WO2022121040A1 - 肽图分析方法 - Google Patents
肽图分析方法 Download PDFInfo
- Publication number
- WO2022121040A1 WO2022121040A1 PCT/CN2020/141486 CN2020141486W WO2022121040A1 WO 2022121040 A1 WO2022121040 A1 WO 2022121040A1 CN 2020141486 W CN2020141486 W CN 2020141486W WO 2022121040 A1 WO2022121040 A1 WO 2022121040A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mobile phase
- uplc
- volume fraction
- peptide
- formic acid
- Prior art date
Links
- 238000012510 peptide mapping method Methods 0.000 title abstract description 6
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 57
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims abstract description 40
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 21
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims abstract description 20
- 235000019253 formic acid Nutrition 0.000 claims abstract description 20
- 229920001184 polypeptide Polymers 0.000 claims abstract description 15
- 239000012634 fragment Substances 0.000 claims abstract description 12
- 238000004704 ultra performance liquid chromatography Methods 0.000 claims abstract description 12
- XBJFCYDKBDVADW-UHFFFAOYSA-N acetonitrile;formic acid Chemical compound CC#N.OC=O XBJFCYDKBDVADW-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000010828 elution Methods 0.000 claims abstract description 9
- 238000004925 denaturation Methods 0.000 claims abstract description 7
- 230000036425 denaturation Effects 0.000 claims abstract description 7
- 238000001946 ultra-performance liquid chromatography-mass spectrometry Methods 0.000 claims description 25
- 238000004458 analytical method Methods 0.000 claims description 20
- 238000001514 detection method Methods 0.000 claims description 17
- 238000004949 mass spectrometry Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 12
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 claims description 11
- 239000000243 solution Substances 0.000 claims description 10
- 101001018085 Lysobacter enzymogenes Lysyl endopeptidase Proteins 0.000 claims description 9
- 102000004142 Trypsin Human genes 0.000 claims description 9
- 108090000631 Trypsin Proteins 0.000 claims description 9
- 239000003153 chemical reaction reagent Substances 0.000 claims description 9
- 239000012588 trypsin Substances 0.000 claims description 9
- 230000007071 enzymatic hydrolysis Effects 0.000 claims description 8
- 102000004169 proteins and genes Human genes 0.000 claims description 8
- 108090000623 proteins and genes Proteins 0.000 claims description 8
- 108010059378 Endopeptidases Proteins 0.000 claims description 6
- 102000005593 Endopeptidases Human genes 0.000 claims description 6
- 230000002045 lasting effect Effects 0.000 claims description 5
- 230000035945 sensitivity Effects 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 238000004807 desolvation Methods 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 238000010811 Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Methods 0.000 abstract 4
- 238000004587 chromatography analysis Methods 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 47
- 238000000926 separation method Methods 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 6
- 229960000789 guanidine hydrochloride Drugs 0.000 description 5
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 229910021642 ultra pure water Inorganic materials 0.000 description 4
- 239000012498 ultrapure water Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- HQVFCQRVQFYGRJ-UHFFFAOYSA-N formic acid;hydrate Chemical compound O.OC=O HQVFCQRVQFYGRJ-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000003275 alpha amino acid group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000012089 stop solution Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/72—Mass spectrometers
Definitions
- the present invention relates to the technical field of peptide analysis, in particular to a method for peptide map analysis.
- Peptide mapping can provide rich structural information in the confirmation of primary structure, and peptide mapping based on liquid chromatography-mass spectrometry is widely used in the quality control of biopharmaceuticals because it can match the theoretical amino acid sequence.
- RP-HPLC Reversed-phase chromatography
- C18 chromatographic column is widely used in peptide mapping analysis due to its unique resolution.
- some hydrophilic peptides produced by restriction digestion are difficult to be detected on C18 column.
- a strong ion-pairing reagent, trifluoroacetic acid (TFA), which can improve the peak shape is usually added to the mobile phase of peptide mapping analysis.
- TFA trifluoroacetic acid
- a method for analyzing peptide maps comprising the following steps:
- the sample is denatured and enzymatically hydrolyzed to obtain polypeptide fragments
- the mobile phase of the UPLC-MS includes mobile phase A and mobile phase B, the mobile phase A is formic acid aqueous solution, and the mobile phase B is formic acid acetonitrile solution;
- the chromatographic column used by the UPLC-MS is ACQUITY UPLC HSS T3 chromatographic column.
