WO2022116579A1 - 一种功率放大器校准方法 - Google Patents

一种功率放大器校准方法 Download PDF

Info

Publication number
WO2022116579A1
WO2022116579A1 PCT/CN2021/110231 CN2021110231W WO2022116579A1 WO 2022116579 A1 WO2022116579 A1 WO 2022116579A1 CN 2021110231 W CN2021110231 W CN 2021110231W WO 2022116579 A1 WO2022116579 A1 WO 2022116579A1
Authority
WO
WIPO (PCT)
Prior art keywords
output voltage
physical model
power amplifier
calibration method
coefficients
Prior art date
Application number
PCT/CN2021/110231
Other languages
English (en)
French (fr)
Inventor
郑家骏
吴敏洁
周俊
Original Assignee
江苏科大亨芯半导体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011400169.8A external-priority patent/CN112636701B/zh
Application filed by 江苏科大亨芯半导体技术有限公司 filed Critical 江苏科大亨芯半导体技术有限公司
Publication of WO2022116579A1 publication Critical patent/WO2022116579A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to the technical field of power amplifiers, in particular to a power amplifier calibration method.
  • the power amplifier is a key component of the wireless transmission system. Its performance directly determines the indicators of the transmitted signal, and its power consumption also accounts for the largest part of the transmission system. When the power amplifier is integrated into the CMOS process, how to achieve the required output power and linearity, or how to effectively reduce the power consumption without compromising performance, is very important.
  • the purpose of the present invention is to provide a power amplifier calibration method with full output range coverage and high calibration accuracy. It adopts the following technical solutions:
  • a power amplifier calibration method comprising:
  • the physical model 1 and the physical model 2 are calibrated separately.
  • the physical model one is expressed as:
  • VL is the output voltage
  • i code is the relationship between the number of amplifier units turned on
  • V max and ⁇ are:
  • Z L is the impedance of the load
  • I on is the current when the amplifier unit is turned on
  • Z on is the output impedance when the amplifier unit is turned on
  • Z m is the impedance of the matching network.
  • the calibration of the physical model 1 is realized by calibrating the coefficients V max and ⁇ .
  • the coefficients Vmax and ⁇ are calculated by bringing in the following formulas:
  • the power amplifier in the working mode 2, is divided into six working regions according to the working region and formula of the MOS tube in the power amplifier, and the order of output voltage from low to high is: resistance region, weak inversion region , Linear conversion area, pinch-off area, saturation area, compressed area.
  • the second physical model is expressed as:
  • V L a 1 V AM +a 0
  • VL is the output voltage
  • V AM is the supply voltage
  • the second physical model is expressed as:
  • VL is the output voltage
  • V AM is the power supply voltage
  • the second physical model is expressed as:
  • V L c 1 V AM +c 0
  • VL is the output voltage
  • V AM is the power supply voltage
  • the second physical model is expressed as:
  • VL is the output voltage
  • V AM is the power supply voltage
  • the second physical model is expressed as:
  • V L e 1 V AM +e 0
  • VL is the output voltage
  • V AM is the power supply voltage
  • the second physical model is expressed as:
  • VL is the output voltage
  • V AM is the power supply voltage
  • the power amplifier calibration method of the present invention utilizes the physical principle of the power amplifier, and establishes a physical model according to the difference of the output voltage.
  • the first physical model is used to realize the precise control of the output voltage by controlling the number of amplifier units turned on;
  • the physical model 2 is used to achieve precise control of the output voltage by controlling the power supply voltage, so that the calibration method can cover the full output range and ensure the calibration accuracy.
  • FIG. 1 is a flowchart of a power amplifier calibration method in a preferred embodiment of the present invention
  • Figure 2 is the architecture diagram when the output voltage is small and the power amplifier is a digital power amplifier; 3 is an equivalent circuit diagram of a power amplifier in a preferred embodiment of the present invention; 4 is a graph showing the relationship between the output voltage and digital control obtained by the preferred embodiment of the present invention through actual measurement and the calibrated physical model of the present invention; Fig. 5 is the result error between actual measurement and the calibration algorithm of the present invention; 6 is a schematic diagram of a power amplifier when the output voltage is controlled by the supply voltage; FIG. 7 is a graph showing the relationship between the output voltage and the power supply voltage respectively obtained through 10 measurement results and the second calibrated physical model of the present invention.
  • the calibration method proposed by the present invention is based on the physical working principle of the power amplifier to establish a model of the full output range of the power amplifier, and to perform calibration on the basis of this model, the required measurement points can be effectively reduced, and the required measurement points can also be greatly reduced during use. required storage unit.
  • the linearity of the control mechanism has a direct impact on the specification of the output signal.
  • the model of the present invention is continuous, high-precision, and can be used for linear compensation of power amplifiers at the same time. Since the output of the power amplifier is not linear, the input control needs to be first multiplied by the inverse function of the output power variation function. The coefficients after calibration will be stored in the storage unit. When the transmitter determines the transmit power, the predistortion compensation table generated by the corresponding inverse function formula can be selected to ensure the linearity of the output signal.
