WO2022114037A1 - 光学積層体および物品 - Google Patents

光学積層体および物品 Download PDF

Info

Publication number
WO2022114037A1
WO2022114037A1 PCT/JP2021/043096 JP2021043096W WO2022114037A1 WO 2022114037 A1 WO2022114037 A1 WO 2022114037A1 JP 2021043096 W JP2021043096 W JP 2021043096W WO 2022114037 A1 WO2022114037 A1 WO 2022114037A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
incident
index material
material layer
value
Prior art date
Application number
PCT/JP2021/043096
Other languages
English (en)
French (fr)
Inventor
智明 小林
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020237007301A priority Critical patent/KR20230043212A/ko
Priority to EP21898009.2A priority patent/EP4254022A1/en
Priority to US18/036,936 priority patent/US20240019605A1/en
Priority to CN202180074516.9A priority patent/CN116368405A/zh
Publication of WO2022114037A1 publication Critical patent/WO2022114037A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Definitions

  • the present invention relates to optical laminates and articles. This application claims priority based on Japanese Patent Application No. 2020-196902 filed in Japan on November 27, 2020, the contents of which are incorporated herein by reference.
  • Image display devices such as flat panel displays (FPDs) are widely used in mobile phones, smartphones, car navigation devices, and the like.
  • FPDs flat panel displays
  • a conventional image display device it is required to make it difficult to visually recognize color unevenness due to a viewing angle.
  • the visual sensitivity reflectance is 0.5% or less
  • the incident angle of the light A is 0.5% or less.
  • An antireflection film is described in which the ratio of the difference between the maximum value and the minimum value of (b * value difference / a * value difference) is 2 or more.
  • the optical laminate such as the antireflection film installed on the image display device does not show color unevenness even if the viewing angle of the image display device on which the optical laminate is installed is changed.
  • color unevenness difference in color tone
  • the optical laminated body installed on the image display device it is required that the color unevenness is hard to be visually recognized even if the viewing angle of the image display device is changed.
  • the present invention proposes the following means.
  • the transparent base material, the optical functional layer, and the antifouling layer are laminated in this order.
  • the a * and b * values of the reflected light in the CIE-Lab color system when light with a wavelength of 380 nm to 780 nm from the standard light source D65 is incident on the surface at an angstrom angle of 5 ° to 50 ° are a *.
  • b * An optical laminate characterized by being within the same quadrant on a plane.
  • ⁇ E * ab is the amount of change in the L * value, the a * value and the b * value in the CIE-Lab color system.
  • ⁇ L * is an incident angle of 10 ° and 20. Maximum difference between the L * value of the reflected light when incident at °, 30 °, 40 °, and 50 ° and the L * value of the reflected light when incident at an incident angle of 5 °.
  • ⁇ a * is the a * value of the reflected light when incident at incident angles of 10 °, 20 °, 30 °, 40 °, and 50 °, and incident at an incident angle of 5 °. The maximum value of the difference between the reflected light at the time and the a * value.
  • ⁇ b * is the reflected light when the reflected light is incident at incident angles of 10 °, 20 °, 30 °, 40 °, and 50 °. This is the maximum value of the difference between the b * value of the above and the b * value of the reflected light when the light is incident at an incident angle of 5 °.
  • the optical functional layer is composed of a laminated body in which a low refractive index material layer and a high refractive index material layer made of a material having a higher refractive index than the low refractive index material layer are alternately laminated.
  • a first high-refractive-index material layer having a film thickness of 7.5 nm or more, which is composed of the high-refractive-index material layer, is arranged.
  • the second low refractive index material layer having a film thickness of 85 nm to 103 nm, which is composed of the low refractive index material layer, is arranged on the antifouling layer side of the laminated body according to any one of [1] to [4].
  • the optical functional layer is composed of four layers of the first high refractive index material layer, the first low refractive index material layer, the second high refractive index material layer, and the second low refractive index material layer [5].
  • An adhesion layer is provided between the transparent substrate and the optical functional layer.
  • Optical laminate. [8] The optical laminate according to [7], wherein the adhesion layer is made of a metal oxide in an oxygen-deficient state.
  • a hard coat layer is provided between the transparent substrate and the adhesion layer.
  • the optical laminate of the present invention has a * value in the CIE-Lab color system of reflected light when light having a wavelength of 380 nm to 780 nm is incident on a surface at an incident angle of 5 ° to 50 ° by a standard light source D65. And b * values are within the same quadrant on the a * b * plane. Therefore, the optical laminate of the present invention is provided in the article, and color unevenness is less likely to be visually recognized even if the viewing angle of the article is changed. Further, since the article of the present invention includes the optical laminate of the present invention, color unevenness is less likely to be visually recognized even if the viewing angle is changed.
  • FIG. 1 is a schematic cross-sectional view showing an example of the optical laminate of the present invention.
  • FIG. 2 shows that light having a wavelength of 380 nm to 780 nm from the standard light source D65 is incident on the surface of the optical laminate of Example 1 at incident angles of 5 °, 10 °, 20 °, 30 °, 40 °, and 50 °. It is a graph which showed the a * value and b * value in the CIE-Lab color system of the reflected light when it was made.
  • FIG. 2 shows that light having a wavelength of 380 nm to 780 nm from the standard light source D65 is incident on the surface of the optical laminate of Example 1 at incident angles of 5 °, 10 °, 20 °, 30 °, 40 °, and 50 °. It is a graph which showed the a * value and b * value in the CIE-Lab color system of the reflected light when it was made.
  • FIG. 3 shows that light having a wavelength of 380 nm to 780 nm from the standard light source D65 is incident on the surface of the optical laminate of Example 2 at incident angles of 5 °, 10 °, 20 °, 30 °, 40 °, and 50 °. It is a graph which showed the a * value and b * value in the CIE-Lab color system of the reflected light when it was made.
  • FIG. 4 shows that light having a wavelength of 380 nm to 780 nm from the standard light source D65 is incident on the surface of the optical laminate of Comparative Example 1 at incident angles of 5 °, 10 °, 20 °, 30 °, 40 °, and 50 °.
  • FIG. 6 shows that light having a wavelength of 380 nm to 780 nm from the standard light source D65 is incident on the surface of the optical laminate of Example 1 at incident angles of 5 °, 10 °, 20 °, 30 °, 40 °, and 50 °. It is a graph which showed the reflectance at the time of letting.
  • FIG. 7 shows that light having a wavelength of 380 nm to 780 nm from the standard light source D65 is incident on the surface of the optical laminate of Example 2 at incident angles of 5 °, 10 °, 20 °, 30 °, 40 °, and 50 °. It is a graph which showed the reflectance at the time of letting.
  • FIG. 7 shows that light having a wavelength of 380 nm to 780 nm from the standard light source D65 is incident on the surface of the optical laminate of Example 2 at incident angles of 5 °, 10 °, 20 °, 30 °, 40 °, and 50 °. It is a graph which
  • the present inventors have solved the above-mentioned problems, and in order to obtain an optical laminate in which color unevenness (difference in hue) is difficult to be visually recognized even if the viewing angle of the article provided with the optical laminate is changed, the viewing angle of the article is obtained. Focusing on the relationship between the chromaticity (hue) of the reflected light and the chromaticity (hue) of the reflected light, we repeated diligent studies.
  • the present inventors further laminate a transparent base material, an optical functional layer, and an antifouling layer in this order as an optical laminated body, and the optical functional layer is a material having a low refractive index. Studies were repeated using a layer in which a layer and a high-refractive-index material layer made of a material having a higher refractive index than a low-refractive-index material layer were alternately laminated.
  • a high refractive index material layer having a film thickness of 7.5 nm or more and a low refractive index material layer having a film thickness of 27 nm to 37 nm are arranged in this order on the transparent substrate side of the laminated body, and the antifouling layer of the laminated body is arranged in this order.
  • a low refractive index material layer having a film thickness of 85 nm to 103 nm may be arranged on the side, and have conceived the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an example of the optical laminate of the present invention.
  • the optical laminate 1 shown in FIG. 1 is provided in an article (not shown).
  • Examples of the article include those provided with the optical laminate 1 on the surface of an image display device (not shown).
  • the optical laminate 1 shown in FIG. 1 is a transparent substrate 2, a hard coat layer 3, an adhesion layer 4a, an optical functional layer 4, and an antifouling layer 5 laminated in this order.
  • the optical functional layer 4 provided in the optical laminated body 1 of the present embodiment functions as an antireflection layer.
  • the optical functional layer 4 includes a first high refractive index material layer 41b, a first low refractive index material layer 41c, a second high refractive index material layer 42b, and a second low refractive index material layer.
  • 42c is a laminated body laminated in this order from the transparent base material 2 side.
  • FIG. 2 shows a wavelength of 380 nm to 780 nm by the standard light source D65 at incident angles of 5 °, 10 °, 20 °, 30 °, 40 °, and 50 ° with respect to the surface of an example of the optical laminate 1 of the present embodiment. It is a graph which showed the a * value and b * value in the CIE-Lab color system of the reflected light when the light is incident.
  • the a * value and the b * value indicate the chromaticity, and the larger the absolute value of the a * value and the b * value is, the larger the saturation is. That is, in FIG.
  • the color having a larger absolute value of a * value and b * value is a brighter color
  • the color having a smaller absolute value of a * value and b * value is achromatic. It is a color close to coloring.
  • the coordinates of + a * are the hues in the red direction
  • the coordinates of ⁇ a * are the hues in the green direction
  • the coordinates of + b * are the hues in the yellow direction
  • the coordinates of ⁇ b * are the hues in the blue direction.
  • the L * value, a * value, and b * value in the CIE-Lab color system are a program provided in the ultraviolet-visible-infrared spectrophotometer using an ultraviolet-visible-infrared spectrophotometer (V-550 manufactured by JASCO Corporation). It is calculated by the formula of.
  • the optical laminate 1 of the present embodiment is a in the CIE-Lab color system of reflected light when light having a wavelength of 380 nm to 780 nm is incident on a surface at an incident angle of 5 ° to 50 ° by a standard light source D65.
  • the * and b * values are within the same quadrant on the a * b * plane. Therefore, the reflected light obtained when light is incident on the optical laminate 1 of the present embodiment at an incident angle of 5 ° to 50 ° has a similar hue. Therefore, in the article in which the optical laminate 1 of the present embodiment is installed, color unevenness is less likely to be visually recognized even if the viewing angle is changed.
  • the a * value and b * value of the reflected light are less than 0. It is preferable to have.
  • all the reflected light has a blue-green hue.
  • the hue of blue-green has lower visual sensitivity than the hue of yellow-green, orange, etc., and does not easily affect the hue of the article. Therefore, when the a * value and b * value of the reflected light when incident at an incident angle of 5 ° to 50 ° are less than 0, the article having the optical laminate 1 on the surface has a viewing angle.
  • the change in hue (tendency of hue) due to the change is more difficult to be visually recognized, and the color unevenness is more difficult to be visually recognized.
  • the reflectance is lower than when the b * value is more than 0. Therefore, the optical laminate 1 has a better function as an antireflection layer.
  • the a * value of the reflected light when light is incident on the surface at an incident angle of 5 ° to 50 ° is preferably 10.0 or less in absolute value. It is more preferably 5.0 or less.
