WO2024045521A1 - 激光雷达及其扫描控制方法 - Google Patents

激光雷达及其扫描控制方法 Download PDF

Info

Publication number
WO2024045521A1
WO2024045521A1 PCT/CN2023/078591 CN2023078591W WO2024045521A1 WO 2024045521 A1 WO2024045521 A1 WO 2024045521A1 CN 2023078591 W CN2023078591 W CN 2023078591W WO 2024045521 A1 WO2024045521 A1 WO 2024045521A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
module
light
emitting
points
Prior art date
Application number
PCT/CN2023/078591
Other languages
English (en)
French (fr)
Inventor
叶良琛
向少卿
Original Assignee
上海禾赛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛科技有限公司 filed Critical 上海禾赛科技有限公司
Publication of WO2024045521A1 publication Critical patent/WO2024045521A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters

Definitions

  • the present invention relates to the field of laser radar, and in particular to laser radar and a scanning control method thereof.
  • lidar technology With the advancement of lidar technology, its performance indicators are developing towards higher resolution and longer range. Higher resolution means the lidar's light emissions are closer together in time and space. However, limited by the laser safety threshold, the closer the luminous time interval and spatial interval are, the lower the laser safety threshold is, which causes the luminous energy to decrease. When other parameters of the system remain unchanged, the closer the lidar measurement range is. . Therefore, “higher resolution” and “further measuring range” of lidar are two goals that are difficult to achieve at the same time. They are a pair of contradictory performance parameters.
  • the lidar 10 generally includes a transmitting module 11, a control module 12 and a scanning module 13, wherein: the transmitting module 11 is suitable for emitting a detection beam. , forming a light-emitting point; the control module 12 controls the emission module 11 to emit light according to the preset light-emitting timing control parameters, and at the same time controls the movement of the scanning module 13 according to the preset scanning control parameters; the scanning module 13 is adapted to After receiving the detection beam and emitting the detection beam to form a scanning point, a series of scanning points in the scanning field of view form a preset scanning pattern.
  • the scanning module adopts a dual-axis structure with vertical fast axis and slow axis, which can form a scanning pattern in the scanning field of view as shown in Figure 2A, in which a total of 10 rows and 11 columns of scanning are formed. point (the number of rows and columns here is only for convenience of explanation, and is not limited to the above values in actual use).
  • Figure 2A the position change of the scanning point in the horizontal axis direction is caused by the movement of the scanning module in the fast axis direction, and the change of the position of the scanning point in the vertical axis direction is caused by the movement of the scanning module in the slow axis direction.
  • the scanning point * is the scanning point formed by the scanning module moving from left to right in the direction of the fast axis (corresponding to the x-axis, i.e., x-axis)
  • the scanning point x is the scanning point formed by the scanning module in the fast axis direction. The scanning point is formed when moving from right to left.
  • One reciprocating movement of the scanning module in the fast axis direction is regarded as a scanning cycle, and while the scanning module is reciprocating in the fast axis direction, it is also moving along the slow axis (corresponding to y axis, that is, y-axis) direction.
  • the spatial interval between adjacent scan points the spatial interval between scan point * and scan point x, that is, the lateral interval
  • the lateral interval will be reduced to the original 1 /2
  • the vertical spacing between adjacent scan points in the middle column is 0.5a.
  • embodiments of this specification provide laser radar and scanning control methods thereof, which can take into account laser
  • the two performance parameters of lidar, resolution and range can be avoided by improving at least one of the performance parameters, thereby avoiding the impact on the other performance parameter, and making the scanning points formed in the scanning field of view evenly distributed.
  • the lidar includes: a transmitting module and a scanning module, wherein: the transmitting module is adapted to emit a detection beam to form a sequence of luminous points; the scanning module , suitable for receiving the detection beam and emitting the detection beam to form a scanning pattern in the scanning field of view; the scanning control method includes:
  • the movement of the scanning module and the emission of light of the emission module are controlled to form a scanning point sequence, and a plurality of the scanning point sequences are in A scanning pattern with evenly distributed scanning points is formed in the scanning field of view; wherein: the preset scanning control parameters and the lighting timing control parameters satisfy a matching relationship, so that the sequence of lighting points corresponds to the pose of the scanning module Set up to form the scan point sequence.
  • the scanning module forms a scanning pattern through multiple consecutive scanning cycles, and in the multiple consecutive scanning cycles, the lighting timing of the light-emitting point sequences corresponding to different scanning point sequences is uniform with the posture corresponding to the scanning module. Consistent mapping relationship.
  • the scanning direction of the scanning module in any scanning period and the lighting timing of the light-emitting point sequence have a preset corresponding relationship.
  • setting the scanning control parameters and the lighting timing control parameters to meet a matching relationship includes:
  • the emission module sets the lighting timing control parameters of the emission module of the scanning module in any scan cycle, so that when the scanning module scans along the first direction in the scan cycle, the emission module forms a light-emitting module according to the first time interval. A sequence of light-emitting points.
  • the emission module does not form a sequence of light-emitting points, wherein the first direction and the second direction are opposite.
  • setting the scanning control parameters and the lighting timing control parameters to satisfy a matching relationship includes:
  • the scanning direction of the scanning module in any scanning cycle, the starting deflection position of the corresponding scanning direction, and the lighting timing of the light-emitting point sequence are set to have a preset corresponding relationship, so that the scanning module can scan along different scanning directions in the scanning cycle.
  • the azimuth angles of the field of view corresponding to the sequence of luminous points are staggered.
  • the setting of the scanning module to have a preset corresponding relationship between the scanning direction, the starting deflection position of the corresponding scanning direction, and the lighting timing of the light-emitting point sequence in any scanning period includes:
  • the scanning module sets the luminescence control parameters of the emission module of the scanning module in any scanning cycle, such that In the scanning period, when scanning along the first direction and when scanning along the second direction, the scanning module forms a sequence of light-emitting points according to the second time interval, and the start of scanning along the second direction
  • the distance between the deflection position and the end deflection position of scanning along the first direction is half of the deflection amount of the corresponding position of the scanning module in the second time interval, wherein the first direction and the second deflection position are In the opposite direction.
  • the sequence of light-emitting points includes at least one column, and each column includes at least two light-emitting points.
  • the scan control method also includes:
  • the number of luminous points in the luminous point sequence, the spacing between adjacent luminous points in the column direction and the position of the luminescent points are set.
  • the number of light-emitting points is an even number
  • the spacing between adjacent light-emitting points in the column direction is an odd multiple of the spacing corresponding to the resolution.
  • the emission module includes: a plurality of light-emitting units, the plurality of light-emitting units are adapted to emit detection beams corresponding to each light-emitting point in the sequence of light-emitting points.
  • the transmitting module includes:
  • At least one light-emitting unit adapted to emit a detection beam
  • a uniform light unit is disposed on the light exit side of at least one of the light-emitting units, so that the detection beam emitted by the light-emitting unit forms each light-emitting point in the light-emitting point sequence.
  • the laser radar includes a plurality of transmitting modules, the plurality of transmitting modules are arranged in regions, each transmitting module is suitable to form its own preset scanning pattern, and the scanning patterns of the multiple transmitting modules are spliced to form the said Scan pattern in the scan field of view.
  • lidar including:
  • a transmitting module suitable for emitting multiple detection beams to form a sequence of luminous points
  • a scanning module adapted to receive the detection beam and emit the detection beam to form a scanning pattern in the scanning field of view
  • a storage module adapted to store the preset scanning control parameters of the scanning module and the lighting timing control parameters of the transmitting module, and the preset scanning control parameters and the lighting timing control parameters satisfy the preset
  • the matching relationship enables the sequence of light-emitting points to be set correspondingly to the pose of the scanning module
  • a control module adapted to control the movement of the scanning module and the emission module to emit light based on the scanning control parameters and the lighting timing control parameters stored in the storage module to form a scanning point sequence, and a plurality of the scanning point sequences are in A scanning pattern with evenly distributed scanning points is formed in the scanning field of view.
  • the scanning module forms the scanning pattern through multiple consecutive scanning cycles
  • the stored scanning control parameters and the lighting timing control parameters satisfy a preset matching relationship, so that in multiple consecutive scanning cycles, the lighting timing of the lighting point sequence corresponding to the different scanning point sequence matches the lighting timing of the lighting point sequence.
  • the poses corresponding to the scanning modules have a uniform mapping relationship.
  • the stored scanning control parameters and the lighting timing control parameters satisfy a preset matching relationship, so that the scanning direction and the lighting point sequence of the scanning module in any scanning period are consistent.
  • Timings have preset correspondences.
  • the stored scanning control parameters and the lighting timing control parameters satisfy the following matching relationship: the lighting timing control parameters of the emission module in any scan cycle of the scanning module, such that in In the scanning cycle, when the scanning module scans along the first direction, the emission module emits light according to the first time interval to form a sequence of luminous points; when scanning along the second direction, the emission module does not form a luminous point sequence.
  • a sequence of points, wherein the first direction and the second direction are opposite.
  • the stored scanning control parameters and the lighting timing control parameters satisfy a preset matching relationship, so that the scanning module can adjust the scanning direction and the start of the corresponding scanning direction in any scanning cycle.
  • the deflection position and the lighting timing of the light-emitting point sequence have a preset corresponding relationship, so that when the scanning module scans in different directions during the scanning period, the corresponding field of view azimuth angles of the light-emitting point sequence are staggered.
  • the stored scanning control parameters and the lighting timing control parameters satisfy the following matching relationship: the lighting timing control parameters of the emission module in any scan cycle of the scanning module, such that in In the scanning period, when scanning along the first direction and when scanning along the second direction, the scanning module forms a sequence of light-emitting points according to the second time interval, and the start of scanning along the second direction
  • the distance between the deflection position and the end deflection position of scanning along the first direction is half of the deflection amount of the corresponding position of the scanning module in the second time interval, wherein the first direction and the second deflection position are In the opposite direction.
  • the sequence of light-emitting points includes at least one column, and each column includes at least two light-emitting points.
  • the storage module is also suitable for storing the preset number of luminous points in the luminous point sequence, the spacing between adjacent luminous points in the column direction and the luminescent point position information based on the resolution of the lidar. .
  • the number of stored light-emitting points is an even number
  • the spacing between adjacent light-emitting points in the column direction is an odd multiple of the spacing corresponding to the resolution.
  • the emission module includes: a plurality of light-emitting units, the plurality of light-emitting units are adapted to emit detection beams corresponding to each light-emitting point in the sequence of light-emitting points.
  • the transmitting module includes:
  • At least one light-emitting unit adapted to emit a detection beam
  • a uniform light unit is disposed on the light exit side of at least one of the light-emitting units, so that the detection beam emitted by the at least one light-emitting unit forms each light-emitting point in the light-emitting point sequence.
  • the scanning control parameters of the scanning module and the luminescence timing control parameters of the transmitting module can be set, and the preset scanning control parameters and luminescence The timing control parameters satisfy the preset matching relationship, so that the light-emitting point sequence is set correspondingly to the posture of the scanning module, and based on the preset scanning control parameters of the scanning module and the lighting timing control parameters of the transmitting module, control
  • the scanning module moves and controls the emitting module to emit light to form a sequence of scanning points. Therefore, by adjusting the sequence of light-emitting points and adjusting the posture of the scanning module, multiple scanning points are evenly distributed at each azimuth angle of the scanning field of view.
  • the resolution of the lidar can be improved while other parameters remain unchanged; while the resolution remains unchanged, the scanning can be increased
  • the pose interval and/or the luminous interval increase the spatial interval and time interval corresponding to adjacent scanning points, so that it can have a higher laser safety threshold, emit stronger laser energy, and obtain a longer measurement range, so it can Taking into account the two performance parameters of lidar resolution and range.
  • each luminous point in the luminous point sequence can have a higher laser safety threshold, and the lidar can be used throughout the entire scan. Resolution is more consistent across the field of view, improving lidar detection performance.
  • the timing of the light-emitting point sequences corresponding to different scanning point sequences has a uniform and consistent correspondence relationship with the posture corresponding to the scanning module, therefore the multiple images formed in multiple consecutive scanning cycles are A sequence of scanning points can form a scanning pattern with evenly distributed scanning points in the scanning field of view, so that the resolution of the lidar in the entire scanning field of view can be more consistent, thereby improving the detection performance of the lidar.
  • the scanning direction of the scanning module in any scan cycle and the lighting timing of the light-emitting point sequence to have a preset corresponding relationship, that is, by matching the scanning direction and the lighting timing of the light-emitting point sequence, it is possible to simultaneously Take into account the two performance parameters of lidar, resolution and range, and avoid increasing one parameter while lowering the other.
  • the scanning module forms a light emitting module according to the first time interval when scanning along the first direction in the scanning period.
  • the first direction and the second direction are opposite, that is to say, in one scanning period, it only emits light when scanning along the first direction, but does not emit light when moving in the opposite direction of the first direction.
  • the luminous point sequence is formed according to the first time interval when scanning along the first direction, the spatial intervals and time intervals of the scanning point sequence can be consistent, and thus the scanning points can be evenly distributed in the scanning field of view. Scan the graphic.
  • the transmitting module does not emit light when scanning along the second direction in one scanning cycle of the scanning module, because when the scanning module scans along the first direction, a sequence of luminous points is formed according to the first time interval, so by emitting light
  • the point sequence cooperates with the posture adjustment of the scanning module so that the scanning point sequence with multiple scanning points is evenly distributed at each azimuth angle in the scanning field of view, thereby improving the resolution and taking into account the resolution and range of the lidar.
  • the scanning direction, the starting deflection position of the corresponding scanning direction, and the lighting timing of the light-emitting point sequence have a preset corresponding relationship, that is, by controlling the scanning direction in any scanning cycle.
  • the matching relationship between the two scanning control parameters of the scanning direction and the starting deflection position of the corresponding scanning direction and the lighting timing of the light-emitting points enables the scanning module to scan along different scanning directions in any scanning period.
  • the staggered distribution of field of view azimuth angles increases the scanning pose interval and/or luminescence interval while maintaining the same resolution, so that the corresponding spatial and time intervals of adjacent scanning points are increased, thereby achieving higher accuracy.
  • the laser safety threshold can emit stronger laser energy and obtain a longer measurement range. Therefore, the two performance parameters of lidar resolution and measurement range can be taken into consideration to avoid increasing one parameter index and reducing the other parameter index.
  • the luminescence control parameters of the corresponding light-emitting unit of the scanning module in any scanning period, such that when the scanning module scans along the first direction and scans along the second direction during the scanning period, , all form a sequence of light-emitting points according to the second time interval, and the distance between the starting deflection position of scanning along the second direction and the ending deflection position of scanning along the first direction is the distance between the scanning module and the second time interval. corresponds to half of the position deflection, wherein the first direction and the second direction are opposite. Therefore, the scanning point sequence formed by scanning along the first direction and the scanning point sequence formed by scanning along the second direction are in the scanning view.
  • Uniform interleaving in the field can form a scanning pattern with evenly distributed scanning points in the scanning field of view. While maintaining the same resolution, the scanning posture interval and/or the luminescence interval are increased so that adjacent scanning points correspond to each other. The spatial interval and time interval are increased, so that a higher laser safety threshold can be achieved, stronger laser energy can be emitted, and a longer measurement range can be obtained, so the two performance parameters of lidar resolution and measurement range can be taken into consideration , to avoid increasing one parameter index and reducing the other parameter index.
  • the sequence of light-emitting points includes at least one column, and each column includes at least two light-emitting points, Therefore, at least the number of scanning points at the same field of view azimuth can be increased in the column direction (or scanning axis direction), thus improving the resolution of the lidar while keeping other parameters unchanged.
  • the emission module includes at least one light-emitting unit and a light-diffusing unit.
  • the detection beam emitted by the light-emitting unit forms the light emitting unit.
  • fewer light-emitting units can be used to achieve more light-emitting points, thereby improving the resolution of the lidar.
  • Figure 1 shows a schematic structural diagram of an existing scanning lidar
  • Figures 2A and 2B show schematic diagrams of scanning patterns in the scanning field of view formed by using existing scanning lidar
  • Figure 3 shows a schematic diagram of the scanning trajectory of a scanning point sequence in the scanning field of view formed by the scanning control method in the embodiment of the present invention
  • Figure 4 shows a schematic diagram of a formation method of a light-emitting point sequence in an embodiment of the present invention
  • Figure 5A shows a schematic diagram of a scanning pattern formation process in the scanning field of view in the embodiment of the present invention
  • Figure 5B shows a schematic diagram of a scanning pattern in the scanning field of view formed by the forming process shown in Figure 5A;
