WO2022116652A1 - 液体火箭发动机冲击载荷结构响应预示方法 - Google Patents

液体火箭发动机冲击载荷结构响应预示方法 Download PDF

Info

Publication number
WO2022116652A1
WO2022116652A1 PCT/CN2021/119739 CN2021119739W WO2022116652A1 WO 2022116652 A1 WO2022116652 A1 WO 2022116652A1 CN 2021119739 W CN2021119739 W CN 2021119739W WO 2022116652 A1 WO2022116652 A1 WO 2022116652A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
frame
impact load
tested
rocket engine
Prior art date
Application number
PCT/CN2021/119739
Other languages
English (en)
French (fr)
Inventor
李斌
陈晖�
王春民
高玉闪
杨飒
王猛
李斌潮
刑理想
韩帅
Original Assignee
西安航天动力研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011400048.3A external-priority patent/CN112504121B/zh
Priority claimed from CN202011400057.2A external-priority patent/CN112555055B/zh
Application filed by 西安航天动力研究所 filed Critical 西安航天动力研究所
Priority to EP21899686.6A priority Critical patent/EP4257818A1/en
Publication of WO2022116652A1 publication Critical patent/WO2022116652A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/96Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by specially adapted arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/81Modelling or simulation

Definitions

  • the invention relates to a liquid rocket engine, in particular to a liquid rocket engine impact load structure response prediction method.
  • the structure will shake violently.
  • the shaking such as the water hammer caused by the valve opening and closing process, the vibration caused by the violent combustion in the combustion chamber, and the vibration caused by the harsh working environment of the turbo pump. etc.
  • the violent shaking process may damage the structural strength of the engine under the current working conditions or even higher working conditions, so it is necessary to study the prediction method of the structural response of the engine impact load. It is difficult to identify and collect the load source during the hot test run, and there will be complex coupling between them, which makes it very difficult to obtain the excitation load in the process of engine impact dynamics research.
  • the input load used in the conventional impact dynamics research process is a single acceleration load, which is difficult to meet the multi-source load excitation in the complex hot test process. Therefore, it is necessary to develop a method for predicting the structural response of the rocket engine impact load, which can carry out the multi-source load impact dynamics research of the whole machine state without using the acceleration load as the load excitation, so as to realize the structural strength of the key parts of the engine and the rocking bearing. Analytical evaluation.
  • the purpose of the invention is to solve the technical problem that the input load used in the existing liquid rocket engine impact load structural response prediction method is a single acceleration load, which is difficult to meet the multi-source load excitation situation in the complex hot test process, and provides a liquid rocket engine.
  • a liquid rocket engine impact load structural response prediction method is special in that it includes the following steps:
  • the frame of the engine is simplified as a beam structure, the part to be tested is simplified as a shell structure, the gas elbow of the engine is a solid structure, and every small pipeline of the engine is ignored, and a simplified complete engine model is obtained.
  • the latter engine model includes a frame, a gas elbow and a turbo pump that are connected in sequence from top to bottom; the middle of the gas elbow is connected to the frame, and both ends of the gas elbow are hinged to the cantilever through rocking bearings, and the two ends of the cantilever are connected. Set up nozzles separately;
  • the simplified model of the whole engine is modeled to obtain the dynamic simulation model of the engine structure, and the frame part of the simulation model is connected with the simulation model of the moving frame of the test bench;
  • the pose change data is the curve of the displacement changing with time. Three direction data of direction and tangential direction; load the pose change data as impact load to the corresponding position of the simulation model;
  • step 3 After step 3) is completed, carry out the dynamic solution of the impact structure of the engine simulation model;
  • step 4 Using the solution results obtained in step 4), analyze the structural strength of the engine part to be tested and the rocking angle characteristics of the swing bearing at the hinge, and carry out the analysis on the structural strength of the engine in the standard operating conditions and high operating conditions. effective assessment.
  • step 5 the specific steps of analyzing the structural strength of the engine part to be measured and the rocking angle characteristics of the rocking bearing at the hinge are:
  • Extract the variation curve of the structural strength of the engine to be tested with time from the simulation model analyze the influence of the maximum structural strength and the moment when the maximum structural strength occurs on the engine structure, extract the variation curve of the rocking angle of the rocking bearing with time, and analyze the maximum structural strength.
  • step 1) when modeling in step 1), the mass of the corresponding components in the simulation model is corrected according to the actual mass of each component of the engine, so that the quality is the same.
  • the part to be tested includes a turbo pump and two nozzles.
  • step 4 when the dynamic solution of the engine impact structure is performed in step 4), the set duration is added to the output result.
  • step 4 the set duration is 1s.
  • step 3 is implemented based on a high-thrust rocket engine structure attitude monitoring system, and the high-thrust rocket engine structure attitude monitoring system includes reflective markers, reflective target balls, inertial sensors, laser trackers, control collectors and at least two high-speed cameras;
  • the inertial sensor is arranged at the docking end of the engine to be tested and the docking frame of the test bench, and is used to measure the moving speed and displacement information of the docking end of the engine to be tested;
  • the reflective marking points are arranged on the to-be-measured part of the to-be-measured engine for position identification;
  • the at least two high-speed cameras are arranged around the engine to be tested, and are used to form a three-dimensional space visual measurement domain of the engine to be tested;
  • the reflective target ball is arranged on the engine to be tested, and is in the visual measurement field of the high-speed camera;
