WO2022117011A1 - 激光雷达的控制方法和装置、存储介质、电子装置 - Google Patents

激光雷达的控制方法和装置、存储介质、电子装置 Download PDF

Info

Publication number
WO2022117011A1
WO2022117011A1 PCT/CN2021/134871 CN2021134871W WO2022117011A1 WO 2022117011 A1 WO2022117011 A1 WO 2022117011A1 CN 2021134871 W CN2021134871 W CN 2021134871W WO 2022117011 A1 WO2022117011 A1 WO 2022117011A1
Authority
WO
WIPO (PCT)
Prior art keywords
lidar
target
energy receiving
time
scanning
Prior art date
Application number
PCT/CN2021/134871
Other languages
English (en)
French (fr)
Inventor
夏冰冰
舒博正
石拓
Original Assignee
北京一径科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京一径科技有限公司 filed Critical 北京一径科技有限公司
Publication of WO2022117011A1 publication Critical patent/WO2022117011A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present application relates to the field of laser technology, but is not limited to the field of laser technology, and in particular, relates to a control method and device for a laser radar, a storage medium, and an electronic device.
  • Lidar is a device that emits laser pulses, then collects echo waveforms, and calculates the time of arrival based on this, and then obtains parameters such as target distance and speed.
  • the reception of laser radar generally uses avalanche photodiode APD (the full name is Avalanche Photo Diode) as the detector.
  • APD the full name is Avalanche Photo Diode
  • the received energy of the echo signal of some laser signals cannot meet expectations. etc. or the point cloud image generated based on the energy of the echo signal presents a specific texture that is not conducive to ranging.
  • Embodiments of the present application provide a control method and device for a lidar, a storage medium, and an electronic device.
  • a method for controlling a lidar including: adjusting the lidar to avoid a GAP area; A landing point receives the echo signal of the laser pulse, wherein the energy receiving efficiency of the first landing point is higher than that of the second landing point, and the second landing point is different from the first landing point.
  • a control device for a lidar including: an adjustment unit configured to adjust the lidar to avoid a GAP area; a receiving unit configured to use the lidar After the laser pulse is emitted, the echo signal of the laser pulse is received at the first landing point on the lidar detector, wherein the energy receiving efficiency of the first landing point is higher than the energy receiving efficiency of the second landing point, and the second landing point different from the first drop.
  • a storage medium is also provided, where the storage medium includes a stored program, and the above method is executed when the program runs.
  • an electronic device including a memory, a processor, and a computer program stored in the memory and running on the processor, where the processor executes the above method through the computer program.
  • the laser radar is adjusted; after the laser radar is used to transmit the laser pulse, the echo signal of the laser pulse is received at the first landing point on the detector of the laser radar.
  • the energy receiving efficiency of the point is higher than the energy receiving efficiency of the second landing point (that is, the landing point of the echo signal on the detector when the lidar is not adjusted), so that the echo signal falls into the energy receiving efficiency as much as possible.
  • a high first landing point is equivalent to receiving energy at the first landing point and the second landing point at the same time, which can improve the energy receiving efficiency of the echo signal.
  • FIG. 1 is a flowchart of an optional control method for a lidar according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an optional laser receiving array according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an optional laser receiving distribution according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an optional mapping relationship according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an optional laser receiving distribution according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an optional laser receiving area according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an optional laser receiving distribution according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an optional laser receiving distribution according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an optional laser receiving distribution according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an optional laser receiving distribution according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an optional lidar control apparatus according to an embodiment of the present application.
  • FIG. 12 is a structural block diagram of a terminal according to an embodiment of the present application.
  • Lidar is a radar system that emits a laser beam to detect the location of a target. It mainly includes four core components: laser, receiver, signal processing unit and scanning unit (which can be realized by rotating mechanism, MEMS mirror, prism, mechanical mirror, polarization grating, optical phased array (OPA), etc.).
  • laser laser
  • receiver signal processing unit
  • scanning unit which can be realized by rotating mechanism, MEMS mirror, prism, mechanical mirror, polarization grating, optical phased array (OPA), etc.
  • Laser It is the laser emitting mechanism in the lidar. During the working process, it will light up in a pulsed manner;
  • the reflected light ie the echo signal
  • the signal processing unit is responsible for controlling the emission of the laser, processing the signal received by the receiver, and calculating the distance information of the target object based on this information;
  • Scanning unit It can be realized by rotating mechanism, MEMS mirror, prism, mechanical mirror, polarization grating, optical phased array (OPA), etc., to deflect the beam direction from the laser to scan the target object, realize wider field of view.
  • rotating mechanism MEMS mirror, prism, mechanical mirror, polarization grating, optical phased array (OPA), etc.
  • the APD array is used as an example to illustrate.
  • the area of light the GAP area.
  • the lidar adopts the APD array receiving scheme, there must be a GAP problem between channels caused by the APD array chip itself, and the GAP problem will affect the point cloud.
  • the ranging limit of the GAP point will be lower than the normal scanning point, and the gray value will be smaller than the normal scanning point, resulting in uneven point cloud image.
  • the strategy of adding data in multiple channels of the transimpedance amplifier of the receiving end circuit is adopted.
  • the energy of the GAP point is irradiated on the gap and the multiple channels, the energy of the multiple channels can be applied.
  • the addition achieves the increase of the overall energy, but in essence, this method cannot improve the signal-to-noise ratio, and there are still insurmountable defects.
  • GAP scanning points scanning points that fall in the GAP area
  • a method embodiment of the control method of the laser radar is provided, and the receiving energy of the GAP scanning points is weak.
  • the problem of low receiving efficiency a method by controlling the scanning mode of the lidar and adjusting the light-emitting sequence is proposed to make the ratio of the GAP scanning points to the total scanning points as small as possible, and improve the receiving efficiency of the lidar.
  • Fig. 1 is a flow chart of an optional laser radar control method according to an embodiment of the present application, which is applicable to a laser radar using an APD array receiving system. As shown in Fig. 1 , the method may include the following steps:
  • Step S102 adjusting the lidar.
  • the S102 may be: adjusting the lidar to avoid the GAP area.
  • Adjusting the lidar in S102 may include: adjusting working parameters of the lidar.
  • the working parameters include: emission parameters of the laser signal emitted by the lidar and/or scanning parameters of the lidar.
  • the GAP scanning point can be avoided by adjusting the scanning mode or controlling the light-emitting timing.
  • Step S104 after using the laser radar to transmit the laser pulse, the first landing point on the lidar detector receives the echo signal of the laser pulse, and the energy receiving efficiency of the first landing point is higher than the energy receiving efficiency of the second landing point .
  • the second drop point is different from the first drop point.
  • the second landing point may be the landing point of the echo signal on the detector when the lidar is not adjusted.
  • the above-mentioned first landing point is the landing point of the echo signal after adjustment of the lidar
  • the second landing point is the original landing point of the echo signal on the detector without adjustment.
  • the first landing point is outside the GAP area.
  • the second drop point is in the GAP area.
  • the energy reception efficiency of the drop points within the GAP area is lower than the energy reception efficiency of the drop points within the GAP area.
  • the landing point of a specific pulse can be adjusted.
  • the energy receiving efficiency of the first landing point is higher than the energy receiving efficiency of the second landing point, which means that the energy receiving efficiency of the pulse at the first landing point higher than the energy receiving efficiency at the second landing point;
  • this solution can also adjust the landing points of part or all of the pulses.
  • the energy receiving efficiency of the first landing point is higher than the energy receiving efficiency of the second landing point is It means that the average energy receiving efficiency of the part or all of the pulses at the respective first landing points is higher than the average energy receiving efficiency at the respective second landing points.
  • the laser radar is adjusted; after the laser radar is used to transmit the laser pulse, the echo signal of the laser pulse is received at the first landing point on the detector of the laser radar.
  • the energy receiving efficiency of the landing point is higher than that of the second landing point (that is, the landing point of the echo signal on the detector when the lidar is not adjusted), which can solve the problem of the low energy receiving efficiency of the lidar in the related art. technical problem.
  • This solution can avoid the GAP area points of the APD receiving end by adjusting the initial phase of the scanning control and the light-emitting time, and reduce the phenomenon of non-uniform reception of the scanning points, which can greatly improve the quality of the point cloud and improve the overall radar performance. And reduce power consumption to a certain extent.
  • Step 1 establishing a correlation between the incident angle of the laser pulse and the energy receiving efficiency of the echo signal.
  • Step 11 Obtain the area division information of the detector surface of the lidar.
  • the area division information is used to represent the first area of the detector surface (that is, the normal APD channel receiving area, the APD channel is the APD unit), the second area (that is, the partial area).
  • GAP area and the third area (ie GAP area), the receiving area on the detector surface (ie the first area, the second area and the third area) can be divided according to the spot size of the actual transmitting system, the echo signal in the first area
  • the energy receiving efficiency in one area is higher than that in the second area, and the energy receiving efficiency of the echo signal in the second area is higher than that in the third area.
  • the APD receiving array As shown in Figure 2, on the APD receiving array, there is a spaced area between the photosensitive surfaces of each APD unit that cannot receive light energy, that is, the GAP area. When light enters the GAP area, the corresponding light energy cannot be normally converted into electrical signals and amplified, resulting in the loss of this part of the light energy.
