WO2022120830A1 - 数据传输方法及装置、存储介质 - Google Patents

数据传输方法及装置、存储介质 Download PDF

Info

Publication number
WO2022120830A1
WO2022120830A1 PCT/CN2020/135876 CN2020135876W WO2022120830A1 WO 2022120830 A1 WO2022120830 A1 WO 2022120830A1 CN 2020135876 W CN2020135876 W CN 2020135876W WO 2022120830 A1 WO2022120830 A1 WO 2022120830A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
uplink data
time unit
terminal
resource
Prior art date
Application number
PCT/CN2020/135876
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202080003936.3A priority Critical patent/CN114930755A/zh
Priority to EP20964766.8A priority patent/EP4262119A4/en
Priority to US18/266,240 priority patent/US20240031011A1/en
Priority to PCT/CN2020/135876 priority patent/WO2022120830A1/zh
Publication of WO2022120830A1 publication Critical patent/WO2022120830A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a data transmission method and device, and a storage medium.
  • Satellite communication refers to the communication carried out by radio communication equipment on the ground using satellites as relays.
  • the satellite communication system consists of a satellite part and a ground part.
  • the characteristics of satellite communication are: the communication range is large; as long as the radio waves emitted by the satellite cover the range, communication can be carried out from any two points; it is not easily affected by land disasters (high reliability).
  • satellite communication can have the following advantages: First, extended coverage can be achieved.
  • the problem of communication can be solved through satellite communication.
  • emergency communication can be carried out.
  • the use of satellite communication can quickly establish a communication connection.
  • it can also provide industrial applications. For example, for the delay-sensitive services of long-distance transmission, the delay of service transmission can be reduced by means of satellite communication.
  • the general data transmission is based on scheduling, that is to say, the base station instructs the terminal to send or receive data at the indicated time-frequency resource position through a scheduling instruction.
  • the base station may further configure resources for the terminal to transmit or receive data in advance, and the terminal transmits or receives data at the corresponding time-frequency resource location based on the configuration information.
  • the terminals limited by the capabilities of the terminals, only half-duplex transmission methods can be supported. That is, in one time unit, either downlink data reception or uplink data transmission is performed, and data reception and data transmission cannot be performed at the same time.
  • NTN Non-terrestrial Network, non-terrestrial network
  • the satellite may not be able to accurately know the timing of the downlink and uplink of the terminal, so the terminal may receive
  • the terminal performs uplink and downlink transmission simultaneously in at least one time unit.
  • the embodiments of the present disclosure provide a data transmission method and device, and a storage medium.
  • a data transmission method is provided, and the method is used for a terminal, including:
  • the performing downlink data reception or uplink data transmission on the target time unit includes:
  • downlink data reception or uplink data transmission is performed on the target time unit.
  • the method further includes:
  • the target transmission mode is determined based on the target signaling sent by the satellite.
  • the method further includes:
  • target indication information In response to receiving downlink data on the target time unit, sending target indication information to the satellite; wherein, the target indication information is used to indicate that the terminal does not perform uplink data transmission on the target time unit;
  • the target uplink data is transmitted to the satellite.
  • the sending target indication information to the satellite includes:
  • the target indication information is sent to the satellite through a physical random access channel PRACH.
  • the first resource includes multiple time units
  • the transmitting target uplink data to the satellite on the time unit included in the first resource includes:
  • the target uplink data is transmitted to the satellite.
  • the target uplink data includes first uplink data not transmitted by the terminal in the target time unit; or
  • the target uplink data includes uplink data obtained by combining the first uplink data and the second uplink data, wherein the second uplink data is required by the terminal in the time unit included in the first resource. transmitted upstream data.
  • the method further includes:
  • the second resource includes a resource for the terminal to perform random access.
  • the second resource includes a plurality of time units, and the transmission target indication information and target uplink data are transmitted to the time unit included in the second resource pre-allocated by the satellite for the terminal for uplink data transmission.
  • the satellite includes:
  • the target indication information and the target uplink data are transmitted to the satellite.
  • the target uplink data includes first uplink data not transmitted by the terminal in the target time unit; or
  • the target uplink data includes uplink data obtained by combining the first uplink data and the second uplink data, wherein the second uplink data is required by the terminal in the time unit included in the first resource. transmitted upstream data.
  • the method further includes:
  • the associated information includes at least one of the following:
  • a data transmission method is provided, and the method is used for satellites, including:
  • the target indication information In response to receiving the target indication information sent by the terminal, configure a first resource for transmitting the target uplink data for the terminal; wherein the target indication information is used to indicate that the terminal does not send uplink data in the target time unit , the target time unit is the time unit in which the terminal determines that there is an uplink and downlink transmission scheduling conflict;
  • the method further includes:
  • the target uplink data includes first uplink data not transmitted by the terminal in the target time unit; or
  • the target uplink data includes uplink data obtained by combining the first uplink data and the second uplink data, wherein the second uplink data is required by the terminal in the time unit included in the first resource. transmitted upstream data.
  • a data transmission method is provided, and the method is used for satellites, including:
  • the second resource is a resource pre-allocated to the terminal for uplink transmission, and the time unit included in the second resource is located after the target time unit, and the target indication information is used to indicate the terminal No uplink data transmission is performed on the target time unit, where the target time unit is the time unit where the terminal determines that there is a scheduling conflict between uplink and downlink transmissions.
  • the second resource includes a resource for the terminal to perform random access.
  • the target uplink data includes first uplink data not transmitted by the terminal in the target time unit; or
  • the target uplink data includes uplink data obtained by combining the first uplink data and the second uplink data, wherein the second uplink data is required by the terminal in the time unit included in the first resource. transmitted upstream data.
  • the method further includes:
  • the associated information includes at least one of the following:
  • a data transmission apparatus the apparatus being used in a terminal, including:
  • the data transmission module is configured to perform downlink data reception or uplink data transmission on the target time unit in response to determining that there is an uplink and downlink transmission scheduling conflict on the target time unit.
  • a data transmission apparatus comprising:
  • a resource configuration module configured to, in response to receiving the target indication information sent by the terminal, configure a first resource for the terminal for transmitting target uplink data; wherein the target indication information is used to indicate that the terminal is at a target time No uplink data transmission is performed on the unit, and the target time unit is the time unit in which the terminal determines that there is an uplink and downlink transmission scheduling conflict;
  • a sending module configured to send the first resource to the terminal.
  • a data transmission apparatus comprising:
  • a receiving module configured to receive target indication information and target uplink data sent by the terminal in the time unit included in the second resource
  • the second resource is a resource pre-allocated to the terminal for uplink transmission, and the time unit included in the second resource is located after the target time unit, and the target indication information is used to indicate the terminal No uplink data transmission is performed on the target time unit, where the target time unit is the time unit where the terminal determines that there is a scheduling conflict between uplink and downlink transmissions.
  • a data transmission device comprising:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the data transmission method according to any one of the above-mentioned first aspect.
  • a data transmission device comprising:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the data transmission method according to any one of the second aspect or the third aspect.
  • the terminal when it is determined that there is a scheduling conflict between uplink and downlink transmission in the target time unit, the terminal can only receive downlink data or only transmit uplink data in the target time unit, so that the problem of satellite communication can be effectively solved. , the problem of scheduling conflict between uplink and downlink transmission.
  • the terminal may, based on the indication of the target transmission mode, perform downlink data reception or uplink data transmission on a target time unit in which there is an uplink and downlink transmission scheduling conflict.
  • the terminal may determine the target transmission mode based on predefined settings, or the terminal may determine the target transmission mode based on the target signaling sent by the satellite, which effectively solves the problem of scheduling conflicts between uplink and downlink transmissions in satellite communications.
  • the terminal may send the target indication information to the satellite when the uplink data is sent on the target time unit, informing the satellite terminal that the uplink data is not sent on the target time unit. So that the satellite allocates the first resource to the terminal, and the terminal sends the target uplink data to the satellite through the first resource. It is realized that in the case where the downlink data is received on the target time unit where there is an uplink and downlink transmission scheduling conflict, the uplink data that is not uploaded on the target time unit, or the uplink data that is not uploaded on the target time unit and the The uplink data that needs to be uploaded on the time unit included in the resource is combined and transmitted to the satellite. In satellite communication, the normal operation of the terminal service is ensured.
  • the terminal may also transmit the target indication information and the target uplink data to the satellite together in the time unit included in the second resource for uplink transmission pre-allocated by the satellite to the terminal.
  • the terminal In satellite communication, it is ensured that The normal operation of terminal services.
  • FIG. 1 is a schematic flowchart of a data transmission method according to an exemplary embodiment.
  • Fig. 2 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 3 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • FIG. 4 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 5 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 6 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • FIG. 7 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 8 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • FIG. 9 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 10 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 11 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 12 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 13 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 14 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • Fig. 15 is a block diagram of another data transmission apparatus according to an exemplary embodiment.
  • Fig. 16 is a block diagram of another data transmission apparatus according to an exemplary embodiment.
  • FIG. 17 is a schematic structural diagram of a data transmission apparatus according to an exemplary embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of another data transmission apparatus according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in this disclosure to describe various pieces of information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present disclosure.
  • word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the data transmission solution provided by the present disclosure will be introduced from the terminal side first.
  • FIG. 1 is a flowchart of an uplink scheduling method according to an embodiment, which can be used for terminals, including but not limited to terminals that support half-duplex.
  • Half-duplex means that either uplink data transmission or downlink data reception is performed in one time unit, and synchronous data transmission and reception are not supported.
  • the half-duplex terminal can be an NB-IoT (Narrow Band Internet of Things) device.
  • the method may include the following steps:
  • step 101 in response to determining that there is an uplink and downlink transmission scheduling conflict on the target time unit, data transmission is performed on the target time unit.
  • the data transmission includes downlink data reception or uplink data transmission.
  • the target time unit is a time unit in which scheduling conflict between uplink and downlink transmissions exists.
  • Time units may include, but are not limited to, slots.
  • the terminal either receives downlink data or transmits uplink data on the target time unit.
  • the terminal receives downlink data or transmits uplink data on the target time unit in which the uplink and downlink transmission scheduling conflicts exist, which can effectively solve the problem of uplink and downlink transmission scheduling conflicts in satellite communication.
  • FIG. 2 is a flowchart of another uplink scheduling method according to an embodiment, and the method may include the following steps:
  • step 201 data transmission is performed on the target time unit based on the indication of the target transmission mode.
  • the data transmission includes downlink data reception or uplink data transmission.
  • the target transmission mode is used to instruct the terminal to perform downlink data reception or uplink data transmission on the target time unit.
  • the target transmission mode indicates downlink data reception
  • the terminal performs downlink data reception
  • the target transmission mode indicates uplink data transmission
  • downlink data reception or uplink data transmission can be performed on the target time unit where there is an uplink and downlink transmission scheduling conflict, which solves the problem of uplink and downlink transmission scheduling conflicts in satellite communications.
  • the target transmission mode may be determined according to a predefined setting, such as a protocol agreement.
