WO2022114056A1 - 変性エポキシ樹脂、該変性エポキシ樹脂を含有する変性エポキシ樹脂分散液、及び変性エポキシ樹脂の製造方法 - Google Patents

変性エポキシ樹脂、該変性エポキシ樹脂を含有する変性エポキシ樹脂分散液、及び変性エポキシ樹脂の製造方法 Download PDF

Info

Publication number
WO2022114056A1
WO2022114056A1 PCT/JP2021/043167 JP2021043167W WO2022114056A1 WO 2022114056 A1 WO2022114056 A1 WO 2022114056A1 JP 2021043167 W JP2021043167 W JP 2021043167W WO 2022114056 A1 WO2022114056 A1 WO 2022114056A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
modified epoxy
group
molecular weight
compound
Prior art date
Application number
PCT/JP2021/043167
Other languages
English (en)
French (fr)
Inventor
弘隆 遠藤
剛 伊本
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to CN202180079260.0A priority Critical patent/CN116457386A/zh
Priority to JP2022565403A priority patent/JPWO2022114056A1/ja
Publication of WO2022114056A1 publication Critical patent/WO2022114056A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment

Definitions

  • the present invention relates to a modified epoxy resin and a modified epoxy resin dispersion liquid having excellent self-emulsifying properties and excellent various properties such as corrosion resistance, water resistance, and blocking resistance.
  • Epoxy resins are widely used as paints, adhesives, fiber treatment agents, etc. because they are excellent in adhesiveness, heat resistance, chemical resistance, electrical properties, mechanical properties, etc. to various substrates.
  • the epoxy resin is used for the above-mentioned applications, in order to facilitate handling, the epoxy resin is generally dissolved in various low boiling point solvents (also referred to as "solvent type").
  • solvent type also referred to as "solvent type”.
  • the use of low boiling point solvents has been restricted. Has been developed.
  • the method using a non-reactive surfactant is a method of emulsifying an epoxy resin with a surfactant having no reactive group with an epoxy group or an amino group, that is, a so-called non-reactive surfactant.
  • non-reactive surfactant a nonionic surfactant such as a polyethylene oxide adduct of nonylphenol, a polyethylene oxide adduct of octylphenol, or a polyethylene oxide adduct of polypropylene glycol is used.
  • the water-based epoxy resin using these surfactants is not sufficiently stable as an emulsion.
  • the adhesion between the coating film and the base material and the water resistance of the coating film are insufficient. It is believed that this is because the surfactant used for emulsification remains in the resin in a free state even after the epoxy resin is cured.
  • Patent Document 1 describes a reactive surfactant having a phenolic hydroxyl group at the terminal obtained by reacting polyether diol, diisocyanate and divalent phenol
  • Patent Document 2 describes alkylphenol ethoxylate and polypropylene glycol ethoxy.
  • Reactive surfactants consisting of terminal glycidyl ethers such as rates are disclosed, respectively.
  • Patent Document 4 discloses a self-emulsifying epoxy resin obtained by reacting a dihydric phenol diglycidyl ether, a dihydric phenol, a polyoxyalkylene glycol diglycidyl ether, and an alkylphenol-formaldehyde novolak resin.
  • these have problems such as insufficient emulsifying property, low film strength of the cured product, and slow curing speed of the cured product.
  • Patent Document 5 and Patent Document 6 are obtained by reacting a specific secondary amino group-containing polyether compound obtained by converting a terminal hydroxyl group of a polyether monool compound into an amino group with an epoxy resin.
  • Self-emulsifying epoxy resins are disclosed.
  • the amino group of the obtained polyether monool compound has high steric hindrance and low reactivity with the epoxy resin. It was necessary to react at high temperature.
  • two epoxy groups can react with the secondary amino group of this polyether monool compound, the imino group generated by reacting one epoxy group with the secondary amino group has a higher steric disorder.
  • the reaction with the epoxy resin may not proceed sufficiently even if it is reacted at a high temperature, and when used as a paint, the adhesion with the base material and The water resistance was insufficient. Further, the emulsion stability of the reaction product of this polyether monool compound and the epoxy resin was still insufficient.
  • An object of the present invention is to provide a modified epoxy resin and a modified epoxy resin dispersion liquid having excellent self-emulsifying properties and excellent various properties such as corrosion resistance, water resistance, and blocking resistance.
  • the present inventors have diligently studied and found a modified epoxy resin having excellent self-emulsifying properties and various properties such as corrosion resistance, water resistance, and blocking resistance, and arrived at the present invention. That is, the present invention is selected from the group consisting of an epoxy resin (a) having an epoxy equivalent of 600 to 6000 g / eq, a primary amine compound having a molecular weight of 300 or more, and a secondary amine compound having a molecular weight of 300 or more.
  • a cation group introducing agent (c-1) having a molecular weight of less than 300 or an anion having a molecular weight of less than 300 is added to the modified epoxy resin intermediate obtained by reacting with at least one amine compound (b).
  • the ionized modified epoxy resin intermediate obtained by reacting the base-introducing agent (c-2) is an anionic compound (d-1) having a molecular weight of less than 300 or a cationic compound having a molecular weight of less than 300 (d). It is a modified epoxy resin obtained by neutralizing with -2).
  • the modified epoxy resin of the present invention is excellent in self-emulsifying property, and the modified epoxy resin and the modified epoxy resin dispersion liquid can provide products having excellent various properties such as corrosion resistance, water resistance, and blocking resistance.
  • the modified epoxy resin intermediate includes an epoxy resin (a) having an epoxy equivalent of 600 to 6000 g / eq, a primary amine compound having a molecular weight of 300 or more, and a secondary amine compound having a molecular weight of 300 or more. It is a modified epoxy resin intermediate obtained by reacting with at least one amine compound (b) selected from the group consisting of.
  • the epoxy resin (a) that can be used in the present invention is an epoxy resin having an epoxy equivalent of 600 to 6000 g / eq.
  • an epoxy resin any epoxy resin having at least one epoxy group in the molecule and having an epoxy equivalent of 600 to 6000 g / eq can be used without particular limitation.
  • bisphenol A type epoxy for example, bisphenol A type epoxy.
  • Biphenyl type epoxy resin such as resin, bisphenol F type epoxy resin; biphenyl type epoxy resin such as biphenyl type epoxy resin, tetramethyl biphenyl type epoxy resin; dicyclopentadiene type epoxy resin; naphthalene type epoxy resin; cyclohexanedimethanol and hydrogenated Alicyclic epoxy resin obtained from bisphenol A or the like; phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, epoxy compound which is a condensate of phenols and aromatic aldehyde having a phenolic hydroxyl group.
  • novolak type epoxy resin such as biphenyl novolak type epoxy resin; triphenylmethane type epoxy resin; tetraphenylethane type epoxy resin; dicyclopentadiene-phenol addition reaction type epoxy resin; phenol aralkyl type epoxy resin and the like. These compounds may be used alone or in combination of two or more.
  • the epoxy equivalent is a value obtained in accordance with JIS K7236: 2009.
  • the number of epoxy groups contained in the epoxy resin (a) is not limited, but the number of epoxy groups contained in one molecule of the epoxy resin is 1 to 10, preferably 2 to 6. , More preferably, still more preferably 2-4, and most preferably 2.
  • At least one epoxy equivalent selected from the group consisting of bisphenol type epoxy resin, biphenyl type epoxy resin, and alicyclic epoxy resin has an epoxy equivalent of 600 to 6000 g / eq. It is preferable to use a resin, it is more preferable to use a bisphenol type epoxy resin having an epoxy equivalent of 600 to 6000 g / eq, and it is possible to use a bisphenol A type epoxy resin having an epoxy equivalent of 600 to 6000 g / eq. More preferred.
  • an epoxy resin having an epoxy equivalent of 700 or more and more preferably to use an epoxy resin having an epoxy equivalent of 900 or more as the epoxy resin (a). It is even more preferable to use an epoxy resin having an epoxy equivalent of 1200 or more, and it is particularly preferable to use an epoxy resin having an epoxy equivalent of 1600 or more. Further, from the viewpoint of self-emulsifying property and various properties of the obtained modified epoxy resin, it is preferable to use an epoxy resin having an epoxy equivalent of 5000 or less, and more preferably to use an epoxy resin having an epoxy equivalent of 4000 or less. It is even more preferable to use an epoxy resin having an epoxy equivalent of 3000 or less, and even more preferably to use an epoxy resin having an epoxy equivalent of 2000 or less.
  • the epoxy resin (a) it is preferable to use a bisphenol A type epoxy resin having an epoxy equivalent of 700 to 5000 g / eq, and a bisphenol A type epoxy resin having an epoxy equivalent of 900 to 5000 g / eq. It is more preferable to use a bisphenol A type epoxy resin having an epoxy equivalent of 900 to 3000 g / eq, and it is more preferable to use a bisphenol A type epoxy resin having an epoxy equivalent of 1200 to 3000 g / eq.
  • the amine compound (b) that can be used in the present invention is at least one amine compound selected from the group consisting of a primary amine compound having a molecular weight of 300 or more and a secondary amine compound having a molecular weight of 300 or more.
  • a primary amine compound having a molecular weight of 300 or more examples include an aliphatic amine having a primary amino group in the molecule and having a molecular weight of 300 or more, and an aromatic having a primary amino group in the molecule and having a molecular weight of 300 or more.
  • These primary amine compounds may have two or more primary amino groups in the molecule, and may further have a secondary amino group or a tertiary amino group in the molecule. It may be included.
  • Examples of the secondary amine compound having a molecular weight of 300 or more include an aliphatic amine having a secondary amino group in the molecule and having a molecular weight of 300 or more, and an aromatic having a secondary amino group in the molecule and having a molecular weight of 300 or more.
  • These secondary amine compounds may have two or more secondary amino groups in the molecule, and may further have a tertiary amino group in the molecule.
  • the upper limit of the molecular weight of these amine compounds is not particularly limited, but from the viewpoint of the effect of the present invention, the molecular weight of the amine compounds is preferably 100,000 or less, more preferably 10,000 or less, and 6000. The following is even more preferable.
  • the amine-based compound (b) may consist of only one or more primary amine compounds having a molecular weight of 300 or more, and one or more secondary amines having a molecular weight of 300 or more. It may consist of only a compound, or may consist of a primary amine compound having a molecular weight of one or more of 300 or more and a secondary amine compound having a molecular weight of one or more of 300 or more. ..
  • the self-emulsifying property and various properties of the obtained modified epoxy resin can be improved.
  • the amine-based compound (b) is contained in the molecule. It is preferable to use an amine compound containing a polyether amine compound having a primary amino group and a molecular weight of 300 or more.
  • the amine-based compound containing a polyether amine-based compound having a primary amino group in the molecule and having a molecular weight of 300 or more is not particularly limited as long as it is a compound having a primary amino group and a polyether structure in the molecule. ..
  • the polyetheramine-based compound that can be suitably used is a polyetheramine-based compound represented by the following general formula (1) and having a molecular weight of 300 or more.
  • X represents a hydrogen atom, an amino group, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms in which one of the hydrogen atoms is replaced with an amino group, and a, b, and c are.
  • the average added molar value of each unit unit is represented, and the number of each unit is independently represented by 0 to 100, and the arrangement of each unit unit may be either block-shaped or random-shaped.
  • X represents a hydrogen atom, an amino group, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms in which one of the hydrogen atoms is replaced with an amino group.
  • X is an amino group, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms in which one of the hydrogen atoms is substituted with an amino group. It is preferably an alkyl group having 1 to 4 carbon atoms, and even more preferably a methyl group.
  • a represents a number from 0 to 100. From the viewpoint of self-emulsifying property and various properties of the obtained modified epoxy resin, a is preferably a number of 1 to 100, more preferably a number of 1 to 70, and a number of 10 to 60. Is even more preferable.
  • b represents a number from 0 to 100. From the viewpoint of self-emulsifying property and various properties of the obtained modified epoxy resin, b is preferably a number of 1 to 100, more preferably a number of 1 to 50, and a number of 1 to 20. Is even more preferable, and 1 to 10 is even more preferable.
  • c represents a number from 0 to 100. From the viewpoint of self-emulsifying property and various properties of the obtained modified epoxy resin, c is preferably a number of 0 to 50, more preferably 0 to 30, and even more preferably 0. ..
  • the total value of a, b, and c is not particularly limited, but from the viewpoint of the self-emulsifying property and various properties of the obtained modified epoxy resin, the total value of a, b, and c is 10. It is preferably about 200, more preferably 10 to 100, and even more preferably 15 to 70.
  • a is a number of 1 to 100
  • b is a number of 1 to 100
  • c is a number from the viewpoint of self-emulsification and various properties of the obtained modified epoxy resin.
  • a is a number of 1 to 70
  • b is a number of 1 to 50
  • the total value of a and b is 10 to.
  • a polyetheramine-based compound of 80 where a is a number of 10 to 60, b is a number of 1 to 20, and the total value of a and b is 15 to 75. It is more preferable to use a system compound.
  • the weight average molecular weight of the polyether amine compound represented by the general formula (1) is not particularly limited as long as the effect of the present invention is exhibited, but is preferably 400 to 8000, more preferably 600 to 6000, and further preferably 800 to 4000. More preferably, 1000 to 3100 is even more preferable.
  • a method of measuring by standard polystyrene conversion using GPC Gel Permeation Chromatography
  • the catalog value can also be referred to.
  • polyether amine compound represented by the general formula (1) and having a molecular weight of 300 or more a compound produced by a known method may be used, or a commercially available product may be used.
  • commercially available products include Jeffamine (registered trademark) M series (Jeffamine (registered trademark) M-600, Jeffamine (registered trademark) M-1000, Jeffamine (registered trademark) M) manufactured by Huntsman Corporation.
  • the modified epoxy resin intermediate is a modified epoxy resin intermediate obtained by reacting the epoxy resin (a) with the amine compound (b), and the epoxy resin (a) and the amine compound (b) to be used are used.
  • the amount and ratio of) is not particularly limited, but from the viewpoint of the self-emulsifying property and various properties of the obtained modified epoxy resin, the modified epoxy resin intermediate comprises the epoxy resin (a) and the amine compound (b).
  • the modified epoxy resin intermediate used in the present invention is the modified epoxy resin intermediate thus obtained and has an unreacted epoxy group
  • the modified epoxy resin intermediate is excellent in self-emulsifying property and various properties by the method described later.
  • Epoxy resin can be obtained.
  • the modified epoxy resin intermediate is composed of an epoxy resin (a) and an amine compound (b), and an epoxy resin (). It is more preferable that the modified epoxy resin intermediate is obtained by reacting 1 mol of the epoxy group in a) with the amino group in the amine compound (b) in an amount of 0.05 to 0.90 mol.
  • the modified epoxy resin intermediate is obtained by reacting in an amount of 0.10 to 0.80 mol, and the modified epoxy obtained by reacting in an amount of 0.15 to 0.70 mol. It is particularly preferable that it is a resin intermediate.
  • the modified epoxy resin intermediate has a structure in which the epoxy group in the epoxy resin (a) used as a raw material reacts with the amino group in the amine compound (b), and the epoxy resin (a) and the amine used are used. Since the structure differs depending on the number of epoxy groups or amino groups of the system compound (b) and the amount used, it is unrealistic to specifically show the structure of the modified epoxy resin intermediate.
  • the method for reacting with the amine compound (b) of the species is not particularly limited, and the reaction can be carried out by a known method. Examples of such a method include a method in which the epoxy resin (a) and the amine compound (b) are reacted at room temperature to 180 ° C. for 1 to 10 hours under reduced pressure, normal pressure or pressure. .. In this reaction, the epoxy resin (a) and the amine compound (b) may be used in total amounts at one time or may be used in a plurality of times.
  • the reaction between the epoxy resin (a) and the amine compound (b) may be carried out in a solvent that does not react with the epoxy resin (a) and the amine compound (b).
  • the solvent that may be used in this reaction include hydrocarbon solvents such as hexane, cyclohexane, toluene and xylene; ester solvents such as ethyl acetate, butyl acetate, methyl branched butyl ketone, myristate branched propyl and triglycerides. Can be mentioned.
  • the amount of the solvent used when the solvent is used is not particularly limited, but the amount of the solvent used is 5 to 95% by mass with respect to the entire system from the viewpoint of self-emulsification and various properties of the obtained modified epoxy resin. It is preferably 10 to 60% by mass, and more preferably 10 to 60% by mass.
  • the solvent may be removed after the reaction, and the solvent may be subsequently used as a solvent in the step of obtaining an ionized modified epoxy resin intermediate. You may.
  • the reaction between the epoxy resin (a) and the amine compound (b) may be carried out using a catalyst.
  • the catalyst that may be used in this reaction include phosphines such as triphenylphosphine; phosphonium salts such as tetraphenylphosphonium bromide; 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2 -Idazoles such as undecylimidazole, 1-cyanoethyl-2-methylimidazole, imidazolesilane; imidazole salts which are salts of the imidazoles with trimellitic acid, isocyanuric acid, boron and the like; benzyldimethylamine, 2,4 , 6-Tris (dimethylaminomethyl) amines such as phenol; quaternary ammonium salts such as trimethylammonium chloride; 3- (p-chlorophenyl) -1,1-dimethyl
  • the complex compound of the above can be exemplified.
  • These catalysts may be used alone or in combination of two or more.
  • the amount of the catalyst used when using the catalyst is not particularly limited, and may be, for example, about 0.01 to 1% by mass with respect to the entire system.