- the volume percentage of formic acid in the mobile phase A is 0.1% to 1%
- the volume percentage of formic acid in the mobile phase B is 0.1% to 1%
- the UPLC-MS adopts gradient elution, and the parameters of the gradient elution are:
- the volume fraction of the mobile phase A is 100%, and the volume fraction of the mobile phase B is 0, lasting 4.5min-5.5min,
- the volume fraction of the mobile phase A is 100%, and the volume fraction of the mobile phase B is 0 for 39.5min-40.5min,
- the volume fraction of the mobile phase A is 35% to 45%, and the volume fraction of the mobile phase B is 55% to 65% for 4.5min to 5.5min.
- the volume fraction of the mobile phase A is 0, and the volume fraction of the mobile phase B is 100%, lasting 4.5min-5.5min,
- the volume fraction of the mobile phase A is 0, and the volume fraction of the mobile phase B is 100% for 0.1 to 0.2 minutes.
- the flow rate of the mobile phase is 0.15 mL/min ⁇ 0.25 mL/min.
- the detection column temperature of the UPLC-MS is 58°C to 62°C.
- the mass spectrometry detection mode in the UPLC-MS is a positive ion mode.
- the analysis mode is a sensitivity mode.
- the mass spectrometry cone voltage in the UPLC-MS is 30V-50V.
- the capillary voltage is 2.00kV-3.00kV.
- the detector voltage is 2800V-3000V.
- the temperature of the ionization source is 100-130°C.
- the desolvation temperature is 400-600°C.
- the column specification is 2.1 ⁇ 150mm, 1.8 ⁇ m.
- the step of denaturing the sample by enzymolysis includes:
- the denatured sample is mixed with endopeptidase for enzymatic hydrolysis, and then mixed with acid to terminate the enzymatic hydrolysis reaction;
- the endopeptidase is selected from any one of Trypsin/Lys-C mix, Trypsin, and Lys-C.
- the sample is a protein or polypeptide that will generate a hydrophilic peptide segment after denaturation and enzymatic hydrolysis.
- the present invention selects the ACQUITY UPLC HSS T3 chromatographic column, and selects the formic acid and formic acid acetonitrile system as the mobile phase.
- the results show that the hydrophilic target peptide segment is well retained, and a good separation effect can be obtained.
- the method uses formic acid and formic acid acetonitrile system, so that liquid chromatography and mass spectrometry are compatible, and the method of qualitative detection and quantitative detection of the sample is unified.
- Fig. 1 is the chromatographic condition 1-blank control and mixed protein A enzymolysis contrast map of an embodiment of the present invention
- Fig. 2 is the chromatographic condition 2-blank control and mixed protein A enzymolysis contrast map of an embodiment of the present invention
- Fig. 3 is the peptide fingerprint of CSH C18 chromatographic column and HSS T3 chromatographic column of an embodiment of the present invention
- FIG. 4 is a graph showing the results of mass spectrometry identification of hydrophilic target peptides according to an embodiment of the present invention.
- An embodiment of the present invention provides a method for analyzing peptide maps, comprising the following steps:
- the sample is denatured and enzymatically hydrolyzed to obtain polypeptide fragments
- the polypeptide fragments are detected using UPLC-MS, and the polypeptide fragments are assigned according to the collected peptide map data.
- the mobile phase of the UPLC-MS includes mobile phase A and mobile phase B, the mobile phase A is formic acid aqueous solution, and the mobile phase B is formic acid acetonitrile solution;
- the chromatographic column used by the UPLC-MS is ACQUITY UPLC HSS T3 column.
- the present invention selects the ACQUITY UPLC HSS T3 chromatographic column, and selects the formic acid and formic acid acetonitrile system as the mobile phase.
- the results show that the hydrophilic target peptide segment is well retained, and a good separation effect can be obtained.
- the method uses formic acid and formic acid acetonitrile system, so that liquid chromatography and mass spectrometry are compatible, and the method of qualitative detection and quantitative detection of the sample is unified.
- the sample of the present invention can be a protein or polypeptide that will generate a hydrophilic peptide segment after denaturing enzymatic hydrolysis.
- the step of denaturing the enzymatic hydrolysis of the sample comprises:
- the denatured sample was mixed with endopeptidase for enzymatic hydrolysis, and then mixed with acid to terminate the enzymatic hydrolysis reaction.
- the denaturing reagent may be selected from RapiGest SF or guanidine hydrochloride, preferably guanidine hydrochloride.
- the endopeptidase can be any of Trypsin/Lys-C mix, Trypsin, Lys-C.
- the enzymatic hydrolysis time is 3 to 4 hours.
- the volume percentage of formic acid in the mobile phase A is 0.1% to 1%
- the volume percentage of formic acid in the mobile phase B is 0.1% to 1%.
- the volume percentage of formic acid in the mobile phase A is 0.1%.
- the volume percentage of formic acid in mobile phase B is 0.1%.
- UPLC-MS employs gradient elution.