  • the terminal can determine the target transmission mode based on the predefined settings, so that on the target time unit where there is an uplink and downlink transmission scheduling conflict, based on the indication of the target transmission mode, the downlink data is received or the uplink data is sent, which solves the problem.
  • the problem of scheduling conflict between uplink and downlink transmissions In satellite communication, the problem of scheduling conflict between uplink and downlink transmissions.
  • the target transmission mode may be determined based on target signaling sent by the satellite.
  • the target signaling includes but is not limited to high-level signaling or physical-layer signaling sent by the satellite.
  • the high-layer signaling may include, but is not limited to, RRC (Radio Resource Control, radio resource control) signaling or MAC (Media Access Control Address, media access control) CE (Control Element, control unit) signaling.
  • the terminal can determine the target transmission mode based on the target signaling sent by the satellite, so that on the target time unit where there is an uplink and downlink transmission scheduling conflict, based on the indication of the target transmission mode, perform downlink data reception or uplink data transmission. , which solves the problem of scheduling conflicts between uplink and downlink transmissions in satellite communications.
  • FIG. 3 is a flowchart of another uplink scheduling method according to the embodiment shown in FIG. 1 . After step 101 is completed, the method may further include the following steps:
  • step 102 in response to the downlink data reception being performed on the target time unit, target indication information is sent to the satellite.
  • the terminal may send a target indication information to the satellite.
  • the target indication information is used to indicate that the terminal does not send uplink data in the target time unit.
  • step 103 a first resource allocated by the satellite to the terminal for transmitting target uplink data based on the target indication information is received.
  • the satellite after receiving the target indication information, can initiate uplink scheduling signaling as soon as possible, and send the first resource allocated to the terminal to the terminal through the uplink scheduling signaling.
  • the terminal After receiving the scheduling signaling, the terminal may determine the first resource indicated by the scheduling signaling.
  • the first resource is a resource used for transmitting target uplink data, including but not limited to time domain and frequency domain resources.
  • the target uplink data includes first uplink data that the terminal has not transmitted in the target time unit. That is, the first resource allocated by the satellite to the terminal based on the target indication information can be used to transmit the first uplink data that is not transmitted in the target time unit.
  • the target uplink data includes uplink data obtained by combining the first uplink data and the second uplink data.
  • the first uplink data refers to the uplink data that is not transmitted in the target time unit where there is an uplink and downlink transmission scheduling conflict
  • the second uplink data refers to the uplink data that the terminal needs to transmit in the time unit included in the first resource.
  • the first uplink data includes data A
  • the second uplink data includes data B
  • the target uplink data includes the combined uplink data of data A and data B.
  • step 104 in the time unit included in the first resource, the target uplink data is transmitted to the satellite.
  • the terminal may send the target uplink data to the satellite in the time unit included in the first resource.
  • the terminal when the terminal receives downlink data on the target time unit, it can first send target indication information to the satellite, and inform the satellite through the target indication information that the terminal does not send uplink data on the target time unit, so that the satellite does not send uplink data on the target time unit.
  • the terminal can be allocated the first resource as soon as possible, so that the terminal can send the target uplink data to be transmitted to the satellite on the time unit included in the first resource, further solving the situation that the uplink data is not sent on the target time unit
  • the purpose of how to transmit the target uplink data to the satellite in the satellite communication scenario, ensures the normal operation of the terminal service.
  • the terminal when sending the target indication information to the satellite, may send the target indication information to the satellite through but not limited to PRACH (Physical Random Access Channel, Physical Random Access Channel).
  • PRACH Physical Random Access Channel, Physical Random Access Channel
  • the target indication information can be sent to the satellite through PRACH, so that the satellite can allocate the first resource to the terminal as soon as possible, which is easy to implement and has high availability.
  • FIG. 4 is a flowchart of another uplink scheduling method shown in the embodiment shown in FIG. 3 .
  • the first resource allocated to the terminal by the satellite through uplink scheduling signaling includes multiple In the case of three time units, in the time unit included in the first resource, transmitting the target uplink data to the satellite may include the following steps:
  • step 301 at least one first time unit is determined from a plurality of time units included in the first resource based on a predefined manner.
  • the predefined manner includes, but is not limited to, predefined rules, such as selecting at least one first time unit that precedes the time sequence.
  • step 302 on the at least one first time unit, the target uplink data is transmitted to the satellite.
  • the terminal may determine at least one of the first time units, so as to transmit the target uplink data to the at least one first time unit. the satellite. In satellite communications, the normal operation of terminal services is ensured.
  • FIG. 5 is a flowchart of another uplink scheduling method according to the embodiment shown in FIG. 1 . After step 101 is completed, the method may further include the following steps:
  • step 102' in response to the downlink data reception being performed on the target time unit, the target indication information and Target uplink data to the satellite.
  • the time unit included in the second resource is located after the target time unit, that is, the satellite allocates the second resource for uplink data transmission to the terminal in advance, and the terminal may have uplink and downlink scheduling on the determined target time unit conflict, and on the basis that the uplink data is not sent on the target time unit, the target indication information and the target uplink data are directly transmitted to the satellite through the time unit included in the second resource.
  • the target indication information is used to indicate that the terminal does not send uplink data in the target time unit.
  • the target uplink data includes first uplink data that the terminal does not transmit in the target time unit.
  • the target uplink data includes uplink data obtained by combining the first uplink data and the second uplink data.
  • the second uplink data is uplink data that the terminal needs to transmit in the time unit included in the first resource.
  • the terminal may also transmit the target indication information and the target uplink data to the satellite on the time unit included in the second resource for uplink transmission pre-allocated by the satellite to the terminal. In satellite communication, it is ensured that the terminal normal conduct of business.
  • the second resource may include, but is not limited to, resources for the terminal to perform random access.
  • the satellite will pre-allocate resources for random access to the terminal, and the resources may be used for the terminal to initiate a random access message.
  • the terminal can directly send target indication information and target uplink data to the satellite based on the time unit included in the random access resource. So that the satellite can, based on the target indication information, determine that the target uplink data is the first uplink data that the terminal does not transmit on the target time unit where the uplink and downlink scheduling conflicts exist, or determine that the target uplink data is the combination of the first uplink data and the second uplink data.
  • the uplink data obtained later.
  • the second resource may include, but is not limited to, resources allocated by the satellite to the terminal for sending msg3 (message 3) or msgB (message B) during random access.
  • the terminal can send both the target indication information and the target uplink data to the satellite through the second resource pre-allocated by the satellite to the terminal.
  • the normal operation of the terminal service is ensured.
  • FIG. 6 is a flowchart of another uplink scheduling method according to the embodiment shown in FIG. 5 .
  • the terminal transmits target indication information and target uplink data to the satellite on the time unit included in the second resource for uplink data transmission pre-allocated by the satellite for the terminal, which may include:
  • step 401 at least one second time unit is determined from a plurality of time units included in the second resource based on a predefined manner.
  • the predefined manner includes, but is not limited to, predefined rules, such as selecting at least one second time unit that precedes the time sequence.
  • step 402 on the at least one second time unit, the target indication information and the target uplink data are transmitted to the satellite.
  • the terminal may determine at least one of the second time units, so as to transmit the target uplink data to the satellite in the at least one second time unit. In satellite communications, the normal operation of terminal services is ensured.
  • the terminal if the terminal is in the time unit included in the second resource, the terminal sends the target indication information and the target uplink data to the satellite, and the target uplink data includes the first uplink data and the second uplink data.
  • the uplink data obtained after the combination refer to FIG. 7 , which is a flowchart of another uplink scheduling method according to the embodiment shown in FIG. 5 , and the above method further includes the following steps:
  • step 103' the associated information associated with the target uplink data is sent to the satellite.
  • the associated information includes, but is not limited to, at least one of the following: indication information for indicating that the target data packet corresponding to the target uplink data is transmitted, transmission parameters of the target data packet, the first The identification information of the data packet corresponding to the uplink data in the target time unit.
  • the terminal may also send an indication message to the satellite, through the The indication information informs the satellite terminal to upload the target data packet corresponding to the target uplink data obtained by combining the first uplink data and the second uplink data.
  • the terminal may also send a transmission parameter of the target data packet to the satellite, including but not limited to the data packet size of the target data packet. And/or the terminal may also send the identification information of the data packet corresponding to the first uplink data in the target time unit to the satellite, so as to inform the satellite of the identification information of the data packet that should be uploaded in the target time unit.
  • the terminal when the terminal directly sends the target indication letter and the target uplink data to the satellite through the second resource, and the target uplink data includes the uplink data obtained by merging the first uplink data and the second uplink data, it can be The associated information is also sent to the satellite, so that the satellite can determine the data information of the target uplink data and ensure the normal operation of the terminal service.
  • FIG. 8 is a flowchart of an uplink scheduling method shown according to an embodiment, which can be used for satellites, and the method may include the following steps:
  • step 501 in response to receiving the target indication information sent by the terminal, a first resource for transmitting target uplink data is configured for the terminal.
  • the target indication information is used to indicate that the terminal does not send uplink data in a target time unit, and the target time unit is a time unit where the terminal determines that there is an uplink and downlink transmission scheduling conflict.
  • the satellite After receiving the target indication information, the satellite can configure the terminal with the first resource for transmitting the target uplink data as soon as possible.
  • step 502 the first resource is sent to the terminal.
  • the satellite may send the first resource to the terminal through uplink scheduling signaling.
  • the satellite after receiving the target indication information sent by the terminal, the satellite can allocate and send the first resource to the terminal, so that the terminal can transmit the target uplink data to the satellite through the time unit included in the first resource, which effectively solves the problem of satellite communication.
  • the normal operation of terminal services is ensured.
  • FIG. 9 is a flowchart of another uplink scheduling method according to the embodiment shown in FIG. 8 , and the above method further includes the following steps:
  • step 503 the target uplink data transmitted by the terminal in the time unit included in the first resource is received.
  • the satellite after allocating the first resource to the terminal, the satellite can receive the target uplink data uploaded by the terminal based on the time unit included in the first resource, which ensures the normal operation of the terminal service.
  • the target uplink data may include first uplink data not transmitted by the terminal in the target time unit.
  • the target uplink data includes uplink data obtained by combining the first uplink data and the second uplink data, wherein the second uplink data is required by the terminal in the time unit included in the first resource transmitted upstream data.
  • the first resource allocated by the satellite to the terminal based on the target indication information may be used to transmit the first uplink data that the terminal does not transmit in the target time unit.
  • it can also be used to transmit uplink data obtained by combining the first uplink data and the second uplink data, with high availability.
  • FIG. 10 is a flowchart of an uplink scheduling method according to an embodiment, which can be used for satellites. The method may include the following steps:
  • step 601 the target indication information and target uplink data sent by the terminal in the time unit included in the second resource are received.
  • the second resource is a resource pre-allocated to the terminal for uplink transmission
  • the time unit included in the second resource is located after the target time unit, and the target indication information is used to indicate
  • the terminal does not send uplink data in the target time unit
  • the target time unit is the time unit in which the terminal determines that there is an uplink and downlink transmission scheduling conflict.
  • the satellite can directly receive the target indication information and target uplink data uploaded by the terminal through the time unit included in the second resource.
