WO2022121223A1 - 连续式转晶与离子交换装置及工艺 - Google Patents

连续式转晶与离子交换装置及工艺 Download PDF

Info

Publication number
WO2022121223A1
WO2022121223A1 PCT/CN2021/091321 CN2021091321W WO2022121223A1 WO 2022121223 A1 WO2022121223 A1 WO 2022121223A1 CN 2021091321 W CN2021091321 W CN 2021091321W WO 2022121223 A1 WO2022121223 A1 WO 2022121223A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion exchange
reaction tank
reaction
crystallization
cycle
Prior art date
Application number
PCT/CN2021/091321
Other languages
English (en)
French (fr)
Inventor
杨家路
张拥兵
龚强
袁永恒
Original Assignee
苏州立昂新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州立昂新材料有限公司 filed Critical 苏州立昂新材料有限公司
Priority to DE112021005560.7T priority Critical patent/DE112021005560T5/de
Priority to JP2023535887A priority patent/JP2023549425A/ja
Priority to US18/037,464 priority patent/US11845073B1/en
Publication of WO2022121223A1 publication Critical patent/WO2022121223A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/016Modification or after-treatment of ion-exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/14Controlling or regulating
    • B01J47/15Controlling or regulating for obtaining a solution having a fixed pH
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/14Type A