- the parameters of the gradient elution may be: in the first stage, the volume fraction of the mobile phase A is 100%, and the volume fraction of the mobile phase B is 0, for 4.5 min to 5.5 min, and the second In the first stage, the volume fraction of the mobile phase A is 100%, and the volume fraction of the mobile phase B is 0 for 39.5 min to 40.5 min.
- the volume fraction of the mobile phase A is 35% to 45%, and the The volume fraction of mobile phase B is 55% to 65% for 4.5min to 5.5min.
- the volume fraction of mobile phase A is 0 and the volume fraction of mobile phase B is 100% for 4.5min to 5.5min.
- the volume fraction of the mobile phase A is 0, and the volume fraction of the mobile phase B is 100%, lasting 0.1min-0.2min.
- the parameters of the gradient elution are shown in Table 1 below:
- the flow rate of the mobile phase is 0.15 mL/min to 0.25 mL/min.
- the detection column temperature of the UPLC-MS is 58°C to 62°C. Specifically, it can be 58°C, 59°C, 60°C, 61°C, and 62°C.
- the specification of the chromatographic column is that the specification of the chromatographic column is 2.1 ⁇ 150mm, 1.8 ⁇ m. .
- the loading volume of the UPLC-MS ranges from 8 ⁇ L to 12 ⁇ L. Specifically, it can be 8 ⁇ L, 9 ⁇ L, 10 ⁇ L, 11 ⁇ L, and 12 ⁇ L.
- the detection mode of mass spectrometry in the UPLC-MS is positive ion mode.
- the analysis mode is a sensitivity mode.
- the mass spectrometry cone voltage in the UPLC-MS is 30V-50V.
- the capillary voltage is 2.00kV-3.00kV.
- the detector voltage is 2800V-3000V.
- the ionization source temperature is 100-130°C.
- the desolvation temperature is 400-600°C.
- the embodiments of the present invention also provide an application of the peptide map analysis method of any one of the above embodiments in detecting hydrophilic peptides.
- a flexible linker (Gly-Gly-Gly-Gly-Ser-Gly-Gly-Gly-Gly-Gly-Gly-Ser-Gly-Gly-Gly-Gly-Gly-Ser-Ala-Glu-Ser-Lys) was synthesized.
- the peptide segment was mixed with bovine serum albumin as the test sample, which verifies the effect of the peptide map analysis method of the present invention on the separation and identification of the hydrophilic target peptide segment in the protein sample.
- Synthetic peptide Take the synthetic peptide, dissolve and dilute in 1 ⁇ PBS to make the final concentration 1mg/mL.
- BSA Take BSA, dissolve and dilute in 1 ⁇ PBS to make the final concentration 5mg/mL.
- chromatographic condition 1 and chromatographic condition 2 respectively, first equilibrate the chromatographic column (80min-100min), and then inject the sample for detection.
- Chromatographic condition 1 Column-ACQUITY UPLC Peptide CSH C18 Column (2.1 ⁇ 150mm, 1.7 ⁇ m) column temperature: 60.0 ⁇ 2°C; flow rate: 0.2mL/min; detection wavelength 214nm; injection volume 10 ⁇ L;
- Chromatographic condition 2 Column-ACQUITY UPLC HSS T3 (2.1 ⁇ 150mm, 1.8 ⁇ m), the packing of HSS T3 column pair is high-strength silica gel particles, column temperature: 60.0 ⁇ 2°C;
- Mobile phase flow rate 0.2 mL/min; detection wavelength 214 nm; injection volume 10 ⁇ L; running time 60 min, the mobile phase elution gradient is shown in Table 6 below:
- the hydrophilic target peptide (GGGGGGGSGGGGSGGGGSAESK) can be seen on the ACQUITY UPLC HSS T3 chromatographic column (chromatographic condition 2) at the retention time of 11.28 min. 1) Not found in the chromatogram (see Figure 3).
- the ACQUITY UPLC HSS T3 chromatographic column has a good retention of the hydrophilic target peptide (GGGGGGGSGGGGSGGGGSAESK) compared with the general C18 chromatographic column, and can obtain a better separation effect.