  • Figure 3 shows the distribution of different light incident angles in the GAP area and the normal APD channel receiving area. According to the characteristics of the optical transmission system, it can be known that the pixel arrangement and area ratio of the known APD receiving array can be size, and the focal length of the APD receiving array pixel and the receiving end lens to calculate the range of the incident angle when the incident light in space is in the GAP area.
  • f is the equivalent virtual focal length of the optical receiving lens
  • is the incident angle of the light and the normal plane.
  • P is the position where the light is focused on the APD pixel.
  • ⁇ gap arctan(P1/f)
  • ⁇ part arctan(P2/f)
  • P1 is the boundary line position between the GAP area and the partial GAP area
  • P2 is the partial GAP area and the normal area. borderline location.
  • Step 12 determine the first range, the second range, the third range, the first energy receiving efficiency, the second energy receiving efficiency and the third energy receiving efficiency of the incident angle of the laser pulse, and the first energy receiving efficiency is that the incident angle is located in the first energy receiving efficiency.
  • the fixed energy receiving efficiency of the echo signal in the first area in one range is the fixed energy receiving efficiency of the echo signal in the third area when the incident angle is in the third range
  • the second energy receiving efficiency is the incident angle
  • the energy receiving efficiency of the echo signal in the second region when it is located in the second range, and the value of the second energy receiving efficiency is related to the incident angle of the laser pulse.
  • the energy reception efficiency of the first area is normalized and taken as 1, then the energy reception efficiency in the second area is between 0 and 1, and the energy reception efficiency in the third area is close to 0 or 0 .
  • the size of the emitted laser spot on the APD receiving array element is half of the pixel size of a single channel of the APD, according to the arrangement on the APD pixel array element, the incident results of the light range at various angles in space can be obtained, see Figure 5.
  • ⁇ gap is the angular limit between the GAP area and part of the GAP area in FIG. 5
  • ⁇ part is the angular limit between the partial GAP area and the normal area
  • ⁇ all is the angular limit between the normal area and the invisible area.
  • the receiving efficiency when the incident angle ⁇ is less than ⁇ gap , the receiving efficiency is 0 because the incident light rays are all focused on the GAP area. Part of the light is normally incident on the APD pixel, so the actual receiving efficiency is a function of the incident angle ⁇ .
  • the actual relationship needs to be calculated according to the energy distribution of the spot and the specific GAP size as follows:
  • g( ⁇ a , ⁇ e ) g( ⁇ a ) ⁇ g( ⁇ e ), where g( ⁇ a ) and g( ⁇ e ) are the receiving efficiencies in azimuth and elevation directions, respectively.
  • the incident angle ⁇ is greater than ⁇ part and less than ⁇ all , the incident light rays are all irradiated on the APD pixel size, so the receiving efficiency at this time is 1.
  • Figure 6 can be obtained according to the arrangement of pixel sizes on the APD receiving array and the angular range that the actual APD array is responsible for receiving.
  • the same gray level is an area, and the air space can be divided into a GAP area (ie, area A), a partial GAP area (ie, area B) and a normal area (ie, area C).
  • GAP area ie, area A
  • partial GAP area ie, area B
  • normal area ie, area C
  • the final spatial scan is a two-dimensional distribution, so the above receiving efficiency angle for APD can be obtained through two-dimensional mapping to obtain the new receiving efficiency distribution result of the two-dimensional angle in space, as shown in the following formula:
  • ⁇ gap is the angular limit between the GAP area and part of the GAP area in FIG. 5
  • ⁇ part is the angular limit between the partial GAP area and the normal area
  • ⁇ all is the angular limit between the normal area and the invisible area.
  • the angular range of the GAP area along the azimuth direction and along the elevation direction is equal.
  • the actual situation may vary according to the size of the APD pixel.
  • the energy distribution of the actual spot that is, the point spread function of the laser, will also affect The receiving efficiency of the APD is assumed to be uniformly distributed here for the convenience of explanation from a principle point of view.
  • a laser radar using a MEMS (full name Micro-Electro-Mechanical System, Micro-Electro-Mechanical System) micro-galvanometer scanning system is used as an example for description.
  • MEMS full name Micro-Electro-Mechanical System, Micro-Electro-Mechanical System
  • a scan line will be formed in space, which is illustrated by using a 5*2 APD array to receive.
  • the final mapping relationship between the scan line and the APD receiving area is shown in Figure 7.
  • This solution proposes a method to control the position of each scanning point by adjusting the scanning mode or the laser light-emitting sequence, so that it falls in the normal scanning area as much as possible, and reduces the problem of the scanning point being in the GAP area, which leads to the lack of point clouds. See the following steps for details:
  • Step 2 adjust the lidar. Specifically, the following three implementation methods are included:
  • One is to adjust the emission timing of the laser pulses emitted by the lidar.
  • the time interval of the laser pulse can be obtained.
  • the starting time of the time interval (t i - ⁇ t,t i + ⁇ t) is the reference emission time t i of the laser pulse.
  • Subtract the time measurement redundancy ⁇ t, and the end time of the time interval is the reference emission time of the laser pulse plus the time measurement redundancy; select the target emission time from the time interval, and the energy received when the laser pulse is emitted at the target emission time
  • the efficiency is not lower than the energy receiving efficiency of the launch at any launch time in the time interval; the launch time of the laser pulse emitted by the lidar is adjusted to the target launch time.
  • the two-dimensional deflection angles of the MEMS are ⁇ a (t i ), ⁇ e (t i ), and ⁇ a (t i ) is the azimuth direction
  • the light exit angle, ⁇ e (t i ) is the light exit angle in the pitch direction. The relationship between the two-dimensional deflection angle of the MEMS and the light exit angle is explained later.
  • the light-emitting time t i of the i-th point can be controlled within the interval range of (t i - ⁇ t,t i + ⁇ t), where the size of ⁇ t depends on the measurement sequence control in the actual system design Redundancy, see Figure 8;
  • the APD receiving efficiency at this time is greater than the receiving efficiency of the light emitting at the time t i ; therefore, by controlling the emitting time of the laser, the The receiving efficiency of APD is uniformly distributed, reducing the influence of the GAP area;
  • the APD receiving efficiency of this point can be increased, thereby reducing the number of GAP scanning points and improving the overall receiving efficiency.
  • the initial phase of the MEMS mirror of the lidar can be adjusted. This can be achieved using the same or similar principles.
  • the time drift range (that is, the value range of ⁇ t 0 ) corresponding to the initial phase range of the MEMS mirror of the lidar can be obtained.
  • the phase corresponds to a time drift within the time drift range; the target time drift is selected from the time drift range, and the target initial phase corresponding to the target time drift is selected from the initial phase range.
  • the energy receiving efficiency of the laser pulses in the multiple laser pulses is not lower than the energy receiving efficiency when not adjusted; the initial phase of the MEMS mirror of the lidar is adjusted to the initial phase of the target.
  • the initial phase of the MEMS scan is adjusted so that the start and end moments of the scan line drift, so that the spatial distribution of each point is different, which is equivalent to adding a moment to the moment of each point.
  • the MEMS scanning generally conforms to the sinusoidal scanning mode, so the relationship between the initial phase ⁇ 0 and the time offset ⁇ t 0 satisfies Among them, f 0 is the scanning frequency when the MEMS is working at that time.
  • the time instants of the original points change from t 1 , t 2 ⁇ t i to t 1 + ⁇ t 0 , t 2 + ⁇ t 0 ⁇ t i + ⁇ t 0 , as shown in FIG. 9 .
  • the APD receiving efficiency ⁇ (t 1 ), ⁇ (t 2 )... ⁇ (t i ) corresponding to each point can be obtained, and then the modified points
  • the next step is to adjust the size of ⁇ t 0 to achieve the overall optimization of the APD reception efficiency of each new point.
  • ⁇ t 0 For details, please refer to the following criteria:
  • N represents the number of points, and i ranges from 1 to N
  • the GAP area does not emit light, and the non-GAP area emits light to save power consumption.
  • the point can be disabled. emits light, thereby reducing overall device power consumption.
  • the scanning spatial amplitude of the MEMS scanning mirror of the lidar can also be adjusted. It can be realized in other ways, and can also be realized by using the same or similar principles.
  • the scaling range of the scanning space of the MEMS scanning mirror of the lidar can be obtained; select the target scaling ratio from the scaling range, and the sum of the first energy receiving efficiency is not low
  • the sum of the second energy receiving efficiency is the sum of the energy receiving efficiencies of all laser pulses in one cycle after scaling the scanning space according to the target scaling ratio
  • the sum of the second energy receiving efficiencies is The sum of the energy receiving efficiencies of all laser pulses in the same period after scaling the scanning space by any scaling ratio except the target scaling ratio within the scaling range; the scanning space amplitude of the MEMS scanning mirror of the lidar scanned according to the target scaling ratio to zoom.
  • the method of avoiding the GAP point is performed by adjusting the scanning spatial amplitude of the MEMS, as follows:
  • a new angle ⁇ ' a (t i ), ⁇ ' e (t i ) can be calculated according to the scaling ratio of the MEMS.
  • N represents the number of points
  • i ranges from 1 to N.
  • the above embodiments only describe the MEMS lidar in detail.
  • the solution of this solution can be adopted, and the GAP points generated during scanning can be avoided by adjusting the scanning mode and/or controlling the light-emitting sequence.
  • This scheme adjusts the efficiency of the receiving system at each point by adjusting the amplitude range of the MEMS scanning, controlling the scanning amplitude in the pitch and azimuth directions, adjusting the initial phase of the MEMS scanning, or controlling the light-emitting moment of each point, so as to achieve optimal reception.
  • the GAP points are reduced, the received energy of the scanning points is uniform, and the point cloud quality is improved.
  • the key points of this scheme are: adjusting the scanning amplitude range (pitch and azimuth) of the MEMS; adjusting the initial phase of the MEMS scanning; adjusting the light-emitting moment of each point without changing the MEMS scanning; the above three points can be independently Applications can also be combined with each other to achieve optimization.
  • the beneficial effect of this solution is that GAP points are reduced, the overall point cloud quality is improved, the receiving efficiency of the system is optimized, and system power consumption can be reduced to a certain extent.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM
  • FIG. 11 is a schematic diagram of an optional control apparatus for a lidar according to an embodiment of the present application. As shown in FIG. 11 , the apparatus may include:
  • the adjustment unit 1101 is configured to adjust the lidar; the adjustment unit 1101 can be configured to adjust the lidar to avoid the GAP area;
