WO2022116357A1 - 一种镜头驱动装置 - Google Patents

一种镜头驱动装置 Download PDF

Info

Publication number
WO2022116357A1
WO2022116357A1 PCT/CN2020/142286 CN2020142286W WO2022116357A1 WO 2022116357 A1 WO2022116357 A1 WO 2022116357A1 CN 2020142286 W CN2020142286 W CN 2020142286W WO 2022116357 A1 WO2022116357 A1 WO 2022116357A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
drive
magnetic steel
driving
lens
Prior art date
Application number
PCT/CN2020/142286
Other languages
English (en)
French (fr)
Inventor
王祎维
韦锁和
Original Assignee
诚瑞光学(深圳)有限公司
常州市瑞泰光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(深圳)有限公司, 常州市瑞泰光电有限公司 filed Critical 诚瑞光学(深圳)有限公司
Publication of WO2022116357A1 publication Critical patent/WO2022116357A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/122Guiding or setting position of armatures, e.g. retaining armatures in their end position by permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/17Pivoting and rectilinearly-movable armatures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F2007/068Electromagnets; Actuators including electromagnets using printed circuit coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/041Stacked PCBs, i.e. having neither an empty space nor mounted components in between
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09036Recesses or grooves in insulating substrate

Definitions

  • the invention belongs to the technical field of driving devices, and particularly relates to a lens driving device.
  • lens driving devices are widely used in various imaging devices.
  • the lens can rotate around two intersecting axes under the driving of the driving component, and can also move in the direction of the optical axis at the same time.
  • the movement direction of the lens is complex and rapidly changing, such as rotation along the optical axis, movement in directions other than the two intersecting axes, etc., and the existing driving devices cannot be adjusted in these directions.
  • the effect of lens stabilization cannot be perfectly achieved.
  • Embodiments of the present invention provide a lens driving device, which aims to solve the problem of poor anti-shake effect of the existing lens driving device.
  • a lens driving device which includes a lens assembly and a driving module for driving the lens assembly to move
  • the driving module includes a first driving module and a second driving module
  • the first drive module carries the lens assembly
  • the second drive module is sleeved on the side of the first drive module away from the lens assembly
  • the first drive module includes: a first drive assembly, the first drive assembly is used to drive the lens assembly to translate along the optical axis and the first axis and the second axis perpendicular to the optical axis;
  • the second drive module includes:
  • the first outer frame is sleeved on the outside of the first driving module and is fixedly connected with the first driving module;
  • the second outer frame is sleeved on the outside of the first outer frame and is spaced apart from the first outer frame;
  • the bracket assembly forms a rotational connection with the first outer frame along a third axis direction, so that the first outer frame can rotate relative to the second outer frame around the third axis, and the bracket The assembly forms a rotational connection with the second outer frame along the fourth axis direction, and the first outer frame is suspended in the second outer frame, so that the bracket assembly can drive the first outer frame to wind together.
  • the fourth axis rotates relative to the second outer frame; wherein the third axis and the fourth axis are perpendicular to the optical axis;
  • a second drive assembly the second drive assembly is used to drive the first drive module to rotate relative to the second outer frame around the third axis and the fourth axis.
  • the lens assembly is driven by the first driving module and the second driving module capable of moving in multiple different directions, so that the lens assembly assembled in the first driving module can move in more directions. In order to achieve more good anti-shake effect.
  • FIG. 1 is a schematic diagram of the overall structure of a lens driving device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of a structural decomposition manner of a lens driving device provided in Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of another structural decomposition manner of a lens driving device provided by an embodiment of the present invention.
  • FIG. 4 is an exploded schematic diagram of the structure of a first driving module of a lens driving device according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view taken along line A-A in FIG. 1 .
  • FIG. 6 is a schematic cross-sectional view taken along line B-B in FIG. 1 .
  • FIG. 7 is a partial enlarged view K in FIG. 6 .
  • FIG. 8 is a schematic diagram of the arrangement of a first driving coil assembly of a lens driving device according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram of the arrangement of the first driving coil assembly, the first magnetic steel assembly, and the first Hall sensor of a lens driving device provided in Embodiment 1 of the present invention.
  • FIG. 10 is a schematic diagram of a second arrangement of the first driving coil assembly provided by the embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a third arrangement of the first driving coil assembly provided by the embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a fourth arrangement of the first driving coil assembly provided by the embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a fifth arrangement of the first driving coil assembly provided by the embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a driving manner of the first driving module in Embodiment 1 of the present invention.
  • an embodiment of the present invention provides a lens driving device 1 , which includes a lens assembly 140 and a driving module for driving the lens assembly 140 .
  • the driving module includes: a first driving module 100 , and The second driving module 200, the first driving module 100 carries the lens assembly 140, and the second driving module 200 is sleeved on the side of the first driving module 100 away from the lens assembly 140 (the lens assembly 140 is disposed on the first driving module On the inner side of the group 100, the second driving module 200 is arranged on the outer side of the first driving module).
  • the first drive module 100 includes: a base 110, a support frame 120, a housing 130, a lens assembly 140, a spring plate assembly 150, and a first drive assembly 170, the first drive assembly 170 For driving the lens assembly 140 to translate along the optical axis and the directions of the first axis E and the second axis F perpendicular to the optical axis.
  • the support frame 120 has a receiving space 121, the support frame 120 is supported on the base 110; the casing 130 is covered on the base 110 so that the support frame 120 is located in the casing 130; the lens assembly 140 is accommodated in the base 110 the shrapnel assembly 150 elastically supports the lens assembly 140 in the accommodating space 121; the first driving assembly 170 is used to drive the lens assembly 140 relative to the supporting frame 120 in a direction perpendicular to the optical axis The directions of the first axis E and the second axis F are translated.
  • the elastic piece 150 of the first driving module 100 includes: an upper elastic piece 151 , a lower elastic piece 152 , and a plurality of anti-shake suspension wires 153 .
  • One end of the upper elastic piece 151 is fixed to the top of the support frame 120, and the other end is fixed to the top of the lens assembly 140; one end of the lower elastic piece 152 is fixed to the bottom end of the support frame 120, and the other end is fixed to the lens assembly
  • One end of each anti-shake suspension wire 153 is connected to the upper elastic piece 151 , and the other end is fixed on the base 110 , and the support frame 120 is supported on the base 110 by the anti-shake suspension wire 153 .
  • the first drive assembly 170 includes: a first circuit board 171 , a first drive coil assembly 172 , a first magnetic steel assembly 173 , a first Hall sensor 174 , and a second drive coil 160 .
  • the first circuit board 171 is attached to the base 110 ; the first driving coil assembly 172 is laid on the first circuit board 171 and is electrically connected to the first circuit board 171 ; the first magnetic steel assembly 173 Provided on the support frame 120, the magnetization direction of the first magnetic steel assembly 173 includes a first magnetization direction parallel to the winding plane of the first drive coil assembly 172.
  • the first drive coil assembly 172 Corresponding to the position of the first magnetic steel assembly 173; the first hall sensor 174 is fixed on the first circuit board 171 for detecting the displacement of the lens assembly 140, and the second driving coil 160 is arranged on the first circuit board 171.
  • the second driving coil 160 and the first magnetic steel assembly 173 act to drive the lens assembly 140 to move in translation along the optical axis direction.
  • the first Hall sensor 174 can be disposed at both ends or in the middle of one or more magnets in the first magnet assembly 173. When the magnets are deflected, they are disposed on both ends of the magnets. The first Hall sensor 174 at the end can detect its deflection angle. Since the lens assembly 140 and the supporting frame 120 are jointly suspended on the base 110 through the spring plate assembly 150, the deflection angle of the magnetic steel can reflect the deflection of the lens assembly 140. angle. Similarly, the first Hall sensor 174 disposed in the middle of the magnetic steel can detect the translation of the magnetic steel, thereby reflecting the translation distance to the lens assembly 140 .
  • the first magnetic steel assembly 173 includes: first magnetic steel 1731 fixed on at least two adjacent sides of the support frame 120 .
  • two magnetic steels 1731 are used.
