WO2022121082A1 - 一种脉冲电流激发的瞬态吸收光谱仪 - Google Patents

一种脉冲电流激发的瞬态吸收光谱仪 Download PDF

Info

Publication number
WO2022121082A1
WO2022121082A1 PCT/CN2021/071264 CN2021071264W WO2022121082A1 WO 2022121082 A1 WO2022121082 A1 WO 2022121082A1 CN 2021071264 W CN2021071264 W CN 2021071264W WO 2022121082 A1 WO2022121082 A1 WO 2022121082A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sample
light
tested
optical signal
Prior art date
Application number
PCT/CN2021/071264
Other languages
English (en)
French (fr)
Inventor
李波
唐贝贝
樊逢佳
杜江峰
Original Assignee
中国科学技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学技术大学 filed Critical 中国科学技术大学
Priority to KR1020237021587A priority Critical patent/KR20230110792A/ko
Priority to US18/256,807 priority patent/US20240027351A1/en
Priority to JP2023535048A priority patent/JP2023553123A/ja
Publication of WO2022121082A1 publication Critical patent/WO2022121082A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • G01N2021/1721Electromodulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Definitions

  • the present disclosure relates to the technical field of optical measurement, and in particular, to a transient absorption spectrometer excited by pulse current.
  • the conventional transient absorption technique is a time-resolved pump-probe technique with a wide range of applications.
  • the technology uses a pulsed laser to excite the sample to be tested to change its physical or chemical properties, thereby changing the absorption coefficient of the sample, while another beam of detection light is configured to detect this change, the detection light can be single
  • the colored light can also be white light.
  • the present disclosure provides a transient absorption spectrometer excited by pulse current, comprising: a central control unit, configured to send a trigger signal; and a pulse generator, configured to generate a first trigger signal under the action of a first trigger signal sent by the central control unit A current pulse signal, the current pulse signal is applied to the sample to be tested to generate an electro-optical signal or is in a non-luminescent excited state of single carrier injection; the laser is configured to be used in the second trigger signal sent by the central control unit.
  • a pulsed optical signal is emitted under the action of the beam splitter; a beam splitter is arranged in the light-emitting direction of the laser, and is configured to split the pulsed optical signal into a detection optical signal and a reference optical signal, wherein the detection optical signal illuminates the sample to be tested and then generate the detection sample optical signal; the data acquisition unit is configured to collect the electro-optical signal, detect the sample optical signal, and the reference optical signal under the action of the third trigger signal and the fourth trigger signal sent by the central control unit , and processed into electrical signal data reflecting the absorption intensity of optical signals of different wavelengths of the sample at a single moment; and a data processing and imaging unit configured to process the electrical signal data to obtain transient absorption signals of the sample to be tested and image them.
  • the sample to be tested is an electro-excited sample, which is placed on the sample stage and connected to the output port of the pulse generator. After being connected to the current pulse signal, it is in an electro-excited state and emits an electro-optical signal. Or in a non-luminescent excited state with single-carrier injection.
  • the laser is a monochromatic light laser or a white light laser.
  • the frequency of the second trigger signal is 3/2 times the frequency of the first trigger signal; the third trigger signal and the fourth trigger signal are three times the frequency of the first trigger signal.
  • the central control unit sends out a current pulse signal with a frequency of 1/2 of the frequency of the first trigger signal to excite the sample to be tested, and the ammeter is used to test the first current of the sample to be tested in an electro-excited state that is not irradiated by the detection light signal. value, test the second current value of the electro-excited state sample to be tested irradiated by the detection light signal through the ammeter, and then adjust the shape and sequence of the current pulse according to the ratio of the first current value and the second current value to make it an even number
  • the ratio of the magnitude of the current pulse signal to the magnitude of the odd-numbered pulses is the ratio of the first current value to the second current value.
  • the data acquisition unit includes: a monochromator group, including a first monochromator and a second monochromator, the first monochromator is configured to receive the electro-optical signal and/or Or detect the sample optical signal, and split the received optical signal into optical signals of different wavelengths; the second monochromator is configured to receive the reference optical signal and split the reference optical signal into optical signals of different wavelengths.
  • the CCD group including a first CCD and a second CCD, is configured to respectively process the optical signals of different wavelengths processed by the first monochromator and the second monochromator into optical signals reflecting the absorption intensities of the optical signals of different wavelengths of the sample. electrical signal data; and a counter configured to count and store the electrical signals.
  • a delay device is provided in the central control unit, and the delay device is realized by an optical delay stage or an electronic board; the delay device is configured to adjust the first trigger signal and the second trigger signal.
  • the time difference between the trigger signals is used to test the time-varying information of the absorption signal of the sample to be tested; at the same time, the third trigger signal and the fourth start signal are regulated and time-shared.
  • the reference light signal is not in contact with the sample to be measured, and is configured to eliminate the influence of the fluctuation of the probe light signal on the measurement.
  • the data processing and imaging unit obtains the transient absorption signal ⁇ OD of the sample to be tested by the following formula:
  • I pump-on I pump+r -I e+pe ;
  • I pump-off and I pump-on are the light intensity data of the probe light when the current-free pulse signal and the current pulse signal are present, respectively, that is, I pump-off is the counter to collect data 6n+4 times; and are the light intensity of the pulsed light signal when there is no current pulse signal and when there is a current pulse signal, respectively, I pump+r is the signal data collected by the data acquisition unit when there is current pulse excitation and detection light irradiation, that is, the counter collects data 6n+1 times, I pump e+pe is the current pulse signal electroluminescence signal data collected by the data acquisition unit after calculating the photoconductive effect, that is, the counter collects data 6n+3 times, wherein n is an integer starting from 0, OD is the absorbance, I 0 is the light intensity before the probe light signal passes through the sample, and I is the light intensity after the probe light signal passes through the