Definitions

  • the invention relates to a technology in the field of molecular sieve manufacturing, in particular to a continuous crystallisation and ion exchange device and process.
  • molecular sieves were originally found in natural minerals and were used for drying and purification of fluids. With the development of science and technology, molecular sieves are widely used in many industries, especially today's petrochemical and gas separation industries have become the largest users of molecular sieves. Due to the scarcity of natural minerals and the limitation of types, people use alumina, silica, alkali or clay minerals as raw materials to synthesize various types of molecular sieves, and large-scale industrial production and applications have been formed. . Most of the synthetic molecular sieves are powders with a size of 1-10 ⁇ m.
  • this small molecular sieve crystal has good adsorption performance, catalytic performance and thermal stability, it will form dust space in use, pollute the environment, and be inconvenient to operate.
  • a certain amount of binder must be added to the molecular sieve powder.
  • the molecular sieves are made into aggregates of the desired size and shape with a certain mechanical strength.
  • the most commonly used method is to use clay and molecular sieve powder to bond and form.
  • kaolin is selected for clay (the main basis for synthesizing zeolite molecular sieve from kaolin is the similarity of structure and composition), attapulgite, bentonite, montmorillonite, etc.
  • the dosage generally accounts for 2-20wt% of the total, and the performance of the molecular sieve after molding varies with the type and proportion of the added binder.
  • the main function of the binder is to surround the uneven surface of the powder particles, increase the plasticity, and also have the effect of dilution and lubrication, and reduce the internal friction.
  • the binder is generally converted into substances with no adsorption activity or very low adsorption activity. Therefore, the addition of the binder reduces the adsorption performance, catalytic performance and thermal stability of the molecular sieve.
  • X-type zeolite molecular sieves with a silica-alumina ratio between 1.0 and 1.1 are called low-silica-alumina X-type zeolite molecular sieves (LSX). Due to the smallest radius of Li + and the largest charge density, compared with Na + , Ca 2+ , Mg 2+ plasma zeolite molecular sieve, LiX zeolite molecular sieve has better oxygen-enriching performance, and the adsorption capacity of nitrogen is higher than that of ordinary X-type zeolite Molecular sieves are more than 50% higher, and Li-LSX zeolite molecular sieves have larger nitrogen adsorption capacity and nitrogen and oxygen separation capacity than ordinary X zeolite molecular sieves, thus showing superiority in gas separation and thus widely used in industry.
  • LSX low-silica-alumina X-type zeolite molecular sieves Due to the smallest radius of Li + and the largest charge density, compared
  • the more common methods are aqueous solution exchange and melt exchange, in addition to non-aqueous solution exchange and steam exchange.
  • the aqueous solution exchange method can achieve a high degree of exchange, it requires multiple exchanges or continuous exchanges. Because the exchange conditions are relatively mild (temperature from room temperature to 100 ° C, time for tens of minutes to several hours), it is easy to achieve industrialization, so this This method is currently the most widely used in large-scale production. However, if multiple exchanges are used, after one or two exchanges, the exchange degree of subsequent exchanges increases slowly, and the exchange efficiency decreases; while continuous exchange requires a large amount of exchange solution and the waste phenomenon is serious.
  • molten salt exchange method can eliminate the interference of solvent effects
  • molten salts with high ionization properties such as alkali metal halides, sulfates or nitrates can be used as molten salt solutions for cation exchange, but it requires the formation of molten salt solutions.
  • the temperature must be lower than the destruction temperature of the zeolite structure, and in addition to the cation exchange reaction in the molten salt solution, some salts are also contained in the zeolite cage (the degree of occlusion is related to the size of the anion and the exchange temperature), which may form Zeolite with special properties.
  • Patent USP5916836 (1999) has reported that Li-LSX type zeolite molecular sieves with an exchange degree of up to 97% have been obtained by this method, but the shortcomings of this method, such as the influence of high temperature on the solvent, have not been well resolved, and the exchange conditions More harsh and uneven exchange, so less applications and reports.
  • the present invention is derived from this.
  • the present invention proposes a continuous crystallisation and ion exchange device and process for preparing the finished zeolite molecular sieve, which has the advantages of high exchange degree, simple process and low cost.
  • the invention relates to a continuous crystallisation and ion exchange device, comprising M+N reaction tanks connected in series, the feed port of the latter reaction tank is communicated with the discharge port of the former reaction tank through a reaction solution circulation pipeline, and the first reaction tank is The discharge ports of M+N reaction tanks are communicated with the feed port of the first reaction tank through the reaction solution circulation pipeline; wherein, no more than M reaction tanks are used for the crystallization process, and no more than N reaction tanks are used for ionization exchange process;
  • All reaction tanks are equipped with four solution inlet pipes, three solution outlet pipes and one reaction solution circulation pipe.
  • the four solution inlet pipes are deionized water inlet pipe, new alkali solution inlet pipe, new ion exchange liquid inlet pipe and
  • the pH adjustment liquid inlet pipe, the three solution outlet pipes are the waste water outlet pipe, the waste alkali liquor outlet pipe and the waste ion exchange liquid outlet pipe;
  • the pipeline connected to the reaction tank is controlled to open and close through a valve.
  • m are reaction tanks for the crystallization process, which are used to load the molecular sieve raw materials for crystallization;
  • M-m are transition reaction tanks for the ion exchange process, which are used to load the intermediate products to be ion exchanged after the crystallization;
  • n One is the ion exchange process reaction tank, which is used to load the intermediate product for ion exchange;
  • N-n are the transition reaction tank of the crystal transformation process, which is used to load the molecular sieve raw material to be crystallized;
  • n is not greater than N.
  • the present invention relates to a kind of continuous crystallization and ion exchange process, based on the above-mentioned continuous crystallization and ion exchange device, including the following process:
  • a neo-alkali solution is introduced into the first of the m crystal transformation process reaction tanks, and the reaction solution flowing out from the first crystal transformation process reaction tank is passed into the second crystal transformation process reaction as a primary alkali solution Tank, the reaction solution flowing out in the second crystallizing process reaction tank is passed into the third crystallizing process reaction tank as secondary alkali solution, and so on, until the reaction solution flowing out of the mth crystallizing process reaction tank is used as waste.
  • the lye liquid is discharged; after a period of time, the molecular sieve crystallization in the first crystallization process reaction tank is completed first, and the new alkali solution inlet pipeline and the reaction solution circulation pipeline of the first crystallization process reaction tank are closed to convert it into An ion exchange process transition reaction tank; before the next cycle starts, at least one of the remaining ion exchange process transition reaction tanks that have been cleaned is sequentially connected to the tail of the ion exchange process cycle, and the connected ion exchange process transition reaction tank is There is one reaction tank for the last ion exchange process, and the second reaction tank for the crystallization process in this cycle is used as the first reaction tank for the crystallization process in the next cycle, and a new cycle is started immediately; Before starting, ensure that at least one of the ion exchange process transition reaction tanks completes the cleaning operation for access to the tail of the ion exchange process cycle;
  • a new ion exchange liquid is passed to the first one of the n ion exchange process reaction tanks, and the first ion exchange process reaction tank