  • the satellite can directly receive the target indication information and target uplink data sent by the terminal through the pre-allocated second resource, which effectively solves the problem of scheduling conflicts between uplink and downlink transmission in satellite communication, and ensures the normal operation of terminal services. conduct.
  • the second resource may include, but is not limited to, resources for the terminal to perform random access. Further, the second resource may include, but is not limited to, resources allocated by the satellite to the terminal for sending msg3 (message 3) or msgB (message B) during random access.
  • the satellite can receive the time unit included in the random access resource by the terminal, the target indication information and the target uplink data transmitted, which is easy to implement and has high availability.
  • the target uplink data may include first uplink data not transmitted by the terminal in the target time unit.
  • the target uplink data includes uplink data obtained by combining the first uplink data and the second uplink data, wherein the second uplink data is required by the terminal in the time unit included in the first resource transmitted upstream data.
  • the satellite may receive the first uplink data that is transmitted by the terminal through the pre-allocated second resource and that is not transmitted by the terminal in the target time unit.
  • the uplink data obtained by combining the first uplink data and the second uplink data may also be received through the second resource, and the availability is high.
  • FIG. 11 is a flowchart of an uplink scheduling method according to an embodiment, and the method may include the following steps:
  • step 701 in response to determining that there is an uplink and downlink transmission scheduling conflict on the target time unit, the terminal performs data transmission on the target time unit based on the indication of the target transmission mode.
  • the data transmission includes downlink data reception or uplink data transmission.
  • step 702 in response to receiving downlink data on the target time unit, the terminal sends target indication information to the satellite.
  • the target indication information is used to indicate that the terminal does not send uplink data in the target time unit.
  • the terminal may send target indication information to the satellite through PRACH.
  • step 703 in response to receiving the target indication information sent by the terminal, the satellite configures the terminal with a first resource for transmitting target uplink data.
  • the target uplink data includes first uplink data that the terminal does not transmit in the target time unit.
  • the target uplink data includes uplink data obtained by combining the first uplink data and the second uplink data, wherein the second uplink data is included in the first resource by the terminal Uplink data to be transmitted in the time unit.
  • step 704 the satellite sends the first resource to the terminal.
  • the satellite may send the first resource to the terminal through uplink scheduling signaling.
  • step 705 the terminal transmits the target uplink data to the satellite in the time unit included in the first resource.
  • the terminal may determine at least one first time unit from the multiple time units included in the first resource based on a predefined manner, and further, the terminal may determine at least one first time unit in the at least one first time unit.
  • the target uplink data is transmitted to the satellite.
  • FIG. 12 is a flowchart of an uplink scheduling method according to an embodiment, and the method may include the following steps:
  • step 801 in response to determining that there is an uplink and downlink transmission scheduling conflict on the target time unit, the terminal performs data transmission on the target time unit based on the indication of the target transmission mode, that is, downlink data reception or uplink data transmission.
  • step 802 in response to receiving downlink data on the target time unit, the terminal transmits target indication information and Target uplink data to the satellite.
  • the time unit included in the second resource is located after the target time unit, and the target indication information is used to indicate that the terminal does not send uplink data on the target time unit.
  • the second resource includes a resource for the terminal to perform random access.
  • the terminal may determine at least one second time unit among the multiple time units included in the second resource based on a predefined manner. Further, on the at least one second time unit, the target uplink data is transmitted to the satellite.
  • the target uplink data includes first uplink data that the terminal does not transmit in the target time unit.
  • the target uplink data includes uplink data obtained by merging the first uplink data and the second uplink data, wherein the second uplink data is obtained by the terminal in the first resource.
  • the uplink data that needs to be transmitted in the included time unit includes uplink data obtained by merging the first uplink data and the second uplink data, wherein the second uplink data is obtained by the terminal in the first resource.
  • FIG. 13 is a flowchart of another uplink scheduling method according to the embodiment shown in FIG. 12 , and the method may further include the following steps:
  • step 803 the associated information associated with the target uplink data is sent to the satellite.
  • the associated information includes at least one of the following: indication information for indicating that a target data packet corresponding to the target uplink data is transmitted, a transmission parameter of the target data packet, the first uplink data in The identification information of the corresponding data packet on the target time unit.
  • the satellite may send an indication message to the terminal when it is determined that there may be an uplink and downlink transmission scheduling conflict in the target time unit, where the terminal information indicates that the terminal has uplink and downlink transmission scheduling in the determined target time unit In the case of collision, downlink data reception or uplink data transmission is performed.
  • the terminal can directly receive downlink data or transmit uplink data based on the indication information sent by the satellite.
  • the indication information may include but not limited to SFI (slot Format Indicator, slot format indicator) information.
  • the terminal can send uplink data on the target time unit and give up receiving downlink data.
  • the terminal can receive downlink data on the target time unit and give up transmission of uplink data.
  • the designated transmission mode may be a preset transmission mode on the target transmission unit, for example, the designated transmission mode may be represented by "F".
  • the terminal transmits uplink data on the target time unit based on the indication information sent by the satellite, that is, does not receive downlink data.
  • the terminal may receive downlink data on the target time unit based on the indication information sent by the satellite, that is, not perform uplink data transmission. It also effectively solves the problem of scheduling conflicts between uplink and downlink transmissions in satellite communications.
  • the present disclosure further provides an application function implementation device embodiment.
  • FIG. 14 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • the apparatus is used in a terminal, including:
  • the data transmission module 910 is configured to, in response to determining that there is an uplink and downlink transmission scheduling conflict on the target time unit, perform data transmission on the target time unit, that is, receive downlink data or perform uplink data transmission.
  • FIG. 15 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • the apparatus is used for satellites, including:
  • the resource configuration module 1010 is configured to, in response to receiving the target indication information sent by the terminal, configure a first resource for the terminal for transmitting target uplink data; wherein the target indication information is used to indicate that the terminal is in the target No uplink data transmission is performed on the time unit, and the target time unit is the time unit in which the terminal determines that there is an uplink and downlink transmission scheduling conflict;
  • the sending module 1020 is configured to send the first resource to the terminal.
  • FIG. 16 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • the apparatus is used for satellites, including:
  • the receiving module 1110 is configured to receive the target indication information and the target uplink data sent by the terminal in the time unit included in the second resource;
  • the second resource is a resource pre-allocated to the terminal for uplink transmission, and the time unit included in the second resource is located after the target time unit, and the target indication information is used to indicate the terminal No uplink data transmission is performed on the target time unit, where the target time unit is the time unit where the terminal determines that there is a scheduling conflict between uplink and downlink transmissions.
  • the present disclosure also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to execute any one of the data transmission methods described above for the terminal side.
  • the present disclosure also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to execute any one of the data transmission methods described above for the satellite side.
  • a data transmission device comprising:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any one of the data transmission methods described above on the terminal side.
  • FIG. 17 is a block diagram of an electronic device 1700 according to an exemplary embodiment.
  • the electronic device 1700 may be a terminal such as a mobile phone, a tablet computer, an e-book reader, a multimedia playback device, a wearable device, a vehicle terminal, an ipad, and a smart TV.
  • an electronic device 1700 may include one or more of the following components: a processing component 1702, a memory 1704, a power supply component 1706, a multimedia component 1708, an audio component 1710, an input/output (I/O) interface 1712, a sensor component 1716, And data transfer component 1718.
  • a processing component 1702 may include one or more of the following components: a processing component 1702, a memory 1704, a power supply component 1706, a multimedia component 1708, an audio component 1710, an input/output (I/O) interface 1712, a sensor component 1716, And data transfer component 1718.
  • the processing component 1702 generally controls the overall operation of the electronic device 1700, such as operations associated with display, phone calls, data data transfers, camera operations, and recording operations.
  • the processing component 1702 may include one or more processors 1720 to execute instructions to perform all or part of the steps of the data transmission method described above.
  • processing component 1702 may include one or more modules that facilitate interaction between processing component 1702 and other components.
  • processing component 1702 may include a multimedia module to facilitate interaction between multimedia component 1708 and processing component 1702.
  • the processing component 1702 may read executable instructions from the memory to implement the steps of a data transmission method provided by the above embodiments.
  • Memory 1704 is configured to store various types of data to support operation at electronic device 1700 . Examples of such data include instructions for any application or method operating on electronic device 1700, contact data, phonebook data, messages, pictures, videos, and the like. Memory 1704 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply component 1706 provides power to various components of electronic device 1700 .
  • Power supply components 1706 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to electronic device 1700 .
  • Multimedia component 1708 includes a display screen that provides an output interface between the electronic device 1700 and the user.
  • the multimedia component 1708 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 1710 is configured to output and/or input audio signals.
  • audio component 1710 includes a microphone (MIC) that is configured to receive external audio signals when electronic device 1700 is in operating modes, such as calling mode, recording mode, and voice recognition mode. The received audio signal may be further stored in memory 1704 or transmitted via data transfer component 1718.
  • audio component 1710 also includes a speaker for outputting audio signals.
  • the I/O interface 1712 provides an interface between the processing component 1702 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 1716 includes one or more sensors for providing various aspects of status assessment for electronic device 1700 .
  • the sensor assembly 1716 can detect the on/off state of the electronic device 1700, the relative positioning of the components, such as the display and keypad of the electronic device 1700, the sensor assembly 1716 can also detect the electronic device 1700 or one of the electronic device 1700 The location of components changes, the presence or absence of user contact with the electronic device 1700, the orientation or acceleration/deceleration of the electronic device 1700, and the temperature of the electronic device 1700 changes.
  • Sensor assembly 1716 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 1716 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1716 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Data transfer component 1718 is configured to facilitate wired or wireless data transfer between electronic device 1700 and other devices.
  • the electronic device 1700 may access a wireless network based on a data transmission standard, such as Wi-Fi, 2G, 3G, 4G, 5G or 6G, or a combination thereof.
  • the data transmission component 1718 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the data transfer component 1718 also includes a near field data transfer (NFC) module to facilitate short-range data transfer.
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • electronic device 1700 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A programming gate array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components are implemented to execute any one of the data transmission methods described above on the terminal side.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A programming gate array
  • controller a controller
  • microcontroller a microprocessor or other electronic components
  • a non-transitory machine-readable storage medium including instructions is also provided, such as a memory 1704 including instructions executable by the processor 1720 of the electronic device 1700 to complete the wireless charging method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • a data transmission device comprising:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any one of the data transmission methods described above on the satellite side.
  • FIG. 18 is a schematic structural diagram of a data transmission apparatus 1800 according to an exemplary embodiment.
  • the apparatus 1800 may be provided as a satellite.
  • apparatus 1800 includes a processing component 1822, a wireless transmit/receive component 1824, an antenna component 1826, and a signal processing portion specific to a wireless interface, which may further include one or more processors.
  • One of the processors in the processing component 1822 may be configured to perform any of the data transmission methods described above on the satellite side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