  • the laser tracker is arranged at a position away from the test platform, and is used to track the three-dimensional dynamic trajectory of the reflective target ball in real time;
  • the input end of the control collector is simultaneously connected to the output end of the inertial sensor, the laser tracker and the high-speed camera;
  • Step 3 specifically includes the following steps:
  • step 3.2) Perform reflective marker point detection and reflective target ball detection on the image data obtained in step 3.1) frame by frame, and according to the time sequence, form the engine pose information including the additional displacement of the high-speed camera itself and the displacement of the test bench docking frame;
  • step 3.3 Using the three-dimensional dynamic trajectory of the reflective target ball obtained in step 3.1), compare the position and attitude information of the reflective target ball in the engine pose information obtained in step 3.2) frame by frame to obtain the additional displacement of the high-speed camera in the frame-by-frame image data. The displacement compensates and corrects the engine pose information obtained in step 3.2);
  • step 3.4 According to the moving speed and displacement information of the docking end of the engine obtained in step 3.1), modify the results obtained in step 3.3) to obtain the position and attitude change data of the engine relative to the docking frame, which is used for the structural response evaluation of the engine impact load.
  • the pose change data described in step 3.4) is a curve of displacement changing with time, and the curve includes data of three directions of axial X, radial Y and tangential Z.
  • At least one reflective target ball is in the visual measurement field of the high-speed camera.
  • the parts to be tested are the turbo pump and two nozzles of the engine to be tested; there are two high-speed cameras with a frame rate of 1000 frames/s; and there are multiple inertial sensors.
  • the present invention has the following beneficial effects:
  • the liquid rocket engine impact load structural response prediction method provided by the present invention integrates the liquid rocket engine structural dynamics modeling technology and the multi-excitation source impact dynamic analysis method, and reasonably simplifies the liquid rocket engine complete model.
  • the existing method overcomes the dilemma of using a single acceleration load for excitation.
  • the forced displacement load applied at multiple positions is used as the excitation input to carry out the dynamic analysis of the liquid rocket engine structure.
  • the structural strength of the key parts of the engine and the rocking angle of the rocking bearing are analyzed, so as to overcome the shortcomings of the existing technology, such as harsh technical conditions, limited scope, difficult to identify the acceleration excitation source, and single load excitation, and can provide the optimization of the engine structure and the ultimate bearing capacity. Effective evaluation, and then provide effective prediction for the structural strength of the engine in the subsequent high-condition test run.
  • the liquid rocket engine impact load structural response prediction method provided by the present invention does not require acceleration load as the load input condition, and adopts the forced displacement curve (position and attitude change data) as the load input condition , which overcomes the problem that the acceleration load excitation cannot be accurately obtained in the engine hot test run.
  • the liquid rocket engine impact load structural response prediction method provided by the present invention can simultaneously apply load excitation to multiple positions of the engine, and more realistically simulate the actual working state of the engine.
  • the strength analysis of the critical position of the engine provides a more realistic reference, and provides stronger technical support for estimating the structural strength of the engine under high operating conditions.
  • the impact load loading in the prediction method of the present invention is realized based on the structural attitude monitoring system of the high-thrust high-thrust rocket engine, combined with the multi-technological fusion of high-speed photogrammetry, laser tracking measurement and inertial sensor measurement, which is the structural response of the thermal test of the power plant. measurement technology.
  • the three-dimensional visual measurement domain is formed by more than two high-speed cameras, and the displacement of the high-thrust rocket engine structure is measured in the whole field.
  • the inertial navigation measurement and laser tracking technology are used to compensate the additional displacement of the high-speed camera and the test bench due to vibration.
  • the environmental pose (engine structure vibration displacement) measurement can accurately obtain the structural response of the engine during the thermal test run; the measured structural displacement data can be used to evaluate the engine performance, and can also be directly used for the structural response simulation analysis of the engine thermal test process. and checking to predict the structural reliability of the engine.
  • the relative position and attitude data of the engine relative to the docking frame of the test bench can be calculated, and the data can be directly applied to the simulation of the structural response of the engine based on the position and attitude changes.
  • Fig. 1 is the flow chart of the liquid rocket engine impact load structure response prediction method of the present invention
  • FIG. 2 is a schematic structural diagram of a simplified complete engine model obtained in step 1 of the liquid rocket engine impact load structural response prediction method of the present invention
  • Fig. 3 is the time-varying curve of displacement as impact load in step 3 of the embodiment of the present invention.
  • Fig. 4 is the variation curve of structural strength with time in step 5 of the embodiment of the present invention, and this figure only shows the curve corresponding to the shutdown section;
  • Fig. 5 is the variation curve of the rocking angle of the rocking bearing with time in step 5 of the embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a high-thrust rocket engine structural attitude monitoring system in an embodiment of the present invention.
