WO2022119246A1 - 절연코팅 오버레이 제어시스템 및 절연코팅 오버레이 제어방법 - Google Patents

절연코팅 오버레이 제어시스템 및 절연코팅 오버레이 제어방법 Download PDF

Info

Publication number
WO2022119246A1
WO2022119246A1 PCT/KR2021/017631 KR2021017631W WO2022119246A1 WO 2022119246 A1 WO2022119246 A1 WO 2022119246A1 KR 2021017631 W KR2021017631 W KR 2021017631W WO 2022119246 A1 WO2022119246 A1 WO 2022119246A1
Authority
WO
WIPO (PCT)
Prior art keywords
width
overlay
coating
insulation
uncoated
Prior art date
Application number
PCT/KR2021/017631
Other languages
English (en)
French (fr)
Inventor
이창훈
홍성욱
송동헌
최상훈
전신욱
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210153267A external-priority patent/KR20220078477A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP21900934.7A priority Critical patent/EP4106075A4/en
Priority to CN202180025146.XA priority patent/CN115413381A/zh
Priority to US17/914,964 priority patent/US20230170458A1/en
Publication of WO2022119246A1 publication Critical patent/WO2022119246A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1005Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material already applied to the surface, e.g. coating thickness, weight or pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/595Tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1015Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to a conditions of ambient medium or target, e.g. humidity, temperature ; responsive to position or movement of the coating head relative to the target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an insulation coating control system for controlling a coating width when an insulation material is coated on a holding portion to which an electrode slurry of an electrode plate is applied. More particularly, it relates to an insulation coating overlay control system for controlling the width of the overlay portion overlapping the holding portion and the insulation material coating portion to be within a predetermined range or to match a predetermined reference value.
  • the present invention also relates to an electrode plate for a secondary battery in which the overlay width is uniformly formed in a predetermined range along the electrode plate.
  • the present invention also relates to an insulation coating overlay control method for controlling the width of the overlay portion.
  • a lithium secondary battery is widely used as an energy source for various electronic products as well as various mobile devices in that it has high energy density and operating voltage and excellent preservation and lifespan characteristics.
  • the main cause of safety-related accidents in batteries is the arrival of an abnormal high temperature state due to a short circuit between the positive electrode and the negative electrode. That is, under normal circumstances, a separator is positioned between the positive electrode and the negative electrode to maintain electrical insulation, but the battery overcharges or overdischarges, dendritic growth of the electrode material, or an internal short-circuit due to foreign matter. , or a sharp object such as a screw penetrating the battery, or in an abnormal misuse situation such as excessive deformation of the battery by an external force, the existing separator alone shows its limitations.
  • the separator in which a microporous film made of a polyolefin resin is mainly used also has an insufficient heat resistance as its heat resistance temperature is about 120 to 160°C. Therefore, when an internal short circuit occurs, the separator contracts due to the short-circuit reaction heat, and the short-circuit portion is enlarged and a thermal runaway state is reached in which a larger and larger amount of reaction heat is generated.
  • an insulating material is coated on the electrode, generally the positive electrode.
  • FIG. 1 is a schematic view showing a portion where an insulating material (insulating solution) is coated on an electrode plate (current collector sheet).
  • holding portions 1a coated with an electrode slurry made of an active material, a conductive material, and a binder are formed in a predetermined pattern on the electrode plate 3 .
  • the portion on which the electrode slurry is not coated ie, the electrode plate exposed surface
  • the pattern shown in FIG. 1 is one type, and the pattern of the holding part 1a - the uncoated part 2 may be variously changed according to the type of battery and the purpose of use.
  • the holding part 1a may be formed on one or both surfaces of the electrode plate 3 . Parts indicated by dotted rectangles in FIG. 1 are parts coated with an insulating material.
  • the insulating material is coated along the boundary between the holding portion 1a and the uncoated portion 2 . Since the uncoated region 2 is a part that is later processed into an electrode tab, an insulating material must be coated on this tab-planned part. In FIG. 1 , only two dotted rectangles are indicated for convenience of illustration, but an insulating material may be coated on both the boundary portions of the holding portion 1a and the uncoated portion 2 . In general, an insulating material is coated at both ends of the holding part 1a in the width direction along the length direction of the holding part as shown in the dotted rectangle on the left of FIG. 1 .
  • tabs may be formed in the uncoated part 2 between the holding parts 1a in the longitudinal direction of the holding part depending on the battery type, as shown in the dotted rectangle on the right of FIG. 1 , the width of the holding part 1a An insulating material may be coated along the direction.
  • FIG. 2 is a view illustrating a state in which a holding part and an uncoated part are formed on an electrode plate.
  • Fig. 2(a) is a view to which a transparent insulating material is applied
  • Fig. 2(b) is a view to which a translucent insulating material is applied.
  • the insulating material is formed along the boundary between the holding portion 1a and the uncoated region 2
  • the insulating material covers a partial region of the holding portion 1a and a partial region of the uncoated region 2 . coated so as to That is, the insulating material is coated over a partial region of the holding part 1a to form an overlapping coating portion (overlay region) of the holding part 1a and the insulating material.
  • the insulating material is also coated on a certain area on the electrode plate, which is the uncoated area 2 , and it is referred to as an uncoated area coated area in contrast to the overlay area.
  • the width of the overlay region is denoted as 'overlay width (B)'
  • the width of the uncoated region is denoted as 'coated region width (A)'. Therefore, the total insulation coating width becomes B+A.
  • the reason for forming the overlay region by insulating coating not only on the uncoated region but also on the holding part is for more reliable insulation between the electrodes. This is because there is a high risk of creating an empty space.
  • Patent Document 1 there is a technique for detecting the edge position of the holding part and applying an insulating material partially overlapping the edge so that the edge is not exposed. There was no information on how to control it.
  • Patent Document 1 since only the edge where the holding part is exposed because the insulating material is not covered is judged as defective, once the insulating material is covered with the holding part, that is, when an overlay region is formed and the edge is not exposed, it is not judged as defective.
  • the overall quality control standards in the battery manufacturing process have been strengthened due to the occurrence of ignition of unknown causes in secondary batteries, and the evaluation of the overlay part is also critical to quality (CTQ), which is an important quality characteristic for customers.
  • CQ quality
  • the overlay width B is larger than the set range or the set reference value, it means that the width of the insulating material covering the holding part is large. The contribution amount is bound to be small.
  • the overlay width B is smaller than a set range or a set reference value, there is a fear that the insulating function may be lower than the predetermined insulating characteristics.
  • the present invention has been made to solve the above problems, and it is an object of the present invention to provide an insulation coating overlay control system that can adjust the overlay width, which is an insulation material coating portion overlapping a holding portion, to meet a set range or a reference value. .
  • Another object of the present invention is to provide an insulation coating overlay control system capable of controlling the uncoated area coating width, which is the width of the insulating material coated on the uncoated area, in connection with the overlay width adjustment.
  • Another object of the present invention is to provide an electrode plate for a secondary battery in which the overlay width can be uniformly formed in a predetermined range along the electrode plate by the insulation coating overlay control system.
  • another object of the present invention is to provide a method for controlling an insulation coating overlay capable of controlling the overlay width and the uncoated area coating width.
  • an insulating coater for coating the insulating material along the boundary between the holding part to which the electrode slurry is applied and the uncoated part of the electrode plate so that the insulating material covers the partial region of the holding part and the partial region of the uncoated region; insulation coating width measuring means for measuring an overlay width that is the width of the overlay region coated with the insulating material on the holding part and the uncoated region coating width that is the width of the region where the insulating material is coated on the uncoated region; an insulation coater moving means for moving the insulation coater; and a control unit controlling the insulation coater moving means to adjust the overlay width by comparing the measured overlay width with a preset overlay width setting range or an overlay width reference value.
  • the insulation coater moving means can be controlled to move the insulation coater toward the uncoated part.
  • the insulation coater moving means may be controlled to move the insulation coater toward the holding portion and if greater than the reference value, the insulation coater may be moved toward the uncoated portion.
  • the reference value is a median value that is 1/2 of a predetermined overlay width
  • the insulation coater moving means can be controlled by comparing the median value of the measured overlay width with the median value of the predetermined overlay width.
  • the insulation coating width measuring means may be a vision camera that visually detects the overlay width and the uncoated area coating width.
  • the vision camera may measure the overlay width and the coating width of the uncoated area by detecting one or more of the color, contrast, and saturation of the maintained portion and the uncoated portion.
  • the insulation coater moving means may enable both horizontal and vertical movement of the insulation coater.
  • control unit controls the horizontal movement of the insulation coater moving means to adjust the overlay width
  • the insulation coating width measuring means measures the adjusted overlay width again
  • the measured non-coated area coating width is compared with a predetermined uncoated area set coating width or uncoated area coating width reference value to provide a non-coated area.
  • the insulating coater moving means can be controlled to adjust the secondary coating width.
  • control unit controls the movement of the insulating coater moving means up and down to adjust the uncoated area coating width, and measures the coating width by measuring the uncoated area coating width and the overlay coating width adjusted according to the vertical movement of the insulation coater moving means.
  • the means measures again, and compares the re-measured overlay width and uncoated area coating width with a predetermined overlay width set range or reference value or a predetermined uncoated area set coating width uncoated area coating width reference value, respectively, to determine the overlay width and uncoated area coating width can decide whether to readjust or not.
  • an electrode plate for a secondary battery includes: a holding part on which an electrode slurry is applied on the electrode plate; an uncoated region to which the electrode slurry is not applied on the electrode plate; and an insulating material coating part coated with an insulating material to cover the partial region of the holding part and the partial region of the uncoated part, wherein the overlay width, which is the width of the overlay region in which the insulating material is coated on the partial region of the holding part, is the electrode plate. It is characterized in that it is uniformly formed in the range of 0.4 to 0.8 mm.
  • an insulation coating overlay control method such that an insulating material covers a partial region of the holding portion and a partial region of the uncoated region along the boundary between the holding portion to which the electrode slurry is applied and the uncoated region to which the electrode slurry is not applied.
  • the insulation coating overlay control method includes the steps of measuring the adjusted overlay width again; and comparing the re-measured overlay width with a preset overlay width setting range or a reference value to determine whether to readjust the overlay width.
  • the uncoated region is compared with the measured uncoated region coating width and a predetermined non-coated region set coating width or uncoated region coating width reference value.
  • the method may further include moving the insulating coater up and down to adjust the coating width.
  • the insulation coating overlay control method measures again the uncoated area coating width and the overlay coating width adjusted according to the vertical movement of the insulation coater, and sets the measured overlay width and uncoated area coating width to a predetermined overlay. Whether to readjust the overlay width and the uncoated area coating width may be determined by comparing the width setting range or the reference value or the predetermined uncoated area setting coating width and the uncoated area coating width reference value, respectively.
  • the present invention has the effect of improving battery characteristics and preventing unexpected battery failure by adjusting the overlay width, which is the insulating material coating part overlapping the holding part.
  • the coating width of the uncoated area which is the width of the insulating material coated on the uncoated area, in connection with the overlay width adjustment, it is possible to efficiently satisfy the CTQ required by the customer.
  • an electrode plate for a secondary battery in which the overlay width is uniformly formed in a predetermined range along the electrode plate.
  • FIG. 1 is a schematic view showing a portion where an insulating material (insulating liquid) is coated on an electrode plate.
  • FIG. 2 is a view showing a state in which a holding part and an uncoated part are formed on an electrode plate by applying two kinds of insulating materials.
  • FIG. 3 is a schematic diagram for explaining the concept of overlay width control according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the overall configuration of the insulation coating overlay control system of the present invention.
  • FIG. 5 is a perspective view showing the insulation coater moving means of the present invention.
  • Fig. 6 is a flowchart showing an overlay width control procedure according to the first embodiment of the present invention.
  • FIG. 7 is a schematic diagram illustrating the concepts of overlay width control and uncoated area coating width control according to the second embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating an overlay width and an uncoated area coating width control procedure according to a second embodiment of the present invention.
  • the insulating material is coated along the boundary between the holding part to which the electrode slurry is applied and the uncoated part of the electrode plate so that the insulating material covers the part of the holding part and the part of the uncoated part of the electrode plate.
  • insulated coater insulation coating width measuring means for measuring an overlay width that is the width of the overlay region coated with the insulating material on the holding part and the uncoated region coating width that is the width of the region where the insulating material is coated on the uncoated region
  • an insulation coater moving means for moving the insulation coater
  • a control unit controlling the insulation coater moving means to adjust the overlay width by comparing the measured overlay width with a preset overlay width setting range or an overlay width reference value.
  • the present invention goes further from simply insulating coating according to the edge of the holding part as in the prior art, and controlling the overlay width, which is the width of the overlay region, which is the region where the holding part and the insulating material coating part overlap, to meet a set range or a set reference value.
  • the present invention is provided with an insulating coating width measuring means for measuring the overlay width.
  • a control unit for comparing the measured overlay width with a preset overlay width setting range or an overlay width reference value is included. Comparing the measured overlay width with the overlay width setting range in the present invention means that when the overlay width is out of the setting range, it is adjusted within the setting range. That is, the present invention aims as one goal of range control of the overlay width.
  • comparing the measured overlay width with the overlay reference value means that if the overlay width is different from the reference value, the overlay width is adjusted to match the overlay width. That is, the present invention aims as another goal of pinpoint control of the overlay width. Accordingly, the present invention can perform both range control for comparing the overlay width with a predetermined overlay width to converge thereto, and pinpoint control for matching the overlay width with a predetermined reference value.
  • the present invention also proposes a feedback control that repeats such range control and pinpoint control.
  • the present invention also includes the technical idea of controlling the overlay width in conjunction with the coating width of the uncoated area in addition to controlling the overlay width.
  • a 'slot die' or a 'dispenser' may be applied to the insulating coater for coating the insulating material.
  • the insulating coater is sometimes referred to as an 'insulation die' or a 'die coater'.
  • the term belongs to the sub-concept of the insulating coater.
  • FIG. 3 is a schematic diagram for explaining the concept of overlay width control according to the first embodiment of the present invention.
  • FIG. 3 intuitively shows the positions of the electrode slurry coating part and the uncoated part 2 that are the holding part 1a on the electrode plate 3 and the area to be insulated.
  • An insulating material 10a (in the present embodiment, an insulating material in the form of an insulating liquid) discharged from the insulating coater (insulation die that is a slot coater) 10 is coated over a part of the holding part 1a and the uncoated part 2 . do.
  • the insulating solution that can be used in the present invention is polybutadiene, polyurethane, polyimide, acetate, polyester, polyphenylenesulfide (PPS), polypropylene, styrene-butadiene copolymer, (meth)acrylic acid A solution comprising one or more polymers selected from copolymers, (meth)acrylate copolymers, polyacrylonitrile, polyvinyl chloride, polyfluoro compounds, polyvinyl alcohol, and polycyanoacrylate, or poly Butadiene, polyurethane, polyimide, acetate, polyester, polyphenylenesulfide (PPS), polypropylene, styrene-butadiene copolymer, (meth)acrylic acid copolymer, (meth)acrylate copolymer , polyacrylonitrile, polyvinyl chloride, polyfluoro compound, polyvinyl alcohol, and may be a monomer used for polymerization of one or more
  • PVdF polyvinylidene fluoride