- This method uses a formic acid system and is compatible with liquid phase and mass spectrometry. The method of qualitative detection and quantitative detection of samples is unified.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
本发明公开了一种肽图分析方法,包括以下步骤:对样品进行变性酶解得到多肽片段;使用UPLC-MS对所述多肽片段进行检测,并根据采集到的肽图数据,对所述多肽片段进行归属;其中,所述UPLC-MS的流动相包括流动相A和流动相B,所述流动相A为甲酸水溶液,所述流动相B为甲酸乙腈溶液;所述UPLC-MS使用ACQUITY UPLC HSS T3色谱柱进行梯度洗脱。
Description
本发明涉及多肽分析技术领域,特别是涉及一种肽图分析方法。
肽图分析在一级结构的确认上可以提供丰富的结构信息,而基于液相色谱质谱联用技术的肽图分析法因能与理论氨基酸序列进行匹配而在现在的生物药物质量控制中得到广泛的应用。反相色谱(RP-HPLC)成为目前多肽分离鉴定的主要工具。
C18色谱柱以其特有的分离度在肽图分析中应用十分广泛,但是,限制性酶解产生的一些亲水性肽段很难在C18柱上被监测到。此外,为得到良好的峰型,通常在肽图分析的流动相中加入可以改善峰型的强离子对试剂-三氟乙酸(TFA)。但是在很多情况下,为了表征肽图中的化合物或CDR(互补决定区Complementarity-determining region)肽段,常常需要将LC分离与ESI-MS联合一起使用,可是强离子对试剂(如TFA)会使得质谱信号强度显著下降。
发明内容
基于此,有必要针对传统液相色谱-质谱分离中亲水性多肽检测难度大的问题,提供一种肽图分析方法。
一种肽图分析方法,包括以下步骤:
对样品进行变性酶解得到多肽片段;
使用UPLC-MS对所述多肽片段进行检测,并根据采集到的肽图数据,对所述多肽片段进行归属;
其中,所述UPLC-MS的流动相包括流动相A和流动相B,所述流动相A为甲酸水溶液,所述流动相B为甲酸乙腈溶液;
所述UPLC-MS使用的色谱柱为ACQUITY UPLC HSS T3色谱柱。
在其中一个实施例中,所述流动相A中甲酸的体积百分数为0.1%~1%,所 述流动相B中甲酸的体积百分数为0.1%~1%。
在其中一个实施例中,所述UPLC-MS采用梯度洗脱,所述梯度洗脱的参数为:
第一阶段,所述流动相A体积分数为100%,所述流动相B体积分数为0,持续4.5min~5.5min,
第二阶段,所述流动相A体积分数为100%,所述流动相B体积分数为0,持续39.5min~40.5min,
第三阶段,所述流动相A体积分数为35%~45%,所述流动相B体积分数为55%~65%,持续4.5min~5.5min,
第四阶段,所述流动相A体积分数为0,所述流动相B体积分数为100%,持续4.5min~5.5min,
第五阶段,所述流动相A体积分数为0,所述流动相B体积分数为100%,持续0.1min~0.2min。
在其中一个实施例中,所述流动相的流速为0.15mL/min~0.25mL/min。
在其中一个实施例中,所述UPLC-MS的检测柱温为58℃~62℃。
在其中一个实施例中,所述UPLC-MS中质谱检测模式为正离子模式。
在其中一个实施例中,分析模式为灵敏度模式。
在其中一个实施例中,所述UPLC-MS中质谱锥孔电压为30V-50V。
在其中一个实施例中,毛细管电压为2.00kV-3.00kV。
在其中一个实施例中,检测器电压为2800V-3000V。
在其中一个实施例中,电离源温度100-130℃。
在其中一个实施例中,脱溶剂气温度400-600℃。
在其中一个实施例中,对样品进行变性酶解的步骤包括:
将样品与变性试剂混合后进行变性;
将变性后的样品与肽链内切酶混合后进行酶解,然后与酸混合终止酶解反应;
在其中一个实施例中,所述肽链内切酶选自Trypsin/Lys-C mix、Trypsin、 Lys-C中的任意一种。
在其中一个实施例中,所述样品为变性酶解后会产生亲水性肽段的蛋白或多肽。
本发明选择ACQUITY UPLC HSS T3色谱柱,并选择甲酸和甲酸乙腈体系作为流动相,结果表明对亲水性目的肽段有很好的保留,且可以得到较好的分离效果。并且,本方法使用甲酸和甲酸乙腈体系,做到液相色谱和质谱的兼容,实现了对样品的定性检测和定量检测的方法统一。
图1为本发明一实施例的色谱条件1-空白对照与混合蛋白A酶解对比图谱;
图2为本发明一实施例的色谱条件2-空白对照与混合蛋白A酶解对比图谱;
图3为本发明一实施例的CSH C18色谱柱及HSS T3色谱柱肽指纹图;
图4为本发明一实施例的亲水性目的肽段质谱鉴定结果图。
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
本发明实施例提供一种肽图分析方法,包括以下步骤:
对样品进行变性酶解得到多肽片段;
使用UPLC-MS对所述多肽片段进行检测,并根据采集到的肽图数据,对所述多肽片段进行归属。
其中,所述UPLC-MS的流动相包括流动相A和流动相B,所述流动相A为甲酸水溶液,所述流动相B为甲酸乙腈溶液;所述UPLC-MS使用的色谱柱 为ACQUITY UPLC HSS T3色谱柱。
本发明选择ACQUITY UPLC HSS T3色谱柱,并选择甲酸和甲酸乙腈体系作为流动相,结果表明对亲水性目的肽段有很好的保留,且可以得到较好的分离效果。并且,本方法使用甲酸和甲酸乙腈体系,做到液相色谱和质谱的兼容,实现了对样品的定性检测和定量检测的方法统一。
本发明样品可以为变性酶解后会产生亲水性肽段的蛋白或多肽。
在一些实施方式中,对样品进行变性酶解的步骤包括:
将样品与变性试剂混合后进行变性;