一种数据传输方法及装置、存储介质,其中,所述数据传输方法包括:响应于确定目标时间单元上存在上下行传输调度冲突,在所述目标时间单元上进行下行数据接收或进行上行数据发送(101)。可以有效解决卫星通信中,上下行传输调度冲突的问题。

Description

数据传输方法及装置、存储介质 技术领域
本公开涉及通信领域,尤其涉及数据传输方法及装置、存储介质。
背景技术
在无线通信技术的研究中,卫星通信被认为是未来无线通信技术发展的一个重要方面。卫星通信是指地面上的无线电通信设备利用卫星作为中继而进行的通信。卫星通信系统由卫星部分和地面部分组成。卫星通信的特点是:通信范围大;只要在卫星发射的电波所覆盖的范围内,从任何两点之间都可进行通信;不易受陆地灾害的影响(可靠性高)。卫星通信作为目前地面的蜂窝通信系统的补充,可以有以下的好处:首先,可以实现延伸覆盖,对于目前蜂窝通信系统无法覆盖或是覆盖成本较高的地区,例如海洋,沙漠,偏远山区等,可以通过卫星通信来解决通信的问题。其次,可以进行应急通信,例如在发生灾难如地震等的极端情况下导致蜂窝通信的基础设施不可用的条件下,使用卫星通信可以快速的建立通信连接。另外还可以提供行业应用,例如对于长距离传输的时延敏感业务,可以通过卫星通信的方式来降低业务传输的时延。
可以预见,在未来的无线通信系统中,卫星通信系统和陆地上的蜂窝通信系统会逐步的实现深度的融合,真正的实现万物智联。
在目前的陆地通信系统中,一般数据的传输都是基于调度的,也就是说基站通过调度指令在指示的时频资源位置上指示终端进行数据的发送或是接收。或者,基站还可以预先配置终端进行数据发送或是接收的资源,终端基于配置信息在对应的时频资源位置上进行数据的发送或是接收。
但是,对于某些终端来讲,受限于终端的能力,只能支持半双工的传输方式。即在一个时间单元上要么进行下行数据接收,要么进行上行数据发送,不能同时进行数据接收和数据发送。但是,在NTN(Non-terrestrial Network,非地面网络)的场景下,受限于传播时延的存在,卫星可能无法准确知道终端的下行链路和上行链路的定时,因此可能存在终端收到针对下行接收和上行发送的调度,指示终端在至少一个时间单元上同时进行上行和下行的传输的情况。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种数据传输方法及装置、存储介质。
根据本公开实施例的第一方面,提供一种数据传输方法,所述方法用于终端,包括:
响应于确定目标时间单元上存在上下行传输调度冲突,在所述目标时间单元上进行下行数据接收或进行上行数据发送。
可选地,所述在所述目标时间单元上进行下行数据接收或进行上行数据发送,包括:
基于目标传输方式的指示,在所述目标时间单元上进行下行数据接收或进行上行数据发送。
可选地,所述方法还包括:
按照预定义设置,确定所述目标传输方式;或
基于卫星发送的目标信令,确定所述目标传输方式。
可选地,所述方法还包括:
响应于在所述目标时间单元上进行了下行数据接收,发送目标指示信息给卫星;其中,所述目标指示信息用于指示所述终端在所述目标时间单元上未进行上行数据发送;
接收所述卫星基于所述目标指示信息为所述终端分配的用于传输目标上行数据的第一资源;
在所述第一资源所包括的时间单元上,传输目标上行数据给所述卫星。
可选地,所述发送目标指示信息给卫星,包括:
通过物理随机接入信道PRACH发送所述目标指示信息给所述卫星。
可选地,所述第一资源包括多个时间单元,所述在所述第一资源所包括的时间单元上,传输目标上行数据给所述卫星,包括:
基于预定义方式,在所述第一资源包括的多个时间单元中确定至少一个第一时间单元;
在所述至少一个第一时间单元上,传输所述目标上行数据给所述卫星。
可选地,所述目标上行数据包括所述终端在所述目标时间单元上未传输的第一上行数据;或
所述目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据,其中, 所述第二上行数据是所述终端在所述第一资源所包括的时间单元上需要传输的上行数据。
可选地,所述方法还包括:
响应于在所述目标时间单元上进行了下行数据接收,在卫星预先为所述终端分配的进行上行数据传输的第二资源所包括的时间单元上,传输目标指示信息和目标上行数据给所述卫星;其中,所述第二资源所包括的时间单元位于所述目标时间单元之后,所述目标指示信息用于指示所述终端在所述目标时间单元上未进行上行数据发送。
可选地,所述第二资源包括所述终端进行随机接入的资源。
可选地,所述第二资源包括多个时间单元,所述在卫星预先为所述终端分配的进行上行数据传输的第二资源所包括的时间单元上,传输目标指示信息和目标上行数据给所述卫星,包括:
基于预定义方式,在所述第二资源包括的多个时间单元中确定至少一个第二时间单元;
在所述至少一个第二时间单元上,传输所述目标指示信息和所述目标上行数据给所述卫星。
可选地,所述目标上行数据包括所述终端在所述目标时间单元未传输的第一上行数据;或
所述目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据,其中,所述第二上行数据是所述终端在所述第一资源所包括的时间单元上需要传输的上行数据。
可选地,如果所述目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据,所述方法还包括:
发送与所述目标上行数据关联的关联信息给所述卫星。
可选地,所述关联信息包括以下至少一项:
用于指示传输了所述目标上行数据对应的目标数据包的指示信息、所述目标数据包的传输参数、所述第一上行数据在所述目标时间单元上对应的数据包的标识信息。
根据本公开实施例的第二方面,提供一种数据传输方法,所述方法用于卫星,包括:
响应于接收到终端发送的目标指示信息,为所述终端配置用于传输目标上行数据的第一资源;其中,所述目标指示信息用于指示所述终端在目标时间单元上未进行上行数据发送,所述目标时间单元是所述终端确定存在上下行传输调度冲突的时间单元;
发送所述第一资源给所述终端。
可选地,所述方法还包括:
接收所述终端在所述第一资源包括的时间单元上传输的所述目标上行数据。
可选地,所述目标上行数据包括所述终端在所述目标时间单元未传输的第一上行数据;或
所述目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据,其中,所述第二上行数据是所述终端在所述第一资源所包括的时间单元上需要传输的上行数据。
根据本公开实施例的第三方面,提供一种数据传输方法,所述方法用于卫星,包括:
接收终端在第二资源所包括的时间单元上发送的目标指示信息以及目标上行数据;
其中,所述第二资源是预先分配给所述终端进行上行传输的资源,且所述第二资源所包括的时间单元位于所述目标时间单元之后,所述目标指示信息用于指示所述终端在目标时间单元上未进行上行数据发送,所述目标时间单元是所述终端确定存在上下行传输调度冲突的时间单元。
可选地,所述第二资源包括所述终端进行随机接入的资源。
可选地,所述目标上行数据包括所述终端在所述目标时间单元未传输的第一上行数据;或
所述目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据,其中,所述第二上行数据是所述终端在所述第一资源所包括的时间单元上需要传输的上行数据。
可选地,如果所述目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据,所述方法还包括:
接收所述终端发送的与所述目标上行数据关联的关联信息。
可选地,所述关联信息包括以下至少一项:
用于指示传输了所述目标上行数据对应的目标数据包的指示信息、所述目标数据包的传输参数、所述第一上行数据在所述目标时间单元上对应的数据包的标识信息。
根据本公开实施例的第四方面,提供一种数据传输装置,所述装置用于终端,包括:
数据传输模块,被配置为响应于确定目标时间单元上存在上下行传输调度冲突,在所述目标时间单元上进行下行数据接收或进行上行数据发送。
根据本公开实施例的第五方面,提供一种数据传输装置,所述装置用于卫星,包括:
资源配置模块,被配置为响应于接收到终端发送的目标指示信息,为所述终端配置用于传输目标上行数据的第一资源;其中,所述目标指示信息用于指示所述终端在目标时间单元上未进行上行数据发送,所述目标时间单元是所述终端确定存在上下行传输调度冲突的时间单元;
发送模块,被配置为发送所述第一资源给所述终端。
根据本公开实施例的第六方面,提供一种数据传输装置,所述装置用于卫星,包括:
接收模块,被配置为接收终端在第二资源所包括的时间单元上发送的目标指示信息以及目标上行数据;
其中,所述第二资源是预先分配给所述终端进行上行传输的资源,且所述第二资源所包括的时间单元位于所述目标时间单元之后,所述目标指示信息用于指示所述终端在目标时间单元上未进行上行数据发送,所述目标时间单元是所述终端确定存在上下行传输调度冲突的时间单元。
根据本公开实施例的第七方面,提供一种数据传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述第一方面任一项所述的数据传输方法。
根据本公开实施例的第八方面,提供一种数据传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述第二方面或第三方面任一项所述的数据传输方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开实施例中,终端可以在确定目标时间单元上存在上下行传输调度冲突的情况下,在这个目标时间单元上只进行下行数据接收,或者只进行上行数据发送,从而可以有效解决卫星通信中,上下行传输调度冲突的问题。
本公开实施例中,终端可以基于目标传输方式的指示,在存在上下行传输调度冲突的目标时间单元上进行下行数据接收,或者进行上行数据发送。可选地,终端可以基于预定义设置,来确定目标传输方式,或者终端可以基于卫星发送的目标信令,确定目标传输方式,有效解决了卫星通信中,上下行传输调度冲突的问题。
本公开实施例中,终端可以在目标时间单元上进行了上行数据发送的情况下,发送目标指示信息给卫星,告知卫星终端在目标时间单元上未进行上行数据发送。以便卫星为终端分配第一资源,终端通过第一资源发送目标上行数据给卫星。实现了在存在上下行传输调度冲突的目标时间单元上,进行了下行数据接收的情况下,将目标时间单元上未上传的上行数据,或者将目标时间单元上未上传的上行数据和在第一资源包括的时间单元上需要上传的上行数据合并后传输给卫星的目的,在卫星通信中,确保了终端业务的正常进行。
本公开实施例中,终端还可以在卫星预先为终端分配的进行上行传输的第二资源所包括的时间单元上,将目标指示信息和目标上行数据一起传输给卫星,在卫星通信中,确保了终端业务的正常进行。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种数据传输方法流程示意图。
图2是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图3是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图4是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图5是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图6是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图7是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图8是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图9是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图10是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图11是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图12是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图13是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图14是根据一示例性实施例示出的一种数据传输装置框图。
图15是根据一示例性实施例示出的另一种数据传输装置框图。
图16是根据一示例性实施例示出的另一种数据传输装置框图。
图17是本公开根据一示例性实施例示出的一种数据传输装置的一结构示意图。
图18是本公开根据一示例性实施例示出的另一种数据传输装置的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面先从终端侧介绍一下本公开提供的数据传输方案。