  • the receiving unit 1103 is configured to receive the echo signal of the laser pulse at the first landing point on the detector of the lidar after using the laser radar to transmit the laser pulse, wherein the energy receiving efficiency of the first landing point is higher than that of the second landing point
  • the energy receiving efficiency of the landing point, the second landing point is the landing point of the echo signal on the detector when the lidar is not adjusted.
  • the adjusting unit 1101 in this embodiment may be used to perform step S102 in this embodiment of the present application, and the receiving unit 1103 in this embodiment may be used to perform step S104 in this embodiment of the present application.
  • the laser radar is adjusted; after the laser radar is used to transmit the laser pulse, the echo signal of the laser pulse is received at the first landing point on the lidar detector, and the energy of the first landing point is adjusted through the above adjustment.
  • the receiving efficiency is higher than the energy receiving efficiency of the second landing point (that is, the landing point of the echo signal on the detector when the laser radar is not adjusted), which can solve the technical problem of the low energy receiving efficiency of the laser radar in the related art.
  • the adjustment unit is further configured to perform at least one of the following: adjust the emission timing of the laser pulses emitted by the laser radar; adjust the scanning mode of the laser radar, for example, adjust the MEMS scanning mirror of the laser radar The initial phase of scanning is adjusted, and the scanning spatial amplitude of the MEMS scanning mirror of the lidar is adjusted.
  • the adjustment unit is further configured to acquire a time interval of the laser pulse, wherein the start moment of the time interval is the reference emission moment of the laser pulse minus the time measurement redundancy, and the end moment of the time interval is the laser pulse
  • the reference emission time is added with the time measurement redundancy
  • the target emission time is selected from the time interval, and the energy receiving efficiency of the laser pulse when the laser pulse is emitted at the target emission time is not lower than that at any emission time in the time interval. Efficiency; adjust the launch time of the laser pulse emitted by the lidar to the target launch time.
  • the adjustment unit is further configured to acquire a time drift range corresponding to an initial phase range of the MEMS mirror of the lidar, wherein any one of the initial phases in the initial phase range corresponds to a time drift within the time drift range select the target time drift amount from the time drift range, and select the target initial phase corresponding to the target time drift amount from the initial phase range, wherein the energy when scanning the laser pulses in the multiple laser pulses according to the target initial phase
  • the receiving efficiency is not lower than the energy receiving efficiency when it is not adjusted; the initial phase of the MEMS mirror of the lidar is adjusted to the initial phase of the target.
  • the adjustment unit is also used to obtain the zoom range of the scanning space of the MEMS scanning mirror of the lidar; select the target zoom ratio from the zoom range, wherein the sum of the first energy receiving efficiencies is not lower than the sum of the second energy receiving efficiencies. and, the sum of the first energy receiving efficiency is the sum of the energy receiving efficiencies of all laser pulses in one cycle after scaling the scanning space according to the target scaling ratio, and the second energy receiving efficiency sum is dividing the target scaling ratio according to the scaling range The sum of the energy receiving efficiencies of all laser pulses in the same period after scaling the scanning space with any scaling ratio other than that; scaling the scanning space amplitude scanned by the MEMS scanning mirror of the lidar according to the target scaling ratio.
  • the adjustment unit is further configured to establish a correlation between the incident angle of the laser pulse and the energy reception efficiency of the echo signal before adjusting the lidar.
  • the adjustment unit is further configured to acquire area division information of the detector surface of the lidar, where the detector surface of the lidar includes a first area, a second area and a third area, wherein the echo signal is in the first area.
  • the energy receiving efficiency in one area is higher than that in the second area, and the energy receiving efficiency of the echo signal in the second area is higher than that in the third area; determine the first range of the incident angle of the laser pulse, The second range, the third range, the first energy reception efficiency, the second energy reception efficiency and the third energy reception efficiency, wherein the first energy reception efficiency is the fixed value of the echo signal in the first region when the incident angle is in the first range Energy receiving efficiency, the third energy receiving efficiency is the fixed energy receiving efficiency of the echo signal in the third area when the incident angle is in the third range, and the second energy receiving efficiency is the echo signal in the second area when the incident angle is in the second range The value of the second energy receiving efficiency is related to the incident angle of the laser pulse.
  • the above modules may run in a corresponding hardware environment, and may be implemented by software or hardware, wherein the hardware environment includes a network environment.
  • a server or terminal for implementing the above-mentioned lidar control method is also provided.
  • the terminal or server can be integrated in the lidar, or can be connected to the lidar through a network or a communication cable. connect.
  • FIG. 12 is a structural block diagram of a terminal according to an embodiment of the present application.
  • the terminal may include: one or more (only one is shown in the figure) processors 1201 , a memory 1203 , and a transmission device 1205 , as shown in FIG. 12 , the terminal may also include an input and output device 1207 .
  • the memory 1203 may be configured to store software programs and modules, such as program instructions/modules corresponding to the laser radar control method and device in the embodiments of the present application.
  • the processor 1201 executes the software programs and modules stored in the memory 1203 by running the software programs and modules. , so as to perform various functional applications and data processing, that is, to realize the above-mentioned control method of the lidar.
  • Memory 1203 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory. In some instances, the memory 1203 may further include memory located remotely from the processor 1201, and these remote memories may be connected to the terminal through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the above-mentioned transmission device 1205 is configured to receive or transmit data via a network, and may also be configured to transmit data between the processor and the memory. Specific examples of the above-mentioned networks may include wired networks and wireless networks.
  • the transmission device 1205 includes a network adapter (Network Interface Controller, NIC), which can be connected to other network devices and routers through a network cable so as to communicate with the Internet or a local area network.
  • the transmission device 1205 is a radio frequency (Radio Frequency, RF) module, which is used for wirelessly communicating with the Internet.
  • RF Radio Frequency
  • the memory 1203 is used to store application programs.
  • the processor 1201 can call the application program stored in the memory 1203 through the transmission device 1205 to perform the following steps:
  • the echo signal of the laser pulse is received at the first landing point on the detector of the lidar, wherein the energy receiving efficiency of the first landing point is higher than that of the first landing point
  • the processor 1201 is further configured to perform the following steps:
  • a target scaling ratio is selected from the scaling range, wherein the sum of the first energy receiving efficiencies is not lower than the sum of the second energy receiving efficiencies, and the sum of the first energy receiving efficiencies is the The sum of the energy receiving efficiencies of all the laser pulses in one cycle after the scanning space is scaled, and the sum of the second energy receiving efficiencies is any scaling ratio other than the target scaling ratio within the scaling range the sum of the energy receiving efficiencies of all the laser pulses in the same period after scaling the scanning space;
  • the scanning space amplitude scanned by the MEMS scanning mirror of the lidar is scaled according to the target scaling ratio.
  • Embodiments of the present application also provide a storage medium.
  • the above-mentioned storage medium can be used to execute the program code of the control method of the lidar.
  • the above-mentioned storage medium may be located on at least one network device among multiple network devices in the network shown in the above-mentioned embodiment.
  • the storage medium is configured to store program codes for performing the following steps:
  • the echo signal of the laser pulse is received at the first landing point on the detector of the lidar, wherein the energy receiving efficiency of the first landing point is higher than that of the first landing point
  • a target scaling ratio is selected from the scaling range, wherein the sum of the first energy receiving efficiencies is not lower than the sum of the second energy receiving efficiencies, and the sum of the first energy receiving efficiencies is the The sum of the energy receiving efficiencies of all the laser pulses in one cycle after the scanning space is scaled, and the sum of the second energy receiving efficiencies is any scaling ratio other than the target scaling ratio within the scaling range the sum of the energy receiving efficiencies of all the laser pulses in the same period after scaling the scanning space;
  • the scanning space amplitude scanned by the MEMS scanning mirror of the lidar is scaled according to the target scaling ratio.
  • a computer program product or computer program comprising computer instructions stored in a computer readable storage medium.
  • the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions to cause the computer device to perform the steps of any of the above-described method embodiments.
  • the above-mentioned storage medium may include, but is not limited to, a U disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a mobile hard disk, a magnetic disk, or an optical disk, etc.
  • Various media that can store program code may include, but is not limited to, a U disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a mobile hard disk, a magnetic disk, or an optical disk, etc.
  • Various media that can store program code may include, but is not limited to, a U disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a mobile hard disk, a magnetic disk, or an optical disk, etc.
  • Various media that can store program code may include, but is not limited to, a U disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random
  • the integrated units in the above-mentioned embodiments are implemented in the form of software functional units and sold or used as independent products, they may be stored in the above-mentioned computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium,
  • Several instructions are included to cause one or more computer devices (which may be personal computers, servers, or network devices, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the disclosed client may be implemented in other manners.
  • the device embodiments described above are only illustrative, for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined or Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of units or modules, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达的控制方法和装置、存储介质、电子装置。其中控制方法包括:对激光雷达进行避开GAP区域的调整(S102);在利用激光雷达发射激光脉冲后,在激光雷达的探测器上的第一落点接收激光脉冲的回波信号,其中,第一落点的能量接收效率高于第二落点的能量接收效率,第二落点不同于第一落点(S104)。