  • the first magnetic steel 1731 is described;
  • the first driving coil assembly 172 includes two first magnetic steels 1731 and the supporting frame 120 for driving the first magnetic steel 1731 and the supporting frame 120 to translate in the directions of the first axis E and the second axis F.
  • the two first driving coils 1721 are arranged corresponding to the positions of the two first magnetic steels 1731 , and the magnetization directions of the two first magnetic steels 1731 are parallel to the winding planes of the two first driving coils 1721 .
  • the first magnetic steel assembly 173 further includes: a second magnetic steel 1732 fixed to at least one side of the support frame, the second magnetic steel 1732 and the first magnetic steel 1731 are arranged on different sides;
  • a driving coil assembly 172 includes a third driving coil 1722 for driving the second magnetic steel 1732 and the supporting frame 120 to rotate around the optical axis, wherein the number of the third driving coils 1722 is two and Corresponding to the two ends of the second magnetic steel 1732, the two third driving coils 1722 respectively drive the two ends of the second magnetic steel 1732 to move in opposite directions so as to drive the support frame 120 around the optical axis Rotating, further drive the lens assembly 140 to rotate along the optical axis.
  • the winding plane of the second driving coil 160 is perpendicular to the winding plane of the first driving coil 1721 or the third driving coil 1722
  • the first magnetic steel component 173 includes at least The third magnetic steel 1733 fixed on both sides of the support frame 120 corresponding to the position of the second driving coil 160 is described by taking the example of having two third magnetic steels 1733. Since the first magnetic steel 1731 and the second magnetic steel 1733 The arrangement of the magnetic steel 1732, therefore, at least one of the two third magnetic steels 1733 is the first magnetic steel 1731 or the second magnetic steel 1732, and in this embodiment, the third magnetic steel 1733 is composed of the first magnetic steel 1731 and the second magnetic steel 1732.
  • the second magnet is composed of 1732.
  • the magnetizing directions of the first magnetic steel 1731 and the second magnetic steel 1732 include parallel to each other in order to achieve translation.
  • the third magnetic steel 1733 also includes a vertical In the second magnetization direction of the winding plane of the first drive coil 1721 or the third drive coil 1722, that is to say, the first magnet 1731 and the second magnet 1732 constituting the third magnet 1733 are quadrupole magnets.
  • the lens assembly 140 is driven by the second driving coil 160 (the third magnetic steel 1733 is driven by the driving force of the second driving coil 160), and the lens assembly 140 can be opposite to the third driving coil along the direction parallel to the optical axis. Magnet 1733 Movement.
  • the third magnet 1733 (refer to the first magnet 1731 or the second magnet 1732 in FIG. 9 ) is a quadrupole magnet, it has the same A driving coil 1721 is perpendicular to the second magnetizing direction and parallel to the second driving coil 160. Therefore, when the second driving coil 160 is energized, an upward driving force is generated on the third magnetic steel 1733, which can drive the third magnetic steel 1733. Movement in the direction parallel to the optical axis, referring to FIG.
  • the second driving coil 160 drives the lens assembly 140 to move in a direction parallel to the optical axis.
  • the third magnetic steel 1733 also has a first magnetization direction parallel to the first driving coil 1721 , when the first driving coil 1721 is energized, a driving force perpendicular to the optical axis direction is generated, thereby driving the third magnetic steel 1733 Translate perpendicular to the optical axis.
  • the supporting frame 120 drives the lens assembly 140 to translate.
  • the arrangement of the first driving coil assembly (not marked in the figure) can have various forms, and is not limited to the method provided in this embodiment, based on different first driving
  • the arrangement of the coil components, correspondingly changing the arrangement of the first magnetic steel component, can realize the corresponding drive.
  • the first circuit board 171 includes a PCB board 1711 with a groove (not shown in the figure) and is attached to the side of the PCB board 1711 opposite to the base 110
  • the first driving coil assembly 172 is embedded in the groove.
  • the FPC 1712 is disposed on the back of the PCB board 1711 to realize electrical connection with the outside.
  • the first Hall sensor 174 can be disposed on the FPC 1712, and a corresponding avoidance groove (not marked in the figure) can be formed on the base 110 to avoid the first Hall sensor 1712. The location of a Hall sensor 174 .
  • the first driving module 100 can drive the lens assembly 140 to translate in two directions (the first axis E and the second axis F) perpendicular to the optical axis. It can be known from the positions of the first driving coil assembly 172 and the first magnetic steel assembly 173 that these two directions are perpendicular to each other. At the same time, the first driving module 100 can also drive the lens assembly 140 to rotate around the optical axis and translate in a direction parallel to the optical axis. The three-axis anti-shake function.
  • the second driving module 200 includes: a first outer frame 210 , a second outer frame 220 , a bracket assembly 240 , and a second driving assembly 230 .
  • the first outer frame 210 is surrounded by a first side wall 212, the first outer frame 210 is sleeved on the outer casing 130 and is fixedly connected with the outer casing 130;
  • the second outer frame 220 is surrounded by a second side wall 222, the second outer frame 220 is sleeved on the first outer frame 210 and is spaced from the first outer frame 210;
  • the bracket assembly 240 forms a rotational connection with the first outer frame 210 along the third axis C, so that the first outer frame 210 can rotate relative to the second outer frame 220 around the third axis C, and the The bracket assembly 240 forms a rotational connection with the second outer frame 220 along the direction of the fourth axis D, and the first outer frame 210 is suspended in the second outer frame 220 so that the bracket assembly 240 can drive the The first outer frame 210 rotates relative to the second outer frame 220 together around a fourth axis D; wherein, the third axis C and the fourth axis D are perpendicular to the optical axis;
  • the second driving assembly 230 is used to drive the first driving module 100 (the first driving module 100 is fixed on the first outer frame 210 through the casing 130 ) relative to the second outer frame 220 around the third axis C and the fourth axis D rotate.
  • the second driving component 230 includes: a second magnetic steel component 231 , a second driving coil component 232 , a second circuit board 233 , and a second Hall sensor 234 .
  • the second magnetic steel assembly 231 includes at least two fourth magnetic steels 2311 respectively disposed on two adjacent first side walls 212 on the first outer frame 210 ;
  • the second driving coil assembly 232 includes at least two fourth magnetic steels 2311 disposed on the first outer frame 210 respectively
  • the fourth drive coils 2321 on the two adjacent second side walls 222 on the second outer frame 220, each of the fourth drive coils 2321 is opposite to one of the fourth magnets 2311 and arranged at intervals;
  • the second line The board 233 is disposed on the outer periphery of the second outer frame 220 and is electrically connected to the fourth driving coil 2321 respectively;
  • the second hall sensor 234 is disposed on the second circuit board 233 for detecting the first The displacement of the driving module 100 (the displacement of the first driving module 100 is reflected by detecting the displacement of the fourth magnet 2311 ).
  • a magnetic isolation plate 2312 is disposed on the side of each of the fourth magnetic steel 2311 facing the lens assembly 140 .
  • the magnetic isolation plate 2312 is opposite to the fourth magnetic steel 2311 and the first magnetic steel assembly. 173 are isolated to avoid mutual influence. The movements between the first driving module 100 and the second driving module 200 do not interfere with each other.
  • the bracket assembly 240 includes a bracket main body 241 arranged at intervals on the upper part of the housing 130 , and a first bracket extending toward both ends of the bracket main body 241 in the direction of the third axis C.
  • the extension portion 242a and the second extension portion 242b extending toward both ends of the bracket body 241 in the direction of the fourth axis D; the first extension portion 242a forms a rotational connection with the first outer frame 210 .
  • the two extending portions 242b are rotationally connected with the second outer frame 220 .
  • the first extension portion 242a includes a first downward extension portion 243a extending toward the base 110.
  • the first downward extension portion 243a is provided with a first axle seat 244a, and the first outer frame 210 corresponds to the A first shaft body 213 is disposed at the position of the first shaft seat 244a, and the first shaft body 213 is disposed in the first shaft seat 244a.
  • the first shaft body 213 is formed by a first metal member 211 embedded on the first outer frame 210 .
  • the first shaft seat 244a is a concave hemispherical surface
  • the first shaft body 213 is a hemispherical body disposed in a gap with the hemispherical surface.
  • the second extension portion 242b includes a second downward extension portion 243b extending toward the base, and the second downward extension portion 243b is provided with a second axle seat (not shown in the figure),
  • the second outer frame 220 is provided with a second axle body (not shown in the figure) at a position corresponding to the second axle seat, and the second axle body is disposed in the second axle seat.