  • the absolute value of a * value is 10.0 or less, it is difficult to color the reflected light reflected by the article on which the optical laminate 1 is installed, and color unevenness due to changing the viewing angle of the article is further visually recognized. It will be difficult to do.
  • the lower limit of the absolute value of the a * value of the reflected light may be 0.
  • the b * value of the reflected light when light is incident on the surface at an incident angle of 5 ° to 50 ° is preferably 10.0 or less in absolute value. It is more preferably 6.0 or less.
  • the lower limit of the absolute value of the b * value of the reflected light may be 0.
  • the reflected light when light is incident on the surface at an incident angle of 5 ° to 50 ° has ⁇ E * ab of 10 or less represented by the following formula (1). It is preferable that it is, and it is more preferable that it is 7 or less.
  • the lower limit of ⁇ E * ab may be 0.
  • ⁇ E * ab is the amount of change in the L * value, a * value and b * value in the CIE-Lab color system.
  • ⁇ L * is the incident angles of 10 °, 20 ° and 30. It is the maximum value of the difference between the L * value of the reflected light when incident at °, 40 °, and 50 ° and the L * value of the reflected light when incident at an incident angle of 5 °.
  • ⁇ a * is the a * value of the reflected light when incident at incident angles of 10 °, 20 °, 30 °, 40 °, and 50 °, and the above when incident at an incident angle of 5 °. It is the maximum value of the difference between the reflected light and the a * value.
  • ⁇ b * is the b of the reflected light when it is incident at incident angles of 10 °, 20 °, 30 °, 40 °, and 50 °. This is the maximum value of the difference between the * value and the b * value of the reflected light when incident at an incident angle of 5 °.
  • the L * value, a * value, and b * value of the reflected light in the CIE-Lab color system when the light is incident on the surface at an incident angle of 5 ° to 50 ° are It can be adjusted by appropriately selecting the thickness of the first high refractive index material layer 41b, the thickness of the first low refractive index material layer 41c, and the thickness of the second low refractive index material layer 42c included in the optical functional layer 4.
  • the reflectance when light is incident on the surface at incident angles of 10 °, 20 °, 30 °, 40 °, and 50 ° and the incident angle of 5 ° are incident.
  • the maximum value of the difference from the reflectance at the time is preferably 1% or less in absolute value, and more preferably 0.7% or less.
  • the lower limit of the maximum value of the difference in reflectance may be 0.
  • the reflectance is calculated by using an ultraviolet-visible-infrared spectrophotometer (V-550 manufactured by JASCO Corporation) and using a calculation formula of a program provided in the ultraviolet-visible-infrared spectrophotometer.
  • the transparent base material 2 As the transparent base material 2 forming the optical laminate 1 of the present embodiment, a known one can be used.
  • the transparent base material 2 is made of a transparent material capable of transmitting light in the visible light region.
  • the "transparent material” means a material having a light transmittance of 80% or more in the visible light region.
  • a plastic film can be used as the transparent base material 2, for example.
  • a plastic film polyester resin, acetate resin, polyether sulfone resin, polycarbonate resin, polyamide resin, polyimide resin, polyolefin resin, (meth) acrylic resin, polyvinyl chloride resin, etc.
  • polyester resin polyester resin, acetate resin, polyether sulfone resin, polycarbonate resin, polyamide resin, polyimide resin, polyolefin resin, (meth) acrylic resin, polyvinyl chloride resin, etc.
  • examples thereof include polyvinylidene chloride-based resin, polystyrene-based resin, polyvinyl alcohol-based resin, polyarylate-based resin, and polyphenylene sulfide-based resin.
  • the material of the plastic film it is preferable to use any one or more selected from polyester-based resin, acetate-based resin, polycarbonate-based resin, and polyolefin-based resin, and in particular, polyethylene terephthalate (PET). ) Or triacetyl cellulose (TAC) is preferably used.
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • the transparent base material 2 may contain a reinforcing material as long as the optical characteristics of the optical laminate 1 are not impaired.
  • the reinforcing material include cellulose nanofibers and nanosilica.
  • the transparent base material 2 may be made of an inorganic material such as a glass film.
  • a surface-treated material may be used as the transparent base material 2.
  • the surface treatment method include sputtering, corona discharge, ultraviolet irradiation, electron beam irradiation, etching treatment such as chemical conversion and oxidation, and undercoating treatment.
  • a film to which an optical function and / or a physical function is imparted may be used, if necessary.
  • the film having an optical function and / or a physical function include a polarizing plate film, a phase difference compensating film, a heat ray blocking film, a conductive film, a brightness improving film, a lens sheet and the like.
  • a film having an optical function and / or a physical function may be used, for example, a film having a function such as an antistatic function.
  • the thickness of the transparent substrate 2 is preferably 25 ⁇ m or more, more preferably 40 ⁇ m or more.
  • the thickness of the transparent substrate 2 is 25 ⁇ m or more, wrinkles are less likely to occur even if stress is applied to the optical laminate 1, which is preferable.
  • the thickness of the transparent base material 2 is 25 ⁇ m or more, wrinkles are less likely to occur on the transparent base material 2 even if the hard coat layer 3 is formed on the transparent base material 2 when the optical laminate 1 is manufactured. Can be manufactured with good yield.
  • the thickness of the transparent base material 2 is 25 ⁇ m or more, it is preferable that the optical laminate 1 in the process of being manufactured is not easily curled and easy to handle when the optical laminate 1 is manufactured.
  • the thickness of the transparent substrate 2 is preferably 1 mm or less, more preferably 500 ⁇ m or less, and particularly preferably 300 ⁇ m or less.
  • the thickness of the transparent base material 2 is 1 mm or less, the substantial optical transparency of the transparent base material 2 can be ensured.
  • a film can be formed on the transparent base material 2 by either the single-wafer method or the roll-to-roll method.
  • the thickness of the transparent base material 2 is 300 ⁇ m or less
  • the optical laminate 1 is manufactured by the roll-to-roll method, the length of the transparent base material 2 wound in a roll shape can be increased at one time. You can make it longer.
  • the productivity is excellent when the optical laminate 1 is continuously produced by the roll-to-roll method. Further, when the thickness of the transparent base material 2 is 300 ⁇ m or less, the optical laminate 1 has good quality, which is preferable.
  • the thickness of each layer of the optical laminate 1 is preferably measured in cross section using a transmission electron microscope (TEM).
  • the method for producing the transparent substrate 2 is not particularly limited, and the transparent substrate 2 can be produced by a known production method.
  • the surface of the transparent base material 2 may be washed, if necessary, before the hard coat layer 3 is formed on the transparent base material 2.
  • Examples of the method for cleaning the surface of the transparent substrate 2 include solvent cleaning and ultrasonic cleaning. Cleaning the transparent base material 2 is preferable because the surface of the transparent base material 2 can be dust-removed and the surface is cleaned.
  • the optical laminate 1 of the present embodiment includes a hard coat layer 3 between the transparent base material 2 and the adhesion layer 4a.
  • the hard coat layer 3 known ones can be used, and examples thereof include those containing a binder resin and a filler.
  • the hard coat layer 3 may contain a known material such as a leveling agent, if necessary, in addition to the binder resin and the filler.
  • the binder resin contained in the hard coat layer 3 it is preferable to use a transparent material.
  • the binder resin for example, an ionizing radiation curable resin, a thermoplastic resin, a thermosetting resin and the like can be used. Only one kind of binder resin may be used, or two or more kinds of binder resins may be mixed and used.
  • the ionizing radiation curable resin examples include ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone, urethane acrylate, polyethylene glycol diacrylate, pentaerythritol triacrylate (PETA), and dipenta.
  • ethyl (meth) acrylate ethylhexyl (meth) acrylate
  • styrene methylstyrene
  • N-vinylpyrrolidone urethane acrylate
  • polyethylene glycol diacrylate pentaerythritol triacrylate
  • PETA pentaerythritol triacrylate
  • dipenta examples thereof include erythritol hexaacrylate (DPHA) and pentaerythritol tetraacrylate (PETTA).
  • ionizing radiation curable resin one obtained by modifying the above-mentioned compound with PO (propylene oxide), one modified with EO (ethylene oxide), one modified with CL (caprolactone), or the like may be used.
  • PO propylene oxide
  • EO ethylene oxide
  • CL caprolactone
  • (meth) acrylate means methacrylate and / or acrylate.
  • the hard coat layer 3 may contain a known ionizing radiation curing initiator.
  • the ionizing radiation curable resin contains an ultraviolet curable resin such as (meth) acrylate, it is preferable to include an ultraviolet curable initiator such as hydroxy-cyclohexyl-phenyl-ketone.
  • thermoplastic resin examples include styrene resin, (meth) acrylic resin, vinyl acetate resin, vinyl ether resin, halogen-containing resin, alicyclic olefin resin, polycarbonate resin, polyester resin, and polyamide resin. , Cellulose derivatives, silicone resins and the like.
  • thermosetting resin examples include phenol resin, urea resin, diallyl phthalate resin, melamine resin, guanamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, melamine-urea cocondensation resin, and silicon resin.
  • thermosetting resin examples include polysiloxane resins (including so-called silsesquioxane such as cage-like and ladder-like).
  • various fillers are selected according to the application of the optical laminate 1 from the viewpoints of antiglare property of the optical laminate 1, adhesion to the adhesion layer 4a, and anti-blocking property.
  • known particles such as silica (Si oxide) particles, alumina (aluminum oxide) particles, and organic fine particles can be used.
  • organic fine particles made of acrylic resin or the like As the filler.
  • the particle size of the organic fine particles is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and particularly preferably 3 ⁇ m or less.
  • silica particles As the filler.
  • the particle size of the silica particles is preferably 800 nm or less, and particularly preferably 100 nm or less.
  • the thickness of the hard coat layer 3 is preferably, for example, 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more.
  • the thickness of the hard coat layer 3 is preferably 100 ⁇ m or less.
  • the hard coat layer 3 may be composed of a single layer or may be a stack of a plurality of layers.
  • the manufacturing method of the hard coat layer 3 is not particularly limited, and can be manufactured by using a known manufacturing method.
  • the hard coat layer 3 can be manufactured by a coating method.
  • the coating method include a method in which a coating liquid obtained by dissolving and / or dispersing the material to be the hard coat layer 3 in a solvent is applied onto the transparent substrate 2 by a known method and cured. ..
  • a known solvent can be used, and it can be appropriately determined depending on the material to be the hard coat layer 3.
  • the adhesion layer 4a is provided between the hard coat layer 3 provided on the transparent substrate 2 and the optical functional layer 4.
  • the close contact layer 4a has a function of bringing the optical functional layer 4 and the hard coat layer 3 into close contact with each other.
  • the adhesion layer 4a is a metal such as silicon, nickel, chromium, tin, gold, silver, platinum, zinc, titanium, tungsten, aluminum, zirconium, palladium; an alloy of these metals; an oxide of these metals, a foot. It is preferably composed of any one or more selected from compounds, sulfides or nitrides.
  • a metal having a melting point of 700 ° C. or lower as the material of the adhesion layer 4a. If the adhesion layer 4a is made of a metal having a high melting point of more than 700 ° C., the metal that has reached the surface of the hardcoat layer 3 by sputtering does not spread sufficiently and tends to be localized.
  • the close contact layer 4a may contain an inorganic oxide having a non-stoichiometric composition. In this case, it is preferably made of a metal oxide in an oxygen-deficient state, and particularly preferably made of SiO x (Si oxide) as a main component.