  • the reaction solution flowing out of the ion exchange process is passed into the second ion exchange process reaction tank as a primary ion exchange liquid, and the reaction solution flowing out from the second ion exchange process reaction tank is passed into the third ion exchange process reaction tank as a secondary ion exchange process.
  • the reaction solution flowing out of the nth ion exchange process reaction tank is discharged as waste ion exchange liquid; after a period of time, the molecular sieve ion exchange in the first ion exchange process reaction tank is completed first, and the first The new ion exchange liquid inlet pipe and the reaction solution circulation pipe of each ion exchange process reaction tank are converted into a transition reaction tank for the crystallization process; At least one of them is connected to the tail of the crystal transformation process cycle in order, and one of the connected crystal transformation process transition reaction tanks is used as the last crystal transformation process reaction tank, and the second ion exchange process reaction tank in this cycle is used as the The first ion exchange process reaction tank in the next cycle will start a new cycle immediately; before the start of the new cycle, ensure that at least one of the transition reaction tanks of the crystallization process completes the operation of replacing the molecular sieve raw material for access The tail of the crystal transformation process cycle;
  • the operation process of replacing the molecular sieve raw materials is as follows: first, the finished zeolite molecular sieve is washed with deionized water, then unloaded, and finally new molecular sieve raw materials are loaded.
  • the flow direction of the liquid is switched through the valve, and the second crystallization process reaction tank is used as the first crystallization process reaction tank in the next cycle, and the second ion exchange process reaction tank is used as the lower
  • the first ion exchange process reaction tank in one cycle starts the second cycle; after the end of the second cycle, the third recrystallization process reaction tank is used as the first recrystallization process reaction tank in the next cycle , take the third ion exchange process reaction tank as the first ion exchange process reaction tank in the next cycle, and start the third cycle; and so on, in previous cycles, perform continuous dynamic switching to maintain the transformation process reaction
  • the number of tanks and the number of reaction tanks for the ion exchange process remain unchanged.
  • the first crystallization process reaction tank in each cycle is a reaction tank for feeding new alkali solution
  • the first ion exchange process reaction tank in each cycle is a reaction tank for feeding new ion exchange liquid.
  • the neo-alkali solution includes at least one of lithium hydroxide, potassium hydroxide, sodium hydroxide, calcium hydroxide, and magnesium hydroxide, preferably sodium hydroxide or potassium hydroxide.
  • the new ion exchange liquid is the solution corresponding to the target ion in the finished molecular sieve obtained by the ion exchange process;
  • the new ion exchange liquid can be calcium chloride solution
  • the new ion exchange liquid can be at least one of lithium sulfate solution, lithium chloride and lithium nitrate solution, preferably lithium sulfate solution; using lithium sulfate has the following advantages: due to the existence of chloride ions, lithium chloride, It is corrosive to equipment and has high requirements for equipment materials; due to the existence of chloride ions, waste liquid treatment is troublesome and unfriendly to the environment; due to the existence of nitrate ions, it will increase the pollution index of total nitrogen in wastewater. Emission control is very strict; sulfate ions are larger than chloride ions, and are easy to clean. When used as a special adsorbent, there will be no secondary pollution of sulfate radicals. Since sulfate radicals have little impact on the environment, waste treatment is reduced. amount.
  • a corresponding amount of pH adjustment solution is introduced into the corresponding reaction tank to stabilize the pH value of each reaction tank.
  • the pH adjustment solution includes at least one of lithium hydroxide, potassium hydroxide, sodium hydroxide, calcium hydroxide, and magnesium hydroxide, and lithium hydroxide is preferred for lithium-type molecular sieves.
  • all reaction tanks are arranged in a space with constant temperature control.
  • the molecular sieve raw materials refer to low-silicon sodium type, low silicon sodium-potassium type, 4A molecular sieve and 5A molecular sieve, and the molecular sieve raw material contains kaolin and/or foreign crucible binder.
  • the intermediate product is the whole zeolite molecular sieve obtained by the crystallization process.
  • the present invention has the following technical effects:
  • Fig. 1 is the flow chart of the cycle process of Example 1.
  • this embodiment includes: M+N reaction tanks connected in series, the feed port of the latter reaction tank is communicated with the discharge port of the former reaction tank through the reaction solution circulation pipeline, the M+Nth The outlet of the reaction tank is communicated with the inlet of the first reaction tank through a reaction solution circulation pipeline.
  • All reaction tanks are equipped with four solution inlet pipelines, three solution outlet pipelines and one reaction solution circulation pipeline.
  • the four solution inlet pipelines are deionized water inlet pipeline, new alkali solution inlet pipeline, new lithium solution inlet pipeline and pH.
  • Adjustment liquid inlet pipe, three solution outlet pipes are waste water outlet pipe, waste lye outlet pipe and waste lithium liquid outlet pipe respectively.
  • the present embodiment is illustrated with Fig. 1 as an example, wherein, the reaction tanks of numbering Z 1 to Z m are reaction tanks of the transformation process, and the reaction tanks of Z m+1 to Z M are the transition reaction tanks of the transformation process; numbering L 1
  • the reaction tank to L n is a lithium-ion process reaction tank, and the reaction tank from L n+1 to L N is a lithium-ion process transition reaction tank; this embodiment is used for the preparation of lithium-type molecular sieves.
  • reaction solution flowing out in Z 1 reaction tank is passed into Z 2 reaction tank as a primary alkali solution and continue to carry out crystal transformation reaction
  • the reaction solution flowing out in the Z 2 reaction tank is passed into the Z 3 reaction tank as a secondary alkali solution and continues to carry out the transcrystallization reaction; by analogy, the reaction solution flowing out to the Z m-1 reaction tank is used as the m-1 secondary alkali solution.
  • the reaction solution flowing out of the Z m reaction tank is discharged as a waste liquid through the waste alkali liquor outlet pipe; after the Z 1 reaction tank is fully transformed, the deionized water is cleaned as a new product.
  • the Z m+1 reaction tank cleaned by deionized water is connected to the tail of the crystallization process as the last reaction tank of the crystallization process;
  • the flow direction of the liquid is switched through the valve, and the second crystallization process reaction tank is used as the first crystallization process reaction tank in the next cycle, and the second lithium transfer process reaction tank is used as the lower
  • the first lithium transfer process reaction tank in one cycle starts the second cycle; after the second cycle is over, the third crystal transformation process reaction tank is used as the first crystal transformation process reaction tank in the next cycle , take the third lithium exchange process reaction tank as the first lithium exchange process reaction tank in the next cycle, and start the third cycle; and so on, in previous cycles, continuous dynamic switching is performed to maintain the transformation process reaction.
  • the number of tanks and the number of reaction tanks for the lithium transfer process remain unchanged.
  • the first crystallization process reaction tank in each cycle is a reaction tank for feeding new alkali solution
  • the first lithium transfer process reaction tank in each cycle is a reaction tank for feeding new lithium liquid.
  • the neo-alkali solution is preferably sodium hydroxide or potassium hydroxide.
  • the fresh lithium solution is preferably lithium sulfate.
  • a corresponding amount of pH adjustment solution is introduced into the corresponding reaction tank to stabilize the pH value of each reaction tank.
  • the pH adjustment solution is preferably lithium hydroxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