  • the second shaft body is formed by a second metal member 221 embedded on the second outer frame 220 .
  • the second shaft seat is also a concave hemispherical surface
  • the second shaft body is also a hemispherical body arranged in a gap with the hemispherical surface.
  • the present embodiment Based on the second driving module 200 , the present embodiment implements a two-axis anti-shake function for the lens assembly 140 . Combined with the first driving module 100 , the present embodiment can realize the five-axis anti-shake of the lens assembly 140 .
  • this embodiment provides a first drive module 100, which includes: a base 110, a support frame 120, a housing 130, a lens assembly 140, a spring plate assembly 150, and a first drive assembly 170, with reference to FIG. 2
  • the first driving assembly 170 is used to drive the lens assembly 140 to translate along the optical axis and the directions of the first axis E and the second axis F perpendicular to the optical axis.
  • the support frame 120 has a receiving space 121, the support frame 120 is supported on the base 110; the casing 130 is covered on the base 110 so that the support frame 120 is located in the casing 130; the lens assembly 140 is accommodated in the base 110
  • the accommodating space 121 is used to install the lens group (not shown in the figure); the elastic plate assembly 150 elastically supports the lens assembly 140 in the accommodating space 121 ; the first driving assembly 170 is used to drive the lens assembly 140 Translate with respect to the support frame 120 in the direction of the first axis E and the second axis F perpendicular to the optical axis.
  • the elastic piece assembly 150 of the first driving module 100 includes: an upper elastic piece 151 , a lower elastic piece 152 , and a plurality of anti-shake suspension wires.
  • One end of the upper elastic piece 151 is fixed to the top of the support frame 120, and the other end is fixed to the top of the lens assembly 140; one end of the lower elastic piece 152 is fixed to the bottom end of the support frame 120, and the other end is fixed to the lens assembly
  • One end of each anti-shake suspension wire 153 is connected to the upper elastic piece 151 , and the other end is fixed on the base 110 , and the support frame 120 is supported on the base 110 by the anti-shake suspension wire 153 .
  • the first drive assembly 170 includes: a first circuit board 171 , a first drive coil assembly 172 , a first magnetic steel assembly 173 , a first Hall sensor 174 , and a second drive coil 160 .
  • the first circuit board 171 is attached to the base 110 ; the first driving coil assembly 172 is laid on the first circuit board 171 and is electrically connected to the first circuit board 171 ; the first magnetic steel assembly 173 Provided on the support frame 120, the magnetization direction of the first magnetic steel assembly 173 includes a first magnetization direction parallel to the winding plane of the first drive coil assembly 172.
  • the first drive coil assembly 172 Corresponding to the position of the first magnetic steel assembly 173; the first hall sensor 174 is fixed on the first circuit board 171 for detecting the displacement of the lens assembly 140, and the second driving coil 160 is arranged on the first circuit board 171.
  • the second driving coil 160 and the first magnetic steel assembly 173 act to drive the lens assembly 140 to move in translation along the optical axis direction.
  • the first Hall sensor 174 can be disposed at both ends or in the middle of one or more magnets in the first magnet assembly 173. When the magnets are deflected, they are disposed on both ends of the magnets. The first Hall sensor 174 at the end can detect its deflection angle. Since the lens assembly 140 and the supporting frame 120 are jointly suspended on the base 110 through the spring plate assembly 150, the deflection angle of the magnetic steel can reflect the deflection of the lens assembly 140. angle. Similarly, the first Hall sensor 174 disposed in the middle of the magnetic steel can detect the translation of the magnetic steel, thereby reflecting the translation distance to the lens assembly 140 .
  • the first magnetic steel assembly 173 includes: first magnetic steels 1731 fixed on at least two adjacent sides of the support frame 120 .
  • two magnetic steels are used.
  • the first magnetic steel 1731 is described;
  • the first drive coil assembly 172 includes two first drives for driving the first magnetic steel 1731 and the first axis E and the second axis F of the support frame 120 to translate in the directions
  • the coils 1721 and the two first driving coils 1721 are arranged corresponding to the positions of the two first magnetic steels 1731 , and the magnetization directions of the two first magnetic steels 1731 are parallel to the winding planes of the two first driving coils 1721 .
  • the first magnetic steel assembly 173 further includes: a second magnetic steel 1732 fixed to at least one side of the support frame, the second magnetic steel 1732 and the first magnetic steel 1731 are arranged on different sides;
  • a driving coil assembly 172 includes a third driving coil 1722 for driving the second magnetic steel 1732 and the supporting frame 120 to rotate around the optical axis, wherein the number of the third driving coils 1722 is two and Corresponding to the two ends of the second magnetic steel 1732, the two third driving coils 1722 respectively drive the two ends of the second magnetic steel 1732 to move in opposite directions so as to drive the support frame 120 around the optical axis Rotating, further drive the lens assembly 140 to rotate along the optical axis.
  • the winding plane of the second driving coil 160 is perpendicular to the winding plane of the first driving coil 1721 or the third driving coil 1722
  • the first magnetic steel component 173 includes at least The third magnetic steel 1733 fixed on both sides of the support frame 120 corresponding to the position of the second driving coil 160 is described by taking the example of having two third magnetic steels 1733. Since the first magnetic steel 1731 and the second magnetic steel 1733 The arrangement of the magnetic steel 1732, therefore, at least one of the two third magnetic steels 1733 is the first magnetic steel 1731 or the second magnetic steel 1732, and in this embodiment, the third magnetic steel 1733 is composed of the first magnetic steel 1731 and the second magnetic steel 1732.
  • the second magnet is composed of 1732.
  • the magnetizing directions of the first magnetic steel 1731 and the second magnetic steel 1732 include parallel to each other in order to achieve translation.
  • the third magnetic steel 1733 also includes a vertical In the second magnetization direction of the winding plane of the first drive coil 1721 or the third drive coil 1722, that is to say, the first magnet 1731 and the second magnet 1732 constituting the third magnet 1733 are quadrupole magnets.
  • the lens assembly 140 is driven by the second driving coil 160 (the third magnetic steel 1733 is driven by the driving force of the second driving coil 160), and the lens assembly 140 can be opposite to the third driving coil along the direction parallel to the optical axis. Magnet 1733 Movement.
  • the third magnet 1733 (refer to the first magnet 1731 or the second magnet 1732 in FIG. 9 ) is a quadrupole magnet, it has the same A driving coil 1721 is perpendicular to the second magnetizing direction and parallel to the second driving coil 160. Therefore, when the second driving coil 160 is energized, an upward driving force is generated on the third magnetic steel 1733, which can drive the third magnetic steel 1733. Movement in the direction parallel to the optical axis, referring to FIG.
  • the second driving coil 160 drives the lens assembly 140 to move in a direction parallel to the optical axis.
  • the third magnetic steel 1733 also has a first magnetization direction parallel to the first driving coil 1721 , when the first driving coil 1721 is energized, a driving force perpendicular to the optical axis direction is generated, thereby driving the third magnetic steel 1733 Translate perpendicular to the optical axis.
  • the supporting frame 120 drives the lens assembly 140 to translate.
  • the arrangement of the first driving coil assembly may have various forms, and is not limited to the manner provided in this embodiment. Based on different arrangements of the first driving coil assembly, Correspondingly, by changing the arrangement of the first magnetic steel assembly, a corresponding driving manner can be realized.
  • the first circuit board 171 includes a PCB board 1711 with a groove (not shown in the figure) and is attached to the side of the PCB board 1711 opposite to the base 110
  • the first driving coil assembly 172 is embedded in the groove.
  • the FPC 1712 is disposed on the back of the PCB board 1711 to realize electrical connection with the outside.
  • the first Hall sensor 174 can be disposed on the FPC 1712, and a corresponding avoidance groove (not marked in the figure) can be formed on the base 110 to avoid the first Hall sensor 1712. The location of a Hall sensor 174 .
  • the first driving module 100 can drive the lens assembly 140 to translate in two directions (the first axis E and the second axis F) perpendicular to the optical axis.
  • the positions of the first driving coil assembly 172 and the first magnetic steel assembly 173 can be seen from the position setting, and these two directions are perpendicular to each other.
  • the first driving module 100 can also drive the lens assembly 140 to rotate around the optical axis and translate in a direction parallel to the optical axis.
  • the above-mentioned first group of directions includes two moving directions perpendicular to the optical axis direction, The optical axis direction or the movement direction parallel to the optical axis direction, therefore, the present embodiment realizes the three-axis anti-shake function of the lens assembly 140 through the first driving module 100 .