  • Figure 6A shows a schematic diagram of another scanning pattern formation process in the scanning field of view in the embodiment of the present invention.
  • Figure 6B shows a schematic diagram of a scanning pattern in the scanning field of view formed by the forming process shown in Figure 6A;
  • Figure 7 shows a schematic diagram of the scanning trajectory of another scanning point sequence in the scanning field of view formed by using another scanning control method in an embodiment of the present invention
  • Figure 8A shows a schematic diagram of another scanning pattern formation process in the scanning field of view in the embodiment of the present invention.
  • Figure 8B shows a schematic diagram of a scanning pattern in the scanning field of view formed by the forming process shown in Figure 8A;
  • Figure 9A shows a schematic diagram of another scanning pattern formation process in the scanning field of view in the embodiment of the present invention.
  • Figure 9B shows a schematic diagram of a scanning pattern in the scanning field of view formed by the forming process shown in Figure 9A;
  • 10A to 10C show schematic diagrams of scanning patterns corresponding to different scanning modes in the scanning field of view in the embodiment of the present invention
  • Figure 11 shows a schematic structural diagram of a lidar in an embodiment of the present invention.
  • embodiments of the present invention propose a scanning control method for lidar.
  • the transmitting module is adapted to emit a detection beam to form a sequence of luminous points.
  • Control parameters and lighting timing control parameters of the emission module control the movement of the scanning module and control the lighting of the scanning module to form a scanning point sequence, and a plurality of the scanning point sequences form uniform scanning points in the scanning field of view Distributed scanning pattern; wherein: the preset scanning control parameters and the lighting timing control parameters satisfy a matching relationship, so that the lighting point sequence is set correspondingly to the posture of the scanning module to form the scanning point sequence.
  • a sequence of luminous points composed of multiple luminous points is formed through the transmitting module.
  • the scanning control parameters of the scanning module and the luminous timing control parameters of the transmitting module can be set, and the preset It is assumed that the scanning control parameters and the scanning luminescence timing control parameters satisfy a matching relationship, so that the luminous point sequence is set correspondingly to the posture of the scanning module. In this way, the scanning control parameters of the scanning module and the preset scanning control parameters can be set.
  • the emission timing sequence control parameters of the emission module control the movement of the scanning module and control the emission of the emission module to form a sequence of scanning points.
  • the orientation of each field of view in the scanning field of view is The angular uniform distribution has a scanning point sequence with multiple scanning points. Therefore, through the coordinated setting of the scanning control parameters and the luminescence timing control parameters, the resolution of the lidar can be improved while keeping other parameters unchanged; while maintaining the resolution.
  • the scanning pose interval and/or the luminous interval can be increased to increase the spatial and time intervals corresponding to adjacent scanning points, thereby having a higher laser safety threshold and emitting stronger laser energy. , to obtain a longer measurement range, so it can take into account the two performance parameters of lidar resolution and measurement range.
  • each luminous point in the luminous point sequence can have a higher laser safety threshold, and the laser radar can be used throughout the entire scan. Resolution is more consistent across the field of view, improving lidar detection performance.
  • the scanning module can form a scanning pattern through multiple consecutive scan cycles. Therefore, the scan control parameters and the light emission timing control parameters can be set to meet a matching relationship, so that in multiple consecutive scan cycles, different The lighting timing of the light-emitting point sequence corresponding to the scanning point sequence has a uniform mapping relationship with the posture corresponding to the scanning module.
  • the timing of the lighting point sequences corresponding to different scanning point sequences is consistent with the scanning point sequence.
  • the postures corresponding to the scanning module have a uniform corresponding relationship, so the multiple scanning point sequences formed in multiple consecutive scanning cycles can form a scanning pattern with evenly distributed scanning points in the scanning field of view, thereby enabling the lidar to Resolution is more consistent across the entire scanning field of view, improving lidar detection performance.
  • one of the scan control parameters can be set to correspond to the light-emitting timing of the light-emitting point sequence.
  • the scanning direction of the scanning module in any scan cycle and the light-emitting timing of the light-emitting point sequence can be set. There is a corresponding relationship.
  • the lighting timing control parameters of the emission module of the scanning module in any scan cycle can be set, so that when the scanning module scans along the first direction in the scan cycle, the emission module follows the first The time interval forms a sequence of luminous points, and when scanning along the second direction, the emission module does not form a sequence of luminous points, wherein the first direction and the second direction are opposite.
  • the scanning trajectory of the sequence of scanning points formed sequentially from left to right along the x-axis in the scanning field of view is the first time interval
  • the corresponding spatial interval between adjacent scan point sequences is 1b, where, for ease of understanding, each * represents a scan point sequence, and one scan point sequence is represented by Corresponding to a sequence of luminous points, it is scanned by the scanning module.
  • any scanning period when the scanning module scans along the second direction, corresponding to the x-axis direction from right to left in the scanning field of view, since no luminous point sequence is formed, that is, when the scanning module scans along the second direction, the transmitting module No light is emitted, so no sequence of scan points is formed. Then comes the next scanning cycle.
  • the transmitting module continues to form a sequence of light-emitting points according to the first time interval, corresponding to the scanning points formed sequentially from left to right along the x-axis in the scanning field of view.
  • the time interval between the scanning point sequences is the first time interval.
  • the scanning module scans in the second direction, no luminous point sequence is formed, that is, the transmitting module does not emit light, so no scanning points are formed. sequence, the scanning module reciprocates according to the above process. Correspondingly, the transmitting module forms a sequence of light-emitting points according to the preset light-emitting timing control parameters. After multiple scanning cycles, the scanning points as shown in Figure 3 can be formed.
  • the scanning point sequence is evenly arranged in the entire scanning field of view, and the scanning control parameters of the scanning module (such as the scanning speed of the scanning module in the fast axis direction and slow axis direction) and the luminescence of the transmitting module
  • the timing control parameters (such as the luminous interval) do not change, so the spatial interval and time interval of the scanning point sequence in the x-axis direction do not change compared to the scanning points in Figure 2A, that is, the luminous energy and measurement range do not change.
  • the scanning points in Figure 2A are replaced with the scanning point sequence with multiple scanning points in Figure 3, which increases the number of scanning points and improves the resolution.
  • the sequence of light-emitting points includes at least one column, and each column includes at least two light-emitting points.
  • the number of light-emitting points in the light-emitting point sequence, the spacing between adjacent light-emitting points in the column direction, and the position of the light-emitting points can be set based on the resolution of the lidar.
  • the light-emitting point sequence A0 is specifically a lattice arranged vertically.
  • the number of light-emitting points in the light-emitting point sequence A0 is k, and the light-emitting points can be equally spaced. Can also be non-equally spaced.
  • k the number of light-emitting points in the light-emitting point sequence A0
  • the light-emitting points can be equally spaced. Can also be non-equally spaced.
  • Set the vertical spacing between two luminous points to 1a. If the vertical resolution requirement is 1a, that is, the longitudinal spacing between adjacent scanning points is 1a.
  • the longitudinal spacing between the two luminous points can be 1a, or 3a, or (2N+1)a, that is, the longitudinal spacing between two adjacent luminous points can be an odd multiple of the vertical resolution .
  • the longitudinal spacing between adjacent light-emitting points among the four light-emitting points can be (4N+1)a.
  • the sequence of light-emitting points can be set roughly according to the following rules: there are m light-emitting points each time (m is an even number, and m ⁇ 2), and the spacing between the m light-emitting points is (mN+1)a, where N is a natural number.
  • the corresponding scanning module scans a sequence of luminous points formed by a plurality of luminous points preset in the above manner according to the first time interval, then the spatial interval between the corresponding sequence of scanning points formed in the scanning field of view is, For example, it is 1b, which is the horizontal resolution.
  • sequence of light-emitting points may also be a dot matrix arranged laterally, and the lateral interval between two adjacent light-emitting points may be an odd multiple of the horizontal resolution.
  • the emission module may include multiple light-emitting units (such as lasers), and the light-emitting points may be formed by each light-emitting unit of the emission module emitting light in a one-to-one correspondence, or may be formed by at least one light-emitting unit (such as a laser), and by matching
  • the homogenizer is formed.
  • the homogenizer can be arranged on the light exit side of at least one of the light-emitting units, so that the detection beam emitted by the at least one light-emitting unit forms each light-emitting point in the light-emitting point sequence.
  • FIG. 5A includes a plurality of sub-figures a) to sub-figure e), each sub-figure corresponding to a scan point formed by one scan cycle.
  • the light-emitting point sequence uses two light-emitting points, and the spacing between the two light-emitting points is also 1a, where * with different grayscales represents the same scanning point sequence.
  • the scanning points corresponding to different luminous points in where the gray * represents the scanning point corresponding to the first longitudinal luminous point in the luminous point sequence, and the black * represents the scanning point corresponding to the second longitudinal luminous point in the luminous point sequence.
  • the following scanning control process is performed, which controls the transmitting module to generate a sequence of luminous points formed by the two luminous points.
  • the transmitting module In the first scanning period, when the corresponding scanning module scans along the first direction, the transmitting module sequentially follows the first time interval. To emit light, that is, to generate a sequence of light-emitting points sequentially according to a first time interval, and to cooperate with the scanning module to scan along the first direction to form a scanning point sequence as shown in subfigure a) in Figure 5A.
  • the spatial interval is 1b.
  • the emitting module does not emit light, so no scanning points are formed in the scanning field of view. Therefore, the final first scanning period is in the scanning field of view.
  • the resulting scan pattern is shown in subfigure a) of Figure 5A.
  • the scanning module moves according to the same scan control parameters, and correspondingly, the emission module emits light according to the same light-emitting timing control parameters.
  • the sub-figure b) of Figure 5A is formed, including the first scan period and The scan pattern of the scan point sequence in the second scan cycle.
  • the scan pattern of subgraph c) of Figure 5A is formed.
  • the scan pattern of subgraph d) of Figure 5A is formed.
  • the scan pattern of subgraph e) of Figure 5A is formed.
  • Figure 5B shows the final scan pattern formed after five scan cycles. It can be seen from Figure 5B that the scanning points are evenly distributed, and the horizontal spacing is 1b and the longitudinal spacing is 1a, that is, the vertical resolution is 1a and the horizontal resolution is 1b.
  • Figure 6A includes multiple sub-figures a) to sub-figure e), each sub-figure corresponding to a scan point formed in one scan cycle.
  • the luminous point sequence uses two luminescent points, and the spacing between the two luminous points is 3a, where * with different grayscales represents different colors in the same scanning point sequence.
  • the scanning point corresponding to the light-emitting point where the gray * represents the scanning point corresponding to the first vertical light-emitting point in the light-emitting array, and the black * represents the scanning point corresponding to the second vertical light-emitting point in the light-emitting array.
  • the following scanning control process is performed to control the emission module to generate the two luminous points.
  • the formed sequence of luminous points, during the first scanning period corresponds to the scanning module scanning along the first direction. direction scanning, forming a scanning point sequence as shown in subfigure a) in Figure 6A.
  • the spatial interval between each scanning point sequence is 1b.
  • the transmitting module does not The light emits light, so no scanning points are formed in the scanning field of view. Therefore, the scanning pattern formed in the scanning field of view in the final first scanning period is as shown in subfigure a) of Figure 6A.
  • the scanning module moves according to the same scanning control parameters.
  • the emission module emits light according to the same lighting timing control parameters.
  • the sub-figure b) of Figure 6A is formed, including the first scanning period and The scan pattern of the scan point sequence in the second scan period.
  • the scan pattern of subgraph c) of Figure 6A is formed.
  • the scan pattern of subgraph d) of Figure 6A is formed.
  • the scan pattern of subgraph e) of Figure 6A is formed.
  • Figure 6B shows the final scan pattern formed after five scan cycles. It can be seen from Figure 6B that in the area R0 of the scanning field of view, the scanning points are evenly distributed, and the lateral spacing is 1b and the longitudinal spacing is 1a, that is, the vertical resolution is 1a and the horizontal resolution is 1b.
  • the light in one scanning cycle, the light is emitted only when scanning along the first direction, but does not emit light when moving in the opposite direction to the first direction, and since scanning along the first direction is based on the first A sequence of luminous points is formed at a time interval, so that the spatial intervals and time intervals of the sequence of scanning points formed corresponding to the sequence of luminous points can be uniform, so that a scanning pattern with evenly distributed scanning points can be formed in the scanning field of view.
  • the transmitting module does not emit light when scanning along the second direction in one scanning cycle of the scanning module, because when the scanning module scans along the first direction, a sequence of luminous points is formed according to the first time interval, so the The scanning module evenly distributes a scanning point sequence with multiple scanning points at the azimuth angle of the scanning field of view corresponding to each pose, and the scanning control parameters of the scanning module (such as the scanning of the scanning module in the fast axis direction and the slow axis direction) speed) and the luminescence timing control parameters (such as luminescence interval) of the emission module do not change, so the spatial and time intervals of the scanning point sequence in the x-axis direction do not change compared to the scanning points in Figure 2A, that is, the luminous energy And the measuring range does not change.
  • the scanning control parameters of the scanning module such as the scanning of the scanning module in the fast axis direction and the slow axis direction
  • the luminescence timing control parameters such as luminescence interval
  • the scanning points in Figure 2A are replaced with the scanning point sequences with multiple scanning points in Figures 5B and 6B.
  • the number of scanning points is increased and the resolution can be improved. Therefore The two performance parameters of lidar resolution and range can be taken into consideration.
  • the scanning module can be set to have a preset corresponding relationship between the scanning direction, the starting deflection position of the corresponding scanning direction, and the lighting timing of the light-emitting point sequence in any scanning period, so that the scanning module can The sequence pairs of luminous points when scanning along different scanning directions in the scanning period The corresponding field of view azimuth angles are staggered.
  • the scanning module has different edges along the scanning period.
  • the azimuth angles of the field of view corresponding to the sequence of light-emitting points are staggered.
  • the scanning pose interval and/or the light-emitting interval can be increased, so that the corresponding spatial intervals and time intervals of adjacent scanning points are Increase, so that it can have a higher laser safety threshold, emit stronger laser energy, and obtain a longer measurement range, so it can take into account the two performance parameters of lidar resolution and measurement range.
  • the luminescence control parameters of the emission module of the scanning module in any scan cycle can be set so that the scanning module scans along the first direction and scans along the second direction during the scan cycle.
  • the transmitting modules all form a sequence of light-emitting points according to the second time interval, and the distance between the starting deflection position of scanning along the second direction and the ending deflection position of the first direction is the distance between the scanning module and the scanning module at the second time.
  • the lighting timing control parameters of the emission module of the scanning module in any scanning cycle are set so that the scanning The module is in the scanning period, so that in the scanning period, when the scanning module is scanning along the first direction and when scanning along the second direction, the emission module forms a sequence of light-emitting points according to the second time interval, And the distance between the starting deflection position of scanning along the second direction and the ending deflection position of the first direction is half of the deflection amount of the corresponding position of the scanning module in the second time interval.
  • the corresponding x-axis in the scanning field of view forms a sequence of scanning points from left to right. Since the luminous points The sequence is formed according to the second time interval, so the time interval between the corresponding scan point sequences formed after scanning by the scanning module is the second time interval, and the spatial interval between the corresponding adjacent scan point sequences is 2b.
  • the second time interval is twice the first time interval.
  • each * represents a sequence of scanning points corresponding to the movement of the scanning module along the first direction
  • each x represents a sequence of scanning points corresponding to the movement of the scanning module along the second direction.
  • the time interval between the scanning point sequences is the second time interval
  • the spatial interval between the corresponding adjacent scanning point sequences is 2b, and since the starting deflection position of scanning along the second direction is different from the ending deflection of the first direction
  • the distance between positions is half of the deflection amount of the corresponding position of the scanning module in the second time interval.
  • the scanning point sequence formed by scanning along the first direction and the scanning point sequence formed by scanning along the second direction are in The scanning field of view is staggered. Then comes the next scanning cycle.
  • the scanning module scans along the first direction, it continues to form a sequence of luminous points according to the second time interval, corresponding to a sequence of scanning points formed sequentially from left to right along the x-axis in the scanning field of view. Adjacent The spatial interval between the scanning point sequences is 2b, and then the scanning module scans in the second direction.
  • the x-axis in the corresponding scanning field of view sequentially forms a scanning point sequence from right to left according to the second time interval, and the corresponding adjacent scanning point sequence The space interval between them is also 2b.
  • the scanning module reciprocates in this way.
  • the transmitting module forms a sequence of luminous points according to the preset luminescence timing control parameters.
  • a scanning trajectory of the scanning point sequence as shown in Figure 7 can be formed. It can be seen that, The scanning point sequence is evenly arranged in the entire scanning field of view, and due to changes in the emission timing control parameters of the emission module, for example, compared to Figure 2A, Figure 3, and Figure 5A to Figure 6B, the emission interval is doubled (second time The interval is twice the first time interval), so that the time interval between adjacent scanning points is doubled, and the spatial interval between adjacent scanning points is 2b. Compared with Figure 2A, Figure 3 and Figure 5A to Figure 6B is also improved by two times.