  • the present disclosure provides a transient absorption spectrometer excited by pulse current, which can alleviate the technical problems in the prior art, such as the inability to effectively measure the kinetic information of carriers after electrical excitation, and the test content is more comprehensive, which can test the transient state of the sample to be tested.
  • the generation and decay kinetic information of state components, as well as the excited state kinetic information; the luminescence signal of the sample excited by the current pulse signal and the electroluminescence enhancement signal caused by the photoconductive effect of the probe are excluded, so that the measured transient absorption signal is more accurate.
  • FIG. 1 is a schematic diagram of the composition of a transient absorption spectrometer excited by a pulse current according to an embodiment of the present disclosure
  • FIG. 2 is a pulse sequence diagram of a transient absorption spectrometer excited by a pulse current according to an embodiment of the present disclosure.
  • the present disclosure provides a transient absorption spectrometer excited by pulse current, which is different from the common pump-probe transient absorption spectrometer which uses light to excite a sample.
  • Detect light collect information on the dynamics of carriers in the sample to be tested after electrical excitation, and establish a pulsed current pumping-optical detection transient absorption spectrometer, which is suitable for the study of LEDs, electro-lasers, photodetectors, and solar cells. parameters such as mobility and defect concentration. It can test the relaxation information of the carriers excited by the current pulse signal, can measure the relaxation information of the excitons, and can also test the relaxation information of the injected single electron or single hole. It can be used to measure the corresponding absorption spectrum and carrier dynamics information of the generation and decay of transient components of the sample to be tested.
  • the related information such as energy transfer, charge transfer, electro-phonon coupling, etc.
  • a pulsed laser is used as a pump light to be incident on a sample, and it is excited from the ground state to the excited state , another pulsed monochromatic light or white light laser is delayed by an optical retardation stage or an electronic board and is incident on the same position of the sample as the probe light.
  • the delay time of the probe light By controlling the delay time of the probe light relative to the pump light, the change of the absorption spectrum of the sample with the delay time can be detected, so as to obtain the excited state relaxation information of the sample.
  • the above conventional spectrometers are limited by their photoexcitation mechanism, carriers can only be generated in the light absorption layer, and can only measure the relaxation information of electron-hole pairs, but cannot measure the relaxation of carriers injected or transferred by electrodes.
  • the relaxation information cannot be tested, and the carrier relaxation information during single electron or hole injection cannot be tested.
  • the above-mentioned carrier relaxation information can reflect the performance of the devices from different aspects, and is equally important and indispensable.
  • the present disclosure provides a transient absorption spectrometer excited by a current pulse signal, and the transient absorption spectrometer excited by the current pulse signal is further characterized in that the electroluminescence signal after considering the photoconductive effect is collected, and the current pulse signal is pumped. And the probe light signal pumped by no current pulse signal, after data processing, the electroluminescence signal when the current pulse is excited and the electroluminescence increment caused by the increase of the current caused by the photoconductive effect of the probe light on the device can be excluded.
  • the present disclosure is characterized in that a current pulse signal is used for excitation, and a transient absorption signal of a sample is detected using monochromatic light or white light.
  • a transient absorption spectrometer excited by pulse current is provided.
  • the transient absorption spectrometer includes:
  • a central control unit configured to issue a trigger signal
  • the transient absorption spectrometer further includes an ammeter configured to test the real current of the sample to be tested.
  • the central control unit first sends out a current pulse signal with a frequency of 1/2 of the frequency of the first trigger signal to excite the sample to be tested, and the electro-excited sample to be tested that is not irradiated by the detection light signal is tested by the ammeter.
  • the first current value of the first current value, the second current value of the electro-excited sample to be tested that is irradiated by the detection light signal is tested by the ammeter, and then the current pulse is adjusted according to the ratio (comparison result) of the first current value and the second current value.
  • the pulse generator is configured to generate a current pulse signal under the action of the first trigger signal sent by the central control unit, and the current pulse signal is applied to the sample to be tested to generate an electro-optical signal or is in the state of single carrier injection non-luminescent excited state;
  • a laser configured to emit a pulsed light signal under the action of the second trigger signal sent by the central control unit
  • a beam splitter arranged in the light output direction of the laser, and configured to split the pulsed optical signal into a detection optical signal and a reference optical signal, wherein the detection optical signal generates a detection sample optical signal after irradiating the sample to be tested;
  • the data acquisition unit is configured to collect the electro-optical signal under the action of the third trigger signal and the fourth trigger signal sent by the central control unit, detect the sample light signal, and the reference light signal, and process them into a single moment reflection The electrical signal data of the absorption intensity of the optical signal at different wavelengths of the sample;
  • the data processing and imaging unit is configured to process the electrical signal data to obtain a transient absorption signal of the sample to be tested and image it.
  • the pulse generator can generate square or other shaped current pulse signals of different sizes, pulse times and frequencies under the action of the first trigger signal to excite the sample to be tested.
  • the sample to be tested is an electro-excited sample, which is placed on the sample stage and connected to the output port of the pulse generator. After being connected to the current pulse signal, it is in an electro-excited state, emits an electro-optical signal or is in a single-load state.
  • Non-luminescent excited states for carrier injection are used for carrier injection.
  • the laser is a monochromatic light laser or a white light laser.
  • the reference optical signal is configured to cancel the effect of fluctuations in the probe optical signal on the measurement.
  • the frequency of the second trigger signal is 3/2 times the frequency of the first trigger signal.