一种连续式转晶与离子交换装置及工艺,属于分子筛制造技术领域。该连续式转晶与离子交换装置包括串联连接的M+N个反应罐,后一个反应罐的进料口与前一个反应罐的出料口通过反应溶液循环管道连通,第M+N个反应罐的出料口与第一个反应罐的进料口通过反应溶液循环管道连通;其中,不超过M个反应罐用于转晶工艺,不超过N个反应罐用于离子交换工艺。本发明用于制备沸石分子筛成品,具有交换度较高、工艺简单、成本低廉等优点。

Description

连续式转晶与离子交换装置及工艺 技术领域
本发明涉及的是一种分子筛制造领域的技术,具体是一种连续式转晶与离子交换装置及工艺。
背景技术
分子筛最初发现于天然矿物,当时被用于流体的干燥和净化。随着科学技术的发展,分子筛被广泛地应于许多行业,尤其当今的石油化工和气体分离行业成了分子筛的最大用户。由于天然矿物的匮乏和种类的局限性,人们采用氧化铝、氧化硅、碱或以粘土类矿物质为原料,人工合成出了各种类型的分子筛,并已形成了大规模的工业生产和应用。人工合成出的分子筛多是尺寸为1~10μm的粉体。这种细小的分子筛晶体虽然有着良好的吸附性能、催化性能和热稳定性能等,但在使用中会形成粉尘空间,污染环境,操作也不方便,必须在分子筛粉末中加入一定量的粘结剂,将分子筛制成所需尺寸和形状,具有一定机械强度的聚集体。采用粘土和分子筛粉体粘结成型是最普遍运用的方法,粘土一般选择高岭土(以高岭土为原料合成沸石分子筛的主要依据是结构组成的相似性),凹凸棒土,膨润土,蒙脱土等中的一种或几种,用量一般占总量的2~20wt%,成型后分子筛的性能随加入粘结剂的种类和比例不同而不同。粘结剂的作用主要是包围粉粒表面不平处,增加可塑性,同时还有稀释和润滑作用,减少内摩擦的作用。但在沸石分子筛的焙烧成型过程中,粘结剂一般会转化为无吸附活性或吸附活性很低物质,因此粘结剂的加入降低了分子筛的吸附性能、催化性能和热稳定性能等。因此,采用高岭土作为粘结剂成型分子筛后,通过相应的转晶处理,生成无粘结剂全沸石分子筛是目前主流的方案。据相关文献,Breck等人早在1974年通过将高岭土焙烧或热活化后在碱液中水热处理生成沸石分子筛。
硅铝比在1.0-1.1之间的X型沸石分子筛被称为低硅铝X型沸石分子筛(LSX)。由于Li +半径最小,电荷密度最大,相比于Na +,Ca 2+,Mg 2+等离子的沸石分子筛,LiX沸石分子筛具有较好的富氧性能,对氮气的吸附容量比普通的X型沸石分子筛高出50%以上,而Li-LSX沸石分子筛比普通的X沸石分子筛则具有更大的氮气吸附容量和氮氧分离能力,从而在气体分离方面表现出优越性并由此在工业上得到广泛应用,例如变压吸附分离(PSA)和真空变压吸附分离(VSA)等分离过程。实验证明,只有当Li-LSX型沸石分子筛中Li交换度大于70%,其氮气吸附容量才会迅速增加。因此,在锂盐价格持续上涨和LSX沸石分子筛骨架中个别位置上钠离子较难交换的情况下,如何用 较低的生产成本和合理的工艺条件得到较高的离子交换度就成为本领域的研究焦点之一。
以Na-LSX型沸石分子筛为原料制备Li-LSX型沸石分子筛的过程中,比较常见的方法是水溶液交换和熔融交换,另外还有非水溶液交换和蒸汽交换等方法。水溶液交换法虽然可以达到较高的交换度,但需要多次交换或者连续交换,由于交换条件较为温和(温度为室温到100℃,时间为数十分钟到数小时),容易实现工业化,所以这种方法目前在规模化生产中应用最为广泛。但是,若采用多次交换,经过一到二次交换后,后续交换的交换度提高缓慢,交换效率降低;而连续交换则需要大量的交换溶液且浪费现象严重。
国内崔邑诚等人通过水溶液多次交换法(化学学报,2003,61(3):350-353)使锂离子的交换度达到了98%以上,郭岱石等人(离子交换与吸附,2002,18(6):516-521)也得到了约96%的交换度。国外也有报道利用此法得到具有不同交换度的Li-LSX沸石分子筛(USP3140933,1964;USP5464467,1995;USP5932509,1999和USP5916836,1999)。但是在如何节约锂盐以及如何简化生产工艺等这些关键环节上,上述研究都没有获得突破。美国专利USP6053966(2000)虽然提出非均匀吸附过程来降低工艺成本,但是这种方法会导致吸附剂性能下降,因而限制了它的应用范围。
熔盐交换法虽然可以消除溶剂效应的干扰,具有高离子化性能的熔盐如碱金属的卤化物、硫酸盐或硝酸盐都可以用来作为阳离子交换的熔盐溶液,但要求形成熔盐溶液的温度必须低于沸石结构的破坏温度,另外在熔盐溶液中除有阳离子交换反应外,还有一部分盐类包藏在沸石笼内(包藏程度与阴离子的大小和交换温度有关),有可能形成特殊性能的沸石。美国专利USP5916836(1999)曾报道通过此法获得了交换度高达97%的Li-LSX型沸石分子筛,但是这种方法的缺点如高温对溶剂的影响等都未得到很好的解决,且交换条件较为苛刻和交换不均匀,所以应用和报道都较少。
为了解决现有技术存在的上述问题,本发明由此而来。
发明内容