Description

激光雷达的控制方法和装置、存储介质、电子装置
本公开是基于申请号为:202011406336.X、申请日为2020年12月02日的中国在先专利申请提出的,并且要求该中国在先专利申请的优先权,该中国在先专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及激光技术领域但不限于激光技术领域,具体而言,涉及一种激光雷达的控制方法和装置、存储介质、电子装置。
背景技术
激光雷达是一种通过发射激光脉冲、然后采集回波波形,并以此来计算到达时刻,进而获取目标距离、速度等参数的装置。激光器雷达的接收一般采用雪崩光电二极管APD(全称为Avalanche Photo Diode)作为探测器,以APD阵列为接收体制的激光雷达中在一些情况下,有些激光信号的回波信号的接收能量达不到预期等问题或者基于回波信号的能量生成的点云图呈现特定的不利于测距的纹理。
发明内容
本申请实施例提供了一种激光雷达的控制方法和装置、存储介质、电子装置。
根据本申请实施例的一个方面,提供了一种激光雷达的控制方法,包括:对激光雷达进行避开GAP区域的调整;在利用激光雷达发射激光脉冲后,在激光雷达的探测器上的第一落点接收激光脉冲的回波信号,其中,第一落点的能量接收效率高于第二落点的能量接收效率,第二落点不同于第一落点。
根据本申请实施例的另一方面,还提供了一种激光雷达的控制装置,包括:调整单元,被配置为对激光雷达进行避开GAP区域的调整;接收单元,被配置为在利用激光雷达发射激光脉冲后,在激光雷达的探测器上的第一落点接收激光脉冲的回波信号,其中,第一落点的能量接收效率高于第二落点的能量接收效率,第二落点不同于第一落点。
根据本申请实施例的另一方面,还提供了一种存储介质,该存储介质包括存储的程序,程序运行时执行上述的方法。
根据本申请实施例的另一方面,还提供了一种电子装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器通过计算机程序执行上述的方法。
在本申请实施例中,对激光雷达进行调整;在利用激光雷达发射激光脉冲后,在激光雷达的探测器上的第一落点接收激光脉冲的回波信号,通过上述调整,使得第一落点的能量接收效率高于第二落点(即不对激光雷达进行调整时回波信号在探测器上的落点)的能量接收效率,如此使得回波信号尽可能的落入到能量接收效较高的第一落点,相当于同时在第一落点和第二落点接收能量,可以提升回波信号的能量接收效率。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请实施例的一种可选的激光雷达的控制方法的流程图;
图2是根据本申请实施例的一种可选的激光接收阵列的示意图;
图3是根据本申请实施例的一种可选的激光接收分布的示意图;
图4是根据本申请实施例的一种可选的映射关系的示意图;
图5是根据本申请实施例的一种可选的激光接收分布的示意图;
图6是根据本申请实施例的一种可选的激光接收区域的示意图;
图7是根据本申请实施例的一种可选的激光接收分布的示意图;
图8是根据本申请实施例的一种可选的激光接收分布的示意图;
图9是根据本申请实施例的一种可选的激光接收分布的示意图;
图10是根据本申请实施例的一种可选的激光接收分布的示意图;
图11是根据本申请实施例的一种可选的激光雷达的控制装置的示意图;以及,
图12是根据本申请实施例的一种终端的结构框图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区 别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
激光雷达是一种以发射激光束来探测目标位置的雷达系统。主要包括激光器、接收器、信号处理单元和扫描单元(可通过旋转机构、MEMS反射镜、棱镜、机械镜、偏振光栅、光学相控阵(OPA)等方式实现)这四大核心部件。
激光器:是激光雷达中的激光发射机构,在工作过程中,它会以脉冲的方式点亮;
接收器:激光器发射的激光照射到障碍物以后,通过障碍物的反射,反射光线(即回波信号)会经由镜头组汇聚到接收器上;
信号处理单元:信号处理单元负责控制激光器的发射,以及接收器收到的信号的处理,根据这些信息计算出目标物体的距离信息等;
扫描单元:可以通过旋转机构、MEMS反射镜、棱镜、机械镜、偏振光栅、光学相控阵(OPA)等方式实现,用于使来自激光器的光束方向发生偏转,以对目标对象进行扫描,实现更宽的视场。
由于芯片生产工艺的问题,相邻两个APD通道的接收光敏面会存在间隙,此处以APD阵列为例进行说明,实际只要是阵列接收,都会存在两个探测器之间探测能力较弱甚至无法探测光的区域,即GAP区域。经过对激光雷达进行分析认识到:在激光雷达的体制中,如果激光雷达采用APD阵列接收方案,必然存在由于APD阵列芯片本身导致的在通道与通道之间的GAP问题,GAP问题会影响点云的均匀性,比如GAP点的测距极限会低于正常的扫描点,同时灰度值会小于正常的扫描点,导致点云图像出现不均匀的现象。例如,当激光在扫描的情况下,如果入射光线的角度使光斑恰好处于两个APD通道的光敏面中间间隙上时,因为间隙不产生任何的光电转换,所以这部分光斑能量被浪费掉了,从而导致APD通道接收的能量下降,整体接收效率下降,这些点就是所谓的GAP点,即接收效率小于正常扫描点的接收效率的点。GAP点处的探测距离和灰度值会远远小于正常的扫描点,实际在激光雷达点云扫描图像上存在栅格状的点云图像,即明暗交错的点云图。
这在APD阵列接收方案的激光雷达中是难以解决的问题,同时也没有成熟良好的解决办法。在一个实施方式中,采用了在接收端电路的跨阻放大器的多个通道进行数据相加的策略,当GAP点的能量照射到间隙和多个通道上时,可以采用将多个通道的能量相加实现整体能量的增加,但是本质上这种方法无法改善信噪比,仍然存在不可克服的缺陷。
针对采用APD阵列接收体制的激光雷达存在落在GAP区域的扫描点(以下简称:GAP扫描点)的问题,提供了一种激光雷达的控制方法的方法实施例,针对GAP扫描点接收能量较弱,接收效率较低的问题,提出了一种通过控制激光雷达扫描方式和调整发光时序的方法来使GAP扫描点占总扫描点的比例尽可能的小,提高激光雷达的接收效率。
图1是根据本申请实施例的一种可选的激光雷达的控制方法的流程图,适用于采用APD阵列接 收体制的激光雷达,如图1所示,该方法可以包括以下步骤:
步骤S102,对激光雷达进行调整。该S102可为:对激光雷达进行避开GAP区域的调整。
S102对激光雷达进行调整可包括:对激光雷达的工作参数进行调整。该工作参数包括:激光雷达发射激光信号的发射参数和/或激光雷达的扫描参数。
例如,可以通过调整扫描方式或者控制发光时序的方法来避开GAP扫描点。
步骤S104,在利用激光雷达发射激光脉冲后,在激光雷达的探测器上的第一落点接收激光脉冲的回波信号,第一落点的能量接收效率高于第二落点的能量接收效率。
第二落点不同于所述第一落点。例如,,所述第二落点可为不对激光雷达进行调整时回波信号在探测器上的落点。
上述第一落点为对激光雷达进行调整后回波信号的落点,第二落点为不调整时回波信号在探测器上的原始落点。
此处第一落点位于GAP区域外。第二落点位于GAP区域内。GAP区域内的落点的能量接收效率低于GAP区域内的落点的能量接收效率。
采用本方案可以对某个具体脉冲的落点进行调整,此时,第一落点的能量接收效率高于第二落点的能量接收效率就是指,该脉冲在第一落点的能量接收效率高于在第二落点的能量接收效率;采用本方案还可以对部分或者全部脉冲的落点进行调整,此时,第一落点的能量接收效率高于第二落点的能量接收效率就是指,这部分或者全部脉冲在各自的第一落点的平均能量接收效率高于在各自的第二落点的平均能量接收效率。
通过上述步骤S102至步骤S104,对激光雷达进行调整;在利用激光雷达发射激光脉冲后,在激光雷达的探测器上的第一落点接收激光脉冲的回波信号,通过上述调整,使得第一落点的能量接收效率高于第二落点(即不对激光雷达进行调整时回波信号在探测器上的落点)的能量接收效率,可以解决相关技术中激光雷达的能量接收效率较低的技术问题。
本方案可以通过调整扫描控制的初始相位和发光时刻等方法来进行APD接收端GAP区域点的规避,降低扫描点非均匀接收的现象,可以极大的改善点云的质量,提升整体雷达性能,并且一定程度上降低功耗。下文结合具体实施方式进一步详述本申请的技术方案:
步骤1,建立激光脉冲的入射角与回波信号的能量接收效率之间的关联。
步骤11,获取激光雷达的探测器表面的区域划分信息,该区域划分信息用于表示探测器表面的第一区域(即正常APD通道接收区域,APD通道即APD单元)、第二区域(即部分GAP区域)以及第三区域(即GAP区域),探测器表面的接收区域(即上述第一区域、第二区域以及第三区域)可根据实际发射系统的光斑大小进行划分,回波信号在第一区域的能量接收效率高于在第二区域的能量接收效率,回波信号在第二区域的能量接收效率高于在第三区域的能量接收效率。
关于APD接收阵列,如图2所示,在APD接收阵列上,每个APD单元的光敏面之间存在无法接收到光能量的间隔区域,也就是GAP区域。当光线入射到GAP区域的时候,对应的光能量无法被正常的转换为电信号并放大,导致这部分光能量损失。
图3所示为不同光线入射角度在GAP区域和正常APD通道接收区域上的分布,根据光学传输系统的特性可知,可以根据已知APD接收阵列上的像元排布方式和所占的面积比例大小,还有APD接收阵列像元与接收端透镜的焦距来计算出空间上入射的光线处于GAP区域时,入射角度的范围。
根据光学传输系统的特性,入射角度满足图4示出的映射关系:
P=f*tan(θ),
其中f为光学接收透镜的等效虚拟焦距,θ为光线与法平面的入射角度。P为光线聚焦在APD像元上的位置,利用每个区域(即GAP区域、部分GAP区域、正常APD通道接收区域)在光敏面的边缘为P1和P2,可以求出角度范围的两个极限值,如对于部分GAP区域:θ gap=arctan(P1/f)、θ part=arctan(P2/f),P1为GAP区域与部分GAP区域的交界线位置,P2为部分GAP区域与正常区域的交界线位置。