Abstract

一种镜头驱动装置(1),包括镜头组件(140)以及驱动镜头组件(140)运动的驱动模组,驱动模组包括第一驱动模组(100)以及第二驱动模组(200),第一驱动模组(100)承载镜头组件(140),第二驱动模组(200)套设于第一驱动模组(100)远离镜头组件(140)一侧。通过能实现多个不同方向运动的第一驱动模组(100)、第二驱动模组(200)对镜头组件(140)进行驱动,使得装配于第一驱动模组(100)内的镜头组件(140)能够实现更多方向的运动,进而实现更好的防抖效果。

Description

一种镜头驱动装置 技术领域
本发明属于驱动装置技术领域,尤其涉及一种镜头驱动装置。
背景技术
随着摄像技术的发展,镜头驱动装置在各种摄像装置中得到广泛的应用。镜头驱动装置与各种便携式电子设备比如手机、摄像机、电脑等的结合,更是得到消费者的青睐。
相关技术的镜头驱动装置中镜头可在驱动组件的驱动下绕两个交叉轴进行转动,同时还可在光轴方向上移动。然而,在复杂的使用环境中,镜头的运动方向是复杂的、快速变化的,例如沿光轴方向旋转、在两个交叉轴方向以外的运动等,现有驱动装置无法在这些方向进行调整以实现镜头防抖的功能,仅通过交叉轴和光轴方向上的运动控制,无法完美达到镜头防抖的效果。
因此,有必要提供一种新的镜头驱动装置来解决上述问题。
技术问题
本发明实施例提供一种镜头驱动装置,旨在解决现有的镜头驱动装置防抖效果较差的问题。
技术解决方案
本发明实施例是这样实现的,提供了一种镜头驱动装置,其包括镜头组件以及驱动所述镜头组件运动的驱动模组,所述驱动模组包括第一驱动模组以及第二驱动模组,所述第一驱动模组承载所述镜头组件,所述第二驱动模组套设于所述第一驱动模组远离所述镜头组件一侧;
其中,所述第一驱动模组包括:第一驱动组件,所述第一驱动组件用于驱动所述镜头组件沿光轴以及垂直于所述光轴的第一轴和第二轴平移;
所述第二驱动模组包括:
第一外框架,所述第一外框架套设于所述第一驱动模组外侧并与所述第一驱动模组固定连接;
第二外框架,所述第二外框架套设于所述第一外框架外侧并与所述第一外框架间隔设置;
支架组件,所述支架组件沿第三轴方向与所述第一外框架形成转动连接,以使得所述第一外框架可绕所述第三轴相对于第二外框架转动,且所述支架组件与所述第二外框架沿第四轴方向形成转动连接并将所述第一外框架悬置于所述第二外框架内以使得所述支架组件可带动所述第一外框架共同绕所述第四轴相对于所述第二外框架转动;其中,所述第三轴以及所述第四轴垂直于所述光轴;
第二驱动组件,所述第二驱动组件用于驱动所述第一驱动模组相对于所述第二外框架绕所述第三轴以及第四轴转动。
有益效果
本发明实施例通过能实现多个不同方向运动的第一驱动模组、第二驱动模组对镜头组件进行驱动,使得装配于第一驱动模组内的镜头组件能够实现更多方向的运动,进而实现更多好的防抖效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的一种镜头驱动装置的整体结构示意图。
图2是本发明实施例一提供的一种镜头驱动装置的一种结构分解方式示意图。
图3是本发明实施例提供的一种镜头驱动装置又一种结构分解方式示意图。
图4是本发明实施例提供的一种镜头驱动装置第一驱动模块的结构分解示意图。
图5是图1中的A-A剖面示意图。
图6是图1中的B-B剖面示意图。
图7是图6中的局部放大图K。
图8是本发明实施例一提供的一种镜头驱动装置的第一驱动线圈组件布置方式示意图。
图9是本发明实施例一提供的一种镜头驱动装置的第一驱动线圈组件、第一磁钢组件、以及第一霍尔传感器的布置方式示意图。
图10是本发明实施例提供的第二种第一驱动线圈组件布置方式示意图。
图11是本发明实施例提供的第三种第一驱动线圈组件布置方式示意图。
图12是本发明实施例提供的第四种第一驱动线圈组件布置方式示意图。
图13是本发明实施例提供的第五种第一驱动线圈组件布置方式示意图。
图14是本发明实施例一中第一驱动模组的驱动方式示意图。
本发明的最佳实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一
如图1-4所示本发明实施例提供了一种镜头驱动装置1,其包括镜头组件140以及驱动该镜头组件140的驱动模组,该驱动模组包括:第一驱动模组100、以及第二驱动模组200,第一驱动模组100承载镜头组件140,第二驱动模组200套设于第一驱动模组100远离镜头组件140的一侧(镜头组件140设于第一驱动模组100内侧,第二驱动模组200设于第一驱动模组外侧)。
其中,结合图1-6所示,所述第一驱动模组100包括:底座110、支撑框架120、外壳130、镜头组件140、弹片组件150 、以及第一驱动组件170,第一驱动组件170用于驱动镜头组件140沿光轴以及垂直于光轴的第一轴E和第二轴F的方向平移。
支撑框架120具有收容空间121,所述支撑框架120支撑于所述底座110上;外壳130盖设于所述底座110并使得所述支撑框架120位于所述外壳130内;镜头组件140收容于所述收容空间121内;弹片组件150将所述镜头组件140弹性支撑于所述收容空间121内;第一驱动组件170用于驱动所述镜头组件140相对于所述支撑框架120在垂直于光轴的第一轴E和第二轴F的方向平移。
如图4所示,本实施例中,第一驱动模组100的弹片组件150包括:上弹片151、下弹片152、以及多根防抖悬丝153。上弹片151一端固定于所述支撑框架120的顶端,另一端固定于所述镜头组件140的顶端;下弹片152的一端固定于所述支撑框架120的底端,另一端固定于所述镜头组件140的底端;每根所述防抖悬丝153一端与所述上弹片151连接,另一端固定于所述底座110上,支撑框架120通过防抖悬丝153支撑于底座110上。
如图4所示,所述第一驱动组件170包括:第一线路板171、第一驱动线圈组件172、第一磁钢组件173、第一霍尔传感器174、以及第二驱动线圈160。
第一线路板171贴设于所述底座110上;第一驱动线圈组件172平铺于所述第一线路板171上并与所述第一线路板171电性连接;第一磁钢组件173设置于所述支撑框架120,所述第一磁钢组件173的充磁方向包括与所述第一驱动线圈组件172的绕线平面平行的第一充磁方向,所述第一驱动线圈组件172与所述第一磁钢组件173的位置相对应;第一霍尔传感器174固定于所述第一线路板171上以用于检测所述镜头组件140的位移,第二驱动线圈160设置于所述镜头组件140上,所述第二驱动线圈160与所述第一磁钢组件173作用驱动所述镜头组件140沿所述光轴方向平移运动。
结合图8及图9所示,第一霍尔传感器174可设置于第一磁钢组件173中一个或多个磁钢的两端或中间位置,当磁钢发生偏转时,设置于磁钢两端的第一霍尔传感器174可检测到其偏转角度,由于镜头组件140和支撑框架120是共同通过弹片组件150悬挂于底座110上,因此,磁钢的偏转角度则可以反映到镜头组件140的偏转角度。同理,设置于磁钢中间位置的第一霍尔传感器174可检测到磁钢的平移,进而反映到镜头组件140的平移距离。
参考图2、图4、图8及图9所示,所述第一磁钢组件173包括:至少固定于所述支撑框架120相邻两侧的第一磁钢1731,本实施例以两个第一磁钢1731进行说明;所述第一驱动线圈组件172包括用于驱动所述第一磁钢1731及所述支撑框架120沿第一轴E和第二轴F方向平移的两个第一驱动线圈1721,两个第一驱动线圈1721对应两个第一磁钢1731的位置设置,两个第一磁钢1731的充磁方向与两个第一驱动线圈1721的绕线平面平行。
进一步的,所述第一磁钢组件173还包括:至少固定于所述支撑框架一侧的第二磁钢1732,第二磁钢1732与第一磁钢1731的设置位置不同侧;所述第一驱动线圈组件172包括用于驱动所述第二磁钢1732及所述支撑框架120绕所述光轴转动的第三驱动线圈1722,其中,所述第三驱动线圈1722的数量为两个且分别对应于所述第二磁钢1732两端设置,两个所述第三驱动线圈1722分别驱动所述第二磁钢1732的两端向相反方向运动以实现驱动所述支撑框架120绕光轴转动,进一步的可驱动镜头组件140沿光轴转动。