本发明针对现有技术存在的上述不足,提出了一种连续式转晶与离子交换装置及工艺,用于制备沸石分子筛成品,具有交换度较高、工艺简单、成本低廉等优点。
本发明涉及一种连续式转晶与离子交换装置,包括串联连接的M+N个反应罐,后一个反应罐的进料口与前一个反应罐的出料口通过反应溶液循环管道连通,第M+N个反应罐的出料口与第一个反应罐的进料口通过反应溶液循环管道连通;其中,不超过M个反应罐用于转晶工艺,不超过N个反应罐用于离子交换工艺;
所有反应罐均配置有四个溶液入口管道、三个溶液出口管道和一个反应溶液循环管道,四个溶液入口管道分别为去离子水入口管道、新碱溶液入口管道、新离子交换液入口管道和pH调整液入口管道,三个溶液出口管道分别为废水出口管道、废碱液出口管道和废离子交换液出口管道;
与反应罐连通的管道通过阀门控制开闭。
在一些技术方案中,m个为转晶工艺反应罐,用于装载进行转晶的分子筛原料;M-m个为离子交换工艺过渡反应罐,用于装载经转晶后待离子交换的中间产物;n个为离子交换工艺反应罐,用于装载进行离子交换的中间产物;N-n个为转晶工艺过渡反应罐,用于装载待转晶的分子筛原料;
m不大于M,n不大于N。
本发明涉及一种连续式转晶与离子交换工艺,基于上述连续式转晶与离子交换装置,包括以下过程:
在一次循环中,向m个转晶工艺反应罐中的第一个通入新碱溶液,第一个转晶工艺反应罐中流出的反应溶液作为一次碱溶液通入第二个转晶工艺反应罐,第二个转晶工艺反应罐中流出的反应溶液作为二次碱溶液通入第三个转晶工艺反应罐,以此类推,直到第m个转晶工艺反应罐流出的反应溶液作为废碱液排出;经过一段时间,第一个转晶工艺反应罐中的分子筛转晶最先完成,关闭第一个转晶工艺反应罐的新碱溶液入口管道以及反应溶液循环管道,使之转变成离子交换工艺过渡反应罐;在下一次循环开始前,将其余已完成清洗的离子交换工艺过渡反应罐中的至少一个按次序接入离子交换工艺循环的尾部,接入的离子交换工艺过渡反应罐中有一个作为最后一个离子交换工艺反应罐,将本次循环中的第二个转晶工艺反应罐作为下一次循环中的第一个转晶工艺反应罐,随即开始新的循环;在新的循环开始前,保证离子交换工艺过渡反应罐中的至少一个完成清洗作业以用于接入离子交换工艺循环的尾部;
在向m个转晶工艺反应罐中的第一个通入新碱溶液的同时,向n个离子交换工艺反应罐中的第一个通入新离子交换液,第一个离子交换工艺反应罐中流出的反应溶液作为一次离子交换液通入第二个离子交换工艺反应罐,第二个离子交换工艺反应罐中流出的反应溶液作为二次离子交换液通入第三个离子交换工艺反应罐,以此类推,直到第n个离子交换工艺反应罐中流出的反应溶液作为废离子交换液排出;经过一段时间,第一个离子交换工艺反应罐中的分子筛离子交换最先完成,关闭第一个离子交换工艺反应罐的新离子交换液入口管道以及反应溶液循环管道,使之转变成转晶工艺过渡反应罐;在下一次循环开始前,将换装有分子筛原料的转晶工艺过渡反应罐中的至少一个按次序接入转晶工艺循环的尾部,接入的转晶工艺过渡反应罐中有一个作为最后一个转晶工艺反应罐,将本次循环中的第二个离子交换工艺反应罐作为下一次循环中的第一个离子交换工艺反应罐,随即开始新的循环;在新的循环开始前,保证转晶工艺过渡反应罐中的至少一个完成换装分子筛原 料的作业以用于接入转晶工艺循环的尾部;
通过循环实现连续式转晶与离子交换。
换装分子筛原料的作业过程如下:先去离子水清洗沸石分子筛成品、再卸料,最后装入新的分子筛原料。
在第一个循环结束后,通过阀门切换液流流向,将第二个转晶工艺反应罐作为下一个循环中的第一个转晶工艺反应罐,将第二个离子交换工艺反应罐作为下一个循环中的第一个离子交换工艺反应罐,开始第二个循环;在第二个循环结束后,将第三个转晶工艺反应罐作为下一个循环中的第一个转晶工艺反应罐,将第三个离子交换工艺反应罐作为下一个循环中的第一个离子交换工艺反应罐,开始第三个循环;以此类推,在历次循环中,进行连续动态切换,保持转晶工艺反应罐数量和离子交换工艺反应罐数量不变。
各循环中的第一个转晶工艺反应罐为通入新碱溶液的反应罐,各循环中的第一个离子交换工艺反应罐为通入新离子交换液的反应罐。新碱溶液包括氢氧化锂、氢氧化钾、氢氧化钠、氢氧化钙、氢氧化镁中至少一种,优选为氢氧化钠或氢氧化钾。新离子交换液是通过离子交换工艺获得的分子筛成品中目标离子对应的溶液;
对于钙型分子筛,新离子交换液可以是氯化钙溶液;
对于锂型分子筛,新离子交换液可以是硫酸锂溶液、氯化锂和硝酸锂溶液中的至少一种,优选为硫酸锂溶液;采用硫酸锂具有如下优点:氯化锂由于氯离子的存在,对设备具有腐蚀性,对设备材质要求很高;由于氯离子的存在,废液处理比较麻烦,环境不友好;由于硝酸根离子的存在,会使得废水中增加总氮的污染指标,目前总氮排放控制非常严格;硫酸根离子相比氯离子大,且易清洗,在作为特殊吸附剂使用时,不会有硫酸根的二次污染,由于硫酸根对于环境的影响小,从而减少废液处理的量。
在上述转晶与离子交换反应中,根据工艺流程,向对应的反应罐中通入相应量的pH调整液,以使每一个反应罐的pH值稳定。pH调整液包括氢氧化锂、氢氧化钾、氢氧化钠、氢氧化钙、氢氧化镁中至少一种,对于锂型分子筛优选为氢氧化锂。