  • the ionized modified epoxy resin intermediate is a cation group introducing agent (c-1) having a molecular weight of less than 300 or an anion group introducing agent having a molecular weight of less than 300 in the above-mentioned modified epoxy resin intermediate. It is an ionization modified epoxy resin intermediate obtained by reacting (c-2).
  • the cation group introducing agent (c-1) having a molecular weight of less than 300 which can be used in the present invention, is not particularly limited as long as it is a compound having a group in the molecule that forms a cation group by protonation, for example.
  • Examples thereof include a compound, a compound having a cyclic amino group in the molecule and having a molecular weight of less than 300, a compound having a hydrazino group in the molecule and having a molecular weight of less than 300, and a compound having an ammonium group in the molecule and having a molecular weight of less than 300.
  • Examples of such compounds include monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, N-methylethanolamine, N-methyldiethanolamine, dimethylaminoethanol, diglycolamine, 2-amino-2.
  • -Methyl-1-propanol ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, aminoethylpiperazine, morpholin, aminopropylmorpholin, dimethylaminopropylamine, diisobutylamine, N-methylhexylamine, benzylamine, dibenzylamine, N-methylbenzylamine, aniline, N-ethylaniline, diphenylamine, diethylhydroxylamine, monoethylamine, diethylamine, triethylamine, dipropylamine, monoisopropylamine, diisopropylamine, monobutylamine, dibutylamine, tributylamine, pentylamine, neo Pentylamine, hexylamine, ethylbutylamine, dihexylamine, dicyclohexylamine, aminoethoxysilane, piperidine,
  • a compound having a primary amino group in the molecule and a molecular weight of less than 300 and a secondary amino group in the molecule are used as the cation group introducing agent (c-1). It preferably contains at least one compound selected from the group consisting of compounds having a molecular weight of less than 300, and preferably contains monoethanolamine, diethanolamine, diisopropanolamine, N-methylethanolamine, morpholine, diisobutylamine, N-methylhexyl.
  • 2-Ethylhexylamine, benzylamine, dicyclohexylamine, N-methylbenzylamine, and dibutylamine are even more preferably contained.
  • the lower limit of the molecular weight of the cation group introducing agent (c-1) is not particularly limited, but the cation group introducing agent (c-1) preferably has a molecular weight of 50 or more, and more preferably 60 or more. Have.
  • the anion group-introducing agent (c-2) having a molecular weight of less than 300 which can be used in the present invention, is not particularly limited as long as it is a compound having a group in the molecule that forms an anion group by deprotonation.
  • a compound having a carboxy group in the molecule and having a molecular weight of less than 300, a compound having a sulfonyl group in the molecule and having a molecular weight of less than 300, a compound having a phosphate group in the molecule and having a molecular weight of less than 300, and the like can be mentioned.
  • the anion group introducing agent (c-2) a compound having a carboxy group in the molecule and having a molecular weight of less than 300, and a borate group in the molecule. It is preferable to contain a compound having a molecular weight of less than 300, or a compound having a phosphoric acid group in the molecule and having a molecular weight of less than 300, and at least one selected from the group consisting of phosphoric acid, acetic acid, lactic acid, boric acid, and formic acid. It is more preferable to contain at least one selected from the group consisting of phosphoric acid, acetic acid and lactic acid.
  • the lower limit of the molecular weight of the anion group introducing agent (c-2) is not particularly limited, but the anion group introducing agent (c-2) preferably has a molecular weight of 40 or more, and more preferably 45 or more. Have.
  • a method for reacting a modified epoxy resin intermediate with a cationic group-introducing agent (c-1) having a molecular weight of less than 300 or an anionic group-introducing agent (c-2) having a molecular weight of less than 300 Is not particularly limited, and the reaction can be carried out by a known method.
  • a modified epoxy resin intermediate and a cationic group-introducing agent (c-1) or an anion group-introducing agent (c-2) are placed under reduced pressure, normal pressure or pressure. Examples thereof include a method of reacting at room temperature to 180 ° C. for 1 to 10 hours.
  • the modified epoxy resin intermediate and the cation group introducing agent (c-1) or the anion group introducing agent (c-2) may be used in the total amount at one time or divided into a plurality of times. May be used.
  • the modified epoxy resin intermediate is reacted with the cation group introducing agent (c-1) or the anion group introducing agent (c-2). Further, it is preferable not to use both the cation group introducing agent (c-1) and the anion group introducing agent (c-2) at the same time.
  • the reaction between the modified epoxy resin intermediate and the cationic group introducing agent (c-1) or the anionic group introducing agent (c-2) is the modified epoxy resin intermediate, the cationic group introducing agent (c-1), and the anionic group. It may be carried out in a solvent that does not react with the introducer (c-2).
  • the solvent that may be used in this reaction include hydrocarbon solvents such as hexane, cyclohexane, toluene and xylene; ester solvents such as ethyl acetate, butyl acetate, methyl branched butyl ketone, myristate branched propyl and triglycerides. Can be mentioned.
  • the amount of the solvent used when the solvent is used is not particularly limited, but the amount of the solvent used is 5 to 95% by mass with respect to the entire system from the viewpoint of self-emulsification and various properties of the obtained modified epoxy resin. It is preferably 10 to 60% by mass, and more preferably 10 to 60% by mass.
  • the solvent may be removed after the reaction. Subsequently, it may be used as a solvent in the step of obtaining the modified epoxy resin.
  • the reaction between the modified epoxy resin intermediate and the cation group introducing agent (c-1) or the anion group introducing agent (c-2) may be carried out using a catalyst.
  • the catalyst that may be used in this reaction include phosphines such as triphenylphosphine; phosphonium salts such as tetraphenylphosphonium bromide; 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2 -Idazoles such as undecylimidazole, 1-cyanoethyl-2-methylimidazole, imidazolesilane; imidazole salts which are salts of the imidazoles with trimellitic acid, isocyanuric acid, boron and the like; benzyldimethylamine, 2,4 , 6-Tris (dimethylaminomethyl) amines such as phenol; quaternary ammonium salts such as trimethylammonium chloride; 3- (p
  • the complex compound of the above can be exemplified.
  • These catalysts may be used alone or in combination of two or more.
  • the amount of the catalyst used when using the catalyst is not particularly limited, and may be, for example, about 0.01 to 1% by mass with respect to the entire system.
  • the ionized modified epoxy resin intermediate is a modified epoxy resin intermediate and a cation group introducing agent (c-1) having a molecular weight of less than 300, or an anionic group introducing agent having a molecular weight of less than 300 (c).
  • c-1 a cation group introducing agent having a molecular weight of less than 300
  • anionic group introducing agent having a molecular weight of less than 300 (c) was defined as 1 as the number of epoxy groups in the modified epoxy resin intermediate (the number of epoxy groups in the epoxy resin (a) excluding the epoxy groups that reacted with the amine-based compound (b)).
  • Cationic groups in the cation group introducing agent (amino group, hydrazino group, ammonium group, etc., which form a cation group by protonation) or anionic group in the anion group introducing agent (carboxy group, sulfonyl)
  • anionic group in the anion group introducing agent (carboxy group, sulfonyl)
  • the ionized modified epoxy resin intermediate includes a modified epoxy resin intermediate and a cation group introducing agent (c-1).
  • the epoxy resin intermediate is an ionized modified epoxy resin intermediate obtained by reacting in an amount such that the number of anionic groups in the above is 0.2 to 1.5, and the reaction is carried out in an amount of 0.3 to 1.0.
  • the obtained ionized modified epoxy resin intermediate is even more preferable, and the ionized modified epoxy resin intermediate obtained by reacting in an amount of 0.4 to 0.9 is particularly preferable.
  • the ionized modified epoxy resin intermediate is the epoxy group remaining in the epoxy resin (a) used in the production of the modified epoxy resin intermediate, and the cationic group or anion of the cationic group introducing agent (c-1). Although it has a structure in which the anionic group of the group-introducing agent (c-2) has reacted, it is unrealistic to specify the structure of the modified epoxy resin intermediate and the position of the epoxy group in the modified epoxy resin intermediate. , It is impractical to identify the structure of the ionized modified epoxy resin intermediate.
  • the modified epoxy resin of the present invention comprises the above-mentioned ionized modified epoxy resin intermediate with an anionic compound (d-1) having a molecular weight of less than 300 or a cationic compound (d-2) having a molecular weight of less than 300.
  • a modified epoxy resin obtained by neutralization means that at least a part or all of the cationic group derived from the cationic group introducing agent (c-1) in the ionized modified epoxy resin intermediate is the anionic compound (d-1).
  • Is neutralized with the anionic group, or at least a part or all of the anionic group derived from the anionic group introducing agent (c-2) in the ionized modified epoxy resin intermediate is the cationic compound (d). It means that it is neutralized by the cationic group of -2).
  • the anionic compound (d-1) having a molecular weight of less than 300 which can be used in the present invention, is not particularly limited as long as it is a compound having an anionic group by deprotonation, and is, for example, in the molecule.
  • examples thereof include a compound having a carboxy group having a molecular weight of less than 300, a compound having a sulfonyl group in the molecule and having a molecular weight of less than 300, and a compound having a phosphate group in the molecule and having a molecular weight of less than 300.
  • the anionic compound is a compound having a carboxy group in the molecule and having a molecular weight of less than 300, a compound having boric acid in the molecule and having a molecular weight of less than 300, or an intramolecular compound. It is preferable to contain a compound having a phosphoric acid group and having a molecular weight of less than 300, and more preferably to contain at least one selected from the group consisting of phosphoric acid, acetic acid, lactic acid, boric acid, and formic acid, and it is more preferable to contain phosphoric acid and acetic acid.
  • the lower limit of the molecular weight of the anionic compound (d-1) is not particularly limited, but the anionic compound (d-1) preferably has a molecular weight of 40 or more, and more preferably has a molecular weight of 45 or more. ..
  • the cationic compound (d-2) having a molecular weight of less than 300 which can be used in the present invention, is not particularly limited as long as it is a compound having a cationic group by protonation in the molecule, and is, for example, a molecule.
  • Compounds with a primary amino group having a molecular weight of less than 300 compounds having a secondary amino group in the molecule with a molecular weight of less than 300, compounds having a tertiary amino group in the molecule and having a molecular weight of less than 300, Examples thereof include a compound having a cyclic amino group in the molecule and having a molecular weight of less than 300, a compound having a hydrazino group in the molecule and having a molecular weight of less than 300, and a compound having an ammonium group in the molecule and having a molecular weight of less than 300.
  • Examples of such compounds include monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, N-methylethanolamine, N-methyldiethanolamine, dimethylaminoethanol, diglycolamine, 2-amino-2.
  • -Methyl-1-propanol ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, aminoethylpiperazine, morpholin, aminopropylmorpholin, dimethylaminopropylamine, diisobutylamine, N-methylhexylamine, benzylamine, dibenzylamine, N-methylbenzylamine, aniline, N-ethylaniline, diphenylamine, diethylhydroxylamine, monoethylamine, diethylamine, triethylamine, dipropylamine, monoisopropylamine, diisopropylamine, monobutylamine, dibutylamine, tributylamine, pentylamine, neo Pentylamine, hexylamine, ethylbutylamine, dihexylamine, dicyclohexylamine, aminoethoxysilane, piperidine,
  • the cationic compound has a molecular weight of less than 300 having a primary amino group in the molecule and a molecular weight of less than 300 having a secondary amino group in the molecule.
  • the cationic compound (d-2) is not particularly limited, but the cationic compound (d-2) preferably has a molecular weight of 50 or more, and more preferably 60 or more. ..
  • the modified epoxy resin of the present invention is a modified epoxy resin obtained by neutralizing an ionized modified epoxy resin intermediate with an anionic compound (d-1) or a cationic compound (d-2), and is an anion used.
  • the amount of the sex compound (d-1) or the cationic compound (d-2) is not particularly limited and can be appropriately adjusted. From the viewpoint of self-emulsification and various properties of the obtained modified epoxy resin, the amount of the anionic compound (d-1) or the cationic compound (d-2) used is used for ionization of the modified epoxy resin intermediate.
  • the anionic compound (d-1) when the number of cationic groups in the cationic group introducing agent (c-1) or the number of anionic groups in the anionic group introducing agent (c-2) is 1.
  • the number of cationic groups (groups exhibiting cationicity by protonation) in the cationic compound (d-2) is 0.
  • the amount is preferably 3 to 2.0, more preferably 0.4 to 1.5, and even more preferably 0.5 to 1.2. Since the modified epoxy resin of the present invention is the modified epoxy resin thus obtained, it is possible to obtain a modified epoxy resin having excellent self-emulsifying properties and various properties.
  • the ionization-modified epoxy resin intermediate has an epoxy group
  • at least a part of the anionic compound (d-1) or the cationic compound (d-2) reacts with the epoxy group to form an anionic group or an anionic compound.
  • Cationic groups can be introduced into the ionized modified epoxy resin intermediate.
  • the compound used to neutralize the cationic group or the anionic group of the ionization-modified epoxy resin intermediate is an anionic compound (d-1) or a cationic compound (d, respectively). -2) is defined.
  • the cationic group or the anionic group in the ionized modified epoxy resin intermediate is the anionic group in the anionic compound (d-1) or the cationic group in the cationic compound (d-2).
  • the modified epoxy resin intermediate It is unrealistic to identify the structure of.
  • the compound corresponding to the cationic compound (d-2) is added. It is preferable not to do so.
  • the ionized modified epoxy resin intermediate obtained by using the anionic group introducing agent (c-2) is neutralized with the cationic compound (d-2), the compound corresponding to the anionic compound (d-1) is added. It is preferable not to do so.
  • the method for neutralizing the ionized modified epoxy resin intermediate with the anionic compound (d-1) or the cationic compound (d-2) is not particularly limited, and the reaction can be carried out by a known method. can.
  • a known method for example, an ionized modified epoxy resin intermediate and an anionic compound (d-1) or a cationic compound (d-2) are mixed under reduced pressure, normal pressure or pressure from room temperature to normal temperature. Examples thereof include a method of reacting at 180 ° C. for 1 to 10 hours.
  • the entire amount of the ionized modified epoxy resin intermediate and the anionic compound (d-1) or the cationic compound (d-2) may be used at one time, or may be used in a plurality of times. You may.
  • the step of neutralizing the ionized modified epoxy resin intermediate with the anionic compound (d-1) or the cationic compound (d-2) reacts with the ionized modified epoxy resin intermediate, the anionic compound, and the cationic compound. It may be carried out in a solvent that does not.
  • the solvent that may be used in this neutralization step include hydrocarbon solvents such as hexane, cyclohexane, toluene and xylene; ester solvents such as ethyl acetate, butyl acetate, methyl branched butyl ketone, myristate branched propyl and triglycerides. Examples include a solvent.
  • the amount of the solvent used when using the solvent is not particularly limited, but the amount of the solvent used is preferably 5 to 95% by mass, more preferably 10 to 60% by mass with respect to the entire system.
  • the solvent may be removed after the reaction, or the solvent may be used as the solvent for the modified epoxy resin dispersion.
  • the modified epoxy resin of the present invention includes an epoxy resin (a) having an epoxy equivalent of 600 to 6000 g / eq, a primary amine compound having a molecular weight of 300 or more, and a secondary compound having a molecular weight of 300 or more.
  • a cationic group-introducing agent (c-1) having a molecular weight of less than 300 is reacted with a modified epoxy resin intermediate obtained by reacting with at least one amine-based compound (b) selected from the group consisting of amine compounds.
  • the epoxy resin (a) is reacted with at least one amine compound (b) selected from the group consisting of a primary amine compound having a molecular weight of 300 or more and a secondary amine compound having a molecular weight of 300 or more.
  • An ionized modified epoxy resin intermediate obtained by reacting the obtained modified epoxy resin intermediate with an anion group introducing agent (c-2) having a molecular weight of less than 300 is used as a cationic compound having a molecular weight of less than 300 (d-. It is a modified epoxy resin obtained by neutralizing with 2).
  • the modified epoxy resin of the present invention is composed of an epoxy resin (a) having an epoxy equivalent of 600 to 6000 g / eq, a primary amine compound having a molecular weight of 300 or more, and a secondary amine compound having a molecular weight of 300 or more. It is obtained by reacting a modified epoxy resin intermediate obtained by reacting with at least one amine compound (b) selected from the above group with a cation group introducing agent (c-1) having a molecular weight of less than 300.
  • a modified epoxy resin intermediate obtained by reacting with at least one amine compound (b) selected from the above group with a cation group introducing agent (c-1) having a molecular weight of less than 300.
  • the cation group-introducing agent (c-1) may be reacted at the same time to obtain an ionized modified epoxy resin intermediate.
  • the amounts of the epoxy resin (a), the amine compound (b), and the cation group introducing agent (c-1) used are amine-based from the viewpoint of self-emulsifying property and various properties of the obtained modified epoxy resin.