  • ceramic-based insulating liquid eg, aluminum hydroxide-based insulating liquid such as boehmite
  • the insulating solution may contain one or two or more solvents selected from water, glycerol, ethylene glycol, propylene glycol, dimethyl sulfoxide, dimethyl formamide, acetonitrile, ethylene carbonate, furfuryl alcohol, and methanol, if necessary.
  • solvents selected from water, glycerol, ethylene glycol, propylene glycol, dimethyl sulfoxide, dimethyl formamide, acetonitrile, ethylene carbonate, furfuryl alcohol, and methanol, if necessary.
  • the holding part 1a forms a flat surface of a certain thickness, and decreases in thickness while forming a cross-section of an inclined surface as it approaches the end, and forms a flat surface with a smaller thickness at the end 1c in contact with the electrode plate.
  • the insulating solution is coated to cover a certain area of this end, and this area is the overlay area, and the width is indicated by B.
  • the insulating solution is coated over a certain area of the uncoated area 2 , and this area is called the uncoated area coated area, and the width is indicated by A. Accordingly, the width of the entire insulating coating portion becomes B+A.
  • FIG. 2( a ) an insulating coating layer of a transparent insulating liquid is shown in FIG. 2( a ).
  • 2(b) shows a semi-transparent insulating coating layer.
  • the insulating solution of FIG. 2( a ) has a low wet adhesive strength in the electrolyte solution, so there is a possibility that desorption may occur.
  • the insulating solution of Fig. 2(b) has improved wet adhesion and is less likely to be detached, but it is white and translucent, so it is more difficult to visually recognize than the insulating solution of Fig. 2(a). That is, if the insulating solution of Fig.
  • the overlay width can be easily determined by the color and transparency, but the insulating solution of Fig. 2(b) shows the overlay width only with the color. Since it is difficult to grasp, it is necessary to make a judgment in consideration of contrast, saturation, etc. in addition to the color of the overlay area.
  • the overlay width becomes light gray and becomes darker than the uncoated area coating width, so that the overlay width can be grasped by color and contrast.
  • the saturation the turbidity of the color
  • the overlay width can be measured from the screen captured by the camera.
  • the coating width (A) of the uncoated area which is the area in which the insulating liquid is coated on the uncoated area, can be easily grasped. 2, the tip of the electrode slurry and the coating width of the uncoated area are also well marked.
  • the overlay width B when it is determined, it can be compared with a preset range of the overlay width. For example, if the setting range of the overlay width (B) is 1.0 to 1.2 mm and the measured overlay width (B) is 0.9 mm, it means that the insulating coating part overlapping the holding part 1a is smaller than the setting range, so the insulating coater (insulation die) can be moved toward the holding part (1a) to enlarge the insulating coating part overlapping the holding part (1a). For example, if the insulation coater is moved toward the holding part on the left side of FIG. 3 by 0.1 to 0.3 mm, the overlay width can be converged within the set range (moved in the direction 1 in FIG. 3).
  • the insulation coater is moved to the uncoated area (right side of FIG. 3) by 0.1 mm (moved in the direction 2 of FIG. 3), it can be included within the set range.
  • the measured overlay width may be compared with a predetermined overlay reference value. That is, if the measured overlay width is 0.9 mm and the reference value is 1.0 mm, it can be moved 0.1 mm in the 1 direction. If the measured overlay width is 1.1mm and the reference value is 1.0mm, it can be moved 0.1mm in the 2 direction.
  • the reference value may be set to a median value that is 1/2 of a predetermined overlay width, and compared with the median value of the measured overlay width. For example, if the measured overlay width is 0.8 mm and the median value, which is the reference value, is 0.5 mm, the median value of the measured overlay width becomes 0.4 mm, which is smaller than the reference value, so that it can be moved in the 1 direction. In this case, move the insulation coater so that the middle position of the overlay width is 0.4mm. If the measured overlay width is 1.2 mm and the median value of the reference value is 0.5 mm, the median value of the measured overlay width becomes 0.6 mm, which is larger than the reference value, so it can be moved in the direction 2.
  • the method of comparing the median value of the measured overlay width using the median value, which is the median position of the overlay width, as a reference value is a range control that is controlled within the set range of the overlay width, or when a simple overall width value is used as a reference value
  • the overlay width can be adjusted more accurately to match the set value.
  • the range of the generally applicable overlay width (B) may be 0.1 to 1.2 mm depending on the electrode. According to the present invention, the applicable overlay width range can be easily satisfied by controlling the overlay width. However, when the overlay region is actually formed with a narrow width of about 0.1 to 0.3 mm, an overlay width of less than 0.1 mm may be formed along the length or width direction of the electrode. Conversely, when the overlay width is controlled with a relatively wide width of 0.9 mm or more, the insulating property is satisfactory, but an active material in a wide range is insulating-coated to decrease the electrode capacity.
  • the preferred range of the overlay width B is 0.4 to 0.8 mm. More preferably, an overlay width of 0.6 to 0.8 mm is good.
  • the overlay width of 0.6 to 0.8 mm is uniformly formed between the holding part and the uncoated part along the length or width direction of the electrode, insulation quality is improved and uniformity of quality can be ensured.
  • the overlay width along the length or width direction of the electrode was not constant but jagged. For example, if the electrode edge portion is not exposed, since the overlay width of 0.1 mm was not considered as defective, there was a problem in that the overlay width was not uniform from 0.1 mm to 1 mm or more.
  • the overlay width to the uncoated area coating width is changed because the width of the electrode slurry coated on the electrode plate itself changes. That is, in a continuous slurry coating process such as a roll-to-roll process, the height of the electrode plate is also subtly changed due to the tension applied to the electrode plate sheet and the vibration caused by the operation of various devices installed in the continuous production line. Accordingly, the width of the slurry coated on the electrode plate is also slightly changed in the longitudinal direction or the width direction of the electrode plate. Therefore, even when the overlay width or the uncoated area coating width is set to be constant, the overlay width changes according to the change in the electrode slurry width.
  • the overlay width, etc. is changed as the insulating liquid coating width itself changes according to the viscosity of the insulating liquid, the ejection speed, the ejection direction, or the stress or physical vibration applied to the insulating die.
  • the advantage of the present invention is that the overlay width can be formed within a set value by measuring the overlay width and controlling the overlay width according to the present invention regardless of the cause of the change in the overlay width or the uncoated area coating width.
  • FIG. 4 is a schematic diagram showing the overall configuration of the insulation coating overlay control system 100 of the present invention.
  • the electrode slurry coater 1 is located on the left side of FIG. 4 , that is, upstream of the electrode plate moving direction (coating direction). On the downstream side of the electrode plate moving direction (coating direction), an insulating coater (insulation die) 10, an insulating coating width measuring unit 20, an insulating coater moving unit 30, and a control unit 40 are installed.
  • the electrode plate moves to the insulating coater 10 for coating the insulating solution.
  • the electrode plate is stopped and the electrode slurry coater 1 and the insulating coater 10 are moved to perform coating.
  • the insulation coating width measuring means 20 may employ a vision camera such as a CCD camera capable of visually detecting the overlay width (B) and the uncoated area coating width (A).
  • the vision camera may indicate the overlay width (B) and the coating width (A) of the uncoated area by detecting visual characteristics such as color, contrast, and saturation of the holding portion 1a and the uncoated area 2 .
  • the vision camera can, for example, photograph the entire insulating coating of FIG. 2, convert it, and reproduce it as visual data. To this end, the vision camera converts the actual shooting screen into visual data based on a predetermined program storage unit for data conversion and calculation, and the overlay width (B) and uncoated area coating width (A) expressed as visual data. ) may be provided with a display unit that calculates and displays the numerical value and the visual data and the numerical value of the width on the screen. The vision camera transmits such visual data to the controller 40 .
  • the vision camera may include only a camera unit that takes a picture of the entire insulating coating portion purely and a transmission unit that transmits digital data related to the picture to the control unit 40, and the program storage unit and the calculation unit and the display unit may be installed in the control unit 40 .
  • the control unit 40 includes a storage unit in which a database relating to a predetermined overlay width setting range or overlay width reference value and a predetermined uncoated area setting range or non-coated area reference value is stored, and values extracted from the database are measured.
  • a comparison operation unit for comparing and calculating the overlay width and the like, and a determination unit determining to move the insulating coater moving means by a certain amount according to the calculation result are provided.
  • the control unit 40 also includes a transceiver for controlling the vision camera as the insulation coating width measuring means 20 and the moving mechanism 30 of the insulation coater 10 to be described later. According to the operation result of the comparison operation unit, the control unit 40 may give a command to move the insulating coater 10 by a predetermined distance to the moving mechanism 30 of the insulating coater in order to adjust the overlay width.
  • FIG. 5 is a perspective view showing the insulation coater moving means 30 of the present invention. 4 and 5, the insulation coater moving means 30 of the present invention will be described in detail.
  • the insulation coater moving means 30 of FIG. 5 has both the X-axis transfer mechanism 31 and the Z-axis transfer mechanism 32 capable of horizontal and vertical movement of the insulation coater 10 .
  • the X-axis feeding mechanism 31 as a horizontal movement mechanism is composed of a horizontal LM guide shaft 31A installed on a support and a horizontal LM guide block 31B sliding along the horizontal LM guide shaft 31A.
  • the Z-axis feed mechanism 32 which is a vertical movement mechanism, includes a vertical LM guide shaft 32A installed on the horizontal LM guide block 31B of the X-axis feeding mechanism 31 and a vertical LM sliding along the vertical LM guide shaft 32A. It is composed of a guide block 32B.
  • a coupling plate 12 is attached to the upper and lower LM guide block 32B to which the bracket 11 installed on the insulating coater 10 is coupled.
  • a coupling hole 12a is formed in the coupling plate 12 to be coupled to the bracket 11 by a coupling member such as a bolt.
  • the X-axis transfer mechanism 31 and the Z-axis transfer mechanism 32 are installed in pairs along the support 33, but in FIG. 5, for convenience of illustration, one X-axis of each transfer mechanism Only the transfer mechanism 31 and the Z-axis transfer mechanism 32 are shown.
  • the two-axis transfer mechanism as described above has been described as an example, other configurations capable of reciprocating translational motion in each of the X-axis and Z-axis directions are also employable.
  • a driving unit such as a linear motor and a control unit for controlling the movement of the driving unit are included when performing such a motion.
  • the control unit 40 may control the driving unit of the insulating coater moving mechanism 30 to adjust the overlay width B as described above.
  • the insulation coater 10 the insulation coating width measuring means 20, the insulation coater moving means 30 and the control unit 40 constitute the insulation coating overlay control system 100 of the present invention.
  • FIG. 6 is a flowchart showing an overlay width control procedure according to the first embodiment of the present invention.
  • step S10 the electrode slurry 1a is discharged from the electrode slurry coater 1, the electrode slurry is applied on the electrode plate 3, and the holding part 1a is formed.
  • the portion where the holding portion is not formed becomes the uncoated portion 2 where the electrode plate is exposed.
  • next step S20 when the electrode plate 3 moves to the insulating coater 10 , a predetermined insulating material 10a is discharged from the insulating coater to a predetermined area of the holding part 1a and a certain area of the uncoated area 2 . An insulating material is coated.
  • step S30 the overlay width B of the insulating material coated on the electrode plate 3 is measured by the vision camera 20, which is the insulating coating width measuring means, and numerical data about the width is sent to the control unit 40 is sent
  • step S40 the control unit 40 compares the measured overlay width B with a preset overlay width setting range or an overlay width reference value extracted from the database of the control unit 40,
  • step S50 if the measured overlay width B is within the set range or matches the reference value, the step S60 is terminated. That is, in this case, the control unit 40 does not give a driving command to move the insulating coater 10 .
  • step S50 when the measured overlay width B is out of the set range or does not match the reference value, in step S70, the control unit 40 holds the insulating coater 10 by the insulating coater moving mechanism 30 ( 1a) or by horizontally moving a predetermined distance toward the uncoated area 2 to adjust the overlay width.
  • the insulation coating overlay control system 100 of the present invention may perform feedback control to determine whether the adjusted overlay width falls within a set range or matches a reference value. That is, the overlay width adjusted by the movement of the insulation coater 10 is measured again by the insulation coating width measuring means 20 in step S30, and the measured overlay width is the set range or reference value in steps S40 and S50 and It is compared to determine whether to readjust the overlay width and proceeds to step S60 or step S70.
  • Such feedback control may be repeatedly performed at regular intervals or at predetermined time intervals along the electrode line. Accordingly, the present invention can manufacture an electrode plate having a uniform overlay width of, for example, 0.4 to 0.8 mm, more preferably 0.6 to 0.8 mm, along the length or width direction of the electrode.
  • FIG. 7 is a schematic diagram illustrating the concepts of overlay width control and uncoated area coating width control according to a second embodiment of the present invention
  • FIG. 8 is a control sequence of overlay width and uncoated area coating width according to a second embodiment of the present invention. is a flowchart showing
  • the uncoated area coating width (A) is linked and controlled again.
  • feedback control is included so that the widths are within a set range or match a set reference value.
  • the uncoated part coating width of A is a predetermined uncoated part coating. It should be consistent with the width setting range or the standard value of the uncoated area coating width. That is, if the overlay width (B) meets the set range or reference value, it is a principle that the uncoated area coating width (A) should also meet the set range or reference value.
  • the uncoated area coating width (A) Even when the overlay width (B) meets the set range or reference value due to some cause, such as a change in the height of the electrode plate 3 in the roll-to-roll process, the uncoated area coating width (A) There may be a case in which the preset non-coated area coating width setting range or the uncoated area coating width reference value is not met.
  • the second embodiment additionally controls the uncoated area coating width (A) in this case.
  • the uncoated area coating width (A) is achieved by controlling the movement of the insulation coater moving means 30 up and down. This is because the overlay width (B) is adjusted by horizontally moving the insulating coater moving means (30).
  • the overlay width (B) and the uncoated area coating width (A) are also increased or decreased.
  • the holding part 1a and the insulating coater 10 may come into contact when the insulating coater 10 is lowered, the lowering range is limited.
  • the raising/lowering control of the insulation coater 10 may change the already adjusted overlay width, it is preferable to do it within a limited elevating/lowering range. In this sense, the raising/lowering control of the insulation coater 10 for adjusting the uncoated area coating width A has a dependent variable characteristic of the horizontal control of the insulation coater 10 for adjusting the overlay width B.
  • the technical meaning of vertical movement control is reduced, so that the vertical movement range is as far as possible in the limit that meets the setting range / reference value of the overlay width (B). It is necessary to do it limitedly within a small range as an auxiliary.
  • step S10 the steps of measuring the overlay width B for overlay width control from step S10 to step S50 and comparing the measured value with a preset overlay width setting range or a reference value are the same.
  • step S50 if the overlay width (B) measured in step S50 meets the set range or reference value, compare the uncoated area coating width (A) measured in step S80 with the preset uncoated area set coating width or uncoated area coating width reference value do. If it is determined that the uncoated area coating width (A) measured in step S90 meets the preset uncoated area set coating width or uncoated area coating width reference value, the control is terminated in step S100.
  • step S50 If the overlay width (B) measured in step S50 does not meet the set range or reference value, proceed to step S70 to adjust the overlay width by horizontal movement of the insulation coater 10 and to step S30 to measure the overlay width again go through the process of going back.
  • the uncoated area coating width (A) measured in step S80 and the predetermined uncoated area set coating width or uncoated area Compare with the coating width reference value.
  • step S110 If it is determined that the uncoated area coating width (A) measured in step S90 does not meet the predetermined uncoated area set coating width or uncoated area coating width reference value, in step S110, the insulation coater moving means 30 (up and down movement means) is insulated The coating width of the uncoated area is adjusted by controlling the coater 10 to ascend or descend vertically.
  • step S30 again the adjusted overlay width and uncoated area coating width are measured again, and the horizontal movement control of the overlay width and vertical movement control process of the uncoated area coating width are repeated. If both the overlay width and the uncoated area coating width meet the set range or reference value through the iterative process, the control is terminated. If either width does not match, the feedback control is repeated until the width meets the set range or the reference value can be
  • control unit 40 control unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