优选地,所有反应罐设置在一个温度恒定控制的空间内。
分子筛原料是指低硅钠型、低硅钠钾型、4A分子筛和5A分子筛,分子筛原料中含有高岭土和/或洋坩土粘结剂。中间产物为经转晶工艺处理得到的全沸石分子筛。
技术效果
与现有技术相比,本发明具有如下技术效果:
1)由于转晶工艺与离子交换工艺的原理基本一致,因此将转晶与离子交换工艺进行组合, 使得转晶和离子交换连续进行,形成一体化全流程沸石分子筛制备工艺方法与装置;可以用于单一类型分子筛(如锂型分子筛)的制备,也可以用于阳离子混合型分子筛的制备;
2)以锂型分子筛为例,在离子交换过程中,离子交换液进入分子筛以后,浓度随即变小;但从反应罐流出的溶液,其中仍含有相当比例的锂,通过把反应过的溶液再通入下一个未充分交换的反应罐进行交换反应,而非直接作为废液排出,提高反应液的利用率;如此重复,直到最后一个反应罐没有交换效果或出口溶液不再含锂;通过连续通入新的离子交换液,充分利用了锂离子,提高了离子交换的转换率;同以上原理,在转晶工艺中,采用多个反应罐,可充分利用碱液中的有效成分,提高原料利用效率和生产效率;
3)通过设置过渡反应罐,进一步提高转晶工艺与离子交换工艺循环的连续性。
附图说明
图1为实施例1循环工艺流程图。
具体实施方式
下面结合附图及具体实施方式对本发明进行详细描述。实施例中未注明具体条件的实验方法,按照常规方法和条件进行。
实施例1
如图1所示,本实施例包括:串联连接的M+N个反应罐,后一个反应罐的进料口与前一个反应罐的出料口通过反应溶液循环管道连通,第M+N个反应罐的出料口与第一个反应罐的进料口通过反应溶液循环管道连通。
所有反应罐均配置有四个溶液入口管道、三个溶液出口管道和一个反应溶液循环管道,四个溶液入口管道分别为去离子水入口管道、新碱溶液入口管道、新锂液入口管道和pH调整液入口管道,三个溶液出口管道分别为废水出口管道、废碱液出口管道和废锂液出口管道。
所有反应罐设置在一个温度恒定控制的空间内。
本实施例以图1为例进行说明,其中,编号Z 1至Z m的反应罐为转晶工艺反应罐,Z m+1至Z M的反应罐为转晶工艺过渡反应罐;编号L 1至L n的反应罐为锂交工艺反应罐,L n+1至L N的反应罐为锂交工艺过渡反应罐;本实施例用于锂型分子筛的制备。
在一次循环中,向编号为Z 1的反应罐中通入新碱溶液进行转晶反应,Z 1反应罐中流出的反应溶液作为一次碱溶液通入Z 2反应罐中继续进行转晶反应,Z 2反应罐中流出的反应溶液作为二次碱溶液通入Z 3反应罐中继续进行转晶反应;以此类推,至Z m-1反应罐中流出的反应溶液作为m-1 次碱溶液通入Z m反应罐中继续进行转晶反应,Z m反应罐中流出的反应溶液作为废液通过废碱液出口管道排出;Z 1反应罐中转晶反应充分后,去离子水清洗后作为新的锂交工艺过渡反应罐;在下一次循环中将经去离子水清洗后的Z m+1反应罐接入转晶工艺尾部,作为最后一个转晶工艺反应罐;
而对于锂交工艺反应罐,在这一次循环中,向编号为L 1的反应罐中通入新锂溶液进行锂交反应,L 1反应罐中流出的反应溶液作为一次锂溶液通入L 2反应罐中继续进行锂交反应,L 2反应罐中流出的反应溶液作为二次锂溶液通入L 3反应罐中继续进行锂交反应;以此类推,至L n-1反应罐中流出的反应溶液作为n-1次锂溶液通入L n反应罐中继续进行锂交反应,L n反应罐中流出的反应溶液作为废液通过废锂液出口管道排出;L 1反应罐中锂交反应充分后,去离子水清洗、卸料并换装新的分子筛原料,作为新的转晶工艺过渡反应罐;在下一次循环中,将换装分子筛原料并升温后的L n+1反应罐接入锂交反应尾部,作为最后一个锂交工艺反应罐。
在第一个循环结束后,通过阀门切换液流流向,将第二个转晶工艺反应罐作为下一个循环中的第一个转晶工艺反应罐,将第二个锂交工艺反应罐作为下一个循环中的第一个锂交工艺反应罐,开始第二个循环;在第二个循环结束后,将第三个转晶工艺反应罐作为下一个循环中的第一个转晶工艺反应罐,将第三个锂交工艺反应罐作为下一个循环中的第一个锂交工艺反应罐,开始第三个循环;以此类推,在历次循环中,进行连续动态切换,保持转晶工艺反应罐数量和锂交工艺反应罐数量不变。
各循环中的第一个转晶工艺反应罐为通入新碱溶液的反应罐,各循环中的第一个锂交工艺反应罐为通入新锂液的反应罐。新碱溶液优选为氢氧化钠或氢氧化钾。新锂溶液优选为硫酸锂。
在上述转晶与锂交反应中,根据工艺流程,向对应的反应罐中通入相应量的pH调整液,以使每一个反应罐的pH值稳定。pH调整液优选为氢氧化锂。
本实施例中M=8,N=9;5个转晶工艺反应罐,6个锂交工艺反应罐,3个转晶工艺过渡反应罐,3个锂交工艺过渡反应罐;分子筛原料为低硅钠钾型分子筛NaK-LsX;每个反应罐在出料口的流量设置为9L/min,一次循环时间为8小时,锂交度为98%-98.5%。
需要强调的是:以上仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (9)