  • the amount of the compound (b) is such that the amino group in the amine compound (b) is 0.01 to 0.95 mol with respect to 1 mol of the epoxy group in the epoxy resin (a), and the cation group introducing agent (
  • the amount of c-1) is 1, the number of cationic groups of the cationic group introducing agent (c-1) is 0.01 to 0.95 when the number of epoxy groups in the epoxy resin (a) is 1.
  • the amount is preferable. From the viewpoint of obtaining a modified epoxy resin having more excellent self-emulsifying property and improved various properties such as corrosion resistance, water resistance, and blocking resistance, the amount of the amine compound (b) is the epoxy group 1 in the epoxy resin (a).
  • the amount of the amino group in the amine compound (b) is 0.05 to 0.80 mol, and even more preferably 0.10 to 0.60 mol. It is particularly preferable that the amount is 0.15 to 0.50 mol. Further, the amount of the cation group introducing agent (c-1) is more excellent in self-emulsifying property, and from the viewpoint of obtaining a modified epoxy resin having improved various properties such as corrosion resistance, water resistance and blocking resistance, the cation group introducing agent (c-1) is used. As for the amount of c-1), the number of cationic groups of the cationic group introducing agent (c-1) is 0.2 to 0.9 when the number of epoxy groups in the epoxy resin (a) is 1. The amount is more preferably 0.3 to 0.85, further preferably 0.5 to 0.85, and particularly preferably 0.5 to 0.85.
  • the method for producing the modified epoxy resin of the present invention comprises an epoxy resin (a) having an epoxy equivalent of 600 to 6000 g / eq, a primary amine compound having a molecular weight of 300 or more, and a secondary amine compound having a molecular weight of 300 or more.
  • a method for producing a modified epoxy resin comprising a step of neutralizing with an anionic compound (d-1) having a molecular weight of less than 300 or a cationic compound (d-2) having a molecular weight of less than 300.
  • the above-mentioned compounds can be used. Further, the above-mentioned methods can be used for the step of obtaining the modified epoxy resin intermediate, the step of obtaining the ionized modified epoxy resin intermediate, and the step of neutralizing the ionized modified epoxy resin intermediate.
  • the method for producing the modified epoxy resin of the present invention comprises an epoxy resin (a) having an epoxy equivalent of 600 to 6000 g / eq, a primary amine compound having a molecular weight of 300 or more, and a molecular weight of 300 or more.
  • the step of reacting the cation group introducing agent (c-1) to obtain an ionized modified epoxy resin intermediate and the obtained ionized modified epoxy resin intermediate are an anionic compound (d-1) having a molecular weight of less than 300.
  • the step of reacting with at least one amine compound (b) selected from the group consisting of 300 or more secondary amine compounds to obtain a modified epoxy resin intermediate, and the obtained modified epoxy resin intermediate have a molecular weight.
  • the step of reacting the anion group-introducing agent (c-2) having a molecular weight of less than 300 to obtain an ionized modified epoxy resin intermediate and the obtained ionized modified epoxy resin intermediate are subjected to a cationic compound having a molecular weight of less than 300.
  • a method for producing a modified epoxy resin which comprises a step of neutralizing according to d-2).
  • the method for producing the modified epoxy resin of the present invention comprises an epoxy resin (a) having an epoxy equivalent of 600 to 6000 g / eq, a primary amine compound having a molecular weight of 300 or more, and a secondary having a molecular weight of 300 or more.
  • the step of reacting the base-introducing agent (c-1) to obtain an ionized modified epoxy resin intermediate and the obtained ionized modified epoxy resin intermediate are mixed with an anionic compound (d-1) having a molecular weight of less than 300.
  • the method for producing a modified epoxy resin including the step of adding, a step of reacting the epoxy resin (a) with the amine compound (b) to obtain a modified epoxy resin intermediate, and a step of obtaining the obtained modified epoxy resin.
  • the epoxy resin (a) is mixed with the amine compound (b) and the cation group introducing agent (c).
  • a step of reacting with -1) to obtain an ionized modified epoxy resin intermediate may be used.
  • the amounts of the epoxy resin (a), the amine compound (b), and the cation group introducing agent (c-1) used are amine-based from the viewpoint of self-emulsifying property and various properties of the obtained modified epoxy resin.
  • the amount of the compound (b) is such that the amino group in the amine compound (b) is 0.01 to 0.95 mol with respect to 1 mol of the epoxy group in the epoxy resin (a), and the cation group introducing agent (
  • the amount of c-1) is 1, the number of cationic groups of the cationic group introducing agent (c-1) is 0.01 to 0.95 when the number of epoxy groups in the epoxy resin (a) is 1.
  • the amount is preferable.
  • the amount of the amine compound (b) is the epoxy group 1 in the epoxy resin (a). It is more preferable that the amount of the amino group in the amine compound (b) is 0.05 to 0.90 mol, and even more preferably 0.10 to 0.80 mol. It is particularly preferable that the amount is 0.15 to 0.70 mol. Further, the amount of the cation group introducing agent (c-1) is more excellent in self-emulsifying property, and from the viewpoint of obtaining a modified epoxy resin having improved various properties such as corrosion resistance, water resistance and blocking resistance, the cation group introducing agent (c-1) is used.
  • the number of cationic groups of the cationic group introducing agent (c-1) is 0.2 to 0.9 when the number of epoxy groups in the epoxy resin (a) is 1.
  • the amount is more preferably 0.3 to 0.85, further preferably 0.5 to 0.85, and particularly preferably 0.5 to 0.85.
  • the modified epoxy resin of the present invention is used in various products to which the epoxy resin is generally applied and is not particularly limited, but for example, a paint, a coating agent, a sealant, an adhesive, an adhesive, a fiber sizing agent, and a building. It can be used for materials, electronic parts, etc. Among these, it is preferable to use it as a paint or coating agent for concrete, cement, mortar, various metals, leather, glass, rubber, plastic, wood, cloth, paper and the like.
  • the modified epoxy resin dispersion liquid of the present invention is a modified epoxy resin dispersion liquid containing the above-mentioned modified epoxy resin and water.
  • the content of water in the modified epoxy resin dispersion of the present invention is not particularly limited, but from the viewpoint of the effect of the present invention, the content of water in the modified epoxy resin dispersion is relative to the total amount of the modified epoxy resin dispersion. It is preferably 20 to 95% by mass, more preferably 30 to 90% by mass, and even more preferably 40 to 80% by mass.
  • the content of the modified epoxy resin in the modified epoxy resin dispersion of the present invention is not particularly limited, but the obtained modified epoxy resin dispersion has various characteristics such as emulsion stability, corrosion resistance, water resistance, and blocking resistance.
  • the content of the modified epoxy resin in the modified epoxy resin dispersion is preferably 0.1 to 60% by mass with respect to the total amount of the modified epoxy resin dispersion, and is preferably 1 to 50% by mass. Is more preferable, and 3 to 40% by mass is even more preferable.
  • the modified epoxy resin dispersion of the present invention may further contain at least one organic solvent.
  • organic solvent include lower alcohols such as ethanol and isopropanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; esters such as ethyl acetate, butyl acetate, ethyl acetoacetate and 2-ethoxyethyl acetate; Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, tetrahydrofuran Ethers such as: Esters of glycol ether,
  • the modified epoxy resin dispersion of the present invention is propylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, ethylene glycol monobutyl ether, N-. It preferably contains at least one organic solvent selected from the group consisting of ethylpyrrolidone and isopropanol, and preferably from the group consisting of propylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethylmethyl ether, and ethylene glycol monobutyl ether.
  • the content of the organic solvent in the modified epoxy resin dispersion is not particularly limited, but the emulsification stability of the modified epoxy resin dispersion and From the viewpoint of various characteristics, the content of the organic solvent in the modified epoxy resin dispersion is preferably 0.1 to 30% by mass, preferably 0.5 to 20% by mass, based on the total amount of the modified epoxy resin dispersion. It is more preferably%, and even more preferably 1 to 10% by mass.
  • the ratio of the content of water to the content of the organic solvent in the modified epoxy resin dispersion is not particularly limited, but the modification From the viewpoint of stability and characteristics of the epoxy resin dispersion, handleability during use, reduction of environmental load, etc., the ratio of the water content and the organic solvent content in the modified epoxy resin dispersion is the mass ratio. , 60:40 to 99: 1, more preferably 70:30 to 98: 2, and even more preferably 80:20 to 97: 3.
  • the modified epoxy resin is an epoxy resin (a) having an epoxy equivalent of 600 to 6000 g / eq, a primary amine compound having a molecular weight of 300 or more, and a primary amine compound having a molecular weight of 300 or more.
  • a cationic group-introducing agent (c-1) having a molecular weight of less than 300 is added to a modified epoxy resin intermediate obtained by reacting with at least one amine-based compound (b) selected from the group consisting of secondary amine compounds.
  • the propylene glycol monomethyl is used as an organic solvent. It preferably contains at least one organic solvent selected from the group consisting of ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, ethylene glycol monobutyl ether, N-methylpyrrolidone, N-ethylpyrrolidone, and isopropanol.
  • the modified epoxy resin is an epoxy resin (a) having an epoxy equivalent of 600 to 6000 g / eq, a primary amine compound having a molecular weight of 300 or more, and a molecular weight of 300 or more.
  • An anion group-introducing agent (c-) having a molecular weight of less than 300 is added to a modified epoxy resin intermediate obtained by reacting with at least one amine-based compound (b) selected from the group consisting of the secondary amine compounds of the above.
  • propylene is used as an organic solvent. It may contain at least one organic solvent selected from the group consisting of glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, ethylene glycol monobutyl ether, N-methylpyrrolidone, N-ethylpyrrolidone, and isopropanol.
  • the modified epoxy resin dispersion of the present invention is used in various products to which an epoxy resin is generally applied and is not particularly limited, but for example, a paint, a coating agent, a surface treatment agent, a sealant, an adhesive, and a pressure-sensitive adhesive. , Fiber sizing agents, building materials, electronic parts, etc. Among these, it is preferable to use it as a paint, coating agent or surface treatment agent for concrete, cement, mortar, various metals, leather, glass, rubber, plastic, wood, cloth, paper and the like.
  • the modified epoxy resin dispersion of the present invention is used as a paint, a coating agent or a surface treatment agent
  • the content of the modified epoxy resin in the paint, the coating agent or the surface treatment agent contained in the modified epoxy resin dispersion is the paint.
  • the raw materials used in producing the modified epoxy resin and the modified epoxy resin dispersion of the present invention are shown below.
  • Epoxy resin / epoxy resin a-2 having an epoxy equivalent of 631 g / eq obtained in Production 1 of Epoxy Resin
  • Epoxy resin / epoxy resin a-3 having an epoxy equivalent of 920 g / eq obtained in Production 2
  • Epoxy Resin Epoxy resin / epoxy resin a-4 (compound for comparative example) having an epoxy equivalent of 1795 g / eq obtained in Production 3 of Epoxy Resin Epoxy resin having an epoxy equivalent of 464 g / eq obtained in Production 4 of Epoxy Resin
  • ⁇ Amine compound (b)> -Amine compound b-1 Represented by the general formula (1), X is a methyl group, the value of a (mean value) is 19, the value of b (mean value) is 3, the value of c is 0, and the weight average.
  • Polyetheramine having a molecular weight of 1041 (Jeffamine (registered trademark) M-1000, manufactured by Huntsman) -Amine compound b-2 It is represented by the general formula (1), where X is a methyl group, the value of a (mean value) is 58, the value of b (mean value) is 8, the value of c is 0, and the weight average.
  • Polyetheramine having a molecular weight of 3047 (Jeffamine (registered trademark) M-3085, manufactured by Huntsman)
  • Organic solvent ⁇ Organic solvent> -Organic solvent 1 Propylene glycol monomethyl ether / organic solvent 2 Diethylene glycol dimethyl ether / organic solvent 3 Ethylene glycol monobutyl ether
  • modified epoxy resin dispersion liquid 11 content of modified epoxy resin was 30% by mass.
  • Table 3 shows the compositions of the raw materials used in the production of the modified epoxy resin 11 and the modified epoxy resin dispersion liquid 11. The numerical values in the table represent the mass (g) of each raw material used.
  • Dispersibility was evaluated for each of the produced modified epoxy resin dispersions 1 to 13. Specifically, each of the modified epoxy resin dispersions 1 to 13 is modified in each modified epoxy resin dispersion by a laser diffraction / scattering method using a particle size measuring device (LA-950V2, manufactured by Horiba Seisakusho Co., Ltd.). The average particle size of the epoxy resin was measured. Based on the measured average particle size of the modified epoxy resin, the dispersibility of the modified epoxy resin dispersion was evaluated according to the following evaluation criteria. The evaluation results are shown in Tables 1 to 3, respectively. If the dispersibility evaluation standard is ⁇ or higher, it indicates that the modified epoxy resin dispersion has practicality.
  • Average particle size is less than 300 nm ⁇ : Average particle size is 300 nm or more and less than 1000 nm ⁇ : Average particle size is 1000 nm or more and less than 10,000 nm ⁇ : Average particle size is 10,000 nm or more or the average particle size cannot be measured rice field
  • modified epoxy resin dispersions 1 to 13 were each applied to a 100 mm ⁇ 100 mm sandblasted steel sheet with a bar coater so that the dry film thickness was about 100 ⁇ m, and then dried at 25 ° C. for 5 days at room temperature. A test piece was prepared. Subsequently, each test piece was used to perform a salt spray test in accordance with JIS K 5600-7-9 (2006). The coating film on the surface of the test piece after the 7-day cycle test was visually evaluated for corrosion resistance based on the following evaluation criteria. The evaluation results are shown in Tables 1 to 3, respectively.
  • the modified epoxy resin dispersion liquid 13 did not have the modified epoxy resin dispersed in the modified epoxy resin dispersion liquid, it could not be applied to the sandblasted steel sheet, and this test could not be performed. If the evaluation standard of corrosion resistance is ⁇ or higher, it indicates that the modified epoxy resin dispersion has practicality.
  • modified epoxy resin dispersions 1 to 13 were each applied to a 100 mm ⁇ 100 mm sandblasted steel sheet with a bar coater so that the dry film thickness was about 100 ⁇ m, and then dried at 25 ° C. for 5 days at room temperature. A test piece was prepared. Subsequently, a drop of water was dropped on each test piece, and the mixture was allowed to stand at 25 ° C. for 24 hours. The state of the coating film on the surface of the test piece after standing was visually observed, and the water resistance was evaluated based on the following evaluation criteria. The evaluation results are shown in Tables 1 to 3, respectively.
  • the modified epoxy resin dispersion liquid 13 did not have the modified epoxy resin dispersed in the modified epoxy resin dispersion liquid, it could not be applied to the sandblasted steel sheet, and this test could not be performed.
  • the evaluation standard of water resistance is ⁇ or more, it indicates that it has practicality as a modified epoxy resin dispersion liquid.
  • modified epoxy resin dispersions 1 to 13 were each applied to a 100 mm ⁇ 100 mm sandblasted steel sheet with a bar coater so that the dry film thickness was about 100 ⁇ m, and then dried at 25 ° C. for 5 days at room temperature. Two test pieces were prepared. Next, in accordance with JIS K 5600-6 (General paint test method-Part 5: Mechanical properties of coating film-Section 6 Adhesiveness (cross-cut method)), apply using a cutter guide with a gap spacing of 10 mm.
  • JIS K 5600-6 General paint test method-Part 5: Mechanical properties of coating film-Section 6 Adhesiveness (cross-cut method)
  • the coating film portions of the two test pieces were overlapped and allowed to stand in a constant temperature and humidity chamber at 60 ° C. and a relative humidity of 80% while applying a load of 10 kgf / cm 2 .
  • the overlapping test pieces were peeled off, the damaged state of the coating film on the surfaces of the two test pieces (total of 200 squares) was visually observed, and the blocking resistance was evaluated based on the following evaluation criteria.
  • the evaluation results are shown in Tables 1 to 3, respectively.
  • the modified epoxy resin dispersion liquid 13 did not have the modified epoxy resin dispersed in the modified epoxy resin dispersion liquid, it could not be applied to the sandblasted steel sheet, and this test could not be performed. If the evaluation standard of blocking resistance is ⁇ or higher, it indicates that the modified epoxy resin dispersion has practicality.
  • Evaluation criteria for blocking resistance ⁇ : The number of cells with damage to the coating film was less than 2 cells. Of the entire area, 20 squares or more and less than 100 squares of the coating film were damaged. ⁇ : 100 squares or more of the coating film was damaged in the entire overlapped area.
  • the epoxy resin and the epoxy resin dispersion liquid (Comparative Example 1) obtained by using the epoxy resin having an epoxy resin equivalent of 464 g / eq as the epoxy resin were excellent in self-emulsifying property.
  • various characteristics such as significantly inferior blocking resistance were not practical.
  • an epoxy resin having an epoxy resin equivalent of 1795 g / eq is used as the epoxy resin, it can be obtained when the modified epoxy resin obtained by neutralizing the ionization-modified epoxy resin intermediate as in the present invention is not used.
  • the epoxy resin and the epoxy resin dispersion were inferior in self-emulsifying property, and were inferior in dispersibility of the modified epoxy resin when used as the dispersion, and were not practical as the modified epoxy resin dispersion.
  • the modified epoxy resin and the modified epoxy resin dispersion obtained by the present invention have excellent self-emulsifying properties, excellent corrosion resistance, water resistance, blocking resistance, and other properties, and are excellent in paints, coating agents, and surfaces. It can be seen that it can be suitably used for treatment agents, encapsulants, adhesives, pressure-sensitive adhesives, fiber sizing agents, building materials, electronic parts and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Abstract