将变性后的样品与肽链内切酶混合后进行酶解,然后与酸混合终止酶解反应。
在一些实施方式中,变性试剂可选自RapiGest SF或盐酸胍,优选盐酸胍。
在一些实施方式中,肽链内切酶可Trypsin/Lys-C mix、Trypsin、Lys-C中的任意一种。优选的,酶解时间为3~4小时。
在一些实施方式中,所述流动相A中甲酸的体积百分数为0.1%~1%,所述流动相B中甲酸的体积百分数为0.1%~1%。优选的,流动相A中甲酸体积百分数为0.1%。优选的,流动相B中甲酸体积百分数为0.1%。
在一些实施方式中,UPLC-MS采用梯度洗脱。在一实施例中,所述梯度洗脱的参数可以为:第一阶段,所述流动相A体积分数为100%,所述流动相B体积分数为0,持续4.5min~5.5min,第二阶段,所述流动相A体积分数为100%,所述流动相B体积分数为0,持续39.5min~40.5min,第三阶段,所述流动相A体积分数为35%~45%,所述流动相B体积分数为55%~65%,持续4.5min~5.5min,第四阶段,所述流动相A体积分数为0,所述流动相B体积分数为100%,持续4.5min~5.5min,第五阶段,所述流动相A体积分数为0,所述流动相B体积分数为100%,持续0.1min~0.2min。
在一些实施方式中,所述梯度洗脱的参数为下表1所示:
表1
时间(min) | 流动相A(体积百分数) | 流动相B(体积百分数) |
0.1%甲酸-水溶液 | 0.1%甲酸-乙腈溶液 | |
0 | 100 | 0 |
5 | 100 | 0 |
45 | 40 | 60 |
50 | 0 | 100 |
55 | 0 | 100 |
55.1 | 100 | 0 |
60 | 100 | 0 |
在一些实施方式中,所述流动相的流速为0.15mL/min~0.25mL/min。
在一些实施方式中,所述UPLC-MS的检测柱温为58℃~62℃。具体可以为58℃、59℃、60℃、61℃、62℃。
在一些实施方式中,所述UPLC-MS的上样量为8μL~12μL。具体可以为8μL、9μL、10μL、11μL、12μL。
在一些实施方式中,所述UPLC-MS中质谱检测模式为正离子模式。
在一些实施方式中,分析模式为灵敏度模式。
在一些实施方式中,所述UPLC-MS中质谱锥孔电压为30V-50V。
在一些实施方式中,毛细管电压为2.00kV-3.00kV。
在一些实施方式中,检测器电压为2800V-3000V。
在一些实施方式中,电离源温度100-130℃。
在一些实施方式中,脱溶剂气温度400-600℃。
本发明实施例还提供一种上述任一实施方式的肽图分析方法在检测亲水性肽段中的应用。
以下为具体实施例。
实施例:
本实施例中合成了含柔性连接子(Gly-Gly-Gly-Gly-Ser- Gly-Gly-Gly-Gly-Ser-Gly-Gly-Gly-Gly-Ser-Ala-Glu-Ser-Lys)的肽段与牛血清白蛋白混合作为供试品,验证了本发明中肽图分析方法对蛋白样品中亲水性目的肽段进行分离鉴别效果。
(1)实验试剂耗材和仪器如表2和表3所示。
表2实验试剂耗材
表3实验仪器
仪器名称 | 仪器型号 |
UPLC | Waters-H-class plus |
恒温金属浴 | 杭州米欧仪器有限公司DTK200-4 |
涡旋振荡器 | 杭州米欧仪器有限公司MIX-25P |
高速冷冻离心机 | Thermo-LEGEND MICRO 21R |
离心机 | Thermo-ST16R |
(2)试剂配制
1×PBS溶液(pH7.4):
称取8g NaCl,0.2g KCl,1.44g Na
2HPO
4,0.24g KH
2PO
4加800mL超纯水溶解,调pH至7.4,超纯水定容至1L,混匀抽滤,待用。
1M盐酸胍溶液:
称取95.53g盐酸胍,1×PBS溶解并定容至1L,混匀抽滤,待用。
1mg/mL Trypsin/Lys-C mix溶液:
取Trypsin/Lys-C mix一瓶(20μg/瓶),加入20μL纯化水充分溶解,分装于-80℃保存,有效期一年。
10%FA(终止液):
取900ul超纯水于EP管中,加入100ul甲酸,混匀待用。
流动相A(0.1%甲酸-水溶液):
取洁净量筒,量取1000mL超纯水,加入1mL甲酸,混匀后超声脱气,备用。
流动相B(0.1%甲酸-乙腈溶液):
取洁净量筒,量取1000mL乙腈,加入1mL甲酸,混匀后超声脱气,备用。
(3)样品制备
合成肽段:取合成肽段,1×PBS溶解并稀释使其终浓度为1mg/mL。
BSA:取BSA,1×PBS溶解并稀释使其终浓度为5mg/mL。
(4)实验步骤
(4-1)样品变性酶解:
分别取6ug NJP40735合成肽段(1mg/mL,6μL)和100μg BSA(5mg/mL,20μL),加入80μL 1M盐酸胍,混匀。按蛋白量加入1:20的Trypsin/Lys-C mix 5.3uL(即5.3ug酶);37℃酶切4小时,最后加入5uL 10%FA水溶液终止反应,涡旋30s重复两次,PH<2,13000rpm 5min取上清,上样10uL,UPLC-MS分析。
(4-2)UPLC-MS检测:
UPLC-MS设备开启:开启UPLC后,配置仪器G2XS-Qtof+TUV+QSM+FTN,将离子源打开后,依次进行仪器检查,校正时勾选灵敏度模式(sensitivity mode),开始前注意检测氩气是否打开。
质谱条件如表4所示。
表4质谱条件
参数名称 | 参数设置 | 参数名称 | 参数设置 |
电离类型 | ESI | 极性 | 正离子 |
扫描设定 | 100~2000m/z | 分析模式 | 灵敏度 |
电离源温度 | 110℃ | 脱溶剂气温度 | 400℃ |
锥孔电压 | 35V | 毛细管电压 | 2.50kV |
检测器电压 | 2800V |
(4-3)样品检测:
分别按照色谱条件1和色谱条件2,首先平衡色谱柱(80min~100min),然后进样检测。
