  • the instruction set of instructions can improve the accuracy of the obstacle-crossing robot in responding to the control instructions.
  • FIG. 2 is a schematic structural diagram of a patrol inspection device for a high-voltage transmission line obstacle crossing robot provided in Embodiment 2 of the present invention.
  • an inspection device for a high-voltage transmission line obstacle-crossing robot provided in this embodiment specifically includes the following structures: an operation record acquisition module 210 , an abnormality elimination module 220 , an instruction set generation module 230 and an inspection module 240 .
  • the operation record acquisition module 210 is used to acquire the operation records generated by the obstacle-crossing robot during the pre-inspection of the preset high-voltage transmission line, and the operation records are used to record the operation records of each execution component in the obstacle-crossing robot. Action parameters.
  • the abnormality exclusion module 220 is used for excluding abnormal records in the operation records to obtain normal operation records.
  • the instruction set generating module 230 is configured to generate an instruction set including the control instruction of the action parameter according to the normal operation record.
  • the inspection module 240 is configured to send the inspection instruction carrying the instruction set to the obstacle-surmounting robot, so that the obstacle-surmounting robot responds to the inspection instruction to perform the preset inspection according to the control instruction.
  • the high-voltage transmission lines are inspected.
  • an instruction set is generated by using the operation record obtained once, and in subsequent inspections, the instruction set can be used for many times to automatically inspect the preset high-voltage transmission lines, The technical effect of increasing the reliability and safety of the inspection is realized in an automated way; on the other hand, the abnormal records in the operation records are eliminated to obtain the normal operation records; according to the normal operation records, the operation parameters including the action parameters are generated.
  • the instruction set of the control instruction can improve the accuracy of the obstacle-crossing robot responding to the control instruction.
  • the operation record acquisition module 210 includes:
  • the pre-inspection instruction sending unit is used to send the pre-inspection instruction to the on-site control terminal of the obstacle crossing robot.
  • the on-site control terminal responds to the pre-inspection instruction to control the obstacle-crossing robot to perform pre-inspection on the preset high-voltage transmission line, and calculates the action parameters of each execution component in the obstacle-crossing robot, Recorded as a running record;
  • the operation record receiving unit is used for receiving the operation record from the obstacle-surmounting robot.
  • the abnormal records include interference records
  • the abnormality exclusion module 220 includes:
  • An interference determination unit used to determine whether each operation record is an interference record
  • the re-sampling unit is configured to send a re-sampling instruction to the on-site control terminal of the obstacle-crossing robot when the operation record is an interference record.
  • the on-site control terminal responds to the recollection instruction to recollect the action parameters of the obstacle-surmounting robot, and generates a recollection operation record.
  • a replacement unit configured to replace the abnormal record with the recaptured operation record, so as to obtain the normal operation record.
  • the interference record includes: a first interference record generated by transmission control protocol communication interference.
  • the interference determination unit includes:
  • the action parameter determination subunit is used for determining the action parameter of each execution component from each of the operation records.
  • the threshold range acquisition subunit is used to acquire a preset threshold range of the action parameter for each execution component.
  • the first disturbance determination subunit is configured to determine the operation record as the first disturbance record when the action parameter exceeds the threshold range.
  • the interference record includes: a second interference record generated by the interference of the serial port reading of the obstacle-crossing robot and each execution component;
  • the device also includes:
  • an interference notification receiving module configured to receive an interference notification from the obstacle-surmounting robot, wherein the interference notification is a notification issued by the obstacle-surmounting robot when it is determined that the motion parameter continuously exceeds the threshold range;
  • the second interference determination module is configured to determine that the operation record is a second interference record when the interference notification is received.
  • the abnormal records include: redundant records;
  • the abnormality exclusion module 220 includes:
  • the unique identification number determining unit is used to determine the unique identification number corresponding to each operation record.
  • the redundant record determination unit is used for determining that the current operation record is a redundant record if the unique identification number of the current operation record is the same as the unique identification number of the previous operation record.
  • the duplicate deletion unit is used to delete the duplicate current redundant records to obtain the normal operation records.
  • the instruction set generation module 230 includes:
  • a function instruction subset storage unit configured to store the instruction set as a function instruction subset with the function according to the function implemented by the instruction set; wherein, the function instruction subset is used for other functions
  • the instruction subsets are combined into an instruction set.
  • the device also includes:
  • a control instruction sending module is configured to sequentially send the control instructions in the instruction set to the obstacle-surmounting robot before the inspection instruction carrying the instruction set is sent to the obstacle-surmounting robot, and the The disabled robot responds to the control instruction to act according to the motion parameters specified in the control instruction.
  • an actual motion parameter receiving module for receiving actual motion parameters from the obstacle-crossing robot
  • control instruction verification module configured to determine that there is an error in the current control instruction when the actual action parameter is different from the action parameter specified in the current control instruction
  • the adjustment module is configured to replace the current control instruction in the instruction set with the adjusted control instruction after adjusting the control instruction with error.
  • FIG. 3 is a schematic structural diagram of an inspection equipment of a high-voltage transmission line obstacle crossing robot provided in Embodiment 3 of the present invention.
  • the inspection equipment of the high-voltage transmission line obstacle crossing robot includes: a processor 30 , a memory 31 , an input device 32 and an output device 33 .
  • the number of processors 30 in the inspection equipment of the high-voltage transmission line obstacle crossing robot may be one or more, and one processor 30 is taken as an example in FIG. 3 .
  • the number of memories 31 in the inspection equipment of the high-voltage transmission line obstacle crossing robot may be one or more, and one memory 31 is taken as an example in FIG. 3 .
  • the processor 30 , the memory 31 , the input device 32 and the output device 33 of the inspection equipment of the high-voltage power transmission line obstacle crossing robot can be connected by a bus or other means, and the connection by a bus is taken as an example in FIG. 3 .
  • the inspection equipment of the high-voltage transmission line obstacle crossing robot may be a computer, a server, and the like. This embodiment is described in detail by taking the inspection equipment of the high-voltage transmission line obstacle-crossing robot as the server, and the server may be an independent server or a cluster server.
  • the memory 31 can be used to store software programs, computer-executable programs and modules, such as program instructions/modules (for example, the operation record acquisition module 210 , the abnormality elimination module 220 , the instruction set generation module 230 and the inspection module 240 in the inspection device of the high-voltage transmission line obstacle crossing robot).
  • the memory 31 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the device, and the like.
  • the memory 31 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • memory 31 may further include memory located remotely from processor 30, which may be connected to the device through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the input device 32 can be used to receive input digital or character information, and generate key signal input related to the setting and function control of the inspection equipment of the high-voltage transmission line obstacle-crossing robot, and can also be a camera for acquiring images and acquiring audio data. pickup equipment.
  • the output device 33 may include audio equipment such as speakers. It should be noted that the specific composition of the input device 32 and the output device 33 can be set according to actual conditions.
  • the processor 30 executes various functional applications and data processing of the device by running the software programs, instructions and modules stored in the memory 31 , that is, to implement the above-mentioned inspection method of the high-voltage transmission line obstacle crossing robot.
  • Embodiment 4 of the present invention also provides a storage medium containing computer-executable instructions, when the computer-executable instructions are executed by a computer processor for executing an inspection method for a high-voltage transmission line obstacle crossing robot, including:
  • a storage medium containing computer-executable instructions provided by the embodiments of the present invention, the computer-executable instructions of which are not limited to the above-mentioned operation of the inspection method of the high-voltage transmission line obstacle crossing robot, and can also execute any implementation of the present invention.
  • the relevant operations in the inspection method of the high-voltage transmission line obstacle crossing robot provided and have corresponding functions and beneficial effects.
  • the present invention can be realized by software and necessary general-purpose hardware, and of course can also be realized by hardware, but in many cases the former is a better embodiment .
  • the technical solutions of the present invention can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products can be stored in a computer-readable storage medium, such as a floppy disk of a computer , read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disk, etc., including several instructions to make a computer device (which can be a robot, A personal computer, a server, or a network device, etc.) executes the inspection method of the high-voltage transmission line obstacle crossing robot described in any embodiment of the present invention.
  • a computer device which can be a robot, A personal computer, a server, or a network device, etc.
  • the units and modules included in the inspection device of the above-mentioned high-voltage transmission line obstacle crossing robot are only divided according to functional logic, but are not limited to the above-mentioned division, as long as the corresponding functions can be realized. ;
  • the specific names of the functional units are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present invention.
  • various parts of the present invention may be implemented in hardware, software, firmware or a combination thereof.
  • various steps or methods may be implemented in software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or a combination of the following techniques known in the art: Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, Programmable Gate Arrays (PGA), Field Programmable Gate Arrays (FPGA), etc.