本発明は、エポキシ当量が600~6000g/eqであるエポキシ樹脂(a)と、分子量が300以上の第一級アミン化合物及び分子量が300以上の第二級アミン化合物からなる群から選ばれる少なくとも1種のアミン系化合物(b)と、を反応させて得られる変性エポキシ樹脂中間体に、分子量が300未満であるカチオン基導入剤(c-1)、又は、分子量が300未満であるアニオン基導入剤(c-2)を反応させて得られるイオン化変性エポキシ樹脂中間体を、分子量が300未満であるアニオン性化合物(d-1)、又は、分子量が300未満であるカチオン性化合物(d-2)により中和して得られる、変性エポキシ樹脂及び当該変性エポキシ樹脂の製造方法を提供する。

Description

変性エポキシ樹脂、該変性エポキシ樹脂を含有する変性エポキシ樹脂分散液、及び変性エポキシ樹脂の製造方法
 本発明は、自己乳化性に優れ、耐食性、耐水性、耐ブロッキング性等の諸特性に優れる、変性エポキシ樹脂及び変性エポキシ樹脂分散液に関する。
 エポキシ樹脂は、各種基材に対する接着性、耐熱性、耐薬品性、電気特性、機械特性等に優れているため、特に、塗料、接着剤、繊維処理剤等として広く用いられている。エポキシ樹脂を上述の用途に使用する場合には、取り扱いを容易にするために、エポキシ樹脂を各種低沸点溶媒に溶解した形態(「溶剤タイプ」とも称する)が一般的であった。しかし、火災の危険性、人体への有害性、地球環境への悪影響等の問題から、低沸点溶媒の使用が制限されるようになり、近年、エポキシ樹脂を水に乳化させた水性エポキシ樹脂が開発されている。
 エポキシ樹脂を乳化させる方法としては、非反応性界面活性剤を用いる方法、反応性界面活性剤を用いる方法及び、エポキシ樹脂に親水基を導入することによりエポキシ樹脂自体を自己乳化性にする方法に大別される。このうち、非反応性界面活性剤を用いる方法は、エポキシ基やアミノ基との反応性基を有しない界面活性剤、いわゆる非反応性界面活性剤によりエポキシ樹脂を乳化する方法である。非反応性界面活性剤としては、ノニルフェノールのポリエチレンオキサイド付加物、オクチルフェノールのポリエチレンオキサイド付加物あるいはポリプロピレングリコールのポリエチレンオキサイド付加物等のノニオン性界面活性剤が用いられる。しかし、これらの界面活性剤を使用した水性エポキシ樹脂は、エマルジョンとしての安定性が十分満足できるものではなかった。また、このような水性エポキシ樹脂を塗料等に使用した場合には、塗膜と基材との密着性や塗膜の耐水性が不十分であった。これは、乳化に使用した界面活性剤が、エポキシ樹脂が硬化した後でも樹脂中に遊離状態で残存するためであると考えられている。
 反応性界面活性剤を用いる方法は、エポキシ樹脂又はその硬化剤と、反応性を有する界面活性剤、いわゆる反応性界面活性剤を使用し、硬化したエポキシ樹脂中の遊離状態の界面活性剤残存量の減少を目的としたものである。例えば、特許文献1には、ポリエーテルジオール、ジイソシアネート及び2価フェノールを反応して得られる末端にフェノール性水酸基を有する反応性界面活性剤が、特許文献2には、アルキルフェノールエトキシレート、ポリプロピレングリコールエトキシレート等の末端グリシジルエーテルからなる反応性界面活性剤が、それぞれ開示されている。しかし、これらの反応性界面活性剤を使用した水性エポキシ樹脂を塗料用途に使用した場合、塗膜と基材との密着性や塗膜の耐水性は改良されるが、乳化安定性は十分ではなかった。
 エポキシ樹脂に親水基を導入することによりエポキシ樹脂自体を自己乳化性にする方法では、エポキシ樹脂自体が自己乳化性であるために、界面活性剤を使用する必要がなく、これを塗料として使用した場合には、塗膜と基材との密着性や塗膜の耐水性は改良される。特許文献4には、2価フェノールのジグリシジルエーテル、2価フェノール、ポリオキシアルキレングリコールのジグリシジルエーテル及びアルキルフェノール-ホルムアルデヒドノボラック樹脂を反応して得られる自己乳化性エポキシ樹脂が開示されている。しかし、これらは乳化性が不十分で硬化物の皮膜強度が低い、また硬化物の硬化速度が遅い等の問題を有していた。
 また、特許文献5及び特許文献6には、ポリエーテルモノオール化合物の末端水酸基をアミノ基に転化することにより得られる特定の2級アミノ基含有ポリエーテル化合物と、エポキシ樹脂を反応して得られる自己乳化性エポキシ樹脂が開示されている。しかし、アルコール性水酸基からアミノ基への転化は2級若しくは3級の水酸基に限られるため、得られるポリエーテルモノオール化合物のアミノ基は立体障害が高くなり、エポキシ樹脂との反応性が低く、高温で反応させる必要があった。また、このポリエーテルモノオール化合物の2級アミノ基には2つのエポキシ基が反応可能であるが、この2級アミノ基に1つのエポキシ基が反応して生成するイミノ基は更に立体障害が高くなり、2つめのエポキシ基が非常に反応し難くなるために、高温で反応させてもエポキシ樹脂とは反応が十分進行しない場合があり、塗料として使用した場合に、基材との密着性や耐水性が不十分であった。また、このポリエーテルモノオール化合物とエポキシ樹脂との反応生成物においても、依然として乳化安定性が不十分であった。
特開昭59-98125号公報 特開平7-256845号公報 特開平7-206982号公報 特開昭61-243822号公報 特公昭63-20448号公報 特表平9-507873号公報
 本発明は、自己乳化性に優れ、耐食性、耐水性、耐ブロッキング性等の諸特性に優れる、変性エポキシ樹脂及び変性エポキシ樹脂分散液を提供することを目的とする。
 そこで本発明者等は鋭意検討し、自己乳化性に優れ、耐食性、耐水性、耐ブロッキング性等の諸特性に優れる変性エポキシ樹脂を見出し、本発明に至った。即ち、本発明は、エポキシ当量が600~6000g/eqであるエポキシ樹脂(a)と、分子量が300以上の第一級アミン化合物及び分子量が300以上の第二級アミン化合物からなる群から選ばれる少なくとも1種のアミン系化合物(b)と、を反応させて得られる変性エポキシ樹脂中間体に、分子量が300未満であるカチオン基導入剤(c-1)、又は、分子量が300未満であるアニオン基導入剤(c-2)を反応させて得られるイオン化変性エポキシ樹脂中間体を、分子量が300未満であるアニオン性化合物(d-1)、又は、分子量が300未満であるカチオン性化合物(d-2)により中和して得られる、変性エポキシ樹脂である。
 本発明の変性エポキシ樹脂は自己乳化性に優れ、また、当該変性エポキシ樹脂及び変性エポキシ樹脂分散液は、耐食性、耐水性、耐ブロッキング性等の諸特性に優れる製品を提供できる。
<変性エポキシ樹脂中間体>
 本発明において、変性エポキシ樹脂中間体とは、エポキシ当量が600~6000g/eqであるエポキシ樹脂(a)と、分子量が300以上の第一級アミン化合物及び分子量が300以上の第二級アミン化合物からなる群から選ばれる少なくとも1種のアミン系化合物(b)と、を反応させて得られる変性エポキシ樹脂中間体である。
 本発明に用いることができるエポキシ樹脂(a)は、エポキシ当量が600~6000g/eqであるエポキシ樹脂である。このようなエポキシ樹脂としては、分子内に少なくともエポキシ基を1つ有し、エポキシ当量が600~6000g/eqであるエポキシ樹脂であれば特に制限なく使用することができ、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等のビフェニル型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ナフタレン型エポキシ樹脂;シクロヘキサンジメタノールや水添ビスフェノールA等から得られる脂環式エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物であるエポキシ化物、及びビフェニルノボラック型エポキシ樹脂、等のノボラック型エポキシ樹脂;トリフェニルメタン型エポキシ樹脂;テトラフェニルエタン型エポキシ樹脂;ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂等が挙げられる。これらの化合物は単独で使用してもよく、2種以上を併用してもよい。本発明において、エポキシ当量は、JIS K7236:2009に準拠して求められる値である。
 本発明の効果を奏する限り、エポキシ樹脂(a)に含まれるエポキシ基の数に制限はないが、エポキシ樹脂の1分子中に含まれるエポキシ基の数が、1~10、好ましくは2~6、より好ましくは、更に好ましくは2~4、最も好ましくは2である。
 これらの中でも、本発明の効果の観点からは、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、及び脂環式エポキシ樹脂からなる群から選ばれる少なくとも1種のエポキシ当量が600~6000g/eqであるエポキシ樹脂を使用することが好ましく、エポキシ当量が600~6000g/eqであるビスフェノール型エポキシ樹脂を使用することがより好ましく、エポキシ当量が600~6000g/eqであるビスフェノールA型エポキシ樹脂を使用することが更に好ましい。
 得られる変性エポキシ樹脂の諸特性の観点からは、エポキシ樹脂(a)として、エポキシ当量が700以上であるエポキシ樹脂を用いることが好ましく、エポキシ当量が900以上であるエポキシ樹脂を用いることがより好ましく、エポキシ当量が1200以上であるエポキシ樹脂を用いることが更により好ましく、エポキシ当量が1600以上であるエポキシ樹脂を用いることが特に好ましい。また、得られる変性エポキシ樹脂の自己乳化性及び諸特性の観点からは、エポキシ当量が5000以下であるエポキシ樹脂を用いることが好ましく、エポキシ当量が4000以下であるエポキシ樹脂を用いることがより好ましく、エポキシ当量が3000以下であるエポキシ樹脂を用いることが更により好ましく、エポキシ当量が2000以下であるエポキシ樹脂を用いることがまた更により好ましい。
 より具体的に、エポキシ樹脂(a)として、エポキシ当量が700~5000g/eqであるビスフェノールA型エポキシ樹脂を使用することが好ましく、エポキシ当量が900~5000g/eqであるビスフェノールA型エポキシ樹脂を使用することがより好ましく、エポキシ当量が900~3000g/eqであるビスフェノールA型エポキシ樹脂を使用することがより好ましく、エポキシ当量が1200~3000g/eqであるビスフェノールA型エポキシ樹脂を使用することが更に好ましく、エポキシ当量が1600~3000g/eqであるビスフェノールA型エポキシ樹脂を使用することがまた更に好ましく、エポキシ当量が1600~2000g/eqであるビスフェノールA型エポキシ樹脂を使用することが極めて好ましい。
 本発明に用いることができるアミン系化合物(b)は、分子量が300以上の第一級アミン化合物及び分子量が300以上の第二級アミン化合物からなる群から選ばれる少なくとも1種のアミン系化合物である。分子量が300以上の第一級アミン化合物としては、例えば、分子内に第一級アミノ基を有する分子量が300以上の脂肪族アミン、分子内に第一級アミノ基を有する分子量が300以上の芳香族アミン、分子内に第一級アミノ基を有する分子量が300以上の複素環式アミン、分子内に第一級アミノ基を有する分子量が300以上のアルカノールアミン、分子内に第一級アミノ基を有する分子量が300以上のエーテルアミン、分子内に第一級アミノ基を有する分子量が300以上のポリエーテルアミン、分子内に第一級アミノ基を有する分子量が300以上のポリエーテルポリアミン、分子内に第一級アミノ基を有する分子量が300以上のアミドアミン、分子内に第一級アミノ基を有する分子量が300以上のポリアミドアミン、分子内に第一級アミノ基を有する分子量が300以上のアミノ酸誘導体等が挙げられ、これらの第一級アミン化合物は分子内に2つ以上の第一級アミノ基を有していてもよく、また、分子内にさらに第二級アミノ基や第三級アミノ基を含んでいてもよい。分子量が300以上の第二級アミン化合物としては、例えば、分子内に第二級アミノ基を有する分子量が300以上の脂肪族アミン、分子内に第二級アミノ基を有する分子量が300以上の芳香族アミン、分子内に第二級アミノ基を有する分子量が300以上の複素環式アミン、分子内に第二級アミノ基を有する分子量が300以上のアルカノールアミン、分子内に第二級アミノ基を有する分子量が300以上のエーテルアミン、分子内に第二級アミノ基を有する分子量が300以上のポリエーテルアミン、分子内に第二級アミノ基を有する分子量が300以上のポリエーテルポリアミン、分子内に第二級アミノ基を有する分子量が300以上のアミドアミン、分子内に第二級アミノ基を有する分子量が300以上のポリアミドアミン、分子内に第二級アミノ基を有する分子量が300以上のアミノ酸誘導体等が挙げられ、これらの第二級アミン化合物は分子内に2つ以上の第二級アミノ基を有していてもよく、分子内にさらに第三級アミノ基を有していてもよい。また、これらのアミン系化合物の分子量の上限は特に限定されないが、本発明の効果の観点からは、アミン系化合物の分子量は100000以下であることが好ましく、10000以下であることがより好ましく、6000以下であることが更により好ましい。
 アミン系化合物(b)としては、1種又は2種以上の分子量が300以上の第一級アミン化合物のみからなっていてもよく、1種又は2種以上の分子量が300以上の第二級アミン化合物のみからなっていてもよく、1種又は2種以上の分子量が300以上の第一級アミン化合物及び1種又は2種以上の分子量が300以上の第二級アミン化合物からなっていてもよい。本発明において、アミン系化合物(b)としてこのようなアミン化合物を用いることで、得られる変性エポキシ樹脂の自己乳化性及び諸特性を向上させることができる。
 本発明においては、得られる変性エポキシ樹脂の疎水性及び親水性を適切に制御し、変性エポキシ樹脂の自己乳化性及び諸特性を向上する観点から、アミン系化合物(b)として、分子内に第一級アミノ基を有する分子量が300以上のポリエーテルアミン系化合物を含むアミン系化合物を用いることが好ましい。分子内に第一級アミノ基を有する分子量が300以上のポリエーテルアミン系化合物を含むアミン系化合物としては、分子内に第一級アミノ基及びポリエーテル構造部を有する化合物であれば特に限定されない。このような化合物の中でも、好適に用いることができるポリエーテルアミン系化合物は、下記の一般式(1)で表され、分子量が300以上であるポリエーテルアミン系化合物である。
Figure JPOXMLDOC01-appb-C000001
 式中、Xは、水素原子、アミノ基、炭素数1~4のアルキル基、又は水素原子の1つをアミノ基に置換した炭素数1~4のアルキル基を表し、a、b、cは、各単位ユニットの平均付加モル値を表し、それぞれ独立して0~100の数を表し、各単位ユニットの配列はブロック状、ランダム状のいずれであってもよい。
 一般式(1)において、Xは、水素原子、アミノ基、炭素数1~4のアルキル基、又は水素原子の1つをアミノ基に置換した炭素数1~4のアルキル基を表す。得られる変性エポキシ樹脂の自己乳化性の観点からは、Xはアミノ基、炭素数1~4のアルキル基、又は水素原子の1つをアミノ基に置換した炭素数1~4のアルキル基であることが好ましく、炭素数1~4のアルキル基であることがより好ましく、メチル基であることが更により好ましい。
 一般式(1)において、aは、0~100の数を表す。得られる変性エポキシ樹脂の自己乳化性及び諸特性の観点からは、aは1~100の数であることが好ましく、1~70の数であることがより好ましく、10~60の数であることが更により好ましい。
 一般式(1)において、bは、0~100の数を表す。得られる変性エポキシ樹脂の自己乳化性及び諸特性の観点からは、bは1~100の数であることが好ましく、1~50の数であることがより好ましく、1~20の数であることが更により好ましく、1~10であることがまた更に好ましい。
 一般式(1)において、cは、0~100の数を表す。得られる変性エポキシ樹脂の自己乳化性及び諸特性の観点からは、cは0~50の数であることが好ましく、0~30の数であることがより好ましく、0であることが更により好ましい。
 一般式(1)において、a、b、cの合計の値は特に限定されないが、得られる変性エポキシ樹脂の自己乳化性及び諸特性の観点からは、a、b、cの合計の値は10~200であることが好ましく、10~100であることがより好ましく、15~70であることが更により好ましい。
 本発明においては、得られる変性エポキシ樹脂の自己乳化性及び諸特性の観点から、一般式(1)において、aが1~100の数であり、bが1~100の数であり、cが0であるポリエーテルアミン系化合物を用いることが好ましい。このとき、得られる変性エポキシ樹脂の自己乳化性及び諸特性の観点からは、aが1~70の数であり、bが1~50の数であり、a、bの合計の値が10~80であるポリエーテルアミン系化合物を用いることが好ましく、aが10~60の数であり、bが1~20の数であり、a、bの合計の値が15~75であるポリエーテルアミン系化合物を用いることがより好ましい。
 一般式(1)で表されるポリエーテルアミン系化合物の重量平均分子量は、本発明の効果を奏する限り特に限定されないが、400~8000が好ましく、600~6000がより好ましく、800~4000が更により好ましく、1000~3100がまた更に好ましい。
 上記重量平均分子量の測定方法は、GPC(Gel Permeation Chromatography:ゲル浸透クロマトグラフィー)を用いて標準ポリスチレン換算により測定する方法を用いることができる。また、市販品を用いる場合は、そのカタログ値を参照することもできる。
 一般式(1)で表され、分子量が300以上であるポリエーテルアミン系化合物は、公知の方法で製造したものを用いてもよく、市販品を用いてもよい。このような市販品としては、例えば、Huntsman Corporation製のジェファーミン(登録商標)Mシリーズ(ジェファーミン(登録商標)M-600、ジェファーミン(登録商標)M-1000、ジェファーミン(登録商標)M-2005、ジェファーミン(登録商標)M-2070、ジェファーミン(登録商標)M-3085等)、ジェファーミン(登録商標)Dシリーズ(ジェファーミン(登録商標)D-400、ジェファーミン(登録商標)D-2000、ジェファーミン(登録商標)D-3000等)、ジェファーミン(登録商標)EDシリーズ(ジェファーミン(登録商標)ED-600、ジェファーミン(登録商標)ED-900、ジェファーミン(登録商標)ED-2003等)、Yangzhou Chenhua New Material社製のポリエーテルアミンMシリーズ(CAM-1000、CAM-2005、CAM-2070等)、ポリエーテルアミンDシリーズ(CAD-400、CAD-2000等)、ポリエーテルアミンEDシリーズ(CAED-600、CAED-900、CAED-1200、CAED-2003等)等が挙げられる。
 これらの中で、ジェファーミン(登録商標)M-1000(一般式(1)において,Xがメチル基であり、aの値(平均値)が19であり、bの値(平均値)が3であり、cの値が0であり、重量平均分子量が1041であるポリエーテルアミン系化合物)及びジェファーミン(登録商標)M-3085(一般式(1)において,Xがメチル基であり、aの値(平均値)が58であり、bの値(平均値)が8であり、cの値が0であり、重量平均分子量が3047であるポリエーテルアミン系化合物)を使用することが好ましく、ジェファーミン(登録商標)M-3085を使用することがより好ましい。
 本発明において、変性エポキシ樹脂中間体は、エポキシ樹脂(a)とアミン系化合物(b)とを反応させて得られる変性エポキシ樹脂中間体であり、用いるエポキシ樹脂(a)及びアミン系化合物(b)の量及び比率は特に限定されないが、得られる変性エポキシ樹脂の自己乳化性及び諸特性の観点から、変性エポキシ樹脂中間体が、前記エポキシ樹脂(a)と前記アミン系化合物(b)とを、エポキシ樹脂(a)中のエポキシ基1モルに対してアミン系化合物(b)中のアミノ基が0.01~0.95モルとなる量で反応させて得られる変性エポキシ樹脂中間体であることが好ましい。本発明に用いる変性エポキシ樹脂中間体は、このようにして得られる変性エポキシ樹脂中間体であることで、未反応のエポキシ基を有するため、後述する方法により、自己乳化性及び諸特性に優れる変性エポキシ樹脂を得ることができる。より自己乳化性に優れ、耐食性、耐水性、耐ブロッキング性等の諸特性を向上させる観点から、変性エポキシ樹脂中間体は、エポキシ樹脂(a)とアミン系化合物(b)とを、エポキシ樹脂(a)中のエポキシ基1モルに対してアミン系化合物(b)中のアミノ基が0.05~0.90モルとなる量で反応させて得られる変性エポキシ樹脂中間体であることがより好ましく、0.10~0.80モルとなる量で反応させて得られる変性エポキシ樹脂中間体であることが更により好ましく、0.15~0.70モルとなる量で反応させて得られる変性エポキシ樹脂中間体であることが特に好ましい。なお、この変性エポキシ樹脂中間体は、原料となるエポキシ樹脂(a)中のエポキシ基と、アミン系化合物(b)中のアミノ基が反応した構造を有するが、用いるエポキシ樹脂(a)とアミン系化合物(b)のエポキシ基又はアミノ基の数及び使用する量により構造が異なるため、変性エポキシ樹脂中間体の構造を具体的に示すことは非現実的である。