色谱条件1:色谱柱-ACQUITY UPLC Peptide CSH C18 Column
(2.1×150mm,1.7μm)柱温:60.0±2℃;流速:0.2mL/min;检测波长214nm;进样体积10μL;运行时间60min,流动相洗脱梯度如下表5所示:
表5色谱条件1
色谱条件2:色谱柱-ACQUITY UPLC HSS T3(2.1×150mm,1.8μm),HSS T3色谱柱对的填料是高强度硅胶颗粒,柱温:60.0±2℃;
流动相流速:0.2mL/min;检测波长214nm;进样体积10μL;运行时间60min,流动相洗脱梯度如下表6所示:
表6色谱条件2
(5)实验结果分析:
结果处理:
将混合蛋白A在色谱条件1与色谱条件2下的图谱进行镜像重叠比较,保存结果。
结果判定:
由图1和图2可知,空白对照在6min~16min之间无明显吸收峰;
在ACQUITY UPLC HSS T3色谱柱(色谱条件2)色谱图保留时间为11.28min处可见亲水性目的肽段(GGGGGGGSGGGGSGGGGSAESK),该肽段(质谱鉴定结果见图4)在CSH C18色谱柱(色谱条件1)色谱图中并未找到(见图3)。
结果分析:
ACQUITY UPLC HSS T3色谱柱对相比一般的C18色谱柱对亲水性目的肽段(GGGGGGGSGGGGSGGGGSAESK)有很好的保留,且可以得到较好的分离效果。本方法使用甲酸体系,做到液相和质谱的兼容。实现了样品的定性检测和定量检测的方法统一。
待样品采集结束后,将离子源待机,关闭紫外灯,使用80%乙腈(或80%甲醇)冲洗色谱柱20min,关闭流速。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种肽图分析方法,其特征在于,包括以下步骤:对样品进行变性酶解得到多肽片段;使用UPLC-MS对所述多肽片段进行检测,并根据采集到的肽图数据,对所述多肽片段进行归属;其中,所述UPLC-MS的流动相包括流动相A和流动相B,所述流动相A为甲酸水溶液,所述流动相B为甲酸乙腈溶液;所述UPLC-MS使用的色谱柱为ACQUITY UPLC HSS T3色谱柱。
- 根据权利要求1所述的肽图分析方法,其特征在于,所述流动相A中甲酸的体积百分数为0.1%~1%,所述流动相B中甲酸的体积百分数为0.1%~1%。
- 根据权利要求2所述的肽图分析方法,其特征在于,所述UPLC-MS采用梯度洗脱,所述梯度洗脱的参数为:第一阶段,所述流动相A体积分数为100%,所述流动相B体积分数为0,持续4.5min~5.5min,第二阶段,所述流动相A体积分数为100%,所述流动相B体积分数为0,持续39.5min~40.5min,第三阶段,所述流动相A体积分数为35%~45%,所述流动相B体积分数为55%~65%,持续4.5min~5.5min,第四阶段,所述流动相A体积分数为0,所述流动相B体积分数为100%,持续4.5min~5.5min,第五阶段,所述流动相A体积分数为0,所述流动相B体积分数为100%,持续0.1min~0.2min。
- 根据权利要求1-3任一项所述的肽图分析方法,其特征在于,所述流动相的流速为0.15mL/min~0.25mL/min。
- 根据权利要求1所述的肽图分析方法,其特征在于,所述UPLC-MS的检测柱温为58℃~62℃。
- 根据权利要求1所述的肽图分析方法,其特征在于,所述UPLC-MS中质谱检测模式为正离子模式,优选地,分析模式为灵敏度模式。
- 根据权利要求6所述的肽图分析方法,其特征在于,所述UPLC-MS中质谱锥孔电压为30V-50V,优选地,毛细管电压为2.00kV-3.00kV,优选地,检测器电压为2800V-3000V,优选地,电离源温度100-130℃,优选地,脱溶剂气温度400-600℃。
- 根据权利要求1所述的肽图分析方法,其特征在于,对样品进行变性酶解的步骤包括:将样品与变性试剂混合后进行变性;将变性后的样品与肽链内切酶混合后进行酶解,然后与酸混合终止酶解反应;优选地,所述肽链内切酶选自Trypsin/Lys-C mix、Trypsin、Lys-C中的任意一种。
- 根据权利要求1所述的肽图分析方法,其特征在于,所述样品为变性酶解后会产生亲水性肽段的蛋白或多肽。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011419204.0 | 2020-12-07 | ||
CN202011419204.0A CN112763636B (zh) | 2020-12-07 | 2020-12-07 | 肽图分析方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022121040A1 true WO2022121040A1 (zh) | 2022-06-16 |
Family
ID=75693468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/141486 WO2022121040A1 (zh) | 2020-12-07 | 2020-12-30 | 肽图分析方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112763636B (zh) |
WO (1) | WO2022121040A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115097041A (zh) * | 2022-06-28 | 2022-09-23 | 中国农业科学院北京畜牧兽医研究所 | 一种prm检测促黄体生成素的试剂盒及检测方法和应用 |
CN116908321A (zh) * | 2023-06-21 | 2023-10-20 | 南京汉欣医药科技有限公司 | 一种硫酸鱼精蛋白肽图检测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107827960A (zh) * | 2017-10-26 | 2018-03-23 | 中国食品药品检定研究院 | Hpv的l1蛋白的定量检测方法 |