参考图4及图9所示,所述第二驱动线圈160的绕线平面与所述第一驱动线圈1721或第三驱动线圈1722的绕线平面垂直,所述第一磁钢组件173包括至少固定于所述支撑框架120两侧与所述第二驱动线圈160位置相对应的第三磁钢1733,以具有两个第三磁钢1733为例进行说明,由于第一磁钢1731和第二磁钢1732的设置,因此,两个第三磁钢1733中至少一个为第一磁钢1731、或第二磁钢1732,而本实施例中,第三磁钢1733由第一磁钢1731和第二磁钢1732构成。由于第一驱动线圈1721或第三驱动线圈1722设于第一磁钢1731、第二磁钢1732下方,因此,第一磁钢1731、第二磁钢1732为了实现平移,其充磁方向包括平行于第一驱动线圈1721或第三驱动线圈1722的绕线平面的第一充磁方向,为实现第二驱动线圈160驱动第三磁钢1733沿光轴方向平移,第三磁钢1733还包括垂直于所述第一驱动线圈1721或第三驱动线圈1722绕线平面的第二充磁方向,也就是说,构成第三磁钢1733的第一磁钢1731和第二磁钢1732为四极磁钢,所述镜头组件140在所述第二驱动线圈160(第三磁钢1733受到第二驱动线圈160的驱动力驱动)的驱动下可沿平行于所述光轴的方向相对所述第三磁钢1733运动。
结合附图4、5、8、9、及14所示,由于第三磁钢1733(参考附图9中的第一磁钢1731或第二磁钢1732)为四极磁钢,具有与第一驱动线圈1721垂直且与第二驱动线圈160平行的第二充磁方向,因此,当第二驱动线圈160通电时,对第三磁钢1733产生向上的驱动力,可驱动第三磁钢1733平行于光轴的方向运动,参考附图4,由于镜头组件140设置于支撑框架120内,且通过弹片组件150悬挂于支撑框架120内,而第三磁钢1733设置在支撑框架120上,因此,当第二驱动线圈160对第三磁钢1733施加驱动力时,第二驱动线圈160带动镜头组件140平行于光轴的方向运动。
另外,由于第三磁钢1733还具有平行于第一驱动线圈1721的第一充磁方向,当第一驱动线圈1721通电时,产生垂直于光轴方向的驱动力,进而驱动第三磁钢1733垂直于光轴方向平移。参考附图4和附图9,由于第三磁钢1733设置于支撑框架120上,而支撑框架120悬挂于底座110上,因此,当第一驱动线圈1721驱动第三磁钢1733时,支撑框架120带动镜头组件140平移。
如图10-13所示,本实施例中,第一驱动线圈组件(图中未标示)的布置方式可以有多种形式,并不限制于本实施例提供的方式,基于不同的第一驱动线圈组件的布置方式,对应的变动第一磁钢组件的布置方式,可实现对应的驱动方式。
如图4所示,本实施例中,所述第一线路板171包括具有凹槽(图中未示出)的PCB板1711以及贴设于所述PCB板1711与所述底座110相对的一面上的FPC1712,所述第一驱动线圈组件172嵌设于所述凹槽内。这样可以实现对第一驱动线圈组件172的固定和限位,同时也避免第一驱动线圈组件172占用过大的空间。FPC1712设于PCB板1711背面,用于实现与外部的电性连接,第一霍尔传感器174可设置于所述FPC1712上,底座110上可开设对应的避让槽(图中未标示)以避让第一霍尔传感器174的位置。
结合附图9及附图14可知,本实施例中,第一驱动模组100可驱动镜头组件140在垂直于光轴的两个方向(第一轴E、第二轴F)上平移,基于第一驱动线圈组件172以及第一磁钢组件173的位置设置可知,这两个方向是相互垂直的。同时,第一驱动模组100还可驱动镜头组件140绕光轴方向旋转,以及在平行于光轴的方向上进行平移,因此,本实施例通过第一驱动模组100实现了对镜头组件140的三轴防抖功能。
如图2及图3所示,第二驱动模组200包括:第一外框架210、第二外框架220、支架组件240、以及第二驱动组件230。
第一外框架210由第一侧壁212围成,所述第一外框架210套设于所述外壳130并与所述外壳130固定连接;
第二外框架220由第二侧壁222围成,所述第二外框架220套设于所述第一外框架210并与所述第一外框架210间隔设置;
支架组件240沿第三轴C方向与所述第一外框架210形成转动连接,以使得所述第一外框架210可绕第三轴C相对于所述第二外框架220转动,且所述支架组件240与所述第二外框架220沿第四轴D方向形成转动连接并将所述第一外框架210悬置于所述第二外框架220内以使得所述支架组件240可带动所述第一外框架210共同绕第四轴D相对于所述第二外框架220转动;其中,所述第三轴C和所述第四轴D垂直于光轴;
第二驱动组件230用于驱动所述第一驱动模组100(第一驱动模组100通过外壳130固定于第一外框架210上)相对于所述第二外框架220绕所述第三轴C和所述第四轴D转动。
如图3所示,本实施例中,所述第二驱动组件230包括:第二磁钢组件231、第二驱动线圈组件232、第二线路板233、以及第二霍尔传感器234。
第二磁钢组件231包括至少两个分别设置于所述第一外框架210上两相邻第一侧壁212上的第四磁钢2311;第二驱动线圈组件232包括至少两个分别设置于所述第二外框架220上两相邻第二侧壁222上的第四驱动线圈2321,每个所述第四驱动线圈2321与一个所述第四磁钢2311相对并间隔设置;第二线路板233设置于所述第二外框架220的外周并分别与所述第四驱动线圈2321电性连接;第二霍尔传感器234设置于所述第二线路板233上用于检测所述第一驱动模组100的位移(通过检测第四磁钢2311的位移反映出第一驱动模组100的位移)。
如图3及图5所示,每个所述第四磁钢2311朝向所述镜头组件140的一侧设置有隔磁板2312,隔磁板2312对第四磁钢2311与第一磁钢组件173之间进行隔离,避免产生相互的影响。使得第一驱动模组100和第二驱动模组200之间的运动互不干扰。
如图2、3、6、7所示,所述支架组件240包括间隔设置于所述外壳130上部的支架主体241、在第三轴C方向上向所述支架主体241两端延伸的第一延伸部242a、以及在第四轴D方向上向所述支架主体241两端延伸的第二延伸部242b;所述第一延伸部242a与所述第一外框架210形成转动连接,所述第二延伸部242b与所述第二外框架220形成转动连接。
具体的,所述第一延伸部242a包括一向底座110方向延伸的第一下延部243a,所述第一下延部243a设置有第一轴座244a,所述第一外框架210对应所述第一轴座244a的位置设置有第一轴体213,所述第一轴体213设置于所述第一轴座244a内。其中,第一轴体213是由一嵌设于第一外框架210上的第一金属构件211形成。
其中,所述第一轴座244a为内凹的半球面,所述第一轴体213为与所述半球面间隙设置的半球体。通过半球面与半球体的配合结构,实现在轴向上和径向上的相互限位,避免支架组件240在轴向上发生较大偏移,同时降低在轴向上设置限位的难度。
同样的,如图3所示,所述第二延伸部242b包括一向底座方向延伸的第二下延部243b,所述第二下延部243b设置有第二轴座(图中未标示),所述第二外框架220对应所述第二轴座的位置设置有第二轴体(图中未标示),所述第二轴体设置于所述第二轴座内。其中,第二轴体是由一嵌设于第二外框架220上的第二金属构件221形成。
同样的,所述第二轴座也为内凹的半球面,所述第二轴体也为与所述半球面间隙设置的半球体。
基于第二驱动模组200,本实施例实现了对镜头组件140的两轴防抖功能。结合第一驱动模组100,本实施例可实现对镜头组件140的五轴防抖。
实施例二
如图4所示,本实施例提供一种第一驱动模组100,其包括:底座110、支撑框架120、外壳130、镜头组件140、弹片组件150 、以及第一驱动组件170,结合图2所示,第一驱动组件170用于驱动镜头组件140沿光轴以及垂直于光轴的第一轴E和第二轴F的方向平移。