  • the adhesion layer 4a may be composed of only Si oxide, or may contain another element in the range of 50% by mass or less, preferably 10% by mass or less, separately from the Si oxide. May be good.
  • Na may be contained in order to improve the durability of the adhesion layer 4a, or one or more selected from Zr, Al, and N in order to improve the hardness of the adhesion layer 4a. It may contain the element of.
  • the thickness of the adhesion layer 4a is preferably, for example, 1 nm to 10 nm, and more preferably 1 nm to 5 nm.
  • the thickness of the adhesion layer 4a is within the above range, the function of bringing the optical functional layer 4 and the hard coat layer 3 into close contact can be obtained more effectively.
  • the thickness of the adhesion layer 4a is 1 nm or more, the adhesion between the adhesion layer 4a and the hard coat layer 3 becomes better.
  • the thickness of the adhesion layer is 10 nm or less, the optical laminate 1 is more difficult to visually recognize the color unevenness due to the change in the viewing angle of the article when it is provided on the article.
  • the manufacturing method of the adhesion layer 4a is not particularly limited, and can be manufactured by using a known manufacturing method.
  • the adhesion layer 4a can be formed by, for example, a spattering method.
  • the optical functional layer 4 includes a low refractive index material layer (first low refractive index material layer 41c and second low refractive index material layer 42c in the example shown in FIG. 1) and a material having a higher refractive index than the low refractive index material layer.
  • the high-refractive-index material layer (first high-refractive-index material layer 41b and second high-refractive-index material layer 42b in the example shown in FIG. 1) is composed of a laminated body that is alternately laminated.
  • the optical functional layer 4 diffuses the light incident on the optical laminate 1 from the antifouling layer 5 side.
  • the optical laminate 1 functions as an antireflection layer that prevents light incident on the optical laminate 1 from the antifouling layer 5 side from being emitted in one direction as reflected light.
  • the optical functional layer 4 has a first high refractive index material layer 41b, a first low refractive index material layer 41c, and a second high refractive index material in order from the transparent substrate 2 side.
  • a laminated body in which four layers of the layer 42b and the second low refractive index material layer 42c are laminated is taken as an example.
  • the total number of layers of the low-refractive index material layer and the high-refractive index material layer forming the optical functional layer 4 is not limited to four, but may be three or less, or five or more. However, it can be appropriately determined according to the optical characteristics required for the optical functional layer 4.
  • the total number of layers of the low refractive index material layer and the high refractive index material layer forming the optical functional layer 4 is preferably 4 to 10 layers, preferably 4 to 6 layers. It is more preferable, and it is most preferable that there are four layers.
  • the optical functional layer 4 is a laminated body in which the above four layers are laminated, the number of laminated layers is small and the thickness is thin, so that the productivity is excellent as compared with the case where the number of laminated layers is five or more.
  • the optical functional layer 4 is a laminated body in which the above four layers are laminated, the optical laminated body 1 has an even lower reflectance as compared with the case where the number of laminated layers is three or less.
  • the hue of the reflected light can be made closer to neutral (achromatic color). Further, when the optical functional layer 4 is a laminated body in which the above four layers are laminated, when the optical functional layer 4 is provided on the article, the color unevenness is more difficult to be visually recognized even if the viewing angle of the article is changed. It becomes 1.
  • the optical functional layer 4 includes two or more low refractive index material layers (first low refractive index material layer 41c and second low refractive index material layer 42c in the example shown in FIG. 1), a plurality of low refractive index material layers. May all have the same refractive index, or some or all of them may have different refractive indexes.
  • the optical functional layer 4 includes two or more high refractive index material layers (first high refractive index material layer 41b and second high refractive index material layer 42b in the example shown in FIG. 1), a plurality of high refractive index material layers. May all have the same refractive index, or some or all of them may have different refractive indexes.
  • the refractive index of the low refractive index material layer and the high refractive index material layer can be confirmed by using a spectroscopic ellipsometer.
  • the refractive index of the first low refractive index material layer 41c and the second low refractive index material layer 42c is preferably 1.20 to 1.60, and more preferably 1.30 to 1.50.
  • the first low refractive index material layer 41c and the second low refractive index material layer 42c preferably contain SiO 2 (refractive index 1.46) as a main component.
  • the first low refractive index material layer 41c and / or the second low refractive index material layer 42c may be composed of only SiO 2 , and may be separated from SiO 2 in a range of 50% by mass or less, preferably 10. It may contain another element in the range of mass% or less.
  • Na may be contained in order to improve the durability of the first low refractive index material layer 41c and / or the second low refractive index material layer 42c, and the first low refractive index material layer 41c may be contained. And / or may contain one or more elements selected from Zr, Al, N to improve the hardness of the second low index of refraction material layer 42c.
  • the refractive index of the first high refractive index material layer 41b and the second high refractive index material layer 42b is preferably 2.00 to 2.60, and more preferably 2.10 to 2.45.
  • Examples of the materials of the first high refractive index material layer 41b and the second high refractive index material layer 42b include niobium pentoxide (Nb 2 O 5 , refractive index 2.33) and titanium oxide (TiO 2 , refractive index 2.
  • the first high-refractive index material layer 41b and the second high-refractive index material layer 42b are preferably made of niobium pentoxide.
  • the thickness of the first low refractive index material layer 41c, the second low refractive index material layer 42c, the first high refractive index material layer 41b, and the second high refractive index material layer 42b constituting the optical functional layer 4 is the optical functional layer.
  • Each can be appropriately determined according to the optical characteristics required in 4.
  • a in the CIE-Lab color system of the reflected light when light having a wavelength of 380 nm to 780 nm by the standard light source D65 is incident on the surface at an incident angle of 5 ° to 50 °.
  • the * value and b * value of the first low refractive index material layer 41c, the second low refractive index material layer 42c, and the first high refractive index material layer 41b so as to be within the same quadrant on the a * b * plane.
  • the film thickness is preferably the dimensions shown below.
  • the thickness of the first high-refractive index material layer 41b arranged on the transparent substrate 2 side of the optical functional layer 4 (laminated body) is preferably 7.5 nm or more, preferably 7.5 nm to 10 nm. More preferred.
  • the film thickness of the first low refractive index material layer 41c arranged in contact with the first high refractive index material layer 41b is preferably 27 nm to 37 nm, and more preferably 28 nm to 33 nm.
  • the film thickness of the second low refractive index material layer 42c arranged on the antifouling layer 5 side of the optical functional layer 4 is preferably 85 nm to 103 nm, and more preferably 90 nm to 100 nm.
  • the thickness of the second high refractive index material layer 42b arranged between the first low refractive index material layer 41c and the second low refractive index material layer 42c is 105 nm or more. It is preferably 120 nm, more preferably 110 nm to 115 nm.
  • the total thickness of the optical functional layer 4 in the optical laminate 1 of the present embodiment is preferably 230 nm to 270 nm, more preferably 240 nm to 260 nm.
  • the optical laminate 1 has a lower reflectance and the hue of the reflected light can be made closer to neutral (achromatic color).
  • the optical laminated body 1 becomes one in which color unevenness is more difficult to be visually recognized even if the viewing angle of the article is changed when the article is provided.
  • the optical laminated body 1 becomes one in which color unevenness is more difficult to be visually recognized even if the viewing angle of the article is changed when the optical functional layer 4 is provided on the article. Further, when the total thickness of the optical functional layer 4 is 270 nm or less, the productivity is good.
  • the method for manufacturing the optical functional layer 4 is not particularly limited, and the optical functional layer 4 can be manufactured by using a known manufacturing method.
  • the optical functional layer 4 is, for example, on the close contact layer 4a by a sputtering method, a first high refractive index material layer 41b, a first low refractive index material layer 41c, a second high refractive index material layer 42b, and a second low refractive index. It can be manufactured by a method of forming the material layer 42c in this order.
  • both the close contact layer 4a and the optical functional layer 4 are formed by a sputtering method, they can be formed continuously, which is preferable.
  • the optical functional layer 4 is formed by a sputtering method, it is denser than that formed by a general vacuum vapor deposition method or a coating method. As a result, the optical laminate 1 having good durability and having a water vapor permeability of 1.0 g / m 2 / day or less is obtained.
  • the antifouling layer 5 is provided on the surface of the optical functional layer 4 opposite to the hard coat layer 3.
  • the antifouling layer 5 prevents the optical laminate 1 from being soiled and suppresses the wear of the optical functional layer 4.
  • the antifouling layer 5 preferably contains a fluorine-based compound.
  • a fluorine-based compound for example, a compound composed of a fluorine-modified organic group and a reactive silyl group such as alkoxysilane is preferably used. Examples of such a compound include perfluorodecyltriethoxysilane (FDTS) and the like.
  • Examples of commercially available products suitable as materials for the antifouling layer 5 include Optool DSX (manufactured by Daikin Industries, Ltd.), KY-1203 (manufactured by Shin-Etsu Chemical Co., Ltd.), KY-1901 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like. Will be.
  • the antifouling layer 5 may contain a light stabilizer, an ultraviolet absorber, a colorant, an antistatic agent, a lubricant, a leveling agent, an antifoaming agent, an antioxidant, a flame retardant, an infrared absorber, and a surfactant, if necessary. Additives such as may be included.
  • the thickness of the antifouling layer 5 can be, for example, 1 to 20 nm, preferably 3 to 10 nm.
  • the method for producing the antifouling layer 5 is not particularly limited, and can be produced by a known production method, and is appropriately selected in consideration of the required durability and cost.
  • the antifouling layer 5 can be manufactured by a coating method or a thin-film deposition method. Examples of the coating method include a method in which a coating liquid in which a material to be an antifouling layer 5 is dissolved in a solvent is applied onto the optical functional layer 4 by a known method and dried.
  • the antifouling layer 5 is formed by the thin-film deposition method, for example, it is denser and has excellent adhesion to the optical functional layer 4 as compared with the antifouling layer formed by the coating method. Therefore, the antifouling layer 5 formed by the thin-film deposition method has high wear resistance.
  • one or more layers may be provided on the surface of the transparent base material 2 opposite to the hard coat layer 3, if necessary.
  • An adhesive layer for adhering the optical laminate 1 to another member such as the surface of an image display device may be provided on the surface of the transparent base material 2 opposite to the hard coat layer 3.
  • the pressure-sensitive adhesive layer and other optical films may be laminated in this order. Examples of other optical films include a polarizing film, a retardation compensation film, a 1/2 wave plate, and a 1/4 wave plate. Further, the other optical film described above may be formed in contact with the surface of the transparent substrate 2 opposite to the hard coat layer 3.
  • the transparent base material 2, the optical functional layer 4, and the antifouling layer 5 are laminated in this order, and light having a wavelength of 380 nm to 780 nm by the standard light source D65 is directed to the surface.
  • the a * and b * values of the reflected light in the CIE-Lab color system when incident at an incident angle of 5 ° to 50 ° are within the same quadrant on the a * b * plane. Therefore, the optical laminate 1 of the present embodiment is provided on the article, and color unevenness is less likely to be visually recognized even if the viewing angle of the article is changed.
  • the article of the present embodiment includes the optical laminate 1 of the present embodiment.
  • the optical laminate 1 may be provided on the surface of the image display device.
