WO2022119046A1 - 유도 가열 방식의 쿡탑 및 그의 동작 방법 - Google Patents

유도 가열 방식의 쿡탑 및 그의 동작 방법 Download PDF

Info

Publication number
WO2022119046A1
WO2022119046A1 PCT/KR2021/000391 KR2021000391W WO2022119046A1 WO 2022119046 A1 WO2022119046 A1 WO 2022119046A1 KR 2021000391 W KR2021000391 W KR 2021000391W WO 2022119046 A1 WO2022119046 A1 WO 2022119046A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooktop
magnetic container
container
magnetic
working coil
Prior art date
Application number
PCT/KR2021/000391
Other languages
English (en)
French (fr)
Inventor
조주형
손승호
곽영환
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US18/265,068 priority Critical patent/US20240015857A1/en
Priority to EP21900734.1A priority patent/EP4258814A1/en
Priority to CN202180081747.2A priority patent/CN116648996A/zh
Publication of WO2022119046A1 publication Critical patent/WO2022119046A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • H05B6/1209Cooking devices induction cooking plates or the like and devices to be used in combination with them
    • H05B6/1245Cooking devices induction cooking plates or the like and devices to be used in combination with them with special coil arrangements
    • H05B6/1263Cooking devices induction cooking plates or the like and devices to be used in combination with them with special coil arrangements using coil cooling arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/04Sources of current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • H05B6/1209Cooking devices induction cooking plates or the like and devices to be used in combination with them
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/05Heating plates with pan detection means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present disclosure relates to an induction heating type cooktop and an operating method thereof.
  • a method of heating an object to be heated using electricity is largely divided into a resistance heating method and an induction heating method.
  • the electrical resistance method is a method of heating an object to be heated by transferring heat generated when an electric current flows through a metal resistance wire or a non-metal heating element such as silicon carbide to the object to be heated (eg, a cooking vessel) through radiation or conduction.
  • a metal resistance wire or a non-metal heating element such as silicon carbide
  • the induction heating method when high-frequency power of a predetermined size is applied to the coil, an eddy current is generated in the object to be heated using a magnetic field generated around the coil to heat the object to be heated. to be.
  • the present disclosure intends to use a thin film.
  • the cooktop according to the present disclosure may include a thin film to which an eddy current is applied so that the nonmagnetic material is heated.
  • the thin film may be formed to have a skin depth thicker than the thickness, and accordingly, the magnetic field generated by the working coil may pass through the thin film and heat the magnetic material by applying an eddy current to the magnetic material.
  • An object of the present disclosure is to provide an apparatus capable of detecting the presence or absence of a magnetic cooking container on an upper plate of an induction heating type cooktop including a thin film.
  • An object of the present disclosure is to provide an apparatus for automatically stopping an operation of an induction heating type cooktop including a thin film when a cooking container is not detected during a heating operation.
  • the cooktop of the induction heating method includes a case, a cover plate coupled to the upper end of the case, and a cover plate provided with an upper plate on which an object to be heated is disposed, a working coil provided in the case, and a working coil Inverter for applying a voltage to the inverter, provided on the lower surface of the upper plate, the thin film inductively heated by the working coil, and a magnetic container determining unit for determining whether a magnetic container is present on the upper surface of the upper plate based on the output power according to the operating frequency of the inverter can do.
  • the magnetic container determination unit determines that the magnetic container is present if the output power according to the operating frequency is greater than or equal to the reference output, and if the output power according to the operating frequency is less than the reference output, the magnetic container does not exist can be judged not to be.
  • FIG. 1 is a view for explaining an induction heating type cooktop according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view illustrating an induction heating type cooktop and an object to be heated according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating a circuit diagram of a cooktop according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating output characteristics of a cooktop according to an embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating output characteristics for each load of the cooktop according to an embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating output characteristics according to a temperature of a load of a cooktop according to an embodiment of the present disclosure.
  • FIG. 7 is a graph illustrating output characteristics according to the presence or absence of a magnetic cooking container and temperature of the cooktop according to an embodiment of the present disclosure.
  • FIG. 8 is a control block diagram of a cooktop of an induction heating method according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart illustrating a method of operating a cooktop according to an embodiment of the present disclosure.
  • FIG. 10 is a graph illustrating output characteristics according to the presence or absence of a magnetic cooking container and temperature of the cooktop according to an embodiment of the present disclosure.
  • 11 is a graph illustrating output characteristics according to the presence or absence of a magnetic cooking container and temperature of the cooktop according to an embodiment of the present disclosure.
  • 1 is a view for explaining an induction heating type cooktop according to an embodiment of the present disclosure.
  • 2 is a cross-sectional view illustrating an induction heating type cooktop and an object to be heated according to an embodiment of the present disclosure.
  • an induction heating type cooktop 1 may include a case 25 , a cover plate 20 , a working coil WC, and a thin film TL. .
  • a working coil WC may be installed in the case 25 .
  • various devices related to driving the working coil eg, a power supply providing AC power, a rectifying unit rectifying the AC power of the power supply into DC power, and rectifying by the rectifying unit
  • Inverter unit that converts the DC power to resonance current through a switching operation and provides it to the working coil
  • a control module that controls the operation of various devices in the induction heating type cooktop 1, a relay that turns on or turns off the working coil, or semiconductor switch, etc.
  • the cover plate 20 is coupled to the upper end of the case 25 , and an upper plate portion 15 on which an object to be heated (not shown) is disposed may be provided on the upper surface.
  • the cover plate 20 may include a top plate portion 15 for placing an object to be heated, such as a cooking vessel.
  • the upper plate part 15 may be made of, for example, a glass material (eg, ceramics glass).
  • the upper panel 15 may be provided with an input interface (not shown) that receives an input from a user and transmits the input to a control module (not shown) for an input interface.
  • the input interface may be provided at a location other than the upper panel 15 .
  • the input interface is a module for inputting a desired heating intensity or operating time of the cooktop 1 of the induction heating method, and may be variously implemented with a physical button or a touch panel.
  • the input interface may include, for example, a power button, a lock button, a power level adjustment button (+, -), a timer adjustment button (+, -), a charging mode button, and the like.
  • the input interface may transmit the input received from the user to the control module for the input interface (not shown), and the control module for the input interface may transmit the input to the aforementioned control module (ie, the control module for the inverter).
  • the aforementioned control module can control the operation of various devices (eg, a working coil) based on an input (ie, a user input) provided from the control module for the input interface, and specific details thereof will be omitted. do.
  • the heating intensity ie, thermal power
  • the shape of the crater may be indicated by an indicator (not shown) composed of a plurality of light emitting devices (eg, LEDs) provided in the case 25 .
  • the working coil WC may be installed inside the case 25 to heat the object to be heated.
  • the working coil WC may be controlled to be driven by the aforementioned control module (not shown), and when the object to be heated is disposed on the upper plate 15 , it may be driven by the control module.
  • the working coil WC can directly heat an object to be heated (ie, a magnetic body) that exhibits magnetism, and indirectly heats an object to be heated (ie, a non-magnetic body) that is not magnetic through a thin film TL, which will be described later. can do.
  • the working coil WC may heat an object to be heated by an induction heating method, and may be provided to overlap the thin film TL in a vertical direction (ie, a vertical direction or a vertical direction).
  • one working coil WC is illustrated as being installed in the case 25 in FIG. 1 , the present invention is not limited thereto. That is, one or more working coils may be installed in the case 25 , but for convenience of explanation, in the embodiment of the present disclosure, one working coil WC is installed in the case 25 as an example. do it with
  • the thin film TL may be provided on the upper plate portion 15 to heat a non-magnetic material among objects to be heated.
  • the thin film TL may be inductively heated by the working coil WC.
  • the object to be heated may be heated by thermal convection or heat conduction from the thin film TL.
  • the thin film TL may be provided on the upper surface or the lower surface of the upper plate part 15 .
  • the thin film TL may be provided to overlap the working coil WC in a vertical direction (ie, a vertical direction or a vertical direction). Accordingly, it is possible to heat the object to be heated regardless of the arrangement position and type of the object to be heated.
  • the thin film TL may have at least one of magnetic and non-magnetic properties (ie, magnetic, non-magnetic, or both magnetic and non-magnetic).
  • the thin film TL may be made of, for example, a conductive material (eg, silver (Ag)), and as shown in the figure, the upper plate part 15 has a shape in which a plurality of rings of different diameters are repeated. ), and the thin film TL may be made of a material other than a conductive material. In addition, the thin film TL may be formed in a shape other than a shape in which a plurality of rings having different diameters are repeated.
  • a conductive material eg, silver (Ag)
  • the thin film TL may be made of a material other than a conductive material.
  • the thin film TL may be formed in a shape other than a shape in which a plurality of rings having different diameters are repeated.
  • one thin film TL is illustrated in FIG. 1 , the present invention is not limited thereto. That is, when there are a plurality of craters, a plurality of thin films may be additionally provided, but for convenience of description, one thin film TL will be provided as an example.
  • the cooktop 1 of the induction heating method includes at least a portion of the heat insulating material 35 , the shielding plate 45 , the support member 50 , and the cooling fan 55 , or Can include all more.
  • the insulating material 35 may be provided between the upper plate part 15 and the working coil WC.
  • the insulator 35 may be mounted under the upper plate 15 , and a working coil WC may be disposed under it.
  • the insulating material 35 may block the transfer of heat generated while the thin film TL or the object to be heated HO is heated by the driving of the working coil WC from being transferred to the working coil WC.
  • the heat of the thin film TL or the object to be heated HO is transferred to the upper plate 15 and the upper plate
  • the heat of (15) is transferred to the working coil WC again, and the working coil WC may be damaged.
  • the insulating material 35 blocks the heat transferred to the working coil WC in this way, thereby preventing the working coil WC from being damaged by heat, and furthermore, the heating performance of the working coil WC is lowered. can be prevented
  • a spacer (not shown) may be installed between the working coil WC and the insulator 35 .
  • a spacer (not shown) may be inserted between the working coil WC and the insulator 35 so that the working coil WC and the insulator 35 do not directly contact each other. Accordingly, the spacer (not shown) is the heat generated while the thin film TL or the object to be heated HO is heated by the driving of the working coil WC is transferred to the working coil WC through the insulating material 35 . can block it
  • the spacer (not shown) can partially share the role of the heat insulating material 35 , the thickness of the heat insulating material 35 can be minimized, and through this, the spacer (not shown) can be positioned between the object to be heated HO and the working coil WC. spacing can be minimized.
  • a plurality of spacers may be provided, and the plurality of spacers may be disposed to be spaced apart from each other between the working coil WC and the heat insulating material 35 . Accordingly, the air sucked into the case 25 by the cooling fan 55 to be described later may be guided to the working coil WC by the spacer.