Abstract

一种高压输电线路越障机器人的巡检方法及相关设备,该方法包括:获取越障机器人在对预置的高压输电线路进行预巡检的过程中所产生的运行记录,所述运行记录用于记录所述越障机器人中各执行部件的动作参数(S110);对所述运行记录中的异常记录进行排除处理,得到正常运行记录(S120);根据所述正常运行记录,生成包括所述动作参数的控制指令的指令集合(S130);将携带有所述指令集合的巡检指令发送至所述越障机器人,使得所述越障机器人响应于所述巡检指令,以按照所述控制指令对预置的所述高压输电线路进行巡检(S140)。该方法使用一次性获取的运行记录生成指令集合,之后可多次使用该指令集合自动对预置的高压输电线路进行巡检,增加了巡检的可靠性和安全性;并且,通过对异常记录进行排除处理以得到正常运行记录,以及根据正常运行记录生成指令集合,可提高越障机器人响应控制指令的准确性。

Description

一种高压输电线路越障机器人的巡检方法及相关设备
本申请要求于2020年12月07日提交中国专利局的申请号为202011413273.0、名称为“一种高压输电线路越障机器人的巡检方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及检测机器人的技术领域,尤其涉及一种高压输电线路越障机器人的巡检方法及相关设备。
背景技术
一般的,高压输电线路设置在露天中,容易挂载垃圾等障碍物。越障机器人可以越过高压塔或垃圾等障碍,穿行在高压输电线路上,并对高压输电线路中的高压输电线和高压塔进行障碍物的检测。
现有的,越障机器人配备有现场控制终端。巡检人员需要在现场使用该现场控制终端一步步控制该越障机器人在高压输电线路上行进,并控制越障机器人上的云台录制现场画面。后台的分析人员则可以根据该现场画面,分析高压输电线路的垃圾挂载情况等。
一方面,高压输电线路分布在环境恶劣的露天中,不利于巡检人员现场操作的安全、增加了操作难度;另一方面,现场画面的录制质量受到巡检人员经验的限制,比较不稳定。
发明内容
本发明的目的在于提出一种高压输电线路越障机器人的巡检方法及相关设备,以自动化的方式实现了增加巡检的可靠性和安全性,而且还提高了越障机器人响应控制指令的准确性的技术效果。
为实现上述目的,本申请第一方面提供了一种高压输电线路越障 机器人的巡检方法,包括:
获取越障机器人在对预置的高压输电线路进行预巡检的过程中所产生的运行记录,所述运行记录用于记录所述越障机器人中各执行部件的动作参数;
对所述运行记录中的异常记录进行排除处理,得到正常运行记录;
根据所述正常运行记录,生成包括所述动作参数的控制指令的指令集合;
将携带有所述指令集合的巡检指令发送至所述越障机器人,使得所述越障机器人响应于所述巡检指令,以按照所述控制指令对预置的所述高压输电线路进行巡检。
进一步地,所述获取越障机器人在对预置的高压输电线路进行预巡检的过程中所产生的运行记录,包括:
向所述越障机器人的现场控制终端发送预巡检指令;
所述现场控制终端响应于所述预巡检指令,以控制所述越障机器人对预置的高压输电线路进行预巡检,并将所述越障机器人中各执行部件的动作参数,记录为运行记录;
从所述越障机器人接收所述运行记录。
进一步地,所述异常记录包括干扰记录;
所述对所述运行记录中的异常记录进行排除处理,得到正常运行记录,包括:
确定每一条运行记录是否为干扰记录;
若是,则向所述越障机器人的现场控制终端发送重采指令;
所述现场控制终端响应于所述重采指令,以重新采集所述越障机器人的动作参数,并生成重采的运行记录;
使用所述重采的运行记录替换所述异常记录,以得到所述正常运行记录。
进一步地,所述干扰记录包括:受到传输控制协议通信干扰产生的第一干扰记录;
所述确定每一条运行记录是否为干扰记录,包括:
从每一条所述运行记录中确定每一执行部件的动作参数;
获取预置的针对每一执行部件的所述动作参数的阈值范围;
当所述动作参数超出所述阈值范围时,确定所述运行记录为第一干扰记录。
进一步地,所述干扰记录包括:受到所述越障机器人与每一执行部件的串口读取干扰产生的第二干扰记录;
所述方法,还包括:
从所述越障机器人接收干扰通知,其中,所述干扰通知为所述越障机器人在确定一所述动作参数连续超出所述阈值范围时所发出的通知;
当接收到所述干扰通知时,确定所述运行记录为第二干扰记录。
进一步地,所述异常记录包括:冗余记录;
所述对所述运行记录中的异常记录进行排除处理,得到正常运行记录,包括:
确定每一运行记录对应的唯一识别号;
若当前运行记录的唯一识别号与前一运行记录的唯一识别号相同时,确定当前运行记录为冗余记录;
删除重复的所述当前冗余记录,以得到正常运行记录。
进一步地,所述根据所述正常运行记录,生成包括所述动作参数的控制指令的指令集合,包括:
根据所述指令集合所实现的功能,将所述指令集合保存为具有所述功能的功能指令子集合;各个所述功能指令子集合用于与其他的功能指令子集合整合成为指令集合。
进一步地,在所述将携带有所述指令集合的巡检指令发送至所述 越障机器人之前,还包括:
依次向所述越障机器人发送所述指令集合中的控制指令,所述越障机器人响应于所述控制指令,以按照所述控制指令中指定的动作参数进行动作;
从所述越障机器人接收实际动作参数;
当所述实际动作参数与当前的所述控制指令中指定的动作参数不同时,确定当前的所述控制指令存在错误;
对存在错误的所述控制指令进行调整后,用调整后的控制指令替换所述指令集合中当前的所述控制指令。
为实现上述目的,本申请第二方面提供了一种高压输电线路越障机器人的巡检装置,包括:
运行记录获取模块,用于获取越障机器人在对预置的高压输电线路进行预巡检的过程中所产生的运行记录,所述运行记录用于记录所述越障机器人中各执行部件的动作参数;