  • the third trigger signal and the fourth trigger signal are three times the frequency of the first trigger signal.
  • the data acquisition unit includes:
  • a monochromator group comprising a first monochromator and a second monochromator, the first monochromator being configured to receive the electro-optical signal and/or to detect the sample light signal, and to combine the received light splitting the signal into optical signals of different wavelengths; the second monochromator is configured to receive the reference optical signal and split the reference optical signal into optical signals of different wavelengths;
  • a CCD Charge-coupled Device, charge-coupled device
  • a first CCD and a second CCD is configured to respectively process the light signals of different wavelengths processed by the first monochromator and the second monochromator into reflection The electrical signal data of the absorption intensity of the optical signal at different wavelengths of the sample;
  • a counter configured to count and store the electrical signal.
  • the data acquisition unit further includes a focusing objective lens and an optical fiber;
  • the central control unit is provided with a delay device, which can be realized by an optical delay stage or an electronic board, and the delay device is configured to adjust the first trigger signal (or current pulse signal) and the second trigger signal.
  • the time difference between the two trigger signals (or pulsed light signals), so as to test the time-varying information of the absorption signal of the sample to be tested; at the same time, the third trigger signal and the fourth trigger signal are regulated and time-shared, and the operation of each component is coordinated.
  • the monochromatic or white light detection laser is triggered by a trigger signal whose frequency is 3/2 times of the current pulse frequency, and the emitted pulse light signal is divided into two beams, and one beam is used as the detection light to irradiate the sample to be tested On the other hand, another beam can be used as a reference light. Since the reference light signal is not in contact with the sample to be tested, it can be configured to eliminate the problem of monochromatic or white light jittering over time.
  • the electrical signal data is processed by the data processing and imaging unit, the reference optical signal is compared to exclude the influence of the jitter of the probe optical signal to form valid data, and the three-dimensional absorption intensity of the sample to be tested is obtained as a function of wavelength and time.
  • the electro-optical signal collected by the data acquisition unit after considering the photoconductive effect the detection sample optical signal is split by the first monochromator and irradiated on the first CCD at the same time, the reference optical signal is split by the second monochromator and irradiated On the second CCD, the first CCD and the second CCD receive the third trigger signal from the central control unit to start collecting images, and convert them into electrical signals and transmit them to the counter, and the counter receives the fourth trigger signal from the central control unit. Start counting and store.
  • the frequency of the second trigger signal sent by the central control unit to trigger the laser to emit the detection light and the reference light is 3/2 times the frequency of the current pulse sent by the first trigger signal to trigger the pulse generator, so the counter starts When collecting data, 6n+1 acquisition times are used as the data when the current pulse signal is excited and the probe light signal is irradiated, 6n+4 acquisition times are the data when no current pulse signal is excited and the probe light signal is illuminated, and 6n+3 acquisition times are considered
  • the electroluminescence signal after the photoconductive effect where n is an integer starting from 0, and the following data processing and imaging unit obtains the transient absorption signal of the sample to be tested excited by the current pulse signal according to the following formula.
  • I pump-on I pump+r -I e+pe ;
  • I pump+r is the collected signal intensity when there is current pulse excitation and reference light irradiation, that is, the counter collects data 6n+1 times
  • I e+pe is the current pulse signal electroluminescence signal collected at the collecting end after the photoconductive effect is calculated, that is, the data collected by the counter 6n+3 times
  • I pump-off and I pump-on are the no-current pulse signal and
  • the light intensity of the probe light when there is a current pulse signal, the I pump-off counter collects data 6n+4 times, where OD is the absorbance, I 0 is the light intensity before the probe light signal passes through the sample, and I is the probe light signal through the sample. after the light intensity.
  • the above is the absorption data of different wavelengths obtained at one time, and then the time difference between the detection light and the pump current pulse signal is realized by the delay device in the central control unit, and the above steps of measuring the transient absorption signal are carried out to obtain the random absorption signal.
  • the data of the time change and the absorption intensity of different wavelengths, and the three-dimensional image of the time change of the sample to be tested and the absorption intensity of different wavelengths is drawn by the data processing and imaging unit.
  • the present disclosure provides a transient absorption spectrometer excited by pulse current, and a current pulse signal is provided by a pulse generator as the excitation of a sample to be tested to emit an electro-optical signal or a non-luminescent excited state of single-carrier injection.
  • the pump source use the monochromatic light or white laser whose frequency is 3/2 times the frequency of the current pulse signal as the detection light signal and the reference light signal; adjust the delay between the current pulse signal and the detection light signal through the delay device;
  • the CCD and counter in the data acquisition unit are triggered by a trigger signal whose frequency is 3 times the frequency of the current pulse, and the detection light signal including the electroluminescence signal when there is a current pulse, the electroluminescence signal after calculating the photoconductance and the counter are collected by the data acquisition unit.
  • Probe light signal when there is no pump pulse current finally, the acquired signal is processed by the data processing and imaging unit to form a three-dimensional image of absorption changes with time and wavelength.
  • the transient spectrometer excited by the current pulse can exclude the electro-optical signal caused by the luminescence of the sample under the excitation of the pulse current and the luminescence signal caused by the additional current increase caused by the photoconductive effect, and measure the single electron, single hole or electron hole injected by electricity.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种脉冲电流激发的瞬态吸收光谱仪,包括:中控单元;脉冲发生器,被配置用于在中控单元发出的第一触发信号的作用下生成电流脉冲信号施加至待测样品后使样品处于单载流子注入的非发光激发态或生成电致光信号的发光激发态;激光器,在中控单元发出的第二触发信号的作用下出射脉冲光信号;分束镜,设置于激光器出光向,被配置用于将脉冲光信号分束为探测光信号和参考光信号,其中探测光信号照射待测样品后生成探测样品光信号;数据采集单元,被配置用于在中控单元发出的第三触发信号和第四触发信号的作用下采集电致光信号,探测样品光信号,以及参考光信号,并处理为单一时刻反映样品不同波长光信号吸收强度的电信号数据;以及数据处理及成像单元,被配置用于对电信号数据进行处理获得待测样品瞬态吸收信号并成像。