  • the spacer may improve the cooling efficiency of the working coil WC by guiding the air introduced into the case 25 by the cooling fan 55 to be properly transferred to the working coil WC.
  • the shielding plate 45 may be mounted on the lower surface of the working coil WC to block a magnetic field generated downward when the working coil WC is driven.
  • the shielding plate 45 may block a magnetic field generated downward when the working coil WC is driven, and may be supported upward by the support member 50 .
  • the support member 50 may be installed between the lower surface of the shielding plate 45 and the lower plate of the case 25 to support the shielding plate 45 upward.
  • the support member 50 may support the shielding plate 45 upwardly, thereby indirectly supporting the insulating material 35 and the working coil WC upwardly, and through this, the insulating material 35 is connected to the upper plate portion ( 15) can be adhered to.
  • the distance between the working coil WC and the object HO to be heated can be constantly maintained.
  • the support member 50 may include, for example, an elastic body (eg, a spring) for supporting the shielding plate 45 upward, but is not limited thereto.
  • the support member 50 since the support member 50 is not an essential component, it may be omitted from the induction heating type cooktop 1 .
  • the cooling fan 55 may be installed inside the case 25 to cool the working coil WC.
  • the cooling fan 55 may be controlled to be driven by the above-described control module, and may be installed on the sidewall of the case 25 .
  • the cooling fan 55 may be installed at a location other than the sidewall of the case 25 , but in the embodiment of the present disclosure, for convenience of explanation, the cooling fan 55 is installed on the sidewall of the case 25 . Installation will be described as an example.
  • the cooling fan 55 sucks air from the outside of the case 25 and delivers it to the working coil WC or sucks air (especially, heat) inside the case 25 to the case ( 25) It can be discharged outside.
  • the air outside the case 25 delivered to the working coil WC by the cooling fan 55 may be guided to the working coil WC by the spacer. Accordingly, direct and efficient cooling of the working coil WC is possible, thereby improving the durability of the working coil WC (ie, improving durability due to prevention of thermal damage).
  • the induction heating type cooktop 1 may have the above-described characteristics and configuration.
  • FIGS. 3 to 4 according to an embodiment of the present disclosure The circuit configuration and heating characteristics of the cooktop 1 will be described in detail.
  • FIG. 3 is a diagram illustrating a circuit diagram of a cooktop according to an embodiment of the present disclosure.
  • the induction heating type cooktop includes a power supply unit 110 , a rectifier unit 120 , a DC link capacitor 130 , an inverter 140 , a working coil WC, a resonance capacitor 160 , and an SMPS 170 ). may include at least some or all of.
  • the power supply unit 110 may receive external power. Power that the power supply unit 110 receives from the outside may be AC (Alternation Current) power.
  • AC Alternation Current
  • the power supply unit 110 may supply an AC voltage to the rectifier unit 120 .
  • the rectifier 120 (rectifier) is an electrical device for converting alternating current to direct current.
  • the rectifier 120 converts the AC voltage supplied through the power supply 110 into a DC voltage.
  • the rectifier 120 may supply the converted voltage to both ends of DC 121 .
  • An output terminal of the rectifying unit 120 may be connected to both DC ends 121 .
  • the DC both ends 121 output through the rectifier 120 may be referred to as a DC link.
  • a voltage measured at both ends of DC 121 is referred to as a DC link voltage.
  • the DC link capacitor 130 serves as a buffer between the power supply 110 and the inverter 140 . Specifically, the DC link capacitor 130 is used to maintain the DC link voltage converted through the rectifier 120 and supply it to the inverter 140 .
  • the inverter 140 serves to switch the voltage applied to the working coil WC so that a high-frequency current flows through the working coil WC.
  • the inverter 140 drives a switching element formed of an insulated gate bipolar transistor (IGBT) to allow a high-frequency current to flow in the working coil WC, thereby forming a high-frequency magnetic field in the working coil WC.
  • IGBT insulated gate bipolar transistor
  • the working coil WC current may or may not flow depending on whether the switching element is driven.
  • a current flows through the working coil (WC)
  • a magnetic field is generated.
  • the working coil WC may heat the cooking appliance by generating a magnetic field as current flows.
  • One side of the working coil WC is connected to the connection point of the switching element of the inverter 140 , and the other side is connected to the resonance capacitor 160 .
  • the switching element is driven by a driving unit (not shown) and is controlled at a switching time output from the driving unit to apply a high-frequency voltage to the working coil WC while the switching elements operate alternately.
  • the voltage supplied to the working coil WC changes from a low voltage to a high voltage because the on/off time of the switching element applied from the driving unit (not shown) is controlled in a way that is gradually compensated.
  • the resonant capacitor 160 may be a component to serve as a buffer.
  • the resonance capacitor 160 controls a saturation voltage increase rate during turn-off of the switching element, thereby affecting energy loss during turn-off time.
  • SMPS Switching Mode Power Supply
  • the SMPS 170 converts a DC input voltage into a square wave voltage, and then obtains a controlled DC output voltage through a filter.
  • the SMPS 170 may minimize unnecessary loss by controlling the flow of power by using a switching processor.
  • the resonance frequency is determined by the inductance value of the working coil WC and the capacitance value of the resonance capacitor 160 .
  • a resonance curve is formed based on the determined resonance frequency, and the resonance curve may represent the output power of the cooktop 1 according to a frequency band.
  • FIG. 4 is a diagram illustrating output characteristics of a cooktop according to an embodiment of the present disclosure.
  • the Q factor may be a value indicating sharpness of resonance in a resonance circuit. Accordingly, in the case of the cooktop 1 , the Q factor is determined by the inductance value of the working coil WC included in the cooktop 1 and the capacitance value of the resonance capacitor 160 . The resonance curve is different depending on the Q factor. Accordingly, the cooktop 1 has different output characteristics according to the inductance value of the working coil WC and the capacitance value of the resonance capacitor 160 .
  • a horizontal axis of the resonance curve may indicate a frequency, and a vertical axis may indicate output power.
  • the frequency at which the maximum power is output in the resonance curve is called the resonance frequency (f0).
  • the cooktop 1 uses the frequency of the right region based on the resonance frequency f0 of the resonance curve.
  • the cooktop 1 may have a preset minimum operating frequency and a maximum operating frequency.
  • the cooktop 1 may operate at a frequency corresponding to a range from the maximum operating frequency fmax to the minimum operating frequency fmin. That is, the operating frequency range of the cooktop 1 may be from the maximum operating frequency fmax to the minimum operating frequency fmin.
  • the maximum operating frequency fmax may be the IGBT maximum switching frequency.
  • the maximum IGBT switching frequency may mean a maximum frequency that can be driven in consideration of the withstand voltage and capacity of the IGBT switching element.
  • the maximum operating frequency fmax may be 75 kHz.
  • the minimum operating frequency fmin may be about 20 kHz. In this case, since the cooktop 1 does not operate at an audible frequency (about 16Hz to 20kHz), noise of the cooktop 1 can be reduced.
  • the set values of the above-described maximum operating frequency fmax and minimum operating frequency fmin are merely exemplary and are not limited thereto.
  • the cooktop 1 may determine an operating frequency according to the heating power level set in the heating command. Specifically, the cooktop 1 may adjust the output power by lowering the operating frequency as the set heating power level is higher and increasing the operating frequency as the set heating power level is lower. That is, upon receiving the heating command, the cooktop 1 may perform a heating mode operating in any one of the operating frequency ranges according to the set thermal power.
  • the automatic container detection function is a function of determining whether a cooking container is present on the upper panel 15 of the cooktop 1 and turning off the power when it is determined that there is no cooking container. This is a function to prevent damage to internal elements when heating is continued.
  • the cooktop 1 of the induction heating method including the thin film TL there is a problem in that it is difficult to distinguish whether a load is present on the upper plate of the cooktop 1 due to the existence of the thin film TL.
  • the cooktop 1 is a case in which a non-metal (eg, a glass container) cooking vessel is placed on the top plate to heat the thin film TL, and when nothing is placed on the top plate, the thin film TL should not be heated.
  • a non-metal eg, a glass container
  • the cooktop 1 of the induction heating method including the thin film TL may be heated without recognizing it even when the cooking container does not exist.
  • the thin film TL can be heated up to 500° C., there is a high possibility of a safety accident due to this.
  • the above-described automatic container detection function may include a method using the resonance current of the working coil WC and a method using output power according to the operating frequency described in FIG. 4 .
  • a method using output power according to an operating frequency as a method of determining whether a cooking container is present will be mainly described, but the present disclosure is not limited thereto.
  • FIG. 5 is a diagram illustrating output characteristics for each load of a cooktop according to an embodiment of the present disclosure.
  • 6 is a diagram illustrating output characteristics according to a temperature of a load of a cooktop according to an embodiment of the present disclosure.
  • FIG. 5 shows graphs 501, 503, 505, 507, and 509 showing output characteristics for each operating frequency for five types of cooking vessels having different materials
  • FIG. 6 is the temperature of two types of cooking vessels having different materials.
  • Graphs 601 , 603 , 606 , and 607 showing output characteristics for each operating frequency are shown.
  • the output characteristic varies according to the operating frequency.
  • the cooktop 1 of the present disclosure may be designed in consideration of output characteristics according to the materials of these various cooking containers.
  • the first graph 601 is a graph showing the output characteristics of the cooking vessel E at room temperature
  • the second graph 603 is a graph showing the output characteristics of the cooking vessel E at the high temperature
  • the third The graph 605 is a graph showing the output characteristics of the cooking vessel A at room temperature
  • the fourth graph 607 is a graph showing the output characteristics of the cooking vessel A at the high temperature.
  • room temperature may mean that the temperature of the thin film is 20 °C
  • high temperature may mean that the temperature of the thin film is 500 °C, but this is only an example.
  • FIG. 7 is a graph illustrating output characteristics according to the presence or absence of a magnetic cooking container and temperature of the cooktop according to an embodiment of the present disclosure.
  • the first graph 701 shows the output according to the frequency when the magnetic container is present at room temperature
  • the second graph 703 shows the output according to the frequency when the magnetic container is present at the high temperature
  • the third The graph 711 shows the output according to the frequency when only the thin film TL is present at room temperature
  • the fourth graph 713 shows the output according to the frequency when only the thin film TL is present at a high temperature.
  • the cooktop 1 of the induction heating method including the thin film TL is present when there is no magnetic cooking container at the same operating frequency (ie, only the thin film TL is present).
  • the output decreases, it can be seen that the output decreases when the temperature of the thin film TL is higher than when the temperature is low.
  • FIG. 8 is a control block diagram of a cooktop of an induction heating method according to an embodiment of the present disclosure.
  • the cooktop 1 of the induction heating method includes at least one of the processor 180 , the interface module 181 , the memory 183 , the magnetic container determination unit 185 , and the output power detection unit 187 . It may include some or all. In addition, according to an embodiment, the cooktop 1 may omit some of the above-described components or further include other components. That is, the components shown in FIG. 8 are merely examples to describe the cooktop 1 according to an embodiment of the present disclosure.
  • the processor 180 may perform overall control of the cooktop 1 .
  • the processor 180 includes the interface module 181 , the memory 183 , the magnetic container determining unit 185 , the output power sensing unit 187 shown in FIG. 8 , and the power supply unit 110 and the rectifying unit 120 shown in FIG. 3 . ), the DC link capacitor 130 , the inverter 140 , the working coil WC, the resonance capacitor 160 , and the SMPS 170 , respectively.