异常排除模块,用于对所述运行记录中的异常记录进行排除处理,得到正常运行记录;
指令集合生成模块,用于根据所述正常运行记录,生成包括所述动作参数的控制指令的指令集合;
巡检模块,用于将携带有所述指令集合的巡检指令发送至所述越障机器人,使得所述越障机器人响应于所述巡检指令,以按照所述控制指令对预置的所述高压输电线路进行巡检。
为实现上述目的,本申请第三方面提供了一种高压输电线路越障机器人的巡检设备,包括:存储器以及一个或多个处理器;
所述存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行时,实现如第一方面中任一所述的高压输电线路越障机器人的巡检方法。
为实现上述目的,本申请第四方面提供了一种包含计算机可执 行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于实现如第一方面中任一所述的高压输电线路越障机器人的巡检方法。
由上可见,本申请提供的技术方案,一方面,使用一次性获取的运行记录生成指令集合,并在之后的巡检中,可以多次使用该指令集合自动对预置的高压输电线路进行巡检,是以自动化的方式实现了增加巡检的可靠性和安全性的技术效果;另一方面,对运行记录中的异常记录进行排除处理,得到正常运行记录;根据正常运行记录,生成包括动作参数的控制指令的指令集合,可以提高越障机器人响应控制指令的准确性。
附图说明
图1为本发明实施1中提供的一种高压输电线路越障机器人的巡检方法的流程图;
图2为本发明实施2中提供的一种高压输电线路越障机器人的巡检装置的结构示意图;
图3为本发明实施3中提供的一种高压输电线路越障机器人的巡检设备的结构示意图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
图1为本发明实施1中提供的一种高压输电线路越障机器人的巡检方法的流程图。本申请提供一种高压输电线路越障机器人的巡检方法,该方法可以由高压输电线路越障机器人的巡检装置来执行,该高压输电线路越障机器人的巡检装置可以通过软件和/或硬件的方式实现,并集成在高压输电线路越障机器人的巡检设备中。可选的,该高压输电线路越障机器人的巡检设备为上位机,可以包括但不限定于电脑、服务器等终端。本实施例中,以该高压输电线路越障机器人的巡 检设备为服务器为例进行详细说明。
参照图1,该方法可以包括如下的步骤:
S110、获取越障机器人在对预置的高压输电线路进行预巡检的过程中所产生的运行记录。
本实施例中,该运行记录用于记录该越障机器人中各执行部件的动作参数。
其中,越障机器人主要用于越过高压塔或垃圾等障碍,穿行在高压输电线路上,并对高压输电线路中的高压输电线和高压塔进行障碍物的检测。该越障机器人的执行部件可以包括:行进部件和录像部件。
例如,该行进部件可以包括:复合机械臂、行走轮和压紧轮。其中,两复合机械臂可以用于支撑越障机器人的机器人平台,机器人平台中可以安装有录像部件等。进一步的,压紧轮可以用于压紧输电线,使得越障机器人上的复合机械臂固定在输电线上。连接在复合机械臂上的行走轮可以使得越障机器人在高压输电线上行进。
又例如,该录像部件可以包括录像部件,该录像部件可以是架设在云台中的摄像装置。
进一步的,动作参数为各执行部件动作时、可以调节的参数。
对应于复合机械臂的动作参数可以包括:锁臂、松臂、展臂和收臂等。
对应于压紧轮的动作参数可以包括:压紧、松开等。
对应于行走轮的动作参数可以包括:速度、位置、行走时间等。
示例性的,可以设置行走轮按照预置的速度,从位置1(如高压线塔1)运行到位置2(如高压线塔2)。
其中,由于压紧轮和行走轮的动作均与复合机械臂相关,因此,调整行走轮的速度,也就是调整复合机械臂或者越障机器人在高压输电线上的行径速度;调整压紧轮压紧或者松开,也就是调整越障机器人的复合机械臂固定或者离开该高压输电线。
对应于云台的动作参数可以包括:云台控制圆盘中的坐标、速度、焦距、倍数等。其中,云台控制圆盘中的坐标可以控制云台进行多维度的旋转,以控制其中的摄像装置的摄像角度;焦距和倍速是摄像装置的参数。
本实施例中,预巡检指的是,可以由巡检人员使用现场控制终端对预置的高压输电线路进行巡检,并将巡检过程中越障机器人所产生的运行记录回传到上位机中;之后,由上位机根据该运行记录生成对应于该预置的高压输电线路的指令集合,可以用于后续多次自动巡检。
在一实施例中,可以向越障机器人的现场控制终端发送预巡检指令;其中,现场控制终端响应于预巡检指令,以控制越障机器人对预置的高压输电线路进行预巡检,并将越障机器人中各执行部件的动作参数,记录为运行记录;从越障机器人接收运行记录。
在具体的实施例中,在需要对预置的高压输电线路进行预巡检时,上位机可以向现场控制终端发送一预巡检指令。现场控制终端可以展示一控制界面,该控制界面显示有各执行部件的控制模块,如云台控制圆盘,可以包括上下左右的控制方向,用于控制摄像装置的摄像角度;又如,还可以设置有复合机械臂等相关部件的动作参数设置区域,可以用于设置锁臂、松臂、展臂、收臂、压紧、松开、速度、位置、行走时间等动作参数。
进一步的,巡检人员的可以通过该控制界面设置动作参数,现场控制终端可以根据该动作参数生成控制指令,并发送至越障机器人,以使得该越障机器人响应于该控制指令,各执行部件按照该动作参数进行动作。
在一实施例中,越障机器人可以在动作过程中可以对各执行部件的动作参数记录为运行记录,并发送至上位机中。
在又一实施例中,可以由现场控制终端直接将设置的动作参数记 录为运行记录,并发送至上位机中。
在具体的实施例中,可以将该运行记录设置为“操作-后退,速度:300;机器人开始后退;操作-停止;机器人停止;操作-摄像装置1摄像,云台坐标:(32283,34612,0),变倍:2300,延时:5000;摄像装置1开始摄像”等。其中,“操作-后退,速度:300;机器人开始后退”可以作为一条运行记录,包括“操作-后退,速度:300”的操作部分和“机器人开始后退”的状态部分。