 本発明において、エポキシ当量が600~6000g/eqであるエポキシ樹脂(a)と、分子量が300以上の第一級アミン化合物及び分子量が300以上の第二級アミン化合物からなる群から選ばれる少なくとも1種のアミン系化合物(b)と、を反応させる方法は特に限定されず、公知の方法により反応させることができる。このような方法としては、例えば、エポキシ樹脂(a)とアミン系化合物(b)とを、減圧下、常圧下又は加圧下において、常温~180℃で1~10時間反応させる方法等が挙げられる。本反応において、エポキシ樹脂(a)及びアミン系化合物(b)をそれぞれ、全量を一度に用いてもよいし、複数回に分けて用いてもよい。
 エポキシ樹脂(a)とアミン系化合物(b)との反応は、エポキシ樹脂(a)及びアミン系化合物(b)と反応しない溶媒中で行ってもよい。本反応に用いてもよい溶媒としては、例えば、ヘキサン、シクロヘキサン、トルエン、キシレン等の炭化水素系溶媒;酢酸エチル、酢酸ブチル、メチル分岐ブチルケトン、ミリスチン酸分岐プロピル、トリグリセライド類等のエステル系溶媒等が挙げられる。溶媒を使用する際の溶媒の使用量は特に限定されないが、得られる変性エポキシ樹脂の自己乳化性及び諸特性の観点から、全体の系に対して溶媒の使用量が5~95質量%であることが好ましく、10~60質量%であることがより好ましい。また、エポキシ樹脂(a)とアミン系化合物(b)との反応において溶媒を用いた場合、反応後に溶媒を除去してもよいし、引き続き、イオン化変性エポキシ樹脂中間体を得る工程における溶媒として用いてもよい。
 また、エポキシ樹脂(a)とアミン系化合物(b)との反応は、触媒を使用して行ってもよい。本反応に用いてもよい触媒としては、例えば、トリフェニルホスフィン等のホスフィン類;テトラフェニルホスホニウムブロマイド等のホスホニウム塩;2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、1-シアノエチル-2-メチルイミダゾール、イミダゾールシラン等のイミダゾール類;前記イミダゾール類と、トリメリット酸、イソシアヌル酸、ホウ素等との塩であるイミダゾール塩類;ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール等のアミン類;トリメチルアンモニウムクロライド等の4級アンモニウム塩類;3-(p-クロロフェニル)-1,1-ジメチルウレア、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、3-フェニル-1,1-ジメチルウレア、イソホロンジイソシアネート-ジメチルウレア、トリレンジイソシアネート-ジメチルウレア等のウレア類;及び、三フッ化ホウ素と、アミン類やエーテル化合物等との錯化合物等を例示することができる。これらの触媒は、単独で使用してもよいし、2種以上を併用してもよい。触媒を使用する際の触媒の使用量は特に限定されず、例えば、全体の系に対して約0.01~1質量%であってもよい。
<イオン化変性エポキシ樹脂中間体>
 本発明において、イオン化変性エポキシ樹脂中間体とは、前述した変性エポキシ樹脂中間体に、分子量が300未満であるカチオン基導入剤(c-1)、又は、分子量が300未満であるアニオン基導入剤(c-2)を反応させて得られるイオン化変性エポキシ樹脂中間体である。
 本発明に用いることができる、分子量が300未満であるカチオン基導入剤(c-1)とは、分子中にプロトン化によりカチオン基を形成する基を有する化合物であれば特に限定されず、例えば、分子内に第一級アミノ基を有する分子量が300未満の化合物、分子内に第二級アミノ基を有する分子量が300未満の化合物、分子内に第三級アミノ基を有する分子量が300未満の化合物、分子内に環状アミノ基を有する分子量が300未満の化合物、分子内にヒドラジノ基を有する分子量が300未満の化合物、分子内にアンモニウム基を有する分子量が300未満の化合物等が挙げられる。このような化合物としては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、N-メチルエタノールアミン、N-メチルジエタノールアミン、ジメチルアミノエタノール、ジグリコールアミン、2-アミノー2-メチルー1-プロパノール、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、アミノエチルピペラジン、モルホリン、アミノプロピルモルホリン、ジメチルアミノプロピルアミン、ジイソブチルアミン、N-メチルヘキシルアミン、ベンジルアミン、ジベンジルアミン、N-メチルベンジルアミン、アニリン、N-エチルアニリン、ジフェニルアミン、ジエチルヒドロキシルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、ジプロピルアミン、モノイソプロピルアミン、ジイソプロピルアミン、モノブチルアミン、ジブチルアミン、トリブチルアミン、ペンチルアミン、ネオペンチルアミン、ヘキシルアミン、エチルブチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、アミノエトキシシラン、ピペリジン、ピペラジン、2-(2-アミノエチルアミノ)エタノール、オレイルアミン、ジー2-エチルヘキシルアミン、2-エチルヘキシルアミン、フルフリルアミン等が挙げられる。
 得られる変性エポキシ樹脂の自己乳化性の観点から、カチオン基導入剤(c-1)として、分子内に第一級アミノ基を有する分子量が300未満の化合物及び分子内に第二級アミノ基を有する分子量が300未満の化合物からなる群から選択される少なくとも1種の化合物を含むことが好ましく、モノエタノールアミン、ジエタノールアミン、ジイソプロパノールアミン、N-メチルエタノールアミン、モルホリン、ジイソブチルアミン、N-メチルヘキシルアミン、ベンジルアミン、N-メチルベンジルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジシクロヘキシルアミン、及び2-エチルヘキシルアミンからなる群から選ばれる少なくとも1種を含むことがより好ましく、モノエタノールアミン、ジエタノールアミン、2-エチルヘキシルアミン、ベンジルアミン、ジシクロヘキシルアミン、N-メチルベンジルアミン、及びジブチルアミンからなる群から選ばれる少なくとも1種を含むことが更により好ましい。
 なお、カチオン基導入剤(c-1)の分子量の下限値は特に限定されないが、カチオン基導入剤(c-1)は、好ましくは50以上の分子量を有し、より好ましくは60以上の分子量を有する。
 本発明に用いることができる、分子量が300未満であるアニオン基導入剤(c-2)とは、分子中に脱プロトン化によりアニオン基を形成する基を有する化合物であれば特に限定されず、例えば、分子内にカルボキシ基を有する分子量が300未満の化合物、分子内にスルホニル基を有する分子量が300未満の化合物、分子内にリン酸基を有する分子量が300未満の化合物等が挙げられる。これらの中でも、得られる変性エポキシ樹脂の自己乳化性の観点から、アニオン基導入剤(c-2)として、分子内にカルボキシ基を有する分子量が300未満の化合物、分子内にホウ酸基を有する分子量が300未満の化合物、又は分子内にリン酸基を有する分子量が300未満の化合物を含むことが好ましく、リン酸、酢酸、乳酸、ホウ酸、及びギ酸からなる群から選ばれる少なくとも1種を含むことがより好ましく、リン酸、酢酸及び乳酸からなる群から選ばれる少なくとも1種を含むことが更により好ましい。
 なお、アニオン基導入剤(c-2)の分子量の下限値は特に限定されないが、アニオン基導入剤(c-2)は、好ましくは40以上の分子量を有し、より好ましくは45以上の分子量を有する。
 本発明において、変性エポキシ樹脂中間体と、分子量が300未満であるカチオン基導入剤(c-1)、又は、分子量が300未満であるアニオン基導入剤(c-2)と、を反応させる方法は特に限定されず、公知の方法により反応させることができる。このような方法としては、例えば、変性エポキシ樹脂中間体と、カチオン基導入剤(c-1)、又は、アニオン基導入剤(c-2)とを、減圧下、常圧下又は加圧下において、常温~180℃で1~10時間反応させる方法等が挙げられる。本反応において、変性エポキシ樹脂中間体と、カチオン基導入剤(c-1)、又は、アニオン基導入剤(c-2)について、それぞれ、全量を一度に用いてもよいし、複数回に分けて用いてもよい。
 通常、本発明においては、変性エポキシ樹脂中間体と、カチオン基導入剤(c-1)、又は、アニオン基導入剤(c-2)を反応させる。また、カチオン基導入剤(c-1)及びアニオン基導入剤(c-2)の双方を同時に用いないことが好ましい。
 変性エポキシ樹脂中間体とカチオン基導入剤(c-1)、又は、アニオン基導入剤(c-2)との反応は、変性エポキシ樹脂中間体、カチオン基導入剤(c-1)、アニオン基導入剤(c-2)と反応しない溶媒中で行ってもよい。本反応に用いてもよい溶媒としては、例えば、ヘキサン、シクロヘキサン、トルエン、キシレン等の炭化水素系溶媒;酢酸エチル、酢酸ブチル、メチル分岐ブチルケトン、ミリスチン酸分岐プロピル、トリグリセライド類等のエステル系溶媒等が挙げられる。溶媒を使用する際の溶媒の使用量は特に限定されないが、得られる変性エポキシ樹脂の自己乳化性及び諸特性の観点から、全体の系に対して溶媒の使用量が5~95質量%であることが好ましく、10~60質量%であることがより好ましい。また、変性エポキシ樹脂中間体とカチオン基導入剤(c-1)、又は、アニオン基導入剤(c-2)との反応において溶媒を用いた場合、反応後に溶媒を除去してもよいし、引き続き、変性エポキシ樹脂を得る工程における溶媒として用いてもよい。
 また、変性エポキシ樹脂中間体と、カチオン基導入剤(c-1)、又は、アニオン基導入剤(c-2)との反応は、触媒を使用して行ってもよい。本反応に用いてもよい触媒としては、例えば、トリフェニルホスフィン等のホスフィン類;テトラフェニルホスホニウムブロマイド等のホスホニウム塩;2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、1-シアノエチル-2-メチルイミダゾール、イミダゾールシラン等のイミダゾール類;前記イミダゾール類と、トリメリット酸、イソシアヌル酸、ホウ素等との塩であるイミダゾール塩類;ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール等のアミン類;トリメチルアンモニウムクロライド等の4級アンモニウム塩類;3-(p-クロロフェニル)-1,1-ジメチルウレア、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、3-フェニル-1,1-ジメチルウレア、イソホロンジイソシアネート-ジメチルウレア、トリレンジイソシアネート-ジメチルウレア等のウレア類;及び、三フッ化ホウ素と、アミン類やエーテル化合物等との錯化合物等を例示することができる。これらの触媒は、単独で使用してもよいし、2種以上を併用してもよい。触媒を使用する際の触媒の使用量は特に限定されず、例えば、全体の系に対して約0.01~1質量%であってもよい。
 本発明においては、イオン化変性エポキシ樹脂中間体が、変性エポキシ樹脂中間体と、分子量が300未満であるカチオン基導入剤(c-1)、又は、分子量が300未満であるアニオン基導入剤(c-2)とを、変性エポキシ樹脂中間体中のエポキシ基の数(エポキシ樹脂(a)中のエポキシ基のうち、アミン系化合物(b)と反応したエポキシ基を除いた数)を1としたときのカチオン基導入剤中のカチオン性基(アミノ基、ヒドラジノ基、アンモニウム基等の、プロトン化によりカチオン基を形成する基)、又は、アニオン基導入剤中のアニオン性基(カルボキシ基、スルホニル基、リン酸基等の、脱プロトン化によりアニオン基を形成する基)の数が0.1~2.0となる量で反応させて得られるイオン化変性エポキシ樹脂中間体であることが好ましい。本発明に用いるイオン化変性エポキシ樹脂中間体は、このようにして得られるイオン化変性エポキシ樹脂中間体であることで、後述する方法により、自己乳化性及び諸特性に優れる変性エポキシ樹脂を得ることができる。より自己乳化性に優れ、耐食性、耐水性、耐ブロッキング性等の諸特性を向上させる観点から、イオン化変性エポキシ樹脂中間体は、変性エポキシ樹脂中間体と、カチオン基導入剤(c-1)、又は、アニオン基導入剤(c-2)とを、変性エポキシ樹脂中間体中のエポキシ基の数を1としたときのカチオン基導入剤中のカチオン性基の数、又は、アニオン基導入剤中のアニオン性基の数が0.2~1.5となる量で反応させて得られるイオン化変性エポキシ樹脂中間体であることがより好ましく、0.3~1.0となる量で反応させて得られるイオン化変性エポキシ樹脂中間体であることが更により好ましく、0.4~0.9となる量で反応させて得られるイオン化変性エポキシ樹脂中間体であることが特に好ましい。
 なお、このイオン化変性エポキシ樹脂中間体は、変性エポキシ樹脂中間体の製造に用いたエポキシ樹脂(a)に残存するエポキシ基と、カチオン基導入剤(c-1)のカチオン性基、又は、アニオン基導入剤(c-2)のアニオン性基とが反応した構造を有するが、変性エポキシ樹脂中間体の構造及び変性エポキシ樹脂中間体中のエポキシ基の位置の特定が非現実的であることから、イオン化変性エポキシ樹脂中間体の構造を特定することは非現実的である。
<変性エポキシ樹脂>
 本発明の変性エポキシ樹脂は、前述したイオン化変性エポキシ樹脂中間体を、分子量が300未満であるアニオン性化合物(d-1)、又は、分子量が300未満であるカチオン性化合物(d-2)により中和して得られる、変性エポキシ樹脂である。
 なお、本発明において「中和」とは、前記イオン化変性エポキシ樹脂中間体におけるカチオン基導入剤(c-1)に由来するカチオン性基の少なくとも一部若しくは全てが前記アニオン性化合物(d-1)のアニオン性基で中和されること、又は、前記イオン化変性エポキシ樹脂中間体におけるアニオン基導入剤(c-2)に由来するアニオン性基の少なくとも一部若しくは全てが前記カチオン性化合物(d-2)のカチオン性基で中和されることを意味する。
 本発明に用いることができる、分子量が300未満であるアニオン性化合物(d-1)とは、脱プロトン化によりアニオン性を示す基を有する化合物であれば特に限定されず、例えば、分子内にカルボキシ基を有する分子量が300未満の化合物、分子内にスルホニル基を有する分子量が300未満の化合物、分子内にリン酸基を有する分子量が300未満の化合物等が挙げられる。得られる変性エポキシ樹脂の自己乳化性の観点から、アニオン性化合物として、分子内にカルボキシ基を有する分子量が300未満の化合物、分子内にホウ酸気を有する分子量が300未満の化合物、又は分子内にリン酸基を有する分子量が300未満の化合物を含むことが好ましく、リン酸、酢酸、乳酸、ホウ酸、及びギ酸からなる群から選ばれる少なくとも1種を含むことがより好ましく、リン酸、酢酸、ホウ酸、及びギ酸からなる群から選ばれる少なくとも1種を含むことが特に好ましい。
 なお、アニオン性化合物(d-1)の分子量の下限値は特に限定されないが、アニオン性化合物(d-1)は、好ましくは40以上の分子量を有し、より好ましくは45以上の分子量を有する。
 本発明に用いることができる、分子量が300未満であるカチオン性化合物(d-2)とは、分子中にプロトン化によりカチオン性を示す基を有する化合物であれば特に限定されず、例えば、分子内に第一級アミノ基を有する分子量が300未満の化合物、分子内に第二級アミノ基を有する分子量が300未満の化合物、分子内に第三級アミノ基を有する分子量が300未満の化合物、分子内に環状アミノ基を有する分子量が300未満の化合物、分子内にヒドラジノ基を有する分子量が300未満の化合物、分子内にアンモニウム基を有する分子量が300未満の化合物等が挙げられる。このような化合物としては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、N-メチルエタノールアミン、N-メチルジエタノールアミン、ジメチルアミノエタノール、ジグリコールアミン、2-アミノー2-メチルー1-プロパノール、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、アミノエチルピペラジン、モルホリン、アミノプロピルモルホリン、ジメチルアミノプロピルアミン、ジイソブチルアミン、N-メチルヘキシルアミン、ベンジルアミン、ジベンジルアミン、N-メチルベンジルアミン、アニリン、N-エチルアニリン、ジフェニルアミン、ジエチルヒドロキシルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、ジプロピルアミン、モノイソプロピルアミン、ジイソプロピルアミン、モノブチルアミン、ジブチルアミン、トリブチルアミン、ペンチルアミン、ネオペンチルアミン、ヘキシルアミン、エチルブチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、アミノエトキシシラン、ピペリジン、ピペラジン、2-(2-アミノエチルアミノ)エタノール、オレイルアミン、ジー2-エチルヘキシルアミン、2-エチルヘキシルアミン、フルフリルアミン等が挙げられる。得られる変性エポキシ樹脂の自己乳化性の観点から、カチオン性化合物として、分子内に第一級アミノ基を有する分子量が300未満の化合物、分子内に第二級アミノ基を有する分子量が300未満の化合物、又は分子内に第三級アミノ基を有する分子量が300未満の化合物を少なくとも含むことが好ましく、モノエタノールアミン、ジエタノールアミン、ジイソプロパノールアミン、N-メチルエタノールアミン、ジメチルアミノエタノール、モルホリン、トリエチルアミン、ジイソブチルアミン、N-メチルヘキシルアミン、ベンジルアミン、N-メチルベンジルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジシクロヘキシルアミン、及び2-エチルヘキシルアミンからなる群から選ばれる少なくとも1種を含むことがより好ましく、モノエタノールアミン、ジメチルアミノエタノール、トリエチルアミン、ジエタノールアミン、2-エチルヘキシルアミン、ベンジルアミン、ジシクロヘキシルアミン、N-メチルベンジルアミン、及びジブチルアミンからなる群から選ばれる少なくとも1種を含むことが更により好ましく、ジメチルアミノエタノール、トリエチルアミンからなる群から選ばれる少なくとも1種を含むことが特に好ましい。
 なお、カチオン性化合物(d-2)の分子量の下限値は特に限定されないが、カチオン性化合物(d-2)は、好ましくは50以上の分子量を有し、より好ましくは60以上の分子量を有する。
 本発明の変性エポキシ樹脂は、イオン化変性エポキシ樹脂中間体を、アニオン性化合物(d-1)、又は、カチオン性化合物(d-2)により中和して得られる変性エポキシ樹脂であり、用いるアニオン性化合物(d-1)、又は、カチオン性化合物(d-2)の量は特に限定されず、適宜調整することができる。得られる変性エポキシ樹脂の自己乳化性及び諸特性の観点からは、用いるアニオン性化合物(d-1)、又は、カチオン性化合物(d-2)の量を、変性エポキシ樹脂中間体のイオン化に用いたカチオン基導入剤(c-1)中のカチオン性基の数、又は、アニオン基導入剤(c-2)中のアニオン性基の数を1としたときの、アニオン性化合物(d-1)中のアニオン性基(脱プロトン化によりアニオン性を示す基)の数、又は、カチオン性化合物(d-2)中のカチオン性基(プロトン化によりカチオン性を示す基)の数が、0.3~2.0となる量とすることが好ましく、0.4~1.5とすることがより好ましく、0.5~1.2とすることが更により好ましい。本発明の変性エポキシ樹脂は、このようにして得られる変性エポキシ樹脂であることで、自己乳化性及び諸特性に優れる変性エポキシ樹脂を得ることができる。
 イオン化変性エポキシ樹脂中間体が、エポキシ基を有する場合、アニオン性化合物(d-1)、又は、カチオン性化合物(d-2)の少なくとも一部がエポキシ基と反応して、アニオン性基、又は、カチオン性基をイオン化変性エポキシ樹脂中間体に導入しうる。しかしながら、本発明において、イオン化変性エポキシ樹脂中間体のカチオン性基、又は、アニオン性基を中和するために用いる化合物を、それぞれ、アニオン性化合物(d-1)、又は、カチオン性化合物(d-2)と定義する。
 なお、この変性エポキシ樹脂は、イオン化変性エポキシ樹脂中間体中のカチオン基又はアニオン基が、アニオン性化合物(d-1)中のアニオン性基又はカチオン性化合物(d-2)中のカチオン性基により中和された構造を有するが、イオン化変性エポキシ樹脂中間体の構造及びイオン化変性エポキシ樹脂中間体中のカチオン基又はアニオン基の位置の特定が非現実的であることから、変性エポキシ樹脂中間体の構造を特定することは非現実的である。
 カチオン基導入剤(c-1)を用いて得られたイオン化変性エポキシ樹脂中間体をアニオン性化合物(d-1)により中和する場合、カチオン性化合物(d-2)に該当する化合物を添加しないことが好ましい。アニオン基導入剤(c-2)を用いて得られたイオン化変性エポキシ樹脂中間体をカチオン性化合物(d-2)により中和する場合、アニオン性化合物(d-1)に該当する化合物を添加しないことが好ましい。