  1. 一种连续式转晶与离子交换装置,其特征在于,包括串联连接的M+N个反应罐,后一个反应罐的进料口与前一个反应罐的出料口通过反应溶液循环管道连通,第M+N个反应罐的出料口与第一个反应罐的进料口通过反应溶液循环管道连通;其中,不超过M个反应罐用于转晶工艺,不超过N个反应罐用于离子交换工艺;
    所有反应罐均配置有四个溶液入口管道、三个溶液出口管道和一个反应溶液循环管道,四个溶液入口管道分别为去离子水入口管道、新碱溶液入口管道、新离子交换液入口管道和pH调整液入口管道,三个溶液出口管道分别为废水出口管道、废碱液出口管道和废离子交换液出口管道;
    与反应罐连通的管道通过阀门控制开闭。
  2. 根据权利要求1所述连续式转晶与离子交换装置,其特征是,m个为转晶工艺反应罐,用于装载进行转晶的分子筛原料;M-m个为离子交换工艺过渡反应罐,用于装载经转晶后待离子交换的中间产物;n个为离子交换工艺反应罐,用于装载进行离子交换的中间产物;N-n个为转晶工艺过渡反应罐,用于装载待转晶的分子筛原料。
  3. 一种连续式转晶与离子交换工艺,其特征在于,基于权利要求2所述的连续式转晶与离子交换装置,包括以下过程:
    在一次循环中,向m个转晶工艺反应罐中的第一个通入新碱溶液,第一个转晶工艺反应罐中流出的反应溶液作为一次碱溶液通入第二个转晶工艺反应罐,第二个转晶工艺反应罐中流出的反应溶液作为二次碱溶液通入第三个转晶工艺反应罐,以此类推,直到第m个转晶工艺反应罐流出的反应溶液作为废碱液排出;经过一段时间,第一个转晶工艺反应罐中的分子筛转晶最先完成,关闭第一个转晶工艺反应罐的新碱溶液入口管道以及反应溶液循环管道,使之转变成离子交换工艺过渡反应罐;在下一次循环开始前,将其余已完成清洗的离子交换工艺过渡反应罐中的至少一个按次序接入离子交换工艺循环的尾部,接入的离子交换工艺过渡反应罐中有一个作为最后一个离子交换工艺反应罐,将本次循环中的第二个转晶工艺反应罐作为下一次循环中的第一个转晶工艺反应罐,随即开始新的循环;在新的循环开始前,保证离子交换工艺过渡反应罐中的至少一个完成清洗作业以用于接入离子交换工艺循环的尾部;
    在向m个转晶工艺反应罐中的第一个通入新碱溶液的同时,向n个离子交换工艺反应罐中的第一个通入新离子交换液,第一个离子交换工艺反应罐中流出的反应溶液作为一次离子交换液通入第二个离子交换工艺反应罐,第二个离子交换工艺反应罐中流出的反应溶液作为二次离子交换液通入第三个离子交换工艺反应罐,以此类推,直到第n个离子交换工艺反应罐中流出的反应溶液作为废离子交换液排出;经过一段时间,第一个离子交换工艺反应罐中的分子筛离子交换最先完成,关闭第一个离 子交换工艺反应罐的新离子交换液入口管道以及反应溶液循环管道,使之转变成转晶工艺过渡反应罐;在下一次循环开始前,将换装有分子筛原料的转晶工艺过渡反应罐中的至少一个按次序接入转晶工艺循环的尾部,接入的转晶工艺过渡反应罐中有一个作为最后一个转晶工艺反应罐,将本次循环中的第二个离子交换工艺反应罐作为下一次循环中的第一个离子交换工艺反应罐,随即开始新的循环;在新的循环开始前,保证转晶工艺过渡反应罐中的至少一个完成换装分子筛原料的作业以用于接入转晶工艺循环的尾部;
    通过循环实现连续式转晶与离子交换。
  4. 根据权利要求3所述连续式转晶与离子交换工艺,其特征是,在第一个循环结束后,通过阀门切换液流流向,将第二个转晶工艺反应罐作为下一个循环中的第一个转晶工艺反应罐,将第二个离子交换工艺反应罐作为下一个循环中的第一个离子交换工艺反应罐,开始第二个循环;在第二个循环结束后,将第三个转晶工艺反应罐作为下一个循环中的第一个转晶工艺反应罐,将第三个离子交换工艺反应罐作为下一个循环中的第一个离子交换工艺反应罐,开始第三个循环;以此类推,在历次循环中,进行连续动态切换,保持转晶工艺反应罐数量和离子交换工艺反应罐数量不变。
  5. 根据权利要求3所述连续式转晶与离子交换工艺,其特征是,所述新碱溶液包括氢氧化锂、氢氧化钾、氢氧化钠、氢氧化钙、氢氧化镁中至少一种。
  6. 根据权利要求3所述连续式转晶与离子交换工艺,其特征是,所述新离子交换液是通过离子交换工艺获得的分子筛成品中目标离子对应的溶液。
  7. 根据权利要求3所述连续式转晶与离子交换工艺,其特征是,在转晶与离子交换反应中,根据工艺流程,向对应的反应罐中通入相应量的pH调整液,以使每一个反应罐的pH值稳定。
  8. 根据权利要求7所述连续式转晶与离子交换工艺,其特征是,所述pH调整液包括氢氧化锂、氢氧化钾、氢氧化钠、氢氧化钙、氢氧化镁中至少一种。
  9. 根据权利要求3所述连续式转晶与离子交换工艺,其特征是,所有反应罐设置在一个温度恒定控制的空间内。
PCT/CN2021/091321 2020-12-10 2021-04-30 连续式转晶与离子交换装置及工艺 WO2022121223A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112021005560.7T DE112021005560T5 (de) 2020-12-10 2021-04-30 Vorrichtung und Verfahren zur kontinuierlichen Kristallumwandlung und zum Ionenaustausch
JP2023535887A JP2023549425A (ja) 2020-12-10 2021-04-30 連続型結晶転移及びイオン交換装置、並びにプロセス
US18/037,464 US11845073B1 (en) 2020-12-10 2021-04-30 Continuous crystal transformation and ion exchange device and process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011431659.4 2020-12-10
CN202011431659.4A CN112191280B (zh) 2020-12-10 2020-12-10 连续式转晶与离子交换装置及工艺