본 발명은 절연코팅 오버레이 제어시스템에 관한 것으로서, 전극판의 전극 슬러리가 도포된 유지부와 도포되지 않은 무지부의 경계부를 따라 절연물질이 상기 유지부 일부 영역과 무지부 일부 영역을 덮도록 상기 절연물질을 코팅하는 절연 코터; 상기 절연물질이 유지부에 코팅된 오버레이 영역의 폭인 오버레이 폭 및 절연물질이 무지부에 코팅된 영역의 폭인 무지부 코팅 폭을 측정하는 절연코팅 폭 측정수단; 상기 절연 코터를 이동시키는 절연 코터 이동수단; 및 상기 측정된 오버레이 폭과 미리 정해진 오버레이 폭 설정범위 또는 오버레이 폭 기준값을 비교하여 오버레이 폭을 조절하기 위하여 상기 절연 코터 이동수단을 제어하는 제어부를 포함한다. 본 발명은 또한 이차전지용 전극판 및 절연코팅 오버레이 제어방법에 관한 것이다.

Description

절연코팅 오버레이 제어시스템 및 절연코팅 오버레이 제어방법
본 발명은 전극판의 전극 슬러리가 도포되는 유지부 상에 절연물질을 코팅할 때의 코팅 폭을 제어하는 절연코팅 제어시스템에 관한 것이다. 보다 상세하게는, 유지부와 절연물질 코팅부가 중첩되는 오버레이 부분의 폭을 미리 정해진 범위 내로 하거나 미리 정해진 기준값과 일치하도록 제어하기 위한 절연코팅 오버레이 제어시스템에 관한 것이다.
본 발명은 또한 오버레이 폭이 전극판을 따라 소정범위로 균일하게 형성되는 이차전지용 전극판에 관한 것이다.
본 발명은 또한, 상기 오버레이 부분의 폭은 제어하기 위한 절연코팅 오버레이 제어방법에 관한 것이다.
본 출원은 2020.12.03.자 한국 특허 출원 제10-2020-0167558호 및 2021.11.09.자 한국 특허 출원 제10-2021-0153267호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
모바일 기기에 대한 기술 개발과 수요의 증가로, 이차전지의 수요 또한 급격히 증가하고 있다. 그 중에서도, 리튬 이차전지는 에너지 밀도와 작동전압이 높고 보존과 수명 특성이 우수하다는 점에서, 각종 모바일 기기는 물론 다양한 전자 제품들의 에너지원으로 널리 사용되고 있다.
이러한 이차 전지에서 주요 연구과제 중의 하나는 안전성을 향상시키는 것이다. 전지의 안전성 관련 사고의 주요한 원인은 양극과 음극간의 단락으로 인한 비정상적인 고온 상태의 도달에 기인한다. 즉, 정상적인 상황에서는 양극과 음극간에 세퍼레이터가 위치하여 전기적 절연을 유지하고 있으나, 전지가 과충전 또는 과방전을 일으키거나, 전극 재료의 수지상 성장(dendritic growth) 또는 이물에 의해 내부 단락을 일으키거나, 못, 나사 등의 예리한 물체가 전지를 관통하거나, 외력에 의해 전지에 무리한 변형이 가해지는 등의 비정상적인 오남용 상황에서는 기존 세퍼레이터만으로는 한계를 보이게 된다.
또한, 폴리올레핀 수지로 이루어진 미세다공막이 주로 이용되는 세퍼레이터도, 그 내열온도가 120 내지 160℃정도로서 내열성이 불충분하다. 따라서, 내부 단락이 발생하면, 단락 반응열에 의해 세퍼레이터가 수축하여 단락부가 확대되고 더 크고 많은 반응열이 발생하는 열폭주(thermal runaway) 상태에 이르게 되는 문제가 있었다.
따라서, 전지 전극의 절연성을 유지하여 양극과 음극의 단락 가능성을 낮추기 위하여, 전극, 일반적으로는 양극의 부분에 절연물질을 코팅하고 있다.
도 1은 전극판(집전체 시트) 상에 절연물질(절연액)이 코팅되는 부분을 나타내는 개략도이다.
절연물질 코팅 전에 전극판(3)에는 활물질, 도전재 및 바인더 등으로 이루어진 전극 슬러리가 코팅된 유지부(1a)가 일정 패턴으로 형성된다. 전극 슬러리가 코팅되지 않는 부분(즉, 전극판 노출면)은 무지부(2)가 된다. 도 1에 도시된 것은 패턴의 1종류이고, 전지 종류 및 사용 용도 등에 따라 유지부(1a)-무지부(2) 패턴은 다양하게 변경될 수 있다. 또한, 유지부(1a)는 전극판(3)의 일면 또는 양면에 모두 형성될 수 있다. 도 1에서 점선 사각형으로 표시된 부분들이 절연물질이 코팅되는 부분이다. 즉, 절연물질은 유지부(1a)와 무지부(2)의 경계부를 따라 코팅된다. 무지부(2)는 추후 전극 탭으로 가공되는 부분이므로, 이 탭 예정 부분에는 반드시 절연물질이 코팅되어야 한다. 도 1에서는 도시의 편의를 위해서 점선 사각형을 2개소만 표시하였지만, 유지부(1a)와 무지부(2)의 경계부 모두에 절연물질이 코팅될 수 있다. 일반적으로는 도 1 좌측 점선 사각형과 같이 유지부(1a)의 폭방향 양측 단부에서 유지부 길이방향을 따라 절연물질을 코팅한다. 하지만, 전지 종류에 따라 유지부 길이방향을 따른 유지부(1a) 사이의 무지부(2)에 탭을 형성하는 경우가 있기 때문에, 도 1의 우측 점선 사각형과 같이, 유지부(1a)의 폭방향을 따라 절연물질을 코팅할 수도 있다.
도 2는 전극판 상에 유지부와 무지부가 형성된 상태를 나타내는 도면이다. 도 2(a)는 투명한 절연물질이 도포된 도면이고, 도 2(b)는 반투명한 절연물질이 도포된 도면이다. 도 1 및 도 2에 나타난 바와 같이, 절연물질은 유지부(1a)와 무지부(2)의 경계부를 따라 절연물질이 유지부(1a)의 일부 영역과 무지부(2)의 일부 영역을 덮도록 코팅된다. 즉, 절연물질이 유지부(1a)의 일부 영역에 걸쳐져서, 유지부(1a)와 절연물질의 중첩 코팅부(오버레이 영역)가 형성되도록 코팅한다. 절연물질은 무지부(2)인 전극판 상의 일정영역에도 코팅되며 이를 오버레이 영역과 대비하여 무지부 코팅 영역이라 칭하기로 한다. 설명의 편의를 위하여, 이하에서는 오버레이 영역의 폭을 '오버레이 폭(B)'으로 나타내고, 무지부 코팅 영역의 폭을 '무지부 코팅 폭(A)'으로 나타낸다. 따라서, 전체 절연코팅 폭은 B+A가 된다.
무지부 영역 뿐만 아니라 유지부 상에도 절연코팅하여 오버레이 영역을 형성하는 이유는, 전극간 절연을 보다 확실하게 위함이며 또한 무지부 측에만 절연코팅을 하는 경우 유지부와 무지부 사이에 절연코팅되지 않은 빈 공간이 발생할 우려가 크기 때문이다.
그런데, 종래에는 절연물질이 유지부 상에 중첩되면 족하고 중첩부인 오버레이 영역의 폭을 제어하는 기술은 개발되지 않았다. 특허문헌 1과 같이, 유지부의 엣지 위치를 감지하여, 엣지가 노출되지 않도록 엣지에 절연물질을 일부 중첩되게 도포하는 기술은 존재하였지만, 유지부와 절연물질을 어느 정도 중첩시킬 것인지, 중첩되는 폭을 어떻게 조절할 것인지에 대한 내용은 존재하지 않았다. 특허문헌 1은 절연물질이 덮여지지 않아 유지부가 노출된 엣지만을 불량으로 판정하므로, 일단 절연물질이 유지부에 덮여진, 즉 오버레이 영역이 형성되어 엣지가 노출되지 않은 경우는 불량으로 판정하지 않는다는 한계가 있다.
상기와 같이, 종래에는 오버레이 폭의 자동 제어는 수행되지 않았으며, 생산 현업에서는 작업자의 감각에 따라 대략 유지부에 절연물질이 걸쳐지면 충분하다는 정도의 작업만이 수행되고 있었다. 이는 전지 고장이나 발화 등에 미치는 오버레이 폭의 영향은 제한적이라고 여겨져 온 영향이라고 보여진다.
그러나, 최근 이차전지에 원인을 알 수 없는 발화가 발생하는 등의 이유로 전지 제조과정에 있어서 전체적인 품질관리 기준이 점점 강화되고 있으며, 오버레이 부분에 대한 평가도 고객에게 중요한 품질특성인 CTQ(Critical to Quality)의 대상이 되었다. 예컨대 오버레이 폭 B가 설정된 범위 혹은 설정 기준값보다 크면 유지부를 덮는 절연물질의 폭이 크다는 의미로서, 절연물질로 커버된 유지부의 슬러리 부분은 리튬 이동이 커버되지 않은 유지부에 비하여 제한되기 때문에 전지 용량에 기여하는 양도 작아질 수 밖에 없다. 또한, 오버레이 폭 B가 설정범위 혹은 설정 기준값보다 작으면 미리 정한 절연특성보다 절연기능이 떨어질 우려가 있다.
따라서, 전지 용량 및 전지 안전성의 관점에서 오버레이 폭을 전지의 요구 특성에 부합하도록 안정적으로 제어할 수 있는 기술의 개발이 요망되고 있다.
[선행특허문헌]
[특허문헌]
대한민국 등록특허공보 제10-1719694호
본 발명은 상기와 같은 문제점을 해결하기 위해 만들어진 것으로서, 유지부에 중첩되는 절연물질 코팅부인 오버레이 폭을 조절하여 설정범위 내지 기준값에 부합하도록 할 수 있는 절연코팅 오버레이 제어시스템을 제공하는 것을 목적으로 한다.
또한, 본 발명은 무지부에 코팅되는 절연물질의 폭인 무지부 코팅 폭을 상기 오버레이 폭 조절과 연계하여 제어할 수 있는 절연코팅 오버레이 제어시스템을 제공하는 것을 또 다른 목적으로 한다.
또한, 상기 절연코팅 오버레이 제어시스템에 의하여, 오버레이 폭이 전극판을 따라 소정범위로 균일하게 형성될 수 있는 이차전지용 전극판을 제공하는 것을 목적으로 한다.
또한, 본 발명의 또 다른 목적은 오버레이 폭과 무지부 코팅 폭을 제어할 수 있는 절연코팅 오버레이 제어방법을 제공함에 있다.
상기 과제를 해결하기 위한, 본 발명의 절연코팅 오버레이 제어시스템은,
전극판의 전극 슬러리가 도포된 유지부와 도포되지 않은 무지부의 경계부를 따라 절연물질이 상기 유지부 일부 영역과 무지부 일부 영역을 덮도록 상기 절연물질을 코팅하는 절연 코터; 상기 절연물질이 유지부에 코팅된 오버레이 영역의 폭인 오버레이 폭 및 절연물질이 무지부에 코팅된 영역의 폭인 무지부 코팅 폭을 측정하는 절연코팅 폭 측정수단; 상기 절연 코터를 이동시키는 절연 코터 이동수단; 및 상기 측정된 오버레이 폭과 미리 정해진 오버레이 폭 설정범위 또는 오버레이 폭 기준값을 비교하여 오버레이 폭을 조절하기 위하여 상기 절연 코터 이동수단을 제어하는 제어부를 포함한다.
구체적으로, 상기 측정된 오버레이 폭이, 오버레이 폭 설정범위 미만이면 상기 절연 코터를 유지부 쪽으로 이동시키고 오버레이 폭 설정범위 초과이면 상기 절연 코터를 무지부 쪽으로 이동시키도록 상기 절연 코터 이동수단을 제어할 수 있다.
또는, 상기 측정된 오버레이 폭이, 기준값보다 작으면 상기 절연 코터를 유지부 쪽으로 이동시키고 기준값보다 크면 상기 절연 코터를 무지부 쪽으로 이동시키도록 상기 절연 코터 이동수단을 제어할 수 있다.
바람직한 하나의 예로서, 상기 기준값은 미리 정해진 오버레이 폭의 1/2인 중간값이고, 측정된 오버레이 폭의 중간값과 상기 미리 정해진 오버레이 폭의 중간값을 비교하여 상기 절연 코터 이동수단을 제어할 수 있다.
하나의 예로서, 상기 절연코팅 폭 측정수단은, 오버레이 폭 및 무지부 코팅 폭을 시각적으로 감지하는 비전 카메라일 수 있다.