  • the output voltage When the output voltage is relatively small, it is a digital power amplifier, the input is a digital control line, and different output voltages are achieved by opening different numbers of output units.
  • FIG. 1 it is a power amplifier calibration method in a preferred embodiment of the present invention, comprising the following steps:
  • the power amplifier is a digital power amplifier, and its architecture is shown in Figure 2, where Z m is the impedance of the matching network; Z L is the impedance of the load. Optionally, Z L is 50 ohms; i_code is a digital control line that controls the output voltage.
  • Z m is the impedance of the matching network
  • Z L is the impedance of the load.
  • Z L is 50 ohms
  • i_code is a digital control line that controls the output voltage.
  • Z on and Z off are the output impedance of the amplifier unit in the on and off states, respectively, Z on , Z off , Z m and Z L are constants at a specific frequency, and the equivalent output impedance Z eff formula is as follows:
  • i code is the relationship between the number of amplifier units that are turned on, and Z a and Z b are as follows:
  • V o I o Z off #(4)
  • the voltage on the load is the output voltage VL , and the output voltage VL is:
  • Equation 5 can be simplified to:
  • A, B, and C are:
  • equation (7) can be expressed as:
  • Equation (10) is the physical model 1 established by the present invention, wherein VL is the output voltage, i code is the relationship between the number of amplifier units turned on, and the coefficients V max and ⁇ are:
  • V max and ⁇ After calibration, the values of V max and ⁇ can be obtained, i code can use the following inverse function formula to generate a predistortion table to ensure the correctness and sufficient linearity of the final output voltage.
  • V max and ⁇ need to be calibrated, and two operating point states (i code1 , V L1 ) and (i code2 , V L2 ) need to be measured on the production line, and then V max can be obtained through the following algorithm and a.
  • V max 1310.6145
  • FIG. 5 shows the result error between the actual measurement and the calibration algorithm of the present invention. It can be seen that the error is very small, which verifies the accuracy of the physical model 1 and its calibration method.
  • FIG. 6 it is a schematic diagram of a power amplifier.
  • M0 and M1 are two NMOS transistors connected in series
  • V AM is the power supply voltage of the power amplifier, which is the voltage at the V_AM point in the figure
  • V PM is the gate voltage of the V_PM point M0 in the figure
  • I D1 and I D0 respectively are the drain currents of M0 and M1
  • V DS1 and V DS0 are the drain voltages of M0 and M1, respectively, namely:
  • V AM V DS1 +V DS0
  • the gate and drain stages of M1 are connected together through an equivalent resistance and an inductance. It can be assumed that the gate and drain stages of M1 have the same voltage, namely:
  • V G1 V D1
  • V DS1 ⁇ V DS1-off its drain current can be expressed by the following formula, V DS is the drain voltage, V GS is the gate voltage, and V TH is the threshold voltage:
  • V DS1-off V GS1 -V TH1
  • ⁇ 1 is the channel length modulation factor.
  • V GS0 V PM ,
  • the principle of the power amplifier is similar to that of a resistor, which can be modeled by a linear equation.
  • the physical model 2 is expressed as:
  • V L a 1 V AM +a 0 #(1)
  • this working area is represented by a second-order function, and the physical model 2 is expressed as:
  • this working area is represented by a linear function, and the physical model 2 is expressed as:
  • V L c 1 V AM +c 0 #(18)
  • Calibration can be performed via two measuring points (V AM4 , V L4 ) and (V AM5 , V L5 ):
  • this working area is represented by a quadratic function, and the physical model 2 is expressed as:
  • this working range is represented by a linear function, and the physical model 2 is expressed as:
  • V L e 1 V AM +e 0 #(28)
  • Calibration can be performed via two measuring points (V AM7 , V L7 ) and (V AM8 , V L8 ):
  • this working area is represented by a quadratic function, and the physical model 2 is expressed as:
  • the slope is:
  • the quadratic function has a total of three unknowns, and requires two other measurement points: (V AM9 , V L9 ) and (V AM10 , V L10 ), which can be substituted into:
  • FIG. 7 it is a graph of the relationship between the output voltage and the power supply voltage obtained through 10 measurement results and the second calibrated physical model of the present invention. It can be seen that the two are basically consistent. .
  • the power amplifier calibration method of the present invention utilizes the physical principle of the power amplifier, and establishes a physical model according to the difference of the output voltage.
  • the first physical model is used to realize the precise control of the output voltage by controlling the number of amplifier units turned on;
  • the physical model 2 is used to achieve precise control of the output voltage by controlling the power supply voltage, so that the calibration method can cover the full output range and ensure the calibration accuracy.
  • the invention only needs to measure twelve points and calculate the coefficients, and can generate the power control table and the linear predistortion compensation table in all output power ranges of the power amplifier in two working modes, and realize mass production.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种功率放大器校准方法,该方法包括:根据输出电压范围的不同定义两种工作模式;在工作模式一下,保持供电电压不变,建立输出电压与打开的放大器单元数量关系的物理模型一;在工作模式二下,保持打开的放大器单元数量不变,建立输出电压与供电电压关系的物理模型二;对物理模型一和物理模型二分别进行校准。本发明功率放大器校准方法利用了功率放大器的物理原理,根据输出电压的不同分别建立物理模型,在电压较小时,利用物理模型一,通过控制打开的放大器单元数量实现对输出电压的精准控制;在输出电压较大时,利用物理模型二,通过控制供电电压实现对输出电压的精准控制,使得该校准方法可以覆盖全输出范围,保证了校准精度。