Description

一种脉冲电流激发的瞬态吸收光谱仪 技术领域
本公开涉及光学测量技术领域,尤其涉及一种脉冲电流激发的瞬态吸收光谱仪。
背景技术
常规瞬态吸收技术是一种时间分辨泵浦-探测技术,应用广泛。该技术利用一束脉冲激光激发被测样品,使其物理或者化学性质发生改变,进而改变样品的吸收系数,而另一束探测光则被配置用于探测这一变化,该探测光可为单色光也可为白光。通过改变泵浦光和探测光之间的延时,可得到样品在被光激发之后不同时刻的瞬态吸收光谱,经过解析瞬态信号的产生及衰减,即得到相对应动力学信息。瞬态吸收光谱技术优点在于,即使样品不发光,也可以对其激发态动力学进行研究。
然而,由于缺乏相关技术,使得电激发后载流子的动力学信息无法全面精确的测量。
发明内容
本公开提供一种脉冲电流激发的瞬态吸收光谱仪,包括:中控单元,被配置用于发出触发信号;脉冲发生器,被配置用于在中控单元发出的第一触发信号的作用下生成电流脉冲信号,所述电流脉冲信号施加至待测样品后生成电致光信号或处于单载流子注入的非发光激发态;激光器,被配置用于在中控单元发出的第二触发信号的作用下出射脉冲光信号;分束镜,设置于所述激光器出光向,被配置用于将所述脉冲光信号分束为探测光信号和参考光信号,其中所述探测光信号照射待测样品后生成探测样品光信号;数据采集单元,被配置用于在中控单元发出的第三触发信号和第四触发信号的作用下采集所述电致光信号,探测样品光信号,以及参考光信号,并处理为单一时刻反映样品不同波长光信号吸收强度的电信号数据;以及数据处理及成像单元,被配置用于对所述电信号数据进行处理获得待测样品瞬态吸收信号并成像。
可选地,所述待测样品为电致激发样品,其被放置于样品台,并连接脉冲发生器的输出端口,其被接入电流脉冲信号后处于电致激发态,发出 电致光信号或处于单载流子注入的非发光激发态。
可选地,所述激光器为单色光激光器或者白光激光器。
可选地,所述第二触发信号频率为所述第一触发信号频率的3/2倍;所述第三触发信号和第四触发信号为所述第一触发信号频率的3倍。
可选地,通过所述中控单元发出第一触发信号频率的1/2频率的电流脉冲信号激发待测样品,通过电流表测试无探测光信号照射的电致激发态待测样品的第一电流值,通过所述电流表测试有探测光信号照射的电致激发态待测样品的第二电流值,再根据第一电流值和第二电流值的比例调整电流脉冲的形状和序列,使其偶数电流脉冲信号大小与奇数脉冲大小的比为上述第一电流值和第二电流值的比例。
可选地,所述数据采集单元,包括:单色仪组,包括第一单色仪和第二单色仪,所述第一单色仪被配置用于接收所述电致光信号和/或探测样品光信号,并将接收到的光信号分光为不同波长的光信号;所述第二单色仪被配置用于接收所述参考光信号并将参考光信号分光为不同波长的光信号;CCD组,包括第一CCD和第二CCD,被配置用于分别将所述第一单色仪和第二单色仪处理后的不同波长光信号处理为反映样品不同波长光信号吸收强度的电信号数据;以及计数器,被配置用于对所述电信号进行计数并存储。
可选地,所述中控单元中设置有延时装置,所述延时装置通过光学延时台或者电子学板卡实现;所述延时装置被配置用于调节第一触发信号与第二触发信号之间的时间差,从而测试待测样品的吸收信号随时间变化的信息;同时调控并分时发送第三触发信号和第四出发信号。
可选地,所述参考光信号不与待测样品接触,被配置用于消除探测光信号波动对测量的影响。
可选地,所述数据处理及成像单元通过以下公式来获得待测样品瞬态吸收信号ΔOD:
I pump-on=I pump+r-I e+pe
Figure PCTCN2021071264-appb-000001
Figure PCTCN2021071264-appb-000002
Figure PCTCN2021071264-appb-000003
其中,
Figure PCTCN2021071264-appb-000004
Figure PCTCN2021071264-appb-000005
分别为无电流脉冲信号激发和有电流脉冲信号激发时参考光的光强,I pump-off和I pump-on分别为无电流脉冲信号和有电流脉冲信号时探测光的光强数据,即I pump-off为计数器6n+4次采集数据;
Figure PCTCN2021071264-appb-000006
Figure PCTCN2021071264-appb-000007
分别为无电流脉冲信号和有电流脉冲信号时脉冲光信号光强,I pump+r为有电流脉冲激发和探测光照射时数据采集单元采集的信号数据,即计数器6n+1次采集数据,I e+pe为计算了光电导效应之后的数据采集单元采集到的电流脉冲信号电致发光信号数据,即计数器6n+3次采集数据,其中,n为从0开始的整数,OD为吸光度,I 0为探测光信号透过样品前的光强,I为探测光信号透过样品后的光强。
本公开提供的一种脉冲电流激发的瞬态吸收光谱仪,能够缓解现有技术中电激发后载流子的动力学信息无法有效测量等技术问题,其测试内容更全面,可以测试待测样品瞬态组分的产生及衰减动力学信息,以及激发态动力学信息;排除了电流脉冲信号激发的样品发光信号及探测光光电导效应引起的电致发光增强信号,使得所测瞬态吸收信号更精确;更准确及直观的测试待测样品的载流子动力学信息;采用直接电脉冲激发的泵浦-探测技术,应用更广泛,可以用于诸如LED、太阳能电池等领域测试及分析。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为本公开实施例的脉冲电流激发的瞬态吸收光谱仪的组成示意图;