步骤12,确定激光脉冲的入射角的第一范围、第二范围、第三范围、第一能量接收效率、第二能量接收效率以及第三能量接收效率,第一能量接收效率为入射角位于第一范围时回波信号在第一区域的固定能量接收效率,第三能量接收效率为入射角位于第三范围时回波信号在第三区域的固定能量接收效率,第二能量接收效率为入射角位于第二范围时回波信号在第二区域的能量接收效率,第二能量接收效率的取值与激光脉冲的入射角相关。
若将能量接收效率进行标准化处理后,将第一区域的能量接收效率作为1,那么在第二区域的能量接收效率就在0到1之间,第三区域的能量接收效率接近0或者就是0。
如果发射的激光光斑尺寸在APD接收阵元上为APD单个通道的像元尺寸大小的一半,根据APD像元阵元上的排布可以获知空间上各个角度光线范围的入射结果,参见图5。
由上式可知接收效率满足以下角度关系:
Figure PCTCN2021134871-appb-000001
θ gap为图5中GAP区域与部分GAP区域的角度界限,θ part则为部分GAP区域与正常区域的角度界限,θ all为正常区域与不可见区域的角度界限。
在上述公式中,当入射角θ小于θ gap时,由于光线入射全部聚焦在GAP区域,所以接收效率为0,当入射角θ大于θ gap但小于θ part时,由于部分光线入射到GAP区域,部分光线正常入射到APD像元上,所以实际的接收效率是和入射角θ有关系的函数,实际的关系需要按照如下方式根据光斑的能量分布和具体GAP大小进行计算:
g(θ ae)=g(θ a)·g(θ e),其中,g(θ a)和g(θ e)分别为方位向和俯仰向的接收效率。
当入射角θ大于θ part、小于θ all时,入射光线全部照射在APD像元尺寸上,所以这时候的接收效率为1。
根据图5的关系,以2*2的接收阵列为例,可以根据APD接收阵列上像元尺寸的排列方式和实际APD阵列接收负责的角度范围得出图6。
如图6所示,相同灰度的为一个区域,空域可以划分为GAP区域(即区域A)、部分GAP区域(即区域B)以及正常区域(即区域C)。
最终空间上扫描是二维的分布,所以上面针对APD的接收效率角度可以通过二维映射获取到新的接收效率随空间上二维角度分布的结果,如下式所示:
Figure PCTCN2021134871-appb-000002
θ gap为图5中GAP区域与部分GAP区域的角度界限,θ part则为部分GAP区域与正常区域的角度界限,θ all为正常区域与不可见区域的角度界限,此处为了简便考虑,认为GAP区域沿方位向和沿俯仰向的角度范围是相等的,实际情况根据APD像元尺寸的大小不一样实际可能会有差异,同时实际光斑的能量分布,也就是激光的点扩展函数也会影响APD的接收效率,此处为了便于从原理的角度进行说明,假设为均匀分布。
此处以采用MEMS(全称为Micro-Electro-Mechanical System,微机电系统)微振镜扫描体制的激光雷达为例进行说明。MEMS微振镜扫描时会在空间上形成扫描线,以采用5*2的APD阵列接收进行说明,最终的扫描线和APD接收区域映射关系示意图参见图7。
从图7可知,有部分扫描点会落在APD像元(即APD单元)无法接收到光斑能量的GAP区域(即灰度较深的区域),和部分扫描点落在APD像元只接收到了部分光斑能量的部分GAP区域(即灰度最浅的区域),落在GAP区域的扫描点由于回来的能量无法被APD单元检测到,所以点云出现了丢失,落在部分GAP区域的扫描点由于回来的能量只有部分被APD单元检测接收,所以最远测距能力出现了衰减。
本方案提出了一种通过调整扫描方式或者激光器发光时序的手段来控制各个扫描点的位置,使其尽可能的落在正常扫描区域,减少扫描点处于GAP区域从而导致点云缺失等问题。具体参见以下步骤:
步骤2,对激光雷达进行调整。具体包括以下三种实现方式:
其一是,对激光雷达发射激光脉冲的发射时刻进行调整。
在对激光雷达发射激光脉冲的发射时刻进行调整时,可获取激光脉冲的时间区间,时间区间(t i-△t,t i+△t)的起始时刻为激光脉冲的参考发射时刻t i减去时间测量冗余量△t,时间区间的结束时刻为激光脉冲的参考发射时刻加上时间测量冗余量;从时间区间内选取目标发射时刻,激光脉冲 在目标发射时刻发射时的能量接收效率不低于时间区间内任一发射时刻发射时的能量接收效率;将激光雷达发射激光脉冲的发射时刻调整为目标发射时刻。
示例性地,通过控制激光器发光时序控制各个扫描点的位置的具体的操作实现方案如下:
针对第i个点的发光时刻t i,根据MEMS扫描的时刻t i可知MEMS的二维偏转角度为φ a(t i),φ e(t i),Φ a(t i)是方位向的出光角度,Φ e(t i)是俯仰向的出光角度,MEMS的二维偏转角度和出光角度之间的关系见后面解释,满足倍增因子映射,是线性的关系,然后通过已知光学扩束系统的角度转换计算出最终实际的空间上光束出光角度为Φ a(t i),Φ e(t i),由于已知空间上各个角度的对应的APD接收效率ρ=g(θ ae),所以可以计算出对应发光时刻t i范围内的APD接收效率ρ(t i);
针对第i个点的发光时刻t i,可以控制发光时刻在(t i-△t,t i+△t)的区间范围内,其中△t的大小取决于实际的系统设计中的测量时序控制冗余量,见图8;
在第i个扫描点的扫描时刻t i的发光调节范围(t i-Δt,t i+Δt)内,可以根据APD的接收效率公式搜寻出一个目标发射时刻t iop∈(t i-Δt,t i+Δt)使其满足下列等式:
Figure PCTCN2021134871-appb-000003
由上式接收效率可知,当控制激光器在MEMS扫描到t iop时刻发光的时候,此时的APD接收效率是要大于在t i时刻发光的接收效率的;因此通过控制激光器的发光的时刻,使APD的接收效率实现了均匀分布,减少了GAP区域的影响;
最后,对MEMS的每个扫描点进行控制调节对应的最佳接收效率时刻,即可以将该点的APD接收效率增加,从而减少GAP扫描点的数量,提高整体的接收效率。
其二是,在对激光雷达的扫描方式进行调整时,以扫描单元通过MEMS实现为例,可对激光雷达的MEMS反射镜的初始相位进行调整,若扫描单元通过旋转机构等其他方式实现,也可利用相同或者相似的原理实现。
在对激光雷达的MEMS反射镜的初始相位进行调整时,可获取与激光雷达的MEMS反射镜的初始相位范围对应的时刻漂移范围(即Δt 0的取值范围),初始相位范围中任一初始相位对应于时刻漂移范围内的一个时刻漂移量;从时刻漂移范围内选取目标时刻漂移量,并从初始相位范围中选取对应于目标时刻漂移量的目标初始相位,其中,在按照目标初始相位扫描多个激光脉冲中的激光脉冲时的能量接收效率不低于未调整时的能量接收效率;将激光雷达的MEMS反射镜的初始相位调整为目标初始相位。
示例性地,调整MEMS扫描的初始相位,使得扫描线的起始和结束时刻发生漂移,进而使每个 点在空间上的分布有所差异,等效于在每个点的时刻上添加一个时刻偏移△t 0,MEMS扫描时一般符合正弦的扫描方式,因此初始相位φ 0和时刻偏移Δt 0之间的关系满足
Figure PCTCN2021134871-appb-000004
其中f 0为当时MEMS工作时的扫描频率。
于是原始各个点的时刻由t 1,t 2…t i变为t 1+Δt 0,t 2+Δt 0…t i+Δt 0,如图9所示。
根据每个点的时刻位置t 1,t 2…t i,可以求出各个点对应的APD接收效率ρ(t 1),ρ(t 2)…ρ(t i),然后修改后的各个点的时刻位置t 1+Δt 0,t 2+Δt 0…t i+Δt 0可以解出新的APD接收效率ρ(t 1+Δt 0),ρ(t 2+Δt 0)…ρ(t i+Δt 0);
接下来就是通过调整△t 0的大小,使新的各个点的APD接收效率达到整体的最优化,具体可以参照如下准则:
Figure PCTCN2021134871-appb-000005
N表示点的个数,i的取值为1至N,
另外可以根据各个点的APD接收效率来实现GAP区域不发光,非GAP区域发光的方式进行节省功耗的设计,比如说当ρ(t i)小于设定阈值的情况下,该点就可以不发光,从而降低整体设备功耗。
其三是,在对激光雷达的扫描方式进行调整时,以扫描单元通过MEMS扫描镜实现为例,还可对激光雷达的MEMS扫描镜扫描的扫描空间幅度进行调整,若扫描单元通过旋转机构等其他方式实现,也可利用相同或者相似的原理实现。
在对激光雷达的MEMS扫描镜扫描的扫描空间幅度进行调整时,可获取激光雷达的MEMS扫描镜的扫描空间的缩放范围;从缩放范围中选取目标缩放比例,第一能量接收效率之和不低于第二能量接收效率之和,第一能量接收效率之和为按照目标缩放比例对扫描空间进行缩放后的一个周期内所有激光脉冲的能量接收效率之和,第二能量接收效率之和为按照缩放范围内除目标缩放比例之外的任一缩放比例对扫描空间进行缩放后的相同周期内所有激光脉冲的能量接收效率之和;按照目标缩放比例对激光雷达的MEMS扫描镜扫描的扫描空间幅度进行缩放。
示例性地,通过调节MEMS的扫描空间幅度来进行规避GAP点的方法,如下:
控制MEMS沿方位向或者俯仰向的扫描幅度范围,在整体的扫描幅度上进行比例放缩,参见图10,MEMS控制扫描范围进行俯仰向放缩调整的示意图如图10中上方的图所示,MEMS控制扫描范围进行方位向放缩调整的示意图如图10中下方的图所示;
同样根据上述方法,对于第i个点来说,可以根据MEMS放缩的比例解算出新的角度Φ' a(t i),Φ' e(t i),这部分主要是MEMS镜偏转角度到实际激光光束经过扩束镜之后的出射角度,按照常规的扩束系统来说,假设MEMS的偏转角度是θ m,那么经过扩束镜之后的出射角度就是 θ r=f*θ m,其中f是扩束镜的倍增因子,新的角度和MEMS偏转角度满足线性的关系。然后根据这个角度和已知的APD接收效率分布可以得出新的接收效率ρ new(t i),对于这种新的接收效率判断准则也依照整体效率的改善,准则如下:
Figure PCTCN2021134871-appb-000006
其中,N表示点的个数,i的取值为1至N。
以上实施例仅对MEMS激光雷达进行了详细说明。实际上只要采用APD阵列接收的激光雷达,均可以采用本方案的方案,通过调整扫描方式和/或控制发光时序的方法来避开扫描时产生的GAP点。