Description

一种功率放大器校准方法 技术领域
本发明涉及功率放大器技术领域,特别涉及一种功率放大器校准方法。
背景技术
功率放大器是无线发射系统的关键组成部分,其性能直接决定了发射信号的指标,其功耗也在发射系统中占比最大的部分。当功率放大器集成到CMOS工艺,如何达到所需要的输出功率和线性度,或者在不影响性能的情况下有效降低功耗,至关重要。
当功率放大器集成到CMOS工艺,在同样的输出功率和线性需求下所需要的功耗会比较大,而当输出功率持续变大时,线性度更是不能被保障。由于半导体工艺偏差和温度变化,在同一个设定下,输出功率和线性范围也会变化,需要校准,但功率输出范围非常大,输出功率和控制机制通常不是线性关系,这给校准带来很大难度。因此,急需一种校准方法来解决上述问题。
发明内容
针对现有技术的不足,本发明目的在于提供一种具有覆盖全输出范围、校准精度高的功率放大器校准方法。其采用如下技术方案:
一种功率放大器校准方法,其包括:
根据输出电压范围的不同定义两种工作模式;
在工作模式一下,保持供电电压不变,建立输出电压与打开的放大器单元数量关系的物理模型一;
在工作模式二下,保持打开的放大器单元数量不变,建立输出电压与供电电压关系的物理模型二;
对物理模型一和物理模型二分别进行校准。
作为本发明的进一步改进,所述物理模型一表示为:
Figure PCTCN2021110231-appb-000001
其中,V L为输出电压,i code为打开的放大器单元数量关系,系数V max和α分别为:
Figure PCTCN2021110231-appb-000002
其中,Z L为负载的阻抗,I on为放大器单元打开时的电流,Z on为放大器单元打开时的输出阻抗,Z m为匹配网络的阻抗。
作为本发明的进一步改进,通过对系数V max和α校准实现对物理模型一的校准,具体可通过量测两个工作点的数据(i code1,V L1)和(i code2,V L2)并带入以下公式计算系数V max和α:
Figure PCTCN2021110231-appb-000003
通过解二元一次方程可得到:
Figure PCTCN2021110231-appb-000004
作为本发明的进一步改进,在工作模式二下,根据功率放大器内MOS管的工作区间和公式将功率放大器划分为六个工作区间,按照输出电压从低到高依次为:电阻区、弱翻转区、线性转换区、夹断区、饱和区、被压缩区。
作为本发明的进一步改进,在所述电阻区,物理模型二表示为:
V L=a 1V AM+a 0
其中,V L为输出电压,V AM为供电电压,校准时通过量测工作点的数据(V L1,V AM1)和(V L1,V AM1)带入上述公式,得到系数a 1和a 0
Figure PCTCN2021110231-appb-000005
作为本发明的进一步改进,在所述弱翻转区,物理模型二表示为:
Figure PCTCN2021110231-appb-000006
其中,V L为输出电压,V AM为供电电压,校准时通过量测工作点的数据带入上述公式,得到系数b 0、b 1、b 2
作为本发明的进一步改进,在所述线性转换区,物理模型二表示为:
V L=c 1V AM+c 0
其中,V L为输出电压,V AM为供电电压,校准时通过量测工作点的数据带入上述公式,得到系数c 0和c 1
作为本发明的进一步改进,在所述夹断区,物理模型二表示为:
Figure PCTCN2021110231-appb-000007
其中,V L为输出电压,V AM为供电电压,校准时通过量测工作点的数据带入上述公式,得到系数d 0、d 1、d 2
作为本发明的进一步改进,在所述饱和区,物理模型二表示为:
V L=e 1V AM+e 0
其中,V L为输出电压,V AM为供电电压,校准时通过量测工作点的数据带入上述公式,得到系数e 0和e 1
作为本发明的进一步改进,在所述被压缩区,物理模型二表示为:
Figure PCTCN2021110231-appb-000008
其中,V L为输出电压,V AM为供电电压,校准时通过量测工作点的数据带入上述公式,得到系数f 0、f 1、f 2
本发明的有益效果:
本发明功率放大器校准方法利用了功率放大器的物理原理,根据输出电压 的不同分别建立物理模型,在电压较小时,利用物理模型一,通过控制打开的放大器单元数量实现对输出电压的精准控制;在输出电压较大时,利用物理模型二,通过控制供电电压实现对输出电压的精准控制,使得该校准方法可以覆盖全输出范围,保证了校准精度。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1是本发明优选实施例中功率放大器校准方法的流程图;
[根据细则91更正 17.08.2021] 