S120、对所述运行记录中的异常记录进行排除处理,得到正常运行记录。
由于巡检人员的经验有限、越障机器人的工作环境限制、通信质量影响等诸多因素,运行记录中容易出现异常记录的情况。进一步的,本实施例中,异常记录可以包括干扰记录和冗余记录。
1、干扰记录
本实施例中,针对干扰记录的情况,步骤S120可以细化为:
S121、确定每一条运行记录是否为干扰记录。
其中,干扰记录又可以分为第一干扰记录和第二干扰记录。该第一干扰记录是受到上位机与越障机器人之间传输控制协议通信干扰产生的运行记录;第二干扰记录是受到所述越障机器人与每一执行部件的串口读取干扰产生的运行记录。
1、干扰记录为第一干扰记录
可以从每一条运行记录中确定每一执行部件的动作参数;获取预置的针对每一执行部件的动作参数的阈值范围;当动作参数超出阈值范围时,确定运行记录为第一干扰记录。
一方面,执行部件有其自身的移动范围,可以根据该移动范围确定阈值范围。当动作参数超出阈值范围时,确定运行记录为第一干扰记录。
如复合机械臂在做锁臂、松臂、展臂和收臂等的动作时,受到复 合机械臂中电机、轴承、丝杆等部件连接位置的影响,其动作被限制在预设的范围内。该预设的范围可以通过控制复合机械臂的电机的转动角度或者转动圈数进行确定。进一步的,锁臂、松臂、展臂和收臂的阈值范围可以用控制复合机械臂的电机的转动角度或者转动圈数进行表示。
又如,压紧轮在做压紧和松开的动作时,同样被限制在预设的范围内。压紧轮的预设范围可以通过控制该压紧轮的电机的转动角度或者转动圈数进行确定。压紧轮压紧和松开的动作参数的阈值范围可以用控制压紧轮的电机的转动角度或者转动圈数进行表示。
另一方面,执行部件有自身可允许的误差范围,可以将该误差范围作为阈值范围。
如,行走轮中速度、位置、行走时间等动作参数,可以为每一动作参数设置对应的误差范围。
在实际的越障机器人行进过程中,可以检测行走轮的实际动作参数,当该实际动作参数超出动作参数的误差范围内时,则认为该运行记录为第一干扰记录。如设置速度为500,误差范围内为±1%,则当实际的速度在495到505之间,则表示实际的速度在误差范围之内。当实际的速度为506时,则确定该速度对应的动作参数超出了动作参数的误差范围,认为该运行记录为第一干扰记录。
2、干扰记录为第二干扰记录
本实施例中,可以从越障机器人接收干扰通知,其中,干扰通知为越障机器人在确定一动作参数连续超出阈值范围时所发出的通知;当接收到干扰通知时,确定运行记录为第二干扰记录。
一般的,执行部件的动作参数可以由越障机器人通过串口的方式从执行部件中读取。当出现串口读取错误时,越障机器人可以再次读取。但当连续出现对同一动作参数读取错误(如连续读取5次)时,越障机器人则可以向上位机发出干扰通知,以通知上位机该运行记录 的记录有错误。
需要说明的是,越障机器人在发现串口读取错误时,可以不将该运行记录发送至上位机。
S122、若是,则向所述越障机器人的现场控制终端发送重采指令;
其中,所述现场控制终端响应于所述重采指令,以重新采集所述越障机器人的动作参数,并生成重采的运行记录。
本实施例中,当上位机确定当前正在记录的运行记录为异常记录时,可以向现场控制终端发送重采指令,以指示巡检人员对当前正在记录的运行记录进行重采。
S123、使用所述重采的运行记录替换所述异常记录,以得到所述正常运行记录。
需要注意的是,正常运行记录可以是多条运行记录整合得到。当异常记录已经上传到上位机时,可以使用重采的运行记录替换该异常记录;当异常记录未上传到上位机时,则直接使用该重采的运行记录,整合得到正常运行记录。
在一具体的实施例中,针对第一干扰记录的情况,上位机(PC端软件):为每个动作参数设置阈值范围(例如压紧轮的阈值范围对应的可以是电机转动圈数的范围:0<数值<36000),当越障机器人反馈超过阈值范围时不记录该动作参数对应的运行记录,并提醒巡检人员数值有误,请重新操作动作参数对应的步骤。
在又一具体的实施例中,针对第二干扰记录的情况,下位机(越障机器人本体程序):为每个动作参数设置阈值范围(例如压紧轮的阈值范围对应的可以是电机转动圈数的范围:0<数值<36000),当越障机器人通过串口读取电机数值,出现数值超过阈值范围时,可以先不将该动作参数反馈至上位机,重复读取电机数值5次,若还是超过阈值范围,提醒上位机该动作参数对应的步骤反馈有问题。
2、冗余记录
本实施例中,针对冗余记录的情况,可以通过确定每一运行记录对应的唯一识别号;若当前运行记录的唯一识别号与前一运行记录的唯一识别号相同时,确定当前运行记录为冗余记录;删除重复的当前冗余记录,以得到正常运行记录。
在一具体的实施例中,越障机器人的下位机可以为每次动作参数的运行记录添加唯一识别号(Identity document,ID),当上位机收到的重复ID时,只记录一个运行记录,并丢弃多余部分。当一个动作参数被连续重复记录多次时,提醒巡检人员操作有误。
S130、根据所述正常运行记录,生成包括所述动作参数的控制指令的指令集合。
在一具体的实施例中,若运行记录为“操作-后退,速度:300;机器人开始后退;操作-停止;机器人停止”,对应的控制指令可以是“复合机械臂以300速度后退,计数15000(其中,15000可以对应行走轮的转动圈数)停止”。
在又一具体的实施例中,若运行记录为“操作-摄像装置1摄像,云台坐标:(32283,34612,0),变倍:2300,延时:5000;摄像装置1开始摄像”,对应的控制指令可以是“相机号1,云台XYZ(32283,34612,0);变倍,相机号1,倍数2300,延时5000;拍照,相机号1,名称X,延时1500”。