  • the image display device include a flat panel display (FPD) such as a liquid crystal display panel and an organic electroluminescence (EL) display panel.
  • FPD flat panel display
  • EL organic electroluminescence
  • the surface of the image display device to which the optical laminate 1 of the present embodiment is attached includes, for example, a mobile phone screen, a smartphone screen, a tablet terminal screen, a personal computer display, a navigation system screen, and an operation of a game machine.
  • Examples include screens of information input terminals such as screens, operation screens of operation support devices such as aircraft and trains, and lightning display boards.
  • the image display device to which the optical laminate 1 is attached is preferably an image display device that can be visually recognized at various viewing angles when used, and in particular, a navigation system screen, a mobile phone screen, or a smartphone. It is preferably a screen.
  • the article of the present embodiment is not limited to the optical laminate 1 provided on the surface of the image display device.
  • a window glass, goggles, a light receiving surface of a solar cell, a glass table surface, an instrument panel, an optical sensor surface, a helmet visor, a mirror, a head mount display, and a lenticular in which the optical laminate 1 of the present embodiment is provided on the surface.
  • Examples include lenses such as lenses.
  • the surface provided with the optical laminate 1 may be flat or curved.
  • the article of the present embodiment includes the optical laminate 1 of the present embodiment, color unevenness is less likely to be visually recognized even if the viewing angle is changed.
  • the article of the present embodiment has the optical laminate 1 provided on the surface of the image display device, it is preferable that the color unevenness of the displayed image is difficult to be visually recognized even if the viewing angle is changed.
  • the optical laminate 1 shown in FIG. 1 was manufactured by the method shown below. First, as the transparent substrate 2, a film made of polyethylene terephthalate (PET) having a thickness of 80 ⁇ m was prepared. Then, a hard coat layer 3 having a thickness of 5 ⁇ m was formed on the transparent substrate 2. The hard coat layer 3 was formed by a method in which a coating liquid having the composition shown in Table 1 was applied onto the transparent substrate 2 using a bar coater, irradiated with ultraviolet rays, photopolymerized, and cured.
  • PET polyethylene terephthalate
  • a Si target and an Nb target are used as sputtering targets on the hard coat layer 3, and an adhesion layer 4a and an optical functional layer 4 are subjected to a reactive sputtering method using a mixed gas of Ar gas and O 2 gas. And were formed continuously. That is, on the hard coat layer 3, the adhesion layer 4a having the film thickness shown in Table 2 and made of Si oxide (SiO x ) which may be oxygen deficient, and Nb 2 O 5 having the film thickness shown in Table 2.
  • a first high refractive index material layer 41b composed of a first high refractive index material layer 41b composed of, a first low refractive index material layer 41c composed of SiO 2 having a film thickness shown in Table 2, and a second composed of Nb 2 O 5 having a film thickness shown in Table 2.
  • the high refractive index material layer 42b and the second low refractive index material layer 42c made of SiO 2 having the film thickness shown in Table 2 were formed in this order.
  • a first high refractive index material layer 41b having a refractive index of 2.3756 was used, and a first low refractive index material layer 41c having a refractive index of 1.4739 was used.
  • Example 2 As the 2 high refractive index material layer 42b, a material having a refractive index of 2.3756 was used, and as the second low refractive index material layer 42c, a material having a refractive index of 1.4739 was used.
  • Example 2 a first high refractive index material layer 41b having a refractive index of 2.3756 is used, and a first low refractive index material layer 41c having a refractive index of 1.4739 is used, and the second high is used.
  • a refractive index material layer 42b having a refractive index of 2.3756 was used, and a second low refractive index material layer 42c having a refractive index of 1.4739 was used.
  • Comparative Example 1 a first high refractive index material layer 41b having a refractive index of 2.3756 was used, and a first low refractive index material layer 41c having a refractive index of 1.4739 was used, and the second high was used.
  • a refractive index material layer 42b having a refractive index of 2.3756 was used, and a second low refractive index material layer 42c having a refractive index of 1.4739 was used.
  • Comparative Example 2 a first high refractive index material layer 41b having a refractive index of 2.3756 was used, and a first low refractive index material layer 41c having a refractive index of 1.4739 was used, and the second high was used.
  • a refractive index material layer 42b having a refractive index of 2.3756 was used, and a second low refractive index material layer 42c having a refractive index of 1.4739 was used.
  • the refractive index was confirmed at a wavelength of 550 nm using a spectroscopic ellipsometer.
  • a coating liquid was applied onto the optical functional layer 4 using a coil bar (product name: No. 579, rod No. 9, manufactured by Yasuda Seiki Seisakusho Co., Ltd.) and dried at 80 ° C. for 2 minutes.
  • An antifouling layer 5 having a film thickness of 5 nm was formed.
  • As the coating solution 0 is an alkoxysilane compound (trade name: Optool DSX, manufactured by Daikin Industries, Ltd.) having a perfluoropolyether group in a fluorine solvent (trade name: Fluorinert FC-3283: manufactured by 3M Japan Co., Ltd.).
  • a solution containing 1% by mass was used.
  • the “total film thickness” is the total film thickness of the adhesion layer 4a, the optical functional layer 4, and the antifouling layer 5.
  • the film thickness was measured in cross section using a transmission electron microscope (TEM).
  • FIG. 2 to 5 show that light having a wavelength of 380 nm to 780 nm from the standard light source D65 is incident on the surface of the optical laminate at incident angles of 5 °, 10 °, 20 °, 30 °, 40 °, and 50 °. It is a graph which showed the a * value and b * value in the CIE-Lab color system of the reflected light at the time.
  • FIG. 2 is a graph showing a * value and b * value of Example 1
  • FIG. 3 is a graph showing a * value and b * value of Example 2
  • FIG. 4 is a comparative example.
  • 1 is a graph showing an a * value and a b * value
  • FIG. 5 is a graph showing the a * value and the b * value of Comparative Example 2.
  • 6 to 9 show that light having a wavelength of 380 nm to 780 nm from the standard light source D65 is incident on the surface of the optical laminate at incident angles of 5 °, 10 °, 20 °, 30 °, 40 °, and 50 °. It is a graph which showed the reflectance at the time. 6 is a graph showing the reflectance of Example 1, FIG. 7 is a graph showing the reflectance of Example 2, and FIG. 8 is a graph showing the reflectance of Comparative Example 1. , FIG. 9 is a graph showing the reflectance of Comparative Example 2.
  • ⁇ E * ab is the amount of change in the L * value, a * value and b * value in the CIE-Lab color system.
  • ⁇ L * is the incident angles of 10 °, 20 ° and 30. It is the maximum value of the difference between the L * value of the reflected light when incident at °, 40 °, and 50 ° and the L * value of the reflected light when incident at an incident angle of 5 °.
  • ⁇ a * is the a * value of the reflected light when incident at incident angles of 10 °, 20 °, 30 °, 40 °, and 50 °, and the above when incident at an incident angle of 5 °. It is the maximum value of the difference between the reflected light and the a * value.
  • ⁇ b * is the b of the reflected light when it is incident at incident angles of 10 °, 20 °, 30 °, 40 °, and 50 °. This is the maximum value of the difference between the * value and the b * value of the reflected light when incident at an incident angle of 5 °.
  • the optical laminates of Examples 1 and 2 have a * and b * values when they are incident at an incident angle of 5 ° to 50 ° . , Both were less than 0 and were within the same quadrant on the a * b * plane. Further, as shown in Tables 3 and 4, the optical laminates of Examples 1 and 2 have ⁇ E * ab at any of the incident angles of 10 °, 20 °, 30 °, 40 °, and 50 °. It was 10 or less.
  • the optical laminate of Example 1 and Example 2 has an incident angle of 10 °, 20 °, 30 °, 40 °, or 50 °.
  • the difference ⁇ Y in the reflectance from the incident angle of 5 ° was 1% or less in absolute value.
  • FIGS. 6 and 7, the optical laminates of Examples 1 and 2 had the lowest reflectance at an incident angle of 30 °.
  • the reflected light when incident at an incident angle of 5 ° to 30 ° has an a * value and a b * value of less than 0. Is.
  • the b * value of the reflected light when incident at an incident angle of 40 ° and 50 ° was more than 0. Therefore, the a * and b * values in the optical laminate of Comparative Example 1 when incident at 5 ° to 50 ° were not within the same quadrant on the a * b * plane.
  • the optical laminate of Comparative Example 1 had a ⁇ E * ab of more than 10 when the incident angles were 40 ° and 50 °.
  • the reflected light when incident at an incident angle of 5 ° to 20 ° has an a * value and a b * value of less than 0. ..
  • the reflected light had a b * value of more than 0 when it was incident at an incident angle of 30 ° to 50 °. Therefore, the a * and b * values in the optical laminate of Comparative Example 2 when incident at 5 ° to 50 ° were not within the same quadrant on the a * b * plane.
  • the optical laminate of Comparative Example 2 had a ⁇ E * ab of more than 10 when the incident angle was 50 °.