本公开实施例提供了一种数据传输方法,参照图1所示,图1是根据一实施例示出的一种上行调度方法流程图,可以用于终端,包括但不限于支持半双工的终端,半双工是指在一个时间单元上要么进行上行数据发送,要么进行下行数据接收,不支持同步的数据发送和接收。半双工的终端可以是NB-IoT(Narrow Band Internet of Things,窄带物联网)设备。该方法可以包括以下步骤:
在步骤101中,响应于确定目标时间单元上存在上下行传输调度冲突,在所述目标时间单元上进行数据传输。
所述数据传输包括下行数据接收或上行数据发送。
在本公开实施例中,目标时间单元是存在上下行传输调度冲突的时间单元。时间单元可以包括但不限于slot(时隙)。终端在目标时间单元上要么进行下行数据接收,要么进行上行数据发送。
上述实施例中,终端在存在上下行传输调度冲突的目标时间单元上,进行下行数据接收或进行上行数据发送,可以有效解决卫星通信中,上下行传输调度冲突的问题。
在一些可选实施例中,参照图2所示,图2是根据一实施例示出的另一种上行调度方法流程图,该方法可以包括以下步骤:
在步骤201中,基于目标传输方式的指示,在所述目标时间单元上进行数据传输。
所述数据传输包括下行数据接收或上行数据发送。
在本公开实施例中,目标传输方式用于指示终端在目标时间单元上进行下行数据接收或者进行上行数据发送。在存在上下行传输调度冲突的目标时间单元上,如果目标传输方式指示进行下行数据接收,那么终端就进行下行数据接收,如果目标传输方式指示进行上行数据发送,那么终端就进行上行数据发送。
上述实施例中,可以基于目标传输方式的指示,在存在上下行传输调度冲突的目标时间单元上,进行下行数据接收或进行上行数据发送,解决了卫星通信中,上下行传输调度冲突的问题。
在一些可选实施例中,可以按照预定义设置,例如协议约定,来确定目标传输方式。
上述实施例中,终端可以基于预定义设置来确定目标传输方式,从而在存在上下行传输调度冲突的目标时间单元上,基于目标传输方式的指示,进行下行数据接收或进行上行数据发送,解决了卫星通信中,上下行传输调度冲突的问题。
在一些可选实施例中,可以基于卫星发送的目标信令来确定目标传输方式。其中,目标信令包括但不限于卫星发送的高层信令或物理层信令。高层信令可以包括但不限于RRC(Radio Resource Control,无线资源控制)信令或者MAC(Media Access Control Address,媒体访问控制)CE(Control Element,控制单元)信令。
上述实施例中,终端可以基于卫星发送的目标信令来确定目标传输方式,从而在存在上下行 传输调度冲突的目标时间单元上,基于目标传输方式的指示,进行下行数据接收或进行上行数据发送,解决了卫星通信中,上下行传输调度冲突的问题。
在一些可选实施例中,参照图3所示,图3是根据图1所示实施例示出的另一种上行调度方法流程图,在完成步骤101之后,该方法还可以包括以下步骤:
在步骤102中,响应于在所述目标时间单元上进行了下行数据接收,发送目标指示信息给卫星。
在本公开实施例中,如果终端在目标时间单元上放弃了上行数据发送,那么终端可以发送一个目标指示信息给卫星。其中,目标指示信息用于指示终端在所述目标时间单元上未进行上行数据发送。
在步骤103中,接收所述卫星基于所述目标指示信息为所述终端分配的用于传输目标上行数据的第一资源。
在本公开实施例中,卫星接收到目标指示信息后,可以尽快发起上行调度信令,通过上行调度信令将为终端分配的第一资源发送给终端。终端接收调度信令后,可以确定调度信令所指示的第一资源。其中,第一资源是用于传输目标上行数据的资源,包括但不限于时域、频域资源。
在一个示例中,目标上行数据包括所述终端在所述目标时间单元上未传输的第一上行数据。即卫星基于目标指示信息为终端分配的第一资源,可以用于传输目标时间单元上未传输的第一上行数据。
在另一个示例中,目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据。其中,第一上行数据就是指存在上下行传输调度冲突的目标时间单元上未传输的上行数据,第二上行数据就是指终端在所述第一资源所包括的时间单元上需要传输的上行数据。例如第一上行数据包括数据A,第二上行数据包括数据B,目标上行数据包括数据A和数据B合并后的上行数据。
在步骤104中,在所述第一资源所包括的时间单元上,传输目标上行数据给所述卫星。
在本公开实施例中,终端可以在第一资源包括的时间单元上,将目标上行数据发送给卫星。
上述实施例中,终端在目标时间单元上进行了下行数据接收的情况下,可以先发送目标指示信息给卫星,通过目标指示信息告知卫星,终端在目标时间单元上未进行上行数据发送,以便卫星可以尽快为终端分配第一资源,从而使得终端可以在第一资源所包括的时间单元上,将需要传输的目标上行数据发送给卫星,进一步解决了在目标时间单元上未进行上行数据发送的情况下,如何将目标上行数据传输给卫星的目的,在卫星通信场景中,确保了终端业务的正常进行。
在一些可选实施例中,终端在发送目标指示信息给卫星时,可以通过但不限于PRACH(Physical Random Access Channel,物理随机接入信道)发送该目标指示信息给卫星。
上述实施例中,可以通过PRACH将目标指示信息发送给卫星,便于卫星尽快为终端分配第一资源,实现简便,可用性高。
在一些可选实施例中,参照图4所示,图4是根据图3所示实施例示出的另一种上行调度方法流程图,卫星通过上行调度信令为终端分配的第一资源包括多个时间单元的情况下,在第一资源所包括的时间单元上,传输目标上行数据给所述卫星,可以包括以下步骤:
在步骤301中,基于预定义方式,在所述第一资源包括的多个时间单元中确定至少一个第一时间单元。
在本公开实施例中,预定义方式包括但不限于预定义规则,例如选择时间顺序在先的至少一个第一时间单元。
在步骤302中,在所述至少一个第一时间单元上,传输所述目标上行数据给所述卫星。
上述实施例中,终端可以在卫星分配的第一资源包括多个时间单元的情况下,确定其中至少一个第一时间单元,从而在至少一个第一时间单元上,传输所述目标上行数据给所述卫星。在卫星通信中,确保了终端业务的正常进行。
在一些可选实施例中,参照图5所示,图5是根据图1所示实施例示出的另一种上行调度方法流程图,在完成步骤101之后,该方法还可以包括以下步骤:
在步骤102’中,响应于在所述目标时间单元上进行了下行数据接收,在卫星预先为所述终端分配的进行上行数据传输的第二资源所包括的时间单元上,传输目标指示信息和目标上行数据给所述卫星。
在本公开实施例中,第二资源所包括的时间单元位于目标时间单元之后,即卫星预先就为终端分配了进行上行数据传输的第二资源,终端可以在确定目标时间单元上存在上下行调度冲突,且在目标时间单元上未进行上行数据发送的基础上,直接通过第二资源所包括的时间单元传输目 标指示信息和目标上行数据给卫星。
其中,目标指示信息用于指示所述终端在所述目标时间单元上未进行上行数据发送。
在一个示例中,目标上行数据包括所述终端在所述目标时间单元未传输的第一上行数据。
在另一个示例中,目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据。其中,所述第二上行数据是所述终端在所述第一资源所包括的时间单元上需要传输的上行数据。
上述实施例中,终端还可以在卫星预先为终端分配的进行上行传输的第二资源所包括的时间单元上,将目标指示信息和目标上行数据一起传输给卫星,在卫星通信中,确保了终端业务的正常进行。
在一些可选实施例中,第二资源可以包括但不限于终端进行随机接入的资源。
在本公开实施例中,卫星会为终端预先分配进行随机接入的资源,该资源可以用于终端发起随机接入消息。终端可以基于随机接入的资源所包括的时间单元,直接发送目标指示信息和目标上行数据给卫星。使得卫星可以基于目标指示信息,确定该目标上行数据是终端在存在上下行调度冲突的目标时间单元上未传输的第一上行数据,或者确定目标上行数据是第一上行数据和第二上行数据合并后得到的上行数据。
其中,第二资源可以包括但不限于卫星为终端分配的进行随机接入过程中发送msg3(消息3)或msgB(消息B)的资源。
上述实施例中,终端可以通过卫星预先为终端分配的第二资源,将目标指示信息和目标上行数据都发送给卫星,在卫星通信中,确保了终端业务的正常进行。
在一些可选实施例中,如果卫星预先为终端分配的第二资源包括多个时间单元,那么参照图6所示,图6是根据图5所示实施例示出的另一种上行调度方法流程图,终端在卫星预先为所述终端分配的进行上行数据传输的第二资源所包括的时间单元上,传输目标指示信息和目标上行数据给所述卫星,可以包括:
在步骤401中,基于预定义方式,在所述第二资源包括的多个时间单元中确定至少一个第二时间单元。
在本公开实施例中,预定义方式包括但不限于预定义规则,例如选择时间顺序在先的至少一个第二时间单元。
在步骤402中,在所述至少一个第二时间单元上,传输所述目标指示信息和所述目标上行数据给所述卫星。
上述实施例中,终端可以在第二资源包括多个时间单元的情况下,确定其中至少一个第二时间单元,从而在至少一个第二时间单元上,传输所述目标上行数据给所述卫星。在卫星通信中,确保了终端业务的正常进行。
在一些可选实施例中,如果终端在第二资源所包括的时间单元上,将目标指示信息和目标上行数据发送给卫星,且目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据,那么参照图7所示,图7是根据图5所示实施例示出的另一种上行调度方法流程图,上述方法还包括以下步骤:
在步骤103’中,发送与所述目标上行数据关联的关联信息给所述卫星。
在本公开实施例中,关联信息包括但不限于以下至少一项:用于指示传输了所述目标上行数据对应的目标数据包的指示信息、所述目标数据包的传输参数、所述第一上行数据在所述目标时间单元上对应的数据包的标识信息。
终端基于卫星预先分配的第二资源上传目标上行数据,且目标上行数据包括第一上行数据和第二上行数据合并后得到的上行数据的情况下,终端还可以发送一个指示信息给卫星,通过该指示信息告知卫星终端上传了第一上行数据和第二上行数据合并后得到的目标上行数据对应的目标数据包。
和/或,终端还可以发送一个目标数据包的传输参数给卫星,包括但不限于目标数据包的数据包大小。和/或终端还可以将第一上行数据在所述目标时间单元上对应的数据包的标识信息发送给卫星,告知卫星在目标时间单元上本应该上传的数据包的标识信息。
上述实施例中,终端在直接通过第二资源发送目标指示信和目标上行数据给卫星,且目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据的情况下,可以将关联信息也发送给卫星,便于卫星确定该目标上行数据的数据信息,确保终端业务的正常进行。
下面再从卫星侧介绍一下本公开提供的数据传输方案。
本公开实施例提供了另一种数据传输方法,参照图8所示,图8是根据一实施例示出的一种 上行调度方法流程图,可以用于卫星,该方法可以包括以下步骤:
在步骤501中,响应于接收到终端发送的目标指示信息,为所述终端配置用于传输目标上行数据的第一资源。
其中,目标指示信息用于指示所述终端在目标时间单元上未进行上行数据发送,所述目标时间单元是所述终端确定存在上下行传输调度冲突的时间单元。
卫星在接收到目标指示信息后,可以尽快为终端配置用于传输目标上行数据的第一资源。
在步骤502中,发送所述第一资源给所述终端。
在本公开实施例中,卫星可以通过上行调度信令将第一资源发送给终端。
上述实施例中,卫星可以在接收到终端发送的目标指示信息后,为终端分配并发送第一资源,以便终端通过第一资源包括的时间单元,传输目标上行数据给卫星,在有效解决卫星通信中,上下行传输调度冲突的问题的同时,确保了终端业务的正常进行。
在一些可选实施例中,参照图9所示,图9是根据图8所示实施例示出的另一种上行调度方法流程图,上述方法还包括以下步骤:
在步骤503中,接收所述终端在所述第一资源包括的时间单元上传输的所述目标上行数据。
上述实施例中,卫星在为终端分配第一资源后,可以接收终端基于第一资源包括的时间单元上传的目标上行数据,确保了终端业务的正常进行。
在一些可选实施例中,目标上行数据可以包括终端在所述目标时间单元未传输的第一上行数据。
或者,目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据,其中,所述第二上行数据是所述终端在所述第一资源所包括的时间单元上需要传输的上行数据。
上述实施例中,卫星基于目标指示信息为终端分配的第一资源可以用于传输终端在所述目标时间单元未传输的第一上行数据。或者还可以用于传输第一上行数据和第二上行数据合并后得到的上行数据,可用性高。
本公开实施例提供了另一种数据传输方法,参照图10所示,图10是根据一实施例示出的一种上行调度方法流程图,可以用于卫星,该方法可以包括以下步骤:
在步骤601中,接收终端在第二资源所包括的时间单元上发送的目标指示信息以及目标上行数据。
在本公开实施例中,第二资源是预先分配给所述终端进行上行传输的资源,且所述第二资源所包括的时间单元位于所述目标时间单元之后,所述目标指示信息用于指示所述终端在目标时间单元上未进行上行数据发送,所述目标时间单元是所述终端确定存在上下行传输调度冲突的时间单元。卫星可以直接接收终端通过第二资源所包括的时间单元上传的目标指示信息和目标上行数据。