在本实施例中,还可以根据指令集合所实现的功能,将指令集合保存为具有功能的功能指令子集合;其中,功能指令子集合用于与其他的功能指令子集合整合为指令集合。
在一具体的实施例中,可以生成控制越障机器人行进的第一功能指令子集合,控制越障机器人摄像的第二功能指令子集合。进一步的,可以在第一功能指令子集合之下放置第二功能指令子集合,即可实现先控制越障机器人行进到预置的位置,之后,控制云台移动,并进行图片或者视频的录制。
通过功能指令子集合的设置,可以方便的组合成不同的控制方案,不用每一次都进行预巡检的操作,节省了时间。对于高压输电线路而言,高压线塔的分布和线路的路线都相对固定,需要进行图像录制的位置也是固定的,因此,使用预巡检得到的运行记录所生成指令集合,可以在后续的巡检过程中被多次使用,而且可以保证控制指令执行的稳定性。
进一步的,在一实施例中,可以对指令集合中的控制命令的正确性进行验证,可以增加控制越障机器人的稳定性和安全性。
具体的,可以依次向越障机器人发送指令集合中的控制指令,越障机器人响应于控制指令,以按照控制指令中指定的动作参数进行动作;从越障机器人接收实际动作参数;当实际动作参数与当前的控制指令指定的动作参数不同时,确定当前的控制指令存在错误;对存在错误的控制指令进行调整后,用调整后的控制指令替换指令集合中当前的控制指令。
在具体的实施例中,一方面,可以依次将指令集合中的控制指令发送到越障机器人执行,另一方面,可以从越障机器人获取实际的动作参数或者实时录制的现场画面。进一步的,上位机可以对实际的动作参数或者实时录制的现场画面进行分析,当实际动作参数与当前的控制指令对应的动作参数相同时,则可以确定该动作参数对应的控制指令执行正确,可以达到期望。当实际动作参数与当前的控制指令对应的动作参数不同时,则说明该动作参数对应的控制指令执行错误,需要进行调整。具体的调整方式可以是,重新向越障机器人发送带有调整参数的调整指令,以控制该越障机器人动作到符合期望。之后,则可以根据上述的调整参数对指令集合中的控制指令进行调整,以调整到正确的动作参数。
S140、将携带有所述指令集合的巡检指令发送至所述越障机器人,使得所述越障机器人响应于所述巡检指令,以按照所述控制指令 对预置的所述高压输电线路进行巡检。
本实施例中,预置的所述高压输电线路可以设置为从高压线塔M到高压线塔N之间的高压输电线路,其中,M和N为高压线塔的编号。进一步的,还可以对越障机器人是否越过高压线塔进行设置,可以由指令集合中的控制指令控制越障机器人执行该越过高压线塔的动作。
进一步的,当越障机器人接收到针对预置的所述高压输电线路的指令集合时,即可以响应于该指令集合中的控制指令进行动作,以完成巡检的任务。
本实施例的技术方案中,一方面,使用一次性获取的运行记录生成指令集合,并在之后的巡检中,可以多次使用该指令集合自动对预置的高压输电线路进行巡检,是以自动化的方式实现了增加巡检的可靠性和安全性的技术效果;另一方面,对运行记录中的异常记录进行排除处理,得到正常运行记录;根据正常运行记录,生成包括动作参数的控制指令的指令集合,可以提高越障机器人响应控制指令的准确性。
实施例2
图2为本发明实施2中提供的一种高压输电线路越障机器人的巡检装置的结构示意图。参照图2,本实施例中提供的一种高压输电线路越障机器人的巡检装置,具体包括如下结构:运行记录获取模块210、异常排除模块220、指令集合生成模块230和巡检模块240。
运行记录获取模块210,用于获取越障机器人在对预置的高压输电线路进行预巡检的过程中所产生的运行记录,所述运行记录用于记录所述越障机器人中各执行部件的动作参数。
异常排除模块220,用于对所述运行记录中的异常记录进行排除处理,得到正常运行记录。
指令集合生成模块230,用于根据所述正常运行记录,生成包括所述动作参数的控制指令的指令集合。
巡检模块240,用于将携带有所述指令集合的巡检指令发送至所述越障机器人,使得所述越障机器人响应于所述巡检指令,以按照所述控制指令对预置的所述高压输电线路进行巡检。
本实施例提供的技术方案中,一方面,使用一次性获取的运行记录生成指令集合,并在之后的巡检中,可以多次使用该指令集合自动对预置的高压输电线路进行巡检,是以自动化的方式实现了增加巡检的可靠性和安全性的技术效果;另一方面,对运行记录中的异常记录进行排除处理,得到正常运行记录;根据正常运行记录,生成包括动作参数的控制指令的指令集合,可以提高越障机器人响应控制指令的准确性。
在上述技术方案的基础上,运行记录获取模块210,包括:
预巡检指令发送单元,用于向所述越障机器人的现场控制终端发送预巡检指令。
其中,所述现场控制终端响应于所述预巡检指令,以控制所述越障机器人对预置的高压输电线路进行预巡检,并将所述越障机器人中各执行部件的动作参数,记录为运行记录;
运行记录接收单元,用于从所述越障机器人接收所述运行记录。
在上述技术方案的基础上,所述异常记录包括干扰记录;
所述异常排除模块220,包括:
干扰确定单元,用于确定每一条运行记录是否为干扰记录;
重采单元,用于当运行记录为干扰记录时,则向所述越障机器人的现场控制终端发送重采指令。
其中,所述现场控制终端响应于所述重采指令,以重新采集所述越障机器人的动作参数,并生成重采的运行记录。
替换单元,用于使用所述重采的运行记录替换所述异常记录,以得到所述正常运行记录。
在上述技术方案的基础上,所述干扰记录包括:受到传输控制协 议通信干扰产生的第一干扰记录。
所述干扰确定单元,包括:
动作参数确定子单元,用于从每一条所述运行记录中确定每一执行部件的动作参数。
阈值范围获取子单元,用于获取预置的针对每一执行部件的所述动作参数的阈值范围。
第一干扰确定子单元,用于当所述动作参数超出所述阈值范围时,确定所述运行记录为第一干扰记录。