图2为本公开实施例的脉冲电流激发的瞬态吸收光谱仪的脉冲序列图。
具体实施方式
本公开提供了一种脉冲电流激发的瞬态吸收光谱仪,与常见泵浦-探测瞬态吸收光谱仪使用光激发样品不同,所述光谱仪使用电流脉冲信号作为泵浦源,结合光学或者电子延时的探测光,采集电激发后待测样品中载流子动力学信息,建立脉冲电流泵浦-光探测瞬态吸收谱仪,适用于研究LED、电致激光、光探测器和太阳能电池等器件的迁移率和缺陷浓度等参数。其可以测试电流脉冲信号激发载流子弛豫信息,能够测激子弛豫信息,也能够测试注入单电子或者单空穴载流子弛豫信息。能够用于测量待测样品的瞬态组分的产生及衰减相应的吸收光谱及载流子动力学信息。能够由分析装置探测电流激发样品种激发态能量传递,电荷转移,电声子耦合等相关信息。
在实现本公开的过程中发明人发现,基于瞬态吸收光谱技术的常规瞬态吸收光谱仪的工作原理如下:使用一束脉冲激光作为泵浦光入射到样品上,将其从基态激发到激发态,另一束脉冲单色光或白光激光经光学延迟台或电子学板卡延迟后作为探测光入射到样品的同样位置。通过控制探测光相对泵浦光的延迟时间,就可以检测样品的吸收光谱随着延迟时间的变化,从而获得样品的激发态弛豫信息。但是上述常规的光谱仪受限于其光激发机理,载流子只能在光吸收层中产生,并且只能测量电子空穴对的弛豫信息,无法测试由电极注入或者转移的载流子弛豫信息,也无法测试单电子或者空穴注入时的载流子弛豫信息。但在LED、电致激光、光探测器和太阳能电池等器件的研究中,以上所述的载流子弛豫信息能够从不同方面反映器件的性能表现,同等重要,缺一不可。由此本公开提供一种用电流脉冲信号激发的瞬态吸收光谱仪,所述电流脉冲信号激发的瞬态吸收光谱仪特征还在于采集考虑光电导效应后的电致发光信号、有电流脉冲信号泵浦和没电流脉冲信号泵浦的探测光信号,通过数据处理后可以排除电流脉冲激发时的电致发光信号及探测光对器件光电导效应引起电流增加造成的电致发光增量。
本公开的特点在于使用电流脉冲信号激发,使用单色光或者白光探测样品的瞬态吸收信号。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实 施例,并参照附图,对本公开进一步详细说明。
在本公开实施例中,提供一种脉冲电流激发的瞬态吸收光谱仪,如图1所示,所述瞬态吸收光谱仪,包括:
中控单元,被配置用于发出触发信号;
在本公开实施例中,所述瞬态吸收光谱仪还包括电流表,所述电流表被配置用于测试待测样品的真实电流。
在本公开实施例中,先由中控单元发出第一触发信号频率的1/2频率的电流脉冲信号激发待测样品,通过所述电流表测试无探测光信号照射的电致激发态待测样品的第一电流值,通过所述电流表测试有探测光信号照射的电致激发态待测样品的第二电流值,再根据第一电流值和第二电流值的比例(比较结果)调整电流脉冲的形状和序列,使其偶数电流脉冲信号大小与奇数脉冲大小的比为上述第一电流值和第二电流值的比例,由脉冲发生器产生作为测量待测样品瞬态吸收时的泵浦(电流脉冲信号),电流脉冲形状如图2所示。
脉冲发生器,被配置用于在中控单元发出的第一触发信号的作用下生成电流脉冲信号,所述电流脉冲信号施加至待测样品后生成电致光信号或处于单载流子注入的非发光激发态;
激光器,被配置用于在中控单元发出的第二触发信号的作用下出射脉冲光信号;
分束镜,设置于所述激光器出光向,被配置用于将所述脉冲光信号分束为探测光信号和参考光信号,其中所述探测光信号照射待测样品后生成探测样品光信号;
数据采集单元,被配置用于在中控单元发出的第三触发信号和第四触发信号的作用下采集所述电致光信号,探测样品光信号,以及参考光信号,并处理为单一时刻反映样品不同波长光信号吸收强度的电信号数据;以及
数据处理及成像单元,被配置用于对所述电信号数据进行处理获得待测样品瞬态吸收信号并成像。
所述脉冲发生器能够在所述第一触发信号的作用下产生不同大小、脉冲时间以及频率的方形或者其他形状的电流脉冲信号激发待测样品。
所述待测样品为电致激发样品,其被放置于样品台,并连接脉冲发生 器的输出端口,其被接入电流脉冲信号后处于电致激发态,发出电致光信号或处于单载流子注入的非发光激发态。
所述激光器为单色光激光器或者白光激光器。
所述参考光信号被配置用于消除探测光信号波动对测量的影响。
所述第二触发信号频率为所述第一触发信号频率的3/2倍。
所述第三触发信号和第四触发信号为所述第一触发信号频率的3倍。
所述数据采集单元,包括:
单色仪组,包括第一单色仪和第二单色仪,所述第一单色仪被配置用于接收所述电致光信号和/或探测样品光信号,并将接收到的光信号分光为不同波长的光信号;所述第二单色仪被配置用于接收所述参考光信号并将参考光信号分光为不同波长的光信号;
CCD(Charge-coupled Device,电荷耦合元件),包括第一CCD和第二CCD,被配置用于分别将所述第一单色仪和第二单色仪处理后的不同波长光信号处理为反映样品不同波长光信号吸收强度的电信号数据;以及
计数器,被配置用于对所述电信号进行计数并存储。
在本公开实施例中,所述数据采集单元还包括聚焦物镜、光纤;