图2是输出电压较小,功率放大器为数字功率放大器时的架构图;
图3是本发明优选实施例中功率放大器的等效电路图;
图4是本发明优选实施例通过实际量测以及本发明的校准后的物理模型一分别得到的输出电压和数字控制之间的关系图;
图5是实际量测以及本发明的校准算法两者之间的结果误差;
图6是用供电电压来控制输出电压时功率放大器的示意图;
图7是通过10个量测结果以及本发明的校准后的物理模型二分别得到的输出电压和供电电压之间的关系图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
本发明提出的校准方法是基于功率放大器的物理工作原理,建立功率放大器全输出范围的模型,在此模型的基础上进行校准,可以有效减少所需要的量测点,在使用时也可大幅减少所需要的存储单元。
当功率放大器也同时用来实现幅度调制时,控制机制的线性度对输出信号的指标有直接影响。本发明的模型是连续的,高精准度的,可同时用于功率放大器的线性补偿。由于功率放大器的输出不是线性,输入控制需要先乘以输出功率变化函数的反函数。校准之后的系数会存放在存储单元,当发射机确定了发射功率,可以选择相对应的反函数公式产生的预失真补偿表格来确保输出信号的线性。
而不管是功率校准还是线性校准,最终是要找到一个可以实现的算法来算出在特定输出电压时的输入控制。
当功率放大器集成到CMOS收发器上时,要覆盖输出电压范围,通常会分为两种工作模式。
当输出电压比较小时,是数字功率放大器,输入是数字控制线,通过开不同个数的输出单元达到不同的输出电压。
当输出电压变大时,用纯数字功率放大器会产生杂散,效率也会变差,控制功率放大器供电电压会是更好的选择。输出电压和供电电压的关系不是线性,相对应模型会更复杂。下面结合具体实施例进行详细描述。
如图1所示,为本发明优选实施例中的功率放大器校准方法,包括以下步骤:
S10、根据输出电压范围的不同定义两种工作模式。
S20、在工作模式一下,保持供电电压不变,建立输出电压与打开的放大器单元数量关系的物理模型一。
S30、在工作模式二下,保持打开的放大器单元数量不变,建立输出电压与供电电压关系的物理模型二。
S40、对物理模型一和物理模型二分别进行校准。
具体的,在工作模式一下,输出电压较小,功率放大器为数字功率放大器,其架构如图2所示,其中,Z m为匹配网络的阻抗;Z L为负载的阻抗,可选的,Z L为50欧姆;i_code为控制输出电压的数字控制线,当需要的输出电压变大,通过i_code控制打开更多的放大器单元,更大的输出电流流到负载产生更大的输出电压。
如图3所示,为功率放大器的等效电路。其中,Z on和Z off分别是放大器单元在开和关时状态下的输出阻抗,Z on、Z off、Z m和Z L在特定频率下是一个常数,等效输出阻抗Z eff公式如下:
Figure PCTCN2021110231-appb-000009
其中,i code为打开的放大器单元数量关系,Z a和Z b分别如下:
Figure PCTCN2021110231-appb-000010
I o=i code·I on+(N-i code)I off=(I on-I off)i code+N·I off#(3)
V o=I oZ off#(4)
负载上的电压即为输出电压V L,输出电压V L为:
Figure PCTCN2021110231-appb-000011
当我们假设I off=0或者Z off=∞,式5可以简化成:
Figure PCTCN2021110231-appb-000012
进一步的,输出电压V L为:
Figure PCTCN2021110231-appb-000013
其中,A、B、C分别:
Figure PCTCN2021110231-appb-000014
当i code>0,式(7)可以表示为:
Figure PCTCN2021110231-appb-000015
式(7)中存在平方数,校准算法和补偿反函数的计算都会比较复杂。优选的,本发明用了一个更简单的算法,通过以下公式取代公式(7):
Figure PCTCN2021110231-appb-000016
式(10)即为本发明建立的物理模型一,其中,V L为输出电压,i code为打开的放大器单元数量关系,系数V max和α分别为:
Figure PCTCN2021110231-appb-000017
当校准结束后,V max和α的值可以得出,i code可以用下面的反函数公式产生预失真表格以确保最后的输出电压的正确性和有足够的线性度。
Figure PCTCN2021110231-appb-000018
上述两个系数V max和α需要校准,需要在产线上量测两个工作点状态(i code1,V L1)和(i code2,V L2),然后就可以通过下面的算法得出V max和α。