  • the interface module 181 may receive a user input.
  • the interface module 181 may have a physical key button or be implemented in the form of a touch screen to receive a user input.
  • the interface module 181 may receive a heating command for starting a heating mode, a forced heating mode command for starting a forced heating mode, a thermal power selection command for controlling thermal power, a heating termination command, and the like.
  • the memory 183 may store data related to the operation of the cooktop 1 .
  • the memory 183 may include data to which output power is mapped according to an operating frequency for each load condition, data to which output power is mapped according to an operating frequency for each material of the cooking vessel, and data to which output power is mapped according to temperature and operating frequency. You can store data, etc.
  • the memory 183 may store the output power according to the operating frequency of the cooking vessel of the first material, the output power according to the operating frequency for each temperature of the cooking vessel of the first material, and the second material of the cooking vessel. It is possible to store the output power according to the operating frequency of the second material and the output power according to the operating frequency according to the temperature of the cooking vessel of the second material.
  • the magnetic container determining unit 185 may determine whether a magnetic container is present in the upper plate portion 15 of the cooktop 1 .
  • the magnetic container determination unit 185 may determine whether the magnetic container exists based on the operating frequency of the inverter 140 , the output power sensed through the output power detection unit 187 , and data stored in the memory 183 . .
  • the output power detection unit 187 may detect the output power of the cooktop 1 that is currently output.
  • the output power detection unit 187 senses the input voltage and the input current input to the working coil WC, and may sense the output power by multiplying the two values, but this is only an example.
  • processor 180 the magnetic container determination unit 185, and the output power detection unit 187 are separately illustrated in FIG. 8, this is only an example, and the magnetic container determination unit 185 and the output power detection unit ( The operation 187 may be performed by the processor 180 .
  • FIG. 9 is a flowchart illustrating a method of operating a cooktop according to an embodiment of the present disclosure.
  • the cooktop 1 may receive a heating command (S211).
  • the processor 180 of the cooktop 1 may receive a heating command through the interface module 181 .
  • the processor 180 may determine whether the received heating command is a forced heating mode command (S212).
  • the forced heating mode may be a mode in which heating is continued with a set thermal power even when the container is not detected. According to an embodiment of the present disclosure to be described later, when the magnetic container is not detected, the cooktop 1 may end heating. Therefore, in the present disclosure, the forced heating mode may be a mode used when a user wants to heat a non-magnetic container.
  • the processor 180 may operate in a forced heating mode (S214).
  • the processor 180 may start detecting a container in a standby state (S213).
  • the standby state container detection may mean detecting whether a magnetic container is present in the upper plate portion 15 of the cooktop 1 before operating in the heating mode.
  • the processor 180 recognizes the heating mode command, not the forced heating mode, as a mode for heating the magnetic container, and detects whether the magnetic container is present in the upper plate 15 of the cooktop 1 before operating in the heating mode. .
  • the magnetic container determining unit 185 may detect the magnetic container in a standby state.
  • the magnetic container determination unit 185 may detect whether a magnetic container exists through the operating frequency and output power of the inverter 140 .
  • a method of determining whether a magnetic container exists when the magnetic container determination unit 185 is in a standby state will be described in detail with reference to FIG. 10 .
  • FIG. 10 is a graph illustrating output characteristics according to the presence or absence of a magnetic cooking container and temperature of the cooktop according to an embodiment of the present disclosure.
  • the first graph 1001 shows the output according to the frequency when the magnetic container exists at room temperature
  • the second graph 1003 shows the output according to the frequency when the magnetic container exists at the high temperature
  • the third The graph 1011 shows the output according to the frequency when only the thin film TL is present at room temperature
  • the fourth graph 1013 shows the output according to the frequency when only the thin film TL is present at a high temperature.
  • the standby state reference output 1020 may be set to a value between the output power 1001 when the magnetic container exists at room temperature and the output power 1011 when only the thin film TL exists at room temperature.
  • the standby state reference output 1020 is a high value of the output power 1011 when only the thin film TL exists at room temperature and the output power 1003 when the magnetic container exists at high temperature and the output power when the magnetic container exists at room temperature. It can be set to a value between (1001).
  • the standby state reference output 1020 is set to a value a predetermined percentage higher than the higher value of the output power 1011 when only the thin film TL is present at room temperature and the output power 1003 when the magnetic container is present at a high temperature it might be
  • the predetermined percentage may mean 10%, but this is only an example.
  • the standby state reference output 1020 may vary depending on the material of the container, and may vary according to the output characteristics of the container.
  • the standby state reference output 1020 may be a value previously stored in the memory 183 , or a value learned by the processor 180 through various data.
  • the magnetic container determining unit 185 may determine that the magnetic container is present when the output power according to the operating frequency is equal to or greater than the standby state reference output 1020 . Conversely, when the output power according to the operating frequency is less than the standby state reference output 1020 , the magnetic container determining unit 185 may determine that the magnetic container does not exist.
  • the magnetic container determining unit 185 may perform standby state magnetic container detection in a high frequency region. This is to prevent a decrease in accuracy due to heating of the thin film and the container by the frequency for detecting the container when the atmospheric container detection is performed in a low frequency region.
  • the standby state reference output 1020 may be set only in a high frequency region (eg, between 60khz and 65khz).
  • the processor 180 may operate in a heating mode ( S217 ).
  • the processor 180 may control the inverter 140 and the like when operating in the heating mode, and accordingly, the inverter 140 is driven so that a current flows in the working coil WC, and the working coil WC generates a magnetic field. can cause
  • the processor 180 may operate in the heating mode according to the input heating command until it receives the heating end command (S219).
  • the processor 180 may perform heating state container detection while operating in the heating mode (S221).
  • the heating state container detection may mean detecting whether a magnetic container is present in the upper plate portion 15 of the cooktop 1 while operating in the heating mode. This is to detect when the user removes the cooking container while heating. Accordingly, the processor 180 may periodically detect whether the magnetic container is present during heating.
  • the magnetic container determining unit 185 may detect the magnetic container in a heated state.
  • the magnetic container determining unit 185 may detect whether a magnetic container is present during heating based on an operating frequency and output power of the cooktop 1 .
  • the magnetic container determination unit 185 may change the reference output corresponding to the output characteristics. That is, the magnetic container determining unit 185 may change the reference output according to whether the induction heating type cooktop 1 is in a standby state or a heating state.
  • 11 is a graph illustrating output characteristics according to the presence or absence of a magnetic cooking container and temperature of the cooktop according to an embodiment of the present disclosure.
  • the first graph 1101 shows the output according to the frequency when the magnetic container exists at room temperature
  • the second graph 1103 shows the output according to the frequency when the magnetic container exists at the high temperature
  • the third The graph 1111 shows the output according to the frequency when only the thin film TL is present at room temperature
  • the fourth graph 1113 shows the output according to the frequency when only the thin film TL is present at a high temperature.
  • the heating state reference output 1120 may be set to a value between the output power 1103 when the magnetic container exists at a high temperature and the output power 1113 when only the thin film TL exists at the high temperature.
  • the heating state reference output 1120 is the output power 1111 when only the thin film TL is present at room temperature and the output power 1103 when only the thin film TL is present at a high temperature and the lower value of the output power 1103 when the magnetic container is present at a high temperature. It can be set to a value between the output power 1113 .
  • the heating state reference output 1120 is set to a value a predetermined percentage lower than the lower value of the output power 1111 when only the thin film TL is present at room temperature and the output power 1103 when the magnetic container exists at high temperature.
  • the predetermined percentage may mean 10%, but this is only an example.
  • the heating state reference output 1120 may vary depending on the material of the container, and may vary according to the output characteristics of the container.
  • the heating state reference output 1120 may be a value previously stored in the memory 183 , or a value learned by the processor 180 through various data.
  • the magnetic container determining unit 185 may determine that the magnetic container is present when the output power according to the operating frequency is equal to or greater than the heating state reference output 1120 . Conversely, when the output power according to the operating frequency is less than the heating state reference output 1120 , the magnetic container determining unit 185 may determine that the magnetic container does not exist.
  • the magnetic container determining unit 185 may detect the heated state magnetic container in the entire operating frequency region.
  • the processor 180 may continue to operate in the heating mode ( S217 ).
  • the processor 180 may return to the step S212 of determining whether the forced heating mode is present. Since step S212 is the same as described above, a redundant description will be omitted.
  • the processor 180 may perform the standby state container detection (S213), and if the magnetic container is not detected (S215), it may count the number of times the container is detected (S225).
  • the container detection count count may mean counting the number of times the magnetic container determination unit 185 has attempted to detect the magnetic container, but the magnetic container is not detected.
  • the processor 180 may count the number of times of container detection and determine whether the number of times of container detection exceeds a reference number (S227).
  • the reference number may be a preset value. For example, when the reference number is 5 times, the processor 180 may determine whether the magnetic container determination unit 185 has failed to detect the container 5 times or more.
  • the processor 180 may end heating (S229). In addition, the processor 180 may terminate the heating even when receiving the heating termination command through the interface module 181 (S229).
  • the cooktop 1 of the present disclosure may operate in a mode for heating the magnetic container and a mode for heating the non-magnetic container.
  • the cooktop 1 of the present disclosure can automatically determine whether the magnetic container exists, and when the magnetic container does not exist, there is an advantage in that safety can be secured by terminating heating.
  • the induction heating type cooktop 1 may further include a computer-readable recording medium or memory (not shown) for recording programs for performing the various methods described above.
  • the method for the present disclosure described above may be provided by being recorded in a computer-readable recording medium as a program for execution by a computer.
  • the method of the present disclosure may be executed through software.
  • the constituent means of the present disclosure are code segments that perform necessary tasks.
  • the program or code segments may be stored on a processor-readable medium.
  • the computer-readable recording medium includes all types of recording devices in which data readable by a computer system is stored. Examples of the computer-readable recording device include ROM, RAM, CD-ROM, DVD ⁇ ROM, DVD-RAM, magnetic tape, floppy disk, hard disk, and optical data storage device. In addition, the computer-readable recording medium is distributed in network-connected computer devices so that the computer-readable code can be stored and executed in a distributed manner.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