  • the spatial interval and time interval corresponding to adjacent scanning points are increased, so that a higher laser safety threshold can be achieved and stronger laser can be emitted. energy to obtain a longer measurement range, so it can take into account the two performance parameters of lidar resolution and measurement range.
  • the starting deflection position and the ending deflection position scanned by the scanning module along the first direction and the second direction are the positions of the scanning point sequence formed corresponding to the light-emitting timing of the light-emitting point sequence, and the adjacent scanning point sequences are The spatial interval is determined by the position deflection corresponding to the second time interval.
  • the sequence of light-emitting points may include at least one column, and each column may include at least two light-emitting points. And based on the resolution of the lidar, the number of luminous points in the luminescent array, the longitudinal spacing between adjacent luminescent points, and the position of the luminescent points can be set. In a specific implementation, the number of light-emitting points can be set to an even number, and the spacing between adjacent light-emitting points can be set to an odd multiple of the preset resolution.
  • the luminous point sequence can be set vertically or horizontally.
  • FIG. 8A includes a plurality of sub-figures a) to sub-figures e), each of which The subgraph corresponds to the scan point formed by one scan cycle.
  • the luminous point sequence formed by the emission module selects 2 luminous points, and the distance between the two luminous points is also 1a.
  • * with different gray scales represents the scanning points corresponding to different luminous points in the same scanning point sequence when the scanning module moves along the first direction
  • the gray * represents the scanning point corresponding to the first longitudinal luminous point in the luminous point sequence.
  • the black * represents the scanning point corresponding to the second longitudinal luminous point in the luminous point sequence
  • x with different grayscales represents the scan corresponding to different luminous points in the same scanning point sequence when the scanning module moves along the second direction. points, where the gray x represents the scanning point corresponding to the first longitudinal luminous point in the luminous point sequence, and the black x represents the scanning point corresponding to the second longitudinal luminous point in the luminous point sequence.
  • the following scanning control process is performed to control the sequence of luminous points formed by the two luminous points.
  • the emission module emits light at the same time according to the second time interval. , forming a scanning point sequence as * shown in sub-figure a) in Figure 8A.
  • the spatial interval between each scanning point sequence is 2b.
  • the emission The modules emit light at the same time according to the second time interval, forming a scanning point sequence x as shown in sub-figure a) in Figure 8A.
  • the spatial interval between each scanning point sequence is 2b, forming a scanning point sequence along the first direction in the scanning field of view.
  • the interleaved scanning point sequence during scanning, and the final scanning pattern formed in the scanning field of view during the first scanning period is as shown in subfigure a) of Figure 8A.
  • the scanning module moves according to the same scanning control parameters.
  • the emission module emits light according to the same lighting timing control parameters.
  • the sub-figure b) of Figure 8A is formed, including the first scanning period and The scan pattern of the scan point sequence in the second scan cycle.
  • the scan pattern of subgraph c) of Figure 8A is formed.
  • the scan pattern of subgraph d) of Figure 8A is formed.
  • the subgraph e) of Figure 8A is formed.
  • Figure 8B is a scan pattern formed after five scan cycles. It can be seen from Figure 8B that the scanning points are evenly and staggeredly distributed, and the horizontal spacing is 1b and the longitudinal spacing is 1a, that is, the vertical resolution is 1a and the horizontal resolution is 1b.
  • FIG. 9A includes a plurality of sub-figures a) to sub-figure e), each sub-figure corresponding to a scan point formed by one scan cycle.
  • the luminous point sequence formed by the emission module selects 2 luminous points, and the distance between the two luminous points is 3a, where * with different gray scales is used to represent the scan.
  • the scanning points corresponding to different light-emitting points in the same scanning point sequence are shown.
  • the gray * indicates the scanning point corresponding to the first longitudinal light-emitting point in the light-emitting array
  • the black * indicates the second vertical light-emitting point in the light-emitting array.
  • the scanning point corresponding to the luminous point Similar Ground, x with different gray scales is used to represent the scanning points corresponding to different luminous points in the same scanning point sequence when the corresponding scanning module moves along the second direction, where the gray x represents the scanning point corresponding to the first longitudinal luminous point in the luminous array, The black x represents the scanning point corresponding to the second longitudinal light-emitting point in the light-emitting array.
  • the following scan control process is performed to control the emission module to emit light at the same time according to the second time interval according to the preset light-emitting timing control parameters, forming a light-emitting point sequence composed of two light-emitting points.
  • a scanning point sequence shown as * is formed in subfigure a) in Figure 9A, and the spatial interval between each scanning point sequence is 2b; when the corresponding scanning module scans along the second direction, The emission module is still controlled to emit light sequentially according to the second time interval, forming a scanning point sequence x as shown in sub-figure a) in Figure 9A.
  • the spatial interval between each scanning point sequence is 2b, which is only the starting position of the light emitting Relative to the end deflection position of scanning along the first direction, the scanning module is offset by half of the deflection amount of the corresponding position in the second time interval. Therefore, the final scanning pattern formed in the scanning field of view during the first scanning period is as shown in The son of 9A is shown in figure a).
  • the scanning module moves according to the same scanning control parameters.
  • the emission module emits light according to the same lighting timing control parameters.
  • the sub-picture b) of Figure 9A is formed, including the first scanning period and The scan pattern of the scan point sequence in the second scan period.
  • the scan pattern of subgraph c) of Figure 9A is formed.
  • the scan pattern of subgraph d) of Figure 9A is formed.
  • the scan pattern of subgraph e) of Figure 9A is formed.
  • Figure 9B shows the final scan pattern formed after five scan cycles.
  • the light-emitting interval can be increased, that is, the second time interval is greater than the first time interval.
  • the second time interval is twice the first time interval, and the scanning device is in the fast axis direction and the slow axis direction.
  • the scan point sequence formed in the direction is evenly interlaced in the scanning field of view, and a scanning pattern with evenly distributed scanning points can be formed in the scanning field of view. While the resolution remains unchanged, the scanning pose interval and/or Or the light-emitting interval.
  • the light-emitting interval is doubled (the second time interval is twice the first time interval), so that the time between adjacent scanning points The interval is doubled, and the spatial interval between adjacent scanning points is 2b.
  • Figure 2A, Figure 3, and Figure 5A to Figure 6B it is also doubled.
  • the phase The spatial and time intervals corresponding to adjacent scanning points are increased, so that it can have a higher laser safety threshold, emit stronger laser energy, and obtain a longer measuring range, so it can take into account both the resolution and measuring range of the lidar. Two performance parameter indicators.
  • the emission module can form the light-emitting point sequence in a variety of ways. Two specific examples are given below.
  • the emission module may include a plurality of light-emitting units, and the plurality of light-emitting units are adapted to emit detection beams corresponding to each light-emitting point in the sequence of light-emitting points.
  • the spacing between the plurality of light-emitting units may be equal or unequal.
  • the emission module includes: at least one light-emitting unit, adapted to emit a detection beam; and a uniform light unit, disposed on the light exit side of at least one of the light-emitting units, so that the detection beam emitted by the light-emitting unit forms the light-emitting point. Each luminous point in the sequence.
  • lidar while meeting the laser safety threshold and keeping other scanning control parameters and light-emitting timing control parameters unchanged, by selecting one of the adjacent light-emitting points in the sequence of light-emitting points that can be formed
  • the resolution of lidar can also be improved by selecting a transmitting module with a smaller spacing between each light-emitting unit.
  • the scan pattern formed is not limited to the zigzag shape in the above embodiment.
  • Scan patterns of other shapes can also be formed according to requirements.
  • the fast axis and slow axis of the scanning module can be exchanged.
  • the fast axis direction corresponds to the vertical direction of the scanning field of view, that is, the y-axis direction
  • the slow axis direction corresponds to the horizontal direction of the scanning field of view, that is, x
  • a scanning pattern similar to a "W" shape can be formed, as shown in Figure 10A.
  • the different movement modes of the fast axis and slow axis directions can also form scanning patterns of other shapes. In the embodiment of the present invention, no specific shape of the scanning pattern is made. limitations.
  • multiple combined and arranged scanning patterns can also be formed in the scanning field of view.
  • multiple transmitting devices can be provided in the laser radar, and the multiple transmitting modules It can be arranged in different areas, and each emission module is suitable to form its own preset scan in the corresponding sub-field of view.
  • the scanning pattern multiple sub-fields of view are spliced to form the scanning field of view, so the scanning patterns of multiple transmitting modules are spliced to form a scanning pattern in the scanning field of view.
  • each transmitting module can be arranged and spliced in sequence in columns, each The transmitting module corresponds to a set of zigzag patterns.
  • each The transmitting module corresponds to a set of zigzag patterns.
  • the scanning pattern in the scanning field of view shown in Figure 10C it is three "W" shapes, or "M" sub-shaped patterns.
  • the three transmitting modules can be placed in the same column in sequence. Arranged and spliced together, each transmitting module corresponds to a set of "W" shaped graphics.
  • the embodiments of the present invention can also be applied to one-dimensional scanning methods.
  • Scanning method such as raster scan.
  • the transmitting module can be set to emit light according to a preset time interval (for example, the third time interval) when scanning along odd lines, forming multiple light-emitting point sequences in sequence.
  • a preset time interval for example, the third time interval
  • the emitting module does not emit light; or when the emitting module scans along even-numbered rows, the emitting module emits light according to a preset time interval (for example, the third time interval), forming a sequence of multiple light-emitting points in sequence.
  • the grating scans along odd lines, the emission module does not emit light.
  • a scanning pattern with evenly distributed scanning points in the scanning field of view can also be formed.
  • the transmitting module can be set to follow a preset time interval (for example, a third time interval) when scanning along odd-numbered rows and when scanning along even-numbered rows. Light is emitted, and the starting deflection position of the grating when scanning along the odd-numbered rows is different from that of the even-numbered rows. The difference between the starting deflection position of the grating when scanning along the even-numbered rows and the starting deflection position of the grating when scanning along the odd-numbered rows may be the third The time interval corresponds to half of the position deflection, thereby forming a sequence of scan points distributed at intervals. Multiple scan point sequences can form a scan pattern with staggered and evenly distributed scan points in the scan field of view.
  • a preset time interval for example, a third time interval
  • the scanning control parameters of the scanning module scanning in a one-dimensional manner and the lighting timing matching method of the light-emitting point sequence formed by the transmitting module can be set according to the aforementioned principles of the scanning module scanning in a two-dimensional scanning mode, which will not be explained here.
  • the lidar LA0 may include a transmitting module TX0, a scanning module SC0, Storage module ST0 and control module CT0, where:
  • the transmitting module TX0 is suitable for emitting multiple detection beams to form a sequence of luminous points
  • the scanning module SC0 is adapted to receive the detection beam and emit the detection beam to form a scanning pattern in the scanning field of view;
  • the storage module ST0 is adapted to store the preset scanning control parameters of the scanning module and the lighting timing control parameters of the transmitting module, and the preset scanning control parameters and the lighting timing control parameters satisfy The matching relationship enables the sequence of light-emitting points to be set correspondingly to the pose of the scanning module;
  • the control module CT0 is adapted to store preset scanning control parameters and the lighting timing control parameters based on the storage module ST0, control the movement of the scanning module SC0 and control the emission module TX0 to emit light to form a scanning point sequence, and more Each of the scanning point sequences forms a scanning pattern with evenly distributed scanning points in the scanning field of view.
  • control module CT0 on the one hand, can output a corresponding scan control signal based on the scan control parameters obtained from the storage module ST0, and control the scan module SC0 to move according to the scan control parameters; on the other hand, on the one hand, the control module CT0, based on the lighting timing control parameters obtained by the storage module ST0, can output the corresponding lighting timing control signal, control the transmitting module TX0 to emit light sequentially according to the corresponding lighting timing, and form a sequence of light-emitting points accordingly.
  • the lighting point sequence formed by the transmitting module TX0 is set correspondingly to the pose of the scanning module, and can finally be A scanning pattern with evenly distributed scanning points is formed in the scanning field of view.
  • the scan control parameters and the lighting timing control parameters can be preset and stored in the storage module ST0.
  • the settings can be made before the lidar LA0 leaves the factory, or the settings can be adjusted when the application environment of the lidar changes.
  • the storage module ST0 can be set up separately. In order to improve the data processing speed, the storage module ST0 can also be integrated into the control module CT0.
  • the storage module ST0 may be a non-volatile memory.
  • control module CT0 can be any one of microcontroller, single-core or multi-core processor, field-programmable gate array (Field-Programmable Gate Array, FPGA), etc., or can be other types capable of data processing. Integrated circuit, there is no restriction on the hardware structure of the control module CT0.
  • the transmitting module TX0 may be implemented in a variety of ways.
  • the emission module TX0 includes: a plurality of light-emitting units ET0, the plurality of light-emitting units are adapted to emit detection beams corresponding to each light-emitting point in the light-emitting point sequence.
  • the emission module TX0 may include: at least one light-emitting unit adapted to emit a detection beam; a light uniformity unit (not shown), It is arranged on the light-emitting side of at least one of the light-emitting units, so that the detection beam emitted by the at least one light-emitting unit forms each light-emitting point in the light-emitting point sequence.
  • the lidar LA0 may include a plurality of transmitting modules TX0, the plurality of transmitting modules TX0 are arranged in regions, each transmitting module TX0 is suitable for forming its own preset scanning pattern, and the multiple transmitting modules TX0
  • the scanning patterns are spliced to form a scanning pattern in the scanning field of view.
  • the scanning module SC0 can be a one-dimensional scanning scanner, such as a raster scanner, a galvanometer, a rotating mirror, a swing mirror and a galvanometer mirror, or it can be a two-dimensional scanning scanner, specifically it can be Micro-Electro Mechanical Systems (MEMS), galvanometers, or galvanometers and swing mirrors for one-dimensional scanning, rotating mirrors and galvanizing mirrors for one-dimensional scanning, rotating mirrors and swing mirrors for one-dimensional scanning, A scanner composed of a rotating mirror and a galvanometer mirror for dimensional scanning.
  • MEMS Micro-Electro Mechanical Systems
  • the scanning module SC0 forms the scanning pattern through multiple consecutive scanning cycles; in the storage module ST0, the stored scanning control parameters and the lighting timing control parameters satisfy a matching relationship, so that in continuous In multiple scanning cycles, the lighting timings of the light-emitting point sequences corresponding to different scanning point sequences have a uniform mapping relationship with the corresponding poses of the scanning module.
  • the stored scanning control parameters and the lighting timing control parameters satisfy a matching relationship, so that the scanning direction and the lighting point sequence of the scanning module SC0 in any scanning cycle are
  • the lighting timing has a preset corresponding relationship.
  • the stored scanning control parameters and the lighting timing control parameters satisfy the following matching relationship: the lighting timing control parameters of the corresponding lighting unit in any scan cycle of the scanning module SC0.
  • the transmitting module TX0 emits light according to the first time interval to form a sequence of light-emitting points
  • the transmitting module TX0 emits light according to the first time interval.
  • the transmitting module TX0 does not emit light and does not form a sequence of light emitting points, wherein the first direction and the second direction are opposite.
  • the stored scan control parameters and the light-emitting timing control parameters satisfy a matching relationship, so that the scan module SC0 can scan the direction and the starting point of the corresponding direction in any scan cycle.
  • the initial deflection position and the lighting timing of the light-emitting point sequence have a preset corresponding relationship, so that when the scanning module SC0 scans along different directions in the scanning period, the field of view azimuth angles corresponding to the light-emitting point sequence are staggered.
  • the storage module ST0, the stored scanning control parameters and the lighting timing control parameters satisfy the following matching relationship: the corresponding lighting unit of the scanning module SC0 in any scan cycle
  • the lighting timing control parameters so that the scanning module SC0 is in the In the scanning period, when scanning along the first direction and when scanning along the second direction, the transmitting module TX0 forms a sequence of light-emitting points according to the second time interval, and the starting deflection position of scanning along the second direction is the same as that along the second direction.
  • the distance between the terminal deflection positions of the first direction scan is half of the deflection amount of the corresponding position of the scanning module SC0 in the second time interval, wherein the first direction and the second direction are opposite.
  • the sequence of light-emitting points may include at least one column, and each column may include at least two light-emitting points.
  • Figure 4 shows a schematic diagram of a formation method of a light-emitting point sequence, which will not be described again here.
  • the storage module ST0 is also suitable for storing the preset number of luminous points in the luminous array, the longitudinal spacing between adjacent luminous points and the position information of the luminous points based on the resolution of the lidar. .
  • the number of stored light-emitting points is an even number, and the distance between adjacent light-emitting points is an odd multiple of the preset resolution.
  • the scanning module scans in the first direction and can also move from right to left corresponding to the scanning point sequence in the scanning field of view.
  • the scanning module scans the corresponding scanning field of view in the second direction.
  • the mid-scan point sequence moves from left to right.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达(10,LA0)及其扫描控制方法,激光雷达(10,LA0)包括:发射模块(11,TX0)和扫描模块(13,SC0),扫描控制方法包括:基于预设的扫描模块(13,SC0)的扫描控制参数和发射模块(11,TX0)的发光时序控制参数,控制扫描模块(13,SC0)运动并控制发射模块(11,TX0)发光,形成扫描点序列,多个扫描点序列在扫描视场中形成扫描点均匀分布的扫描图形;其中预设的扫描控制参数和发光时序控制参数满足匹配关系,使发光点序列与扫描模块(13,SC0)的位姿对应设置,以形成扫描点序列。方案能够兼顾激光雷达(10,LA0)的分辨率和测程两个性能参数,在提升其中至少一个性能参数指标的情况下,可以避免对其中另外一个性能参数指标造成影响,且使扫描视场中形成的扫描点均匀分布。