Figure PCTCN2021110231-appb-000019
通过解二元一次方程可得到:
Figure PCTCN2021110231-appb-000020
在一实施例中,用两组数字控制i code和输出电压V L的值(258,270.4967473)和(504,441.5247145)可以算出V max=1310.6145,α=992.0651,此时,如图4所示,为通过实际量测以及本发明的校准后的物理模型一分别得到的输出电压和数字控制之间的关系图,可以看出两者基本重叠。图5为实际量测以及本发明的校准算法两者之间的结果误差,可以看出误差非常小,验证了物理模型一及其校 准方法的准确性。
在工作模式二下,输出电压较大,用功率放大器供电电压来控制输出电压。如图6所示,为功率放大器的示意图。其中,M0和M1是两个串联在一起的NMOS管,V AM为功率放大器供电电压,是图中V_AM点的电压,V PM是图中V_PM点M0的栅极电压,I D1和I D0分别是M0和M1的漏极电流,V DS1和V DS0分别是M0和M1的漏极电压,即:
I D=I D1=I D0,V AM=V DS1+V DS0
其中,M1的栅级和漏级通过一个等效电阻和一个电感接在一起,可以假设M1的栅级和漏级电压相同,即:
V G1=V D1
通过定义以下常数简化公式:
Figure PCTCN2021110231-appb-000021
以下为M1的工作区间及其公式:
在M1预夹断发生之前,V DS1≤V DS1-off,其漏极电流可用以下公式表示,V DS为漏极电压,V GS为栅极电压,V TH为阈值电压:
Figure PCTCN2021110231-appb-000022
V DS1-off=V GS1-V TH1
当V DS1>V DS1-off,夹断发生之后,其漏极电流等于:
Figure PCTCN2021110231-appb-000023
其中,λ 1为沟道长度调制系数。
结合式
Figure PCTCN2021110231-appb-000024
和式
Figure PCTCN2021110231-appb-000025
得到:
Figure PCTCN2021110231-appb-000026
以下为M0的工作区间及其公式:
由于M0的栅级电压范围更宽,他的工作区间会更多一些:
V GS0=V PM
V DS0-off=V GS0-V TH0=V PM-V TH0
Figure PCTCN2021110231-appb-000027
综合M0和M1的工作区间和公式,整个功率放大器的工作区间总共有6个,如表1所示,按照输出电压从低到高依次为:电阻区Resistor、弱翻转区Triode、线性转换区Transition、夹断区Pinch-off、饱和区Saturation、被压缩区Compression。
Figure PCTCN2021110231-appb-000028
得到物理模型后,我们需要有足够简单的校准算法,以便有少数的量测就能计算得到功率控制表格和线性预失真补偿表格。一次或二次多项式被用来表示电流和电压的关系。为了简化,同时保持足够精确度,我们直接用V L替代I D,假设电流和电压可以用同一套公式。
在工作区间1,即电阻区,功率放大器原理类似于一个电阻,可用线性方程来建模,物理模型二表示为:
V L=a 1V AM+a 0#(1)
校准时需要量测两个点的数据(V L1,V AM1)和(V L1,V AM1)带入上述公式,得到系数a 1和a 0
Figure PCTCN2021110231-appb-000029
然后功率放大器的供电电压和输出电压的关系可以用下面的方程表示:
Figure PCTCN2021110231-appb-000030
在工作区间2,即弱翻转区,通过二阶函数来表示这个工作区间,物理模型二表示为:
Figure PCTCN2021110231-appb-000031
从公式(4)可以推出以下的方程来计算V AM:
Figure PCTCN2021110231-appb-000032
式(4)的斜率为:
Figure PCTCN2021110231-appb-000033
工作区间1,2,和3之间的转换应该是连续平滑的,所以工作区间2和左右两个区间的接点斜率应该是相同的。区间3的斜率为c 1,工作区间1的斜率为a 1,得出下式:
Figure PCTCN2021110231-appb-000034
解出V AMa和V AMc
Figure PCTCN2021110231-appb-000035
将式(8)带入式(1)和(18),得到:
Figure PCTCN2021110231-appb-000036