支撑框架120具有收容空间121,所述支撑框架120支撑于所述底座110上;外壳130盖设于所述底座110并使得所述支撑框架120位于所述外壳130内;镜头组件140收容于所述收容空间121内,用于安装镜片组(图中未显示);弹片组件150将所述镜头组件140弹性支撑于所述收容空间121内;第一驱动组件170用于驱动所述镜头组件140相对于所述支撑框架120在垂直于光轴的第一轴E和第二轴F的方向平移。
如图4所示,本实施例中,第一驱动模组100的弹片组件150包括:上弹片151、下弹片152、以及多根防抖悬丝。上弹片151一端固定于所述支撑框架120的顶端,另一端固定于所述镜头组件140的顶端;下弹片152的一端固定于所述支撑框架120的底端,另一端固定于所述镜头组件140的底端;每根所述防抖悬丝153一端与所述上弹片151连接,另一端固定于所述底座110上,支撑框架120通过防抖悬丝153支撑于底座110上。
如图4所示,所述第一驱动组件170包括:第一线路板171、第一驱动线圈组件172、第一磁钢组件173、以及第一霍尔传感器174、以及第二驱动线圈160。
第一线路板171贴设于所述底座110上;第一驱动线圈组件172平铺于所述第一线路板171上并与所述第一线路板171电性连接;第一磁钢组件173设置于所述支撑框架120,所述第一磁钢组件173的充磁方向包括与所述第一驱动线圈组件172的绕线平面平行的第一充磁方向,所述第一驱动线圈组件172与所述第一磁钢组件173的位置相对应;第一霍尔传感器174固定于所述第一线路板171上以用于检测所述镜头组件140的位移,第二驱动线圈160设置于所述镜头组件140上,所述第二驱动线圈160与所述第一磁钢组件173作用驱动所述镜头组件140沿所述光轴方向平移运动。
结合图8及图9所示,第一霍尔传感器174可设置于第一磁钢组件173中一个或多个磁钢的两端或中间位置,当磁钢发生偏转时,设置于磁钢两端的第一霍尔传感器174可检测到其偏转角度,由于镜头组件140和支撑框架120是共同通过弹片组件150悬挂于底座110上,因此,磁钢的偏转角度则可以反映到镜头组件140的偏转角度。同理,设置于磁钢中间位置的第一霍尔传感器174可检测到磁钢的平移,进而反映到镜头组件140的平移距离。
参考图图2、4、图8及图9所示,所述第一磁钢组件173包括:至少固定于所述支撑框架120相邻两侧的第一磁钢1731,本实施例以两个第一磁钢1731进行说明;所述第一驱动线圈组件172包括用于驱动所述第一磁钢1731及所述支撑框架120第一轴E和第二轴F方向平移的两个第一驱动线圈1721,两个第一驱动线圈1721对应两个第一磁钢1731的位置设置,两个第一磁钢1731的充磁方向与两个第一驱动线圈1721的绕线平面平行。
进一步的,所述第一磁钢组件173还包括:至少固定于所述支撑框架一侧的第二磁钢1732,第二磁钢1732与第一磁钢1731的设置位置不同侧;所述第一驱动线圈组件172包括用于驱动所述第二磁钢1732及所述支撑框架120绕所述光轴转动的第三驱动线圈1722,其中,所述第三驱动线圈1722的数量为两个且分别对应于所述第二磁钢1732两端设置,两个所述第三驱动线圈1722分别驱动所述第二磁钢1732的两端向相反方向运动以实现驱动所述支撑框架120绕光轴转动,进一步的可驱动镜头组件140沿光轴转动。
参考图4及图9所示,所述第二驱动线圈160的绕线平面与所述第一驱动线圈1721或第三驱动线圈1722的绕线平面垂直,所述第一磁钢组件173包括至少固定于所述支撑框架120两侧与所述第二驱动线圈160位置相对应的第三磁钢1733,以具有两个第三磁钢1733为例进行说明,由于第一磁钢1731和第二磁钢1732的设置,因此,两个第三磁钢1733中至少一个为第一磁钢1731、或第二磁钢1732,而本实施例中,第三磁钢1733由第一磁钢1731和第二磁钢1732构成。由于第一驱动线圈1721或第三驱动线圈1722设于第一磁钢1731、第二磁钢1732下方,因此,第一磁钢1731、第二磁钢1732为了实现平移,其充磁方向包括平行于第一驱动线圈1721或第三驱动线圈1722的绕线平面的第一充磁方向,为实现第二驱动线圈160驱动第三磁钢1733沿光轴方向平移,第三磁钢1733还包括垂直于所述第一驱动线圈1721或第三驱动线圈1722绕线平面的第二充磁方向,也就是说,构成第三磁钢1733的第一磁钢1731和第二磁钢1732为四极磁钢,所述镜头组件140在所述第二驱动线圈160(第三磁钢1733受到第二驱动线圈160的驱动力驱动)的驱动下可沿平行于所述光轴的方向相对所述第三磁钢1733运动。
结合附图4、5、8、9、及14所示,由于第三磁钢1733(参考附图9中的第一磁钢1731或第二磁钢1732)为四极磁钢,具有与第一驱动线圈1721垂直且与第二驱动线圈160平行的第二充磁方向,因此,当第二驱动线圈160通电时,对第三磁钢1733产生向上的驱动力,可驱动第三磁钢1733平行于光轴的方向运动,参考附图4,由于镜头组件140设置于支撑框架120内,且通过弹片组件150悬挂于支撑框架120内,而第三磁钢1733设置在支撑框架120上,因此,当第二驱动线圈160对第三磁钢1733施加驱动力时,第二驱动线圈160带动镜头组件140平行于光轴的方向运动。
另外,由于第三磁钢1733还具有平行于第一驱动线圈1721的第一充磁方向,当第一驱动线圈1721通电时,产生垂直于光轴方向的驱动力,进而驱动第三磁钢1733垂直于光轴方向平移。参考附图4和附图9,由于第三磁钢1733设置于支撑框架120上,而支撑框架120悬挂于底座110上,因此,当第一驱动线圈1721驱动第三磁钢1733时,支撑框架120带动镜头组件140平移。
如图10-13所示,本实施例中,第一驱动线圈组件的布置方式可以有多种形式,并不限制于本实施例提供的方式,基于不同的第一驱动线圈组件的布置方式,对应的变动第一磁钢组件的布置方式,可实现对应的驱动方式。
如图4所示,本实施例中,所述第一线路板171包括具有凹槽(图中未示出)的PCB板1711以及贴设于所述PCB板1711与所述底座110相对的一面上的FPC1712,所述第一驱动线圈组件172嵌设于所述凹槽内。这样可以实现对第一驱动线圈组件172的固定和限位,同时也避免第一驱动线圈组件172占用过大的空间。FPC1712设于PCB板1711背面,用于实现与外部的电性连接,第一霍尔传感器174可设置于所述FPC1712上,底座110上可开设对应的避让槽(图中未标示)以避让第一霍尔传感器174的位置。
结合附图9及附图14可知,本实施例中,第一驱动模组100可驱动镜头组件140在垂直于光轴的两个方向(第一轴E、第二轴F)上平移,基于本实施例中第一驱动线圈组件172以及第一磁钢组件173的位置设置可知,这两个方向是相互垂直的。同时,第一驱动模组100还可驱动镜头组件140绕光轴方向旋转,以及在平行于光轴的方向上进行平移,上述的第一组方向包括两个垂直于光轴方向的运动方向、光轴方向或平行与光轴方向的运动方向,因此,本实施例通过第一驱动模组100实现了对镜头组件140的三轴防抖功能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种镜头驱动装置,其包括镜头组件以及驱动所述镜头组件运动的驱动模组,其特征在于,所述驱动模组包括第一驱动模组以及第二驱动模组,所述第一驱动模组承载所述镜头组件,所述第二驱动模组套设于所述第一驱动模组远离所述镜头组件一侧;
    其中,所述第一驱动模组包括:第一驱动组件,所述第一驱动组件用于驱动所述镜头组件沿光轴以及垂直于所述光轴的第一轴和第二轴平移;
    所述第二驱动模组包括:
    第一外框架,所述第一外框架套设于所述第一驱动模组外侧并与所述第一驱动模组固定连接;
    第二外框架,所述第二外框架套设于所述第一外框架外侧并与所述第一外框架间隔设置;