 本発明において、イオン化変性エポキシ樹脂中間体を、アニオン性化合物(d-1)、又は、カチオン性化合物(d-2)により中和する方法は特に限定されず、公知の方法により反応させることができる。このような方法としては、例えば、イオン化変性エポキシ樹脂中間体とアニオン性化合物(d-1)、又は、カチオン性化合物(d-2)とを、減圧下、常圧下又は加圧下において、常温~180℃で1~10時間反応させる方法等が挙げられる。本反応において、イオン化変性エポキシ樹脂中間体とアニオン性化合物(d-1)、又は、カチオン性化合物(d-2)について、それぞれ、全量を一度に用いてもよいし、複数回に分けて用いてもよい。
 イオン化変性エポキシ樹脂中間体を、アニオン性化合物(d-1)、又は、カチオン性化合物(d-2)により中和する工程は、イオン化変性エポキシ樹脂中間体、アニオン性化合物、カチオン性化合物と反応しない溶媒中で行ってもよい。本中和工程に用いてもよい溶媒としては、例えば、ヘキサン、シクロヘキサン、トルエン、キシレン等の炭化水素系溶媒;酢酸エチル、酢酸ブチル、メチル分岐ブチルケトン、ミリスチン酸分岐プロピル、トリグリセライド類等のエステル系溶媒等が挙げられる。溶媒を使用する際の溶媒の使用量は特に限定されないが、全体の系に対して溶媒の使用量が5~95質量%であることが好ましく、10~60質量%であることがより好ましい。また、エポキシ樹脂(a)とアミン系化合物(b)との反応において溶媒を用いた場合、反応後に溶媒を除去してもよいし、変性エポキシ樹脂分散液の溶媒として用いてもよい。
 本発明の変性エポキシ樹脂は、より具体的には、エポキシ当量が600~6000g/eqであるエポキシ樹脂(a)と、分子量が300以上の第一級アミン化合物及び分子量が300以上の第二級アミン化合物からなる群から選ばれる少なくとも1種のアミン系化合物(b)と、を反応させて得られる変性エポキシ樹脂中間体に、分子量が300未満であるカチオン基導入剤(c-1)を反応させて得られるイオン化変性エポキシ樹脂中間体を、分子量が300未満であるアニオン性化合物(d-1)により中和して得られる、変性エポキシ樹脂、又は、エポキシ当量が600~6000g/eqであるエポキシ樹脂(a)と、分子量が300以上の第一級アミン化合物及び分子量が300以上の第二級アミン化合物からなる群から選ばれる少なくとも1種のアミン系化合物(b)と、を反応させて得られる変性エポキシ樹脂中間体に、分子量が300未満であるアニオン基導入剤(c-2)を反応させて得られるイオン化変性エポキシ樹脂中間体を、分子量が300未満であるカチオン性化合物(d-2)により中和して得られる、変性エポキシ樹脂である。
 このうち、本発明の変性エポキシ樹脂が、エポキシ当量が600~6000g/eqであるエポキシ樹脂(a)と、分子量が300以上の第一級アミン化合物及び分子量が300以上の第二級アミン化合物からなる群から選ばれる少なくとも1種のアミン系化合物(b)と、を反応させて得られる変性エポキシ樹脂中間体に、分子量が300未満であるカチオン基導入剤(c-1)を反応させて得られるイオン化変性エポキシ樹脂中間体を、分子量が300未満であるアニオン性化合物(d-1)により中和して得られる、変性エポキシ樹脂である場合、エポキシ樹脂(a)と、アミン系化合物(b)と、カチオン基導入剤(c-1)と、を同時に反応させて、イオン化変性エポキシ樹脂中間体を得てもよい。このとき、用いるエポキシ樹脂(a)と、アミン系化合物(b)と、カチオン基導入剤(c-1)の量は、得られる変性エポキシ樹脂の自己乳化性及び諸特性の観点から、アミン系化合物(b)の量が、エポキシ樹脂(a)中のエポキシ基1モルに対するアミン系化合物(b)中のアミノ基が0.01~0.95モルとなる量であり、カチオン基導入剤(c-1)の量が、エポキシ樹脂(a)中のエポキシ基の数を1とした時のカチオン基導入剤(c-1)のカチオン性基の数が0.01~0.95となる量であることがそれぞれ好ましい。より自己乳化性に優れ、耐食性、耐水性、耐ブロッキング性等の諸特性を向上した変性エポキシ樹脂を得る観点から、アミン系化合物(b)の量は、エポキシ樹脂(a)中のエポキシ基1モルに対するアミン系化合物(b)中のアミノ基が0.05~0.80モルとなる量であることがより好ましく、0.10~0.60モルとなる量であることが更により好ましく、0.15~0.50モルとなる量であることが特に好ましい。また、カチオン基導入剤(c-1)の量は、より自己乳化性に優れ、耐食性、耐水性、耐ブロッキング性等の諸特性を向上した変性エポキシ樹脂を得る観点から、カチオン基導入剤(c-1)の量は、エポキシ樹脂(a)中のエポキシ基の数を1とした時のカチオン基導入剤(c-1)のカチオン性基の数が0.2~0.9となる量であることがより好ましく、0.3~0.85となる量であることが更により好ましく、0.5~0.85となる量であることが特に好ましい。
<変性エポキシ樹脂の製造方法>
 本発明の変性エポキシ樹脂の製造方法は、エポキシ当量が600~6000g/eqであるエポキシ樹脂(a)と、分子量が300以上の第一級アミン化合物及び分子量が300以上の第二級アミン化合物からなる群から選ばれる少なくとも1種のアミン系化合物(b)とを反応させて変性エポキシ樹脂中間体を得る工程と、得られた変性エポキシ樹脂中間体に、分子量が300未満であるカチオン基導入剤(c-1)、又は、分子量が300未満であるアニオン基導入剤(c-2)を反応させてイオン化変性エポキシ樹脂中間体を得る工程と、得られたイオン化変性エポキシ樹脂中間体を、分子量が300未満であるアニオン性化合物(d-1)、又は、分子量が300未満であるカチオン性化合物(d-2)により中和する工程と、を含む、変性エポキシ樹脂の製造方法である。このとき、本製造方法に用いるエポキシ樹脂(a)、アミン系化合物(b)、カチオン基導入剤(c-1)、アニオン基導入剤(c-2)、アニオン性化合物(d-1)、カチオン性化合物(d-2)は、それぞれ前述した化合物を用いることができる。また、変性エポキシ樹脂中間体を得る工程、イオン化変性エポキシ樹脂中間体を得る工程、イオン化変性エポキシ樹脂中間体を中和する工程は、それぞれ前述した方法を用いることができる。
 本発明の変性エポキシ樹脂の製造方法は、より具体的には、エポキシ当量が600~6000g/eqであるエポキシ樹脂(a)と、分子量が300以上の第一級アミン化合物及び分子量が300以上の第二級アミン化合物からなる群から選ばれる少なくとも1種のアミン系化合物(b)とを反応させて変性エポキシ樹脂中間体を得る工程と、得られた変性エポキシ樹脂中間体に、分子量が300未満であるカチオン基導入剤(c-1)を反応させてイオン化変性エポキシ樹脂中間体を得る工程と、得られたイオン化変性エポキシ樹脂中間体を、分子量が300未満であるアニオン性化合物(d-1)により中和する工程と、を含む、変性エポキシ樹脂の製造方法、又は、エポキシ当量が600~6000g/eqであるエポキシ樹脂(a)と、分子量が300以上の第一級アミン化合物及び分子量が300以上の第二級アミン化合物からなる群から選ばれる少なくとも1種のアミン系化合物(b)とを反応させて変性エポキシ樹脂中間体を得る工程と、得られた変性エポキシ樹脂中間体に、分子量が300未満であるアニオン基導入剤(c-2)を反応させてイオン化変性エポキシ樹脂中間体を得る工程と、得られたイオン化変性エポキシ樹脂中間体を、分子量が300未満であるカチオン性化合物(d-2)により中和する工程と、を含む、変性エポキシ樹脂の製造方法である。
 このうち、本発明の変性エポキシ樹脂の製造方法が、エポキシ当量が600~6000g/eqであるエポキシ樹脂(a)と、分子量が300以上の第一級アミン化合物及び分子量が300以上の第二級アミン化合物からなる群から選ばれる少なくとも1種のアミン系化合物(b)とを反応させて変性エポキシ樹脂中間体を得る工程と、得られた変性エポキシ樹脂中間体に、分子量が300未満であるカチオン基導入剤(c-1)を反応させてイオン化変性エポキシ樹脂中間体を得る工程と、得られたイオン化変性エポキシ樹脂中間体を、分子量が300未満であるアニオン性化合物(d-1)により中和する工程と、を含む変性エポキシ樹脂の製造方法である場合、エポキシ樹脂(a)とアミン系化合物(b)とを反応させて変性エポキシ樹脂中間体を得る工程と、得られた変性エポキシ樹脂中間体に、カチオン基導入剤(c-1)を反応させてイオン化変性エポキシ樹脂中間体を得る工程の代わりに、エポキシ樹脂(a)に、アミン系化合物(b)とカチオン基導入剤(c-1)とを反応させてイオン化変性エポキシ樹脂中間体を得る工程を用いてもよい。このとき、用いるエポキシ樹脂(a)と、アミン系化合物(b)と、カチオン基導入剤(c-1)の量は、得られる変性エポキシ樹脂の自己乳化性及び諸特性の観点から、アミン系化合物(b)の量が、エポキシ樹脂(a)中のエポキシ基1モルに対するアミン系化合物(b)中のアミノ基が0.01~0.95モルとなる量であり、カチオン基導入剤(c-1)の量が、エポキシ樹脂(a)中のエポキシ基の数を1とした時のカチオン基導入剤(c-1)のカチオン性基の数が0.01~0.95となる量であることがそれぞれ好ましい。より自己乳化性に優れ、耐食性、耐水性、耐ブロッキング性等の諸特性を向上した変性エポキシ樹脂を得る観点から、アミン系化合物(b)の量は、エポキシ樹脂(a)中のエポキシ基1モルに対するアミン系化合物(b)中のアミノ基が0.05~0.90モルとなる量であることがより好ましく、0.10~0.80モルとなる量であることが更により好ましく、0.15~0.70モルとなる量であることが特に好ましい。また、カチオン基導入剤(c-1)の量は、より自己乳化性に優れ、耐食性、耐水性、耐ブロッキング性等の諸特性を向上した変性エポキシ樹脂を得る観点から、カチオン基導入剤(c-1)の量は、エポキシ樹脂(a)中のエポキシ基の数を1とした時のカチオン基導入剤(c-1)のカチオン性基の数が0.2~0.9となる量であることがより好ましく、0.3~0.85となる量であることが更により好ましく、0.5~0.85となる量であることが特に好ましい。
 本発明の変性エポキシ樹脂は、エポキシ樹脂が一般的に応用される様々な製品に用いられ特に限定されないが、例えば、塗料、コーティング剤、封止剤、接着剤、粘着剤、繊維集束剤、建築材料、電子部品等に用いることができる。これらの中でも、コンクリート、セメント、モルタル、各種金属、皮革、ガラス、ゴム、プラスチック、木、布、紙等に対する塗料又はコーティング剤に用いることが好ましい。
<変性エポキシ樹脂分散液>
 本発明の変性エポキシ樹脂分散液は、上述した変性エポキシ樹脂と、水と、を含有する変性エポキシ樹脂分散液である。本発明の変性エポキシ樹脂分散液中の、水の含有量は特に限定されないが、本発明の効果の観点から、変性エポキシ樹脂分散液中の水の含有量が、変性エポキシ樹脂分散液全量に対して、20~95質量%であることが好ましく、30~90質量%であることがより好ましく、40~80質量%であることが更により好ましい。また、本発明の変性エポキシ樹脂分散液中の、変性エポキシ樹脂の含有量は特に限定されないが、得られる変性エポキシ樹脂分散液の乳化安定性、耐食性、耐水性、耐ブロッキング性等の諸特性等の観点から、変性エポキシ樹脂分散液中の変性エポキシ樹脂の含有量が、変性エポキシ樹脂分散液全量に対して、0.1~60質量%であることが好ましく、1~50質量%であることがより好ましく、3~40質量%であることが更により好ましい。
 本発明の変性エポキシ樹脂分散液は、さらに、少なくとも1種の有機溶媒を含有してもよい。このような有機溶媒としては、例えば、エタノール、イソプロパノール等の低級アルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン;酢酸エチル、酢酸ブチル、アセト酢酸エチル、2-エトキシエチルアセテート等のエステル;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、テトラヒドロフラン等のエーテル;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のグリコールエーテルのエステル;エチレンカーボネート、プロピレンカーボネート等のカーボネート;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ヘキサン、イソオクタン、デカン、ドデカン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、テルペン類等が挙げられる。変性エポキシ樹脂分散液の安定性及び諸特性の観点からは、本発明の変性エポキシ樹脂分散液は、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、エチレングリコールモノブチルエーテル、N-エチルピロリドン、及びイソプロパノールからなる群から選ばれる少なくとも1種の有機溶媒を含有することが好ましく、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、及びエチレングリコールモノブチルエーテルからなる群から選ばれる少なくとも1種の有機溶媒を含有することがより好ましく、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、及びエチレングリコールモノブチルエーテルからなる群から選ばれる少なくとも1種の有機溶媒を含有することが更に好ましい。
 本発明の変性エポキシ樹脂分散液が、少なくとも1種の有機溶媒を含有するときの、変性エポキシ樹脂分散液中の有機溶媒の含有量は特に限定されないが、変性エポキシ樹脂分散液の乳化安定性及び諸特性の観点からは、変性エポキシ樹脂分散液中の有機溶媒の含有量が、変性エポキシ樹脂分散液全量に対して、0.1~30質量%であることが好ましく、0.5~20質量%であることがより好ましく、1~10質量%であることが更により好ましい。
 また、本発明の変性エポキシ樹脂分散液が、少なくとも1種の有機溶媒を含有するときの、変性エポキシ樹脂分散液中の水の含有量と有機溶媒の含有量の比は特に限定されないが、変性エポキシ樹脂分散液の安定性及び諸特性、並びに使用時の取扱い性及び環境負荷低減等の観点から、変性エポキシ樹脂分散液中の水の含有量と有機溶媒の含有量の比が、質量比で、60:40~99:1であることが好ましく、70:30~98:2であることがより好ましく、80:20~97:3であることが更により好ましい。
 本発明の変性エポキシ樹脂分散液においては、変性エポキシ樹脂が、エポキシ当量が600~6000g/eqであるエポキシ樹脂(a)と、分子量が300以上の第一級アミン化合物及び分子量が300以上の第二級アミン化合物からなる群から選ばれる少なくとも1種のアミン系化合物(b)と、を反応させて得られる変性エポキシ樹脂中間体に、分子量が300未満であるカチオン基導入剤(c-1)を反応させて得られるイオン化変性エポキシ樹脂中間体を、分子量が300未満であるアニオン性化合物(d-1)により中和して得られる、変性エポキシ樹脂である場合、有機溶媒として、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、エチレングリコールモノブチルエーテル、N-メチルピロリドン、N-エチルピロリドン、及びイソプロパノールからなる群から選ばれる少なくとも1種の有機溶媒を含有することが好ましく、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、及びエチレングリコールモノブチルエーテルからなる群から選ばれる少なくとも1種の有機溶媒を含有することがより好ましく、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、及びエチレングリコールモノブチルエーテルからなる群から選ばれる少なくとも1種の有機溶媒を含有することが更に好ましい。
 また、本発明の変性エポキシ樹脂分散液においては、変性エポキシ樹脂が、エポキシ当量が600~6000g/eqであるエポキシ樹脂(a)と、分子量が300以上の第一級アミン化合物及び分子量が300以上の第二級アミン化合物からなる群から選ばれる少なくとも1種のアミン系化合物(b)と、を反応させて得られる変性エポキシ樹脂中間体に、分子量が300未満であるアニオン基導入剤(c-2)を反応させて得られるイオン化変性エポキシ樹脂中間体を、分子量が300未満であるカチオン性化合物(d-2)により中和して得られる、変性エポキシ樹脂である場合、有機溶媒として、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、エチレングリコールモノブチルエーテル、N-メチルピロリドン、N-エチルピロリドン、及びイソプロパノールからなる群から選ばれる少なくとも1種の有機溶媒を含有することが好ましく、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、及びエチレングリコールモノブチルエーテルからなる群から選ばれる少なくとも1種の有機溶媒を含有することがより好ましく、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、及びエチレングリコールモノブチルエーテルからなる群から選ばれる少なくとも1種の有機溶媒を含有することが更に好ましい。
 本発明の変性エポキシ樹脂分散液は、エポキシ樹脂が一般的に応用される様々な製品に用いられ特に限定されないが、例えば、塗料、コーティング剤、表面処理剤、封止剤、接着剤、粘着剤、繊維集束剤、建築材料、電子部品等に用いることができる。これらの中でも、コンクリート、セメント、モルタル、各種金属、皮革、ガラス、ゴム、プラスチック、木、布、紙等に対する塗料、コーティング剤又は表面処理剤に用いることが好ましい。
 本発明の変性エポキシ樹脂分散液を、塗料、コーティング剤又は表面処理剤に用いる場合、変性エポキシ樹脂分散液中を含む塗料、コーティング剤又は表面処理剤中の、変性エポキシ樹脂の含有量が、塗料、コーティング剤又は表面処理剤全量に対して0.1~90質量%であることが好ましく、0.5~70質量%であることがより好ましく、1~50質量%であることが更により好ましい。
 以下本発明を実施例により、具体的に説明するが、本発明は、これらの例によって何ら限定されるものではなく、また本発明の範囲を逸脱しない範囲で変化させてもよい。尚、以下の実施例等において%は特に記載が無い限り質量基準である。
<エポキシ樹脂の製造1>
 ジムロート、攪拌羽根、窒素ラインを装着したセパラブル丸底フラスコに、ビスフェノールA型エポキシ樹脂(エポキシ当量:190g/eq)745.5g、ビスフェノールA272.6g、触媒としてトリフェニルホスフィン0.27gを仕込み混合した。その後、120℃で6時間反応させることで、ビスフェノールA型のエポキシ樹脂a-1を得た。得られたエポキシ樹脂a-1のエポキシ当量は631g/eqであった。
<エポキシ樹脂の製造2>
 ジムロート、攪拌羽根、窒素ラインを装着したセパラブル丸底フラスコに、ビスフェノールA型エポキシ樹脂(エポキシ当量:190g/eq)711.7g、ビスフェノールA308.5g、触媒としてトリフェニルホスフィン0.19gを仕込み混合した。その後、120℃で6時間反応させることで、ビスフェノールA型のエポキシ樹脂a-2を得た。得られたエポキシ樹脂a-2のエポキシ当量は920g/eqであった。
<エポキシ樹脂の製造3>
 ジムロート、攪拌羽根、窒素ラインを装着したセパラブル丸底フラスコに、ビスフェノールA型エポキシ樹脂(エポキシ当量:190g/eq)711.7g、ビスフェノールA366.0g、触媒としてトリフェニルホスフィン0.30gを仕込み混合した。その後、140℃で6時間反応させることで、ビスフェノールA型のエポキシ樹脂a-3を得た。得られたエポキシ樹脂a-3のエポキシ当量は1795g/eqであった。
<エポキシ樹脂の製造4>
 ジムロート、攪拌羽根、窒素ラインを装着したセパラブル丸底フラスコに、ビスフェノールA型エポキシ樹脂(エポキシ当量:190g/eq)785.7g、ビスフェノールA215.2g、触媒としてトリフェニルホスフィン0.21gを仕込み混合した。その後、120℃で6時間反応させることで、ビスフェノールA型のエポキシ樹脂a-4を得た。得られたエポキシ樹脂a-4のエポキシ当量は464g/eqであった。
 本発明の変性エポキシ樹脂及び変性エポキシ樹脂分散液を製造する際に使用した原料を以下に示す。
<エポキシ樹脂(a)>
・エポキシ樹脂a-1
 エポキシ樹脂の製造1で得られた、エポキシ当量が631g/eqであるエポキシ樹脂
・エポキシ樹脂a-2
 エポキシ樹脂の製造2で得られた、エポキシ当量が920g/eqであるエポキシ樹脂
・エポキシ樹脂a-3
 エポキシ樹脂の製造3で得られた、エポキシ当量が1795g/eqであるエポキシ樹脂
・エポキシ樹脂a-4(比較例用化合物)
 エポキシ樹脂の製造4で得られた、エポキシ当量が464g/eqであるエポキシ樹脂
<アミン系化合物(b)>
・アミン系化合物b-1
 一般式(1)で表され、Xがメチル基であり、aの値(平均値)が19であり、bの値(平均値)が3であり、cの値が0であり、重量平均分子量が1041であるポリエーテルアミン(ジェファーミン(登録商標)M-1000、Huntsman社製)
・アミン系化合物b-2
 一般式(1)で表され、Xがメチル基であり、aの値(平均値)が58であり、bの値(平均値)が8であり、cの値が0であり、重量平均分子量が3047であるポリエーテルアミン(ジェファーミン(登録商標)M-3085、Huntsman社製)
<カチオン基導入剤(c-1)>
・カチオン基導入剤c-1-1