Publications (1)

Publication Number Publication Date
WO2022121223A1 true WO2022121223A1 (zh) 2022-06-16

Family

ID=74033194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091321 WO2022121223A1 (zh) 2020-12-10 2021-04-30 连续式转晶与离子交换装置及工艺

Country Status (5)

Country Link
US (1) US11845073B1 (zh)
JP (1) JP2023549425A (zh)
CN (1) CN112191280B (zh)
DE (1) DE112021005560T5 (zh)
WO (1) WO2022121223A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112191280B (zh) * 2020-12-10 2021-03-12 苏州立昂新材料有限公司 连续式转晶与离子交换装置及工艺
CN112812039B (zh) * 2021-02-07 2024-02-02 江苏新河农用化工有限公司 一种百菌清晶格转型装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000053530A1 (en) * 1999-03-05 2000-09-14 Exxon Research And Engineering Company Rare earth metal ion exchanged ferrierite
CN101890332A (zh) * 2010-07-30 2010-11-24 成都华西气体化工有限责任公司 变压吸附专用高性能5a分子筛的制备方法
CN104477937A (zh) * 2014-12-05 2015-04-01 上海绿强新材料有限公司 介孔x型分子筛、基于该分子筛的吸附剂及其制备与应用
CN204324905U (zh) * 2014-12-10 2015-05-13 鲁西催化剂有限公司 一种无模板剂制备 zsm-5 分子筛的洗涤交换系统
CN104760970A (zh) * 2014-01-02 2015-07-08 上海复榆新材料科技有限公司 一种合成沸石分子筛或sapo分子筛的方法和装置
CN112191280A (zh) * 2020-12-10 2021-01-08 苏州立昂新材料有限公司 连续式转晶与离子交换装置及工艺

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140933A (en) 1960-12-02 1964-07-14 Union Carbide Corp Separation of an oxygen-nitrogen mixture
US5464467A (en) 1994-02-14 1995-11-07 The Boc Group, Inc. Adsorptive separation of nitrogen from other gases
US5932509A (en) 1996-06-18 1999-08-03 The Boc Group, Inc. Preparation of ion-exchanged zeolites
US5916836A (en) 1996-12-27 1999-06-29 Tricat Management Gmbh Method of manufacture of molecular sieves
FR2775618B1 (fr) 1998-03-03 2000-05-05 Air Liquide Adsorbant a taux d'echange heterogene et procede psa mettant en oeuvre un tel adsorbant
CN1201859C (zh) * 2003-07-10 2005-05-18 上海吴泾化工有限公司 高载银量zsm-5沸石脱碘吸附剂的制备方法
CN103771434B (zh) * 2012-10-25 2015-10-28 中国石油化工股份有限公司 一种分子筛离子交换方法
CN104961139B (zh) * 2015-06-26 2017-04-12 浙江工业大学 一种双极膜电渗析再生钠型分子筛系统及其使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000053530A1 (en) * 1999-03-05 2000-09-14 Exxon Research And Engineering Company Rare earth metal ion exchanged ferrierite
CN101890332A (zh) * 2010-07-30 2010-11-24 成都华西气体化工有限责任公司 变压吸附专用高性能5a分子筛的制备方法
CN104760970A (zh) * 2014-01-02 2015-07-08 上海复榆新材料科技有限公司 一种合成沸石分子筛或sapo分子筛的方法和装置
CN104477937A (zh) * 2014-12-05 2015-04-01 上海绿强新材料有限公司 介孔x型分子筛、基于该分子筛的吸附剂及其制备与应用
CN204324905U (zh) * 2014-12-10 2015-05-13 鲁西催化剂有限公司 一种无模板剂制备 zsm-5 分子筛的洗涤交换系统
CN112191280A (zh) * 2020-12-10 2021-01-08 苏州立昂新材料有限公司 连续式转晶与离子交换装置及工艺

Also Published As

Publication number Publication date
US11845073B1 (en) 2023-12-19
DE112021005560T5 (de) 2023-08-03
US20230390755A1 (en) 2023-12-07
JP2023549425A (ja) 2023-11-24
CN112191280B (zh) 2021-03-12
CN112191280A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2022121223A1 (zh) 连续式转晶与离子交换装置及工艺
AU2020100373A4 (en) Method for preparing ssz-13 molecular sieve by using fly ash
CN1267185C (zh) 对二甲苯吸附剂及制备方法
WO2016078035A1 (zh) 一种活性硅铝酸盐材料及其制备方法
CN101497022A (zh) 聚结型沸石吸附剂及其制备方法
CN113694880B (zh) 一种含稀土Li-LSX沸石及其制备方法和应用
CN107486146B (zh) 一种混合阳离子LiCa-LSX分子筛制法及应用
JP2013529588A (ja) Lev型構造ゼオライト系材料のアルカリフリー合成
CN105964294B (zh) 一种加氢催化剂组合物及其制备方法
JP2022539350A (ja) 複合層凝集型吸着剤およびその製造方法
CN101767026B (zh) 一种含y型分子筛催化材料的制备方法
CN106830002A (zh) 伊利石微波合成zsm‑5分子筛的方法
CN108706614B (zh) 一种活性硅铝粉及其制备方法
CN103214002B (zh) 一种小晶粒x型分子筛原粉的制备方法
CN105621435A (zh) 一种粉煤灰制备分子筛处理高浓度氨氮废水的方法
CN108840354A (zh) 电池级氯化锂深度除杂方法
CN107162013B (zh) 一种ts-1钛硅分子筛的合成方法
CN111333112B (zh) 一种制备Cr(V)铬盐铬酸钙Ca5(CrO4)3O0.5的方法
RU2283278C1 (ru) Способ получения гранулированного цеолитного адсорбента структуры a и x высокой фазовой чистоты
CN108658353B (zh) 一种氯化钙废水处理工艺
RU2283281C1 (ru) Способ получения гранулированного цеолита типа а высокой фазовой чистоты
CN215049699U (zh) 一种生活垃圾焚烧飞灰水洗脱盐系统
CN101492167A (zh) 一种用油页岩灰制备方钠石纯相的方法
CN107902699A (zh) 一种连续加压自热式液相氧化铬铁矿的分解方法
CN112745022A (zh) 一种生活垃圾焚烧飞灰水洗脱盐系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21901938

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023535887

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 21901938

Country of ref document: EP

Kind code of ref document: A1