  • FIG. 7 is a graph of the position and attitude change data of the engine parts to be measured at different stages obtained by the analysis of the high-thrust rocket engine structural attitude monitoring system in the embodiment of the present invention, wherein FIG. 7( a ) is the starting section, and FIG. 7( b ) is a The main stage, Figure 7(c) is the shutdown section, in each figure, A is the first part to be measured, B is the second part to be measured, and the pose change data is the curve of displacement with time, and the curve includes axial X, Data in three directions, radial Y and tangential Z.
  • 01-Docking frame 02-Reflective marking point, 03-Reflective target ball, 04-Inertial sensor, 05-Laser tracker, 06-High-speed camera, 07-Engine to be tested, 08-Control collector, 1-Frame, 2-swing bearing, 3-turbine pump, 4-nozzle, 5-gas elbow.
  • a liquid rocket engine impact load structural response prediction method establishes the engine dynamic model and multi-source load excitation loading, so as to carry out the engine impact load structural strength analysis, check the structural strength of the key parts of the engine and the bearing rocking angle. As shown in Figure 1, it includes the following steps:
  • the structure of the whole engine is simplified.
  • the frame 1 of the engine is simplified to a beam structure
  • the parts to be tested (key components, such as the turbo pump 3 and the two nozzles 4) of the engine are simplified to a shell structure
  • the gas elbow 5 of the engine is a solid structure, ignoring
  • a simplified model of the whole engine is obtained, as shown in Figure 2, including the frame 1, the gas elbow 5 and the turbo pump 3 connected in sequence from top to bottom; the middle of the gas elbow 5 is connected to the
  • the frame 1 is connected, the two ends of the gas elbow 5 are respectively hinged to the cantilever through the swing bearing 2, and the two cantilever ends are respectively provided with a nozzle 4;
  • Model the simplified engine model to obtain the engine structural dynamics simulation model. According to the actual mass of each component of the engine, the quality of the corresponding components in the simulation model is corrected to make the quality the same. Partly connected with the simulation model of the test bench moving frame;
  • the pose change data is the curve of the displacement with time.
  • the curve contains data in three directions: axial, radial and tangential; the pose change data is loaded into the corresponding position of the simulation model as an impact load (forced displacement load); the three positions to be measured are the highest points of the free end of the engine.
  • the far end, the swing amplitude is the largest during the hot test run, which can cover the swing displacement area of the rest of the engine and cover all transmission paths of the engine;
  • step 3 After step 3) is completed, carry out the dynamic solution of the impact structure of the engine simulation model; considering that the structural dynamic response of the engine will be delayed under the action of the impact load, 1 s is added to the output result when the dynamic solution of the engine impact structure is performed.
  • step 4 analyze the structural strength of the engine part to be tested and the rocking angle characteristics of the swing bearing 2 at the hinged position, and based on the analysis results, analyze the structural strength safety margin of the engine during the test run under standard operating conditions and high operating conditions. Efficient evaluation is carried out and the corresponding structural parameters of the engine are optimized.
  • step 5 the specific steps of analyzing the structural strength of the engine part to be tested and the rocking angle characteristics of the rocking bearing 2 at the hinge are as follows:
  • Fig. 4 is the variation curve of the structural strength with time, and only the curve corresponding to the shutdown section is shown in the figure;
  • Fig. 5 is the variation curve of the rocking angle of the rocking bearing 2 with time.
  • Step 3 can be implemented based on the high-thrust rocket engine structure and attitude monitoring system, as shown in Figure 6, including multiple reflective marking points 02, multiple reflective target balls 03, multiple inertial sensors 04, multiple laser trackers 05, control acquisition 08 and two high-speed cameras 06 with 1000 frames/s; the inertial sensor 07 is arranged at the butt end of the engine to be tested 07 and the docking frame 01 of the test bench.
  • a plurality of reflective marking points 02 are arranged on the part to be measured of the engine 07 to be measured (key parts of the engine, such as turbo pump and two nozzles) for position identification;
  • Each high-speed camera 06 is arranged around the engine 07 to be tested, and is calibrated before the test to form a three-dimensional space visual measurement domain of the engine 07 to be tested;
  • a plurality of reflective target balls 03 are placed on the engine 07 to be tested, and at least one reflective target is placed on the engine 07 to be tested.
  • the ball 03 is in the visual measurement field of the high-speed camera 06; the laser tracker 05 is reliably and fixedly arranged at a position away from the test bed (away from the engine), and is not affected by the vibration of the test bed, and is used for real-time tracking of the three-dimensional reflective target ball 03 Dynamic trajectory; the input end of the control collector 08 is connected to the output end of the inertial sensor 04, the laser tracker 05 and the high-speed camera 06 at the same time.
  • Step 3 is specifically implemented through the following steps:
  • step 3.1) The image data obtained in step 3.1) is subjected to the detection of reflective marking points 02 and the detection of reflective target balls 03 frame by frame, and according to the time sequence, the engine pose information including the additional displacement of the high-speed camera 06 itself and the displacement of the test bench docking frame 01 is formed;
  • step 3.3 Using the three-dimensional dynamic trajectory of the reflective target ball 03 obtained in step 3.1), compare the pose information of the reflective target ball 03 in the engine pose information obtained in step 3.2) frame by frame to obtain the additional displacement of the high-speed camera 06 in the frame-by-frame image data , using the additional displacement to compensate and correct the engine pose information obtained in step 3.2);
  • step 3.4 According to the moving speed and displacement information of the engine docking end obtained in step 3.1), modify the results obtained in step 3.3) to obtain the position and attitude change data of the engine relative to the docking frame 01.
  • the curve contains data in three directions, axial X, radial Y, and tangential Z, and is used for structural response evaluation of engine shock loads.