본 개시의 일 실시예에 따른 유도 가열 방식의 쿡탑은 케이스, 케이스의 상단에 결합되고, 상면에 피가열 물체가 배치되는 상판부가 구비된 커버 플레이트, 케이스 내부에 구비되는 워킹 코일, 워킹 코일에 전압을 인가하는 인버터, 상판부의 하면에 구비되며, 워킹 코일에 의해 유도 가열되는 박막 및 인버터의 동작 주파수에 따른 출력 파워에 기초하여 상판부의 상면에 자성 용기가 존재하는지 판단하는 자성 용기 판단부를 포함할 수 있다.

Description

유도 가열 방식의 쿡탑 및 그의 동작 방법
본 개시는 유도 가열 방식의 쿡탑 및 그의 동작 방법에 관한 것이다.
가정이나 식당에서 음식을 가열하기 위한 다양한 방식의 조리 기구들이 사용되고 있다. 종래에는 가스를 연료로 하는 가스 레인지가 널리 보급되어 사용되어 왔으나, 최근에는 가스를 이용하지 않고 전기를 이용하여 피가열 물체, 예컨대 용기와 같은 조리 용기를 가열하는 장치들의 보급이 이루어지고 있다.
전기를 이용하여 피가열 물체를 가열하는 방식은 크게 저항 가열 방식과 유도 가열 방식으로 나누어진다. 전기 저항 방식은 금속 저항선 또는 탄화규소와 같은 비금속 발열체에 전류를 흘릴 때 생기는 열을 방사 또는 전도를 통해 피가열 물체(예를 들어, 조리 용기)에 전달함으로써 피가열 물체를 가열하는 방식이다. 그리고 유도 가열 방식은 소정 크기의 고주파 전력을 코일에 인가할 때 코일 주변에 발생하는 자계를 이용하여 금속 성분으로 이루어진 피가열 물체에 와전류(eddy current)를 발생시켜 피가열 물체 자체가 가열되도록 하는 방식이다.
최근에는 쿡탑(Cooktop)에 유도 가열 방식이 대부분 적용되고 있다.
다만, 유도 가열 방식이 적용된 쿡탑의 경우, 자성체만을 가열할 수 있다는 한계가 있었다. 즉, 비자성체(예를 들어, 내열유리, 도기류, 알루미늄 용기 등)가 쿡탑 위에 배치된 경우, 유도 가열 방식이 적용된 쿡탑은 해당 피가열 물체를 가열하지 못한다는 문제가 있었다.
이러한 유도 가열 방식의 쿡탑이 갖는 문제를 개선하기 위해, 본 개시는 박막을 이용하고자 한다. 구체적으로, 본 개시에 따른 쿡탑은 비자성체가 가열되도록 와전류가 인가되는 박막을 포함할 수 있다. 그리고, 이러한 박막은 스킨 뎁스가 두께 보다 두껍게 형성될 수 있고, 이에 따라 워킹 코일에서 발생한 자기장은 박막을 통과하여 자성체에 와전류를 인가함으로써 자성체를 가열할 수도 있다.
한편, 박막을 이용한 유도 가열 방식의 쿡탑의 경우, 박막의 존재로 인해 쿡탑의 상판에 부하가 존재하는지 구분하기 어려운 문제가 있다. 따라서, 조리 용기가 존재하지 않는 경우에도 가열이 지속될 수 있다. 이 경우, 박막이 고온으로 가열되기 때문에 이로 인한 안전 사고 발생 가능성이 높아지는 문제가 있다.
본 개시는 박막을 포함한 유도 가열 방식의 쿡탑에 있어서, 상판부에 자성 조리 용기의 존재 여부를 감지할 수 있는 장치를 제공하고자 한다.
본 개시는 박막을 포함한 유도 가열 방식의 쿡탑에 있어서, 가열 동작 중에 조리 용기가 감지되지 않는 경우 자동으로 동작을 정지하는 장치를 제공하고자 한다.
본 개시에 포함된 일 실시예에 따른 유도 가열 방식의 쿡탑은 케이스, 케이스의 상단에 결합되고, 상면에 피가열 물체가 배치되는 상판부가 구비된 커버 플레이트, 케이스 내부에 구비되는 워킹 코일, 워킹 코일에 전압을 인가하는 인버터, 상판부의 하면에 구비되며, 워킹 코일에 의해 유도 가열되는 박막 및 인버터의 동작 주파수에 따른 출력 파워에 기초하여 상판부의 상면에 자성 용기가 존재하는지 판단하는 자성 용기 판단부를 포함할 수 있다.
본 개시에 포함된 일 실시예에 따른 자성 용기 판단부는 동작 주파수에 따른 출력 파워가 기준 출력 이상이면 자성 용기가 존재하는 것으로 판단하고, 동작 주파수에 따른 출력 파워가 기준 출력 미만이면 자성 용기가 존재하지 않는 것으로 판단할 수 있다.
본 개시에 따르면, 유도 가열 방식의 쿡탑을 통해 자성 용기와 비자성 용기 모두를 가열할 수 있는 이점이 있다.
또한, 본 개시에 따르면, 자성 용기의 존재 여부를 자동으로 판단할 수 있으며, 자성 용기가 존재하지 않는 경우 가열을 종료하여 안전성을 확보할 수 있는 이점이 있다.
도 1은 본 개시의 실시 예에 따른 유도 가열 방식의 쿡탑을 설명하는 도면이다.
도 2는 본 개시의 일 실시 예에 따른 유도 가열 방식의 쿡탑과 피가열 물체가 도시된 단면도이다.
도 3은 본 개시의 실시 예에 따른 쿡탑의 회로도가 도시된 도면이다.
도 4는 본 개시의 실시 예에 따른 쿡탑의 출력 특성을 나타내는 도면이다.
도 5는 본 개시의 실시 예에 따른 쿡탑의 부하 별 출력 특성을 나타내는 도면이다.
도 6은 본 개시의 실시 예에 따른 쿡탑의 부하의 온도에 따른 출력 특성을 나타내는 도면이다.
도 7은 본 개시의 실시 예에 따른 쿡탑의 자성체 조리 용기 존재 여부 및 온도에 따른 출력 특성을 나타낸 그래프이다.
도 8은 본 개시의 일 실시 예에 따른 유도 가열 방식의 쿡탑의 제어 블록도이다.
도 9는 본 개시의 일 실시 예에 따른 쿡탑의 동작 방법이 도시된 순서도이다.
도 10은 본 개시의 실시 예에 따른 쿡탑의 자성체 조리 용기 존재 여부 및 온도에 따른 출력 특성을 나타낸 그래프이다.
도 11은 본 개시의 실시 예에 따른 쿡탑의 자성체 조리 용기 존재 여부 및 온도에 따른 출력 특성을 나타낸 그래프이다.
이하, 첨부된 도면을 참조하여 본 개시에 따른 바람직한 실시 예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.
이하에서는, 본 개시의 실시 예에 따른 유도 가열 방식의 쿡탑 및 그의 동작 방법을 설명하도록 한다. 다만, 설명의 편의를 위해, "유도 가열 방식의 쿡탑"은 "쿡탑"으로 명명할 수 있다.
도 1은 본 개시의 실시 예에 따른 유도 가열 방식의 쿡탑을 설명하는 도면이다. 도 2는 본 개시의 일 실시 예에 따른 유도 가열 방식의 쿡탑과 피가열 물체가 도시된 단면도이다.
먼저, 도 1을 참조하면, 본 개시의 실시 예에 따른 유도 가열 방식의 쿡탑(1)은 케이스(25), 커버 플레이트(20), 워킹 코일(WC), 박막(TL)을 포함할 수 있다.
케이스(25)에는 워킹 코일(WC)이 설치될 수 있다.
참고로, 케이스(25)에는 워킹 코일(WC) 외에 워킹 코일의 구동과 관련된 각종 장치(예를 들어, 교류 전력을 제공하는 전원부, 전원부의 교류 전력을 직류 전력으로 정류하는 정류부, 정류부에 의해 정류된 직류 전력을 스위칭 동작을 통해 공진 전류로 변환하여 워킹 코일에 제공하는 인버터부, 유도 가열 방식의 쿡탑(1) 내 각종 장치의 동작을 제어하는 제어 모듈, 워킹 코일을 턴온 또는 턴오프하는 릴레이 또는 반도체 스위치 등)가 설치될 수 있으나, 이에 대한 구체적인 설명은 생략하도록 한다.
커버 플레이트(20)는 케이스(25)의 상단에 결합되고, 상면에 피가열 물체(미도시)가 배치되는 상판부(15)가 구비될 수 있다.
구체적으로, 커버 플레이트(20)는 조리 용기와 같은 피가열 물체를 올려놓기 위한 상판부(15)를 포함할 수 있다.
여기에서, 상판부(15)는 예를 들어, 유리 소재(예를 들어, 세라믹 글래스(ceramics glass))로 구성될 수 있다.
또한, 상판부(15)에는 사용자로부터 입력을 제공받아 입력 인터페이스용 제어 모듈(미도시)로 해당 입력을 전달하는 입력 인터페이스(미도시)가 구비될 수 있다. 물론, 입력 인터페이스는 상판부(15)가 아닌 다른 위치에 구비될 수도 있다.
참고로, 입력 인터페이스는 사용자가 원하는 가열 강도나 유도 가열 방식의 쿡탑(1)의 구동 시간 등을 입력하기 위한 모듈로서, 물리적인 버튼이나 터치 패널 등으로 다양하게 구현될 수 있다. 또한 입력 인터페이스에는 예를 들어, 전원 버튼, 잠금 버튼, 파워 레벨 조절 버튼(+, -), 타이머 조절 버튼(+, -), 충전 모드 버튼 등이 구비될 수 있다. 그리고, 입력 인터페이스는 입력 인터페이스용 제어 모듈(미도시)에 사용자로부터 제공받은 입력을 전달하고, 입력 인터페이스용 제어 모듈은 전술한 제어 모듈(즉, 인버터용 제어 모듈)로 상기 입력을 전달할 수 있다. 또한 전술한 제어 모듈은 입력 인터페이스용 제어 모듈로부터 제공받은 입력(즉, 사용자의 입력)을 토대로 각종 장치(예를 들어, 워킹 코일)의 동작을 제어할 수 있는 바, 이에 대한 구체적인 내용은 생략하도록 한다.
한편, 상판부(15)에는 워킹 코일(WC)의 구동 여부 및 가열 세기(즉, 화력)가 화구 모양으로 시각적으로 표시될 수 있다. 이러한 화구 모양은 케이스(25) 내에 구비된 복수개의 발광 소자(예를 들어, LED)로 구성된 인디케이터(미도시)에 의해 표시될 수 있다.
워킹 코일(WC)은 피가열 물체를 가열하기 위해 케이스(25) 내부에 설치될 수 있다.
구체적으로, 워킹 코일(WC)은 전술한 제어 모듈(미도시)에 의해 구동이 제어될 수 있으며, 피가열 물체가 상판부(15) 위에 배치된 경우, 제어 모듈에 의해 구동될 수 있다.
또한 워킹 코일(WC)은 자성을 띄는 피가열 물체(즉, 자성체)를 직접 가열할 수 있고, 자성을 띄지 않는 피가열 물체(즉, 비자성체)를 후술하는 박막(TL)을 통해 간접적으로 가열할 수 있다.
그리고, 워킹 코일(WC)은 유도 가열 방식에 의해 피가열 물체를 가열할 수 있고, 박막(TL)과 세로 방향(즉, 수직 방향 또는 상하 방향)으로 오버랩되도록 구비될 수 있다.
참고로, 도 1에는 1개의 워킹 코일(WC)이 케이스(25)에 설치되는 것으로 도시되어 있으나, 이에 한정되는 것은 아니다. 즉, 1개 이상의 워킹 코일이 케이스(25)에 설치될 수도 있으나, 설명의 편의를 위해 본 개시의 실시예에서는, 1개의 워킹 코일(WC)이 케이스(25)에 설치되는 것을 예로 들어 설명하기로 한다.
박막(TL)은 피가열 물체 중 비자성체를 가열하기 위해 상판부(15)에 구비될 수 있다. 박막(TL)은 워킹 코일(WC)에 의해 유도 가열될 수 있다. 그리고, 박막(TL)이 가열됨으로써 피가열 물체는 박막(TL)으로부터 열 대류 또는 열 전도에 의해 가열될 수 있다.
박막(TL)은 상판부(15)의 상면 또는 하면에 구비될 수 있다.
박막(TL)은 워킹 코일(WC)과 세로 방향(즉, 수직 방향 또는 상하 방향)으로 오버랩되도록 구비될 수 있다. 이에 따라, 피가열 물체의 배치 위치 및 종류에 상관없이 해당 피가열 물체에 대한 가열이 가능하다.
또한, 박막(TL)은 자성 및 비자성 중 적어도 하나의 특성(즉, 자성, 비자성, 또는 자성과 비자성 둘다)을 갖출 수 있다.