工作区间3和左右两个工作区间的接点应该在这条曲线上,即(V AMa,V La)和(V AMc,V Lc),把式(8)和(9)代入下式:
Figure PCTCN2021110231-appb-000037
此时,我们需要另外一个量测点(V AM3,V L3)来得出所以系数:
Figure PCTCN2021110231-appb-000038
从式(11)可知:
Figure PCTCN2021110231-appb-000039
其中:
Figure PCTCN2021110231-appb-000040
将式(13)代入式(11),得到:
Figure PCTCN2021110231-appb-000041
其中:
Figure PCTCN2021110231-appb-000042
算出b 0
Figure PCTCN2021110231-appb-000043
综合式(16)和(12)可得:
Figure PCTCN2021110231-appb-000044
在工作区间3,即线性翻转区,通过线性函数来表示这个工作区间,物理模型二表示为:
V L=c 1V AM+c 0#(18)
通过两个量测点(V AM4,V L4)和(V AM5,V L5)可以进行校准:
Figure PCTCN2021110231-appb-000045
得到:
Figure PCTCN2021110231-appb-000046
在工作区间4,即夹断区,通过二次函数来表示这个工作区间,物理模型二表示为:
Figure PCTCN2021110231-appb-000047
从式(21)可以得出这个区间的预失真反函数是:
Figure PCTCN2021110231-appb-000048
跟工作区间2类似,需要另外一个量测点(V AM6,V L6),来得到这个区间的函数:
Figure PCTCN2021110231-appb-000049
Figure PCTCN2021110231-appb-000050
Figure PCTCN2021110231-appb-000051
Figure PCTCN2021110231-appb-000052
Figure PCTCN2021110231-appb-000053
在工作区间5,即饱和区,通过线性函数来表示这个工作区间,物理模型二表示为:
V L=e 1V AM+e 0#(28)
通过两个量测点(V AM7,V L7)和(V AM8,V L8)可以进行校准:
Figure PCTCN2021110231-appb-000054
得到:
Figure PCTCN2021110231-appb-000055
在工作区间6,即被压缩区,通过二次函数来表示这个工作区间,物理模型二表示为:
Figure PCTCN2021110231-appb-000056
从式(31)得到预失真反函数是:
Figure PCTCN2021110231-appb-000057
斜率为:
Figure PCTCN2021110231-appb-000058
工作区间5和6的接点斜率相同:2f 2V AMe+f 1=e 1#(34)
可得V AMe
Figure PCTCN2021110231-appb-000059
将式(35)代入式(31),得到:
Figure PCTCN2021110231-appb-000060
工作区间5和6的接点(V AMe,V Le)在这条曲线上,将式(35)和(36)代入式(31),得到:
Figure PCTCN2021110231-appb-000061
二次函数总共有三个未知数,需要另外两个量测点:(V AM9,V L9)和(V AM10,V L10),代入得到:
Figure PCTCN2021110231-appb-000062
从式(37)和(38)可得:
Figure PCTCN2021110231-appb-000063
其中:
Figure PCTCN2021110231-appb-000064
把式(39)代入式(38)可得:
Figure PCTCN2021110231-appb-000065
其中:
Figure PCTCN2021110231-appb-000066
可得:
Figure PCTCN2021110231-appb-000067
结合式(39)和式(43)可得:
Figure PCTCN2021110231-appb-000068
在一实施例中,如图7所示,为通过10个量测结果以及本发明的校准后的物理模型二分别得到的输出电压和供电电压之间的关系图,可以看出两者基本吻合。