Abstract

本发明涉及一种液体火箭发动机冲击载荷结构响应预示方法。本发明的目的是解决现有技术存在所采用的输入载荷都是单一加速度载荷,难以满足复杂热试车过程中多源载荷激励情况的技术问题,提供一种液体火箭发动机冲击载荷结构响应预示方法。本发明综合了液体火箭发动机整机结构动力学建模技术与多激励源冲击动力学分析方法,在对液体火箭发动机整机模型进行合理简化后基础上,采用在多个位置施加强迫位移载荷作为激励输入,开展液体火箭发动机整机结构动力学分析,对发动机关键部位结构强度以及摇摆轴承摇摆角度进行分析,能够对发动机结构优化以及极限承载能力提供有效评估,进而对后来的高工况试车发动机结构强度提供有效预估。

Description

液体火箭发动机冲击载荷结构响应预示方法 技术领域
本发明涉及液体火箭发动机,具体涉及一种液体火箭发动机冲击载荷结构响应预示方法。
背景技术
液体火箭发动机在热试车过程中,结构会发生剧烈抖动,抖动的原因有很多,比如阀门开闭过程产生的水击、燃烧室中剧烈燃烧产生的振动和涡轮泵中严酷工作环境所产生的振动等,剧烈的抖动过程可能会对当下工况甚至更高工况下的发动机结构强度造成破坏,故需要进行发动机冲击载荷结构响应预示方法研究。热试车过程中载荷源很难辨识以及采集,相互之间还会有复杂耦合发生,对发动机冲击动力学研究过程中激励载荷的获取造成了很大困难。常规冲击动力学研究过程所采用的输入载荷都是单一加速度载荷,难以满足复杂热试车过程中多源载荷激励情况。因此,需要发展一种火箭发动机冲击载荷结构响应预示方法,能够在不采用加速度载荷作为载荷激励的情况下进行整机状态多源载荷冲击动力学研究,以实现对发动机关键部位结构强度以及摇摆轴承进行分析评估。
发明内容
本发明的目的是解决现有液体火箭发动机冲击载荷结构响应预示方法中存在所采用的输入载荷都是单一加速度载荷,难以满足复杂热试车过程中多源载荷激励情况的技术问题,提供一种液体火箭发动机冲击载荷结构响应预示方法。
为解决上述技术问题,本发明提供的技术解决方案如下:
一种液体火箭发动机冲击载荷结构响应预示方法,其特殊之处在于,包括以下步骤:
1)简化发动机整机模型
将发动机的机架简化为梁结构,将发动机的待测部位简化为壳体结构,将发动机的燃气弯管采用实体结构,忽略发动机的各个细小管路,得到简化 后的发动机整机模型,简化后的发动机整机模型包括自上至下依次连接的机架、燃气弯管和涡轮泵;燃气弯管的中部与机架连接,燃气弯管两端分别通过摇摆轴承铰接悬臂,两个悬臂末端分别设置喷管;
2)构建发动机结构动力学仿真模型
对简化后的发动机整机模型进行建模,得到发动机结构动力学仿真模型,将仿真模型的机架部分与试车台动架仿真模型连接;
3)冲击载荷加载
在真实发动机试车过程中,对其进行高速摄影,对摄影所得图像数据进行处理,获取待测部位的位姿变化数据,位姿变化数据为位移随时间变化的曲线,该曲线包含轴向、径向和切向三个方向数据;将该位姿变化数据作为冲击载荷加载到仿真模型的相应位置处;
4)发动机冲击结构动力学求解
待步骤3)完成后,进行发动机仿真模型冲击结构动力学求解;
5)求解结果分析
利用步骤4)所得求解结果,对发动机待测部位的结构强度和铰接处摇摆轴承的摇摆角度特性进行分析,根据分析结果对发动机在标准工况及高工况试车时的结构强度安全域度进行有效评估。
进一步地,步骤5)中,对发动机待测部位的结构强度和铰接处摇摆轴承的摇摆角度特性进行分析的具体步骤为:
从仿真模型中提取发动机待测部位的结构强度随时间的变化曲线,分析最大结构强度的大小及最大结构强度出现时刻对发动机结构产生的影响,提取摇摆轴承摇摆角度随时间的变化曲线,分析最大摇摆角的大小以及最大摇摆角出现的时刻对摇摆轴承造成的影响。
进一步地,步骤1)中建模时,根据发动机各组件的实际质量对仿真模型中相应组件的质量进行修正,使其质量相同。
进一步地,步骤1)中,待测部位包括涡轮泵和两个喷管。
进一步地,步骤4)中进行发动机冲击结构动力学求解时,对输出结果增加设定时长。
进一步地,步骤4)中,所述设定时长为1s。
进一步地,步骤3基于大推力火箭发动机结构姿态监测系统实现,大推力火箭发动机结构姿态监测系统包括反光标记点、反光靶球、惯性传感器、激光跟踪仪、控制采集器和至少两个高速摄影机;
所述惯性传感器设置于待测发动机与试车台对接架的对接端,用于测量待测发动机对接端的移动速度及位移信息;
所述反光标记点设置于待测发动机的待测部位,用于位置辨识;
所述至少两个高速摄影机均设置于待测发动机周围,用于形成待测发动机的三维空间视觉测量域;
所述反光靶球设置于待测发动机上,且处于高速摄影机的视觉测量域内;
所述激光跟踪仪设置于远离试车台的位置处,用于实时追踪反光靶球的三维动态轨迹;
所述控制采集器的输入端同时连接惯性传感器、激光跟踪仪和高速摄影机的输出端;
步骤3具体包括以下步骤:
3.1)将待测发动机对接至试车台,通过试车控制测量系统的试车时统同时触发高速摄影机、激光跟踪仪和惯性传感器,通过控制采集器按照相同的频率采集试车全程的图像数据、反光靶球三维动态轨迹和发动机对接端的移动速度及位移信息;
3.2)对步骤3.1)所得图像数据逐帧进行反光标记点检测及反光靶球检测,并根据时间排序,形成包含高速摄影机自身附加位移及试车台对接架位移的发动机位姿信息;