그리고, 박막(TL)은 예를 들어, 전도성 물질(예를 들어, 은(Ag))으로 이루어질 수 있고, 도면에 도시된 바와 같이, 서로 다른 직경의 복수개의 링이 반복되는 형상으로 상판부(15)에 구비될 수 있으며, 박막(TL)은 전도성 물질이 아닌 다른 재질로 이루어질 수도 있다. 그리고, 박막(TL)은 서로 다른 직경의 복수개의 링이 반복되는 형상이 아닌 다른 형상으로 형성될 수도 있다.
참고로, 도 1에는 1개의 박막(TL)이 도시되어 있으나, 이에 한정되는 것은 아니다. 즉, 화구가 복수 개인 경우, 복수 개의 박막이 추가적으로 구비될 수도 있으나, 설명의 편의를 위해 1개의 박막(TL)이 구비되는 것을 예로 들어 설명하기로 한다.
이어서, 도 2를 참조하면, 본 개시의 실시 예에 따른 유도 가열 방식의 쿡탑(1)은 단열재(35), 차폐판(45), 지지부재(50), 냉각팬(55) 중 적어도 일부 또는 전부를 더 포함할 수 있다.
단열재(35)는 상판부(15)와 워킹 코일(WC) 사이에 구비될 수 있다.
구체적으로, 단열재(35)는 상판부(15)의 아래에 장착될 수 있고, 그 아래에는 워킹 코일(WC)이 배치될 수 있다.
이러한 단열재(35)는 워킹 코일(WC)의 구동에 의해 박막(TL) 또는 피가열 물체(HO)가 가열되면서 발생된 열이 워킹 코일(WC)로 전달되는 것을 차단할 수 있다.
즉, 워킹 코일(WC)의 전자기 유도에 의해 박막(TL) 또는 피가열 물체(HO)가 가열되면, 박막(TL) 또는 피가열 물체(HO)의 열이 상판부(15)로 전달되고, 상판부(15)의 열이 다시 워킹 코일(WC)로 전달되어 워킹 코일(WC)이 손상될 수 있다.
단열재(35)는 이와 같이, 워킹 코일(WC)로 전달되는 열을 차단함으로써, 워킹 코일(WC)이 열에 의해 손상되는 것을 방지할 수 있고, 나아가 워킹 코일(WC)의 가열 성능이 저하되는 것도 방지할 수 있다.
참고로, 필수적인 구성 요소는 아니지만, 스페이서(미도시)가 워킹 코일(WC)과 단열재(35) 사이에 설치될 수도 있다.
구체적으로, 스페이서(미도시)는 워킹 코일(WC)과 단열재(35)가 직접 접촉하지 않도록 워킹 코일(WC)과 단열재(35) 사이에 삽입될 수 있다. 이에 따라, 스페이서(미도시)는 워킹 코일(WC)의 구동에 의해 박막(TL) 또는 피가열 물체(HO)가 가열되면서 발생된 열이 단열재(35)를 통해 워킹 코일(WC)로 전달되는 것을 차단할 수 있다.
즉, 스페이서(미도시)가 단열재(35)의 역할을 일부 분담할 수 있는바, 단열재(35)의 두께를 최소화할 수 있고, 이를 통해 피가열 물체(HO)와 워킹 코일(WC) 사이의 간격을 최소화할 수 있다.
또한 스페이서(미도시)는 복수개가 구비될 수 있고, 복수개의 스페이서는 워킹 코일(WC)과 단열재(35) 사이에 서로 이격되도록 배치될 수 있다. 이에 따라, 후술하는 냉각팬(55)에 의해 케이스(25) 내부로 흡입된 공기는 스페이서에 의해 워킹 코일(WC)로 안내될 수 있다.
즉, 스페이서는 냉각팬(55)에 의해 케이스(25) 내부로 유입된 공기가 워킹 코일(WC)로 적절하게 전달될 수 있도록 안내함으로써 워킹 코일(WC)의 냉각 효율을 개선할 수 있다.
차폐판(45)은 워킹 코일(WC)의 하면에 장착되어 워킹 코일(WC)의 구동시 하방으로 발생되는 자기장을 차단할 수 있다.
구체적으로, 차폐판(45)은 워킹 코일(WC)의 구동시 하방으로 발생되는 자기장을 차단할 수 있고, 지지부재(50)에 의해 상방으로 지지될 수 있다.
지지부재(50)는 차폐판(45)의 하면과 케이스(25)의 하판 사이에 설치되어 차폐판(45)을 상방으로 지지할 수 있다.
구체적으로, 지지부재(50)는 차폐판(45)을 상방으로 지지함으로써, 단열재(35)와 워킹 코일(WC)을 상방으로 간접적으로 지지할 수 있고, 이를 통해, 단열재(35)가 상판부(15)에 밀착되도록 할 수 있다.
그 결과, 워킹 코일(WC)과 피가열 물체(HO) 사이의 간격을 일정하게 유지할 수 있다.
참고로, 지지부재(50)는 예를 들어, 차폐판(45)을 상방으로 지지하기 위한 탄성체(예를 들어, 스프링)를 포함할 수 있으나, 이에 한정되는 것은 아니다. 또한 지지부재(50)는 필수적인 구성요소가 아닌 바, 유도 가열 방식의 쿡탑(1)에서 생략될 수 있다.
냉각팬(55)은 워킹 코일(WC)을 냉각하기 위해 케이스(25) 내부에 설치될 수 있다.
구체적으로, 냉각팬(55)은 전술한 제어 모듈에 의해 구동이 제어될 수 있고, 케이스(25)의 측벽에 설치될 수 있다. 물론, 냉각팬(55)은 케이스(25)의 측벽이 아닌 다른 위치에 설치될 수도 있으나, 본 개시의 실시 예에서는, 설명의 편의를 위해, 냉각팬(55)이 케이스(25)의 측벽에 설치되는 것을 예로 들어 설명하기로 한다.
또한 냉각팬(55)은 도 2에 도시된 바와 같이, 케이스(25) 외부의 공기를 흡입하여 워킹 코일(WC)로 전달하거나 케이스(25) 내부의 공기(특히, 열기)를 흡입하여 케이스(25) 외부로 배출할 수 있다.
이를 통해, 케이스(25) 내부의 구성 요소들(특히, 워킹 코일(WC))의 효율적인 냉각이 가능하다.
또한 전술한 바와 같이, 냉각팬(55)에 의해 워킹 코일(WC)로 전달된 케이스(25) 외부의 공기는 스페이서에 의해 워킹 코일(WC)로 안내될 수 있다. 이에 따라, 워킹 코일(WC)에 대한 직접적이고 효율적인 냉각이 가능해져 워킹 코일(WC)의 내구성 개선(즉, 열 손상 방지에 따른 내구성 개선)이 가능하다.
이와 같이, 본 개시의 일 실시 예에 따른 유도 가열 방식의 쿡탑(1)은 전술한 특징 및 구성을 가질 수 있는바, 이하에서는, 도 3 내지 도 4를 참조하여, 본 개시의 실시 예에 따른 쿡탑(1)의 회로 구성 및 가열 특성에 대해 구체적으로 설명하도록 한다.
도 3은 본 개시의 실시 예에 따른 쿡탑의 회로도가 도시된 도면이다.
도 3에 도시된 쿡탑(1)의 회로도는 설명의 편의를 예시적으로 든 것에 불과하므로, 본 개시는 이에 제한되지 않는다.
도 3을 참조하면, 유도 가열 방식의 쿡탑은 전원부(110), 정류부(120), DC 링크 커패시터(130), 인버터(140), 워킹 코일(WC), 공진 커패시터(160) 및 SMPS(170) 중 적어도 일부 또는 전부를 포함할 수 있다.
전원부(110)는 외부 전원을 입력받을 수 있다. 전원부(110)가 외부로부터 입력받는 전원은 AC(Alternation Current) 전원일 수 있다.
전원부(110)은 정류부(120)로 교류 전압을 공급할 수 있다.
정류부(120, Rectifier)는 교류를 직류로 변환하기 위한 전기적 장치이다. 정류부(120)는 전원부(110)을 통해 공급되는 교류 전압을 직류 전압으로 변환한다. 정류부(120)는 변환된 전압을 DC 양단(121)으로 공급할 수 있다.
정류부(120)의 출력단은 DC 양단(121)으로 연결될 수 있다. 정류부(120)를 통해 출력되는 DC 양단(121)을 DC 링크라고 할 수 있다. DC 양단(121)에서 측정되는 전압을 DC 링크 전압이라고 한다.
DC 링크 커패시터(130)는 전원부(110)과 인버터(140) 사이의 버퍼 역할을 수행한다. 구체적으로, DC 링크 커패시터(130)는 정류부(120)를 통해 변환된 DC 링크 전압을 유지시켜 인버터(140)까지 공급하기 위한 용도로 사용된다.
인버터(140)는 워킹 코일(WC)에 고주파의 전류가 흐르도록 워킹 코일(WC)에 인가되는 전압을 스위칭하는 역할을 한다. 인버터(140)는 통상 IGBT(Insulated Gate Bipolar Transistor)로 이루어진 스위칭 소자를 구동시킴으로써 워킹 코일(WC)에 고주파의 전류가 흐르게 하고, 이에 따라 워킹 코일(WC)에 고주파 자계가 형성된다.
워킹 코일(WC)은 스위칭 소자의 구동 여부에 따라 전류가 흐르거나 전류가 흐르지 않을 수 있다. 워킹 코일(WC)에 전류가 흐르면 자기장이 발생한다. 워킹 코일(WC)은 전류가 흐름에 따라 자기장을 발생시켜 조리기기를 가열시킬 수 있다.
워킹 코일(WC)의 일측은 인버터(140)의 스위칭 소자의 접속점에 연결되어 있고, 다른 일측은 공진 커패시터(160)에 연결된다.
스위칭 소자의 구동은 구동부(미도시)에 의해서 이루어지며, 구동부에서 출력되는 스위칭 시간에 제어되어 스위칭 소자가 서로 교호로 동작하면서 워킹 코일(WC)로 고주파의 전압을 인가한다. 그리고, 구동부(미도시)로터 인가되는 스위칭 소자의 온/오프 시간은 점차 보상되는 형태로 제어되기 때문에 워킹 코일(WC)에 공급되는 전압은 저전압에서 고전압으로 변한다.
공진 커패시터(160)는 완충기 역할을 하기 위한 구성요소일 수 있다. 공진 커패시터(160)는 스위칭 소자의 턴오프 동안 포화 전압 상승 비율을 조절하여, 턴오프 시간 동안 에너지 손실에 영향을 준다.
SMPS(170, Switching Mode Power Supply)는 스위칭 동작에 따라 전력을 효율적으로 변환시키는 전원공급장치를 의미한다. SMPS(170)는 직류 입력 전압을 구형파 형태의 전압으로 변환한 후, 필터를 통하여 제어된 직류 출력 전압을 획득한다. SMPS(170)는 스위칭 프로세서를 이용하여, 전력의 흐름을 제어함으로써 불필요한 손실을 최소화할 수 있다.
도 3에 도시된 바와 같은 회로도로 구성되는 쿡탑(1)의 경우, 공진 주파수(resonance frequency)는 워킹 코일(WC)의 인덕턴스 값과 공진 커패시터(160)의 커패시턴스 값에 의해 결정된다. 그리고, 결정된 공진 주파수를 중심으로 공진 곡선이 형성되며, 공진 곡선은 주파수 대역에 따라 쿡탑(1)의 출력 파워를 나타낼 수 있다.
다음으로, 도 4는 본 개시의 실시 예에 따른 쿡탑의 출력 특성을 나타내는 도면이다.
먼저, Q 팩터(quality factor)는 공진 회로에서 공진의 예리함을 나타내는 값일 수 있다. 따라서, 쿡탑(1)의 경우, 쿡탑(1)에 포함된 워킹 코일(WC)의 인덕턴스 값과 공진 커패시터(160)의 커패시턴스 값에 의해 Q 팩터가 결정된다. Q 팩터에 따라 공진 곡선은 상이하다. 따라서, 워킹 코일(WC)의 인덕턴스 값과 공진 커패시터(160)의 커패시턴스 값에 따라 쿡탑(1)은 상이한 출력 특성을 갖는다.
도 4에는 Q 팩터에 따른 공진 곡선의 일 예가 도시되어 있다. 일반적으로, Q 팩터가 클수록 곡선의 모양이 샤프(sharp)하고, Q 팩터가 작을수록 곡선의 모양이 브로드(broad)하다.
공진 곡선의 가로축은 주파수(frequency)를 나타내고, 세로축은 출력되는 전력(power)을 나타낼 수 있다. 공진 곡선에서 최대 전력을 출력하는 주파수를 공진 주파수(f0)라고 한다.