 ジエタノールアミン
・カチオン基導入剤c-1-2
 2-エチルヘキシルアミン
・カチオン基導入剤c-1-3
 ベンジルアミン
・カチオン基導入剤c-1-4
 モノエタノールアミン
・カチオン基導入剤c-1-5
 ジシクロヘキシルアミン
・カチオン基導入剤c-1-6
 N-メチルベンジルアミン
・カチオン基導入剤c-1-7
 ジブチルアミン
<アニオン基導入剤(c-2)>
・アニオン基導入剤c-2-1
 リン酸
・アニオン基導入剤c-2-2
 酢酸
・アニオン基導入剤c-2-3
 乳酸
<アニオン性化合物(d-1)>
・アニオン性化合物d-1-1
 リン酸
・アニオン性化合物d-1-2
 酢酸
・アニオン性化合物d-1-3
 ギ酸
・アニオン性化合物d-1-4
 ホウ酸
<カチオン性化合物(d-2)>
・カチオン性化合物d-2-1
 トリエチルアミン
・カチオン性化合物d-2-2
 ジメチルアミノエタノール
<有機溶媒>
・有機溶媒1
 プロピレングリコールモノメチルエーテル
・有機溶媒2
 ジエチレングリコールジメチルエーテル
・有機溶媒3
 エチレングリコールモノブチルエーテル
<実施例1>
 エポキシ樹脂a-1(エポキシ樹脂当量631g/eq)255.0gに、溶媒としてプロピレングリコールモノメチルエーテル85.0gを添加し、120℃で1時間攪拌した。続いて、アミン系化合物として一般式(1)で表され、Xがメチル基であり、aの値(平均値)が19であり、bの値(平均値)が3であり、cの値が0であり、重量平均分子量が1041であるポリエーテルアミン(ジェファーミン(登録商標)M-1000、Huntsman社製)50.0gと、カチオン基導入剤としてジエタノールアミン30.0gを加え、120℃で4時間反応させることで、イオン化変性エポキシ樹脂中間体1を得た。続いて、アニオン性化合物としてリン酸16.7gを加えて中和することにより、変性エポキシ樹脂1を得た。その後、水735.0gを添加し、ホモミキサーを用いて攪拌することにより、変性エポキシ樹脂分散液1(変性エポキシ樹脂の含有量は30質量%)を得た。変性エポキシ樹脂1及び変性エポキシ樹脂分散液1の製造に用いた原料の組成を表1に示す。なお、表中の数値は、用いた各原料の質量(g)を表す。
<実施例2>
 エポキシ樹脂a-1(エポキシ樹脂当量631g/eq)255.0gに、溶媒としてプロピレングリコールモノメチルエーテル85.0gを添加し、120℃で1時間攪拌した。続いて、アミン系化合物として一般式(1)で表され、Xがメチル基であり、aの値(平均値)が19であり、bの値(平均値)が3であり、cの値が0であり、重量平均分子量が1041であるポリエーテルアミン(ジェファーミン(登録商標)M-1000、Huntsman社製)50.0gを加え、120℃で6時間反応させることで、変性エポキシ樹脂中間体2を得た。続いて、アニオン基導入剤としてリン酸16.6gを加え、80℃で1時間反応させることで、イオン化変性エポキシ樹脂中間体2を得た。続いて、カチオン性化合物として、トリエチルアミン11.5gを加えて中和することにより、変性エポキシ樹脂2を得た。その後、水650.0gを添加し、ホモミキサーを用いて攪拌することにより、変性エポキシ樹脂分散液2(変性エポキシ樹脂の含有量は30質量%)を得た。変性エポキシ樹脂2及び変性エポキシ樹脂分散液2の製造に用いた原料の組成を表1に示す。なお、表中の数値は、用いた各原料の質量(g)を表す。
<実施例3>
 エポキシ樹脂a-1(エポキシ樹脂当量631g/eq)255.0gに、溶媒としてプロピレングリコールモノメチルエーテル85.0gを添加し、120℃で1時間攪拌した。続いて、アミン系化合物として一般式(1)で表され、Xがメチル基であり、aの値(平均値)が19であり、bの値(平均値)が3であり、cの値が0であり、重量平均分子量が1041であるポリエーテルアミン(ジェファーミン(登録商標)M-1000、Huntsman社製)50.0gと、カチオン基導入剤として2-エチルヘキシルアミン18.5gを加え、140℃で6時間反応させることで、イオン化変性エポキシ樹脂中間体3を得た。続いて、アニオン性化合物として酢酸17.0gを加えて中和することにより、変性エポキシ樹脂3を得た。その後、水710.0gを添加し、ホモミキサーを用いて攪拌することにより、変性エポキシ樹脂分散液3(変性エポキシ樹脂の含有量は30質量%)を得た。変性エポキシ樹脂3及び変性エポキシ樹脂分散液3の製造に用いた原料の組成を表1に示す。なお、表中の数値は、用いた各原料の質量(g)を表す。
<実施例4>
 エポキシ樹脂a-1(エポキシ樹脂当量631g/eq)255.0gに、溶媒としてプロピレングリコールモノメチルエーテル85.0gを添加し、120℃で1時間攪拌した。続いて、アミン系化合物として一般式(1)で表され、Xがメチル基であり、aの値(平均値)が19であり、bの値(平均値)が3であり、cの値が0であり、重量平均分子量が1041であるポリエーテルアミン(ジェファーミン(登録商標)M-1000、Huntsman社製)50.0gと、カチオン基導入剤としてベンジルアミン15.3gを加え、140℃で6時間反応させることで、イオン化変性エポキシ樹脂中間体4を得た。続いて、アニオン性化合物としてギ酸13.3gを加えて中和することにより、変性エポキシ樹脂4を得た。その後、水695.0gを添加し、ホモミキサーを用いて攪拌することにより、変性エポキシ樹脂分散液4(変性エポキシ樹脂の含有量は30質量%)を得た。変性エポキシ樹脂4及び変性エポキシ樹脂分散液4の製造に用いた原料の組成を表1に示す。なお、表中の数値は、用いた各原料の質量(g)を表す。
<実施例5>
 エポキシ樹脂a-1(エポキシ樹脂当量631g/eq)255.0gに、溶媒としてプロピレングリコールモノメチルエーテル85.0gを添加し、120℃で1時間攪拌した。続いて、アミン系化合物として一般式(1)で表され、Xがメチル基であり、aの値(平均値)が19であり、bの値(平均値)が3であり、cの値が0であり、重量平均分子量が1041であるポリエーテルアミン(ジェファーミン(登録商標)M-1000、Huntsman社製)50.0gと、カチオン基導入剤としてモノエタノールアミン8.7gを加え、140℃で6時間反応させることで、イオン化変性エポキシ樹脂中間体5を得た。続いて、アニオン性化合物としてホウ酸17.7gを加えて中和することにより、変性エポキシ樹脂5を得た。その後、水690.0gを添加し、ホモミキサーを用いて攪拌することにより、変性エポキシ樹脂分散液5(変性エポキシ樹脂の含有量は30質量%)を得た。変性エポキシ樹脂5及び変性エポキシ樹脂分散液5の製造に用いた原料の組成を表1に示す。なお、表中の数値は、用いた各原料の質量(g)を表す。
<実施例6>
 エポキシ樹脂a-2(エポキシ樹脂当量920g/eq)255.0gに、溶媒としてジエチレングリコールジメチルエーテル85.0gを添加し、140℃で1時間攪拌した。続いて、アミン系化合物として一般式(1)で表され、Xがメチル基であり、aの値(平均値)が19であり、bの値(平均値)が3であり、cの値が0であり、重量平均分子量が1041であるポリエーテルアミン(ジェファーミン(登録商標)M-1000、Huntsman社製)50.0gと、カチオン基導入剤としてジシクロヘキシルアミン30.0gを加え、140℃で4時間反応させることで、イオン化変性エポキシ樹脂中間体6を得た。続いて、アニオン性化合物として酢酸9.2gを加えて中和することにより、変性エポキシ樹脂6を得た。その後、水686.0gを添加し、ホモミキサーを用いて攪拌することにより、変性エポキシ樹脂分散液6(変性エポキシ樹脂の含有量は30質量%)を得た。変性エポキシ樹脂6及び変性エポキシ樹脂分散液6の製造に用いた原料の組成を表2に示す。なお、表中の数値は、用いた各原料の質量(g)を表す。
<実施例7>
 エポキシ樹脂a-2(エポキシ樹脂当量920g/eq)255.0gに、溶媒としてジエチレングリコールジメチルエーテル85.0gを添加し、140℃で1時間攪拌した。続いて、アミン系化合物として一般式(1)で表され、Xがメチル基であり、aの値(平均値)が19であり、bの値(平均値)が3であり、cの値が0であり、重量平均分子量が1041であるポリエーテルアミン(ジェファーミン(登録商標)M-1000、Huntsman社製)50.0gを加え、140℃で4時間反応させることで、変性エポキシ樹脂中間体7を得た。続いて、アニオン基導入剤として酢酸10.0gを加え、80℃で1時間反応させることで、イオン化変性エポキシ樹脂中間体7を得た。続いて、カチオン性化合物として、ジメチルアミノエタノール10.0gを加えて中和することにより、変性エポキシ樹脂7を得た。その後、水675.0gを添加し、ホモミキサーを用いて攪拌することにより、変性エポキシ樹脂分散液7(変性エポキシ樹脂の含有量は30質量%)を得た。変性エポキシ樹脂7及び変性エポキシ樹脂分散液7の製造に用いた原料の組成を表2に示す。なお、表中の数値は、用いた各原料の質量(g)を表す。
<実施例8>
 エポキシ樹脂a-2(エポキシ樹脂当量920g/eq)255.0gに、溶媒としてジエチレングリコールジメチルエーテル85.0gを添加し、140℃で1時間攪拌した。続いて、アミン系化合物として一般式(1)で表され、Xがメチル基であり、aの値(平均値)が19であり、bの値(平均値)が3であり、cの値が0であり、重量平均分子量が1041であるポリエーテルアミン(ジェファーミン(登録商標)M-1000、Huntsman社製)50.0gと、カチオン基導入剤としてN-メチルベンジルアミン20.0gを加え、140℃で4時間反応させることで、イオン化変性エポキシ樹脂中間体8を得た。続いて、アニオン性化合物としてギ酸12.0gを加えて中和することにより、変性エポキシ樹脂8を得た。その後、水700.0gを添加し、ホモミキサーを用いて攪拌することにより、変性エポキシ樹脂分散液8(変性エポキシ樹脂の含有量は30質量%)を得た。変性エポキシ樹脂8及び変性エポキシ樹脂分散液8の製造に用いた原料の組成を表2に示す。なお、表中の数値は、用いた各原料の質量(g)を表す。
<実施例9>
 エポキシ樹脂a-2(エポキシ樹脂当量920g/eq)255.0gに、溶媒としてジエチレングリコールジメチルエーテル85.0gを添加し、140℃で1時間攪拌した。続いて、アミン系化合物として一般式(1)で表され、Xがメチル基であり、aの値(平均値)が19であり、bの値(平均値)が3であり、cの値が0であり、重量平均分子量が1041であるポリエーテルアミン(ジェファーミン(登録商標)M-1000、Huntsman社製)50.0gを加え、140℃で4時間反応させることで、変性エポキシ樹脂中間体9を得た。続いて、アニオン基導入剤として乳酸15.0gを加え、80℃で1時間反応させることで、イオン化変性エポキシ樹脂中間体9を得た。続いて、カチオン性化合物として、トリエチルアミン15.0gを加えて中和することにより、変性エポキシ樹脂9を得た。その後、水675.0gを添加し、ホモミキサーを用いて攪拌することにより、変性エポキシ樹脂分散液9(変性エポキシ樹脂の含有量は30質量%)を得た。変性エポキシ樹脂9及び変性エポキシ樹脂分散液9の製造に用いた原料の組成を表2に示す。なお、表中の数値は、用いた各原料の質量(g)を表す。
<実施例10>
 エポキシ樹脂a-3(エポキシ樹脂当量1795g/eq)255.0gに、溶媒としてエチレングリコールモノブチルエーテル85.0gを添加し、140℃で1時間攪拌した。続いて、アミン系化合物として一般式(1)で表され、Xがメチル基であり、aの値(平均値)が58であり、bの値(平均値)が8であり、cの値が0であり、重量平均分子量が3047であるポリエーテルアミン(ジェファーミン(登録商標)M-3085、Huntsman社製)53.0gと、カチオン基導入剤としてジブチルアミン13.5gを加え、140℃で6時間反応させることで、イオン化変性エポキシ樹脂中間体10を得た。続いて、アニオン性化合物としてリン酸13.5gを加えて中和することにより、変性エポキシ樹脂10を得た。その後、水660.0gを添加し、ホモミキサーを用いて攪拌することにより、変性エポキシ樹脂分散液10(変性エポキシ樹脂の含有量は30質量%)を得た。変性エポキシ樹脂10及び変性エポキシ樹脂分散液10の製造に用いた原料の組成を表3に示す。なお、表中の数値は、用いた各原料の質量(g)を表す。
<実施例11>
 エポキシ樹脂a-3(エポキシ樹脂当量1795g/eq)255.0gに、溶媒としてエチレングリコールモノブチルエーテル85.0gを添加し、140℃で1時間攪拌した。続いて、アミン系化合物として一般式(1)で表され、Xがメチル基であり、aの値(平均値)が58であり、bの値(平均値)が8であり、cの値が0であり、重量平均分子量が3047であるポリエーテルアミン(ジェファーミン(登録商標)M-3085、Huntsman社製)53.0gを加え、140℃で6時間反応させることで、変性エポキシ樹脂中間体11を得た。続いて、アニオン基導入剤としてリン酸6.0gを加え、80℃で1時間反応させることで、イオン化変性エポキシ樹脂中間体11を得た。続いて、カチオン性化合物として、ジメチルアミノエタノール6.0gを加えて中和することにより、変性エポキシ樹脂11を得た。その後、水715.0gを添加し、ホモミキサーを用いて攪拌することにより、変性エポキシ樹脂分散液11(変性エポキシ樹脂の含有量は30質量%)を得た。変性エポキシ樹脂11及び変性エポキシ樹脂分散液11の製造に用いた原料の組成を表3に示す。なお、表中の数値は、用いた各原料の質量(g)を表す。
<比較例1>
 エポキシ樹脂a-4(エポキシ樹脂当量464g/eq)255.0gに、溶媒としてプロピレングリコールモノメチルエーテル85.0gを添加し、120℃で1時間攪拌した。続いて、アミン系化合物として一般式(1)で表され、Xがメチル基であり、aの値(平均値)が19であり、bの値(平均値)が3であり、cの値が0であり、重量平均分子量が1041であるポリエーテルアミン(ジェファーミン(登録商標)M-1000、Huntsman社製)50.0gと、カチオン基導入剤としてジエタノールアミン46.0gを加え、120℃で4時間反応させることで、イオン化変性エポキシ樹脂中間体12を得た。続いて、アニオン性化合物としてリン酸20.0gを加えて中和することにより、変性エポキシ樹脂12を得た。その後、水715.0gを添加し、ホモミキサーを用いて攪拌することにより、変性エポキシ樹脂分散液12(変性エポキシ樹脂の含有量は30質量%)を得た。変性エポキシ樹脂12及び変性エポキシ樹脂分散液12の製造に用いた原料の組成を表3に示す。なお、表中の数値は、用いた各原料の質量(g)を表す。
<比較例2>
 エポキシ樹脂a-3(エポキシ樹脂当量1795g/eq)255.0gに、溶媒としてエチレングリコールモノブチルエーテル85.0gを添加し、140℃で1時間攪拌した。続いて、アミン系化合物として一般式(1)で表され、Xがメチル基であり、aの値(平均値)が58であり、bの値(平均値)が8であり、cの値が0であり、重量平均分子量が3047であるポリエーテルアミン(ジェファーミン(登録商標)M-3085、Huntsman社製)53.0gと、ジエタノールアミン12.0gを加え、120℃で4時間反応させることで、変性エポキシ樹脂13を得た。その後、水683.0gを添加し、ホモミキサーを用いて攪拌することにより、変性エポキシ樹脂分散液13(変性エポキシ樹脂の含有量は30質量%)を得た。変性エポキシ樹脂13及び変性エポキシ樹脂分散液13の製造に用いた原料の組成を表3に示す。なお、表中の数値は、用いた各原料の質量(g)を表す。
<分散性の評価>
 製造した変性エポキシ樹脂分散液1~13について、それぞれ分散性の評価を行った。具体的には、変性エポキシ樹脂分散液1~13それぞれについて、粒子径測定装置(LA-950V2、株式会社堀場製作所製)を用いて、レーザー回折/散乱法により各変性エポキシ樹脂分散液中の変性エポキシ樹脂の平均粒子径を測定した。測定された変性エポキシ樹脂の平均粒子径に基づき、下記評価基準により変性エポキシ樹脂分散液の分散性の評価を行った。評価結果をそれぞれ表1~3に示す。分散性の評価基準が△以上であれば、変性エポキシ樹脂分散液として実用性を有することを示す。
 分散性の評価基準
 ◎:平均粒子径が300nm未満
 ○:平均粒子径が300nm以上1000nm未満
 △:平均粒子径が1000nm以上10000nm未満
 ×:平均粒子径が10000nm以上、又は平均粒子径が測定できなかった
<耐食性の評価>
 製造した変性エポキシ樹脂分散液1~13について、それぞれ耐食性の評価を行った。具体的には、100mm×100mmのサンドブラスト鋼板にバーコーターにて乾燥膜厚が約100μmになるように変性エポキシ樹脂分散液1~13をそれぞれ塗布した後、25℃で5日間常温で乾燥し、試験片を作製した。続いて、各試験片を用いて、JIS K 5600-7-9(2006)に準拠して塩水噴霧試験を行った。7日間のサイクル試験後の試験片表面の塗膜について、目視で下記評価基準に基づき耐食性の評価を行った。評価結果をそれぞれ表1~3に示す。但し、変性エポキシ樹脂分散液13は、変性エポキシ樹脂分散液中で変性エポキシ樹脂が分散していないため、サンドブラスト鋼板に塗布することができず、本試験を行えなかった。耐食性の評価基準が△以上であれば、変性エポキシ樹脂分散液として実用性を有することを示す。
 耐食性の評価基準
 ◎:フクレ及びサビは見られなかった
 ○:フクレは見られなかったが、わずかにサビが見られた
 △:若干のフクレ及びサビが見られた
 ×:全面にフクレ及びサビが見られた
<耐水性の評価>
 製造した変性エポキシ樹脂分散液1~13について、それぞれ耐水性の評価を行った。具体的には、100mm×100mmのサンドブラスト鋼板にバーコーターにて乾燥膜厚が約100μmになるように変性エポキシ樹脂分散液1~13をそれぞれ塗布した後、25℃で5日間常温で乾燥し、試験片を作製した。続いて、各試験片の上に水を一滴垂らし、25℃、24時間静置した。静置後の試験片表面の塗膜の状態を目視観察し、下記評価基準に基づき耐水性の評価を行った。評価結果をそれぞれ表1~3に示す。但し、変性エポキシ樹脂分散液13は、変性エポキシ樹脂分散液中で変性エポキシ樹脂が分散していないため、サンドブラスト鋼板に塗布することができず、本試験を行えなかった。耐水性の評価基準が△以上であれば、変性エポキシ樹脂分散液として実用性を有することを示す。
 耐水性の評価基準
 ◎:試験前の透明性を保持しており、白いもや等は見られなかった
 ○:試験片表面の一部に薄く白いもやが見られた
 △:試験片表面の全面に薄く白いもやが見られた
 ×:試験片表面全体が白化していた
<耐ブロッキング性の評価>
 製造した変性エポキシ樹脂分散液1~13について、それぞれ耐ブロッキング性の評価を行った。具体的には、100mm×100mmのサンドブラスト鋼板にバーコーターにて乾燥膜厚が約100μmになるように変性エポキシ樹脂分散液1~13をそれぞれ塗布した後、25℃で5日間常温で乾燥し、2枚の試験片を作製した。次に、JIS K 5600-6(塗料一般試験方法-第5部:塗膜の機械的性質-第6節付着性(クロスカット法))に準拠して隙間間隔10mmのカッターガイドを用いて塗膜を100マスにカットした後、2枚の試験片の塗膜部分を重ね合わせ、10kgf/cm2の荷重を加えながら、60℃、相対湿度80%の恒温恒湿槽中に静置した。72時間後、重なった試験片を剥がし、2枚の試験片表面(合計200マス)の塗膜の破損状態を目視観察し、下記評価基準に基づき耐ブロッキング性の評価を行った。評価結果をそれぞれ表1~3に示す。但し、変性エポキシ樹脂分散液13は、変性エポキシ樹脂分散液中で変性エポキシ樹脂が分散していないため、サンドブラスト鋼板に塗布することができず、本試験を行えなかった。耐ブロッキング性の評価基準が△以上であれば、変性エポキシ樹脂分散液として実用性を有することを示す。
 耐ブロッキング性の評価基準
 ◎:塗膜に破損のあるマスが2マス未満だった
 ○:重ね合わせた面積全体の内、塗膜の2マス以上20マス未満が破損していた
 △:重ね合わせた面積全体の内、塗膜の20マス以上100マス未満が破損していた
 ×:重ね合わせた面積全体の内、塗膜の100マス以上が破損していた
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記の結果のように、エポキシ樹脂として、エポキシ樹脂当量が464g/eqであるエポキシ樹脂を用いて得られたエポキシ樹脂及びエポキシ樹脂分散液(比較例1)は、自己乳化性には優れていたものの、耐ブロッキング性に大きく劣るなど、諸特性が実用的ではなかった。また、エポキシ樹脂としてエポキシ樹脂当量が1795g/eqであるエポキシ樹脂を用いた場合でも、本発明のようにイオン化変性エポキシ樹脂中間体を中和して得られた変性エポキシ樹脂としない場合、得られたエポキシ樹脂及びエポキシ樹脂分散液(比較例2)は自己乳化性に劣り、分散液としたときに変性エポキシ樹脂の分散性に劣り、変性エポキシ樹脂分散液としての実用性がなかった。これに対し、本発明により得られた変性エポキシ樹脂及び変性エポキシ樹脂分散液は、自己乳化性に優れ、耐食性、耐水性、耐ブロッキング性等の諸特性に優れており、塗料、コーティング剤、表面処理剤、封止剤、接着剤、粘着剤、繊維集束剤、建築材料、電子部品等に好適に用いることができることがわかる。