3.3)利用步骤3.1)所得反光靶球三维动态轨迹,逐帧比对步骤3.2)所得发动机位姿信息中的反光靶球位姿信息,以获取逐帧图像数据中高速摄影机的附加位移,利用附加位移对步骤3.2)所得发动机位姿信息进行补偿修正;
3.4)根据步骤3.1)所得发动机对接端的移动速度及位移信息,修正步骤3.3)所得结果,以获取发动机相对于对接架的位姿变化数据,用于发动机冲击载荷结构响应评估。
进一步地,步骤3.4)中所述的位姿变化数据为位移随时间变化的曲线, 该曲线包含轴向X、径向Y和切向Z三个方向的数据。
进一步地,所述反光靶球有多个,其中至少有1个反光靶球处于高速摄影机的视觉测量域内。
进一步地,所述待测部位为待测发动机的涡轮泵和两个喷管;所述高速摄影机有两台,帧率均为1000帧/s;所述惯性传感器有多个。
本发明相比现有技术具有的有益效果如下:
1、本发明提供的液体火箭发动机冲击载荷结构响应预示方法,综合了液体火箭发动机整机结构动力学建模技术与多激励源冲击动力学分析方法,在对液体火箭发动机整机模型进行合理简化后基础上,克服了现有方法采用单一加速度载荷激励的困境,在无法获取有效加速度载荷情况下,采用在多个位置施加强迫位移载荷作为激励输入,开展液体火箭发动机整机结构动力学分析,对发动机关键部位结构强度以及摇摆轴承摇摆角度进行分析,从而克服了现有技术存在技术条件苛刻、范围局限、加速度激励源难以识别、单一载荷激励的缺点,能够对发动机结构优化以及极限承载能力提供有效评估,进而对后来的高工况试车发动机结构强度提供有效预估。
2、本发明提供的液体火箭发动机冲击载荷结构响应预示方法,与传统结构动力学仿真建模相比,不需要加速度载荷作为载荷输入条件,采用强迫位移曲线(位姿变化数据)作为载荷输入条件,克服了发动机热试车无法准确获取加速度载荷激励的问题。
3、本发明提供的液体火箭发动机冲击载荷结构响应预示方法,与传统结构动力学仿真求解相比,能够在发动机多个位置同时施加载荷激励,更加真实模拟发动机实际工作状态,求解得到的结果对发动机关键位置强度分析提供更真实的参考,对预估发动机高工况试车结构强度提供更有力的技术支撑。
4、将发动机的机架简化为梁结构,将发动机的待测部位简化为壳体结构,将发动机的燃气弯管采用实体结构,忽略发动机的各个细小管路,得到简化后的发动机整机模型,仅保留了发动机关键部件,便于构建发动机结构动力学仿真模型。
5、考虑到冲击载荷作用下发动机的结构动响应会有延迟,进行发动机冲击结构动力学求解时,对输出结果增加设定时长,使得求解结果更加贴近真 实工况。
6、本发明预示方法中冲击载荷加载,基于大推力大推力火箭发动机结构姿态监测系统实现,结合高速摄影视觉测量、激光跟踪测量及惯性传感器测量的多技术融合,是动力装置热试的结构响应测量技术。通过两台以上高速摄相机组成三维视觉测量域,对大推力火箭发动机结构位移进行全场测量,通过惯导测量及激光跟踪技术,对高速摄影机及试车台由于振动产生的附加位移的进行补偿,从而克服了传统振动和应变传感器测量测点有限及数字图像相关技术在强振动环境的偏差大的缺点,获得发动机各部位相对发动机对接端的位姿变化,可实现大推力火箭发动机热试强振动冲击环境的位姿(发动机结构振动位移)测量,可精确获取发动机热态试车全程结构响应;所测量的结构位移数据可用于评估发动机性能,同时也可直接用于发动机热试过程的结构响应仿真分析及校核,以预示发动机的结构可靠性。
7、利用激光跟踪仪的数据对高速摄影解算的位姿数据进行补偿,可对强振导致的高速摄影机偏转等附加位移进行补偿,获得更为精准的位姿数据,可降低高速摄影机固定减振的设计难度。
8、由于大推力发动机布局紧凑、结构复杂,高速摄像机形成的测量空间存在测量盲区,利用激光跟踪仪及惯性传感器测量可对盲区位置的结构位姿信息进行补充测量,获得三维全息位姿数据。
9、通过惯性传感器测量发动机对接端的位姿信息可解算发动机相对于试车台对接架的相对位姿数据,该数据可直接应用于发动机基于位姿变化的结构响应仿真。
附图说明
图1为本发明液体火箭发动机冲击载荷结构响应预示方法的流程图;
图2为本发明液体火箭发动机冲击载荷结构响应预示方法步骤1所得简化后的发动机整机模型的结构示意图;
图3为本发明实施例步骤3中作为冲击载荷的位移随时间变化的曲线;
图4为本发明实施例步骤5中结构强度随时间的变化曲线,本图只表示了关机段对应的曲线;
图5为本发明实施例步骤5中摇摆轴承摇摆角度随时间的变化曲线;
图6为本发明实施例中大推力火箭发动机结构姿态监测系统的结构示意图;
图7为本发明实施例中采用大推力火箭发动机结构姿态监测系统分析所得不同阶段的发动机待测部位的位姿变化数据图,其中,图7(a)为起动段,图7(b)为主级段,图7(c)为关机段,各图中,A为待测部位一、B为待测部位二,位姿变化数据为位移随时间变化的曲线,该曲线包含轴向X、径向Y和切向Z三个方向的数据。
附图标记说明:
01-对接架、02-反光标记点、03-反光靶球、04-惯性传感器、05-激光跟踪仪、06-高速摄影机、07-待测发动机、08-控制采集器、1-机架、2-摇摆轴承、3-涡轮泵、4-喷管、5-燃气弯管。
具体实施方式
下面结合附图和实施例对本发明作进一步地说明。本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。