Description

激光雷达及其扫描控制方法 技术领域
本发明涉及激光雷达领域,尤其涉及激光雷达及其扫描控制方法。
背景技术
激光雷达技术的进步,其性能指标向着分辨率更高,测程更远的方向发展。分辨率更高意味着激光雷达发光的时间间隔和空间间隔更近。然而,受限于激光安全阈值的限制,发光的时间间隔和空间间隔越近则激光安全阈值越低,则使得发光能量降低,在系统其它参数不变的情况下,激光雷达的测程越近。因此,激光雷达“分辨率更高”和“测程更远”是两个难以同时实现的目标,二者是一对矛盾的性能参数。
现有技术中有一些方法可以缓解这个矛盾。一种是增加光学口径,但由于目前自动驾驶车辆对激光雷达的安装尺寸有一定限制,因此增加光学口径,不利于减小激光雷达的尺寸。另一种是,对发射器件和接收器件进一步升级,例如接收器件升级,使得器件灵敏度提高,这样能够在一定程度上提高测程。但是,这种升级往往改善效果有限。
此外,传统的扫描式激光雷达存在扫描点在扫描视场中分布不规整、不均匀的问题。
对于上述问题,具体地,参照图1所示的扫描式激光雷达的结构示意图,激光雷达10通常包括发射模块11、控制模块12和扫描模块13,其中:所述发射模块11适于发出探测光束,形成发光点;所述控制模块12,按照预设的发光时序控制参数控制所述发射模块11发光,同时按照预设的扫描控制参数控制所述扫描模块13运动;所述扫描模块13,适于接收所述探测光束,并将所述探测光束出射形成扫描点,扫描视场中一系列的扫描点形成预设的扫描图形(Pattern)。
传统的二维扫描方式中,扫描模块采用具有垂直的快轴和慢轴的双轴结构,可以形成如图2A所示的扫描视场中的扫描图形,其中共形成了10行和11列扫描点(这里的行数和列数仅为便于说明,实际使用中并不限于以上数值),其 中图2A中,扫描点在横轴方向的位置变化是由于扫描模块快轴方向的运动带来的,扫描点在纵轴方向位置的变化是由于扫描模块慢轴方向的运动带来的。
在实际应用中,采用传统的扫描方式,使激光雷达分辨率提高,则对应着扫描图形中扫描点之间的空间间隔和时间间隔减小。例如,在图2A对应的扫描图形的基础上,若横向间隔和纵向间隔均减小一半时,会形成图2B所示扫描图形。其中,图2A和图2B中,扫描点*为扫描模块在快轴(对应x轴,即x-axis)方向上从左到右运动形成的扫描点,扫描点x为扫描模块在快轴方向上从右到左运动时形成的扫描点,扫描模块在快轴方向上的一次往复运动作为一个扫描周期,且扫描模块在快轴方向上做往复运动的同时,也在沿慢轴(对应y轴,即y-axis)方向上运动。
继续参照图2B可知,首先,相邻扫描点之间的空间间隔,扫描点*和扫描点x之间的空间间隔,即横向间隔,会减小到0.5b,横向间隔减小到原来的1/2意味着每行的扫描速度要加快一倍,因此扫描点*和扫描点x之间的时间间隔会减小到原来的1/4,最中间一列相邻扫描点之间的纵向间距是0.5a。
空间间隔和时间间隔的减小,会使激光安全阈值大大减小,则使得激光发射能量减小,在其他系统参数不变的情况下,测程变近很多。当其他器件的性能参数提高时,可以在一定程度上提高测程,但是很难弥补前述影响造成的衰减,因此采用图2B扫描图形对应的扫描方式使分辨率提高时,会导致测程降低。
此外,由图2A和图2B所示的扫描视场的扫描图形可以直观地看到,最中间的一列,点的分布是均匀的,而在其他列上,点的分布是不均匀的。具体而言,参照图2A,所述视场中,最中间的一列扫描点之间的纵向间距是1a,最边上一列也是均匀的,但是相邻扫描点之间的纵向间距却变为2a,其他列上,点的间隔是非均匀的,这是由于扫描模块在快轴方向和慢轴方向上均有扫描速度,两者的合速度是斜向速度。
背景技术部分的内容仅仅是公开人所知晓的技术,并不当然代表本领域的现有技术。
发明内容
有鉴于此,本说明书实施例提供激光雷达及其扫描控制方法,能够兼顾激 光雷达的分辨率和测程这两个性能参数,在提升其中至少一个性能参数指标的情况下,可以避免对其中另外一个性能参数指标造成影响,且使扫描视场中形成的扫描点均匀分布。
首先,本说明书实施例提供了一种激光雷达的扫描控制方法,所述激光雷达包括:发射模块和扫描模块,其中:所述发射模块适于发出探测光束,形成发光点序列;所述扫描模块,适于接收所述探测光束,并将所述探测光束出射形成扫描视场中的扫描图形;所述扫描控制方法包括:
基于预设的所述扫描模块的扫描控制参数和所述发射模块的发光时序控制参数,控制所述扫描模块运动并控制所述发射模块发光,形成扫描点序列,多个所述扫描点序列在所述扫描视场中形成扫描点均匀分布的扫描图形;其中:所预设的所述扫描控制参数和所述发光时序控制参数满足匹配关系,使发光点序列与所述扫描模块的位姿对应设置,以形成所述扫描点序列。
可选地,所述扫描模块通过连续多个扫描周期形成扫描图形,且在连续多个扫描周期中,不同扫描点序列对应的发光点序列的发光时序与所述扫描模块对应的位姿具有均匀一致的映射关系。
可选地,所述扫描模块在任一扫描周期中的扫描方向和发光点序列的发光时序具有预设对应关系。
可选地,设置所述扫描控制参数和所述发光时序控制参数满足匹配关系,包括:
设置所述扫描模块在任一扫描周期中所述发射模块的发光时序控制参数,使得所述扫描模块在所述扫描周期中,在沿第一方向扫描时,所述发射模块按照第一时间间隔形成发光点序列,在沿第二方向扫描时,所述发射模块未形成发光点序列,其中,所述第一方向和所述第二方向相反。
可选地,设置所述扫描控制参数和所述发光时序控制参数满足匹配关系,包括:
设置所述扫描模块在任一扫描周期中扫描方向、相应扫描方向的起始偏转位置及发光点序列的发光时序具有预设的对应关系,使得所述扫描模块在所述扫描周期中沿不同扫描方向扫描时发光点序列对应的视场方位角交错分布。
可选地,所述设置所述扫描模块在任一扫描周期中扫描方向、相应扫描方向的起始偏转位置及发光点序列的发光时序具有预设的对应关系,包括:
设置所述扫描模块在任一扫描周期中所述发射模块的发光控制参数,使得 所述扫描模块在所述扫描周期中,在沿第一方向扫描时和沿第二方向扫描时,所述发射模块均按照第二时间间隔形成发光点序列,且沿第二方向扫描的起始偏转位置与沿所述第一方向扫描的终止偏转位置之间的间距为所述扫描模块在所述第二时间间隔内对应位置偏转量的一半,其中,所述第一方向和所述第二方向相反。
可选地,所述发光点序列包括至少一列,且每列包括至少两个发光点。
可选地,所述扫描控制方法还包括:
基于所述激光雷达的分辨率,设置所述发光点序列中发光点数量、相邻发光点在列方向的间距及发光点位置。
可选地,发光点数量为偶数,相邻发光点在列方向的间距为所述分辨率对应间距的奇数倍。
可选地,所述发射模块包括:多个发光单元,所述多个发光单元适于发出探测光束对应形成所述发光点序列中各发光点。
可选地,所述发射模块包括:
至少一个发光单元,适于发出探测光束;
匀光单元,设置于至少一个所述发光单元的出光侧,使得所述发光单元发出的探测光束形成所述发光点序列中各发光点。
可选地,所述激光雷达包括多个发射模块,所述多个发射模块分区域排布,各发射模块适于形成各自预设的扫描图形,且多个发射模块的扫描图形拼接形成所述扫描视场中的扫描图形。
相应地,本发明实施例还提供了一种激光雷达,包括:
发射模块,适于发出多束探测光束,形成发光点序列;
扫描模块,适于接收所述探测光束,并将所述探测光束出射形成扫描视场中的扫描图形;
存储模块,适于存储所预设的所述扫描模块的扫描控制参数和所述发射模块的发光时序控制参数,且所预设的所述扫描控制参数和所述发光时序控制参数满足预设的匹配关系,使发光点序列与所述扫描模块的位姿对应设置;
控制模块,适于基于所述存储模块存储的扫描控制参数和所述发光时序控制参数,控制所述扫描模块运动并控制所述发射模块发光,形成扫描点序列,多个所述扫描点序列在所述扫描视场中形成扫描点均匀分布的扫描图形。
可选地,所述扫描模块通过连续多个扫描周期形成所述扫描图形;
所述存储模块,所存储的所述扫描控制参数和所述发光时序控制参数满足预设的匹配关系,使在连续多个扫描周期中,不同扫描点序列对应的发光点序列的发光时序与所述扫描模块对应的位姿具有均匀一致的映射关系。
可选地,所述存储模块,所存储的所述扫描控制参数和所述发光时序控制参数满足预设的匹配关系,使所述扫描模块在任一扫描周期中的扫描方向和发光点序列的发光时序具有预设对应关系。
可选地,所述存储模块,所存储的所述扫描控制参数和所述发光时序控制参数满足如下匹配关系:所述扫描模块在任一扫描周期中所述发射模块的发光时序控制参数,使得在所述扫描模块在所述扫描周期中,在沿第一方向扫描时,所述发射模块按照第一时间间隔发光,形成发光点序列,在沿第二方向扫描时,所述发射模块未形成发光点序列,其中,所述第一方向和所述第二方向相反。
可选地,所述存储模块,所存储的所述扫描控制参数和所述发光时序控制参数满足预设的匹配关系,使所述扫描模块在任一扫描周期中扫描方向、相应扫描方向的起始偏转位置及发光点序列的发光时序具有预设的对应关系,使得在所述扫描模块在所述扫描周期中在沿不同方向扫描时发光点序列对应的视场方位角交错分布。
可选地,所述存储模块,所存储的所述扫描控制参数和所述发光时序控制参数满足如下匹配关系:所述扫描模块在任一扫描周期中所述发射模块的发光时序控制参数,使得在所述扫描模块在所述扫描周期中,在沿第一方向扫描时和沿第二方向扫描时,所述发射模块均按照第二时间间隔形成发光点序列,且沿第二方向扫描的起始偏转位置与沿所述第一方向扫描的终止偏转位置之间的间距为所述扫描模块在所述第二时间间隔内对应位置偏转量的一半,其中,所述第一方向和所述第二方向相反。
可选地,所述发光点序列包括至少一列,且每列包括至少两个发光点。
可选地,所述存储模块,还适于存储基于所述激光雷达的分辨率,所预设的所述发光点序列中发光点数量、相邻发光点在列方向的间距及发光点位置信息。
可选地,所述存储模块,所存储的所述发光点数量为偶数,且相邻发光点在列方向的间距为所述分辨率对应间距的奇数倍。
可选地,所述发射模块包括:多个发光单元,所述多个发光单元适于发出探测光束对应形成所述发光点序列中各发光点。
可选地,所述发射模块包括:
至少一个发光单元,适于发出探测光束;
匀光单元,设置于至少一个所述发光单元的出光侧,使得所述至少一个发光单元发出的探测光束形成所述发光点序列中各发光点。
采用本说明书实施例提供的扫描控制方法,基于激光雷达的分辨率和测程,可以设置扫描模块的扫描控制参数以及发射模块的发光时序控制参数,且所预设的所述扫描控制参数和发光时序控制参数满足预设的匹配关系,使发光点序列与所述扫描模块的位姿对应设置,并基于预设的所述扫描模块的扫描控制参数和所述发射模块的发光时序控制参数,控制所述扫描模块运动并控制所述发射模块发光,形成扫描点序列,因此,通过发光点序列配合扫描模块的位姿调整,使得扫描视场中各视场方位角均分布具有多个扫描点的扫描点序列,故通过扫描控制参数和发光时序控制参数的配合设置,在其他参数不变的情况下,可以提高激光雷达的分辨率;而在保持分辨率不变的情况下,则可以增加扫描位姿间隔和/或发光间隔,使得相邻扫描点对应的空间间隔和时间间隔增大,从而可以具有更高的激光安全阈值,发射更强的激光能量,获得更远的测程,因此可以兼顾激光雷达的分辨率和测程这两个性能参数。此外,由于多个扫描点序列可以在所述扫描视场形成扫描点均匀分布的扫描图形,因此发光点序列中各发光点均可以具有更高的激光安全阈值,且可以使激光雷达在整个扫描视场中的分辨率更加一致,从而提高激光雷达的探测性能。
进一步地,由于在连续多个扫描周期中,不同扫描点序列对应的发光点序列的时序与所述扫描模块对应的位姿具有均匀一致的对应关系,因此在连续多个扫描周期中形成的多个扫描点序列在所述扫描视场中可以形成扫描点均匀分布的扫描图形,从而可以使激光雷达在整个扫描视场中的分辨率更加一致,从而提高激光雷达的探测性能。
进一步地,通过设置所述扫描模块在任一扫描周期中的扫描方向和发光点序列的发光时序具有预设的对应关系,也即通过扫描方向和发光点序列的发光时序的匹配设置,就能够同时兼顾激光雷达的分辨率和测程这两个性能参数指标,避免提升其中一个参数指标,使另一个参数指标降低。