  • the optical laminates of Comparative Example 1 and Comparative Example 2 have a reflectance difference ⁇ Y between the incident angle of 50 ° and the incident angle of 5 °. The absolute value was over 1%. Further, as shown in Tables 5 and 6, FIGS. 8 and 9, the optical laminates of Comparative Example 1 and Comparative Example 2 had the lowest reflectance at an incident angle of 5 °.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

この光学積層体は、透明基材と、光学機能層と、防汚層とが、この順に積層され、標準光源D65による波長380nm~780nmの光を、表面に対して入射角5°~50°で入射させたときの反射光のCIE-Lab表色系におけるa*値およびb*値が、a*b*平面上の同一象限内である。

Description

光学積層体および物品
 本発明は、光学積層体および物品に関する。
 本願は、2020年11月27日に、日本に出願された特願2020-196902号に基づき優先権を主張し、その内容をここに援用する。
 フラットパネルディスプレイ(FPD)などの画像表示装置は、携帯電話、スマートフォン、カーナビゲーション装置などに広く使用されている。
 従来の画像表示装置においては、視認角度による色むらを視認し難くすることが要求されている。
 例えば、特許文献1には、標準光源D65による波長380nm~780nmの光Aを、入射角5°で入射させた際の視感度反射率が0.5%以下であり、該光Aの入射角を5°~50°の範囲で変化させた際の正反射光において、CIE-Lab表色系におけるa値の最大値と最小値との差に対する、CIE-Lab表色系におけるb値の最大値と最小値との差の比(b値の差/a値の差)が、2以上となる、反射防止フィルムが記載されている。
特開2019-28364号公報
 画像表示装置上に設置される反射防止膜などの光学積層体は、これが設置された画像表示装置の視認角度を変化させても、色むらが視認されないことが好ましい。
 しかしながら、従来の光学積層体は、これが設置された画像表示装置の視認角度を異ならせることによって、色むら(色調の違い)が視認される場合があった。
 このため、画像表示装置に上に設置される光学積層体においては、画像表示装置の視認角度を変化させても色むらが視認されにくいものとすることが要求されている。
 本発明は、上記事情を鑑みてなされたものであり、物品に備えられ、物品の視認角度を変化させても色むらが視認されにくい光学積層体を提供することを目的とする。
 また、本発明は、本発明の光学積層体が備えられ、視認角度を変化させても色むらが視認されにくい物品を提供することを目的とする。
 上記課題を解決するために、この発明は以下の手段を提案している。
[1] 透明基材と、光学機能層と、防汚層とが、この順に積層され、
 標準光源D65による波長380nm~780nmの光を、表面に対して入射角5°~50°で入射させたときの反射光のCIE-Lab表色系におけるa値およびb値が、a平面上の同一象限内であることを特徴とする光学積層体。
[2] 前記光を前記表面に対して入射角5°~50°で入射させた時の前記反射光の前記a値および前記b値が0未満である[1]に記載の光学積層体。
[3] 前記光を前記表面に対して入射角10°、20°、30°、40°、及び50°で入射させた時の反射率と、入射角5°で入射させた時の反射率との差の最大値が、絶対値で1%以下である[1]または[2]に記載の光学積層体。
[4] 前記光を前記表面に対して入射角5°~50°で入射させた時の前記反射光は、下記式(1)で示される△Eabが10以下のものである[1]~[3]のいずれかに記載の光学積層体。
Figure JPOXMLDOC01-appb-M000002
(式(1)中、ΔEabは、前記CIE-Lab表色系におけるL値、前記a値および前記b値の変化量である。△Lは、入射角10°、20°、30°、40°、及び50°で入射させた時の前記反射光の前記L値と、入射角5°で入射させた時の前記反射光の前記L値との差の最大値である。△aは、入射角10°、20°、30°、40°、及び50°で入射させた時の前記反射光の前記a値と、入射角5°で入射させた時の前記反射光の前記a値との差の最大値である。△bは、入射角10°、20°、30°、40°、及び50°で入射させた時の前記反射光の前記b値と、入射角5°で入射させた時の前記反射光の前記b値との差の最大値である。)
[5] 前記光学機能層が、低屈折率材料層と、前記低屈折率材料層よりも高屈折率の材料からなる高屈折率材料層とが、交互に積層された積層体からなり、
 前記積層体の前記透明基材側には、前記高屈折率材料層からなる膜厚7.5nm以上の第1高屈折率材料層が配置され、
 前記第1高屈折率材料層に接して前記低屈折率材料層からなる膜厚27nm~37nmの第1低屈折率材料層が配置され、
 前記積層体の前記防汚層側には、前記低屈折率材料層からなる膜厚85nm~103nmの第2低屈折率材料層が配置されている[1]~[4]のいずれかに記載の光学積層体。
[6] 前記第1低屈折率材料層と前記第2低屈折率材料層との間に、高屈折率材料層からなる膜厚105nm~120nmの第2高屈折率材料層が配置され、
 前記光学機能層が、前記第1高屈折率材料層と前記第1低屈折率材料層と前記第2高屈折率材料層と前記第2低屈折率材料層の4層からなる[5]に記載の光学積層体。
[7] 前記透明基材と前記光学機能層との間に、密着層が備えられ、
 前記密着層が、金属、合金、金属酸化物、金属フッ化物、金属硫化物、金属窒化物から選ばれるいずれか1種または2種以上からなる[1]~[6]のいずれかに記載の光学積層体。
[8] 前記密着層が、酸素欠乏状態にある金属酸化物からなる[7]に記載の光学積層体。
[9] 前記透明基材と前記密着層との間に、ハードコート層を備える[7]または[8]に記載の光学積層体。
[10] [1]~[9]のいずれかに記載の光学積層体を備えることを特徴とする物品。
[11] 前記光学積層体が、画像表示装置の表面に備えられている[10]に記載の物品。
 本発明の光学積層体は、標準光源D65による波長380nm~780nmの光を、表面に対して入射角5°~50°で入射させたときの反射光のCIE-Lab表色系におけるa値およびb値が、a平面上の同一象限内である。このため、本発明の光学積層体は、物品に備えられ、物品の視認角度を変化させても色むらが視認されにくいものである。
 また、本発明の物品は、本発明の光学積層体を備えているので、視認角度を変化させても色むらが視認されにくい。
図1は、本発明の光学積層体の一例を示した断面模式図である。 図2は、実施例1の光学積層体の表面に対して、入射角5°、10°、20°、30°、40°、及び50°で標準光源D65による波長380nm~780nmの光を入射させたときの、反射光のCIE-Lab表色系におけるa値およびb値を示したグラフである。 図3は、実施例2の光学積層体の表面に対して、入射角5°、10°、20°、30°、40°、及び50°で標準光源D65による波長380nm~780nmの光を入射させたときの、反射光のCIE-Lab表色系におけるa値およびb値を示したグラフである。 図4は、比較例1の光学積層体の表面に対して、入射角5°、10°、20°、30°、40°、及び50°で標準光源D65による波長380nm~780nmの光を入射させたときの、反射光のCIE-Lab表色系におけるa値およびb値を示したグラフである。 図5は、比較例2の光学積層体の表面に対して、入射角5°、10°、20°、30°、40°、及び50°で標準光源D65による波長380nm~780nmの光を入射させたときの、反射光のCIE-Lab表色系におけるa値およびb値を示したグラフである。 図6は、実施例1の光学積層体の表面に対して、入射角5°、10°、20°、30°、40°、及び50°で標準光源D65による波長380nm~780nmの光を入射させたときの、反射率を示したグラフである。 図7は、実施例2の光学積層体の表面に対して、入射角5°、10°、20°、30°、40°、及び50°で標準光源D65による波長380nm~780nmの光を入射させたときの、反射率を示したグラフである。 図8は、比較例1の光学積層体の表面に対して、入射角5°、10°、20°、30°、40°、及び50°で標準光源D65による波長380nm~780nmの光を入射させたときの、反射率を示したグラフである。 図9は、比較例2の光学積層体の表面に対して、入射角5°、10°、20°、30°、40°、及び50°で標準光源D65による波長380nm~780nmの光を入射させたときの、反射率を示したグラフである。
 本発明者らは、上記課題を解決し、光学積層体を備えた物品の視認角度を変化させても色むら(色調の違い)が視認されにくい光学積層体を得るために、物品の視認角度と反射光の色度(色相)との関係に着目して、鋭意検討を重ねた。
 その結果、標準光源D65による波長380nm~780nmの光を、表面に対して入射角5°~50°で入射させたときの反射光のCIE-Lab表色系におけるa値およびb値が、a平面上の同一象限内であれば、物品の視認角度を5°~50°の広い範囲で変化させても色むらが視認されにくいという知見を得た。
 ここで、同一象限内とは、a平面をa=0、b=0を原点とした直交座標系とした際の象限が同じであることをいう。
 さらに、本発明者らは、上記の知見に基づいて、光学積層体として、透明基材と、光学機能層と、防汚層とが、この順に積層され、光学機能層が、低屈折率材料層と、低屈折率材料層よりも高屈折率の材料からなる高屈折率材料層とが、交互に積層された積層体からなるものを用いて検討を重ねた。
 その結果、積層体の透明基材側に、膜厚7.5nm以上の高屈折率材料層と、膜厚27nm~37nmの低屈折率材料層とをこの順に配置し、積層体の防汚層側に、膜厚85nm~103nmの低屈折率材料層を配置すればよいことを見出し、本発明を想到した。
 以下、本発明の光学積層体および物品について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材質、寸法等は一例であって、本発明はそれらに限定されるものではなく、その効果を奏する範囲で適宜変更して実施することが可能である。
[光学積層体]
 図1は、本発明の光学積層体の一例を示した断面模式図である。
 図1に示す光学積層体1は、物品(不図示)に備えられている。物品としては、例えば、画像表示装置(不図示)の表面に、光学積層体1が備えられているものなどが挙げられる。
 図1に示す光学積層体1は、透明基材2と、ハードコート層3と、密着層4aと、光学機能層4と、防汚層5とが、この順に積層されたものである。本実施形態の光学積層体1に備えられている光学機能層4は、反射防止層として機能する。光学機能層4は、図1に示すように、第1高屈折率材料層41bと、第1低屈折率材料層41cと、第2高屈折率材料層42bと、第2低屈折率材料層42cとが、透明基材2側からこの順に積層された積層体からなる。
 図2は、本実施形態の光学積層体1の一例の表面に対して、入射角5°、10°、20°、30°、40°、及び50°で標準光源D65による波長380nm~780nmの光を入射させたときの、反射光のCIE-Lab表色系におけるa値およびb値を示したグラフである。
 図2において、a値およびb値は色度を示し、a値およびb値の絶対値が大きい座標の色であるほど彩度が大きい。すなわち、図2おいて、a値およびb値の絶対値が大きい座標の色であるほど鮮やかな色であり、a値およびb値の絶対値が小さい座標の色であるほど無彩色に近い色である。+aの座標は赤方向の色相であり、-aの座標は緑方向の色相であり、+bの座標は黄方向の色相であり、-bの座標は青方向の色相である。
 CIE-Lab表色系におけるL値、a値およびb値は、紫外可視赤外分光光度計(日本分光製V-550)を用い、紫外可視赤外分光光度計に備えられたプログラムの計算式にて算出される。