구체적으로 상기 비전 카메라는, 유지부 및 무지부의 색상, 명암 및 채도 중 하나 이상을 감지하여 오버레이 폭 및 무지부 코팅 폭을 측정할 수 있다.
하나의 예로서, 상기 절연 코터 이동수단은 절연 코터의 수평 및 상하이동이 모두 가능게 할 수 있다.
하나의 예로서, 상기 제어부는 상기 절연 코터 이동수단을 수평으로 이동 제어하여 오버레이 폭을 조절하고,
상기 조절된 오버레이 폭을 상기 절연코팅 폭 측정수단이 다시 측정하며,
다시 측정된 오버레이 폭과 미리 정해진 오버레이 폭 설정범위 또는 기준값을 비교하여 오버레이 폭의 재조절 여부를 결정할 수 있다.
하나의 예로서, 상기 측정된 오버레이 폭이 미리 정해진 오버레이 폭 설정범위 내 또는 기준값과 일치하는 경우, 상기 측정된 무지부 코팅 폭과 미리 정해진 무지부 설정 코팅 폭 또는 무지부 코팅 폭 기준값을 비교하여 무지부 코팅 폭을 조절하기 위하여 상기 절연 코터 이동수단을 제어할 수 있다.
구체적으로, 상기 제어부는 상기 절연 코터 이동수단을 상하로 이동 제어하여 무지부 코팅 폭을 조절하고, 상기 절연 코터 이동수단의 상하 이동에 따라 조절된 무지부 코팅 폭 및 오버레이 코팅 폭을 상기 코팅 폭 측정수단이 다시 측정하며, 다시 측정된 오버레이 폭 및 무지부 코팅 폭을, 미리 정해진 오버레이 폭 설정범위 또는 기준값 혹은 미리 정해진 무지부 설정 코팅 폭 무지부 코팅 폭 기준값과 각각 비교하여 오버레이 폭 및 무지부 코팅 폭의 재조절 여부를 결정할 수 있다.
본 발명의 다른 측면으로서 이차전지용 전극판은, 전극판 상에 전극 슬러리가 도포되는 유지부; 상기 전극판 상에 전극 슬러리가 도포되지 않는 무지부; 및 상기 유지부 일부 영역과 무지부 일부 영역을 덮도록 절연물질이 코팅된 절연물질 코팅부;를 포함하고, 상기 절연물질이 상기 유지부의 일부 영역에 코팅된 오버레이 영역의 폭인 오버레이 폭이 전극판을 따라 0.4~0.8mm의 범위로 균일하게 형성된 것을 특징으로 한다.
본 발명의 또 다른 측면으로서의 절연코팅 오버레이 제어방법은, 전극판의 전극 슬러리가 도포된 유지부와 도포되지 않은 무지부의 경계부를 따라 절연물질이 상기 유지부 일부 영역과 무지부 일부 영역을 덮도록 상기 절연물질을 코팅하는 단계; 절연물질 코팅 후 절연물질이 유지부에 코팅된 오버레이 영역의 폭인 오버레이 폭 및 절연물질이 무지부에 코팅된 영역의 폭인 무지부 코팅 폭을 측정하는 절연코팅 폭 측정 단계; 상기 측정된 오버레이 폭과 미리 정해진 오버레이 폭 설정범위 또는 오버레이 폭 기준값을 비교하는 단계; 및 상기 측정된 오버레이 폭이 오버레이 폭 설정범위를 벗어나거나 또는 오버레이 폭 기준값과 일치하지 않는 경우, 상기 절연물질을 코팅하는 절연 코터를 상기 유지부 또는 무지부 쪽으로 수평 이동시켜 오버레이 폭을 조절하는 단계를 포함한다.
하나의 예로서, 상기 절연코팅 오버레이 제어방법은, 상기 조절된 오버레이 폭을 다시 측정하는 단계; 및 다시 측정된 오버레이 폭과 미리 정해진 오버레이 폭 설정범위 또는 기준값을 비교하여 오버레이 폭의 재조절 여부를 결정하는 단계를 더 포함할 수 있다.
다른 예로서, 상기 측정된 오버레이 폭이 미리 정해진 오버레이 폭 설정범위 내 또는 기준값과 일치하는 경우, 상기 측정된 무지부 코팅 폭과 미리 정해진 무지부 설정 코팅 폭 또는 무지부 코팅 폭 기준값을 비교하여 무지부 코팅 폭을 조절하기 위하여 상기 절연 코터를 상하 이동하는 단계를 더 포함할 수 있다.
또한, 구체적으로 상기 절연코팅 오버레이 제어방법은, 상기 절연 코터의 상하 이동에 따라 조절된 무지부 코팅 폭 및 오버레이 코팅 폭을 다시 측정하며, 다시 측정된 오버레이 폭 및 무지부 코팅 폭을, 미리 정해진 오버레이 폭 설정범위 또는 기준값 혹은 미리 정해진 무지부 설정 코팅 폭 무지부 코팅 폭 기준값과 각각 비교하여 오버레이 폭 및 무지부 코팅 폭의 재조절 여부를 결정할 수 있다.
본 발명에 따르면, 유지부에 중첩되는 절연물질 코팅부인 오버레이 폭을 조절하여 전지 특성을 향상하고 불측의 전지 고장을 예방하는 효과를 가진다.
또한, 무지부에 코팅되는 절연물질의 폭인 무지부 코팅 폭을 상기 오버레이 폭 조절과 연계하여 제어함으로써, 고객이 요구하는 CTQ를 효율적으로 만족시킬 수 있다.
또한, 본 발명에 의하여 오버레이 폭이 전극판을 따라 소정범위로 균일하게 형성되는 이차전지용 전극판을 제조할 수 있다.
도 1은 전극 전극판 상에 절연물질(절연액)이 코팅되는 부분을 나타내는 개략도이다.
도 2는 2종류의 절연물질을 적용하여 전극판 상에 유지부와 무지부가 형성된 상태를 나타내는 도면이다.
도 3은 본 발명의 제1 실시형태에 의한 오버레이 폭 제어의 개념을 설명하는 개략도이다.
도 4는 본 발명의 절연코팅 오버레이 제어시스템의 전체 구성을 나타내는 개략도이다.
도 5는 본 발명의 절연 코터 이동수단을 나타내는 사시도이다.
도6 은 본 발명의 제1 실시형태에 의한 오버레이 폭 제어 순서를 나타내는 플로우차트이다.
도 7은 본 발명의 제2 실시형태에 의한 오버레이 폭 제어 및 무지부 코팅 폭 제어의 개념을 설명하는 개략도이다.
도 8는 본 발명의 제2 실시형태에 의한 오버레이 폭 및 무지부 코팅 폭 제어 순서를 나타내는 플로우차트이다.
이하, 첨부한 도면과 여러 실시예에 의하여 본 발명의 세부 구성을 상세하게 설명한다. 이하에서 설명되는 실시예는 본 발명의 이해를 돕기 위하여 예시적으로 나타낸 것이며, 또한 첨부된 도면은 발명의 이해를 돕기 위하여 실제 축척대로 도시된 것이 아니며 일부 구성요소의 치수가 과장되게 도시될 수 있다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명의 절연코팅 오버레이 제어시스템은, 전극판의 전극 슬러리가 도포된 유지부와 도포되지 않은 무지부의 경계부를 따라 절연물질이 상기 유지부 일부 영역과 무지부 일부 영역을 덮도록 상기 절연물질을 코팅하는 절연 코터; 상기 절연물질이 유지부에 코팅된 오버레이 영역의 폭인 오버레이 폭 및 절연물질이 무지부에 코팅된 영역의 폭인 무지부 코팅 폭을 측정하는 절연코팅 폭 측정수단; 상기 절연 코터를 이동시키는 절연 코터 이동수단; 및 상기 측정된 오버레이 폭과 미리 정해진 오버레이 폭 설정범위 또는 오버레이 폭 기준값을 비교하여 오버레이 폭을 조절하기 위하여 상기 절연 코터 이동수단을 제어하는 제어부를 포함한다.
본 발명은 종래와 같이 단순히 유지부의 엣지에 맞추어 절연코팅하는 것에서 더 나아가서 유지부와 절연물질 코팅부가 중첩되는 영역인 오버레이 영역의 폭인 오버레이 폭을 설정범위 또는 설정 기준값에 부합하도록 제어하는 것을 특징으로 하고 있다. 이를 위해 본 발명은 오버레이 폭을 측정하기 위한 절연코팅 폭 측정수단을 구비한다. 또한, 측정된 오버레이 폭을 미리 정해진 오버레이 폭 설정범위 또는 오버레이 폭 기준값과 비교하기 위한 제어부를 포함한다. 본 발명에서 측정된 오버레이 폭을 오버레이 폭 설정범위와 비교한다는 것은 오버레이 폭이 설정범위를 벗어나는 경우 이를 설정범위 내로 조절하겠다는 것이다. 즉, 본 발명은 오버레이 폭의 범위 제어를 하나의 목표로 한다. 또한, 본 발명에서 측정된 오버레이 폭을 오버레이 기준값과 비교한다는 것은 오버레이 폭이 기준값과 상이할 경우 이를 일치하도록 오버레이 폭을 조절하겠다는 것이다. 즉, 본 발명은 오버레이 폭의 핀 포인트 제어를 또 하나의 목표로 한다. 따라서, 본 발명은 오버레이 폭을 미리 정해진 오버레이 폭과 비교하여 그에 수렴하도록 하는 범위 제어와 미리 정해진 기준값과 대비하여 그에 부합하도록 하는 핀 포인트 제어를 모두 수행할 수 있다.
뿐만 아니라, 본 발명은 이러한 범위 제어 및 핀 포인트 제어를 반복하는 피드백 제어도 제시하고 있다. 후술하는 바와 같이, 본 발명은 오버레이 폭의 제어 외에 오버레이 폭과 무지부의 코팅 폭을 연계하여 제어하는 기술적사상도 포함하고 있다.
한편, 본 명세서에서 절연물질을 코팅하는 절연 코터는 '슬롯 다이' 혹은 '디스펜서'를 적용할 수 있다. '슬롯 다이'가 적용되는 경우, 절연 코터를 '절연 다이' 또는 '다이 코터'로 지칭하는 경우가 있다. 어느 경우든 절연 코터의 하위 개념에 속하는 용어임을 주의하여야 한다.
이하, 첨부도면과 여러 실시 형태를 기초로 본 발명을 보다 자세히 설명한다.
(제1 실시 형태)
도 3은 본 발명의 제1 실시형태에 의한 오버레이 폭 제어의 개념을 설명하는 개략도이다.
도 3은 전극판(3) 상에서 유지부(1a)인 전극 슬러리 코팅부와 무지부(2)의 위치와, 절연코팅되는 영역을 직관적으로 잘 나타내고 있다. 절연 코터(슬롯 코터인 절연다이)(10)로부터 토출된 절연물질(10a)(본 실시예에서는 절연액 형태의 절연물질임)이 유지부(1a)의 일부와 무지부(2)에 걸쳐 코팅된다.
본 발명에서 사용될 수 있는 절연액은 폴리부타디엔, 폴리우레탄, 폴리이미드, 아세테이트, 폴리에스터, 폴리페닐렌설파이드(Polyphenylenesulfide,PPS), 폴리프로필렌(polypropylene), 스티렌-부타디엔계 공중합체, (메타)아크릴산 공중합체, (메타)아크릴레이트 공중합체, 폴리아크릴로니트릴, 폴리비닐클로라이드, 폴리플루오로 화합물, 폴리비닐 알코올, 및 폴리시아노아크릴레이트로부터 선택된 1종 또는 2종 이상의 고분자를 포함하는 용액, 또는 폴리 부타디엔, 폴리우레탄, 폴리이미드, 아세테이트, 폴리에스터, 폴리페닐렌설파이드(Polyphenylenesulfide, PPS), 폴리프로필렌(polypropylene), 스티렌-부타디엔계 공중합체, (메타)아크릴산 공중합체, (메타)아크릴레이트 공중합체, 폴리아크릴로니트릴, 폴리비닐클로라이드, 폴리플루오로 화합물, 폴리비닐 알코올, 및 폴리시아노아크릴레이트로부터 선택된 1종 또는 2종 이상의 고분자의 중합에 사용되는 모노머일 수 있다.
구체적으로, 폴리불화비닐리덴(PVdF)계 절연액, 세라믹계 절연액(예컨대 보헤마이트와 같은 수산화알루미늄계 절연액)을 사용할 수 있다.
상기 절연액은 필요에 따라, 물, 글리세롤, 에틸렌 글리콘, 프로필렌 글리콜, 디메틸 술폭시드, 디메틸 포름아미드, 아세토니트릴, 에틸렌 카보네이트, 퍼푸릴 알코올 및 메탄올로부터 선택된 1종 또는 2종 이상의 용매를 포함할 수 있다.