本方案通过调整MEMS扫描的幅度范围,控制俯仰向和方位向的扫描幅度,调整MEMS扫描的初始相位,或者控制各个点的发光时刻来调节各个点的接收系统效率,使其达到最优化接收,减少了GAP点,使扫描点的接收能量均匀,改善了点云质量。该方案的关键点在于:调节MEMS的扫描幅度范围(俯仰向和方位向);调节MEMS扫描的初始相位;在不改变MEMS扫描的情况下,调节各个点的发光时刻;以上三点均可以独立应用,也可以互相结合达到最优化。该方案的有益效果在于,减少了GAP点,提升了整体点云质量,优化了系统的接收效率,一定程度上可以降低系统功耗。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
根据本申请实施例的另一个方面,还提供了一种用于实施上述激光雷达的控制方法的激光雷达的控制装置。图11是根据本申请实施例的一种可选的激光雷达的控制装置的示意图,如图11所示,该装置可以包括:
调整单元1101,被配置为对激光雷达进行调整;该调整单元1101可被配置为对激光雷达进行避开GAP区域的调整;
接收单元1103,被配置为在利用激光雷达发射激光脉冲后,在激光雷达的探测器上的第一落点接收激光脉冲的回波信号,其中,第一落点的能量接收效率高于第二落点的能量接收效率,第二落点为不对激光雷达进行调整时回波信号在探测器上的落点。
需要说明的是,该实施例中的调整单元1101可以用于执行本申请实施例中的步骤S102,该实施例中的接收单元1103可以用于执行本申请实施例中的步骤S104。
此处需要说明的是,上述模块与对应的步骤所实现的示例和应用场景相同,但不限于上述实施例所公开的内容。需要说明的是,上述模块作为装置的一部分可以运行在相应的硬件环境中,可以通过软件实现,也可以通过硬件实现。
通过上述模块,对激光雷达进行调整;在利用激光雷达发射激光脉冲后,在激光雷达的探测器上的第一落点接收激光脉冲的回波信号,通过上述调整,使得第一落点的能量接收效率高于第二落点(即不对激光雷达进行调整时回波信号在探测器上的落点)的能量接收效率,可以解决相关技术中激光雷达的能量接收效率较低的技术问题。
在一些实施例中,调整单元还被配置为执行以下至少之一:对激光雷达发射激光脉冲的发射时刻进行调整;对所述激光雷达的扫描方式进行调整,例如,对激光雷达的MEMS扫描镜扫描的初始相位进行调整,对激光雷达的MEMS扫描镜扫描的扫描空间幅度进行调整。
在一些实施例中,调整单元还被配置为获取激光脉冲的时间区间,其中,时间区间的起始时刻为激光脉冲的参考发射时刻减去时间测量冗余量,时间区间的结束时刻为激光脉冲的参考发射时刻加上时间测量冗余量;从时间区间内选取目标发射时刻,其中,激光脉冲在目标发射时刻发射时的能量接收效率不低于时间区间内任一发射时刻发射时的能量接收效率;将激光雷达发射激光脉冲的发射时刻调整为目标发射时刻。
在一些实施例中,调整单元还被配置为获取与激光雷达的MEMS反射镜的初始相位范围对应的时刻漂移范围,其中,初始相位范围中任一初始相位对应于时刻漂移范围内的一个时刻漂移量;从时刻漂移范围内选取目标时刻漂移量,并从初始相位范围中选取对应于目标时刻漂移量的目标初始相位,其中,在按照目标初始相位扫描多个激光脉冲中的激光脉冲时的能量接收效率不低于未调整时的能量接收效率;将激光雷达的MEMS反射镜的初始相位调整为目标初始相位。
可选地,调整单元还用于获取激光雷达的MEMS扫描镜的扫描空间的缩放范围;从缩放范围中选取目标缩放比例,其中,第一能量接收效率之和不低于第二能量接收效率之和,第一能量接收效率之和为按照目标缩放比例对扫描空间进行缩放后的一个周期内所有激光脉冲的能量接收效率之和,第二能量接收效率之和为按照缩放范围内除目标缩放比例之外的任一缩放比例对扫描空间进行缩放后的相同周期内所有激光脉冲的能量接收效率之和;按照目标缩放比例对激光雷达的MEMS扫描镜扫描的扫描空间幅度进行缩放。
在一些实施例中,调整单元还被配置为在对激光雷达进行调整之前,建立激光脉冲的入射角与回波信号的能量接收效率之间的关联。
在一些实施例中,调整单元还被配置为获取激光雷达的探测器表面的区域划分信息,激光雷达的探测器表面包括第一区域、第二区域以及第三区域,其中,回波信号在第一区域的能量接收效率高于在第二区域的能量接收效率,回波信号在第二区域的能量接收效率高于在第三区域的能量接收效率;确定激光脉冲的入射角的第一范围、第二范围、第三范围、第一能量接收效率、第二能量接 收效率以及第三能量接收效率,其中,第一能量接收效率为入射角位于第一范围时回波信号在第一区域的固定能量接收效率,第三能量接收效率为入射角位于第三范围时回波信号在第三区域的固定能量接收效率,第二能量接收效率为入射角位于第二范围时回波信号在第二区域的能量接收效率,第二能量接收效率的取值与激光脉冲的入射角相关。
此处需要说明的是,上述模块与对应的步骤所实现的示例和应用场景相同,但不限于上述实施例所公开的内容。需要说明的是,上述模块作为装置的一部分可以运行相应的硬件环境中,可以通过软件实现,也可以通过硬件实现,其中,硬件环境包括网络环境。
根据本申请实施例的另一个方面,还提供了一种用于实施上述激光雷达的控制方法的服务器或终端,该终端或者服务器可以集成在激光雷达内,也可以通过网络或者通信线缆与雷达连接。
图12是根据本申请实施例的一种终端的结构框图,如图12所示,该终端可以包括:一个或多个(图中仅示出一个)处理器1201、存储器1203、以及传输装置1205,如图12所示,该终端还可以包括输入输出设备1207。
其中,存储器1203可被配置为存储软件程序以及模块,如本申请实施例中的激光雷达的控制方法和装置对应的程序指令/模块,处理器1201通过运行存储在存储器1203内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的激光雷达的控制方法。存储器1203可包括高速随机存储器,还可以包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器1203可进一步包括相对于处理器1201远程设置的存储器,这些远程存储器可以通过网络连接至终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
上述的传输装置1205被配置为经由一个网络接收或者发送数据,还可以被配置为处理器与存储器之间的数据传输。上述的网络具体实例可包括有线网络及无线网络。在一个实例中,传输装置1205包括一个网络适配器(Network Interface Controller,NIC),其可通过网线与其他网络设备与路由器相连从而可与互联网或局域网进行通讯。在一个实例中,传输装置1205为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
其中,示例性地,存储器1203用于存储应用程序。
处理器1201可以通过传输装置1205调用存储器1203存储的应用程序,以执行下述步骤:
对激光雷达进行调整;
在利用所述激光雷达发射激光脉冲后,在所述激光雷达的探测器上的第一落点接收所述激光脉冲的回波信号,其中,所述第一落点的能量接收效率高于第二落点的能量接收效率,所述第二落点为不对所述激光雷达进行调整时所述回波信号在所述探测器上的落点。
处理器1201还用于执行下述步骤:
获取所述激光雷达的MEMS扫描镜的扫描空间的缩放范围;
从所述缩放范围中选取目标缩放比例,其中,第一能量接收效率之和不低于第二能量接收效率之和,所述第一能量接收效率之和为按照所述目标缩放比例对所述扫描空间进行缩放后的一个周期 内所有所述激光脉冲的能量接收效率之和,所述第二能量接收效率之和为按照所述缩放范围内除所述目标缩放比例之外的任一缩放比例对所述扫描空间进行缩放后的相同周期内所有所述激光脉冲的能量接收效率之和;
按照所述目标缩放比例对所述激光雷达的MEMS扫描镜扫描的扫描空间幅度进行缩放。
可选地,本实施例中的具体示例可以参考上述实施例中所描述的示例,本实施例在此不再赘述。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令终端设备相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
本申请的实施例还提供了一种存储介质。在本实施例中,上述存储介质可以用于执行激光雷达的控制方法的程序代码。
在本实施例中,上述存储介质可以位于上述实施例所示的网络中的多个网络设备中的至少一个网络设备上。
在本实施例中,存储介质被设置为存储用于执行以下步骤的程序代码:
对激光雷达进行调整;
在利用所述激光雷达发射激光脉冲后,在所述激光雷达的探测器上的第一落点接收所述激光脉冲的回波信号,其中,所述第一落点的能量接收效率高于第二落点的能量接收效率,所述第二落点为不对所述激光雷达进行调整时所述回波信号在所述探测器上的落点。
在一些实施例中存储介质还被设置为存储用于执行以下步骤的程序代码:
获取所述激光雷达的MEMS扫描镜的扫描空间的缩放范围;
从所述缩放范围中选取目标缩放比例,其中,第一能量接收效率之和不低于第二能量接收效率之和,所述第一能量接收效率之和为按照所述目标缩放比例对所述扫描空间进行缩放后的一个周期内所有所述激光脉冲的能量接收效率之和,所述第二能量接收效率之和为按照所述缩放范围内除所述目标缩放比例之外的任一缩放比例对所述扫描空间进行缩放后的相同周期内所有所述激光脉冲的能量接收效率之和;
按照所述目标缩放比例对所述激光雷达的MEMS扫描镜扫描的扫描空间幅度进行缩放。
在一个可选的实施例中,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述方法中任一实施例的步骤。
在一些实施例中本实施例中的具体示例可以参考上述实施例中所描述的示例,本实施例在此不再赘述。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序 代码的介质。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
上述实施例中的集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在上述计算机可读取的存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在存储介质中,包括若干指令用以使得一台或多台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的客户端,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (18)