 本実施形態の光学積層体1は、標準光源D65による波長380nm~780nmの光を、表面に対して入射角5°~50°で入射させたときの反射光のCIE-Lab表色系におけるa値およびb値が、a平面上の同一象限内である。したがって、本実施形態の光学積層体1に、入射角5°~50°で光を入射させたときに得られる反射光は、類似する色相である。よって、本実施形態の光学積層体1が設置された物品は、視認角度を変化させても、色むらが視認されにくい。
 本実施形態の光学積層体1は、図2に示すように、光を表面に対して入射角5°~50°で入射させた時の反射光のa値およびb値が0未満であることが好ましい。この場合、光学積層体1の表面に入射角5°~50°で光を入射させたときの反射光は、全て青緑色の色相となる。青緑色の色相は、黄緑色、橙色などの色相と比較して、視感度が低く、物品の色相に影響を与えにくい。このため、入射角5°~50°で入射させた時の反射光のa値およびb値が0未満である場合、表面に光学積層体1が備えられている物品は、視認角度を変化させることによる色相(色味の傾向)の変化がより視認されにくく、色むらがより一層視認されにくいものとなる。しかも、b値が0未満であると、b値が0超である場合と比較して、反射率が低くなる。したがって、反射防止層としての機能がより一層良好な光学積層体1となる。
 本実施形態の光学積層体1は、光を表面に対して入射角5°~50°で入射させた時の反射光のa値が、絶対値で10.0以下であることが好ましく、5.0以下であることがより好ましい。a値の絶対値が10.0以下であると、光学積層体1が設置された物品に反射される反射光を着色しにくく、物品の視認角度を変化させることによる色むらがより一層視認されにくいものとなる。反射光のa値の絶対値の下限値は0であってよい。
 本実施形態の光学積層体1は、光を表面に対して入射角5°~50°で入射させた時の反射光のb値が、絶対値で10.0以下であることが好ましく、6.0以下であることがより好ましい。b値の絶対値が10.0以下であると、光学積層体1が設置された物品に反射される反射光を着色しにくく、物品の視認角度を変化させることによる色むらがより一層視認されにくいものとなる。反射光のb*値の絶対値の下限値は0であってよい。
 本実施形態の光学積層体1において、光を表面に対して入射角5°~50°で入射させた時の反射光は、下記式(1)で示される△Eabが10以下のものであることが好ましく、7以下のものであることがより好ましい。△Eabの下限値は0であってよい。
Figure JPOXMLDOC01-appb-M000003
(式(1)中、ΔEabは、CIE-Lab表色系におけるL値、a値およびb値の変化量である。△Lは、入射角10°、20°、30°、40°、及び50°で入射させた時の前記反射光の前記L値と、入射角5°で入射させた時の前記反射光の前記L値との差の最大値である。△aは、入射角10°、20°、30°、40°、及び50°で入射させた時の前記反射光の前記a値と、入射角5°で入射させた時の前記反射光の前記a値との差の最大値である。△bは、入射角10°、20°、30°、40°、及び50°で入射させた時の前記反射光の前記b値と、入射角5°で入射させた時の前記反射光の前記b値との差の最大値である。)
 入射角5°~50°で入射させた時の反射光が、式(1)で示されるΔEabが10以下のものである場合、視認角度を変化させることによる色相(色味の傾向)および明度の変化が少ないものとなる。したがって、物品の視認角度を変化させることによる色むらが、より一層視認されにくい光学積層体1となる。式(1)で示される△Eが7以下であると、視認角度を変化させることによる色相および明度の変化が、さらに少ないものとなるため、好ましい。
 本実施形態の光学積層体1において、表面に対して入射角5°~50°で入射させたときの反射光のCIE-Lab表色系におけるL値、a値およびb値は、光学機能層4に含まれる第1高屈折率材料層41bの厚みと第1低屈折率材料層41cの厚みと第2低屈折率材料層42cの厚みを適宜選択することにより調整できる。
 本実施形態の光学積層体1は、光を表面に対して入射角10°、20°、30°、40°、及び50°で入射させた時の反射率と、入射角5°で入射させた時の反射率との差の最大値が、絶対値で1%以下であることが好ましく、0.7%以下であることがより好ましい。上記反射率の差の最大値が、絶対値で1%以下であると、物品の視認角度を変化させることによる色むらがより一層視認されにくいものとなる。上記反射率の差の最大値の下限値は0であってよい。
 なお、反射率は紫外可視赤外分光光度計(日本分光製V-550)を用い、紫外可視赤外分光光度計に備えられたプログラムの計算式にて算出される。
(透明基材)
 本実施形態の光学積層体1を形成している透明基材2としては、公知のものを用いることができる。
 透明基材2は、可視光域の光を透過可能な透明材料からなる。本実施形態において「透明材料」とは、可視光域の光の透過率が80%以上の材料であることを意味する。
 透明基材2としては、例えば、プラスチックフィルムを用いることができる。プラスチックフィルムの材料としては、ポリエステル系樹脂、アセテート系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリアリレート系樹脂、ポリフェニレンサルファイド系樹脂などが挙げられる。これらの中でも、プラスチックフィルムの材料としては、ポリエステル系樹脂、アセテート系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂から選ばれるいずれか1種または2種以上を用いることが好ましく、特に、ポリエチレンテレフタラート(PET)またはトリアセチルセルロース(TAC)を用いることが好ましい。
 透明基材2は、光学積層体1の光学特性を損なわない限りにおいて、補強材料を含むものであってよい。補強材料としては、例えば、セルロースナノファイバー、ナノシリカなどが挙げられる。
 透明基材2は、ガラスフィルムなどの無機材料からなるものであってもよい。
 透明基材2としては、表面処理が施されたものを使用してもよい。表面処理方法としては、例えば、スパッタリング、コロナ放電、紫外線照射、電子線照射、化成、酸化等のエッチング処理、下塗り処理などが挙げられる。これらの表面処理方法から選ばれるいずれか1種または2種以上の方法を用いて透明基材2に表面処理を施すことにより、ハードコート層3との密着性が良好な透明基材2が得られる。
 透明基材2としては、必要に応じて、光学的機能および/または物理的機能が付与されたフィルムを用いてもよい。光学的機能および/または物理的機能を有するフィルムとしては、例えば、偏光板フィルム、位相差補償フィルム、熱線遮断フィルム、導電フィルム、輝度向上フィルム、レンズシートなどが挙げられる。さらに、透明基材2としては、光学的機能および/または物理的機能を有するフィルムに、例えば、帯電防止機能などの機能を付与したものを用いてもよい。
 透明基材2の厚みは、25μm以上であることが好ましく、40μm以上であることがより好ましい。透明基材2の厚みが25μm以上であると、光学積層体1に応力が加わっても皺が発生しにくく好ましい。また、透明基材2の厚みが25μm以上であると、光学積層体1を製造する際に透明基材2上にハードコート層3を形成しても、透明基材2に皺が生じにくく、歩留まりよく製造できる。また、透明基材2の厚みが25μm以上であると、光学積層体1を製造する際に、製造途中の光学積層体1がカールしにくく、取り扱いが容易であり、好ましい。
 透明基材2の厚みは、1mm以下であることが好ましく、500μm以下であることがより好ましく、300μm以下であることが特に好ましい。透明基材2の厚みが1mm以下であると、透明基材2の実質的な光学透明性を担保できる。また、透明基材2の厚みが1mm以下であると、透明基材2上に、枚葉方式であってもロールトウロール方式であっても成膜できる。特に、透明基材2の厚みが300μm以下であると、ロールトウロール方式で光学積層体1を製造する場合に、ロール状に巻き付けられた透明基材2の1度に投入可能な長さを長くできる。このため、透明基材2の厚みが300μm以下であると、ロールトウロール方式で光学積層体1を連続的に生産する場合に、生産性に優れる。また、透明基材2の厚みが300μm以下であると、品質の良好な光学積層体1となるため、好ましい。
 光学積層体1の各層の厚みは断面を透過電子顕微鏡(TEM)を用いて測定することが好ましい。
 透明基材2の製造方法は、特に限定されるものではなく、公知の製造方法で製造できる。
 透明基材2は、透明基材2上にハードコート層3を形成する前に、必要に応じて表面を洗浄してもよい。透明基材2の表面の洗浄方法としては、例えば、溶剤洗浄、超音波洗浄などが挙げられる。透明基材2の洗浄を行うことにより、透明基材2の表面を除塵でき、表面が清浄化されるため、好ましい。
(ハードコート層)
 本実施形態の光学積層体1は、透明基材2と密着層4aとの間に、ハードコート層3を備える。ハードコート層3としては、公知のものを用いることができ、例えば、バインダー樹脂とフィラーとを含むものが挙げられる。ハードコート層3は、バインダー樹脂とフィラーの他に、必要に応じて、レベリング剤などの公知の材料を含むものであってもよい。
 ハードコート層3に含まれるバインダー樹脂としては、透明材料を用いることが好ましい。バインダー樹脂としては、例えば、電離放射線硬化型樹脂、熱可塑性樹脂、熱硬化性樹脂などを用いることができる。バインダー樹脂は、1種のみ用いてもよいし、2種以上混合して用いてもよい。
 電離放射線硬化型樹脂としては、例えば、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン、ウレタンアクリレート、ポリエチレングリコールジアクリレート、ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)およびペンタエリスリトールテトラアクリレート(PETTA)などが挙げられる。電離放射線硬化型樹脂としては、上述した化合物をPO(プロピレンオキサイド)変性したもの、EO(エチレンオキサイド)変性したもの、CL(カプロラクトン)変性したものなどを使用してもよい。
 本実施形態において「(メタ)アクリレート」とは、メタクリレートおよび/またはアクリレートを意味する。
 バインダー樹脂として電離放射線硬化型樹脂を含む場合、ハードコート層3は、公知の電離放射線硬化開始剤を含むものであってもよい。例えば、電離放射線硬化型樹脂として、(メタ)アクリレートなどの紫外線硬化型樹脂を含む場合、ヒドロキシ-シクロヘキシル-フェニル-ケトンなどの紫外線硬化開始剤を含むことが好ましい。
 熱可塑性樹脂としては、例えば、スチレン系樹脂、(メタ)アクリル系樹脂、酢酸ビニル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、セルロース誘導体、シリコーン系樹脂などが挙げられる。
 熱硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン-尿素共縮合樹脂、ケイ素樹脂、ポリシロキサン樹脂(かご状、ラダー状などのいわゆるシルセスキオキサン等を含む)などが挙げられる。
 ハードコート層3に含まれるフィラーとしては、光学積層体1の防眩性、密着層4aとの密着性、アンチブロッキング性の観点から、光学積層体1の用途に応じて種々のものを選択して使用できる。具体的には、例えば、シリカ(Siの酸化物)粒子、アルミナ(酸化アルミニウム)粒子、有機微粒子など公知のものを用いることができる。
 光学積層体1の防眩性を向上させる観点から、フィラーとして、アクリル樹脂などからなる有機微粒子を用いることが好ましい。有機微粒子の粒子径は、10μm以下であることが好ましく、5μm以下であることがさらに好ましく、3μm以下であることが特に好ましい。
 密着層4aとの密着性を向上させる観点から、フィラーとして、シリカ粒子を用いることが好ましい。シリカ粒子の粒子径は、800nm以下であることが好ましく、100nm以下であることが特に好ましい。
 ハードコート層3の厚みは、例えば、0.5μm以上であることが好ましく、より好ましくは1μm以上である。ハードコート層3の厚みは、100μm以下であることが好ましい。
 ハードコート層3は、単一の層からなるものであってもよいし、複数の層が積層されたものであってもよい。