上述实施例中,卫星可以直接接收终端通过预先分配的第二资源发送的目标指示信息和目标上行数据,在有效解决卫星通信中,上下行传输调度冲突的问题的同时,确保了终端业务的正常进行。
在一些可选实施例中,第二资源可以包括但不限于终端进行随机接入的资源。进一步地,第二资源可以包括但不限于卫星为终端分配的进行随机接入过程中发送msg3(消息3)或msgB(消息B)的资源。
上述实施例中,卫星可以接收终端通过随机接入资源所包括的时间单元,传输的目标指示信息和目标上行数据,实现简便,可用性高。
在一些可选实施例中,目标上行数据可以包括述终端在所述目标时间单元未传输的第一上行数据。
或者,目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据,其中,所述第二上行数据是所述终端在所述第一资源所包括的时间单元上需要传输的上行数据。
上述实施例中,卫星可以接收终端通过预先分配的第二资源传输的终端在所述目标时间单元未传输的第一上行数据。或者还可以通过第二资源接收第一上行数据和第二上行数据合并后得到的上行数据,可用性高。
在一些可选实施例中,参照图11所示,图11是根据一实施例示出的一种上行调度方法流程图,该方法可以包括以下步骤:
在步骤701中,终端响应于确定目标时间单元上存在上下行传输调度冲突,基于目标传输方式的指示,在所述目标时间单元上进行数据传输。所述数据传输包括下行数据接收或上行数据发送。
在步骤702中,终端响应于在所述目标时间单元上进行了下行数据接收,发送目标指示信息给卫星。
其中,目标指示信息用于指示所述终端在所述目标时间单元上未进行上行数据发送。可选地,终端可以通过PRACH发送目标指示信息给卫星。
在步骤703中,卫星响应于接收到终端发送的目标指示信息,为所述终端配置用于传输目标上行数据的第一资源。
在一个示例中,目标上行数据包括所述终端在所述目标时间单元未传输的第一上行数据。
在另一个示例中,目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据,其中,所述第二上行数据是所述终端在所述第一资源所包括的时间单元上需要传输的上行数据。
在步骤704中,卫星发送所述第一资源给所述终端。
可选地,卫星可以通过上行调度信令将第一资源发送给终端。
在步骤705中,终端在所述第一资源所包括的时间单元上,传输目标上行数据给所述卫星。
其中,如果第一资源包括多个时间单元,终端可以基于预定义方式,在所述第一资源包括的多个时间单元中确定至少一个第一时间单元,进一步地,终端在所述至少一个第一时间单元上,传输所述目标上行数据给所述卫星。
上述实施例中,有效解决了卫星通信中,上下行传输调度冲突的问题,同时可以确保终端业务的正常进行。
在一些可选实施例中,参照图12所示,图12是根据一实施例示出的一种上行调度方法流程图,该方法可以包括以下步骤:
在步骤801中,终端响应于确定目标时间单元上存在上下行传输调度冲突,基于目标传输方式的指示,在所述目标时间单元上进行数据传输,即:下行数据接收或进行上行数据发送。
在步骤802中,终端响应于在所述目标时间单元上进行了下行数据接收,在卫星预先为所述终端分配的进行上行数据传输的第二资源所包括的时间单元上,传输目标指示信息和目标上行数据给所述卫星。
在本公开实施例中,第二资源所包括的时间单元位于所述目标时间单元之后,所述目标指示信息用于指示所述终端在所述目标时间单元上未进行上行数据发送。可选地,第二资源包括终端进行随机接入的资源。
如果第二资源包括多个时间单元,那么终端可以在基于预定义方式,所述第二资源包括的多个时间单元中确定至少一个第二时间单元。进而在所述至少一个第二时间单元上,传输所述目标上行数据给所述卫星。
在一个示例中,目标上行数据包括所述终端在所述目标时间单元未传输的第一上行数据。
上述实施例中,有效解决了卫星通信中,上下行传输调度冲突的问题,同时可以确保终端业务的正常进行。
在一些可选实施例中,目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据,其中,所述第二上行数据是所述终端在所述第一资源所包括的时间单元上需要传输的上行数据。
相应地,参照图13所示,图13是根据图12所示实施例示出的另一种上行调度方法流程图,该方法还可以包括以下步骤:
在步骤803中,发送与所述目标上行数据关联的关联信息给所述卫星。
在本公开实施例中,关联信息包括以下至少一项:用于指示传输了所述目标上行数据对应的目标数据包的指示信息、所述目标数据包的传输参数、所述第一上行数据在所述目标时间单元上对应的数据包的标识信息。
上述实施例中,有效解决了卫星通信中,上下行传输调度冲突的问题,同时可以确保终端业务的正常进行。
在一些可选实施例中,卫星可以在确定目标时间单元上可能存在上下行传输调度冲突的情况下,发送一个指示信息给终端,该终端信息指示终端在确定目标时间单元上存在上下行传输调度冲突的情况下,进行下行数据接收或上行数据发送。终端可以直接基于卫星发送的该指示信息,进行下行数据接收或上行数据发送。
可选地,该指示信息可以是包括但不限于SFI(slot Format Indicator,时隙格式指示符)信息。
在一个示例中,如果卫星发送的该指示信息指示终端在至少一个下行带宽部分上的传输方式为指定传输方式,那么终端可以在目标时间单元上进行上行数据发送,放弃下行数据接收。
如果第二目标指示信息用于指示所述终端在至少一个上行带宽部分上的传输方式为指定传输方式,那么终端可以在目标时间单元上进行下行数据接收,放弃上行数据发送。
在一个示例中,指定传输方式可以是预设的在目标传输单元上的传输方式,例如指定传输方式可以用“F”表示。
上述实施例中,终端基于卫星发送的指示信息,在目标时间单元上进行上行数据发送,即不进行下行数据接收。或者终端可以基于卫星发送的指示信息,在目标时间单元上进行下行数据接收,即不进行上行数据发送。同样有效解决了卫星通信中,上下行传输调度冲突的问题。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置的实施例。
参照图14,图14是根据一示例性实施例示出的一种数据传输装置框图,所述装置用于终端,包括:
数据传输模块910,被配置为响应于确定目标时间单元上存在上下行传输调度冲突,在所述目标时间单元上进行数据传输,即:下行数据接收或进行上行数据发送。
参照图15,图15是根据一示例性实施例示出的一种数据传输装置框图,所述装置用于卫星,包括:
资源配置模块1010,被配置为响应于接收到终端发送的目标指示信息,为所述终端配置用于传输目标上行数据的第一资源;其中,所述目标指示信息用于指示所述终端在目标时间单元上未进行上行数据发送,所述目标时间单元是所述终端确定存在上下行传输调度冲突的时间单元;
发送模块1020,被配置为发送所述第一资源给所述终端。
参照图16,图16是根据一示例性实施例示出的一种数据传输装置框图,所述装置用于卫星,包括:
接收模块1110,被配置为接收终端在第二资源所包括的时间单元上发送的目标指示信息以及目标上行数据;
其中,所述第二资源是预先分配给所述终端进行上行传输的资源,且所述第二资源所包括的时间单元位于所述目标时间单元之后,所述目标指示信息用于指示所述终端在目标时间单元上未进行上行数据发送,所述目标时间单元是所述终端确定存在上下行传输调度冲突的时间单元。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述用于终端侧任一所述的数据传输方法。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述用于卫星侧任一所述的数据传输方法。
相应地,本公开还提供了一种数据传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述终端侧任一所述的数据传输方法。
图17是根据一示例性实施例示出的一种电子设备1700的框图。例如电子设备1700可以是手机、平板电脑、电子书阅读器、多媒体播放设备、可穿戴设备、车载终端、ipad、智能电视等终端。
参照图17,电子设备1700可以包括以下一个或多个组件:处理组件1702,存储器1704,电源组件1706,多媒体组件1708,音频组件1710,输入/输出(I/O)接口1712,传感器组件1716,以及数据传输组件1718。
处理组件1702通常控制电子设备1700的整体操作,诸如与显示,电话呼叫,数据数据传输,相机操作和记录操作相关联的操作。处理组件1702可以包括一个或多个处理器1720来执行指令,以完成上述的数据传输方法的全部或部分步骤。此外,处理组件1702可以包括一个或多个模块,便于处理组件1702和其他组件之间的交互。例如,处理组件1702可以包括多媒体模块,以方便多媒体组件1708和处理组件1702之间的交互。又如,处理组件1702可以从存储器读取可执行指令,以实现上述各实施例提供的一种数据传输方法的步骤。
存储器1704被配置为存储各种类型的数据以支持在电子设备1700的操作。这些数据的示例 包括用于在电子设备1700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1706为电子设备1700的各种组件提供电力。电源组件1706可以包括电源管理系统,一个或多个电源,及其他与为电子设备1700生成、管理和分配电力相关联的组件。
多媒体组件1708包括在所述电子设备1700和用户之间的提供一个输出接口的显示屏。在一些实施例中,多媒体组件1708包括一个前置摄像头和/或后置摄像头。当电子设备1700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1710被配置为输出和/或输入音频信号。例如,音频组件1710包括一个麦克风(MIC),当电子设备1700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1704或经由数据传输组件1718发送。在一些实施例中,音频组件1710还包括一个扬声器,用于输出音频信号。
I/O接口1712为处理组件1702和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1716包括一个或多个传感器,用于为电子设备1700提供各个方面的状态评估。例如,传感器组件1716可以检测到电子设备1700的打开/关闭状态,组件的相对定位,例如所述组件为电子设备1700的显示器和小键盘,传感器组件1716还可以检测电子设备1700或电子设备1700一个组件的位置改变,用户与电子设备1700接触的存在或不存在,电子设备1700方位或加速/减速和电子设备1700的温度变化。传感器组件1716可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1716还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1716还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
数据传输组件1718被配置为便于电子设备1700和其他设备之间有线或无线方式的数据传输。电子设备1700可以接入基于数据传输标准的无线网络,如Wi-Fi,2G,3G,4G,5G或6G,或它们的组合。在一个示例性实施例中,数据传输组件1718经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述数据传输组件1718还包括近场数据传输(NFC)模块,以促进短程数据传输。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,电子设备1700可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述终端侧任一所述的数据传输方法。
在示例性实施例中,还提供了一种包括指令的非临时性机器可读存储介质,例如包括指令的存储器1704,上述指令可由电子设备1700的处理器1720执行以完成上述无线充电方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
相应地,本公开还提供了一种数据传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述卫星侧任一所述的数据传输方法。
如图18所示,图18是根据一示例性实施例示出的一种数据传输装置1800的一结构示意图。装置1800可以被提供为卫星。参照图18,装置1800包括处理组件1822、无线发射/接收组件1824、天线组件1826、以及无线接口特有的信号处理部分,处理组件1822可进一步包括一个或多个处理器。
处理组件1822中的其中一个处理器可以被配置为用于执行上述卫星侧任一所述的数据传输方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或者惯用技术手段。说明书 和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (26)