一种液体火箭发动机冲击载荷结构响应预示方法,建立发动机整机动力学模型和多源载荷激励加载,从而进行发动机冲击载荷结构强度分析,校核发动机关键部位结构强度以及轴承摇摆角度。如图1所示,包括以下步骤:
1)简化发动机整机模型
根据发动机整机结构特点及计算要求,对发动机整机进行结构简化。将发动机的机架1简化为梁结构,将发动机的待测部位(关键部件,如涡轮泵3和两个喷管4)简化为壳体结构,将发动机的燃气弯管5采用实体结构,忽略发动机的各个细小管路,得到简化后的发动机整机模型,如图2所示,包括自上至下依次连接的机架1、燃气弯管5和涡轮泵3;燃气弯管5的中部与机架1连接,燃气弯管5两端分别通过摇摆轴承2铰接悬臂,两个悬臂末端分别设置喷管4;
2)构建发动机结构动力学仿真模型
对简化后的发动机整机模型进行建模,得到发动机结构动力学仿真模型,根据发动机各组件的实际质量对仿真模型中相应组件的质量进行修正,使其质量相同,将仿真模型的机架1部分与试车台动架仿真模型连接;
3)多点冲击载荷加载(输入)
在真实发动机试车过程中,对其进行高速摄影,对摄影所得图像数据进行处理,获取待测部位的位姿变化数据,如图3所示,位姿变化数据为位移随时间变化的曲线,该曲线包含轴向、径向和切向三个方向数据;将该位姿变化数据作为冲击载荷(强迫位移载荷)加载到仿真模型的相应位置处;待测的三个位置处是发动机自由端的最远端,在热试车过程中摆动幅度最大,能够覆盖发动机其余部位的摆动位移区域,涵盖发动机所有传递路径;
4)发动机冲击结构动力学求解
待步骤3)完成后,进行发动机仿真模型冲击结构动力学求解;考虑到冲击载荷作用下发动机的结构动响应会有延迟,故在进行发动机冲击结构动力学求解时,对输出结果增加1s。
5)求解结果分析
利用步骤4)所得求解结果,对发动机待测部位的结构强度和铰接处摇摆轴承2的摇摆角度特性进行分析,根据分析结果对发动机在标准工况及高工况试车时的结构强度安全域度进行有效评估,并优化发动机的相应结构参数。
步骤5)中,对发动机待测部位的结构强度和铰接处摇摆轴承2的摇摆角度特性进行分析的具体步骤为:
从仿真模型中提取发动机待测部位的结构强度随时间的变化曲线,分析最大结构强度的大小及最大结构强度出现时刻对发动机结构产生的影响,提取摇摆轴承2摇摆角度随时间的变化曲线,分析最大摇摆角的大小以及最大摇摆角出现的时刻对摇摆轴承2造成的影响。图4为结构强度随时间的变化曲线,图中只表示了关机段对应的曲线;图5为摇摆轴承2摇摆角度随时间的变化曲线。
步骤3可基于大推力火箭发动机结构姿态监测系统实现,如图6所示,包括多个反光标记点02、多个反光靶球03、多个惯性传感器04、多个激光跟踪仪05、控制采集器08和2个1000帧/s的高速摄影机06;所述惯性传感器07设置于待测发动机07与试车台对接架01的对接端,发动机及试车台、对接架都是被测目标,用于测量待测发动机07对接端的移动速度及位移信息;多个反光标记点02设置于待测发动机07的待测部位(发动机关键部位,如 涡轮泵和两个喷管),用于位置辨识;多个高速摄影机06均设置于待测发动机07周围,经试前标定形成待测发动机07的三维空间视觉测量域;多个反光靶球03置于待测发动机07上,其中至少有1个反光靶球03处于高速摄影机06的视觉测量域内;所述激光跟踪仪05可靠固定设置于远离试车台(远离发动机)的位置处,不受试车台振动的影响,用于实时追踪反光靶球03的三维动态轨迹;所述控制采集器08的输入端同时连接惯性传感器04、激光跟踪仪05和高速摄影机06的输出端。
步骤3具体通过下述步骤实现:
3.1)将待测发动机07对接至试车台,通过试车控制测量系统的试车时统同时触发高速摄影机06、激光跟踪仪05和惯性传感器04,通过控制采集器08按照相同的频率采集试车全程的图像数据、反光靶球03三维动态轨迹和发动机对接端的移动速度及位移信息,获得位姿分析的原始数据;
3.2)对步骤3.1)所得图像数据逐帧进行反光标记点02检测及反光靶球03检测,并根据时间排序,形成包含高速摄影机06自身附加位移及试车台对接架01位移的发动机位姿信息;
3.3)利用步骤3.1)所得反光靶球03三维动态轨迹,逐帧比对步骤3.2)所得发动机位姿信息中的反光靶球03位姿信息,以获取逐帧图像数据中高速摄影机06的附加位移,利用附加位移对步骤3.2)所得发动机位姿信息进行补偿修正;
3.4)根据步骤3.1)所得发动机对接端的移动速度及位移信息,修正步骤3.3)所得结果,以获取发动机相对于对接架01的位姿变化数据,位姿变化数据为位移随时间变化的曲线,该曲线包含轴向X、径向Y和切向Z三个方向的数据,用于发动机冲击载荷结构响应评估。
经以上处理获得的发动机主结构关键结构的全程位姿数据,其中起动段、主级段及关机段的发动机位姿变化,分别如图7(a)、图7(b)和图7(c)所示,均能够与发动机的工作特性相符,即分析过程所得数据可以验证发动机的工作特性是否满足要求,步骤3.4)所得发动机相对于对接架01的位姿变化数据,可作为发动机冲击载荷结构响应评估(预示)的载荷输入。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限 制,对于本领域的普通专业技术人员来说,可以对前述各实施例所记载的具体技术方案进行修改,或者对其中部分技术特征进行等同替换,而这些修改或者替换,并不使相应技术方案的本质脱离本发明所保护技术方案的范围。