WO2019213612A1 (en) * | 2018-05-03 | 2019-11-07 | Washington University | Methods of diagnosing and treating based on site-specific tau phosphorylation |
CN110734485A (zh) * | 2019-09-26 | 2020-01-31 | 浙江海洋大学 | 一种曼氏无针乌贼衰老过程中的蛋白生物标志物 |
CN110988244A (zh) * | 2019-12-23 | 2020-04-10 | 上海景峰制药有限公司 | 一种奈西立肽的肽图分析方法及其应用 |
CN111239273A (zh) * | 2020-01-22 | 2020-06-05 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种利妥昔单抗的药代动力学研究质谱分析方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7601542B2 (en) * | 2006-02-08 | 2009-10-13 | Florida State University Research Foundation | Analytical method for protein mapping using hydrogen/deuterium exchange |
CA2828147A1 (en) * | 2011-03-08 | 2012-09-13 | Sanwa Kagaku Kenkyusho Co., Ltd. | Analysis method |
CN102495169B (zh) * | 2011-11-16 | 2013-09-18 | 江南大学 | 一种紫菜可控酶解后的抗氧化活性肽的纯化及分析鉴定方法 |
CN108267534A (zh) * | 2016-12-31 | 2018-07-10 | 江苏众红生物工程创药研究院有限公司 | 聚乙二醇修饰蛋白质药物的酶解肽图分析方法 |
CN110297050B (zh) * | 2019-07-23 | 2022-04-12 | 天津市药品检验研究院 | 一种胰岛素质谱肽图的鉴别方法及应用 |
-
2020
- 2020-12-07 CN CN202011419204.0A patent/CN112763636B/zh active Active
- 2020-12-30 WO PCT/CN2020/141486 patent/WO2022121040A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107827960A (zh) * | 2017-10-26 | 2018-03-23 | 中国食品药品检定研究院 | Hpv的l1蛋白的定量检测方法 |
WO2019213612A1 (en) * | 2018-05-03 | 2019-11-07 | Washington University | Methods of diagnosing and treating based on site-specific tau phosphorylation |
CN110734485A (zh) * | 2019-09-26 | 2020-01-31 | 浙江海洋大学 | 一种曼氏无针乌贼衰老过程中的蛋白生物标志物 |
CN110988244A (zh) * | 2019-12-23 | 2020-04-10 | 上海景峰制药有限公司 | 一种奈西立肽的肽图分析方法及其应用 |
CN111239273A (zh) * | 2020-01-22 | 2020-06-05 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种利妥昔单抗的药代动力学研究质谱分析方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115097041A (zh) * | 2022-06-28 | 2022-09-23 | 中国农业科学院北京畜牧兽医研究所 | 一种prm检测促黄体生成素的试剂盒及检测方法和应用 |
CN115097041B (zh) * | 2022-06-28 | 2023-12-15 | 中国农业科学院北京畜牧兽医研究所 | 一种prm检测促黄体生成素的试剂盒及检测方法和应用 |
CN116908321A (zh) * | 2023-06-21 | 2023-10-20 | 南京汉欣医药科技有限公司 | 一种硫酸鱼精蛋白肽图检测方法 |
CN116908321B (zh) * | 2023-06-21 | 2024-05-31 | 南京汉欣医药科技有限公司 | 一种硫酸鱼精蛋白肽图检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112763636A (zh) | 2021-05-07 |
CN112763636B (zh) | 2022-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Henningsen et al. | Application of zwitterionic detergents to the solubilization of integral membrane proteins for two‐dimensional gel electrophoresis and mass spectrometry | |