 ハードコート層3の製造方法は、特に限定されるものではなく、公知の製造方法を用いて製造できる。例えば、ハードコート層3は、塗布法により製造できる。塗布法としては、例えば、ハードコート層3となる材料を溶剤に溶解および/または分散させた塗布液を、公知の方法を用いて透明基材2上に塗布し、硬化させる方法などが挙げられる。溶剤としては、公知の溶剤を用いることができ、ハードコート層3となる材料に応じて適宜決定できる。
(密着層)
 本実施形態の光学積層体1においては、透明基材2上に設けられたハードコート層3と光学機能層4との間に、密着層4aが備えられている。密着層4aは、光学機能層4とハードコート層3とを密着させる機能を有する。
 密着層4aは、例えば、シリコン、ニッケル、クロム、スズ、金、銀、白金、亜鉛、チタン、タングステン、アルミニウム、ジルコニウム、パラジウム等の金属;これらの金属の合金;これらの金属の酸化物、フッ化物、硫化物または窒化物;から選ばれるいずれか1種または2種以上からなるものであることが好ましい。
 密着層4aを、例えば、スパッタ法によって形成する場合、密着層4aの材料として、融点が700℃以下である金属を用いることが好ましい。密着層4aが700℃を超える高融点の金属からなるものであると、スパッタリングによってハードコート層3の表面に到達した金属が十分に広がらず、局在化するきらいがある。
 密着層4aは、非化学量論組成の無機酸化物を含むものであってもよい。この場合、酸素欠乏状態にある金属酸化物からなるものであることが好ましく、特にSiO(Si酸化物)を主成分とするものであることが好ましい。密着層4aは、Si酸化物のみからなるものであってもよいし、Si酸化物とは別に、50質量%以下の範囲、好ましくは10質量%以下の範囲で、別の元素を含んでいてもよい。別の元素としては、密着層4aの耐久性を向上させるためにNaを含んでいてもよいし、密着層4aの硬度を向上させるためにZr、Al、Nから選ばれる1種または2種以上の元素を含んでいてもよい。
 密着層4aの厚みは、例えば、1nm~10nmであることが好ましく、1nm~5nmであることがより好ましい。密着層4aの厚みが上記範囲内であると、光学機能層4とハードコート層3とを密着させる機能がより効果的に得られる。密着層4aの厚みが1nm以上であると、密着層4aとハードコート層3との密着性がより良好となる。また、密着層の厚みが10nm以下であると、物品に備えられた場合に、物品の視認角度を変化させることによる色むらがより一層視認されにくい光学積層体1となる。
 密着層4aの製造方法は、特に限定されるものではなく、公知の製造方法を用いて製造できる。密着層4aは、例えば、スパッタ法により形成できる。
(光学機能層)
 光学機能層4は、低屈折率材料層(図1に示す例では第1低屈折率材料層41c、第2低屈折率材料層42c)と、低屈折率材料層よりも高屈折率の材料からなる高屈折率材料層(図1に示す例では第1高屈折率材料層41b、第2高屈折率材料層42b)とが、交互に積層された積層体からなる。
 光学機能層4は、防汚層5側から光学積層体1に入射した光を拡散させる。このことにより、光学積層体1は、防汚層5側から光学積層体1に入射した光が、反射光として一方向に出射されることを防止する反射防止層として機能する。
 本実施形態では、図1に示すように、光学機能層4が、透明基材2側から順に、第1高屈折率材料層41b、第1低屈折率材料層41c、第2高屈折率材料層42b、第2低屈折率材料層42cの4層が積層された積層体からなる場合を例に挙げて説明する。
 光学機能層4を形成している低屈折率材料層と高屈折率材料層の積層数の合計は、4層に限定されるものではなく、3層以下であってもよいし、5層以上であってもよく、光学機能層4に要求される光学特性に応じて適宜決定できる。
 具体的には、光学機能層4を形成している低屈折率材料層と高屈折率材料層の積層数の合計は、4層~10層であることが好ましく、4層~6層であることがより好ましく、4層であることが最も好ましい。光学機能層4が、上記の4層が積層された積層体である場合、積層数が少なく、厚みが薄いため、積層数が5層以上である場合と比較して、生産性に優れる。また、光学機能層4が、上記の4層が積層された積層体である場合、積層数が3層以下である場合と比較して、より一層低反射率の光学積層体1となるとともに、反射光の色相をより一層ニュートラル(無彩色)に近づけることができる。また、光学機能層4が、上記の4層が積層された積層体である場合、物品に備えられた場合に、物品の視認角度を変化させても色むらがより一層視認されにくい光学積層体1となる。
 光学機能層4が2層以上の低屈折率材料層(図1に示す例では第1低屈折率材料層41cと第2低屈折率材料層42c)を含む場合、複数の低屈折率材料層は、全て同じ屈折率を有するものであってもよいし、一部または全部の屈折率が異なっていてもよい。
 光学機能層4が2層以上の高屈折率材料層(図1に示す例では第1高屈折率材料層41bと第2高屈折率材料層42b)を含む場合、複数の高屈折率材料層は、全て同じ屈折率を有するものであってもよいし、一部または全部の屈折率が異なっていてもよい。
 なお、低屈折率材料層及び高屈折率材料層の屈折率は分光エリプソメーターを用いて確認できる。
 第1低屈折率材料層41cおよび第2低屈折率材料層42cの屈折率は、好ましくは1.20~1.60であり、より好ましくは1.30~1.50である。
 第1低屈折率材料層41cおよび第2低屈折率材料層42cは、SiO(屈折率1.46)を主成分とするものであることが好ましい。第1低屈折率材料層41cおよび/または第2低屈折率材料層42cは、SiOのみからなるものであってもよいし、SiOとは別に、50質量%以下の範囲、好ましくは10質量%以下の範囲で、別の元素を含んでいてもよい。別の元素としては、第1低屈折率材料層41cおよび/または第2低屈折率材料層42cの耐久性を向上させるためにNaを含んでいてもよいし、第1低屈折率材料層41cおよび/または第2低屈折率材料層42cの硬度を向上させるためにZr、Al、Nから選ばれる1種または2種以上の元素を含んでいてもよい。
 第1高屈折率材料層41bおよび第2高屈折率材料層42bの屈折率は、好ましくは2.00~2.60であり、より好ましくは2.10~2.45である。
 第1高屈折率材料層41bおよび第2高屈折率材料層42bの材料としては、例えば、五酸化ニオブ(Nb、屈折率2.33)、酸化チタン(TiO、屈折率2.33~2.55)、酸化タングステン(WO、屈折率2.2)、酸化セリウム(CeO、屈折率2.2)、五酸化タンタル(Ta、屈折率2.16)、酸化亜鉛(ZnO、屈折率2.1)、酸化インジウムスズ(ITO、屈折率2.06)などが挙げられる。第1高屈折率材料層41bおよび第2高屈折率材料層42bは、五酸化ニオブからなるものであることが好ましい。
 光学機能層4を構成する第1低屈折率材料層41c、第2低屈折率材料層42c、第1高屈折率材料層41b、第2高屈折率材料層42bの膜厚は、光学機能層4に要求される光学特性に応じて、それぞれ適宜決定できる。
 本実施形態の光学積層体1では、標準光源D65による波長380nm~780nmの光を、表面に対して入射角5°~50°で入射させたときの反射光のCIE-Lab表色系におけるa値およびb値が、a平面上の同一象限内となるように、第1低屈折率材料層41c、第2低屈折率材料層42cおよび第1高屈折率材料層41bの膜厚は、好ましくは以下に示す寸法とされる。
 光学機能層4(積層体)の透明基材2側に配置された第1高屈折率材料層41bの膜厚は、7.5nm以上であることが好ましく、7.5nm~10nmであることがより好ましい。
 第1高屈折率材料層41bに接して配置された第1低屈折率材料層41cの膜厚は、27nm~37nmであることが好ましく、28nm~33nmであることがより好ましい。
 光学機能層4の防汚層5側に配置された第2低屈折率材料層42cの膜厚は、85nm~103nmであることが好ましく、90nm~100nmであることがより好ましい。
 本実施形態の光学積層体1においては、第1低屈折率材料層41cと第2低屈折率材料層42cとの間に配置された第2高屈折率材料層42bの膜厚は、105nm~120nmであることが好ましく、110nm~115nmであることがより好ましい。第2高屈折率材料層42bの膜厚を上記範囲とすることにより、物品に備えられた場合に、物品の視認角度を変化させても色むらがより一層視認されにくい光学積層体1となる。
 本実施形態の光学積層体1における光学機能層4の全体厚みは、230nm~270nmであることが好ましく、240nm~260nmであることがより好ましい。光学機能層4の全体厚みが上記範囲内であると、より一層低反射率の光学積層体1となるとともに、反射光の色相をより一層ニュートラル(無彩色)に近づけることができる。また、光学機能層4の全体厚みが上記範囲内であると、物品に備えられた場合に、物品の視認角度を変化させても色むらがより一層視認されにくい光学積層体1となる。光学機能層4の全体厚みが230nm以上であると、物品に備えられた場合に、物品の視認角度を変化させても色むらがより一層視認されにくい光学積層体1となる。また、光学機能層4の全体厚みが270nm以下であると、生産性が良好となる。
 光学機能層4の製造方法は、特に限定されるものではなく、公知の製造方法を用いて製造できる。光学機能層4は、例えば、密着層4a上に、スパッタ法により、第1高屈折率材料層41b、第1低屈折率材料層41c、第2高屈折率材料層42b、第2低屈折率材料層42cをこの順に形成する方法により製造できる。密着層4aと光学機能層4の両方をスパッタ法により形成する場合、連続して形成することでき、好ましい。また、光学機能層4が、スパッタ法により形成されたものである場合、一般的な真空蒸着法または塗布法を用いて形成されたものと比較して、緻密なものとなる。その結果、水蒸気透過性が1.0g/m/day以下である耐久性の良好な光学積層体1となる。
(防汚層)
 防汚層5は、光学機能層4のハードコート層3と反対側の面に設けられている。防汚層5は、光学積層体1の汚損を防止し、光学機能層4の損耗を抑制する。
 防汚層5は、フッ素系化合物を含有するものであることが好ましい。フッ素系化合物としては、例えば、フッ素変性有機基と、アルコキシシランなどの反応性シリル基とからなる化合物が好ましく用いられる。このような化合物としては、パーフルオロデシルトリエトキシシラン(FDTS)などが挙げられる。
 防汚層5の材料として好適な市販品としては、オプツールDSX(ダイキン工業株式会社製)、KY-1203(信越化学工業株式会社製)、KY-1901(信越化学工業株式会社製)などが挙げられる。
 防汚層5には、必要に応じて、光安定剤、紫外線吸収剤、着色剤、帯電防止剤、滑剤、レベリング剤、消泡剤、酸化防止剤、難燃剤、赤外線吸収剤、界面活性剤などの添加剤が含まれていてもよい。
 防汚層5の厚みは、例えば、1~20nmとすることができ、好ましくは3~10nmである。
 防汚層5の製造方法は、特に限定されるものではなく、公知の製造方法で製造でき、必要とされる耐久性およびコストを勘案して適宜選択される。具体的には、防汚層5は、塗布法または蒸着法により製造できる。塗布法としては、例えば、防汚層5となる材料を溶剤に溶解した塗布液を、公知の方法を用いて光学機能層4上に塗布し、乾燥させる方法などが挙げられる。また、防汚層5を蒸着法により形成した場合、例えば、塗布法を用いて形成した防汚層と比較して、緻密で光学機能層4との密着性に優れるものとなる。このため、蒸着法により形成された防汚層5は、高い耐摩耗性を有する。
 本実施形態の光学積層体1においては、透明基材2のハードコート層3と反対側の面に、必要に応じて1層以上の層が設けられていてもよい。透明基材2のハードコート層3と反対側の面には、例えば、光学積層体1を、画像表示装置の表面などの他の部材に接着するための粘着剤層が設けられていてもよいし、粘着剤層と他の光学フィルムとがこの順に積層されていても良い。他の光学フィルムとしては、例えば、偏光フィルム、位相差補償フィルム、1/2波長板、1/4波長板などが挙げられる。また、透明基材2のハードコート層3と反対側の面に接して、上記の他の光学フィルムが形成されていてもよい。
 本実施形態の光学積層体1は、透明基材2と、光学機能層4と、防汚層5とが、この順に積層され、標準光源D65による波長380nm~780nmの光を、表面に対して入射角5°~50°で入射させたときの反射光のCIE-Lab表色系におけるa値およびb値が、a平面上の同一象限内である。このため、本実施形態の光学積層体1は、物品に備えられ、物品の視認角度を変化させても色むらが視認されにくい。