상기 유지부(1a)는 일정 두께의 평탄면을 이루다가 그 단부에 근접할수록 경사면의 단면을 형성하면서 두께가 감소되고 전극판과 접하는 단부(1c)에서 다시 더 작은 두께의 평탄면을 이루고 있다. 절연액은 이 단부의 일정영역을 덮어 코팅되며 이 부분이 오버레이 영역이고 그 폭을 B로 나타낸다. 또한, 절연액은 무지부(2)의 일정 영역에 걸쳐 코팅되며 이 부분을 무지부 코팅 영역이라 하고 그 폭을 A로 나타낸다. 따라서, 전체 절연코팅부의 폭은 B+A가 된다.
다시 도 2를 참조하면, 도 2(a)에는 투명한 절연액의 절연코팅층이 나타나 있다. 도 2(b)에는 반투명 절연코팅층이 나타나 있다. 도 2(a)의 절연액은 전해액 내에서 웨트(wet) 접착력이 낮아 탈리가 발생될 가능성이 있다. 도 2(b)의 절연액은 웨트 접착력이 향상되어 탈리 가능성은 낮지만, 백색이고 반투명이어서 시각적으로는 도 2(a)의 절연액보다 인식하기 힘들다. 즉, 도 2(a)의 절연액은 예컨대 노란색 등의 색상을 가지고 투명하게 하면 그 색상 및 투명도에 의하여 용이하게 오버레이 폭을 파악할 수 있지만, 도 2(b)의 절연액은 색상만으로는 오버레이 폭을 파악하기 곤란하므로, 오버레이 영역의 색상 외에 명암, 채도 등도 함께 고려하여 판단할 필요가 있다. 도 2(b)에서 오버레이폭은 연한 회색이 되어 무지부 코팅 폭에 비하여 어둡게 되어 있어, 색상과 명암으로 오버레이 폭을 파악할 수 있다. 물론, 절연액의 종류에 따라, 색상, 명암 외에 채도(색상의 탁한 정도)까지 파악하면 보다 용이하게 오버레이 폭을 파악할 수 있다. 즉, 오버레이 폭은 시각적으로 감지할 수 있어 예컨대 비전 카메라를 설치하여 카메라가 촬상한 화면으로부터 오버레이 폭을 측정할 수 있다.
또한, 오버레이 폭(B)을 파악하면 무지부에 절연액이 코팅된 영역인 무지부 코팅 폭(A)도 쉽게 파악할 수 있다. 도 2에는 전극 슬러리 끝단과 무지부 코팅 폭도 잘 표시되어 있다.
이상과 같이 오버레이 폭(B)이 파악되면, 이를 미리 정해진 오버레이 폭의 설정범위와 비교할 수 있다. 예컨대 오버레이 폭(B)의 설정범위가 1.0~1.2mm이고 측정된 오버레이 폭(B)이 0.9mm이면 유지부(1a)와 겹치는 절연코팅부가 설정범위보다 작다는 의미이므로, 절연코터(절연다이)를 유지부(1a) 쪽으로 이동하여 유지부(1a)와 겹치는 절연코팅부를 확대할 수 있다. 예컨대 0.1~0.3mm 만큼 절연코터를 도 3 좌측의 유지부 쪽으로 이동시키면 오버레이 폭을 설정범위 내로 수렴시킬 수 있다(도 3의 ①방향으로 이동).
만약, 측정된 오버레이 폭이 1.3mm라면 절연코터를 무지부 쪽(도 3의 우측)으로 0.1mm만큼 이동(도 3의 ②방향으로 이동)시키면 상기 설정범위 내에 포함시킬 수 있다.
또한, 보다 정확하게 오버레이 폭을 제어하기 원한다면, 측정된 오버레이 폭을 미리 정해진 오버레이 기준값과 비교할 수 있다. 즉, 측정된 오버레이 폭이 0.9mm이고, 기준값이 1.0mm라면 ①방향으로 0.1mm 이동시킬 수 있다. 측정된 오버레이 폭이 1.1mm이고, 기준값이 1.0mm라면 ②방향으로 0.1mm 이동시킬 수 있다.
오버레이 폭을 보다 정밀하게 제어하는 방법으로서, 상기 기준값을 미리 정해진 오버레이 폭의 1/2인 중간값으로 설정하고, 측정된 오버레이 폭의 중간값과 비교할 수 있다. 예컨대, 측정된 오버레이 폭이 0.8mm이고, 기준값인 중간값이 0.5mm라면 측정된 오버레이 폭의 중간값은 0.4mm가 되어 기준값보다 작으므로 ①방향으로 이동시킬 수 있다. 이 경우 오버레이 폭의 중간위치가 0.4mm 부분이 되도록 절연코터를 이동시킨다. 측정된 오버레이 폭이 1.2mm이고, 기준값인 중간값이 0.5mm라면 측정된 오버레이 폭의 중간값은 0.6mm가 되어 기준값보다 크므로 ②방향으로 이동시킬 수 있다. 이와 같이, 오버레이 폭의 중간위치인 중간값을 기준값으로 하여 측정된 오버레이 폭의 중간값과 비교하는 방식이 상기 오버레이 폭의 설정범위 내로 제어하는 범위 제어나, 단순한 전체 폭의 값을 기준값으로 하는 경우에 비하여 보다 정확하게 오버레이 폭을 설정된 값에 부합하도록 조절할 수 있다.
통상 적용 가능한 오버레이 폭(B)의 범위는 전극에 따라 0.1~1.2mm일 수 있다. 본 발명에 따르면 상기 오버레이 폭의 제어에 의하여, 상기 적용 가능한 오버레이 폭 범위를 쉽게 만족할 수 있다. 하지만, 실제 0.1~0.3mm 정도의 좁은 폭으로 오버레이 영역을 형성하는 경우, 전극의 길이방향 또는 폭방향을 따라 0.1mm 미만의 오버레이 폭이 형성되는 경우도 있다. 반대로 0.9mm 이상의 비교적 넓은 폭으로 오버레이 폭을 제어하는 경우, 절연성은 만족하지만 넓은 범위의 활물질이 절연 코팅되어 전극 용량을 떨어트릴 수 있다. 따라서, 절연을 확실하게 하고, 보다 안정적인 오버레이 폭을 확보하기 위한 측면, 그리고 전극 용량 측면을 고려하면 바람직한 오버레이 폭(B)의 범위는 0.4~0.8mm이다. 보다 바람직하게는 0.6~0.8mm의 오버레이 폭이 좋다. 0.6~0.8mm의 오버레이 폭이 전극 길이방향 또는 폭방향을 따라 유지부와 무지부 사이에 균일하게 형성되면, 절연품질이 향상되고 품질의 균일성을 확보할 수 있다. 종래에는 이러한 오버레이 폭의 제어를 하지 않았기 때문에, 전극 길이방향 또는 폭방향을 따른 오버레이 폭이 일정하지 못하고 들쑥날쑥하였다. 예컨대, 전극 에지부분이 노출되지 않으면 0.1mm의 오버레이 폭도 불량으로 보지 않았기 때문에, 0.1mm로부터 1mm 이상까지 오버레이 폭이 균일하지 않은 문제가 있었다.
절연코팅 과정에 있어서, 오버레이 폭 내지 무지부 코팅 폭이 변하는 것은, 전극판에 코팅되는 전극 슬러리의 폭 자체가 변하기 때문이다. 즉, 롤투롤 공정과 같은 연속적인 슬러리 코팅과정에서는 전극판 시트에 가해지는 장력과 연속적인 생산 라인에 설치된 각종 장치 작동에 따른 진동으로 인하여 전극판의 높이도 미묘하게 변한다. 따라서, 전극판 상에 코팅되는 슬러리의 폭도 전극판 길이방향 혹은 폭방향을 따라 미세하게 변한다. 따라서, 오버레이 폭 혹은 무지부 코팅 폭을 일정하게 설정한 경우에도 전극 슬러리 폭의 변동에 따라 오버레이 폭 등이 변하게 되는 것이다.
또한, 절연액의 점도, 토출 속도, 토출 방향 혹은 절연다이에 가해지는 응력 내지 물리적인 진동에 따라 절연액 코팅 폭 자체가 변화함에 따라 오버레이 폭 등이 달라지는 경우도 상정할 수 있다. 어떤 원인으로 오버레이 폭이나 무지부 코팅 폭이 변화했든 본 발명에 의하여 오버레이 폭을 측정하고 이를 조절하는 제어를 함으로써, 설정치 내로 오버레이 폭을 형성할 수 있다는 것에 본 발명의 특장점이 있는 것이다.
도 4는 본 발명의 절연코팅 오버레이 제어시스템(100)의 전체 구성을 나타내는 개략도이다.
도 4의 좌측, 즉 전극판 이동방향(코팅방향)의 상류측에 전극 슬러리 코터(1)가 위치해 있다. 전극판 이동방향(코팅방향)의 하류측에 절연 코터(절연다이)(10)와 절연코팅 폭 측정수단(20), 절연코터 이동수단(30), 제어부(40)가 설치되어 있다.
전극 슬러리 코터(1)로 전극판(3) 상에 전극 슬러리 코팅층(유지부)과 비코팅층(무지부)이 형성되면, 전극판은 절연액 코팅을 위하여 절연 코터(10)로 이동한다. 혹은 전극판이 정지하고 전극 슬러리 코터(1) 및 절연 코터(10)가 이동하여 코팅하는 것도 가능하다.
절연 코터(10)의 토출구로부터 절연액(10a)이 토출되어 전극판(3)의 유지부와 무지부의 경계를 중심으로 일정 영역에 절연액이 코팅된 후, 전극판은 절연코팅 폭 측정수단(20)으로 이동한다. 상기 절연코팅 폭 측정수단(20)에서 도 2에 나타난 바와 같이, 전체 절연코팅 폭이 촬영된다. 상기 절연코팅 폭 측정수단(20)은 오버레이 폭(B) 및 무지부 코팅 폭(A)을 시각적으로 감지할 수 있는 CCD 카메라와 같은 비전 카메라를 채용할 수 있다. 상기 비전 카메라는 유지부(1a) 및 무지부(2)의 색상, 명암 및 채도 등의 시각적 특징을 감지하여 오버레이 폭(B) 및 무지부 코팅 폭(A)을 나타낼 수 있다.
상기 비전 카메라는 예컨대 도 2의 전체 절연코팅부를 촬영하고 이를 변환하여 시각적데이터로 재현할 수 있다. 이를 위하여, 상기 비전 카메라는 데이터 변환 및 연산을 위한 소정의 프로그램 저장부, 상기 프로그램에 기초하여 실제 촬영 화면을 시각적데이터로 변환하고 시각적데이터로 나타내어진 오버레이 폭(B) 및 무지부 코팅 폭(A)을 연산하여 수치로 나타내는 연산부 및 상기 시각적데이터와 폭의 수치를 화면에 나타내는 디스플레이부를 구비할 수 있다. 상기 비전 카메라는 이러한 시각적데이터를 제어부(40)로 전송한다. 실시예에 따라서는, 상기 비전 카메라는 순수하게 전체 절연코팅부의 사진만을 촬영하는 카메라부와 상기 사진에 관한 디지털 데이터를 제어부(40)로 송신하는 송신부만을 구비할 수 있고, 상기 프로그램 저장부, 연산부 및 디스플레이부는 제어부(40)에 설치될 수도 있다.
상기 제어부(40)는, 미리 정해진 오버레이 폭 설정범위 또는 오버레이 폭 기준값 및 미리 정해진 무지부 코팅 폭 설정범위 또는 무지부 코팅 폭 기준값에 관한 데이터베이스가 저장된 저장부와, 이 데이터베이스로부터 추출된 값들을 측정된 오버레이 폭 등과 비교 연산하기 위한 대조 연산부 및 연산 결과에 따라 절연코터 이동수단을 일정 양만큼 이동시키도록 판정하는 판정부를 구비하고 있다. 상기 제어부(40)는 상기 절연코팅 폭 측정수단(20)인 비전 카메라 및 후술하는 절연 코터(10)의 이동기구(30)를 제어하기 위한 송수신부도 포함하고 있다. 상기 대조연산부의 연산 결과에 따라, 제어부(40)는 오버레이 폭을 조절하기 위하여 상기 절연 코터의 이동기구(30)에 소정 거리만큼 절연 코터(10)를 이동시키도록 하는 명령을 내릴 수 있다.
도 5는 본 발명의 절연 코터 이동수단(30)을 나타내는 사시도이다. 도 4 및 도 5를 참조하여, 본 발명의 절연 코터 이동수단(30)을 상세히 설명한다.
도 5의 절연 코터 이동수단(30)은 절연 코터(10)의 수평 및 상하이동이 모두 가능한 X축 이송기구(31) 및 Z축 이송기구(32)를 모두 구비한 형태이다. 수평이동기구인 X축 이송기구(31)는 지지대에 설치된 수평 LM가이드축(31A)과 상기 수평 LM가이드축(31A)을 따라 슬라이딩하는 수평 LM가이드 블록(31B)으로 구성된다. 상하이동기구인 Z축 이송기구(32)는 X축 이송기구(31)의 수평 LM가이드 블록(31B)에 설치된 상하 LM가이드축(32A)과 상기 상하 LM가이드축(32A)을 따라 슬라이딩하는 상하 LM가이드 블록(32B)으로 구성된다. 상기 상하 LM가이드 블록(32B)에는 절연 코터(10) 상부에 설치된 브라켓(11)이 결합되는 결합판(12)이 부착된다. 상기 결합판(12)에는 볼트 등의 결합부재에 의하여 브라켓(11)과 결합되도록 결합공(12a)이 형성되어 있다.