일반적으로, 쿡탑(1)은 공진 곡선의 공진 주파수(f0)를 기준으로 오른쪽 영역의 주파수를 이용한다. 그리고, 쿡탑(1)은 동작 가능한 최소 동작 주파수와 최대 동작 주파수가 미리 설정되어 있을 수 있다.
일 예로, 쿡탑(1)은 최대 동작 주파수(fmax)부터 최소 동작 주파수(fmin)의 범위에 해당하는 주파수로 동작할 수 있다. 즉, 쿡탑(1)의 동작 주파수 범위는 최대 동작 주파수(fmax)부터 최소 동작 주파수(fmin)까지일 수 있다.
일 예로, 최대 동작 주파수(fmax)는 IGBT 최대 스위칭 주파수일 수 있다. IGBT 최대 스위칭 주파수란 IGBT 스위칭 소자의 내압 및 용량 등을 고려하여, 구동 가능한 최대 주파수를 의미할 수 있다. 예를 들어, 최대 동작 주파수(fmax)는 75kHz일 수 있다.
최소 동작 주파수(fmin)는 약 20kHz일 수 있다. 이 경우, 쿡탑(1)이 가청 주파수(약 16Hz~ 20kHz)로 동작하지 않으므로, 쿡탑(1)의 소음을 줄일 수 있는 효과가 있다.
한편, 상술한 최대 동작 주파수(fmax) 및 최소 동작 주파수(fmin)의 설정 값은 예시적인 것에 불과하므로, 이에 제한되지 않는다.
이러한 쿡탑(1)은 가열 명령을 수신하면 가열 명령에서 설정된 화력 단계에 따라 동작 주파수를 결정할 수 있다. 구체적으로, 쿡탑(1)은 설정된 화력 단계가 높을수록 동작 주파수를 낮추고, 설정된 화력 단계가 낮을수록 동작 주파수를 높임으로써 출력 파워를 조절할 수 있다. 즉, 쿡탑(1)은 가열 명령을 수신하면 설정된 화력에 따라 동작 주파수 범위 중 어느 하나로 동작하는 가열 모드를 실시할 수 있다.
한편, 대부분의 쿡탑(1)은 사용자의 안전을 위해서 자동 용기 감지 기능을 제공하고 있다. 자동 용기 감지 기능이란, 쿡탑(1)의 상판부(15)에 조리 용기가 존재하는지 판단하고, 조리 용기가 없는 것으로 판단되면 전원을 차단하는 기능으로, 상판부(15)에 조리 용기가 존재하지 않음에도 가열 동작을 계속하는 경우 내부 소자가 손상되는 문제 등을 방지하기 위한 기능이다.
다만, 박막(TL)을 포함하는 유도 가열 방식의 쿡탑(1)의 경우, 박막(TL)의 존재로 인해 쿡탑(1)의 상판에 부하가 존재하는지 구분하기 어려운 문제가 있다. 자세히 설명하자면, 쿡탑(1)은 상판에 비금속(예를 들어, 유리 용기) 조리 용기가 놓여 박막(TL)을 가열해야 하는 경우와 상판에 아무것도 놓여있지 않아 박막(TL)을 가열하면 안되는 경우를 구분하기 어려운 문제가 있다. 이는, 쿡탑(1)의 상판에 비금속 용기가 놓이는 경우에는 워킹 코일(WC)의 가열 특성이 변하지 않으므로 발생하는 문제일 수 있다.
따라서, 박막(TL)을 포함하는 유도 가열 방식의 쿡탑(1)은 조리 용기가 존재하지 않는 경우에도 이를 인식하지 못한 채 가열될 수 있다. 이 경우, 박막(TL)은 500℃까지 가열될 수 있기 때문에 이로 인한 안전 사고 발생 가능성이 높은 문제가 있다.
이하, 이러한 문제점을 해결하기 위한 유도 가열 방식의 쿡탑 및 그의 동작 방법을 설명하고자 한다.
상술한 자동 용기 감지 기능은 워킹 코일(WC)의 공진 전류를 이용한 방법과 도 4에서 설명한 동작 주파수에 따른 출력 파워를 이용한 방법이 있을 수 있다. 본 명세서에서는, 조리 용기가 존재하는지 판단하는 방법으로 동작 주파수에 따른 출력 파워를 이용한 방법을 중심으로 설명하겠으나, 이에 제한되는 것은 아니다.
먼저, 도 5는 본 개시의 실시 예에 따른 쿡탑의 부하 별 출력 특성을 나타내는 도면이다. 도 6은 본 개시의 실시 예에 따른 쿡탑의 부하의 온도에 따른 출력 특성을 나타내는 도면이다.
도 5는 재질을 달리하는 조리 용기 5가지에 대한 동작 주파수 별 출력 특성을 나타내는 그래프(501, 503, 505, 507, 509)를 도시하고 있고, 도 6은 재질을 달리하는 조리 용기 2가지의 온도에 따른 동작 주파수 별 출력 특성을 나타내는 그래프(601, 603, 606, 607)을 도시하고 있다.
도 5를 참조하면, 조리 용기의 재질에 따라, 동작 주파수에 따른 출력 특성이 달라지는 것을 알 수 있다. 본 개시의 쿡탑(1)은 이러한 다양한 조리 용기의 재질에 따른 출력 특성을 고려하여 설계될 수 있다.
도 6을 참조하면, 제1 그래프(601)는 상온일 때 E 조리 용기의 출력 특성을 나타내는 그래프이고, 제2 그래프(603)는 고온일 때 E 조리 용기의 출력 특성을 나타내는 그래프이고, 제3 그래프(605)는 상온일 때 A 조리 용기의 출력 특성을 나타내는 그래프이고, 제4 그래프(607)는 고온일 때 A 조리 용기의 출력 특성을 나타내는 그래프이다. 이때, 상온은 박막의 온도가 20℃임을 의미할 수 있고, 고온은 박막의 온도가 500℃임을 의미할 수 있으나 이는 예시에 불과하다.
도 6의 그래프를 통해, A 조리 용기와 E 조리 용기 모두 박막의 온도가 증가할수록 같은 동작 주파수에서 출력이 낮아지는 모습을 확인할 수 있다.
다음으로, 도 7은 본 개시의 실시 예에 따른 쿡탑의 자성체 조리 용기 존재 여부 및 온도에 따른 출력 특성을 나타낸 그래프이다.
도 7을 참조하면, 제1 그래프(701)는 상온에서 자성체 용기가 존재할 때 주파수에 따른 출력을 나타내고, 제2 그래프(703)는 고온에서 자성체 용기가 존재할 때 주파수에 따른 출력을 나타내고, 제3 그래프(711)는 상온에서 박막(TL)만 존재할 때 주파수에 따른 출력을 나타내고, 제4 그래프(713)는 고온에서 박막(TL)만 존재할 때 주파수에 따른 출력을 나타낸다.
제1 그래프(701)와 제2 그래프(703)를 비교하면, 상술한 것처럼 박막(TL)의 온도가 높은 상태에서 동일한 동작 주파수 대비 출력이 감소하는 것을 알 수 있고, 이는 제3 그래프(711)와 제4 그래프(713)를 비교해보아도 마찬가지임을 알 수 있다.
또한, 제1 그래프(701)와 제3 그래프(711)를 비교하면, 박막(TL)만 존재하는 경우가 자성체 조리 용기가 존재하는 경우에 비해 동일한 동작 주파수 대비 출력이 감소하는 것을 알 수 있다. 이는 제2 그래프(703)와 제4 그래프(713)를 비교해보아도 마찬가지임을 알 수 있다.
정리하자면, 상술한 그래프를 통해, 박막(TL)을 포함하는 유도 가열 방식의 쿡탑(1)은 같은 동작 주파수에서 자성체 조리 용기가 존재하는 경우보다 존재하지 않을 때(즉, 박막(TL)만 존재할 때) 출력이 감소하고, 박막(TL)의 온도가 낮을 때보다 높을 때 출력이 감소하는 것을 알 수 있다.
도 8은 본 개시의 일 실시 예에 따른 유도 가열 방식의 쿡탑의 제어 블록도이다.
본 개시의 일 실시 예에 따른 유도 가열 방식의 쿡탑(1)은 프로세서(180), 인터페이스 모듈(181), 메모리(183), 자성 용기 판단부(185), 출력 파워 감지부(187) 중 적어도 일부 또는 전부를 포함할 수 있다. 또한, 실시 예에 따라 쿡탑(1)은 상술한 구성요소들 중 일부를 생략하거나 다른 구성요소를 더 포함할 수도 있다. 즉, 도 8에 도시된 구성요소들은 본 개시의 실시 예에 따른 쿡탑(1)을 설명하기 위해 예시로 든 것에 불과하다.
프로세서(180)는 쿡탑(1)의 전반적인 제어를 수행할 수 있다. 프로세서(180)는 도 8에 도시된 인터페이스 모듈(181), 메모리(183), 자성 용기 판단부(185), 출력 파워 감지부(187) 및 도 3에 도시된 전원부(110), 정류부(120), DC 링크 커패시터(130), 인버터(140), 워킹 코일(WC), 공진 커패시터(160) 및 SMPS(170) 각각을 제어할 수 있다.
인터페이스 모듈(181)은 사용자 입력을 수신할 수 있다. 인터페이스 모듈(181)은 물리적인 키 버튼을 구비하거나 터치스크린의 형태로 구현되어, 사용자 입력을 수신할 수 있다. 예를 들어, 인터페이스 모듈(181)은 가열 모드를 시작하는 가열 명령, 강제 가열 모드를 시작하는 강제 가열 모드 명령, 화력을 조절하는 화력 선택 명령, 가열 종료 명령 등을 수신할 수 있다.
메모리(183)는 쿡탑(1)의 동작과 관련된 데이터를 저장할 수 있다. 예를 들어, 메모리(183)는 부하 조건 별 동작 주파수에 따른 출력 파워가 맵핑된 데이터, 조리 용기의 재질 별 동작 주파수에 따른 출력 파워가 맵핑된 데이터, 온도 및 동작 주파수에 따른 출력 파워가 맵핑된 데이터 등을 저장할 수 있다. 예를 들어, 메모리(183)는 제1 재질 조리 용기의 동작 주파수에 따른 출력 파워를 저장할 수 있고, 제1 재질 조리 용기의 온도 별 동작 주파수에 따른 출력 파워를 저장할 수 있으며, 제2 재질 조리 용기의 동작 주파수에 따른 출력 파워와 제2 재질 조리 용기의 온도 별 동작 주파수에 따른 출력 파워 등을 저장할 수 있다.
자성 용기 판단부(185)는 현재 쿡탑(1)의 상판부(15)에 자성 용기가 존재하는지 판단할 수 있다. 자성 용기 판단부(185)는 인버터(140)의 동작 주파수, 출력 파워 감지부(187)를 통해 감지한 출력 파워 및 메모리(183)에 저장된 데이터 등을 기초로 자성 용기가 존재하는지 판단할 수 있다.
출력 파워 감지부(187)는 현재 출력되는 쿡탑(1)의 출력 파워를 감지할 수 있다. 출력 파워 감지부(187)는 워킹 코일(WC)에 입력되는 입력 전압 및 입력 전류를 센싱하고, 두 값을 곱함으로써 출력 파워를 감지할 수 있으나 이는 예시에 불과하다.
또한, 도 8에서는 프로세서(180)와 자성 용기 판단부(185), 출력 파워 감지부(187)를 구분하여 도시하였으나, 이는 예시에 불과하며, 자성 용기 판단부(185) 및 출력 파워 감지부(187)에서 수행되는 동작은 프로세서(180)에서 수행될 수도 있다.
다음으로, 본 개시의 실시 예에 따른 쿡탑(1)이 동작하는 방법을 설명한다.
도 9는 본 개시의 일 실시 예에 따른 쿡탑의 동작 방법이 도시된 순서도이다.
먼저, 쿡탑(1)은 가열 명령을 수신할 수 있다(S211). 쿡탑(1)의 프로세서(180)는 인터페이스 모듈(181)을 통해 가열 명령을 수신할 수 있다.
프로세서(180)는 수신한 가열 명령이 강제 가열 모드 명령인지 판단할 수 있다(S212). 강제 가열 모드란, 용기가 감지되지 않는 경우에도 설정된 화력으로 가열을 지속하는 모드일 수 있다. 후술하는 본 개시의 실시 예에 따르면, 쿡탑(1)은 자성 용기가 감지되지 않는 경우, 가열을 종료할 수 있다. 따라서, 본 개시에서 강제 가열 모드는 사용자가 비자성 용기를 가열시키고자 할 때 사용하는 모드일 수 있다. 프로세서(180)는 수신한 가열 명령이 강제 가열 모드 명령인 것으로 판단되면 강제 가열 모드로 동작할 수 있다(S214).