  1. 一种激光雷达的控制方法,包括:
    对激光雷达进行避开GAP区域的调整;
    在利用所述激光雷达发射激光脉冲后,在所述激光雷达的探测器上的第一落点接收所述激光脉冲的回波信号,其中,所述第一落点的能量接收效率高于第二落点的能量接收效率,所述第二落点为不对所述激光雷达进行调整时所述回波信号在所述探测器上的落点,所述第二落点不同于所述第一落点。
  2. 根据权利要求1所述的方法,其中,对所述激光雷达进行避开GAP区域的调整包括以下至少之一:对所述激光雷达发射所述激光脉冲的发射时刻进行调整;对所述激光雷达的扫描方式进行调整。
  3. 根据权利要求2所述的方法,其中,对所述激光雷达发射所述激光脉冲的发射时刻进行调整包括:
    获取所述激光脉冲的时间区间,其中,所述时间区间的起始时刻为所述激光脉冲的参考发射时刻减去时间测量冗余量,所述时间区间的结束时刻为所述激光脉冲的参考发射时刻加上时间测量冗余量;
    从所述时间区间内选取目标发射时刻,其中,所述激光脉冲在所述目标发射时刻发射时的能量接收效率不低于所述时间区间内任一发射时刻发射时的能量接收效率;
    将所述激光雷达发射所述激光脉冲的发射时刻调整为所述目标发射时刻。
  4. 根据权利要求2所述的方法,其中,对所述激光雷达的扫描方式进行调整包括:对所述激光雷达的MEMS反射镜的初始相位进行调整;对所述激光雷达的MEMS扫描镜的扫描空间幅度进行调整。
  5. 根据权利要求4所述的方法,其中,对所述激光雷达的MEMS反射镜的初始相位进行调整包括:
    获取与所述激光雷达的MEMS反射镜的初始相位范围对应的时刻漂移范围,其中,所述初始相位范围中任一初始相位对应于所述时刻漂移范围内的一个时刻漂移量;
    从所述时刻漂移范围内选取目标时刻漂移量,并从所述初始相位范围中选取对应于所述目标时刻漂移量的目标初始相位,其中,在按照所述目标初始相位扫描多个所述激光脉冲中的所述激光脉冲时的能量接收效率,高于或者等于不按照所述目标初始相位扫描激光脉冲时的能量接收效率;
    将所述激光雷达的MEMS反射镜的初始相位调整为所述目标初始相位。
  6. 根据权利要求4所述的方法,其中,对所述激光雷达的MEMS扫描镜的扫描空间幅度进行调整包括:
    获取所述激光雷达的MEMS扫描镜的扫描空间的缩放范围;
    从所述缩放范围中选取目标缩放比例;其中,第一能量接收效率之和不低于第二能量接收效率之和,所述第一能量接收效率之和:为按照所述目标缩放比例对所述扫描空间进行缩放后的一个周 期内所有所述激光脉冲的能量接收效率之和;所述第二能量接收效率之和为:按照所述缩放范围内除所述目标缩放比例之外的任一缩放比例对所述扫描空间进行缩放后的相同周期内所有所述激光脉冲的能量接收效率之和;
    按照所述目标缩放比例对所述激光雷达的MEMS扫描镜扫描的扫描空间幅度进行缩放。
  7. 根据权利要求1至6中任意一项所述的方法,其中,在对所述激光雷达进行调整之前,所述方法还包括:建立所述激光脉冲的入射角与回波信号的能量接收效率之间的关联。
  8. 根据权利要求1至7中任意一项所述的方法,其中,所述第二落点位于所述探测器的间隔GAP区域;所述第一落点位于所述探测器的GAP区域之外。
  9. 一种激光雷达的控制装置,包括:
    调整单元,被配置为对激光雷达进行避开GAP区域的调整;
    接收单元,被配置为在利用所述激光雷达发射激光脉冲后,在所述激光雷达的探测器上的第一落点接收所述激光脉冲的回波信号,其中,所述第一落点的能量接收效率高于第二落点的能量接收效率,所述第二落点不同于所述第一落点。
  10. 根据权利要求9所述的装置,其中,所述调整单元,被配置为执行以下至少之一:对所述激光雷达发射所述激光脉冲的发射时刻进行调整;对所述激光雷达的扫描方式进行调整。
  11. 根据权利要求10所述的装置,其中,所述调整单元,被配置为获取所述激光脉冲的时间区间,其中,所述时间区间的起始时刻为所述激光脉冲的参考发射时刻减去时间测量冗余量,所述时间区间的结束时刻为所述激光脉冲的参考发射时刻加上时间测量冗余量;从所述时间区间内选取目标发射时刻,其中,所述激光脉冲在所述目标发射时刻发射时的能量接收效率不低于所述时间区间内任一发射时刻发射时的能量接收效率;将所述激光雷达发射所述激光脉冲的发射时刻调整为所述目标发射时刻。
  12. 根据权利要求10所述的装置,其中,所述调整单元,被配置为对所述激光雷达的MEMS反射镜的初始相位进行调整;对所述激光雷达的MEMS扫描镜的扫描空间幅度进行调整。
  13. 根据权利要求12所述的装置,其中,所述调整单元,被配置为获取与所述激光雷达的MEMS反射镜的初始相位范围对应的时刻漂移范围,其中,所述初始相位范围中任一初始相位对应于所述时刻漂移范围内的一个时刻漂移量;从所述时刻漂移范围内选取目标时刻漂移量,并从所述初始相位范围中选取对应于所述目标时刻漂移量的目标初始相位,其中,在按照所述目标初始相位扫描多个所述激光脉冲中的所述激光脉冲时的能量接收效率,高于或者等于不按照所述目标初始相位扫描激光脉冲时的能量接收效率;将所述激光雷达的MEMS反射镜的初始相位调整为所述目标初始相位。
  14. 根据权利要求12所述的装置,其中,所述调整单元,被配置为获取所述激光雷达的MEMS扫描镜的扫描空间的缩放范围;从所述缩放范围中选取目标缩放比例;其中,第一能量接收效率之和不低于第二能量接收效率之和,所述第一能量接收效率之和:为按照所述目标缩放比例对所述扫描空间进行缩放后的一个周期内所有所述激光脉冲的能量接收效率之和;所述第二能量接收效率之和为:按照所述缩放范围内除所述目标缩放比例之外的任一缩放比例对所述扫描空间进行缩放后的 相同周期内所有所述激光脉冲的能量接收效率之和;
    按照所述目标缩放比例对所述激光雷达的MEMS扫描镜扫描的扫描空间幅度进行缩放。
  15. 根据权利要求9至14中任意一项所述的装置,其中,在对所述激光雷达进行调整之前,所述调整单元,还被配置为建立所述激光脉冲的入射角与回波信号的能量接收效率之间的关联。
  16. 根据权利要求10至15中任意一项所述的装置,其中,所述第二落点位于所述探测器的间隔GAP区域;所述第一落点位于所述探测器的GAP区域之外。
  17. 一种存储介质,其中,所述存储介质包括存储的程序,其中,所述程序运行时执行上述权利要求1至8任一项中所述的方法。
  18. 一种电子装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器通过所述计算机程序执行上述权利要求1至8任一项中所述的方法。
PCT/CN2021/134871 2020-12-02 2021-12-01 激光雷达的控制方法和装置、存储介质、电子装置 WO2022117011A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011406336.XA CN112698300B (zh) 2020-12-02 2020-12-02 激光雷达的控制方法和装置、存储介质、电子装置
CN202011406336.X 2020-12-02