进一步地,通过设置所述扫描模块在任一扫描周期中所述发射模块的发光时序控制参数,使得所述扫描模块在所述扫描周期中,在沿第一方向扫描时,按照第一时间间隔形成发光点序列,而在沿第二方向扫描时,未形成发光点序 列,由于所述第一方向和所述第二方向相反,也就是说,在一个扫描周期中,仅沿第一方向扫描时发光,而在向第一方向的相反方向运动时,则不发光,且由于沿第一方向扫描时均按照第一时间间隔形成发光点序列,因此可以使扫描点序列的空间间隔和时间间隔均是一致的,因而可以在扫描视场中形成扫描点均匀分布的扫描图形。其中,虽然发射模块在所述扫描模块的一个扫描周期中沿第二方向扫描时不发光,不过由于在扫描模块沿第一方向扫描时,按照第一时间间隔,形成发光点序列,因此通过发光点序列配合扫描模块的位姿调整,使得扫描视场中各视场方位角均分布具有多个扫描点的扫描点序列,因而可以提高分辨率,因此可以兼顾激光雷达的分辨率和测程这两个性能参数。
进一步地,通过设置所述扫描模块在任一扫描周期中扫描方向、相应扫描方向的起始偏转位置及发光点序列的发光时序具有预设的对应关系,也就是说,通过控制在任一扫描周期中扫描方向以及相应扫描方向的起始偏转位置这两个扫描控制参数与发光点发光时序的匹配关系,使得所述扫描模块在所述任一扫描周期中沿不同扫描方向扫描时发光点序列对应的视场方位角交错分布,在保持分辨率不变的情况下,增加了扫描位姿间隔和/或发光间隔,使得相邻扫描点对应的空间间隔和时间间隔增大,从而可以有更高的激光安全阈值,可以发射更强的激光能量,获得更远的测程,因此可以兼顾激光雷达的分辨率和测程这两个性能参数,避免提升其中一个参数指标,使另一个参数指标降低。
进一步地,通过设置所述扫描模块在任一扫描周期中对应的发光单元的发光控制参数,使得在所述扫描模块在所述扫描周期中,在沿第一方向扫描时和沿第二方向扫描时,均按照第二时间间隔形成发光点序列,且沿第二方向扫描的起始偏转位置与沿第一方向扫描的终止偏转位置之间的间距为所述扫描模块在所述第二时间间隔内对应位置偏转量的一半,其中,所述第一方向和所述第二方向相反,因此,扫描模块沿第一方向扫描形成的扫描点序列和沿第二方向扫描形成的扫描点序列在扫描视场中均匀交错,可以在所述扫描视场中形成扫描点均匀分布的扫描图形,在保持分辨率不变的情况下,增加了扫描位姿间隔和/或发光间隔,使得相邻扫描点对应的空间间隔和时间间隔增大,从而可以有更高的激光安全阈值,可以发射更强的激光能量,获得更远的测程,因此可以兼顾激光雷达的分辨率和测程这两个性能参数,避免提升其中一个参数指标,使另一个参数指标降低。
进一步地,所述发光点序列包括至少一列,且每列包括至少两个发光点, 因此至少可以在列方向(或者称扫描轴方向)上增加同一视场方位角的扫描点数量,因而可以在其他参数不变的情况下,提高激光雷达的分辨率。
进一步地,所述发射模块包括至少一个发光单元,以及匀光单元,通过将所述匀光单元设置于至少一个所述发光单元的出光侧,使得所述发光单元发出的探测光束形成所述发光点序列中各发光点,可以采用较少的发光单元实现更多发光点,从而提高激光雷达的分辨率。
附图说明
为了更清楚地说明本说明书实施例的技术方案,下面将对本说明书实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本说明书的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了一种现有扫描式激光雷达的结构示意图;
图2A和图2B示出采用现有扫描式激光雷达形成的扫描视场中的扫描图形示意图;
图3示出了采用本发明实施例中扫描控制方法形成的扫描视场中一种扫描点序列的扫描轨迹示意图;
图4示出了本发明实施例中一种发光点序列的形成方式示意图;
图5A示出了本发明实施例中扫描视场中一种扫描图形形成过程示意图;
图5B示出了图5A所示形成过程形成的扫描视场中的扫描图形示意图;
图6A示出了本发明实施例中扫描视场中另一种扫描图形形成过程示意图;
图6B示出了图6A所示形成过程形成的扫描视场中的扫描图形示意图;
图7示出了采用本发明实施例中另一种扫描控制方法形成的扫描视场中另一种扫描点序列的扫描轨迹示意图;
图8A示出了本发明实施例中扫描视场中另一种扫描图形形成过程示意图;
图8B示出了图8A所示形成过程形成的扫描视场中的扫描图形示意图;
图9A示出了本发明实施例中扫描视场中另一种扫描图形形成过程示意图;
图9B示出了图9A所示形成过程形成的扫描视场中的扫描图形示意图;
图10A至图10C示出了本发明实施例中扫描视场中不同扫描方式对应的扫描图形示意图;
图11示出了本发明实施例中一种激光雷达的结构示意图。
具体实施方式
针对上述技术问题,本发明实施例提出了一种激光雷达的扫描控制方法,一方面,发射模块适于发出探测光束,形成发光点序列,另一方面,基于预设的所述扫描模块的扫描控制参数和所述发射模块的发光时序控制参数,控制所述扫描模块运动并控制所述扫描模块发光,形成扫描点序列,多个所述扫描点序列在所述扫描视场中形成扫描点均匀分布的扫描图形;其中:所预设的所述扫描控制参数和所述发光时序控制参数满足匹配关系,使发光点序列与所述扫描模块的位姿对应设置,以形成所述扫描点序列。
采用上述扫描控制方式,通过发射模块形成多个发光点构成的发光点序列,可以基于激光雷达的分辨率和测程,设置扫描模块的扫描控制参数以及发射模块的发光时序控制参数,且所预设的所述扫描控制参数和扫描发光时序控制参数满足匹配关系,使发光点序列与所述扫描模块的位姿对应设置,这样,可以基于预设的所述扫描模块的扫描控制参数和所述发射模块的发光时序控制参数,控制所述扫描模块运动并控制所述发射模块发光,形成扫描点序列,因此,通过发光点序列配合扫描模块的位姿调整,使得扫描视场中各视场方位角均分布具有多个扫描点的扫描点序列,故通过扫描控制参数和发光时序控制参数的配合设置,在其他参数不变的情况下,可以提高激光雷达的分辨率;而在保持分辨率不变的情况下,则可以增加扫描位姿间隔和/或发光间隔,使得相邻扫描点对应的空间间隔和时间间隔增大,从而可以具有更高的激光安全阈值,可以发射更强的激光能量,获得更远的测程,因此可以兼顾激光雷达的分辨率和测程这两个性能参数指标。
此外,由于多个扫描点序列可以在所述扫描视场形成扫描点均匀分布的扫描图形,因此发光点序列中各发光点均可以有更高的激光安全阈值,且可以使激光雷达在整个扫描视场中的分辨率更加一致,从而提高激光雷达的探测性能。
在具体实施中,所述扫描模块可以通过连续多个扫描周期形成扫描图形,因此,可以设置所述扫描控制参数和所述发光时序控制参数满足匹配关系,使在连续多个扫描周期中,不同扫描点序列对应的发光点序列的发光时序与所述扫描模块对应的位姿具有均匀一致的映射关系。
由于通过设置所述扫描控制参数和所述发光时序控制参数满足匹配关系,使在连续多个扫描周期中,不同扫描点序列对应的发光点序列的时序与所述扫 描模块对应的位姿具有均匀一致的对应关系,因此在连续多个扫描周期中形成的多个扫描点序列在所述扫描视场中可以形成扫描点均匀分布的扫描图形,从而可以使激光雷达在整个扫描视场中的分辨率更加一致,从而提高激光雷达的探测性能。
作为一可选实施方式,可以设置扫描控制参数其中一个控制参数与发光点序列的发光时序对应,具体而言,可以设置所述扫描模块在任一扫描周期中的扫描方向和发光点序列的发光时序具有对应关系。
为使本领域技术人员更好地理解和实施,以下参照附图,结合具体应用场景进行示例性介绍。
首先,可以设置所述扫描模块在任一扫描周期中所述发射模块的发光时序控制参数,使得所述扫描模块在所述扫描周期中,在沿第一方向扫描时,所述发射模块按照第一时间间隔形成发光点序列,在沿第二方向扫描时,所述发射模块未形成发光点序列,其中,所述第一方向和所述第二方向相反。
参照图3所示采用上述扫描控制方法形成的扫描视场中一种扫描点序列的扫描轨迹示意图,设置所述扫描模块在任一扫描周期中对应的所述发射模块的发光时序控制参数,使得所述扫描模块在所述扫描周期中,在沿第一方向扫描时,所述发射模块按照第一时间间隔形成发光点序列,在沿第二方向扫描时,所述发射模块未形成发光点序列。相应地,在扫描视场中,在对应任一扫描周期,在所述扫描模块沿第一方向扫描时,对应扫描视场中x-axis从左向右依次形成的扫描点序列的扫描轨迹,扫描点序列之间的时间间隔为第一时间间隔,对应的相邻扫描点序列之间的空间间隔为1b,其中,为了便于理解,每个*表示一个扫描点序列,其中一个扫描点序列由对应一个发光点序列经过扫描模块扫描形成。在任一扫描周期,在所述扫描模块沿第二方向扫描时,对应扫描视场中x-axis从右往左方向,由于未形成发光点序列,即扫描模块沿第二方向扫描时,发射模块不发光,因此未形成任何扫描点序列。接着是下个扫描周期,在扫描模块沿第一方向扫描时,所述发射模块继续按照第一时间间隔形成发光点序列,对应形成扫描视场中x-axis从左向右依次形成的扫描点序列的扫描轨迹,扫描点序列之间的时间间隔为第一时间间隔,在扫描模块沿第二方向扫描时,由于未形成任何发光点序列,即发射模块并不发光,因此未形成任何扫描点序列,扫描模块按上述过程往复运动,对应地,发射模块按照预设的发光时序控制参数形成发光点序列,经多个扫描周期,可以形成如图3所示的扫描点 序列的扫描轨迹,可以看出,扫描点序列在整个扫描视场中均匀排布,并且扫描模块的扫描控制参数(例如扫描模块在快轴方向和慢轴方向的扫描速度)和发射模块的发光时序控制参数(例如发光间隔)不改变,因而在x-axis方向上扫描点序列相比于图2A中的扫描点的空间间隔和时间间隔不发生改变,即发光能量和测程不改变,在y-axis方向上将根据图2A中的扫描点替换为图3中的具有多个扫描点的扫描点序列,增加了扫描点数量,可以提高分辨率。
其中,所述发光点序列包括至少一列,且每列包括至少两个发光点。
在具体实施中,可以基于所述激光雷达的分辨率,设置所述发光点序列中发光点数量、相邻发光点在列方向的间距及发光点位置。
参照图4所示的一种发光点序列的形成原理示意图,发光点序列A0具体为一个纵向排列的点阵,发光点序列A0中发光点的数量为k,各发光点之间可以等间距,也可以非等间距。此处以等间距示例,设置两个发光点之间的纵向间距为1a,若垂直分辨率需求为1a,即相邻扫描点之间的纵向间距为1a,若每次采用2个发光点形成发光点序列,这两个发光点之间的纵向间距可以为1a,或者为3a,或者为(2N+1)a,即相邻两个发光点之间的纵向间距可以为垂直分辨率的奇数倍。
若每次采用4个发光点形成发光点序列,则4个发光点中相邻发光点之间的纵向间距可以为(4N+1)a。
在具体实施中,发光点序列大致可以按照如下规律进行设置:每次有m个发光点(m为偶数,且m≥2),m个发光点之间的间距为(mN+1)a,其中N为自然数。
如前所述,按照上述方式预设的多个发光点形成的发光点序列,若对应扫描模块按照第一时间间隔扫描,则在扫描视场中对应形成的扫描点序列之间的空间间隔,例如为1b,即为水平分辨率。
需要说明的是,在其他实施例中,发光点序列也可以为横向排布的点阵,则相邻两个发光点的横向间隔可以为水平分辨率的奇数倍。
在具体实施中,发射模块可以包括多个发光单元(例如激光器),发光点可以由发射模块的各发光单元发光一一对应形成,也可以由至少一个发光单元(例如激光器),并通过匹配的匀光器形成,具体可以将匀光器设置于至少一个所述发光单元的出光侧,使得所述至少一个发光单元发出的探测光束形成所述发光点序列中各发光点。
为了更直观地理解采用本发明实施例中通过设置发光点序列与扫描方向相关且按第一时间间隔的发光时序控制参数控制的原理,以下结合两种扫描图形的形成过程及最终形成的扫描图形进行示例说明。