    支架组件,所述支架组件沿第三轴方向与所述第一外框架形成转动连接,以使得所述第一外框架可绕所述第三轴相对于第二外框架转动,且所述支架组件与所述第二外框架沿第四轴方向形成转动连接并将所述第一外框架悬置于所述第二外框架内以使得所述支架组件可带动所述第一外框架共同绕所述第四轴相对于所述第二外框架转动;其中,所述第三轴以及所述第四轴垂直于所述光轴;
    第二驱动组件,所述第二驱动组件用于驱动所述第一驱动模组相对于所述第二外框架绕所述第三轴以及第四轴转动。
  2. 如权利要求1所述的镜头驱动装置,其特征在于,所述第一驱动模组还包括:
    底座;
    支撑框架,所述支撑框架具有收容空间,所述支撑框架支撑于所述底座;
    外壳,所述外壳盖设于所述底座并使得所述支撑框架位于所述外壳内;
    弹片组件,所述弹片组件将所述镜头组件弹性支撑于所述收容空间内。
  3. 如权利要求2所述的镜头驱动装置,其特征在于,所述弹片组件包括:
    上弹片,所述上弹片一端固定于所述支撑框架的顶端,另一端固定于所述镜头组件的顶端;
    下弹片,所述下弹片的一端固定于所述支撑框架的底端,另一端固定于所述镜头组件的底端;
    多根防抖悬丝,每根所述防抖悬丝一端与所述上弹片连接,另一端固定于所述底座上,所述支撑框架通过所述防抖悬丝支撑于所述底座。
  4. 如权利要求3所述的镜头驱动装置,其特征在于,所述第一驱动组件包括:
    设置于所述底座上的第一驱动线圈组件;
    第一磁钢组件,所述第一磁钢组件包括设置于所述支撑框架上的第一磁钢,所述第一驱动线圈组件包括与所述第一磁钢作用驱动所述支撑框架沿所述第一轴以及所述第二轴平移运动的第一驱动线圈,所述第一驱动线圈设置于所述底座上;
    第一霍尔传感器,所述第一霍尔传感器固定于所述底座上以用于检测所述镜头组件的位移;
    第二驱动线圈,所述第二驱动线圈设置于所述镜头组件上,所述第二驱动线圈与所述第一磁钢组件作用驱动所述镜头组件沿所述光轴方向平移运动。
  5. 如权利要求4所述的镜头驱动装置,其特征在于,所述第一磁钢组件还包括:至少固定于所述支撑框架一侧且与所述第一磁钢不同侧的第二磁钢;所述第一驱动线圈组件包括用于驱动所述第二磁钢及所述支撑框架绕所述光轴转动的第三驱动线圈,其中,所述第三驱动线圈的数量为两个且分别对应于所述第二磁钢两端设置,两个所述第三驱动线圈分别驱动所述第二磁钢的两端向相反方向运动以实现驱动所述支撑框架转动。
  6. 如权利要求5所述的镜头驱动装置,其特征在于,所述第二驱动线圈的数量至少为两个且相对设置于所述镜头组件的周壁上,所述第二驱动线圈的绕线平面与所述第一驱动线圈的绕线平面垂直,所述第一磁钢组件包括至少固定于所述支撑框架两侧与所述第二驱动线圈位置相对应的第三磁钢,所述第三磁钢包括:与平行于所述第一驱动线圈绕线平面的第一充磁方向、以及垂直于所述第一驱动线圈绕线平面的第二充磁方向,所述镜头组件在所述第二驱动线圈的驱动下可沿平行于所述光轴的方向相对所述第三磁钢运动,其中,所述第三磁钢中至少一个为所述第一磁钢或所述第二磁钢。
  7. 如权利要求1所述的镜头驱动装置,其特征在于,所述第二驱动组件包括:
    第二磁钢组件,所述第二磁钢组件包括至少两个分别设置于所述第一外框架上两相邻第一侧壁上的第四磁钢;
    第二驱动线圈组件,所述第二驱动线圈组件包括至少两个分别设置于所述第二外框架上两相邻第二侧壁上的第四驱动线圈,每个所述第四驱动线圈与一个所述第四磁钢相对并间隔设置;
    第二线路板,所述第二线路板设置于所述第二外框架的外周并分别与所述第四驱动线圈电性连接;
    第二霍尔传感器,所述第二霍尔传感器设置于所述第二线路板上用于检测所述第一驱动模组的位移。
  8. 如权利要求7所述的镜头驱动装置,其特征在于,每个所述第四磁钢朝向所述镜头组件的一侧设置有隔磁板。
  9. 如权利要求4所述的镜头驱动装置,其特征在于,所述第一驱动线圈组件设置于一第一线路板上,所述第一线路板包括具有凹槽的PCB板以及贴设于所述PCB板与所述底座相对的一面上的FPC,所述第一驱动线圈组件嵌设于所述凹槽内。
  10. 如权利要求9所述的镜头驱动装置,其特征在于,所述第一霍尔传感器设置于所述FPC上,所述第一霍尔传感器对应于所述第一磁钢组件中一个或多个磁钢的两端或中间位置设置。
  11. 如权利要求2所述的镜头驱动装置,其特征在于,所述支架组件包括间隔设置于所述外壳上部的支架主体、在所述第三轴方向上向所述支架主体两端延伸的第一延伸部、以及在所述第四轴方向上向所述支架主体两端延伸的第二延伸部;所述第一延伸部与所述第一外框架形成转动连接,所述第二延伸部与所述第二外框架形成转动连接。
  12. 如权利要求11所述的镜头驱动装置,其特征在于,所述第一延伸部包括一向底座方向延伸的第一下延部,所述第一下延部设置有第一轴座,所述第一外框架对应所述第一轴座的位置设置有第一轴体,所述第一轴体设置于所述第一轴座内。
  13. 如权利要求12所述的镜头驱动装置,其特征在于,所述第一轴座为内凹的半球面,所述第一轴体为与所述半球面间隙设置的半球体。
  14. 如权利要求11所述的镜头驱动装置,其特征在于,所述第二延伸部包括一向底座方向延伸的第二下延部,所述第二下延部设置有第二轴座,所述第二外框架对应所述第二轴座的位置设置有第二轴体,所述第二轴体设置于所述第二轴座内。
  15. 如权利要求14所述的镜头驱动装置,其特征在于,所述第二轴座为内凹的半球面,所述第二轴体为与所述半球面间隙设置的半球体。
  16. 一种镜头驱动装置,其特征在于,其特征在于,包括:
    底座;
    支撑框架,所述支撑框架具有收容空间,所述支撑框架支撑于所述底座;
    外壳,所述外壳盖设于所述底座并使得所述支撑框架位于所述外壳内;
    镜头组件,所述镜头组件收容于所述收容空间内;
    弹片组件,所述弹片组件将所述镜头组件弹性支撑于所述收容空间内;
    第一驱动线圈组件,所述第一驱动线圈组件设于所述底座上;
    第一磁钢组件,所述第一磁钢组件包括设置于所述支撑框架上的第一磁钢,所述第一驱动线圈组件包括与所述第一磁钢作用驱动所述支撑框架沿第一轴以及第二轴平移运动的第一驱动线圈,所述第一驱动线圈设置于所述底座上;
    第一霍尔传感器,所述第一霍尔传感器固定于所述底座上以用于检测所述镜头组件的位移;
    第二驱动线圈,所述第二驱动线圈设置于所述镜头组件,所述第二驱动线圈与所述第一磁钢组件作用驱动所述镜头组件沿光轴方向平移运动。
  17. 如权利要求16所述的镜头驱动装置,其特征在于,所述第一磁钢组件还包括:至少固定于所述支撑框架一侧的第二磁钢;所述第一驱动线圈组件包括用于驱动所述第二磁钢及所述支撑框架绕所述光轴方向转动的第三驱动线圈,其中,所述第三驱动线圈的数量为两个且分别对应于所述第二磁钢两端设置,两个所述第三驱动线圈分别驱动所述第二磁钢的两端向相反方向运动以实现驱动所述支撑框架转动。
  18. 如权利要求17所述的镜头驱动装置,其特征在于,所述第二驱动线圈的数量至少为两个且相对设置于所述镜头组件的周壁上,所述第二驱动线圈的绕线平面与所述第一驱动线圈的绕线平面垂直,所述第一磁钢组件包括至少固定于所述支撑框架两侧与所述第二驱动线圈位置相对应的第三磁钢,所述第三磁钢包括垂直于所述第一驱动线圈绕线平面的第二充磁方向,所述镜头组件在所述第二驱动线圈的驱动下可沿平行于所述光轴方向相对所述第三磁钢运动,其中,所述第三磁钢中至少一个为所述第一磁钢或所述第二磁钢。
PCT/CN2020/142286 2020-12-01 2020-12-31 一种镜头驱动装置 WO2022116357A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011381855.5 2020-12-01
CN202011381855.5A CN112198735B (zh) 2020-12-01 2020-12-01 一种镜头驱动装置