도 4에는 상기 X축 이송기구(31) 및 Z축 이송기구(32)가 지지대(33)를 따라 한 쌍씩 설치되어 있지만, 도 5에서는 도시의 편의를 위하여 각 이송기구의 쌍 중 한쪽의 X축 이송기구(31) 및 Z축 이송기구(32)만을 나타내었다.
본 실시예에서, 상기와 같은 2축 이송기구를 일례를 들어 설명하였지만, X축 및 Z축방향 각각으로 왕복 병진 운동이 가능한 다른 구성도 얼마든지 채용 가능하다. 또한, 이러한 운동을 수행하는 경우 리니어모터와 같은 구동부와 상기 구동부의 움직임을 제어하는 제어부는 당연히 포함된다는 것을 통상의 기술자라면 당연히 알 수 있을 것이다. 도 4에서 상기 제어부(40)는 절연 코터 이동기구(30)의 구동부를 제어하여 상기와 같이 오버레이 폭(B)을 조절할 수 있다.
또한, LM가이드 방식 대신, 수치제어되는 궤도와 서모 모터를 이용하고, 이에 연동하는 벨트, 베어링, 볼너트, 볼스크류 기타 다양한 공지의 기계적구조를 채용하여 2축 이송기구를 구현할 수 있으며, 이는 공지된 기계적 결합방식이므로, 더 이상의 구체적인 설명은 생략한다.
도 4에 도시된, 절연 코터(10), 절연코팅 폭 측정수단(20), 절연 코터 이동수단(30) 및 제어부(40)가 본 발명의 절연코팅 오버레이 제어시스템(100)을 구성한다.
상기 오버레이 제어시스템(100)을 이용하여, 오버레이 폭(B)을 제어하는 제어방법에 관해서는 도 6을 참조하여 구체적으로 설명한다. 도 6은 본 발명의 제1 실시형태에 의한 오버레이 폭 제어 순서를 나타내는 플로우차트이다.
먼저, S10 단계에서 전극 슬러리 코터(1)로부터 전극 슬러리(1a)가 토출되어 전극판(3) 상에 전극 슬러리가 도포되어 유지부(1a)가 형성된다. 유지부가 형성되지 않은 부분은 전극판이 노출된 무지부(2)가 된다.
다음 S20단계에서, 전극판(3)가 절연 코터(10)로 이동하면 절연 코터로부터 소정의 절연물질(10a)이 토출되어 유지부(1a)의 일정 영역과 무지부(2)의 일정 영역에 절연물질이 코팅된다.
S30단계에서, 전극판(3)에 코팅된 절연물질의 오버레이 폭(B)이 상기 절연코팅 폭 측정수단인 비전 카메라(20)에 의해 측정되고, 그 폭에 관한 수치데이터가 제어부(40)로 전송된다.
S40단계에서, 제어부(40)는 측정된 오버레이 폭(B)을 제어부(40)의 데이터베이스로부터 추출된 미리 정해진 오버레이 폭 설정범위 또는 오버레이 폭 기준값과 비교하고,
S50단계에서, 측정된 오버레이 폭(B)이 설정범위 내 또는 기준값에 일치하는 경우, S60단계에서 종료된다. 즉 이 경우는 제어부(40)는 절연 코터(10)가 이동하도록 구동 명령을 내리지 않는다.
S50단계에서, 측정된 오버레이 폭(B)이 설정범위 외 또는 기준값과 일치하지 않는 경우, S70단계에서 제어부(40)는 상기 절연 코터 이동기구(30)에 의하여 절연 코터(10)를 유지부(1a) 또는 무지부(2) 쪽으로 소정 거리만큼 수평 이동시켜 오버레이 폭을 조절한다.
이후, 본 발명의 절연코팅 오버레이 제어시스템(100)은, 상기 조절된 오버레이 폭이 설정범위에 속하거나 기준값에 일치하는지를 판단하는 피드백 제어를 행할 수 있다. 즉, 절연 코터(10) 이동에 의하여 조절된 오버레이 폭은 상기 S30 단계에서 절연코팅 폭 측정수단(20)에 의하여 다시 측정되고, 다시 측정된 오버레이 폭은 S40 단계 및 S50 단계에서 설정범위 또는 기준값과 비교되어 오버레이 폭의 재조절 여부가 판정되어 S60단계 또는 S70단계로 진행하게 된다. 이러한 피드백 제어는 전극 라인을 따라 일정 간격 혹은 일정 시간간격마다 반복적으로 행해질 수 있다. 이에 의하여 본 발명은 예컨대 전극의 길이방향 또는 폭방향을 따라 0.4~0.8mm, 보다 바람직하게는 0.6~0.8mm의 균일한 오버레이 폭을 가진 전극판을 제조할 수 있다. 즉, 본 발명에 의하여, 전극판 상에 전극 슬러리가 도포되는 유지부; 상기 전극판 상에 전극 슬러리가 도포되지 않는 무지부; 및 상기 유지부 일부 영역과 무지부 일부 영역을 덮도록 절연물질이 코팅된 절연물질 코팅부;를 포함하고, 상기 절연물질이 상기 유지부의 일부 영역에 코팅된 오버레이 영역의 폭인 오버레이 폭이 전극판의 길이방향 또는 폭방향을 따라 0.4~0.8mm의 범위로 균일하게 형성된 이차전지용 전극판을 제조할 수 있다.
(제2 실시 형태)
도 7은 본 발명의 제2 실시형태에 의한 오버레이 폭 제어 및 무지부 코팅 폭 제어의 개념을 설명하는 개략도이고, 도 8은 본 발명의 제2 실시형태에 의한 오버레이 폭 및 무지부 코팅 폭 제어 순서를 나타내는 플로우차트이다.
본 실시형태는 오버레이 폭(B)의 제어 후에 다시 무지부 코팅 폭(A)을 연계하여 제어하는 형태이다. 또한, 무지부 코팅 폭(A)의 제어에 따라 오버레이 폭(B)과 무지부 코팅 폭(A)이 변동되는 경우 그 폭들이 설정범위 내 혹은 설정기준값과 일치하도록 피드백 제어하는 것을 포함하고 있다.
도 7에 나타난 바와 같이, 오버레이 폭(B)을 조절하기 위하여 절연 코터(10)를 유지부(1a) 또는 무지부(2) 쪽으로 이동하는 경우, A의 무지부 코팅 폭은 미리 정해진 무지부 코팅 폭 설정범위 혹은 무지부 코팅 폭 기준값과 일치하여야 한다. 즉, 오버레이 폭(B)이 그 설정범위 또는 기준값에 부합하면, 무지부 코팅 폭(A)도 그 설정범위 또는 기준값에 부합하여야 하는 것이 원칙이다.
그러나, 상술한 바와 같이, 롤투롤 공정에서 전극판(3)의 높이가 가변되는 등 어떤 원인에 의해서, 오버레이 폭(B)이 그 설정범위 또는 기준값에 부합하는 경우에도 무지부 코팅 폭(A)이 미리 정해진 무지부 코팅 폭 설정범위 혹은 무지부 코팅 폭 기준값에 부합하지 않게 되는 경우가 발생할 수 있다.
제2 실시형태는 이러한 경우에 무지부 코팅 폭(A)을 추가적으로 제어하고 있다.
본 발명에서 특이한 점은 무지부 코팅 폭(A)은 절연 코터 이동수단(30)을 상하로 이동 제어함으로써 달성한다는 것이다. 왜냐하면, 오버레이 폭(B)이 절연 코터 이동수단(30)을 수평으로 이동 제어함으로서 조절되었는데 다시 이를 수평으로 조절한다면 수정되었던 오버레이 폭(B)이 다시 변동되기 때문이다.
절연 코터 이동수단(30)을 상하로 승하강하도록 하면 절연 코터(10)가 상하로 상승 및 하강한다. 이에 관한 이송 메커니즘은 도 4 및 도 5와 관련하여 이미 서술한 바 있다.
절연 코터(10)가 하강하면 전체 절연코팅 폭은 증가하고, 상승하면 전체 절연코팅 폭은 감소한다. 이에 따라, 오버레이 폭(B) 및 무지부 코팅 폭(A)도 증감된다. 다만, 절연 코터(10)의 하강시에는 유지부(1a)와 절연 코터(10)가 접촉할 수 있으므로, 하강 범위에 제한이 있다. 또한, 절연 코터(10)의 승하강 제어는 이미 조절된 오버레이 폭도 변동시킬 수 있으므로, 어디까지나 제한된 승하강 범위 내에서 하는 것이 바람직하다. 이런 의미에서 무지부 코팅 폭(A)을 조절하기 위한 절연 코터(10)의 승하강 제어는 오버레이 폭(B)을 조절하기 위한 절연 코터(10)의 수평 제어의 종속 변수적인 성격을 가진다. 즉, 절연 코터(10)의 상하 이동 제어로 오버레이 폭이 현저히 변동된다면, 상하이동 제어의 기술적의미가 저감되므로, 상하이동 범위는 가능한 한 오버레이 폭(B)의 설정범위/기준값에 부합하는 한도에서 보조적으로 또한 미소 범위 내에서 제한적으로 행할 필요가 있다.
도 8을 참조하여 오버레이 폭(B)과 무지부 코팅 폭(A)을 연계 조절하는 방법에 관하여 설명한다.
먼저, S10 단계로부터 S50단계까지의 오버레이 폭 제어를 위하여 오버레이 폭(B)을 측정하고 측정된 값을 미리 정해진 오버레이 폭 설정범위 또는 기준값과 비교하는 단계는 동일하다.
여기서, S5O단계에서 측정된 오버레이 폭(B)이 설정범위 또는 기준값에 부합하는 경우, S80단계에서 측정된 무지부 코팅 폭(A)과 미리 정해진 무지부 설정 코팅 폭 또는 무지부 코팅 폭 기준값과 비교한다. S90단계에서 측정된 무지부 코팅 폭(A)이 미리 정해진 무지부 설정 코팅 폭 또는 무지부 코팅 폭 기준값에 부합하는 것으로 판정되면 S100단계에서 제어가 종료된다.
S5O단계에서 측정된 오버레이 폭(B)이 설정범위 또는 기준값에 부합하지 않는 경우, S70단계로 진행되어 절연 코터(10)의 수평 이동에 의하여 오버레이 폭을 조절하고 다시 오버레이 폭을 측정하는 S30단계로 되돌아가는 과정을 거친다.
최초의 S50단계에서 혹은 오버레이 폭을 조절하고 난 후의 S50단계에서 오버레이 폭이 설정범위 또는 기준값에 부합하면, S80단계에서 측정된 무지부 코팅 폭(A)과 미리 정해진 무지부 설정 코팅 폭 또는 무지부 코팅 폭 기준값과 비교한다.
S90단계에서 측정된 무지부 코팅 폭(A)이 미리 정해진 무지부 설정 코팅 폭 또는 무지부 코팅 폭 기준값에 부합하지 않는 것으로 판정되면 S110단계에서 절연 코터 이동수단(30)(상하이동수단)이 절연 코터(10)를 상하로 상승 또는 하강하도록 제어하여 무지부 코팅 폭을 조절한다.
이후, 다시 S30단계로 돌아가서, 조절된 오버레이 폭 및 무지부 코팅 폭을 다시 측정하고, 오버레이 폭의 수평이동제어와 무지부 코팅 폭의 상하이동제어 과정이 반복된다. 상기 반복과정을 통하여 오버레이 폭과 무지부 코팅 폭이 설정범위 또는 기준값에 모두 부합하면 제어는 종료되며, 어느 하나의 폭이 부합하지 않는다면 그 폭에 설정범위 또는 기준값에 부합할 때까지 피드백 제어가 반복될 수 있다.
이상, 도면과 실시예 등을 통해 본 발명을 보다 상세히 설명하였다. 그러나, 본 명세서에 기재된 도면 또는 실시예 등에 기재된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
(부호의 설명)
1: 전극 슬러리 코터
1a: 전극 슬러리(유지부)
1c: 유지부 단부
2: 무지부
3: 전극판
10: 절연 코터
10a: 절연물질
11: 브라켓
12: 결합판
20: 절연코팅 폭 측정수단
30: 절연 코터 이동기구
31: X축 이송기구
31A: 수평 LM가이드축
31B: 수평 LM 가이드블록
32: Z축 이송기구
32A: 상하 LM가이드축
32B: 상하 LM 가이드블록
33: 지지대
40: 제어부
100: 절연코팅 오버레이 제어시스템
A: 무지부 코팅 폭
B: 오버레이 폭