所述中控单元中设置有延时装置,延时装置可通过光学延时台或者电子学板卡实现,所述延时装置被配置用于调节第一触发信号(或电流脉冲信号)与第二触发信号(或脉冲光信号)之间的时间差,从而测试待测样品的吸收信号随时间变化的信息;同时调控并分时发送第三触发信号和第四出发信号及协调各部件运作。
探测光到达样品是需要时间的,然后电流脉冲信号到达样品到样品被激发也有时间差,调整这个时间差,使得开始测量时刻真实光信号探测样品的时间在真实脉冲电信号激发样品之前一点。
在本公开实施例中,单色或者白光探测激光器由频率为电流脉冲频率3/2倍的触发信号触发,发出的脉冲光信号被分束为两束,一束作为探测光照射到待测样品上,另一束可作为参考光,由于参考光信号不与待测样品接触,可被配置用于排除单色或者白光随时间抖动的问题。
在本公开实施例中,通过数据处理及成像单元对电信号数据进行处理,对比参考光信号排除探测光信号抖动影响形成有效数据,获得待测样品三 维吸收强度随波长、时间变化图。
通过所述数据采集单元收集的考虑光电导效应后电致光信号,探测样品光信号被第一单色仪分光并同时照射到第一CCD上,参考光信号被第二单色仪分光并照射到第二CCD上,所述第一CCD和第二CCD接收来自中控单元的第三触发信号开始采集图像,并转化为电信号传输到计数器中,计数器接受来自中控单元的第四触发信号开始计数并存储。
在本公开实施例中,中控单元发出的第二触发信号触发激光器发出探测光及参考光的频率为第一触发信号触发脉冲发生器发出的电流脉冲频率的3/2倍,故将计数器开始采集数据时的6n+1采集次作为有电流脉冲信号激发有探测光信号照射时的数据,6n+4采集次作为没有电流脉冲信号激发有探测光信号照射的数据,6n+3采集次作为考虑光电导效应后的电致发光信号,其中n取从0开始的整数,并由以下数据处理及成像单元按照以下公式来获得电流脉冲信号激发的待测样品的瞬态吸收信号。
I pump-on=I pump+r-I e+pe
Figure PCTCN2021071264-appb-000008
Figure PCTCN2021071264-appb-000009
Figure PCTCN2021071264-appb-000010
其中
Figure PCTCN2021071264-appb-000011
Figure PCTCN2021071264-appb-000012
分别为无电流脉冲信号激发和有电流脉冲信号激发时参考光的光强,
Figure PCTCN2021071264-appb-000013
Figure PCTCN2021071264-appb-000014
分别为无电流脉冲信号和有电流脉冲信号时脉冲光信号(单色或者白光)光强,I pump+r为有电流脉冲激发和参考光照射时收集信号强度,即计数器6n+1次采集数据,I e+pe为计算了光电导效应之后的收集端收集到的电流脉冲信号电致发光信号即计数器6n+3次采集数据,I pump-off和I pump-on分别为无电流脉冲信号和有电流脉冲信号时探测光的光强,I pump-off计数器6n+4次采集数据,其中OD为吸光度,I 0为探测光信号透过样品前的光强,I为探测光信 号透过样品后的光强。
以上为一个时刻获得的不同波长吸收数据,再由中控单元中延时装置实现探测光与泵浦电流脉冲信号之间时间差,并再进行以上测瞬态吸收信号的步骤,以此来获得随时间变化及不同波长的吸收强度的数据,并由数据处理及成像单元画出待测样品随时间变化及不同波长的吸收强度的三维图像。
至此,已经结合附图对本公开实施例进行了详细描述。需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。
依据以上描述,本领域技术人员应当对本公开瞬态吸收光谱仪有了清楚的认识。
综上所述,本公开提供了一种脉冲电流激发的瞬态吸收光谱仪,通过脉冲发生器提供电流脉冲信号作为激发待测样品发出电致光信号或处于单载流子注入的非发光激发态的泵浦源;使用频率是电流脉冲信号频率3/2倍的单色光或者白光激光器作为探测光信号及参考光信号;通过延时装置调整电流脉冲信号与探测光信号之间的延时;使用频率是电流脉冲频率3倍的触发信号触发数据采集单元中的CCD及计数器,通过数据采集单元采集有电流脉冲时包含电致发光信号的探测光信号、计算光电导之后的电致发光信号和没有泵浦脉冲电流时的探测光信号;最后由数据处理及成像单元将采集信号处理并形成吸收随时间及波长变化三维图像。该电流脉冲激发的瞬态光谱仪可排除样品在脉冲电流激发下发光引起的电致光信号以及光电导效应造成的额外电流增加的发光信号,测量电注入的单电子,单空穴或者电子空穴对的动力学。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能器件的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将芯片的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的芯片的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;在不冲突的情况下,本公开实施例中的特征可以任意组合;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (9)