首先,参照图5A和图5B,其中图5A包括多个子图a)至子图e),每个子图对应一个扫描周期形成的扫描点。本实施例中,假如要求形成垂直分辨率为1a的扫描图形,发光点序列采用2个发光点,两个发光点之间的间距也为1a,其中采用灰度不同的*表示同一扫描点序列中不同发光点对应的扫描点,其中灰色的*表示发光点序列中纵向第一个发光点对应的扫描点,黑色的*表示发光点序列中纵向第二个发光点对应的扫描点。接下来执行如下的扫描控制过程,控制发射模块产生由所述2个发光点形成的发光点序列,在第一扫描周期,对应扫描模块沿第一方向扫描时,发射模块按照第一时间间隔依次发光,即按照第一时间间隔依次产生发光点序列,配合扫描模块沿第一方向扫描,形成如图5A中子图a)所示的扫描点序列,沿x-axis方向各扫描点序列之间的空间间隔为1b,对应扫描模块沿与第一方向相反的第二方向扫描时,发射模块不发光,因此未在扫描视场中形成任何扫描点,因此最终第一扫描周期在扫描视场中形成的扫描图形如图5A之子图a)所示。
类似地,在第二扫描周期,扫描模块按照同样的扫描控制参数运动,与之对应的,发射模块按照同样的发光时序控制参数发光,最终形成如图5A之子图b)包括第一扫描周期和第二扫描周期的扫描点序列的扫描图形。经第三扫描周期后,形成图5A之子图c)的扫描图形,经第四扫描周期,形成图5A之子图d)的扫描图形,如此,经五个扫描周期,形成图5A之子图e)的扫描图形。图5B为经五个扫描周期后形成的最终扫描图形。由图5B可知,各扫描点均匀分布,且横向间距为1b,纵向间距为1a,即垂直分辨率为1a,水平分辨率为1b。
接着,可以设置发光点序列采用不同的纵向间距形成扫描图形,参照图6A和图6B,其中图6A包括多个子图a)至子图e),每个子图对应一个扫描周期形成的扫描点。本实施例中,为得到垂直分辨率为1a的扫描图形,发光点序列采用2个发光点,两个发光点之间的间距为3a,其中采用灰度不同的*表示同一扫描点序列中不同发光点对应的扫描点,其中灰色的*表示发光阵列中纵向第一个发光点对应的扫描点,黑色的*表示发光阵列中纵向第二个发光点对应的扫描点。接下来执行如下的扫描控制过程,控制发射模块产生由所述2个发光点 形成的发光点序列,在第一扫描周期,对应扫描模块沿第一方向扫描时,发射模块按照第一时间间隔依次发光,即按照第一时间间隔依次产生发光点序列,配合扫描模块沿第一方向扫描,形成如图6A中子图a)所示的扫描点序列,各扫描点序列之间的空间间隔为1b,对应扫描模块沿与第一方向相反的第二方向扫描时,发射模块不发光,因此未在扫描视场中形成任何扫描点,因此最终第一扫描周期在扫描视场中形成的扫描图形如图6A之子图a)所示。
类似地,在第二扫描周期,扫描模块按照同样的扫描控制参数运动,与之对应的,发射模块按照同样的发光时序控制参数发光,最终形成如图6A之子图b)包括第一扫描周期和第二扫描周期的扫描点序列的扫描图形。经第三扫描周期后,形成图6A之子图c)的扫描图形,经第四扫描周期,形成图6A之子图d)的扫描图形,如此,经五个扫描周期,形成图6A之子图e)的扫描图形。图6B为经五个扫描周期后形成的最终扫描图形。由图6B可知,在扫描视场的区域R0,各扫描点均匀分布,且横向间距为1b,纵向间距为1a,即垂直分辨率为1a,水平分辨率为1b。
由上述两个具体应用示例可知,在一个扫描周期中,仅沿第一方向扫描时发光,而在向第一方向相反方向运动时,则不发光,且由于沿第一方向扫描时均按照第一时间间隔形成发光点序列,因此可以使发光点序列对应形成的扫描点序列的空间间隔和时间间隔均是均匀的,因而可以在扫描视场中形成扫描点均匀分布的扫描图形。其中,虽然发射模块在所述扫描模块的一个扫描周期中沿第二方向扫描时不发光,不过由于在扫描模块沿第一方向扫描时,按照第一时间间隔,形成发光点序列,因此所述扫描模块在各个位姿对应的扫描视场的视场方位角,均分布具有多个扫描点的扫描点序列,并且扫描模块的扫描控制参数(例如扫描模块在快轴方向和慢轴方向的扫描速度)和发射模块的发光时序控制参数(例如发光间隔)不改变,因而在x-axis方向上扫描点序列相比于图2A中的扫描点的空间间隔和时间间隔不发生改变,即发光能量和测程不改变,在y-axis方向上将根据图2A中的扫描点替换为图5B和6B中的具有多个扫描点的扫描点序列,增加了扫描点数量,可以提高分辨率,因此可以兼顾激光雷达的分辨率和测程这两个性能参数。
作为另一可选实施方式,可以设置所述扫描模块在任一扫描周期中扫描方向、相应扫描方向的起始偏转位置及发光点序列的发光时序具有预设的对应关系,使得所述扫描模块在所述扫描周期中沿不同扫描方向扫描时发光点序列对 应的视场方位角交错分布。
也就是说,通过控制在任一扫描周期中扫描方向以及相应扫描方向的起始偏转位置这两个扫描控制参数与发光点发光时序的匹配关系,使得所述扫描模块在所述扫描周期中沿不同扫描方向扫描时发光点序列对应的视场方位角交错分布,可以在保持分辨率不变的情况下,增加扫描位姿间隔和/或发光间隔,使得相邻扫描点对应的空间间隔和时间间隔增大,从而可以有更高的激光安全阈值,发射更强的激光能量,获得更远的测程,因此可以兼顾激光雷达的分辨率和测程这两个性能参数。
为使本领域技术人员更好地理解和实施,以下参照附图,结合具体应用场景进行示例性介绍。
首先,可以设置所述扫描模块在任一扫描周期中所述发射模块的发光控制参数,使得所述扫描模块在所述扫描周期中,在沿第一方向扫描时和沿第二方向扫描时,所述发射模块均按照第二时间间隔形成发光点序列,且沿第二方向扫描的起始偏转位置与所述第一方向的终止偏转位置之间的间距为所述扫描模块在所述第二时间间隔内对应位置偏转量的一半,其中,所述第一方向和所述第二方向相反。
参照图7所示采用上述扫描控制方法形成的扫描视场中另一种扫描点序列的扫描轨迹示意图,在设置所述扫描模块在任一扫描周期中发射模块的发光时序控制参数,使得所述扫描模块在所述扫描周期中,使得所述扫描模块在所述扫描周期中,在沿第一方向扫描时和沿第二方向扫描时,所述发射模块均按照第二时间间隔形成发光点序列,且沿第二方向扫描的起始偏转位置与所述第一方向的终止偏转位置之间的间距为所述扫描模块在所述第二时间间隔内对应位置偏转量的一半。相应地,在扫描视场中,在对应任一扫描周期,在所述扫描模块沿第一方向扫描时,对应扫描视场中x-axis从左向右依次形成的扫描点序列,由于发光点序列按照第二时间间隔形成,因此经扫描模块扫描对应形成的扫描点序列之间的时间间隔为第二时间间隔,对应的相邻扫描点序列之间的空间间隔为2b,参照图3可知,扫描模块在快轴方向和慢轴方向的扫描速度不改变的情况下,第二时间间隔为第一时间间隔的两倍。其中,为了便于理解,每个*表示一个对应扫描模块沿第一方向运动的扫描点序列,每个x表示一个对应扫描模块沿第二方向运动的扫描点序列。在任一扫描周期,在所述扫描模块沿第二方向扫描时,对应扫描视场中x-axis从右往左方向,形成多个扫描点序列, 扫描点序列之间的时间间隔为第二时间间隔,对应的相邻扫描点序列之间的空间间隔为2b,且由于沿第二方向扫描的起始偏转位置与所述第一方向的终止偏转位置之间的间距为所述扫描模块在所述第二时间间隔内对应位置偏转量的一半,因此扫描模块沿第一方向扫描形成的扫描点序列与沿第二方向扫描形成的扫描点序列在扫描视场中是交错分布的。接着是下个扫描周期,在扫描模块沿第一方向扫描时,继续按照第二时间间隔形成发光点序列,对应形成扫描视场中x-axis从左向右依次形成的扫描点序列,相邻扫描点序列之间的空间间隔为2b,接着扫描模块沿第二方向扫描,对应扫描视场中x-axis从右向左按照第二时间间隔依次形成扫描点序列,对应的相邻扫描点序列之间的空间间隔也为2b。扫描模块如此往复运动,对应地,发射模块按照如此预设的发光时序控制参数形成发光点序列,经多个扫描周期,可以形成如图7所示的扫描点序列的扫描轨迹,可以看出,扫描点序列在整个扫描视场中均匀排布,并且由于发射模块的发光时序控制参数改变,例如相比于图2A、图3和图5A至图6B,发光间隔提升为两倍(第二时间间隔为第一时间间隔的两倍),使相邻扫描点之间的时间间隔提升为两倍,相邻扫描点之间的空间间隔为2b,相比于图2A、图3和图5A至图6B同样是提升为两倍,因而在分辨率不变的情况下,使得相邻扫描点对应的空间间隔和时间间隔增大,从而可以具有更高的激光安全阈值,可以发射更强的激光能量,获得更远的测程,因此可以兼顾激光雷达的分辨率和测程这两个性能参数指标。
需要说明的是,扫描模块沿第一方向和第二方向扫描的所述起始偏转位置和终止偏转位置是与发光点序列的发光时序对应形成的扫描点序列的位置,相邻扫描点序列的空间间隔由第二时间间隔对应的位置偏转量确定。
与前述实施例类似,所述发光点序列可以包括至少一列,且每列包括至少两个发光点。并且可以基于所述激光雷达的分辨率,设置所述发光阵列中发光点的数量、相邻发光点的纵向间距及发光点位置。在具体实施中,可以设置发光点数量为偶数,相邻发光点的间距为预设分辨率的奇数倍。发光点序列可以纵向设置,也可以横向设置。
为了更直观地理解采用本发明实施例中结合扫描方向和不同方向的起始偏转位置这两个扫描控制参数与发射模块的发光时序控制参数匹配控制的原理,以下结合两种扫描图形的形成过程及最终形成的扫描图形进行示例说明。
首先,参照图8A和图8B,其中图8A包括多个子图a)至子图e),每个 子图对应一个扫描周期形成的扫描点。本实施例中,为得到分辨率为1a的扫描图形,发射模块所形成的发光点序列选取2个发光点,两个发光点之间的间距也为1a。其中,采用灰度不同的*表示对应扫描模块沿第一方向运动时同一扫描点序列中不同发光点对应的扫描点,其中灰色的*表示发光点序列中纵向第一个发光点对应的扫描点,黑色的*表示发光点序列中纵向第二个发光点对应的扫描点;类似地,采用灰度不同的x表示对应扫描模块沿第二方向运动时同一扫描点序列中不同发光点对应的扫描点,其中灰色的x表示发光点序列中纵向第一个发光点对应的扫描点,黑色的x表示发光点序列中纵向第二个发光点对应的扫描点。
接下来,执行如下的扫描控制过程,控制所述2个发光点形成的发光点序列,在第一扫描周期,对应扫描模块沿第一方向扫描时,所述发射模块按照第二时间间隔同时发光,形成如图8A中子图a)所示为*的扫描点序列,各扫描点序列之间的空间间隔为2b,对应扫描模块沿与第一方向相反的第二方向扫描时,所述发射模块按照第二时间间隔同时发光,形成如图8A中子图a)所示为x的扫描点序列,各扫描点序列之间的空间间隔为2b,在扫描视场中形成与沿第一方向扫描时交错的扫描点序列,最终第一扫描周期在扫描视场中形成的扫描图形如图8A之子图a)所示。
类似地,在第二扫描周期,扫描模块按照同样的扫描控制参数运动,与之对应的,发射模块按照同样的发光时序控制参数发光,最终形成如图8A之子图b)包括第一扫描周期和第二扫描周期的扫描点序列的扫描图形。经第三扫描周期后,形成图8A之子图c)的扫描图形,经第四扫描周期,形成图8A之子图d)的扫描图形,如此,经五个扫描周期,形成图8A之子图e)的扫描图形。图8B为经五个扫描周期后形成的扫描图形。由图8B可知,各扫描点均匀且交错分布,且横向间距为1b,纵向间距为1a,即垂直分辨率为1a,水平分辨率为1b。
接着,参照图9A和图9B,其中图9A包括多个子图a)至子图e),每个子图对应一个扫描周期形成的扫描点。本实施例中,为得到分辨率为1a的扫描图形,所述发射模块形成的发光点序列选取2个发光点,两个发光点之间的间距为3a,其中采用灰度不同的*表示扫描模块沿第一方向扫描时同一扫描点序列中不同发光点对应的扫描点,其中灰色的*表示发光阵列中纵向第一个发光点对应的扫描点,黑色的*表示发光阵列中纵向第二个发光点对应的扫描点。类似 地,采用灰度不同的x表示对应扫描模块沿第二方向运动时同一扫描点序列中不同发光点对应的扫描点,其中灰色的x表示发光阵列中纵向第一个发光点对应的扫描点,黑色的x表示发光阵列中纵向第二个发光点对应的扫描点。
接下来,执行如下的扫描控制过程,控制所述发射模块按照预设的发光时序控制参数,按照第二时间间隔同时发光,形成由2个发光点组成的发光点序列,在第一扫描周期,对应扫描模块沿第一方向扫描时,形成如图9A中子图a)所示为*的扫描点序列,各扫描点序列之间的空间间隔为2b;对应扫描模块沿第二方向扫描时,仍然控制所述发射模块按照第二时间间隔依次发光,形成如图9A中子图a)所示为x的扫描点序列,各扫描点序列之间的空间间隔为2b,只是其发光起始位置相对于沿第一方向扫描的终止偏转位置偏移了所述扫描模块在所述第二时间间隔内对应位置偏转量的一半,因此最终第一扫描周期在扫描视场中形成的扫描图形如图9A之子图a)所示。