本发明功率放大器校准方法利用了功率放大器的物理原理,根据输出电压的不同分别建立物理模型,在电压较小时,利用物理模型一,通过控制打开的放大器单元数量实现对输出电压的精准控制;在输出电压较大时,利用物理模型二,通过控制供电电压实现对输出电压的精准控制,使得该校准方法可以覆盖全输出范围,保证了校准精度。
本发明只需要量测十二个点,并计算出系数,就可以产生功率放大器两种工作模式下所有输出功率范围内的功率控制表格和线性预失真补偿表格,实现量产。
以上实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种功率放大器校准方法,其特征在于,包括:
    根据输出电压范围的不同定义两种工作模式;
    在工作模式一下,保持供电电压不变,建立输出电压与打开的放大器单元数量关系的物理模型一;
    在工作模式二下,保持打开的放大器单元数量不变,建立输出电压与供电电压关系的物理模型二;
    对物理模型一和物理模型二分别进行校准。
  2. 如权利要求1所述的功率放大器校准方法,其特征在于,所述物理模型一表示为:
    Figure PCTCN2021110231-appb-100001
    其中,V L为输出电压,i code为打开的放大器单元数量关系,系数V max和α分别为:
    Figure PCTCN2021110231-appb-100002
    其中,Z L为负载的阻抗,I on为放大器单元打开时的电流,Z on为放大器单元打开时的输出阻抗,Z m为匹配网络的阻抗。
  3. 如权利要求2所述的功率放大器校准方法,其特征在于,通过对系数V max和α校准实现对物理模型一的校准,具体可通过量测两个工作点的数据(i code1,V L1)和(i code2,V L2)并带入以下公式计算系数V max和α:
    Figure PCTCN2021110231-appb-100003
    通过解二元一次方程可得到:
    Figure PCTCN2021110231-appb-100004
  4. 如权利要求1所述的功率放大器校准方法,其特征在于,在工作模式二下,根据功率放大器内MOS管的工作区间和公式将功率放大器划分为六个工作区间,按照输出电压从低到高依次为:电阻区、弱翻转区、线性转换区、夹断区、饱和区、被压缩区。
  5. 如权利要求4所述的功率放大器校准方法,其特征在于,在所述电阻区,物理模型二表示为:
    V L=a iV AM+a 0
    其中,V L为输出电压,V AM为供电电压,校准时通过量测工作点的数据(V L1,V AM1)和(V L1,V AM1)带入上述公式,得到系数a 1和a 0
    Figure PCTCN2021110231-appb-100005
  6. 如权利要求4所述的功率放大器校准方法,其特征在于,在所述弱翻转区,物理模型二表示为:
    Figure PCTCN2021110231-appb-100006
    其中,V L为输出电压,V AM为供电电压,校准时通过量测工作点的数据带入上述公式,得到系数b 0、b 1、b 2
  7. 如权利要求4所述的功率放大器校准方法,其特征在于,在所述线性转换区,物理模型二表示为:
    V L=c 1V AM+c 0
    其中,V L为输出电压,V AM为供电电压,校准时通过量测工作点的数据带入上述公式,得到系数c 0和c 1
  8. 如权利要求4所述的功率放大器校准方法,其特征在于,在所述夹断区,物理模型二表示为:
    Figure PCTCN2021110231-appb-100007
    其中,V L为输出电压,V AM为供电电压,校准时通过量测工作点的数据带入上述公式,得到系数d 0、d 1、d 2
  9. 如权利要求4所述的功率放大器校准方法,其特征在于,在所述饱和区,物理模型二表示为:
    V L=e 1V AM+e 0
    其中,V L为输出电压,V AM为供电电压,校准时通过量测工作点的数据带入上述公式,得到系数e 0和e 1
  10. 如权利要求4所述的功率放大器校准方法,其特征在于,在所述被压缩区,物理模型二表示为:
    Figure PCTCN2021110231-appb-100008
    其中,V L为输出电压,V AM为供电电压,校准时通过量测工作点的数据带入上述公式,得到系数f 0、f 1、f 2
PCT/CN2021/110231 2020-12-03 2021-08-03 一种功率放大器校准方法 WO2022116579A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011400169.8 2020-12-03
CN202011400169.8A CN112636701B (zh) 2020-12-03 一种功率放大器校准方法