  1. 一种脉冲电流激发的瞬态吸收光谱仪,包括:
    中控单元,被配置用于发出触发信号;
    脉冲发生器,被配置用于在中控单元发出的第一触发信号的作用下生成电流脉冲信号,所述电流脉冲信号施加至待测样品后使样品处于单载流子注入的非发光激发态或生成电致光信号的发光激发态;
    激光器,被配置用于在中控单元发出的第二触发信号的作用下出射脉冲光信号;
    分束镜,设置于所述激光器出光向,被配置用于将所述脉冲光信号分束为探测光信号和参考光信号,其中所述探测光信号照射待测样品后生成探测样品光信号;
    数据采集单元,被配置用于在中控单元发出的第三触发信号和第四触发信号的作用下采集所述电致光信号,探测样品光信号,以及参考光信号,并处理为单一时刻反映样品不同波长光信号吸收强度的电信号数据;以及
    数据处理及成像单元,被配置用于对所述电信号数据进行处理获得待测样品瞬态吸收信号并成像。
  2. 根据权利要求1所述的瞬态吸收光谱仪,所述待测样品为电致激发样品,其被放置于样品台,并连接脉冲发生器的输出端口,其被接入电流脉冲信号后处于电致激发态,发出电致光信号或处于单载流子注入的非发光激发态。
  3. 根据权利要求1所述的瞬态吸收光谱仪,所述激光器为单色光激光器或者白光激光器。
  4. 根据权利要求1所述的瞬态吸收光谱仪,所述第二触发信号频率为所述第一触发信号频率的3/2倍;所述第三触发信号和第四触发信号为所述第一触发信号频率的3倍。
  5. 根据权利要求2所述的瞬态吸收光谱仪,通过所述中控单元发出 第一触发信号频率的1/2频率的电流脉冲信号激发待测样品,通过电流表测试无探测光信号照射的电致激发态待测样品的第一电流值,通过所述电流表测试有探测光信号照射的电致激发态待测样品的第二电流值,再根据第一电流值和第二电流值的比例调整电流脉冲的形状和序列,使其偶数电流脉冲信号大小与奇数脉冲大小的比为上述第一电流值和第二电流值的比例。
  6. 根据权利要求1所述的瞬态吸收光谱仪,所述数据采集单元,包括:
    单色仪组,包括第一单色仪和第二单色仪,所述第一单色仪被配置用于接收所述电致光信号和/或探测样品光信号,并将接收到的光信号分光为不同波长的光信号;所述第二单色仪被配置用于接收所述参考光信号并将参考光信号分光为不同波长的光信号;
    CCD组,包括第一CCD和第二CCD,被配置用于分别将所述第一单色仪和第二单色仪处理后的不同波长光信号处理为反映样品不同波长光信号吸收强度的电信号数据;以及
    计数器,被配置用于对所述电信号进行计数并存储。
  7. 根据权利要求1所述的瞬态吸收光谱仪,所述中控单元中设置有延时装置,所述延时装置通过光学延时台或者电子学板卡实现;所述延时装置被配置用于调节第一触发信号与第二触发信号之间的时间差,从而测试待测样品的吸收信号随时间变化的信息;同时调控并分时发送第三触发信号和第四出发信号。
  8. 根据权利要求1所述的瞬态吸收光谱仪,所述参考光信号不与待测样品接触,被配置用于消除探测光信号波动对测量的影响。
  9. 根据权利要求1所述的瞬态吸收光谱仪,所述数据处理及成像单元通过以下公式来获得待测样品瞬态吸收信号ΔOD:
    I pump-on=I pump+r-I e+pe
    Figure PCTCN2021071264-appb-100001
    Figure PCTCN2021071264-appb-100002
    Figure PCTCN2021071264-appb-100003
    其中,
    Figure PCTCN2021071264-appb-100004
    Figure PCTCN2021071264-appb-100005
    分别为无电流脉冲信号激发和有电流脉冲信号激发时参考光的光强,I pump-off和I pump-on分别为无电流脉冲信号和有电流脉冲信号时探测光的光强数据,即I pump-off为计数器6n+4次采集数据;
    Figure PCTCN2021071264-appb-100006
    Figure PCTCN2021071264-appb-100007
    分别为无电流脉冲信号和有电流脉冲信号时脉冲光信号光强,I pump+r为有电流脉冲激发和探测光照射时数据采集单元采集的信号数据,即计数器6n+1次采集数据,I e+pe为计算了光电导效应之后的数据采集单元采集到的电流脉冲信号电致发光信号数据,即计数器6n+3次采集数据,其中,n为从0开始的整数,OD为吸光度,I 0为探测光信号透过样品前的光强,I为探测光信号透过样品后的光强。
PCT/CN2021/071264 2020-12-11 2021-01-12 一种脉冲电流激发的瞬态吸收光谱仪 WO2022121082A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237021587A KR20230110792A (ko) 2020-12-11 2021-01-12 펄스 전류에 의해 여기되는 순간 흡수 분광기
US18/256,807 US20240027351A1 (en) 2020-12-11 2021-01-12 Transient absorption spectrometer using excitation by pulse current
JP2023535048A JP2023553123A (ja) 2020-12-11 2021-01-12 パルス電流励起の過渡吸収分光計