类似地,在第二扫描周期,扫描模块按照同样的扫描控制参数运动,与之对应的,发射模块按照同样的发光时序控制参数发光,最终形成如图9A之子图b)包括第一扫描周期和第二扫描周期的扫描点序列的扫描图形。经第三扫描周期后,形成图9A之子图c)的扫描图形,经第四扫描周期,形成图9A之子图d)的扫描图形,如此,经五个扫描周期,形成图9A之子图e)的扫描图形。图9B为经五个扫描周期后形成的最终扫描图形。由图9B可知,在扫描视场的区域R1,各扫描点均匀且交错分布,且横向间距为1b,纵向间距为1a,即垂直分辨率为1a,水平分辨率为1b。
比较图3和图5A至图6B以及图7和图8A至图9B可知,在保持分辨率相同的情况下,采用图7和图8A至图9B对应的扫描方式相对于采用图3和图5至图6B实施例对应的扫描方式,可以增大发光间隔,即第二时间间隔大于第一时间间隔,例如,第二时间间隔为第一时间间隔的两倍,扫描装置在快轴方向和慢轴方向的扫描速度不变的情况下,使得相邻扫描点之间的空间间隔增大。
由上述两个具体应用示例可知,通过设置所述扫描模块在任一扫描周期中对应的发射模块的发光控制参数,使得在所述扫描模块在所述扫描周期中,在沿第一方向扫描时和沿第二方向扫描时,均按照第二时间间隔形成发光点序列,且沿第二方向扫描的起始偏转位置与所述第一方向的终止偏转位置之间的间距为所述扫描模块在所述第二时间间隔内对应位置偏转量的一半,其中,所述第一方向和所述第二方向相反,因此,在第一方向形成的扫描点序列和在第二方 向形成的扫描点序列在扫描视场中均匀交错,可以在所述扫描视场中形成扫描点均匀分布的扫描图形,在保持分辨率不变的情况下,则可以增加扫描位姿间隔和/或发光间隔,例如相比于图2A、图3和图5A至图6B,发光间隔提升为两倍(第二时间间隔为第一时间间隔的两倍),使相邻扫描点之间的时间间隔提升为两倍,相邻扫描点之间的空间间隔为2b相比于图2A、图3和图5A至图6B同样是提升为两倍,因而在分辨率不变的情况下,使得相邻扫描点对应的空间间隔和时间间隔增大,从而可以具有更高的激光安全阈值,可以发射更强的激光能量,获得更远的测程,因此可以兼顾激光雷达的分辨率和测程这两个性能参数指标。
在具体实施中,所述发射模块可以有多种方式形成所述发光点序列,以下给出两种具体示例。
示例一,所述发射模块可以包括多个发光单元,所述多个发光单元适于发出探测光束对应形成所述发光点序列中各发光点。在具体实施中,所述多个发光单元的间距可以相等,也可以不等。
示例二,所述发射模块包括:至少一个发光单元,适于发出探测光束;匀光单元,设置于至少一个所述发光单元的出光侧,使得所述发光单元发出的探测光束形成所述发光点序列中各发光点。
在具体实施中,根据激光雷达实际应用场景所需,在满足激光安全阈值,且其他扫描控制参数和发光时序控制参数不变的情况下,通过选取能够形成的发光点序列中相邻发光点之间间距更小的发射模块,例如选取各发光单元之间间距更小的发射模块,还可以提高激光雷达的分辨率。
在具体实施中,所形成的扫描图形并不限于上述实施例中的“之”字形,根据需求,也可以形成其他形状的扫描图形。例如,可以将扫描模块的快轴和慢轴进行调换,快轴方向对应扫描视场的竖直方向,即y轴(y-axis)方向,慢轴方向对应扫描视场的水平方向,即x轴(x-axis)方向,可以形成类似“W”形状的扫描图形,如图10A所示。可以理解的是,对于二维扫描方式的扫描模块,其快轴和慢轴方向运动方式的不同,也可以形成其他形状的扫描图形,本发明实施例中并不对具体的扫描图形的形状作任何的限定。
为形成更多样性及所需的扫描图形,还可以在扫描视场中形成多个组合排列的扫描图形,在具体实施中,激光雷达中可以设置多个发射装置,所述多个发射模块可以分区域排布,各发射模块适于在对应的子视场形成各自预设的扫 描图形,多个子视场拼接形成所述扫描视场,因此多个发射模块的扫描图形拼接可以形成所述扫描视场中的扫描图形。
参照图10B所示的扫描视场中的扫描图形,为横向排列的三个“之”字形图形的组合,在具体实施中,可以将三个发射模块按列依序排布拼接形成,每个发射模块对应一组“之”字图形。参照图10C所示的扫描视场中的扫描图形,则是三个“W”字形,或者称为“M”子形图形,在具体实施中,可以将三个发射模块按序放在同一列排布拼接形成,每个发射模块对应一组“W”字形图形。
本发明实施例除了适用二维扫描方式(即扫描模块的快轴和慢轴均具有扫描速度,相应地在扫描视场的水平方向和竖直方向均有扫描速度)外,也可以适用一维扫描方式,例如光栅扫描。
本发明实施例应用于上述一维扫描方式,作为一可选示例,可以设置发射模块沿奇数行扫描时按照预设的时间间隔(例如第三时间间隔)发光,依次形成多个发光点序列,而在光栅沿偶数行扫描时,所述发射模块不发光;或者设置所述发射模块沿偶数行扫描时按照预设的时间间隔(例如第三时间间隔)发光,依次形成多个发光点序列,而在光栅沿奇数行扫描时,所述发射模块不发光,经多个扫描周期,同样可以形成扫描视场中扫描点均匀分布的扫描图形。
本发明实施例应用于上述一维扫描方式,作为另一可选示例,可以设置所述发射模块沿奇数行扫描时和沿偶数行扫描时均按照预设的时间间隔(例如第三时间间隔)发光,且沿奇数行扫描时光栅的起始偏转位置与偶数行不同,沿偶数行扫描时光栅的起始偏转位置与沿奇数行扫描时光栅的起始偏转位置之差可以为所述第三时间间隔对应位置偏转量的一半,从而依次形成间隔分布的扫描点序列,多个扫描点序列可以形成扫描视场中扫描点交错且均匀分布的扫描图形。
扫描模块按照一维方式扫描的扫描控制参数与发射模块所形成发光点序列的发光时序匹配方式可以参见前述扫描模块按照二维扫描模式扫描的原理进行相应设置,此处不再展开说明。
本发明实施例还提供了相应的激光雷达,参照图11所示的激光雷达的结构示意图,在本发明实施例中,如图11所示,激光雷达LA0可以包括发射模块TX0、扫描模块SC0、存储模块ST0及控制模块CT0,其中:
所述发射模块TX0,适于发出多束探测光束,形成发光点序列;
所述扫描模块SC0,适于接收所述探测光束,并将所述探测光束出射形成扫描视场中的扫描图形;
所述存储模块ST0,适于存储所预设的所述扫描模块的扫描控制参数和所述发射模块的发光时序控制参数,且所预设的所述扫描控制参数和所述发光时序控制参数满足匹配关系,使发光点序列与所述扫描模块的位姿对应设置;
所述控制模块CT0,适于基于所述存储模块ST0存储预设的扫描控制参数和所述发光时序控制参数,控制所述扫描模块SC0运动并控制所述发射模块TX0发光形成扫描点序列,多个所述扫描点序列在所述扫描视场中形成扫描点均匀分布的扫描图形。
具体而言,所述控制模块CT0,一方面,基于从所述存储模块ST0获取的扫描控制参数,可以输出相应的扫描控制信号,控制所述扫描模块SC0按照所述扫描控制参数运动;另一方面,所述控制模块CT0,基于所述存储模块ST0获取的发光时序控制参数,可以输出相应的发光时序控制信号,控制所述发射模块TX0按照相应的发光时序依序发光,相应形成发光点序列,由于所述所预设的所述扫描控制参数和所述发光时序控制参数满足匹配关系,因此所述发射模块TX0所形成的发光点序列与所述扫描模块的位姿对应设置,最终可以在所述扫描视场中形成扫描点均匀分布的扫描图形。
在具体实施中,可以预先设置扫描控制参数和所述发光时序控制参数并存储至所述存储模块ST0。具体可以在所述激光雷达LA0出厂前进行设置,也可以在所述激光雷达的应用环境发生变化时进行调整设置。
在具体实施中,如图11所示,所述存储模块ST0可以分立设置,为了提高数据处理速度,所述存储模块ST0也可以集成设置于所述控制模块CT0内部。
作为可选示例,所述存储模块ST0可以为非易失性存储器。
在具体实施中,所述控制模块CT0可以通过单片机、单核或多核处理器、现场可编程门阵列(Field-Programmable Gate Array,FPGA)等其中任意一种,也可以为其他类型能够进行数据处理的集成电路,这里并不对所述控制模块CT0的硬件结构作任何限制。
在具体实施中,所述发射模块TX0可以有多种实现方式。作为一具体示例,所述发射模块TX0包括:多个发光单元ET0,所述多个发光单元适于发出探测光束对应形成所述发光点序列中各发光点。作为另一具体示例,所述发射模块TX0可以包括:至少一个发光单元,适于发出探测光束;匀光单元(未示出), 设置于至少一个所述发光单元的出光侧,使得所述至少一个发光单元发出的探测光束形成所述发光点序列中各发光点。
在具体实施中,所述激光雷达LA0可以包括多个发射模块TX0,所述多个发射模块TX0分区域排布,各发射模块TX0适于形成各自预设的扫描图形,且多个发射模块TX0的扫描图形拼接形成所述扫描视场中的扫描图形。
在具体实施中,所述扫描模块SC0可以为一维扫描式扫描器,例如光栅扫描器、振镜、转镜、摆镜和电流计镜,也可以为二维扫描式扫描器,具体可以为微电子机械系统(Micro-Electro Mechanical Systems,MEMS)、振镜,或者为一维扫描的振镜和摆镜、一维扫描的转镜和振镜、一维扫描的转镜和摆镜、一维扫描的转镜和电流计镜配合组成的扫描器。
在具体实施中,所述扫描模块SC0通过连续多个扫描周期形成所述扫描图形;所述存储模块ST0,所存储的所述扫描控制参数和所述发光时序控制参数满足匹配关系,使在连续多个扫描周期中,不同扫描点序列对应的发光点序列的发光时序与所述扫描模块对应的位姿具有均匀一致的映射关系。
作为一可选示例,所述存储模块ST0,所存储的所述扫描控制参数和所述发光时序控制参数满足匹配关系,使所述扫描模块SC0在任一扫描周期中的扫描方向和发光点序列的发光时序具有预设对应关系。
继续参照图11,所述存储模块ST0,所存储的所述扫描控制参数和所述发光时序控制参数满足如下匹配关系:所述扫描模块SC0在任一扫描周期中对应的发光单元的发光时序控制参数,使得在所述扫描模块SC0在所述扫描周期中,在沿第一方向扫描时,所述发射模块TX0按照第一时间间隔发光,形成发光点序列,在沿第二方向扫描时,所述发射模块TX0不发光,未形成发光点序列,其中,所述第一方向和所述第二方向相反。
作为另一可选示例,所述存储模块ST0,所存储的所述扫描控制参数和所述发光时序控制参数满足匹配关系,使所述扫描模块SC0在任一扫描周期中扫描方向、相应方向的起始偏转位置及发光点序列的发光时序具有预设的对应关系,使得在所述扫描模块SC0在所述扫描周期中在沿不同方向扫描时发光点序列对应的视场方位角交错分布。
继续参照图11,在具体实施中,所述存储模块ST0,所存储的所述扫描控制参数和所述发光时序控制参数满足如下匹配关系:所述扫描模块SC0在任一扫描周期中对应的发光单元的发光时序控制参数,使得所述扫描模块SC0在所 述扫描周期中,在沿第一方向扫描时和沿第二方向扫描时,所述发射模块TX0均按照第二时间间隔形成发光点序列,且沿第二方向扫描的起始偏转位置与沿所述第一方向扫描的终止偏转位置之间的间距为所述扫描模块SC0在所述第二时间间隔内对应位置偏转量的一半,其中,所述第一方向和所述第二方向相反。
在具体实施中,所述发光点序列可以包括至少一列,且每列包括至少两个发光点。如图4示出了一种发光点序列的形成方式示意图,此处不再赘述。
在具体实施中,所述存储模块ST0,还适于存储基于所述激光雷达的分辨率,所预设的所述发光阵列中发光点的数量、相邻发光点的纵向间距及发光点位置信息。
作为可选示例,所述存储模块ST0,所存储的所述发光点数量为偶数,且相邻发光点的间距为预设分辨率的奇数倍。
本发明实施例中激光雷达的具体扫描控制方法均可以参照前述扫描控制方法实施例介绍,此处不再展开描述。
可以理解的是,在本发明实施例中,扫描模块沿第一方向扫描也可以对应扫描视场中扫描点序列从右向左运动,相对应地,扫描模块沿第二方向扫描对应扫描视场中扫描点序列从左向右运动。
虽然本说明书实施例披露如上,但本说明书并非限定于此。任何本领域技术人员,在不脱离本说明书的精神和范围内,均可作各种更动与修改,因此本说明书的保护范围应当以权利要求所限定的范围为准。