Publications (1)

Publication Number Publication Date
WO2022116579A1 true WO2022116579A1 (zh) 2022-06-09

Family

ID=75307850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110231 WO2022116579A1 (zh) 2020-12-03 2021-08-03 一种功率放大器校准方法

Country Status (1)

Country Link
WO (1) WO2022116579A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101938258A (zh) * 2010-08-27 2011-01-05 华为终端有限公司 一种控制射频功率放大器发射信号的方法和装置
CN104620509A (zh) * 2012-03-04 2015-05-13 匡坦斯公司 具有延迟校准的包络跟踪功率放大器系统
CN105446409A (zh) * 2015-10-27 2016-03-30 中国电子科技集团公司第四十一研究所 一种供电和调谐电源装置的校准方法
CN107508568A (zh) * 2017-09-01 2017-12-22 无锡泽太微电子有限公司 E类射频放大器的功率补偿系统及功率补偿方法
CN107634725A (zh) * 2017-08-31 2018-01-26 深圳市远望谷信息技术股份有限公司 一种提升功率放大器效率的方法及装置
CN112636701A (zh) * 2020-12-03 2021-04-09 江苏科大亨芯半导体技术有限公司 一种功率放大器校准方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101938258A (zh) * 2010-08-27 2011-01-05 华为终端有限公司 一种控制射频功率放大器发射信号的方法和装置
CN104620509A (zh) * 2012-03-04 2015-05-13 匡坦斯公司 具有延迟校准的包络跟踪功率放大器系统
CN105446409A (zh) * 2015-10-27 2016-03-30 中国电子科技集团公司第四十一研究所 一种供电和调谐电源装置的校准方法
CN107634725A (zh) * 2017-08-31 2018-01-26 深圳市远望谷信息技术股份有限公司 一种提升功率放大器效率的方法及装置
CN107508568A (zh) * 2017-09-01 2017-12-22 无锡泽太微电子有限公司 E类射频放大器的功率补偿系统及功率补偿方法
CN112636701A (zh) * 2020-12-03 2021-04-09 江苏科大亨芯半导体技术有限公司 一种功率放大器校准方法

Also Published As

Publication number Publication date
CN112636701A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
JP5833370B2 (ja) 高周波回路
TWI535195B (zh) Ab類電壓放大器及其反饋電路
CN103441760A (zh) 一种高精度环形振荡器及其频率校准电路和频率校准方法
US7692484B2 (en) Bandwidth calibration of active filter
TWI571051B (zh) 具有加強的線性之低電壓類比可變增益放大器
US7791367B1 (en) Driver with selectable output impedance
CN115270679B (zh) 一种基于Angelov模型的GaN晶体管的建模方法
CN101562432A (zh) 可变增益放大器
US9941852B1 (en) Operation amplifiers with offset cancellation
TWI517566B (zh) 可調式阻抗電路以及阻抗設定方法
WO2022116579A1 (zh) 一种功率放大器校准方法
CN109061282B (zh) 一种微弱直流电压信号的超高精度测量方法
CN110617889A (zh) 一种应用于综合孔径微波辐射计的高稳定性测试方法
CN112636701B (zh) 一种功率放大器校准方法
KR100662584B1 (ko) 필터 특성 조절 장치 및 그 조절 방법
US20220163408A1 (en) Enhanced Temperature Sensor
CN114499459A (zh) 电子设备及其信号驱动芯片
JP2005151508A (ja) 電流モードロジック回路
TWI513190B (zh) 使金氧半導體場效電晶體輸出線性電流的閘極驅動電路
CN203813741U (zh) 一种双输入运算放大器的调节电路
Biryukov et al. Measurement-based MOSFET model for helium temperatures
CN104303420A (zh) 模数转换器
CN102521426B (zh) Rfcmos射频相关性噪声的模型
CN115955221B (zh) 高侧电压比较电路及其控制方法
Gevorgyan Driver output impedance calibration system with comparator unit offset cancellation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899618

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22-11-2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21899618

Country of ref document: EP

Kind code of ref document: A1