Claims (20)

  1. 전극판의 전극 슬러리가 도포된 유지부와 도포되지 않은 무지부의 경계부를 따라 절연물질이 상기 유지부 일부 영역과 무지부 일부 영역을 덮도록 상기 절연물질을 코팅하는 절연 코터;
    상기 절연물질이 유지부에 코팅된 오버레이 영역의 폭인 오버레이 폭 및 절연물질이 무지부에 코팅된 영역의 폭인 무지부 코팅 폭을 측정하는 절연코팅 폭 측정수단;
    상기 절연 코터를 이동시키는 절연 코터 이동수단; 및
    상기 측정된 오버레이 폭과 미리 정해진 오버레이 폭 설정범위 또는 오버레이 폭 기준값을 비교하여 오버레이 폭을 조절하기 위하여 상기 절연 코터 이동수단을 제어하는 제어부를 포함하는 절연코팅 오버레이 제어시스템.
  2. 제1항에 있어서,
    상기 측정된 오버레이 폭이, 오버레이 폭 설정범위 미만이면 상기 절연 코터를 유지부 쪽으로 이동시키고 오버레이 폭 설정범위 초과이면 상기 절연 코터를 무지부 쪽으로 이동시키도록 상기 절연 코터 이동수단을 제어하는 절연코팅 오버레이 제어시스템.
  3. 제1항에 있어서,
    상기 측정된 오버레이 폭이, 기준값보다 작으면 상기 절연 코터를 유지부 쪽으로 이동시키고 기준값보다 크면 상기 절연 코터를 무지부 쪽으로 이동시키도록 상기 절연 코터 이동수단을 제어하는 절연코팅 오버레이 제어시스템.
  4. 제1항에 있어서,
    상기 기준값은 미리 정해진 오버레이 폭의 1/2인 중간값이고, 측정된 오버레이 폭의 중간값과 상기 미리 정해진 오버레이 폭의 중간값을 비교하여 상기 절연 코터 이동수단을 제어하는 절연코팅 오버레이 제어시스템.
  5. 제1항에 있어서,
    상기 절연코팅 폭 측정수단은, 오버레이 폭 및 무지부 코팅 폭을 시각적으로 감지하는 비전 카메라인 절연코팅 오버레이 제어시스템.
  6. 제5항에 있어서,
    상기 비전 카메라는, 유지부 및 무지부의 색상, 명암 및 채도 중 하나 이상을 감지하여 오버레이 폭 및 무지부 코팅 폭을 측정하는 절연코팅 오버레이 제어시스템.
  7. 제1항에 있어서,
    상기 절연 코터 이동수단은 절연 코터의 수평 및 상하이동이 모두 가능한 절연코팅 오버레이 제어시스템.
  8. 제1항에 있어서,
    상기 제어부는 상기 절연 코터 이동수단을 수평으로 이동 제어하여 오버레이 폭을 조절하고,
    상기 조절된 오버레이 폭을 상기 절연코팅 폭 측정수단이 다시 측정하며,
    다시 측정된 오버레이 폭과 미리 정해진 오버레이 폭 설정범위 또는 기준값을 비교하여 오버레이 폭의 재조절 여부를 결정하는 절연코팅 오버레이 제어시스템.
  9. 제1항에 있어서,
    상기 측정된 오버레이 폭이 미리 정해진 오버레이 폭 설정범위 내 또는 기준값과 일치하는 경우, 상기 측정된 무지부 코팅 폭과 미리 정해진 무지부 설정 코팅 폭 또는 무지부 코팅 폭 기준값을 비교하여 무지부 코팅 폭을 조절하기 위하여 상기 절연 코터 이동수단을 제어하는 절연코팅 오버레이 제어시스템.
  10. 제9항에 있어서,
    상기 제어부는 상기 절연 코터 이동수단을 상하로 이동 제어하여 무지부 코팅 폭을 조절하고,
    상기 절연 코터 이동수단의 상하 이동에 따라 조절된 무지부 코팅 폭 및 오버레이 코팅 폭을 상기 절연코팅 폭 측정수단이 다시 측정하며,
    다시 측정된 오버레이 폭 및 무지부 코팅 폭을, 미리 정해진 오버레이 폭 설정범위 또는 기준값 혹은 미리 정해진 무지부 설정 코팅 폭 또는 무지부 코팅 폭 기준값과 각각 비교하여 오버레이 폭 및 무지부 코팅 폭의 재조절 여부를 결정하는 절연코팅 오버레이 제어시스템.
  11. 제8항에 있어서,
    상기 다시 측정된 오버레이 폭이 미리 정해진 오버레이 폭 설정범위 내 또는 기준값과 일치하는 경우, 상기 측정된 무지부 코팅 폭과 미리 정해진 무지부 설정 코팅 폭 또는 무지부 코팅 폭 기준값을 비교하여 무지부 코팅 폭을 조절하기 위하여 상기 절연 코터 이동수단을 제어하는 절연코팅 오버레이 제어시스템.
  12. 제11항에 있어서,
    상기 제어부는 상기 절연 코터 이동수단을 상하로 이동 제어하여 무지부 코팅 폭을 조절하고,
    상기 절연 코터 이동수단의 상하 이동에 따라 조절된 무지부 코팅 폭 및 오버레이 코팅 폭을 상기 절연코팅 폭 측정수단이 다시 측정하며,
    다시 측정된 오버레이 폭 및 무지부 코팅 폭을, 미리 정해진 오버레이 폭 설정범위 또는 기준값 혹은 미리 정해진 무지부 설정 코팅 폭 또는 무지부 코팅 폭 기준값과 각각 비교하여 오버레이 폭 및 무지부 코팅 폭의 재조절 여부를 결정하는 절연코팅 오버레이 제어시스템.
  13. 이차전지용 전극판으로서,
    전극판 상에 전극 슬러리가 도포되는 유지부;
    상기 전극판 상에 전극 슬러리가 도포되지 않는 무지부; 및
    상기 유지부 일부 영역과 무지부 일부 영역을 덮도록 절연물질이 코팅된 절연물질 코팅부;를 포함하고,
    상기 절연물질이 상기 유지부의 일부 영역에 코팅된 오버레이 영역의 폭인 오버레이 폭이 전극판을 따라 0.4~0.8mm의 범위로 균일하게 형성된 이차전지용 전극판.
  14. 전극판의 전극 슬러리가 도포된 유지부와 도포되지 않은 무지부의 경계부를 따라 절연물질이 상기 유지부 일부 영역과 무지부 일부 영역을 덮도록 상기 절연물질을 코팅하는 단계;
    절연물질 코팅 후 절연물질이 유지부에 코팅된 오버레이 영역의 폭인 오버레이 폭 및 절연물질이 무지부에 코팅된 영역의 폭인 무지부 코팅 폭을 측정하는 절연코팅 폭 측정 단계;
    상기 측정된 오버레이 폭과 미리 정해진 오버레이 폭 설정범위 또는 오버레이 폭 기준값을 비교하는 단계; 및
    상기 측정된 오버레이 폭이 오버레이 폭 설정범위를 벗어나거나 또는 오버레이 폭 기준값과 일치하지 않는 경우, 상기 절연물질을 코팅하는 절연 코터를 상기 유지부 또는 무지부 쪽으로 수평 이동시켜 오버레이 폭을 조절하는 단계를 포함하는 절연코팅 오버레이 제어방법.
  15. 제14항에 있어서,
    상기 기준값으로서 미리 정해진 오버레이 폭의 1/2인 중간값을 선택하고, 측정된 오버레이 폭의 중간값과 상기 미리 정해진 오버레이 폭의 중간값을 비교하여 상기 절연 코터를 수평 이동시키는 절연코팅 오버레이 제어방법.
  16. 제14항에 있어서,
    상기 조절된 오버레이 폭을 다시 측정하는 단계; 및,
    다시 측정된 오버레이 폭과 미리 정해진 오버레이 폭 설정범위 또는 기준값을 비교하여 오버레이 폭의 재조절 여부를 결정하는 단계를 더 포함하는 절연코팅 오버레이 제어방법.
  17. 제14항에 있어서,
    상기 측정된 오버레이 폭이 미리 정해진 오버레이 폭 설정범위 내 또는 기준값과 일치하는 경우, 상기 측정된 무지부 코팅 폭과 미리 정해진 무지부 설정 코팅 폭 또는 무지부 코팅 폭 기준값을 비교하여 무지부 코팅 폭을 조절하기 위하여 상기 절연 코터를 상하 이동하는 단계를 더 포함하는 절연코팅 오버레이 제어방법.
  18. 제17항에 있어서,
    상기 절연 코터의 상하 이동에 따라 조절된 무지부 코팅 폭 및 오버레이 코팅 폭을 다시 측정하며,
    다시 측정된 오버레이 폭 및 무지부 코팅 폭을, 미리 정해진 오버레이 폭 설정범위 또는 기준값 혹은 미리 정해진 무지부 설정 코팅 폭 또는 무지부 코팅 폭 기준값과 각각 비교하여 오버레이 폭 및 무지부 코팅 폭의 재조절 여부를 결정하는 절연코팅 오버레이 제어방법.
  19. 제16항에 있어서,
    상기 다시 측정된 오버레이 폭이 미리 정해진 오버레이 폭 설정범위 내 또는 기준값과 일치하는 경우, 상기 측정된 무지부 코팅 폭과 미리 정해진 무지부 설정 코팅 폭 또는 무지부 코팅 폭 기준값을 비교하여 무지부 코팅 폭을 조절하기 위하여 상기 절연 코터를 상하로 이동시키는 절연코팅 오버레이 제어방법.
  20. 제19항에 있어서,
    상기 절연 코터의 상하 이동에 따라 조절된 무지부 코팅 폭 및 오버레이 코팅 폭을 다시 측정하며,
    다시 측정된 오버레이 폭 및 무지부 코팅 폭을, 미리 정해진 오버레이 폭 설정범위 또는 기준값 혹은 미리 정해진 무지부 설정 코팅 폭 또는 무지부 코팅 폭 기준값과 각각 비교하여 오버레이 폭 및 무지부 코팅 폭의 재조절 여부를 결정하는 절연코팅 오버레이 제어방법.
PCT/KR2021/017631 2020-12-03 2021-11-26 절연코팅 오버레이 제어시스템 및 절연코팅 오버레이 제어방법 WO2022119246A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21900934.7A EP4106075A4 (en) 2020-12-03 2021-11-26 SYSTEM FOR CONTROLLING THE OVERLAY OF AN INSULATING COATING AND METHOD FOR CONTROLLING THE OVERLAY OF AN INSULATING COATING
CN202180025146.XA CN115413381A (zh) 2020-12-03 2021-11-26 绝缘涂布覆盖控制系统和绝缘涂布覆盖控制方法
US17/914,964 US20230170458A1 (en) 2020-12-03 2021-11-26 Insulating Coating Overlay Control System and Insulating Coating Overlay Control Method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200167558 2020-12-03
KR10-2020-0167558 2020-12-03
KR10-2021-0153267 2021-11-09
KR1020210153267A KR20220078477A (ko) 2020-12-03 2021-11-09 절연코팅 오버레이 제어시스템 및 절연코팅 오버레이 제어방법