Claims (8)

  1.  エポキシ当量が600~6000g/eqであるエポキシ樹脂(a)と、分子量が300以上の第一級アミン化合物及び分子量が300以上の第二級アミン化合物からなる群から選ばれる少なくとも1種のアミン系化合物(b)と、を反応させて得られる変性エポキシ樹脂中間体に、
     分子量が300未満であるカチオン基導入剤(c-1)、又は、分子量が300未満であるアニオン基導入剤(c-2)を反応させて得られるイオン化変性エポキシ樹脂中間体を、
     分子量が300未満であるアニオン性化合物(d-1)、又は、分子量が300未満であるカチオン性化合物(d-2)により中和して得られる、変性エポキシ樹脂。
  2.  アミン系化合物(b)が、分子量が300以上のポリエーテルアミン系化合物を含む、請求項1に記載の変性エポキシ樹脂。
  3.  カチオン基導入剤(c-1)が、モノエタノールアミン、ジエタノールアミン、2-エチルヘキシルアミン、ベンジルアミン、ジシクロヘキシルアミン、N-メチルベンジルアミン、及びジブチルアミンからなる群から選ばれる少なくとも1種を含む、請求項1又は2に記載の変性エポキシ樹脂。
  4.  アニオン基導入剤(c-2)が、リン酸、酢酸、乳酸、ホウ酸、及びギ酸からなる群から選ばれる少なくとも1種を含む、請求項1~3のいずれか1項に記載の変性エポキシ樹脂。
  5.  変性エポキシ樹脂中間体が、前記エポキシ樹脂(a)と前記アミン系化合物(b)とを、エポキシ樹脂(a)中のエポキシ基1モルに対してアミン系化合物(b)中のアミノ基が0.01~0.95モルとなる量で反応させて得られる変性エポキシ樹脂中間体である、請求項1~4のいずれか1項に記載の変性エポキシ樹脂。
  6.  請求項1~5のいずれか1項に記載の変性エポキシ樹脂と、水と、を含有する変性エポキシ樹脂分散液。
  7.  さらに、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、及びエチレングリコールモノブチルエーテルからなる群から選ばれる少なくとも1種の有機溶媒を含有する、請求項6に記載の変性エポキシ樹脂分散液。
  8.  エポキシ当量が600~6000g/eqであるエポキシ樹脂(a)と、分子量が300以上の第一級アミン化合物及び分子量が300以上の第二級アミン化合物からなる群から選ばれる少なくとも1種のアミン系化合物(b)とを反応させて変性エポキシ樹脂中間体を得る工程と、
     得られた変性エポキシ樹脂中間体に、分子量が300未満であるカチオン基導入剤(c-1)、又は、分子量が300未満であるアニオン基導入剤(c-2)を反応させてイオン化変性エポキシ樹脂中間体を得る工程と、
     得られたイオン化変性エポキシ樹脂中間体を、分子量が300未満であるアニオン性化合物(d-1)、又は、分子量が300未満であるカチオン性化合物(d-2)により中和する工程と、
    を含む、変性エポキシ樹脂の製造方法。
PCT/JP2021/043167 2020-11-30 2021-11-25 変性エポキシ樹脂、該変性エポキシ樹脂を含有する変性エポキシ樹脂分散液、及び変性エポキシ樹脂の製造方法 WO2022114056A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180079260.0A CN116457386A (zh) 2020-11-30 2021-11-25 改性环氧树脂、含有该改性环氧树脂的改性环氧树脂分散液、以及改性环氧树脂的制造方法
JP2022565403A JPWO2022114056A1 (ja) 2020-11-30 2021-11-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020197753 2020-11-30
JP2020-197753 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022114056A1 true WO2022114056A1 (ja) 2022-06-02

Family

ID=81754363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043167 WO2022114056A1 (ja) 2020-11-30 2021-11-25 変性エポキシ樹脂、該変性エポキシ樹脂を含有する変性エポキシ樹脂分散液、及び変性エポキシ樹脂の製造方法

Country Status (3)

Country Link
JP (1) JPWO2022114056A1 (ja)
CN (1) CN116457386A (ja)
WO (1) WO2022114056A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115717029A (zh) * 2022-12-08 2023-02-28 上海正欧实业有限公司 一种低温固化环氧地坪漆及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117560A (ja) * 1981-07-20 1984-07-06 ピ−ピ−ジ−・インダストリ−ズ・インコ−ポレイテツド 樹脂性被覆組成物の水性分散液
JPS61130328A (ja) * 1984-11-23 1986-06-18 ピーピージー・インダストリーズ・インコーポレイテツド リン酸化エポキシおよび非自己分散性樹脂よりなる水性組成物
JPS61276817A (ja) * 1985-04-18 1986-12-06 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− 非ゲル化アミン−エポキシド反応生成物およびこれを含有する塗料組成物
JPS63189419A (ja) * 1987-01-30 1988-08-05 Nippon Paint Co Ltd アニオン型変性エポキシ樹脂
JPH02503009A (ja) * 1988-01-13 1990-09-20 ザ ダウ ケミカル カンパニー 改質アドバンストエポキシ樹脂
JPH10120759A (ja) * 1996-10-16 1998-05-12 Hitachi Chem Co Ltd 変性エポキシ樹脂及び塗料
JP2003530475A (ja) * 2000-04-12 2003-10-14 アクゾ ノーベル ナムローゼ フェンノートシャップ 水性2成分架橋性組成物
JP2004359956A (ja) * 2003-06-06 2004-12-24 Byk Chem Gmbh 湿潤剤又は分散剤用エポキシド付加物及びその塩
JP2007154091A (ja) * 2005-12-07 2007-06-21 Dainippon Ink & Chem Inc 水性樹脂組成物
JP2013072073A (ja) * 2011-09-29 2013-04-22 Dic Corp アミン系硬化剤、アミン系硬化剤を含有するエポキシ樹脂組成物及びその硬化物
CN106543462A (zh) * 2016-10-17 2017-03-29 华南理工大学 一种以环氧树脂为模板的核壳纳米粒子及其制备方法与应用
US20190153295A1 (en) * 2016-06-29 2019-05-23 Dow Global Technologies Llc Method for recovering hydrocarbon fluids from a subterranean reservoir
CN111073461A (zh) * 2020-01-02 2020-04-28 万华化学集团股份有限公司 一种水性双组分环氧组合物及其制备方法和应用
CN111378095A (zh) * 2018-12-29 2020-07-07 万华化学集团股份有限公司 乳化剂制备方法及乳化剂、环氧树脂水分散体及配制方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117560A (ja) * 1981-07-20 1984-07-06 ピ−ピ−ジ−・インダストリ−ズ・インコ−ポレイテツド 樹脂性被覆組成物の水性分散液
JPS61130328A (ja) * 1984-11-23 1986-06-18 ピーピージー・インダストリーズ・インコーポレイテツド リン酸化エポキシおよび非自己分散性樹脂よりなる水性組成物
JPS61276817A (ja) * 1985-04-18 1986-12-06 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− 非ゲル化アミン−エポキシド反応生成物およびこれを含有する塗料組成物
JPS63189419A (ja) * 1987-01-30 1988-08-05 Nippon Paint Co Ltd アニオン型変性エポキシ樹脂
JPH02503009A (ja) * 1988-01-13 1990-09-20 ザ ダウ ケミカル カンパニー 改質アドバンストエポキシ樹脂
JPH10120759A (ja) * 1996-10-16 1998-05-12 Hitachi Chem Co Ltd 変性エポキシ樹脂及び塗料
JP2003530475A (ja) * 2000-04-12 2003-10-14 アクゾ ノーベル ナムローゼ フェンノートシャップ 水性2成分架橋性組成物
JP2004359956A (ja) * 2003-06-06 2004-12-24 Byk Chem Gmbh 湿潤剤又は分散剤用エポキシド付加物及びその塩
JP2007154091A (ja) * 2005-12-07 2007-06-21 Dainippon Ink & Chem Inc 水性樹脂組成物
JP2013072073A (ja) * 2011-09-29 2013-04-22 Dic Corp アミン系硬化剤、アミン系硬化剤を含有するエポキシ樹脂組成物及びその硬化物
US20190153295A1 (en) * 2016-06-29 2019-05-23 Dow Global Technologies Llc Method for recovering hydrocarbon fluids from a subterranean reservoir
CN106543462A (zh) * 2016-10-17 2017-03-29 华南理工大学 一种以环氧树脂为模板的核壳纳米粒子及其制备方法与应用
CN111378095A (zh) * 2018-12-29 2020-07-07 万华化学集团股份有限公司 乳化剂制备方法及乳化剂、环氧树脂水分散体及配制方法
CN111073461A (zh) * 2020-01-02 2020-04-28 万华化学集团股份有限公司 一种水性双组分环氧组合物及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115717029A (zh) * 2022-12-08 2023-02-28 上海正欧实业有限公司 一种低温固化环氧地坪漆及其制备方法

Also Published As

Publication number Publication date
CN116457386A (zh) 2023-07-18
JPWO2022114056A1 (ja) 2022-06-02

Similar Documents

Publication Publication Date Title
EP3170849B1 (en) Nitrogen-containing heterocyclic epoxy curing agents, compositions and methods
EP2758446B1 (en) Benzylated polyamine curing agents
US9249255B2 (en) Modified epoxy resin composition used in high solids coating
JP6526713B2 (ja) 化学装置における表面のための被覆方法
WO2009076609A2 (en) Glycidyl carbamate coatings having improved corrosion resistance
EP2917290B1 (en) Aqueous dispersions of a multifunctional primary amine, process for its preparation, and use therof
EP2961784B1 (en) Composition and method of making water borne epoxy hardener for use in two-component epoxy self levelling compounds with long pot life, fast cure and low shrinkage characteristics
SG181486A1 (en) Coating compositions
US8759457B2 (en) Epoxy resin compositions having improved low temperature cure properties and processes and intermediates for making the same
US8148451B2 (en) Production of stable water dispersion epoxy phosphate ester resins and their aqueous coating compositions
US20150240068A1 (en) Curable epoxy resin composition
EP2787017A2 (en) Epoxy resin adducts and thermosets thereof
RU2533142C2 (ru) Устойчивые при хранении эпокси-аминовые отверждаемые системы на водной основе
EP0786481B1 (en) Reactive accelerators for amine cured epoxy resins
WO2022114056A1 (ja) 変性エポキシ樹脂、該変性エポキシ樹脂を含有する変性エポキシ樹脂分散液、及び変性エポキシ樹脂の製造方法
US20150329738A1 (en) Modified epoxy resins
EP2726530B1 (en) Hybrid epoxy resin adducts
CA2917956A1 (en) Epoxy resin compositions
EP0601668B1 (en) Epoxy resin composition
CN116601236A (zh) 环氧树脂用固化剂组合物、环氧树脂组合物以及涂料
JP5493246B2 (ja) フェノール系樹脂組成物、エポキシ樹脂組成物、それらの硬化物、水性塗料、新規フェノール系樹脂、及び新規エポキシ樹脂
US20230257511A1 (en) Epoxy-amine adduct
JP2007297471A (ja) 水性エポキシ樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565403

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180079260.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21898028

Country of ref document: EP

Kind code of ref document: A1