Claims (10)

  1. 一种液体火箭发动机冲击载荷结构响应预示方法,其特征在于,包括以下步骤:
    1)简化发动机整机模型
    将发动机的机架(1)简化为梁结构,将发动机的待测部位简化为壳体结构,将发动机的燃气弯管(5)采用实体结构,忽略发动机的各个细小管路,得到简化后的发动机整机模型,简化后的发动机整机模型包括自上至下依次连接的机架(1)、燃气弯管(5)和涡轮泵(3);燃气弯管(5)的中部与机架(1)连接,燃气弯管(5)两端分别通过摇摆轴承(2)铰接悬臂,两个悬臂末端分别设置喷管(4);
    2)构建发动机结构动力学仿真模型
    对简化后的发动机整机模型进行建模,得到发动机结构动力学仿真模型,将仿真模型的机架(1)部分与试车台动架仿真模型连接;
    3)冲击载荷加载
    在真实发动机试车过程中,对其进行高速摄影,对摄影所得图像数据进行处理,获取待测部位的位姿变化数据,位姿变化数据为位移随时间变化的曲线,该曲线包含轴向、径向和切向三个方向数据;将该位姿变化数据作为冲击载荷加载到仿真模型的相应位置处;
    4)发动机冲击结构动力学求解
    待步骤3)完成后,进行发动机仿真模型冲击结构动力学求解;
    5)求解结果分析
    利用步骤4)所得求解结果,对发动机待测部位的结构强度和铰接处摇摆轴承(2)的摇摆角度特性进行分析,根据分析结果对发动机在标准工况及高工况试车时的结构强度安全域度进行有效评估。
  2. 根据权利要求1所述的液体火箭发动机冲击载荷结构响应预示方法,其特征在于:步骤5)中,对发动机待测部位的结构强度和铰接处摇摆轴承(2)的摇摆角度特性进行分析的具体步骤为:
    从仿真模型中提取发动机待测部位的结构强度随时间的变化曲线,分析 最大结构强度的大小及最大结构强度出现时刻对发动机结构产生的影响,提取摇摆轴承(2)摇摆角度随时间的变化曲线,分析最大摇摆角的大小以及最大摇摆角出现的时刻对摇摆轴承(2)造成的影响。
  3. 根据权利要求1或2所述的液体火箭发动机冲击载荷结构响应预示方法,其特征在于:步骤1)中建模时,根据发动机各组件的实际质量对仿真模型中相应组件的质量进行修正,使其质量相同。
  4. 根据权利要求3所述的液体火箭发动机冲击载荷结构响应预示方法,其特征在于:步骤1)中,待测部位包括涡轮泵(3)和两个喷管(4)。
  5. 根据权利要求4所述的液体火箭发动机冲击载荷结构响应预示方法,其特征在于:步骤4)中进行发动机冲击结构动力学求解时,对输出结果增加设定时长。
  6. 根据权利要求5所述的液体火箭发动机冲击载荷结构响应预示方法,其特征在于:步骤4)中,所述设定时长为1s。
  7. 根据权利要求1-6任一所述的液体火箭发动机冲击载荷结构响应预示方法,其特征在于:步骤3)基于大推力火箭发动机结构姿态监测系统实现,大推力火箭发动机结构姿态监测系统包括反光标记点(02)、反光靶球(03)、惯性传感器(04)、激光跟踪仪(05)、控制采集器(08)和至少两个高速摄影机(06);
    所述惯性传感器(04)设置于待测发动机(07)与试车台对接架(01)的对接端,用于测量待测发动机(07)对接端的移动速度及位移信息;
    所述反光标记点(02)设置于待测发动机(07)的待测部位,用于位置辨识;
    所述至少两个高速摄影机(06)均设置于待测发动机(07)周围,用于形成待测发动机(07)的三维空间视觉测量域;
    所述反光靶球(03)设置于待测发动机(07)上,且处于高速摄影机(06)的视觉测量域内;
    所述激光跟踪仪(05)设置于远离试车台的位置处,用于实时追踪反光靶球(03)的三维动态轨迹;
    所述控制采集器(08)的输入端同时连接惯性传感器(04)、激光跟踪仪 (05)和高速摄影机(06)的输出端;
    步骤3具体包括以下步骤:
    3.1)将待测发动机(07)对接至试车台,通过试车控制测量系统的试车时统同时触发高速摄影机(06)、激光跟踪仪(05)和惯性传感器(04),通过控制采集器(08)按照相同的频率采集试车全程的图像数据、反光靶球(03)三维动态轨迹和发动机对接端的移动速度及位移信息;
    3.2)对步骤3.1)所得图像数据逐帧进行反光标记点(02)检测及反光靶球(03)检测,并根据时间排序,形成包含高速摄影机(06)自身附加位移及试车台对接架(1)位移的发动机位姿信息;
    3.3)利用步骤3.1)所得反光靶球(03)三维动态轨迹,逐帧比对步骤3.2)所得发动机位姿信息中的反光靶球(03)位姿信息,以获取逐帧图像数据中高速摄影机(06)的附加位移,利用附加位移对步骤3.2)所得发动机位姿信息进行补偿修正;
    3.4)根据步骤3.1)所得发动机对接端的移动速度及位移信息,修正步骤3.3)所得结果,以获取发动机相对于对接架(1)的位姿变化数据,用于发动机冲击载荷结构响应评估。
  8. 根据权利要求7所述的液体火箭发动机冲击载荷结构响应预示方法,其特征在于:步骤3.4)中所述的位姿变化数据为位移随时间变化的曲线,该曲线包含轴向X、径向Y和切向Z三个方向的数据。
  9. 根据权利要求8所述的液体火箭发动机冲击载荷结构响应预示方法,其特征在于:所述反光靶球(03)有多个,其中至少有1个反光靶球(03)处于高速摄影机(06)的视觉测量域内。
  10. 根据权利要求9所述的液体火箭发动机冲击载荷结构响应预示方法,其特征在于:所述待测部位为待测发动机(07)的涡轮泵和两个喷管;所述高速摄影机(06)有两台,帧率均为1000帧/s;所述惯性传感器(04)有多个。
PCT/CN2021/119739 2020-12-02 2021-09-23 液体火箭发动机冲击载荷结构响应预示方法 WO2022116652A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21899686.6A EP4257818A1 (en) 2020-12-02 2021-09-23 Method for predicting structural response of liquid-propellant rocket engine to impact load

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011400057.2 2020-12-02
CN202011400048.3A CN112504121B (zh) 2020-12-02 2020-12-02 一种大推力火箭发动机结构姿态分析方法
CN202011400057.2A CN112555055B (zh) 2020-12-02 2020-12-02 液体火箭发动机冲击载荷结构响应预示方法
CN202011400048.3 2020-12-02

Publications (1)

Publication Number Publication Date
WO2022116652A1 true WO2022116652A1 (zh) 2022-06-09

Family

ID=81853809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119739 WO2022116652A1 (zh) 2020-12-02 2021-09-23 液体火箭发动机冲击载荷结构响应预示方法

Country Status (2)