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011470295.0 2020-12-11
CN202011470295.0A CN112683797B (zh) 2020-12-11 2020-12-11 一种脉冲电流激发的瞬态吸收光谱仪

Publications (1)

Publication Number Publication Date
WO2022121082A1 true WO2022121082A1 (zh) 2022-06-16

Family

ID=75447806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071264 WO2022121082A1 (zh) 2020-12-11 2021-01-12 一种脉冲电流激发的瞬态吸收光谱仪

Country Status (5)

Country Link
US (1) US20240027351A1 (zh)
JP (1) JP2023553123A (zh)
KR (1) KR20230110792A (zh)
CN (1) CN112683797B (zh)
WO (1) WO2022121082A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117388248A (zh) * 2023-12-11 2024-01-12 杭州创锐光测技术有限公司 一种瞬态成像系统与方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590159A (zh) * 2011-01-11 2012-07-18 中国科学院物理研究所 基于单光子计数的瞬态荧光寿命测量方法及测量系统
US20130034115A1 (en) * 2011-08-03 2013-02-07 Jerry Prawiharjo Reconfigurable repetition rate and energy chirped pulse amplification fiber laser
CN108827914A (zh) * 2018-08-23 2018-11-16 天津大学 太赫兹瞬态吸收光谱探测系统及载流子寿命测量方法
CN110376125A (zh) * 2019-07-05 2019-10-25 中国科学院物理研究所 一种瞬态吸收光谱测量系统和方法
CN111486955A (zh) * 2020-05-20 2020-08-04 南京大学 一种双线阵光谱探测装置及泵浦探测系统
CN111537466A (zh) * 2020-05-15 2020-08-14 西安理工大学 一种用于检测细胞和生物大分子的瞬态THz光谱仪

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883806B2 (ja) * 2005-09-07 2012-02-22 国立大学法人名古屋大学 分光方法及び分光装置
CN104457982A (zh) * 2013-09-17 2015-03-25 中国科学院大连化学物理研究所 一种用于光谱测量中的增强脉冲型光源装置及其实现方法
JP5865946B2 (ja) * 2014-05-22 2016-02-17 株式会社ユニソク 過渡吸収測定方法及び過渡吸収測定装置
CN105954213B (zh) * 2016-04-22 2018-11-23 中国科学院理化技术研究所 一种检测时间分辨瞬态吸收光谱的装置及方法
US20180252649A1 (en) * 2017-02-24 2018-09-06 TimeGate Instruments Oy Method and apparatus for measuring raman spectrum

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590159A (zh) * 2011-01-11 2012-07-18 中国科学院物理研究所 基于单光子计数的瞬态荧光寿命测量方法及测量系统
US20130034115A1 (en) * 2011-08-03 2013-02-07 Jerry Prawiharjo Reconfigurable repetition rate and energy chirped pulse amplification fiber laser
CN108827914A (zh) * 2018-08-23 2018-11-16 天津大学 太赫兹瞬态吸收光谱探测系统及载流子寿命测量方法
CN110376125A (zh) * 2019-07-05 2019-10-25 中国科学院物理研究所 一种瞬态吸收光谱测量系统和方法
CN111537466A (zh) * 2020-05-15 2020-08-14 西安理工大学 一种用于检测细胞和生物大分子的瞬态THz光谱仪
CN111486955A (zh) * 2020-05-20 2020-08-04 南京大学 一种双线阵光谱探测装置及泵浦探测系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117388248A (zh) * 2023-12-11 2024-01-12 杭州创锐光测技术有限公司 一种瞬态成像系统与方法
CN117388248B (zh) * 2023-12-11 2024-03-19 杭州创锐光测技术有限公司 一种瞬态成像系统与方法

Also Published As

Publication number Publication date
JP2023553123A (ja) 2023-12-20
US20240027351A1 (en) 2024-01-25
KR20230110792A (ko) 2023-07-25
CN112683797A (zh) 2021-04-20
CN112683797B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
CN112067963B (zh) 一种电致发光器件工况原位分析系统及分析方法
JP2012519276A (ja) 固体光源を利用した量子効率高速測定装置
KR101506101B1 (ko) 캐리어 수명의 측정 방법 및 측정 장치
KR20120012391A (ko) 시료검사장치 및 시료검사방법
CN107064111B (zh) 高重频激光剥离-火花诱导击穿光谱元素分析系统及方法
JP2011513740A (ja) 光子混合検出器を用いた時間分解分光分析方法およびシステム
WO2022121082A1 (zh) 一种脉冲电流激发的瞬态吸收光谱仪
CN108463714A (zh) 用于测量电子激发态的平均寿命的发射寿命测量方法和设备
CN109884034A (zh) 一种飞秒等离子体光栅诱导击穿光谱检测的方法及装置
Buller et al. All‐solid‐state microscope‐based system for picosecond time‐resolved photoluminescence measurements on II‐VI semiconductors
CN108051413A (zh) 一种脉冲光激发的光致发光光谱测量系统
CN108627484A (zh) 一种自动锁相模块及荧光寿命检测方法和装置
CN108333161A (zh) 一种基于光纤的脉冲激光多次往返利用装置与荧光信号检测方法
CN111664951B (zh) 皮秒分辨单光子弱信号测量装置及测量方法
CN207832673U (zh) 一种基于光纤的脉冲激光多次往返利用装置
CN109374585B (zh) 测量荧光量子产率的方法及装置
CN207036695U (zh) 高重频激光剥离‑火花诱导击穿光谱元素分析系统
CN112782131B (zh) 一种光谱检测系统和光谱检测方法
Murray et al. A single-photon-counting Fourier transform microfluorometer
CN110779903A (zh) 一种基于单量子点测量共聚焦显微镜探测效率的方法
TWI770809B (zh) 快速發光效率檢測方法
TWI758088B (zh) 陣列式發光效率檢測方法
RU2445587C1 (ru) Способ калибровки импульсного пирометра
JP2019058042A (ja) 検査装置および検査方法
CN214427280U (zh) 一种用于脉冲电流激发的荧光寿命探测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21901801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023535048

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18256807

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237021587

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21901801

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.11.2023)