在上述技术方案的基础上,所述干扰记录包括:受到所述越障机器人与每一执行部件的串口读取干扰产生的第二干扰记录;
所述装置,还包括:
干扰通知接收模块,用于从所述越障机器人接收干扰通知,其中,所述干扰通知为所述越障机器人在确定一所述动作参数连续超出所述阈值范围时所发出的通知;
第二干扰确定模块,用于当接收到所述干扰通知时,确定所述运行记录为第二干扰记录。
在上述技术方案的基础上,所述异常记录包括:冗余记录;
所述异常排除模块220,包括:
唯一识别号确定单元,用于确定每一运行记录对应的唯一识别号。
冗余记录确定单元,用于若当前运行记录的唯一识别号与前一运行记录的唯一识别号相同时,确定当前运行记录为冗余记录。
重复删除单元,用于删除重复的所述当前冗余记录,以得到正常运行记录。
在上述技术方案的基础上,所述指令集合生成模块230,包括:
功能指令子集合保存单元,用于根据所述指令集合所实现的功能,将所述指令集合保存为具有所述功能的功能指令子集合;其中, 所述功能指令子集合用于与其他的功能指令子集合整合成为指令集合。
在上述技术方案的基础上,该装置还包括:
控制指令发送模块,用于在所述将携带有所述指令集合的巡检指令发送至所述越障机器人之前,依次向所述越障机器人发送所述指令集合中的控制指令,所述越障机器人响应于所述控制指令,以按照所述控制指令中指定的动作参数进行动作。
实际动作参数接收模块,用于从所述越障机器人接收实际动作参数;
控制指令验证模块,用于当所述实际动作参数与当前的所述控制指令中指定的动作参数不同时,确定当前的所述控制指令存在错误;
调整模块,用于对存在错误的所述控制指令进行调整后,用调整后的控制指令替换所述指令集合中当前的所述控制指令。
实施例3
图3为本发明实施3中提供的一种高压输电线路越障机器人的巡检设备的结构示意图。如图3所示,该高压输电线路越障机器人的巡检设备包括:处理器30、存储器31、输入装置32以及输出装置33。该高压输电线路越障机器人的巡检设备中处理器30的数量可以是一个或者多个,图3中以一个处理器30为例。该高压输电线路越障机器人的巡检设备中存储器31的数量可以是一个或者多个,图3中以一个存储器31为例。该高压输电线路越障机器人的巡检设备的处理器30、存储器31、输入装置32以及输出装置33可以通过总线或者其他方式连接,图3中以通过总线连接为例。该高压输电线路越障机器人的巡检设备可以是电脑和服务器等。本实施例以高压输电线路越障机器人的巡检设备为服务器进行详细说明,该服务器可以是独立服务器或集群服务器。
存储器31作为一种计算机可读存储介质,可用于存储软件程序、 计算机可执行程序以及模块,如本发明任意实施例所述的高压输电线路越障机器人的巡检方法对应的程序指令/模块(例如,高压输电线路越障机器人的巡检装置中的运行记录获取模块210、异常排除模块220、指令集合生成模块230和巡检模块240)。存储器31可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器31可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器31可进一步包括相对于处理器30远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置32可用于接收输入的数字或者字符信息,以及产生与高压输电线路越障机器人的巡检设备的设置以及功能控制有关的键信号输入,还可以是用于获取图像的摄像头以及获取音频数据的拾音设备。输出装置33可以包括扬声器等音频设备。需要说明的是,输入装置32和输出装置33的具体组成可以根据实际情况设定。
处理器30通过运行存储在存储器31中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述的高压输电线路越障机器人的巡检方法。
实施例4
本发明实施例4还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种高压输电线路越障机器人的巡检方法,包括:
获取越障机器人在对预置的高压输电线路进行预巡检的过程中所产生的运行记录,所述运行记录用于记录所述越障机器人中各执行部件的动作参数;
对所述运行记录中的异常记录进行排除处理,得到正常运行记录;
根据所述正常运行记录,生成包括所述动作参数的控制指令的指令集合;
将携带有所述指令集合的巡检指令发送至所述越障机器人,使得所述越障机器人响应于所述巡检指令,以按照所述控制指令对预置的所述高压输电线路进行巡检。
当然,本发明实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的高压输电线路越障机器人的巡检方法操作,还可以执行本发明任意实施例所提供的高压输电线路越障机器人的巡检方法中的相关操作,且具备相应的功能和有益效果。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本发明可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是机器人,个人计算机,服务器,或者网络设备等)执行本发明任意实施例所述的高压输电线路越障机器人的巡检方法。
值得注意的是,上述高压输电线路越障机器人的巡检装置中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组 合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“在一实施例中”、“在又一实施例中”、“示例性的”或“在具体的实施例中”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (11)