Publications (1)

Publication Number Publication Date
WO2022119246A1 true WO2022119246A1 (ko) 2022-06-09

Family

ID=81854174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017631 WO2022119246A1 (ko) 2020-12-03 2021-11-26 절연코팅 오버레이 제어시스템 및 절연코팅 오버레이 제어방법

Country Status (4)

Country Link
US (1) US20230170458A1 (ko)
EP (1) EP4106075A4 (ko)
CN (1) CN115413381A (ko)
WO (1) WO2022119246A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019199A (ja) * 2004-07-05 2006-01-19 Sanyo Electric Co Ltd 二次電池用電極板、その製造方法及び前記電極板を用いた二次電池
KR20160091732A (ko) * 2015-01-26 2016-08-03 주식회사 엘지화학 절연 코팅부를 포함하는 양극의 제조 방법 및 이를 사용하여 제조되는 양극
KR101719694B1 (ko) 2016-01-18 2017-03-24 (주)피엔티 전극 활물질층의 엣지 코팅 장치 및 이를 이용한 이차전지용 전극 제조 방법
JP2018004336A (ja) * 2016-06-29 2018-01-11 日本電気株式会社 検査装置、検査方法および検査プログラム
JP6596107B2 (ja) * 2016-01-27 2019-10-23 日立オートモティブシステムズ株式会社 二次電池及びその製造方法
KR20200016285A (ko) * 2017-08-24 2020-02-14 비클 에너지 재팬 가부시끼가이샤 이차 전지
KR20210153267A (ko) 2020-06-10 2021-12-17 한국전력공사 주상변압기용 고정장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5316904B2 (ja) * 2009-01-15 2013-10-16 トヨタ自動車株式会社 塗工膜の幅の検査方法および該検査方法に用いる検査装置
US9016235B2 (en) * 2009-03-19 2015-04-28 Tazmo Co., Ltd Substrate coating device that controls coating amount based on optical measurement of bead shape
US8944001B2 (en) * 2013-02-18 2015-02-03 Nordson Corporation Automated position locator for a height sensor in a dispensing system
JP5830180B2 (ja) * 2013-04-26 2015-12-09 横河電機株式会社 制御システム及び制御方法
FR3048368A1 (fr) * 2016-03-04 2017-09-08 Exel Ind Applicateur de produit de revetement, robot multiaxes comprenant un tel applicateur et procede d'application d'un produit de revetement
JP7342727B2 (ja) * 2020-02-06 2023-09-12 トヨタ車体株式会社 塗装装置、塗装方法及びプログラム
KR102707228B1 (ko) * 2020-10-30 2024-09-20 주식회사 엘지에너지솔루션 절연액 코팅 다이 및 절연액 코팅방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019199A (ja) * 2004-07-05 2006-01-19 Sanyo Electric Co Ltd 二次電池用電極板、その製造方法及び前記電極板を用いた二次電池
KR20160091732A (ko) * 2015-01-26 2016-08-03 주식회사 엘지화학 절연 코팅부를 포함하는 양극의 제조 방법 및 이를 사용하여 제조되는 양극
KR101719694B1 (ko) 2016-01-18 2017-03-24 (주)피엔티 전극 활물질층의 엣지 코팅 장치 및 이를 이용한 이차전지용 전극 제조 방법
JP6596107B2 (ja) * 2016-01-27 2019-10-23 日立オートモティブシステムズ株式会社 二次電池及びその製造方法
JP2018004336A (ja) * 2016-06-29 2018-01-11 日本電気株式会社 検査装置、検査方法および検査プログラム
KR20200016285A (ko) * 2017-08-24 2020-02-14 비클 에너지 재팬 가부시끼가이샤 이차 전지
KR20210153267A (ko) 2020-06-10 2021-12-17 한국전력공사 주상변압기용 고정장치

Also Published As

Publication number Publication date
EP4106075A1 (en) 2022-12-21
EP4106075A4 (en) 2024-10-23
US20230170458A1 (en) 2023-06-01
CN115413381A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2016159724A1 (ko) 리튬 이차전지용 융착형 복합 분리막 및 이의 제조방법
WO2013028046A2 (ko) 미소 캡슐을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
WO2013089313A1 (ko) 리튬 이차전지용 고내열성 복합체 세퍼레이터 및 이를 포함하는 리튬 이차전지
WO2015093852A1 (ko) 전기화학소자용 분리막
WO2012021044A2 (en) Pore protected multi layered composite separator and the method for manufacturing the same
WO2012060604A2 (ko) 내열성 분리막, 전극 조립체 및 이를 이용한 이차 전지와 그 제조방법
WO2014104677A1 (en) Micro-porous hybrid film having electro-chemical stability and method for preparing the same
WO2015065122A1 (ko) 전기화학소자용 분리막의 제조방법 및 그로부터 제조된 전기화학소자용 분리막
WO2016053063A1 (ko) 고무계 바인더를 포함하는 양극 활물질 슬러리 및 이로부터 제조된 양극
WO2020076099A1 (ko) 복합 전해질막 및 상기 복합 전해질막을 포함하는 전고체 전지
WO2016140508A1 (ko) 전기화학 소자용 분리막의 제조방법 및 제조장치
WO2014119941A1 (ko) 분리막의 제조 방법과 그 분리막, 및 이를 이용한 전지
WO2021029629A1 (ko) 개선된 전극접착력 및 저항 특성을 갖는 리튬이차전지용 분리막 및 상기 분리막을 포함하는 리튬이차전지
WO2020251230A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2019117605A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2022075637A1 (ko) 전극조립체의 적층 불량 검출 방법, 절연 부재를 포함하는 전극조립체 및 이를 포함하는 전지 셀
WO2014112776A1 (ko) 폴리머 전해질, 이를 이용한 리튬 이차 전지 및 그의 제조방법
WO2021045580A1 (ko) 음극 전극의 전소듐화 방법, 전소듐화 음극, 및 이를 포함하는 리튬 이차전지
WO2022119246A1 (ko) 절연코팅 오버레이 제어시스템 및 절연코팅 오버레이 제어방법
WO2020091400A1 (ko) 무기물 코팅층이 형성된 가교 폴리올레핀 분리막 및 이를 포함한 고출력 이차 전지
WO2021045581A1 (ko) 음극 전극의 전리튬-전소듐화 방법, 전리튬-전소듐화 음극, 및 이를 포함하는 리튬 이차전지
WO2019146927A1 (ko) 이차 전지용 절연판 및 그의 제조 방법
WO2022203265A1 (ko) 습윤 상태의 전극 시편에 대한 접착력 측정 시스템 및 이를 이용한 습윤 상태의 전극 시편에 대한 접착력 측정 방법
KR20220078477A (ko) 절연코팅 오버레이 제어시스템 및 절연코팅 오버레이 제어방법
WO2018048148A1 (ko) 두께의 차이를 갖는 전극탭의 제조방법 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021900934

Country of ref document: EP

Effective date: 20220914

NENP Non-entry into the national phase

Ref country code: DE