CN110850099B (zh) | 一种非疾病诊断目的的血清中c反应蛋白的定值方法 | |
Shevchenko et al. | “De novo” sequencing of peptides recovered from in-gel digested proteins by nanoelectrospray tandem mass spectrometry | |
WO2022121040A1 (zh) | 肽图分析方法 | |
Hess et al. | Analytical and micropreparative peptide mapping by high performance liquid chromatography/electrospray mass spectrometry of proteins purified by gel electrophoresis | |
CN102483420B (zh) | 通过质谱对蛋白质进行定量的方法 | |
US20110219858A1 (en) | Composition for use as a peptide retention standard and a method of predicting peptide hydrophobicity in liquid chromatography | |
CN108948176B (zh) | 一种骨桥蛋白特征肽及其应用 | |
US11740246B2 (en) | Dual-column LC-MS system and methods of use thereof | |
CN114705849A (zh) | 一种基于silac进行血清胱抑素c绝对定量的质谱方法 | |
US20140194304A1 (en) | Process for ultra-sensitive quantification of target analytes in complex biological systems | |
Fung et al. | A simple and inexpensive approach to interfacing high‐performance liquid chromatography and matrix‐assisted laser desorption/ionization‐time of flight‐mass spectrometry | |
JP6130448B2 (ja) | 草種の同定のための方法 | |
Sakaguchi et al. | Quantification of peptides using N‐terminal isotope coding and C‐terminal derivatization for sensitive analysis by micro liquid chromatography‐tandem mass spectrometry | |
CN111518191A (zh) | 一种乳凝集素特征肽及其应用 | |
Tai et al. | Non-targeted identification of D-amino acid-containing peptides through enzymatic screening, chiral amino acid analysis, and LC-MS | |
Füssl et al. | Exploring proteoforms of the IgG2 monoclonal antibody panitumumab using microchip capillary electrophoresis-mass spectrometry | |
EP3109630B1 (en) | Protein detection method using mass spectrometry | |
CN114324626A (zh) | 一种用于新型冠状病毒刺突蛋白含量检测的特征肽段及方法 | |
Syal et al. | Modifications in trypsin digestion protocol for increasing the efficiency and coverage | |
CN116046923B (zh) | 一种血清中降钙素原的定值方法 | |
Okyem et al. | Nontargeted Identification of D-Amino Acid-Containing Peptides Through Enzymatic Screening, Chiral Amino Acid Analysis, and LC-MS | |
Zeng et al. | Impurity characterization and quantification by liquid chromatography–high-resolution mass spectrometry | |
US20210246085A1 (en) | Methods and Systems for Measuring Plasma Renin Activity | |
Xing et al. | De novo assisted AFB1-Specific monoclonal antibody sequence assembly and comprehensive molecular characterization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20964969 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20964969 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.12.2023) |