  1. 一种高压输电线路越障机器人的巡检方法,其特征在于,包括:
    获取越障机器人在对预置的高压输电线路进行预巡检的过程中所产生的运行记录,所述运行记录用于记录所述越障机器人中各执行部件的动作参数;
    对所述运行记录中的异常记录进行排除处理,得到正常运行记录;
    根据所述正常运行记录,生成包括所述动作参数的控制指令的指令集合;
    将携带有所述指令集合的巡检指令发送至所述越障机器人,使得所述越障机器人响应于所述巡检指令,以按照所述控制指令对预置的所述高压输电线路进行巡检。
  2. 根据权利要求1所述的方法,其特征在于,所述获取越障机器人在对预置的高压输电线路进行预巡检的过程中所产生的运行记录,包括:
    向所述越障机器人的现场控制终端发送预巡检指令;
    所述现场控制终端响应于所述预巡检指令,以控制所述越障机器人对预置的高压输电线路进行预巡检,并将所述越障机器人中各执行部件的动作参数,记录为运行记录;
    从所述越障机器人接收所述运行记录。
  3. 根据权利要求1所述的方法,其特征在于,所述异常记录包括干扰记录;
    所述对所述运行记录中的异常记录进行排除处理,得到正常运行记录,包括:
    确定每一条运行记录是否为干扰记录;
    若是,则向所述越障机器人的现场控制终端发送重采指令;
    所述现场控制终端响应于所述重采指令,以重新采集所述越障机器人的动作参数,并生成重采的运行记录;
    使用所述重采的运行记录替换所述异常记录,以得到所述正常运行记录。
  4. 根据权利要求3所述的方法,其特征在于,所述干扰记录包括:受到传输控制协议通信干扰产生的第一干扰记录;
    所述确定每一条运行记录是否为干扰记录,包括:
    从每一条所述运行记录中确定每一执行部件的动作参数;
    获取预置的针对每一执行部件的所述动作参数的阈值范围;
    当所述动作参数超出所述阈值范围时,确定所述运行记录为第一干扰记录。
  5. 根据权利要求4所述的方法,其特征在于,所述干扰记录包括:受到所述越障机器人与每一执行部件的串口读取干扰产生的第二干扰记录;
    所述方法,还包括:
    从所述越障机器人接收干扰通知,其中,所述干扰通知为所述越障机器人在确定一所述动作参数连续超出所述阈值范围时所发出的通知;
    当接收到所述干扰通知时,确定所述运行记录为第二干扰记录。
  6. 根据权利要求3-5任一所述的方法,其特征在于,所述异常记录包括:冗余记录;
    所述对所述运行记录中的异常记录进行排除处理,得到正常运行记录,包括:
    确定每一运行记录对应的唯一识别号;
    若当前运行记录的唯一识别号与前一运行记录的唯一识别号相同时,确定当前运行记录为冗余记录;
    删除所述冗余记录,以得到正常运行记录。
  7. 根据权利要求1所述的方法,其特征在于,所述根据所述正常运行记录,生成包括所述动作参数的控制指令的指令集合,包括:
    根据所述指令集合所实现的功能,将所述指令集合保存为具有所述功能的功能指令子集合;各个所述功能指令子集合整合成为指令集合。
  8. 根据权利要求1所述的方法,其特征在于,在所述将携带有所述指令集合的巡检指令发送至所述越障机器人之前,还包括:
    依次向所述越障机器人发送所述指令集合中的控制指令,所述越障机器人响应于所述控制指令,以按照所述控制指令中指定的动作参数进行动作;
    从所述越障机器人接收实际动作参数;
    当所述实际动作参数与当前的所述控制指令中指定的动作参数不同时,确定当前的所述控制指令存在错误;
    对存在错误的所述控制指令进行调整,用调整后的控制指令替换所述指令集合中当前的所述控制指令。
  9. 一种高压输电线路越障机器人的巡检装置,其特征在于,包括:
    运行记录获取模块,用于获取越障机器人在对预置的高压输电线路进行预巡检的过程中所产生的运行记录,所述运行记录用于记录所述越障机器人中各执行部件的动作参数;
    异常排除模块,用于对所述运行记录中的异常记录进行排除处理,得到正常运行记录;
    指令集合生成模块,用于根据所述正常运行记录,生成包括所述动作参数的控制指令的指令集合;
    巡检模块,用于将携带有所述指令集合的巡检指令发送至所述越障机器人,使得所述越障机器人响应于所述巡检指令,以按照所述控制指令对预置的所述高压输电线路进行巡检。
  10. 一种高压输电线路越障机器人的巡检设备,其特征在于,包 括:存储器以及一个或多个处理器;
    所述存储器,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行时,实现如权利要求1-8中任一所述的高压输电线路越障机器人的巡检方法。
  11. 一种包含计算机可执行指令的存储介质,其特征在于,所述计算机可执行指令在由计算机处理器执行时用于实现如权利要求1-8中任一所述的高压输电线路越障机器人的巡检方法。
PCT/CN2021/099421 2020-12-07 2021-06-10 一种高压输电线路越障机器人的巡检方法及相关设备 WO2022121264A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011413273.0 2020-12-07
CN202011413273.0A CN112563970B (zh) 2020-12-07 2020-12-07 一种高压输电线路越障机器人的巡检方法及相关设备