  1. 一种数据传输方法,其特征在于,所述方法用于终端,包括:
    响应于确定目标时间单元上存在上下行传输调度冲突,在所述目标时间单元上进行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述在所述目标时间单元上进行数据传输,包括:
    基于目标传输方式的指示,在所述目标时间单元上进行数据传输。
  3. 根据权利要求2所述的方法,其特征在于,所述目标传输方式
    按照预定义设置;或
    基于卫星发送的目标信令确定。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于在所述目标时间单元上进行了下行数据接收,发送目标指示信息给卫星;其中,所述目标指示信息用于指示所述终端在所述目标时间单元上未进行上行数据发送;
    接收所述卫星基于所述目标指示信息为所述终端分配的用于传输目标上行数据的第一资源;
    在所述第一资源所包括的时间单元上,传输目标上行数据给所述卫星。
  5. 根据权利要求4所述的方法,其特征在于,所述发送目标指示信息给卫星,包括:
    通过物理随机接入信道PRACH发送所述目标指示信息给所述卫星。
  6. 根据权利要求4所述的方法,其特征在于,所述第一资源包括多个时间单元,所述在所述第一资源所包括的时间单元上,传输目标上行数据给所述卫星,包括:
    基于预定义方式,在所述第一资源包括的多个时间单元中确定至少一个第一时间单元;
    在所述至少一个第一时间单元上,传输所述目标上行数据给所述卫星。
  7. 根据权利要求4所述的方法,其特征在于,所述目标上行数据包括所述终端在所述目标时间单元上未传输的第一上行数据;或
    所述目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据,其中,所述第二上行数据是所述终端在所述第一资源所包括的时间单元上需要传输的上行数据。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于在所述目标时间单元上进行了下行数据接收,在卫星预先为所述终端分配的进行上行数据传输的第二资源所包括的时间单元上,传输目标指示信息和目标上行数据给所述卫星;其中,所述第二资源所包括的时间单元位于所述目标时间单元之后,所述目标指示信息用于指示所述终端在所述目标时间单元上未进行上行数据发送。
  9. 根据权利要求8所述的方法,其特征在于,所述第二资源包括所述终端进行随机接入的资源。
  10. 根据权利要求8所述的方法,其特征在于,所述第二资源包括多个时间单元,所述在卫星预先为所述终端分配的进行上行数据传输的第二资源所包括的时间单元上,传输目标指示信息和目标上行数据给所述卫星,包括:
    基于预定义方式,在所述第二资源包括的多个时间单元中确定至少一个第二时间单元;
    在所述至少一个第二时间单元上,传输所述目标指示信息和所述目标上行数据给所述卫星。
  11. 根据权利要求8所述的方法,其特征在于,所述目标上行数据包括所述终端在所述目标时间单元未传输的第一上行数据;或
    所述目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据,其中,所述第二上行数据是所述终端在所述第一资源所包括的时间单元上需要传输的上行数据。
  12. 根据权利要求11所述的方法,其特征在于,如果所述目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据,所述方法还包括:
    发送与所述目标上行数据关联的关联信息给所述卫星。
  13. 根据权利要求12所述的方法,其特征在于,所述关联信息包括以下至少一项:
    用于指示传输了所述目标上行数据对应的目标数据包的指示信息、所述目标数据包的传输参数、所述第一上行数据在所述目标时间单元上对应的数据包的标识信息。
  14. 一种数据传输方法,其特征在于,所述方法用于卫星,包括:
    响应于接收到终端发送的目标指示信息,为所述终端配置用于传输目标上行数据的第一资源;其中,所述目标指示信息用于指示所述终端在目标时间单元上未进行上行数据发送,所述目标时间单元是所述终端确定存在上下行传输调度冲突的时间单元;
    发送所述第一资源给所述终端。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    接收所述终端在所述第一资源包括的时间单元上传输的所述目标上行数据。
  16. 根据权利要求14或15所述的方法,其特征在于,所述目标上行数据包括所述终端在所述目标时间单元未传输的第一上行数据;或
    所述目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据,其中,所述第二上行数据是所述终端在所述第一资源所包括的时间单元上需要传输的上行数据。
  17. 一种数据传输方法,其特征在于,所述方法用于卫星,包括:
    接收终端在第二资源所包括的时间单元上发送的目标指示信息以及目标上行数据;
    其中,所述第二资源是预先分配给所述终端进行上行传输的资源,且所述第二资源所包括的时间单元位于所述目标时间单元之后,所述目标指示信息用于指示所述终端在目标时间单元上未进行上行数据发送,所述目标时间单元是所述终端确定存在上下行传输调度冲突的时间单元。
  18. 根据权利要求17所述的方法,其特征在于,所述第二资源包括所述终端进行随机接入的资源。
  19. 根据权利要求17或18所述的方法,其特征在于,所述目标上行数据包括所述终端在所述目标时间单元未传输的第一上行数据;或
    所述目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据,其中,所述第二上行数据是所述终端在所述第一资源所包括的时间单元上需要传输的上行数据。
  20. 根据权利要求19所述的方法,其特征在于,如果所述目标上行数据包括将所述第一上行数据和第二上行数据合并后得到的上行数据,所述方法还包括:
    接收所述终端发送的与所述目标上行数据关联的关联信息。
  21. 根据权利要求20所述的方法,其特征在于,所述关联信息包括以下至少一项:
    用于指示传输了所述目标上行数据对应的目标数据包的指示信息、所述目标数据包的传输参数、所述第一上行数据在所述目标时间单元上对应的数据包的标识信息。
  22. 一种数据传输装置,其特征在于,所述装置用于终端,包括:
    数据传输模块,被配置为响应于确定目标时间单元上存在上下行传输调度冲突,在所述目标时间单元上进行下行数据接收或进行上行数据发送。
  23. 一种数据传输装置,其特征在于,所述装置用于卫星,包括:
    资源配置模块,被配置为响应于接收到终端发送的目标指示信息,为所述终端配置用于传输目标上行数据的第一资源;其中,所述目标指示信息用于指示所述终端在目标时间单元上未进行上行数据发送,所述目标时间单元是所述终端确定存在上下行传输调度冲突的时间单元;
    发送模块,被配置为发送所述第一资源给所述终端。
  24. 一种数据传输装置,其特征在于,所述装置用于卫星,包括:
    接收模块,被配置为接收终端在第二资源所包括的时间单元上发送的目标指示信息以及目标上行数据;
    其中,所述第二资源是预先分配给所述终端进行上行传输的资源,且所述第二资源所包括的时间单元位于所述目标时间单元之后,所述目标指示信息用于指示所述终端在目标时间单元上未进行上行数据发送,所述目标时间单元是所述终端确定存在上下行传输调度冲突的时间单元。
  25. 一种数据传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求1-13任一项所述的数据传输方法。
  26. 一种数据传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求14-16或17-21任一项所述的数据传输方法。
PCT/CN2020/135876 2020-12-11 2020-12-11 数据传输方法及装置、存储介质 WO2022120830A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080003936.3A CN114930755A (zh) 2020-12-11 2020-12-11 数据传输方法及装置、存储介质
EP20964766.8A EP4262119A4 (en) 2020-12-11 2020-12-11 DATA TRANSMISSION METHOD AND APPARATUS, AND RECORDING MEDIUM
US18/266,240 US20240031011A1 (en) 2020-12-11 2020-12-11 Data transmission method and apparatus, and storage medium
PCT/CN2020/135876 WO2022120830A1 (zh) 2020-12-11 2020-12-11 数据传输方法及装置、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135876 WO2022120830A1 (zh) 2020-12-11 2020-12-11 数据传输方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2022120830A1 true WO2022120830A1 (zh) 2022-06-16