Publications (1)

Publication Number Publication Date
WO2022116357A1 true WO2022116357A1 (zh) 2022-06-09

Family

ID=74034407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142286 WO2022116357A1 (zh) 2020-12-01 2020-12-31 一种镜头驱动装置

Country Status (3)

Country Link
US (1) US20220171150A1 (zh)
CN (1) CN112198735B (zh)
WO (1) WO2022116357A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112954185B (zh) * 2021-04-19 2023-04-07 维沃移动通信有限公司 摄像头结构及电子设备

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104995541A (zh) * 2012-12-20 2015-10-21 苹果公司 音圈马达光学图像稳定
CN107193106A (zh) * 2017-04-12 2017-09-22 瑞声科技(新加坡)有限公司 镜头驱动装置
CN107193105A (zh) * 2017-04-12 2017-09-22 瑞声科技(新加坡)有限公司 镜头驱动装置
CN107229169A (zh) * 2017-04-12 2017-10-03 瑞声科技(新加坡)有限公司 镜头驱动装置
WO2019225890A1 (ko) * 2018-05-23 2019-11-28 엘지이노텍(주) 렌즈 구동 장치, 이를 포함하는 카메라 모듈 및 광학 기기
CN209930373U (zh) * 2018-08-13 2020-01-10 三星电机株式会社 光圈模块和包括该光圈模块的相机模块
CN110691188A (zh) * 2018-07-05 2020-01-14 美细耐斯电子有限公司 具有光学稳像功能的相机模块
CN111025817A (zh) * 2019-06-28 2020-04-17 瑞声声学科技(深圳)有限公司 透镜驱动装置
CN111130304A (zh) * 2020-01-21 2020-05-08 新思考电机有限公司 一种五轴ois结构的音圈马达、照相装置及电子设备
CN111787207A (zh) * 2020-07-17 2020-10-16 常熟理工学院 一种具有两方向自由转动的微型摄像头及摄像方法
CN111856837A (zh) * 2019-04-24 2020-10-30 日本电产三协株式会社 带抖动修正功能的光学单元
CN212135047U (zh) * 2020-11-11 2020-12-11 常州市瑞泰光电有限公司 一种镜头驱动装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11347074B2 (en) * 2018-11-30 2022-05-31 Nidec Sankyo Corporation Optical unit having shake correction function
EP4130836A3 (en) * 2018-12-27 2023-05-24 Tdk Taiwan Corp. Optical system
CN111585418A (zh) * 2020-06-24 2020-08-25 新思考电机有限公司 一种图像防抖动连接结构、驱动装置及电子设备

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104995541A (zh) * 2012-12-20 2015-10-21 苹果公司 音圈马达光学图像稳定
CN107193106A (zh) * 2017-04-12 2017-09-22 瑞声科技(新加坡)有限公司 镜头驱动装置
CN107193105A (zh) * 2017-04-12 2017-09-22 瑞声科技(新加坡)有限公司 镜头驱动装置
CN107229169A (zh) * 2017-04-12 2017-10-03 瑞声科技(新加坡)有限公司 镜头驱动装置
WO2019225890A1 (ko) * 2018-05-23 2019-11-28 엘지이노텍(주) 렌즈 구동 장치, 이를 포함하는 카메라 모듈 및 광학 기기
CN110691188A (zh) * 2018-07-05 2020-01-14 美细耐斯电子有限公司 具有光学稳像功能的相机模块
CN209930373U (zh) * 2018-08-13 2020-01-10 三星电机株式会社 光圈模块和包括该光圈模块的相机模块
CN111856837A (zh) * 2019-04-24 2020-10-30 日本电产三协株式会社 带抖动修正功能的光学单元
CN111025817A (zh) * 2019-06-28 2020-04-17 瑞声声学科技(深圳)有限公司 透镜驱动装置
CN111130304A (zh) * 2020-01-21 2020-05-08 新思考电机有限公司 一种五轴ois结构的音圈马达、照相装置及电子设备
CN111787207A (zh) * 2020-07-17 2020-10-16 常熟理工学院 一种具有两方向自由转动的微型摄像头及摄像方法
CN212135047U (zh) * 2020-11-11 2020-12-11 常州市瑞泰光电有限公司 一种镜头驱动装置

Also Published As

Publication number Publication date
US20220171150A1 (en) 2022-06-02
CN112198735B (zh) 2021-02-19
CN112198735A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
US11622173B2 (en) Lens driving device
CN102870043B (zh) 倾斜修正单元
JP2017215550A (ja) 振れ補正機能付き光学ユニット
US20110013895A1 (en) Camera module with anti-shake mechanism
JPH0772691B2 (ja) ジンバル振動分離システム
JP2010169811A (ja) 光走査装置および画像形成装置
WO2021147280A1 (zh) 一种五轴ois结构的音圈马达、照相装置及电子设备
JP2018077390A (ja) 光学モジュールおよび光学ユニット
JP2019020525A (ja) 振れ補正機能付き光学ユニット
JP2019020526A (ja) 振れ補正機能付き光学ユニット
CN113411470B (zh) 摄像模组和电子设备
US20200412958A1 (en) Optical Collection Module
CN111061029A (zh) 一种镜头驱动装置
WO2022116357A1 (zh) 一种镜头驱动装置
WO2022062162A1 (zh) 一种镜头驱动装置
WO2021258868A1 (zh) 微云台防抖装置
JP6214719B2 (ja) バネ式二軸回転モジュール
CN114114785A (zh) 带抖动修正功能的光学单元
WO2022121057A1 (zh) 一种镜头驱动装置
WO2022088343A1 (zh) 镜头驱动装置
KR20230163286A (ko) 마이크로형 흔들림 방지 짐벌 카메라 모듈
US11696031B1 (en) Drive mechanism, camera device and portable electric device
US20230048052A1 (en) Magnet arrangement structure suitable for voice coil motor and micro gimbal stabilizer
CN215186392U (zh) 光学防抖马达
CN115016192A (zh) 带电路防抖立体动框、透镜驱动装置和摄像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964202

Country of ref document: EP

Kind code of ref document: A1