Publications (1)

Publication Number Publication Date
WO2022121264A1 true WO2022121264A1 (zh) 2022-06-16

Family

ID=75058812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099421 WO2022121264A1 (zh) 2020-12-07 2021-06-10 一种高压输电线路越障机器人的巡检方法及相关设备

Country Status (2)

Country Link
CN (1) CN112563970B (zh)
WO (1) WO2022121264A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563970B (zh) * 2020-12-07 2022-07-29 广东科凯达智能机器人有限公司 一种高压输电线路越障机器人的巡检方法及相关设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085804A1 (en) * 2005-02-14 2006-08-17 Abb Research Ltd Line inspection
CN108390312A (zh) * 2018-03-23 2018-08-10 国网上海市电力公司 一种架空配电线路巡检机器人作业方法
CN111076726A (zh) * 2019-12-31 2020-04-28 深圳供电局有限公司 巡检机器人视觉辅助避障方法及其装置、设备和存储介质
CN111316185A (zh) * 2019-02-26 2020-06-19 深圳市大疆创新科技有限公司 可移动平台的巡检控制方法和可移动平台
CN111673753A (zh) * 2020-07-16 2020-09-18 广州安廷数字技术有限公司 一种巡检机器人预巡检路线控制方法
CN112563970A (zh) * 2020-12-07 2021-03-26 广东科凯达智能机器人有限公司 一种高压输电线路越障机器人的巡检方法及相关设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604482A (zh) * 2008-06-13 2009-12-16 上海宝康电子控制工程有限公司 交通设备综合控制装置及系统
CN107294796A (zh) * 2017-08-14 2017-10-24 宁波甬凌新材料科技有限公司 一种电力通信网络故障的定位方法
CN109334543B (zh) * 2018-11-19 2021-03-16 国网电子商务有限公司 一种电力巡检车与无人机相协同的电力巡线系统及方法
CN109659859A (zh) * 2019-01-28 2019-04-19 广东科凯达智能机器人有限公司 输电线路智能巡检系统
CN110532314A (zh) * 2019-08-30 2019-12-03 国家电网有限公司 高压电器质量检测的方法及终端设备
CN110875851B (zh) * 2019-10-25 2022-04-19 袁茂银 地下电缆故障预警方法和装置
CN110954167B (zh) * 2019-12-11 2022-02-15 云南电网有限责任公司昆明供电局 一种巡线机器人故障检修与自检数据采集方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085804A1 (en) * 2005-02-14 2006-08-17 Abb Research Ltd Line inspection
CN108390312A (zh) * 2018-03-23 2018-08-10 国网上海市电力公司 一种架空配电线路巡检机器人作业方法
CN111316185A (zh) * 2019-02-26 2020-06-19 深圳市大疆创新科技有限公司 可移动平台的巡检控制方法和可移动平台
CN111076726A (zh) * 2019-12-31 2020-04-28 深圳供电局有限公司 巡检机器人视觉辅助避障方法及其装置、设备和存储介质
CN111673753A (zh) * 2020-07-16 2020-09-18 广州安廷数字技术有限公司 一种巡检机器人预巡检路线控制方法
CN112563970A (zh) * 2020-12-07 2021-03-26 广东科凯达智能机器人有限公司 一种高压输电线路越障机器人的巡检方法及相关设备

Also Published As

Publication number Publication date
CN112563970A (zh) 2021-03-26
CN112563970B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
EP3734549A1 (en) System and method for fault detection and correction
US11317019B2 (en) Image capturing apparatus, system, and method
US9047922B2 (en) Autonomous event logging for drive failure analysis
US10282827B2 (en) Method and system for removal of rain streak distortion from a video
WO2022121264A1 (zh) 一种高压输电线路越障机器人的巡检方法及相关设备
CN112465812B (zh) 光伏组件的灰尘检测装置及方法
US20200133761A1 (en) Smart system dump
CN112651949A (zh) 3d打印监控方法、装置、电子设备及存储介质
US11659140B2 (en) Parity-based redundant video storage among networked video cameras
JP2021144314A (ja) 学習装置、画像検査装置、学習済みパラメータ、学習方法、および画像検査方法
JP2014072899A (ja) 監視カメラにおける方法及び構成
CN112652085A (zh) 一种机房巡检数据处理方法、装置、系统和存储介质
EP3407598B1 (en) Image capturing apparatus, system, and method
US20120134534A1 (en) Control computer and security monitoring method using the same
CN110779446A (zh) 电池检测方法、装置、电子设备及电池检测系统
CN113885404A (zh) 一种基于通用接口的多机器人协同控制系统
US20120131393A1 (en) Detecting System Component Failures In A Computing System
CN112418714A (zh) 一种建筑施工数据安全检测方法、装置及服务器
CN111847256B (zh) 机械结构的回转监控方法、系统及工程机械
JP6290537B2 (ja) 監視カメラ映像記録装置の映像監視システム及び映像監視システムにおける監視カメラ映像記録装置の健常性確認方法
CN115031640B (zh) 一种列车轮对在线检测方法、系统、设备及存储介质
US11800230B2 (en) Image processing apparatus of reducing whole operation time of arrival inspection, image processing method, and storage medium
EP4099679A1 (en) Method and apparatus for operating a camera control system
US20210099641A1 (en) Image capturing apparatus, method of controlling image capturing apparatus, and storage medium
CN112672106A (zh) 一种用于管道机器人检测过程中的自动截图方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21901977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21901977

Country of ref document: EP

Kind code of ref document: A1