Claims (23)

  1. 一种激光雷达的扫描控制方法,其特征在于,所述激光雷达包括:发射模块和扫描模块,其中:所述发射模块适于发出探测光束,形成发光点序列;所述扫描模块,适于接收所述探测光束,并将所述探测光束出射形成扫描视场中的扫描图形;所述扫描控制方法包括:
    基于预设的所述扫描模块的扫描控制参数和所述发射模块的发光时序控制参数,控制所述扫描模块运动并控制所述发射模块发光,形成扫描点序列,多个所述扫描点序列在所述扫描视场中形成扫描点均匀分布的扫描图形;其中预设的所述扫描控制参数和所述发光时序控制参数满足匹配关系,使发光点序列与所述扫描模块的位姿对应设置,以形成所述扫描点序列。
  2. 根据权利要求1所述的扫描控制方法,其特征在于,所述扫描模块通过连续多个扫描周期形成扫描图形,且在连续多个扫描周期中,不同扫描点序列对应的发光点序列的发光时序与所述扫描模块对应的位姿具有均匀一致的映射关系。
  3. 根据权利要求2所述的扫描控制方法,其特征在于,所述扫描模块在任一扫描周期中的扫描方向和发光点序列的发光时序具有预设对应关系。
  4. 根据权利要求3所述的扫描控制方法,其特征在于,设置所述扫描控制参数和所述发光时序控制参数满足匹配关系,包括:
    设置所述扫描模块在任一扫描周期中所述发射模块的发光时序控制参数,使得所述扫描模块在所述扫描周期中,在沿第一方向扫描时,所述发射模块按照第一时间间隔形成发光点序列,在沿第二方向扫描时,所述发射模块未形成发光点序列,其中,所述第一方向和所述第二方向相反。
  5. 根据权利要求2所述的扫描控制方法,其特征在于,设置所述扫描控制参数和所述发光时序控制参数满足匹配关系,包括:
    设置所述扫描模块在任一扫描周期中扫描方向、相应扫描方向的起始偏转位置及发光点序列的发光时序具有对应关系,使得所述扫描模块在所述扫描周期中沿不同扫描方向扫描时发光点序列对应的视场方位角交错分布。
  6. 根据权利要求5所述的扫描控制方法,其特征在于,所述设置所述扫描 模块在任一扫描周期中扫描方向、相应扫描方向的起始偏转位置及发光点序列的发光时序具有对应关系,包括:
    设置所述扫描模块在任一扫描周期中所述发射模块的发光控制参数,使得所述扫描模块在所述扫描周期中,在沿第一方向扫描时和沿第二方向扫描时,所述发射模块均按照第二时间间隔形成发光点序列,且沿第二方向扫描的起始偏转位置与沿所述第一方向扫描的终止偏转位置之间的间距为所述扫描模块在所述第二时间间隔内对应位置偏转量的一半,其中,所述第一方向和所述第二方向相反。
  7. 根据权利要求1-6任一项所述的扫描控制方法,其特征在于,所述发光点序列包括至少一列,且每列包括至少两个发光点。
  8. 根据权利要求7所述的扫描控制方法,其特征在于,还包括:
    基于所述激光雷达的分辨率,设置所述发光点序列中发光点数量、相邻发光点在列方向的间距及发光点位置。
  9. 根据权利要求8所述的扫描控制方法,其特征在于,所述发光点数量为偶数,相邻发光点在列方向的间距为所述分辨率对应间距的奇数倍。
  10. 根据权利要求1所述的扫描控制方法,其特征在于,所述发射模块包括:
    多个发光单元,所述多个发光单元适于发出探测光束对应形成所述发光点序列中各发光点。
  11. 根据权利要求1所述的扫描控制方法,其特征在于,所述发射模块包括:
    至少一个发光单元,适于发出探测光束;
    匀光单元,设置于至少一个所述发光单元的出光侧,使得所述发光单元发出的探测光束形成所述发光点序列中各发光点。
  12. 根据权利要求1-6任一项所述的扫描控制方法,其特征在于,所述激光雷达包括多个发射模块,所述多个发射模块分区域排布,各发射模块适于形成各自预设的扫描图形,且多个发射模块的扫描图形拼接形成所述扫描视场中的扫描图形。
  13. 一种激光雷达,其特征在于,包括:
    发射模块,适于发出多束探测光束,形成发光点序列;
    扫描模块,适于接收所述探测光束,并将所述探测光束出射形成扫描视场中的扫描图形;
    存储模块,适于存储预设的所述扫描模块的扫描控制参数和所述发射模块的发光时序控制参数,且预设的所述扫描控制参数和所述发光时序控制参数满足匹配关系,使发光点序列与所述扫描模块的位姿对应设置;
    控制模块,适于基于所述存储模块存储的所述扫描控制参数和所述发光时序控制参数,控制所述扫描模块运动并控制所述发射模块发光,形成扫描点序列,多个所述扫描点序列在所述扫描视场中形成扫描点均匀分布的扫描图形。
  14. 根据权利要求13所述的激光雷达,其特征在于,所述扫描模块通过连续多个扫描周期形成所述扫描图形;
    所述存储模块,所存储的所述扫描控制参数和所述发光时序控制参数满足匹配关系,使在连续多个扫描周期中,不同扫描点序列对应的发光点序列的发光时序与所述扫描模块对应的位姿具有均匀一致的映射关系。
  15. 根据权利要求14所述的激光雷达,其特征在于,所述存储模块,所存储的所述扫描控制参数和所述发光时序控制参数满足匹配关系,使所述扫描模块在任一扫描周期中的扫描方向和发光点序列的发光时序具有对应关系。
  16. 根据权利要求15所述的激光雷达,其特征在于,所述存储模块,所存储的所述扫描控制参数和所述发光时序控制参数满足如下匹配关系:所述扫描模块在任一扫描周期中所述发射模块的发光时序控制参数,使得在所述扫描模块在所述扫描周期中,在沿第一方向扫描时,所述发射模块按照第一时间间隔发光,形成发光点序列,在沿第二方向扫描时,所述发射模块未形成发光点序列,其中,所述第一方向和所述第二方向相反。
  17. 根据权利要求14所述的激光雷达,其特征在于,所述存储模块,所存储的所述扫描控制参数和所述发光时序控制参数满足匹配关系,使所述扫描模块在任一扫描周期中扫描方向、相应扫描方向的起始偏转位置及发光点序列的发光时序具有对应关系,使得在所述扫描模块在所述扫描周期中在沿不同方向 扫描时发光点序列对应的视场方位角交错分布。
  18. 根据权利要求17所述的激光雷达,其特征在于,所述存储模块,所存储的所述扫描控制参数和所述发光时序控制参数满足如下匹配关系:所述扫描模块在任一扫描周期中所述发射模块的发光时序控制参数,使得在所述扫描模块在所述扫描周期中,在沿第一方向扫描时和沿第二方向扫描时,所述发射模块均按照第二时间间隔形成发光点序列,且沿第二方向扫描的起始偏转位置与沿所述第一方向扫描的终止偏转位置之间的间距为所述扫描模块在所述第二时间间隔内对应位置偏转量的一半,其中,所述第一方向和所述第二方向相反。
  19. 根据权利要求13-18任一项所述的激光雷达,其特征在于,所述发光点序列包括至少一列,且每列包括至少两个发光点。
  20. 根据权利要求19所述的激光雷达,其特征在于,所述存储模块,还适于存储基于所述激光雷达的分辨率,所预设的所述发光点序列中发光点数量、相邻发光点在列方向的间距及发光点位置信息。
  21. 根据权利要求20所述的激光雷达,其特征在于,所述存储模块,所存储的所述发光点数量为偶数,且相邻发光点在列方向的间距为所述分辨率对应间距的奇数倍。
  22. 根据权利要求13所述的激光雷达,其特征在于,所述发射模块包括:
    多个发光单元,所述多个发光单元适于发出探测光束对应形成所述发光点序列中各发光点。
  23. 根据权利要求13所述的激光雷达,其特征在于,所述发射模块包括:
    至少一个发光单元,适于发出探测光束;
    匀光单元,设置于至少一个所述发光单元的出光侧,使得所述至少一个发光单元发出的探测光束形成所述发光点序列中各发光点。
PCT/CN2023/078591 2022-08-30 2023-02-28 激光雷达及其扫描控制方法 WO2024045521A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211051041.4A CN117665742A (zh) 2022-08-30 2022-08-30 激光雷达及其扫描控制方法
CN202211051041.4 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024045521A1 true WO2024045521A1 (zh) 2024-03-07

Family

ID=90075756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078591 WO2024045521A1 (zh) 2022-08-30 2023-02-28 激光雷达及其扫描控制方法

Country Status (2)

Country Link
CN (1) CN117665742A (zh)
WO (1) WO2024045521A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130054187A1 (en) * 2010-04-09 2013-02-28 The Trustees Of The Stevens Institute Of Technology Adaptive mechanism control and scanner positioning for improved three-dimensional laser scanning
CN108226904A (zh) * 2017-12-22 2018-06-29 中国空空导弹研究院 一种激光雷达及其激光脉冲时序调整方法
CN111090081A (zh) * 2018-10-19 2020-05-01 宁波舜宇车载光学技术有限公司 激光雷达扫描系统及其角度扩束装置和应用
CN112346068A (zh) * 2020-10-30 2021-02-09 深圳煜炜光学科技有限公司 一种提高激光雷达角度分辨率的装置与方法
CN112748417A (zh) * 2020-12-28 2021-05-04 北京一径科技有限公司 激光雷达控制方法及装置、电子设备及存储介质
CN113534173A (zh) * 2020-04-14 2021-10-22 上海禾赛科技有限公司 激光雷达、使用其的探测方法以及平动扫描方法
CN114114317A (zh) * 2020-08-28 2022-03-01 上海禾赛科技有限公司 激光雷达、数据处理方法及数据处理模块、介质
WO2022117011A1 (zh) * 2020-12-02 2022-06-09 北京一径科技有限公司 激光雷达的控制方法和装置、存储介质、电子装置
CN114746771A (zh) * 2020-12-31 2022-07-12 深圳市大疆创新科技有限公司 探测装置、扫描单元、可移动平台及探测装置的控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130054187A1 (en) * 2010-04-09 2013-02-28 The Trustees Of The Stevens Institute Of Technology Adaptive mechanism control and scanner positioning for improved three-dimensional laser scanning
CN108226904A (zh) * 2017-12-22 2018-06-29 中国空空导弹研究院 一种激光雷达及其激光脉冲时序调整方法
CN111090081A (zh) * 2018-10-19 2020-05-01 宁波舜宇车载光学技术有限公司 激光雷达扫描系统及其角度扩束装置和应用
CN113534173A (zh) * 2020-04-14 2021-10-22 上海禾赛科技有限公司 激光雷达、使用其的探测方法以及平动扫描方法
CN114114317A (zh) * 2020-08-28 2022-03-01 上海禾赛科技有限公司 激光雷达、数据处理方法及数据处理模块、介质
CN112346068A (zh) * 2020-10-30 2021-02-09 深圳煜炜光学科技有限公司 一种提高激光雷达角度分辨率的装置与方法
WO2022117011A1 (zh) * 2020-12-02 2022-06-09 北京一径科技有限公司 激光雷达的控制方法和装置、存储介质、电子装置
CN112748417A (zh) * 2020-12-28 2021-05-04 北京一径科技有限公司 激光雷达控制方法及装置、电子设备及存储介质
CN114746771A (zh) * 2020-12-31 2022-07-12 深圳市大疆创新科技有限公司 探测装置、扫描单元、可移动平台及探测装置的控制方法

Also Published As

Publication number Publication date
CN117665742A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN103201668B (zh) 图像显示装置
US6204832B1 (en) Image display with lens array scanning relative to light source array
US8379063B2 (en) Fine brightness control in panels or screens with pixels
US6618123B2 (en) Range-finder, three-dimensional measuring method and light source apparatus
US20190101628A1 (en) Apparatuses and method for light detection and ranging
JP6716864B2 (ja) 投影装置および投影方法、投影モジュール、電子機器、並びにプログラム
CN109752839B (zh) 处理器、显示控制装置、系统、图像处理方法及装置
EP2894493B1 (de) Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten in einem Überwachungsbereich
CN206975215U (zh) 一种激光雷达装置
CN105739225A (zh) 扫描波束显示系统
WO1997035426A1 (en) Multiplanar autostereoscopic imaging system
CN1912673A (zh) 光扫描装置及图像显示装置
US9372387B2 (en) Laser projector
WO2024045521A1 (zh) 激光雷达及其扫描控制方法
CN207134604U (zh) 一种激光发射装置及其激光雷达装置
CN107463058B (zh) 基于Lissajous图形扫描实现高刷新率高分辨率投影方法及投影仪
US8830214B2 (en) Dithered power matching of laser light sources in a display device
US20040141158A1 (en) Projector having concentrated beam
JP5042108B2 (ja) 液晶表示装置及びバックライト照明装置
KR20050116275A (ko) 빔주사 타이밍 및 빔량의 조절 방법 및 그를 이용한 주사장치
US11579441B2 (en) Pixel intensity modulation using modifying gain values
JPH04181289A (ja) 画像表示装置
CN109407201A (zh) 显示设备
RU2477866C1 (ru) Способ формирования информационного поля лазерной системы телеориентации
RU2614333C1 (ru) Способ телеориентации движущихся объектов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858564

Country of ref document: EP

Kind code of ref document: A1