Publications (1)

Publication Number Publication Date
WO2022117011A1 true WO2022117011A1 (zh) 2022-06-09

Family

ID=75506776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134871 WO2022117011A1 (zh) 2020-12-02 2021-12-01 激光雷达的控制方法和装置、存储介质、电子装置

Country Status (2)

Country Link
CN (1) CN112698300B (zh)
WO (1) WO2022117011A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115236684A (zh) * 2022-09-23 2022-10-25 浙江大华技术股份有限公司 激光雷达扫描方法、装置、计算机设备和存储介质
CN117075128A (zh) * 2023-09-11 2023-11-17 深圳市速腾聚创科技有限公司 测距方法、装置、电子设备和计算机可读存储介质
WO2024045521A1 (zh) * 2022-08-30 2024-03-07 上海禾赛科技有限公司 激光雷达及其扫描控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112698300B (zh) * 2020-12-02 2022-07-12 北京一径科技有限公司 激光雷达的控制方法和装置、存储介质、电子装置
CN113703003B (zh) * 2021-08-09 2022-11-18 北京一径科技有限公司 激光扫描控制方法及装置、存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274076A (ja) * 1996-04-04 1997-10-21 Denso Corp 反射測定装置及びこれを利用した車間距離制御装置
CN109188451A (zh) * 2018-10-15 2019-01-11 北京径科技有限公司 一种激光雷达系统
CN109884651A (zh) * 2019-04-03 2019-06-14 深圳市镭神智能系统有限公司 一种激光雷达扫描方法和激光雷达
CN109975787A (zh) * 2019-03-27 2019-07-05 深圳市速腾聚创科技有限公司 激光雷达接收系统和方法
CN111239749A (zh) * 2020-02-04 2020-06-05 成都英飞睿技术有限公司 一种新型高线数mems激光雷达系统
CN111289955A (zh) * 2020-05-06 2020-06-16 北京大汉正源科技有限公司 一种基于mems振镜的三维扫描激光雷达
CN112698300A (zh) * 2020-12-02 2021-04-23 北京一径科技有限公司 激光雷达的控制方法和装置、存储介质、电子装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898273B (zh) * 2015-05-27 2017-12-26 四川飞阳科技有限公司 光学扫描识别系统
CN107356930B (zh) * 2017-08-28 2024-05-17 广州市杜格科技有限公司 一种振镜全景扫描装置及其扫描方法
CN109709572B (zh) * 2019-02-01 2021-08-06 西安知微传感技术有限公司 一种半共轴光路接收激光雷达系统
US11442150B2 (en) * 2019-02-13 2022-09-13 Luminar, Llc Lidar system with spatial light modulator
CN111830513B (zh) * 2020-06-19 2021-05-11 深圳煜炜光学科技有限公司 一种基于硅基液晶的三维激光雷达和扫描方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274076A (ja) * 1996-04-04 1997-10-21 Denso Corp 反射測定装置及びこれを利用した車間距離制御装置
CN109188451A (zh) * 2018-10-15 2019-01-11 北京径科技有限公司 一种激光雷达系统
CN109975787A (zh) * 2019-03-27 2019-07-05 深圳市速腾聚创科技有限公司 激光雷达接收系统和方法
CN109884651A (zh) * 2019-04-03 2019-06-14 深圳市镭神智能系统有限公司 一种激光雷达扫描方法和激光雷达
CN111239749A (zh) * 2020-02-04 2020-06-05 成都英飞睿技术有限公司 一种新型高线数mems激光雷达系统
CN111289955A (zh) * 2020-05-06 2020-06-16 北京大汉正源科技有限公司 一种基于mems振镜的三维扫描激光雷达
CN112698300A (zh) * 2020-12-02 2021-04-23 北京一径科技有限公司 激光雷达的控制方法和装置、存储介质、电子装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024045521A1 (zh) * 2022-08-30 2024-03-07 上海禾赛科技有限公司 激光雷达及其扫描控制方法
CN115236684A (zh) * 2022-09-23 2022-10-25 浙江大华技术股份有限公司 激光雷达扫描方法、装置、计算机设备和存储介质
CN117075128A (zh) * 2023-09-11 2023-11-17 深圳市速腾聚创科技有限公司 测距方法、装置、电子设备和计算机可读存储介质
CN117075128B (zh) * 2023-09-11 2024-04-09 深圳市速腾聚创科技有限公司 测距方法、装置、电子设备和计算机可读存储介质

Also Published As

Publication number Publication date
CN112698300B (zh) 2022-07-12
CN112698300A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
WO2022117011A1 (zh) 激光雷达的控制方法和装置、存储介质、电子装置
US11988773B2 (en) 2-dimensional steering system for lidar systems
JP6854828B2 (ja) 物体のリアルタイム位置検知
US20180081061A1 (en) Adaptive transmission power control for a LIDAR
EP3391085B1 (en) Real time position sensing of objects
JP2020515855A (ja) 統合化されたlidar照明出力制御
CN111239708A (zh) 光检测和测距传感器
WO2022017366A1 (zh) 一种深度成像方法及深度成像系统
US20190129008A1 (en) Wide-angle high-resolution solid-state lidar system using grating lobes
CN112731443A (zh) 一种单光子激光雷达与短波红外图像融合的三维成像系统及方法
US20200012166A1 (en) Time-of-flight apparatus
WO2021196193A1 (zh) 激光雷达及自动驾驶设备
CN112526480B (zh) 固态激光雷达及固态激光雷达控制方法
WO2021026709A1 (zh) 一种激光雷达系统
WO2021175228A1 (zh) 激光雷达及其测距方法
US11668801B2 (en) LIDAR system
CN108226904A (zh) 一种激光雷达及其激光脉冲时序调整方法
CN111220962B (zh) 一种适用于偏振Gm-APD激光雷达的探测模型建立方法
CN108873554B (zh) 一种基于液晶光学相控阵的多用户捕获跟踪方法
CN108152822B (zh) 激光雷达及激光雷达控制方法
CN111398979A (zh) 基于飞行时间的测距方法和相关测距系统
WO2021129388A1 (zh) 一种信号处理方法及相关装置
CN111965838B (zh) 一种基于振动方式的多模光纤激光散斑抑制方案的参数选择方法
WO2022001228A1 (zh) 一种激光雷达系统及探测方法
WO2022170535A1 (zh) 测距方法、测距装置、系统及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900037

Country of ref document: EP

Kind code of ref document: A1