Country Link
EP (1) EP4257818A1 (zh)
WO (1) WO2022116652A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115200879A (zh) * 2022-09-19 2022-10-18 北京星河动力装备科技有限公司 液体火箭发动机的高空飞行试车关机控制方法及系统
CN115879381A (zh) * 2023-03-01 2023-03-31 西安航天动力研究所 一种火箭发动机冲击载荷预测方法、装置、设备及介质
CN115982863A (zh) * 2023-03-16 2023-04-18 西安航天动力研究所 一种控制响应的冲击试验仿真方法、装置、设备及介质
CN116822378A (zh) * 2023-08-25 2023-09-29 中国人民解放军陆军装甲兵学院 基于回归分析的活性芯体弹靶碰撞效应预测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277295A (ja) * 1994-04-13 1995-10-24 Natl Space Dev Agency Japan<Nasda> ロケット制御装置
CN101603812A (zh) * 2009-07-21 2009-12-16 北京航空航天大学 一种超高速实时三维视觉测量装置及方法
CN103616151A (zh) * 2013-11-28 2014-03-05 北京卫星环境工程研究所 洁净环境下航天器着陆冲击试验系统及试验方法
CN106595654A (zh) * 2016-12-13 2017-04-26 天津大学 一种激光跟踪测量系统连续跟踪测量方法及装置
CN108225258A (zh) * 2018-01-09 2018-06-29 天津大学 基于惯性单元和激光跟踪仪动态位姿测量装置和方法
CN109271660A (zh) * 2018-07-31 2019-01-25 上海空间推进研究所 火箭发动机喷管活连接结构可靠性评估方法
CN112504121A (zh) * 2020-12-02 2021-03-16 西安航天动力研究所 一种大推力火箭发动机结构姿态监测系统与分析方法
CN112555055A (zh) * 2020-12-02 2021-03-26 西安航天动力研究所 液体火箭发动机冲击载荷结构响应预示方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277295A (ja) * 1994-04-13 1995-10-24 Natl Space Dev Agency Japan<Nasda> ロケット制御装置
CN101603812A (zh) * 2009-07-21 2009-12-16 北京航空航天大学 一种超高速实时三维视觉测量装置及方法
CN103616151A (zh) * 2013-11-28 2014-03-05 北京卫星环境工程研究所 洁净环境下航天器着陆冲击试验系统及试验方法
CN106595654A (zh) * 2016-12-13 2017-04-26 天津大学 一种激光跟踪测量系统连续跟踪测量方法及装置
CN108225258A (zh) * 2018-01-09 2018-06-29 天津大学 基于惯性单元和激光跟踪仪动态位姿测量装置和方法
CN109271660A (zh) * 2018-07-31 2019-01-25 上海空间推进研究所 火箭发动机喷管活连接结构可靠性评估方法
CN112504121A (zh) * 2020-12-02 2021-03-16 西安航天动力研究所 一种大推力火箭发动机结构姿态监测系统与分析方法
CN112555055A (zh) * 2020-12-02 2021-03-26 西安航天动力研究所 液体火箭发动机冲击载荷结构响应预示方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YINGYING YE: "Analysis of Structure Vibration Characteristics of a New Type of Engine", MASTER THESIS, CHINA ACADEMY OF LAUNCH VEHICLE TECHNOLOGY, CN, 30 June 2019 (2019-06-30), CN, pages 1 - 134, XP055937103, [retrieved on 20220630] *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115200879A (zh) * 2022-09-19 2022-10-18 北京星河动力装备科技有限公司 液体火箭发动机的高空飞行试车关机控制方法及系统
CN115879381A (zh) * 2023-03-01 2023-03-31 西安航天动力研究所 一种火箭发动机冲击载荷预测方法、装置、设备及介质
CN115879381B (zh) * 2023-03-01 2023-07-14 西安航天动力研究所 一种火箭发动机冲击载荷预测方法、装置、设备及介质
CN115982863A (zh) * 2023-03-16 2023-04-18 西安航天动力研究所 一种控制响应的冲击试验仿真方法、装置、设备及介质
CN116822378A (zh) * 2023-08-25 2023-09-29 中国人民解放军陆军装甲兵学院 基于回归分析的活性芯体弹靶碰撞效应预测方法
CN116822378B (zh) * 2023-08-25 2023-12-08 中国人民解放军陆军装甲兵学院 基于回归分析的活性芯体弹靶碰撞效应预测方法

Also Published As

Publication number Publication date
EP4257818A1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2022116652A1 (zh) 液体火箭发动机冲击载荷结构响应预示方法
Plummer Model-in-the-loop testing
CN112555055B (zh) 液体火箭发动机冲击载荷结构响应预示方法
CN103954179B (zh) 捷联红外导引头隔离度寄生回路评估系统
CN112504121B (zh) 一种大推力火箭发动机结构姿态分析方法
CN101973032A (zh) 一种焊接机器人线结构光视觉传感器离线编程系统和方法
CN110631792B (zh) 基于卷积神经网络的抗震混合试验模型更新方法
Zanarini Competing optical instruments for the estimation of Full Field FRFs
Havaran et al. Extracting structural dynamic properties utilizing close photogrammetry method
CN111638654A (zh) 一种故障自适应的运载火箭智能控制半实物仿真方法
CN112540089A (zh) 数字成像系统在混凝土桥梁裂缝检测和分析中的应用方法
Krys et al. Development of visual simultaneous localization and mapping (VSLAM) for a pipe inspection robot
CN107462394A (zh) 基于平滑预测策略的多传感器风洞支杆抑振方法
CN106017953A (zh) 一种用于大型复杂结构试验研究的试验方法及系统
CN105865808B (zh) 一种动力舱的负载模拟装置与模拟方法
Civera et al. A computer vision-based approach for non-contact modal analysis and finite element model updating
EP3961183A1 (en) Impact speed control method and apparatus, storage medium and electronic device
CN103984808A (zh) 一种基于光学元件面形的计算机辅助装调模型的建立方法
Wu et al. Three‐dimensional deformation measurement of aero‐engine high‐speed rotating blade surface based on stroboscopic structure digital image correlation method
Lin et al. Dynamic modeling and parameter identification of a gun saddle ring
CN115586724A (zh) 一种齿轮巡检机器人系统自适应分数阶全局滑模控制方法
CN113567136A (zh) 大推力火箭发动机结构位姿测量系统及补偿方法
CN115683613A (zh) 燃气舵操纵机构的静强度试验方法及系统
Saiz et al. Synthetic Data Set Generation for the Evaluation of Image Acquisition Strategies Applied to Deep Learning Based Industrial Component Inspection Systems.
Bai Deep learning with vision-based technologies for structural damage detection and health monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021899686

Country of ref document: EP

Effective date: 20230703