프로세서(180)는 수신한 가열 명령이 강제 가열 모드 명령이 아닌 경우, 대기 상태 용기 감지를 시작할 수 있다(S213).
대기 상태 용기 감지란, 가열 모드로 동작하기 전에 쿡탑(1)의 상판부(15)에 자성 용기가 존재하는지 감지하는 것을 의미할 수 있다. 프로세서(180)는 강제 가열 모드가 아닌 가열 모드 명령을 자성 용기를 가열하기 위한 모드로 인식하고, 가열 모드로 동작하기 전에 쿡탑(1)의 상판부(15)에 자성 용기가 존재하는지 감지할 수 있다.
자성 용기 판단부(185)는 대기 상태에서 자성 용기 감지를 수행할 수 있다. 자성 용기 판단부(185)는 인버터(140)의 동작 주파수 및 출력 파워를 통해 자성 용기가 존재하는지 감지할 수 있다.
본 개시의 실시 예에 따른 자성 용기 판단부(185)가 대기 상태일 때 자성 용기 존재 여부를 판단하는 방법을 도 10을 참조하여 자세히 설명하도록 한다.
도 10은 본 개시의 실시 예에 따른 쿡탑의 자성체 조리 용기 존재 여부 및 온도에 따른 출력 특성을 나타낸 그래프이다.
도 10을 참조하면, 제1 그래프(1001)는 상온에서 자성체 용기가 존재할 때 주파수에 따른 출력을 나타내고, 제2 그래프(1003)는 고온에서 자성체 용기가 존재할 때 주파수에 따른 출력을 나타내고, 제3 그래프(1011)는 상온에서 박막(TL)만 존재할 때 주파수에 따른 출력을 나타내고, 제4 그래프(1013)는 고온에서 박막(TL)만 존재할 때 주파수에 따른 출력을 나타낸다.
대기 상태 기준 출력(1020)은 상온에서 자성체 용기가 존재할 때 출력 파워(1001)와 상온에서 박막(TL)만 존재할 때 출력 파워(1011) 사이의 값으로 설정될 수 있다.
또는, 대기 상태 기준 출력(1020)은 상온에서 박막(TL)만 존재할 때 출력 파워(1011) 및 고온에서 자성체 용기가 존재할 때 출력 파워(1003) 중 높은 값과 상온에서 자성체 용기가 존재할 때 출력 파워(1001) 사이의 값으로 설정될 수 있다.
실시 예에 따라, 대기 상태 기준 출력(1020)은 상온에서 박막(TL)만 존재할 때 출력 파워(1011) 및 고온에서 자성체 용기가 존재할 때 출력 파워(1003) 중 높은 값보다 소정 퍼센테이지 높은 값으로 설정될 수도 있다. 이때, 소정 퍼센테이지는 10%를 의미할 수 있으나 이는 예시에 불과하다.
대기 상태 기준 출력(1020)은 용기의 재질에 따라 달라질 수 있으며, 용기의 출력 특성에 따라 달라질 수 있다. 대기 상태 기준 출력(1020)은 메모리(183)에 미리 저장된 값일 수 있고, 프로세서(180)가 다양한 데이터를 통해 학습한 값일 수 있다.
자성 용기 판단부(185)는 동작 주파수에 따른 출력 파워가 대기 상태 기준 출력(1020) 이상이면, 자성 용기가 존재하는 것으로 판단할 수 있다. 반대로, 자성 용기 판단부(185)는 동작 주파수에 따른 출력 파워가 대기 상태 기준 출력(1020) 미만이면, 자성 용기가 존재하지 않는 것으로 판단할 수 있다.
또한, 자성 용기 판단부(185)는 고 주파수 영역에서 대기 상태 자성 용기 감지를 수행할 수 있다. 이는 대기 상태 용기 감지를 낮은 주파수 영역을 수행하게 되면 용기를 감지하기 위한 주파수에 의해 박막 및 용기가 가열되어 정확성이 떨어지는 것을 방지하기 위함이다. 이때, 대기 상태 기준 출력(1020)은 고 주파수 영역(예를 들어, 60khz에서 65khz 사이)에서만 설정될 수도 있다.
다시 도 9로 돌아가서, 프로세서(180)는 자성 용기 판단부(185)가 상판부(15)에 자성 용기가 존재하는 것으로 판단한 경우, 가열 모드로 동작할 수 있다(S217).
프로세서(180)는 가열 모드로 동작할 때 인버터(140) 등을 제어할 수 있고, 이에 따라 인버터(140)는 워킹 코일(WC)에 전류가 흐르도록 구동되며, 워킹 코일(WC)은 자기장을 발생시킬 수 있다.
프로세서(180)는 가열 종료 명령을 수신할 때까지(S219), 입력된 가열 명령에 따라 가열 모드로 동작할 수 있다.
프로세서(180)는 가열 모드로 동작하는 동안에 가열 상태 용기 감지를 수행할 수 있다(S221).
가열 상태 용기 감지란, 가열 모드로 동작하는 동안에 쿡탑(1)의 상판부(15)에 자성 용기가 존재하는지 감지하는 것을 의미할 수 있다. 이는, 사용자가 가열 중에 조리 용기를 제거하는 경우 이를 감지하기 위함이다. 따라서, 프로세서(180)는 가열 도중에 자성 용기가 존재하는지 주기적으로 감지할 수 있다.
자성 용기 판단부(185)는 가열 상태에서 자성 용기 감지를 수행할 수 있다. 자성 용기 판단부(185)는 쿡탑(1)의 동작 주파수 및 출력 파워를 통해 가열 중에 자성 용기가 존재하는지 감지할 수 있다. 상술한 것처럼, 가열 상태에서는 대기 상태와 동작 주파수에 따른 출력 특성이 달라질 수 있으므로, 자성 용기 판단부(185)는 이에 대응하여 기준 출력을 변경할 수 있다. 즉, 자성 용기 판단부(185)는 유도 가열 방식의 쿡탑(1)이 대기 상태인지 가열 상태인지에 따라 기준 출력을 변경할 수 있다.
이하, 본 개시의 실시 예에 따른 자성 용기 판단부(185)가 가열 상태일 때 자성 용기 존재 여부를 판단하는 방법을 도 11을 참조하여 자세히 설명하도록 한다.
도 11은 본 개시의 실시 예에 따른 쿡탑의 자성체 조리 용기 존재 여부 및 온도에 따른 출력 특성을 나타낸 그래프이다.
도 11을 참조하면, 제1 그래프(1101)는 상온에서 자성체 용기가 존재할 때 주파수에 따른 출력을 나타내고, 제2 그래프(1103)는 고온에서 자성체 용기가 존재할 때 주파수에 따른 출력을 나타내고, 제3 그래프(1111)는 상온에서 박막(TL)만 존재할 때 주파수에 따른 출력을 나타내고, 제4 그래프(1113)는 고온에서 박막(TL)만 존재할 때 주파수에 따른 출력을 나타낸다.
가열 상태 기준 출력(1120)은 고온에서 자성체 용기가 존재할 때 출력 파워(1103)와 고온에서 박막(TL)만 존재할 때 출력 파워(1113) 사이의 값으로 설정될 수 있다.
또는, 가열 상태 기준 출력(1120)은 상온에서 박막(TL)만 존재할 때 출력 파워(1111) 및 고온에서 자성체 용기가 존재할 때 출력 파워(1103) 중 낮은 값과 고온에서 박막(TL)만 존재할 때 출력 파워(1113) 사이의 값으로 설정될 수 있다.
실시 예에 따라, 가열 상태 기준 출력(1120)은 상온에서 박막(TL)만 존재할 때 출력 파워(1111) 및 고온에서 자성체 용기가 존재할 때 출력 파워(1103) 중 낮은 값보다 소정 퍼센테이지 낮은 값으로 설정될 수도 있다. 이때, 소정 퍼센테이지는 10%를 의미할 수 있으나 이는 예시에 불과하다.
가열 상태 기준 출력(1120)은 용기의 재질에 따라 달라질 수 있으며, 용기의 출력 특성에 따라 달라질 수 있다. 가열 상태 기준 출력(1120)은 메모리(183)에 미리 저장된 값일 수 있고, 프로세서(180)가 다양한 데이터를 통해 학습한 값일 수 있다.
자성 용기 판단부(185)는 동작 주파수에 따른 출력 파워가 가열 상태 기준 출력(1120) 이상이면, 자성 용기가 존재하는 것으로 판단할 수 있다. 반대로, 자성 용기 판단부(185)는 동작 주파수에 따른 출력 파워가 가열 상태 기준 출력(1120) 미만이면, 자성 용기가 존재하지 않는 것으로 판단할 수 있다.
또한, 자성 용기 판단부(185)는 동작 주파수 전 영역에서 가열 상태 자성 용기 감지를 수행할 수 있다.
다시 도 9로 돌아가서, 프로세서(180)는 자성 용기 판단부(185)가 상판부(15)에 자성 용기가 존재하는 것으로 판단한 경우, 계속해서 가열 모드로 동작할 수 있다(S217).
프로세서(180)는 자성 용기 판단부(185)가 상판부(15)에 자성 용기가 존재하지 않는 것으로 판단한 경우, 강제 가열 모드 인지 판단하는 단계(S212)로 돌아갈 수 있다. 단계 S212는 상술한 바와 동일하므로, 중복되는 설명은 생략한다.
프로세서(180)는 강제 가열 모드가 아닌 것으로 판단한 경우, 대기 상태 용기 감지(S213)를 수행할 수 있고, 자성 용기가 감지되지 않으면(S215), 용기 감지 횟수를 카운트할 수 있다(S225).
용기 감지 횟수 카운트란, 자성 용기 판단부(185)가 자성 용기 감지를 시도했으나 자성 용기가 감지되지 않은 횟수를 카운트하는 것을 의미할 수 있다.
프로세서(180)는 용기 감지 횟수를 카운트하고, 용기 감지 횟수가 기준 횟수를 초과했는지 판단할 수 있다(S227). 이때, 기준 횟수는 미리 설정된 값일 수 있다. 예를 들어, 기준 횟수가 5회인 경우, 프로세서(180)는 자성 용기 판단부(185)가 용기 감지에 5회 이상 실패했는지 판단할 수 있다.
프로세서(180)는 용기 감지 횟수가 기준 횟수를 초과한 것으로 판단되면, 가열을 종료할 수 있다(S229). 또한, 프로세서(180)는 인터페이스 모듈(181)을 통해 가열 종료 명령을 수신한 때에도 가열을 종료할 수 있다(S229).
상술한 실시 예에 따라, 본 개시의 쿡탑(1)은 자성 용기를 가열하는 모드와 비자성 용기를 가열하는 모드가 구분되어 동작할 수 있다. 또한, 본 개시의 쿡탑(1)은 자성 용기의 존재 여부를 자동으로 판단할 수 있으며, 자성 용기가 존재하지 않는 경우 가열을 종료하여 안전성을 확보할 수 있는 이점이 있다.
일 실시예에 따라 유도 가열 방식의 쿡탑(1)는 상술한 다양한 방법을 수행하기 위한 프로그램을 수록하기 위한 컴퓨터 판독 가능 기록매체 또는 메모리(미도시)를 더 포함할 수 있다. 상기에서 설명한 본 개시에 대한 방법은, 컴퓨터에서 실행시키기 위한 프로그램으로 컴퓨터로 읽을 수 있는 기록매체에 기록하여 제공될 수 있다.
본 개시의 방법은 소프트웨어를 통해 실행될 수 있다. 소프트웨어로 실행될 때, 본 개시의 구성 수단들은 필요한 작업을 실행하는 코드 세그먼트들이다. 프로그램 또는 코드 세그먼트들은 프로세서 판독 가능 매체에 저장될 수 있다.
컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록 장치를 포함한다. 컴퓨터가 읽을 수 있는 기록 장치의 예로는, ROM, RAM, CD-ROM, DVD±ROM, DVD-RAM, 자기 테이프, 플로피 디스크, 하드 디스크(hard disk), 광데이터 저장장치 등이 있다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 장치에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
이상에서 설명한 본 개시는, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.