Family

ID=81974125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135876 WO2022120830A1 (zh) 2020-12-11 2020-12-11 数据传输方法及装置、存储介质

Country Status (4)

Country Link
US (1) US20240031011A1 (zh)
EP (1) EP4262119A4 (zh)
CN (1) CN114930755A (zh)
WO (1) WO2022120830A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI828014B (zh) * 2021-11-30 2024-01-01 財團法人工業技術研究院 管理非地面網路的無線電資源的衛星通訊系統和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030064726A1 (en) * 2001-09-28 2003-04-03 Jung-Gon Bae Handling packet-based data despite packet call collisions in mobile communications
CN103139919A (zh) * 2011-11-22 2013-06-05 中兴通讯股份有限公司 一种实现一步接入的方法及装置
CN107528628A (zh) * 2017-09-28 2017-12-29 中国电子科技集团公司第七研究所 卫星通信系统的信号同步方法、装置和系统
CN110447202A (zh) * 2017-03-23 2019-11-12 高通股份有限公司 针对使用窄带通信的一个或多个上行链路传输的调度请求

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101489305B (zh) * 2008-01-17 2011-11-16 电信科学技术研究院 上行数据传输方法、通信系统及装置
CN101594666B (zh) * 2008-05-30 2012-02-15 电信科学技术研究院 接入方式选择方法与装置、上行数据发送方法与装置
CN103220718A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 上行数据传输方法及装置
WO2018170670A1 (en) * 2017-03-20 2018-09-27 Qualcomm Incorporated Techniques to handle collisions between uplink transmissions and downlink transmissions over a wireless spectrum
WO2018232718A1 (zh) * 2017-06-23 2018-12-27 Oppo广东移动通信有限公司 无线通信方法和设备
CN110475366B (zh) * 2018-05-10 2021-01-08 维沃移动通信有限公司 数据传输方法和设备
CN111130727B (zh) * 2018-10-31 2021-05-18 深圳市海思半导体有限公司 一种数据传输方法及终端设备
WO2020124497A1 (zh) * 2018-12-20 2020-06-25 北京小米移动软件有限公司 上行传输方法及装置
CN111447644A (zh) * 2019-01-17 2020-07-24 北京三星通信技术研究有限公司 用户设备以及上行数据传输方法
WO2022006822A1 (zh) * 2020-07-09 2022-01-13 北京小米移动软件有限公司 基于卫星通信的数据传输方法及装置、存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030064726A1 (en) * 2001-09-28 2003-04-03 Jung-Gon Bae Handling packet-based data despite packet call collisions in mobile communications
CN103139919A (zh) * 2011-11-22 2013-06-05 中兴通讯股份有限公司 一种实现一步接入的方法及装置
CN110447202A (zh) * 2017-03-23 2019-11-12 高通股份有限公司 针对使用窄带通信的一个或多个上行链路传输的调度请求
CN107528628A (zh) * 2017-09-28 2017-12-29 中国电子科技集团公司第七研究所 卫星通信系统的信号同步方法、装置和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4262119A4 *

Also Published As

Publication number Publication date
US20240031011A1 (en) 2024-01-25
EP4262119A1 (en) 2023-10-18
CN114930755A (zh) 2022-08-19
EP4262119A4 (en) 2024-10-02

Similar Documents

Publication Publication Date Title
CN108401501B (zh) 数据传输方法、装置及无人机
WO2022061739A1 (zh) 传输时延补偿方法、装置、通信设备和存储介质
WO2024059979A1 (zh) 子带配置方法及装置
WO2022120831A1 (zh) 通信方法及装置、存储介质
CN109451834A (zh) 数据传输方法、装置及无人机
WO2022120854A1 (zh) 信息传输方法、装置、通信设备和存储介质
CN108476554B (zh) 建立回程链路的方法及装置
CN113261218B (zh) 定时调整方法及装置、存储介质
WO2022120830A1 (zh) 数据传输方法及装置、存储介质
EP4181578A1 (en) Information transmission method and apparatus, communication device, and storage medium
WO2022011719A1 (zh) 基于卫星通信的数据传输方法及装置、存储介质
WO2024016234A1 (zh) 直连链路sl同步方法及装置、存储介质
WO2023206029A1 (zh) 信道传输方法及装置、存储介质
WO2022155886A1 (zh) 无线通信的方法、装置、通信设备及存储介质
WO2022126443A1 (zh) 数据传输方法及装置、存储介质
CN112640559B (zh) 无线传输的方法、装置、通信设备及存储介质
WO2022120834A1 (zh) 数据传输方法及装置、存储介质
CN115989702A (zh) 一种资源配置方法、装置及存储介质
WO2020252744A1 (zh) 确定随机接入信道机会ro的方法及装置
WO2023159624A1 (zh) 上行传输方法及装置、存储介质
WO2022151140A1 (zh) 信道接入方法及装置、存储介质
CN110622551B (zh) 数据发送方法及装置
WO2024138418A1 (zh) 信息上报方法、装置、通信设备及存储介质
WO2022006758A1 (zh) 确定harq反馈时延的方法及装置、存储介质
WO2023015423A1 (zh) 跨载波调度方法及装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964766

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18266240

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020964766

Country of ref document: EP

Effective date: 20230711