Claims (10)

  1. 케이스;
    상기 케이스의 상단에 결합되고, 상면에 피가열 물체가 배치되는 상판부가 구비된 커버 플레이트;
    상기 케이스 내부에 구비되는 워킹 코일;
    상기 워킹 코일에 전압을 인가하는 인버터;
    상기 상판부의 하면에 구비되며, 상기 워킹 코일에 의해 유도 가열되는 박막; 및
    상기 인버터의 동작 주파수에 따른 출력 파워에 기초하여 상기 상판부의 상면에 자성 용기가 존재하는지 판단하는 자성 용기 판단부를 포함하는, 유도 가열 방식의 쿡탑.
  2. 청구항 1에 있어서,
    상기 자성 용기 판단부는
    상기 동작 주파수에 따른 출력 파워가 기준 출력 이상이면 자성 용기가 존재하는 것으로 판단하고, 상기 동작 주파수에 따른 출력 파워가 기준 출력 미만이면 자성 용기가 존재하지 않는 것으로 판단하는, 유도 가열 방식의 쿡탑.
  3. 청구항 2에 있어서,
    상기 기준 출력은
    대기 상태에서 자성 용기 판단의 기준이 되는 대기 상태 기준 출력과 가열 상태에서 자성 용기 판단의 기준이 되는 가열 상태 기준 출력을 포함하는, 유도 가열 방식의 쿡탑.
  4. 청구항 3에 있어서,
    상기 자성 용기 판단부는
    상기 유도 가열 방식의 쿡탑이 대기 상태인지 가열 상태인지에 따라 상기 기준 출력을 변경하는, 유도 가열 방식의 쿡탑.
  5. 청구항 3에 있어서,
    상기 대기 상태 기준 출력은
    상온에서 자성 용기가 존재할 때 출력 파워와 상온에서 상기 박막만 존재할 때 출력 파워 사이의 값인, 유도 가열 방식의 쿡탑.
  6. 청구항 3에 있어서,
    상기 가열 상태 기준 출력은
    고온에서 자성 용기가 존재할 때 출력 파워와 고온에서 상기 박막만 존재할 때 출력 파워 사이의 값인, 유도 가열 방식의 쿡탑.
  7. 청구항 1에 있어서,
    상기 자성 용기 판단부가 상기 상판부의 상면에 자성 용기가 존재하지 않는 것으로 판단하면, 상기 인버터의 동작을 정지하도록 제어하는 프로세서를 더 포함하는, 유도 가열 방식의 쿡탑.
  8. 청구항 7에 있어서,
    상기 프로세서는
    상기 자성 용기 판단부가 상기 상판부의 상면에 자성 용기가 존재하지 않는 것으로 판단한 용기 감지 횟수를 카운트하고, 카운트 횟수가 소정 횟수를 초과하면 상기 인버터의 동작을 정지하도록 제어하는, 유도 가열 방식의 쿡탑.
  9. 청구항 7에 있어서,
    상기 프로세서는
    상기 자성 용기 판단부가 상기 상판부의 상면에 자성 용기가 존재하는 것으로 판단하면 가열 모드로 동작하도록 상기 인버터를 제어하는, 유도 가열 방식의 쿡탑.
  10. 유도 가열 방식의 쿡탑의 동작 방법에 있어서,
    워킹 코일에 전압을 인가하기 위해 인버터가 구동되는 단계;
    상기 인버터의 동작 주파수에 따른 출력 파워를 감지하는 단계; 및
    상기 동작 주파수 및 상기 출력 파워에 기초하여 상기 워킹 코일 상에 자성 용기가 존재하는지 판단하는 단계를 포함하는, 유도 가열 방식의 쿡탑의 동작 방법.
PCT/KR2021/000391 2020-12-04 2021-01-12 유도 가열 방식의 쿡탑 및 그의 동작 방법 WO2022119046A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/265,068 US20240015857A1 (en) 2020-12-04 2021-01-12 Induction heating type cooktop and operating method thereof
EP21900734.1A EP4258814A1 (en) 2020-12-04 2021-01-12 Induction heating type cooktop and operating method thereof
CN202180081747.2A CN116648996A (zh) 2020-12-04 2021-01-12 感应加热方式的灶具及其动作方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0168981 2020-12-04
KR1020200168981A KR20220079322A (ko) 2020-12-04 2020-12-04 유도 가열 방식의 쿡탑 및 그의 동작 방법

Publications (1)

Publication Number Publication Date
WO2022119046A1 true WO2022119046A1 (ko) 2022-06-09

Family

ID=81853425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000391 WO2022119046A1 (ko) 2020-12-04 2021-01-12 유도 가열 방식의 쿡탑 및 그의 동작 방법

Country Status (5)

Country Link
US (1) US20240015857A1 (ko)
EP (1) EP4258814A1 (ko)
KR (1) KR20220079322A (ko)
CN (1) CN116648996A (ko)
WO (1) WO2022119046A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100681957B1 (ko) * 2004-08-27 2007-02-15 가부시끼가이샤 도시바 가열 조리기
JP5599479B2 (ja) * 2011-02-14 2014-10-01 三菱電機株式会社 誘導加熱調理器
US20190141793A1 (en) * 2017-11-07 2019-05-09 Lg Electronics Inc. Induction heating device and method for determining loaded-object on the induction heating device
KR20200025929A (ko) * 2018-08-31 2020-03-10 엘지전자 주식회사 사용 편의성이 개선된 유도 가열 방식의 쿡탑
KR102183722B1 (ko) * 2019-05-30 2020-11-27 린나이코리아 주식회사 유도가열 조리기의 워킹코일 과열 제어시스템 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100681957B1 (ko) * 2004-08-27 2007-02-15 가부시끼가이샤 도시바 가열 조리기
JP5599479B2 (ja) * 2011-02-14 2014-10-01 三菱電機株式会社 誘導加熱調理器
US20190141793A1 (en) * 2017-11-07 2019-05-09 Lg Electronics Inc. Induction heating device and method for determining loaded-object on the induction heating device
KR20200025929A (ko) * 2018-08-31 2020-03-10 엘지전자 주식회사 사용 편의성이 개선된 유도 가열 방식의 쿡탑
KR102183722B1 (ko) * 2019-05-30 2020-11-27 린나이코리아 주식회사 유도가열 조리기의 워킹코일 과열 제어시스템 및 방법

Also Published As

Publication number Publication date
EP4258814A1 (en) 2023-10-11
US20240015857A1 (en) 2024-01-11
CN116648996A (zh) 2023-08-25
KR20220079322A (ko) 2022-06-13

Similar Documents

Publication Publication Date Title
WO2021201477A1 (ko) 유도 가열 방식의 쿡탑
WO2020046068A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2020046048A1 (en) Induction heating device and method of controlling the same
WO2021125455A1 (en) Induction heating type cooktop with reduced thermal deformation of thin film
WO2018147621A1 (ko) 유도 가열 조리기기
WO2019135492A1 (ko) 제어 알고리즘이 개선된 유도 가열 장치
WO2022119046A1 (ko) 유도 가열 방식의 쿡탑 및 그의 동작 방법
WO2020004892A1 (en) Cooking apparatus and method for controlling thereof
WO2021107353A1 (ko) 사용자의 제스처에 따라 특정 기능을 제공하는 전기 레인지
WO2021194173A1 (ko) 유도 가열 방식의 쿡탑
WO2021071076A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2021194302A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2022182066A1 (ko) 공진 주파수를 추종하는 가열 장치
WO2019226019A1 (ko) 조리장치 및 그 제어방법
WO2022145566A1 (ko) 유도 가열 방식의 쿡탑 및 그의 동작 방법
WO2021206310A1 (ko) 유도 가열 방식의 쿡탑
WO2023132416A1 (en) Induction heating type cooktop
WO2023120964A1 (ko) 유도 가열 방식의 쿡탑
WO2023101118A1 (en) Induction heating type cooktop
WO2022186422A1 (ko) 유도 가열 방식의 쿡탑
WO2021101044A1 (ko) 사용자의 개입 없이 화력이 조절되는 전기 레인지 및 이의 제어 방법
WO2022181876A1 (ko) 유도 가열 방식의 쿡탑
WO2021107354A1 (ko) 사용자의 개입 없이 특정 기능을 제공하는 전기 레인지
WO2019103493A1 (ko) 조리 장치 및 그 제어방법
WO2019194552A1 (ko) 사용자 경험 및 사용자 인터페이스가 개선된 존프리 타입 유도 가열 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900734

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18265068

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180081747.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021900734

Country of ref document: EP

Effective date: 20230704