[物品]
 本実施形態の物品は、本実施形態の光学積層体1を備える。本実施形態の物品は、光学積層体1が、画像表示装置の表面に備えられたものであってもよい。画像表示装置としては、例えば、液晶表示パネル、有機エレクトロルミネッセンス(EL)表示パネルなどのフラットパネルディスプレイ(FPD)が挙げられる。
 本実施形態の光学積層体1が貼付される画像表示装置の表面としては、例えば、携帯電話の画面、スマートフォンの画面、タブレット端末の画面、パーソナルコンピューターのディスプレイ、ナビゲーションシステムの画面、遊技機の操作画面など情報入力端末の画面、航空機、電車などの運行支援装置の操作画面、電光表示板などが挙げられる。これらの中でも光学積層体1が貼付される画像表示装置は、使用時に、様々な視認角度で視認される画像表示装置であることが好ましく、特に、ナビゲーションシステムの画面、携帯電話の画面、スマートフォンの画面であることが好ましい。
 本実施形態の物品は、光学積層体1が、画像表示装置の表面に備えられたものに限定されない。例えば、本実施形態の光学積層体1が表面に備えられた窓ガラス、ゴーグル、太陽電池の受光面、ガラステーブル表面、計器盤、光学センサーの表面、ヘルメットのバイザー、鏡、ヘッドマウントディスプレイ、レンチキュラーレンズなどのレンズなどが挙げられる。
 本実施形態の物品は、光学積層体1の備えられている表面が、平板状であってもよいし、曲面状であってもよい。
 本実施形態の物品は、本実施形態の光学積層体1を備えているので、視認角度を変化させても色むらが視認されにくい。特に、本実施形態の物品が、光学積層体1が画像表示装置の表面に備えられたものである場合、視認角度を変化させても表示画像の色むらが視認されにくく、好ましい。
(実施例1、2、比較例1、2)
 以下に示す方法により、図1に示す光学積層体1を製造した。
 まず、透明基材2として、厚さ80μmのポリエチレンテレフタラート(PET)からなるフィルムを用意した。そして、透明基材2上に、厚さ5μmのハードコート層3を形成した。ハードコート層3は、表1に示す組成を有する塗布液を、バーコーターを用いて透明基材2上に塗布し、紫外線を照射して光重合させて、硬化させる方法により形成した。
Figure JPOXMLDOC01-appb-T000004
 続いて、ハードコート層3上に、スパッタリングターゲットとしてSiターゲットとNbターゲットとを用い、ArガスとOガスとの混合ガスを用いて反応性スパッタ法により、密着層4aと、光学機能層4とを連続して形成した。
 すなわち、ハードコート層3上に、表2に示す膜厚を有し、酸素欠乏があり得るSi酸化物(SiO)からなる密着層4aと、表2に示す膜厚を有するNbからなる第1高屈折率材料層41bと、表2に示す膜厚を有するSiOからなる第1低屈折率材料層41cと、表2に示す膜厚を有するNbからなる第2高屈折率材料層42bと、表2に示す膜厚を有するSiOからなる第2低屈折率材料層42cとをこの順に成膜した。
 なお、実施例1では、第1高屈折率材料層41bとして屈折率が2.3756であるものを用い、第1低屈折率材料層41cとして屈折率が1.4739であるものを用い、第2高屈折率材料層42bとして屈折率が2.3756であるものを用い、第2低屈折率材料層42cとして屈折率が1.4739であるものを用いた。
 実施例2では、第1高屈折率材料層41bとして屈折率が2.3756であるものを用い、第1低屈折率材料層41cとして屈折率が1.4739であるものを用い、第2高屈折率材料層42bとして屈折率が2.3756であるものを用い、第2低屈折率材料層42cとして屈折率が1.4739であるものを用いた。
 比較例1では、第1高屈折率材料層41bとして屈折率が2.3756であるものを用い、第1低屈折率材料層41cとして屈折率が1.4739であるものを用い、第2高屈折率材料層42bとして屈折率が2.3756であるものを用い、第2低屈折率材料層42cとして屈折率が1.4739であるものを用いた。
 比較例2では、第1高屈折率材料層41bとして屈折率が2.3756であるものを用い、第1低屈折率材料層41cとして屈折率が1.4739であるものを用い、第2高屈折率材料層42bとして屈折率が2.3756であるものを用い、第2低屈折率材料層42cとして屈折率が1.4739であるものを用いた。
 屈折率は分光エリプソメーターを用い、波長550nmにて確認した。
Figure JPOXMLDOC01-appb-T000005
 次に、光学機能層4上に、コイルバー(製品名:No.579、ロッドNo.9、株式会社安田精機製作所製)を用いて塗布液を塗布し、80℃で2分間乾燥させる方法により、膜厚5nmの防汚層5を形成した。塗布液としては、フッ素溶剤(商品名:フロリナートFC-3283:スリーエムジャパン株式会社製)中に、パーフルオロポリエーテル基を有するアルコキシシラン化合物(商品名:オプツールDSX、ダイキン工業株式会社製)を0.1質量%含む溶液を用いた。
 以上の工程により、実施例1、2、比較例1、2の光学積層体1を得た。
 表2において、「総膜厚」とは、密着層4aの膜厚と、光学機能層4の膜厚と、防汚層5の膜厚とを合計した膜厚である。
 膜厚は断面を透過型電子顕微鏡(TEM)を用いて測定した。
「反射光の色度および反射率の測定」
 このようにして得られた実施例1、2、比較例1、2の光学積層体の透明基材2側の面を、それぞれアクリル系透明粘着剤を用いて黒色のアクリルパネルの表面に貼付し、裏面反射が除去される試験体とした。
 そして、各試験体の透明基材2と反対側の面から、紫外可視赤外分光光度計(日本分光製V-550)を用いて、標準光源D65による波長380nm~780nmの光を、光学積層体の表面に対して入射角5°で入射し、紫外可視赤外分光光度計に備えられたプログラムの計算式を用いて反射スペクトルから反射光の色度および反射率を計算した。色度としては、CIE-Lab表色系におけるL値、a値およびb値を算出した。
 さらに、各試験体について、上記光を光学積層体の表面に対して入射角5°で入射させたときと同様にして、入射角10°、20°、30°、40°、及び50°で入射させ、それぞれ反射光の色度および反射率を算出した。その結果を表3~表6、図2~図9に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 図2~図5は、光学積層体の表面に対して、入射角5°、10°、20°、30°、40°、及び50°で標準光源D65による波長380nm~780nmの光を入射させたときの、反射光のCIE-Lab表色系におけるa値およびb値を示したグラフである。図2は、実施例1のa値およびb値を示したグラフであり、図3は、実施例2のa値およびb値を示したグラフであり、図4は、比較例1のa値およびb値を示したグラフであり、図5は、比較例2のa値およびb値を示したグラフである。
 図6~図9は、光学積層体の表面に対して、入射角5°、10°、20°、30°、40°、及び50°で標準光源D65による波長380nm~780nmの光を入射させたときの、反射率を示したグラフである。図6は、実施例1の反射率を示したグラフであり、図7は、実施例2の反射率を示したグラフであり、図8は、比較例1の反射率を示したグラフであり、図9は、比較例2の反射率を示したグラフである。
 実施例1、2、比較例1、2の光学積層体について、それぞれ算出した表3~表6に示す入射角5°、10°、20°、30°、40°、及び50°の光を光学積層体の表面に対して入射させた時の反射光のL値、a値およびb値を用いて、下記式(1)で示されるΔEabを算出した。その結果を表3~表6に示す。
Figure JPOXMLDOC01-appb-M000010
(式(1)中、ΔEabは、CIE-Lab表色系におけるL値、a値およびb値の変化量である。△Lは、入射角10°、20°、30°、40°、及び50°で入射させた時の前記反射光の前記L値と、入射角5°で入射させた時の前記反射光の前記L値との差の最大値である。△aは、入射角10°、20°、30°、40°、及び50°で入射させた時の前記反射光の前記a値と、入射角5°で入射させた時の前記反射光の前記a値との差の最大値である。△bは、入射角10°、20°、30°、40°、及び50°で入射させた時の前記反射光の前記b値と、入射角5°で入射させた時の前記反射光の前記b値との差の最大値である。)
 また、実施例1、2、比較例1、2の光学積層体について、それぞれ算出した表3~表6に示す入射角5°、10°、20°、30°、40°、及び50°の光を光学積層体の表面に対して入射させた時の反射率Yを用いて、下記式(3)で示される△Yを算出した。その結果を表3~表6に示す。
△Y=(入射角10°、20°、30°、40°、及び50°のいずれかで入射させた時の反射率)-(入射角5°で入射させた時の反射率)  式(3)
 表3および表4、図2および図3に示すように、実施例1および実施例2の光学積層体は、入射角5°~50°で入射させたときのa値およびb値は、いずれも0未満であり、a平面上の同一象限内であった。また、表3および表4に示すように、実施例1および実施例2の光学積層体は、入射角10°、20°、30°、40°、及び50°のいずれにおいてもΔEabが10以下であった。
 また、表3および表4、図6および図7に示すように、実施例1および実施例2の光学積層体は、入射角10°、20°、30°、40°、及び50°のいずれにおいても、入射角5°との反射率の差△Yが、絶対値で1%以下であった。また、表3および表4、図6および図7に示すように、実施例1および実施例2の光学積層体は、入射角30°での反射率が、最も低いものであった。
 これに対し、比較例1の光学積層体は、表5および図4に示すように、入射角5°~30°で入射させたときの反射光は、a値およびb値が0未満である。しかし、入射角40°、50°で入射させたときの反射光は、b値が0超であった。よって、比較例1の光学積層体における5°~50°で入射させたときのa値およびb値は、a平面上の同一象限内ではなかった。また、表5に示すように、比較例1の光学積層体は、入射角40°、50°であるときのΔEabが10超であった。
 また、比較例2の光学積層体は、表6および図5に示すように、入射角5°~20°で入射させたときの反射光は、a値およびb値が0未満である。しかし、入射角30°~50°で入射させたときの反射光は、b値が0超であった。よって、比較例2の光学積層体における5°~50°で入射させたときのa値およびb値は、a平面上の同一象限内ではなかった。また、表6に示すように、比較例2の光学積層体は、入射角50°であるときのΔEabが10超であった。
 また、表5および表6、図8および図9に示すように、比較例1および比較例2の光学積層体は、入射角50°と入射角5°との反射率の差△Yが、絶対値で1%超であった。また、表5および表6、図8および図9に示すように、比較例1および比較例2の光学積層体は、入射角5°での反射率が、最も低いものであった。
 1…光学積層体
 2…透明基材
 3…ハードコート層
 4…光学機能層
 4a…密着層
 41b…第1高屈折率材料層
 41c…第1低屈折率材料層
 42b…第2高屈折率材料層
 42c…第2低屈折率材料層
 5…防汚層

Claims (11)

  1.  透明基材と、光学機能層と、防汚層とが、この順に積層され、
     標準光源D65による波長380nm~780nmの光を、表面に対して入射角5°~50°で入射させたときの反射光のCIE-Lab表色系におけるa値およびb値が、a平面上の同一象限内であることを特徴とする光学積層体。
  2.  前記光を前記表面に対して入射角5°~50°で入射させた時の前記反射光の前記a値および前記b値が0未満である請求項1に記載の光学積層体。
  3.  前記光を前記表面に対して入射角10°、20°、30°、40°、及び50°で入射させた時の反射率と、入射角5°で入射させた時の反射率との差の最大値が、絶対値で1%以下である請求項1または請求項2に記載の光学積層体。
  4.  前記光を前記表面に対して入射角5°~50°で入射させた時の前記反射光は、下記式(1)で示されるΔEabが10以下のものである請求項1~請求項3のいずれか一項に記載の光学積層体。
    Figure JPOXMLDOC01-appb-M000001
    (式(1)中、ΔEabは、前記CIE-Lab表色系におけるL値、前記a値および前記b値の変化量である。△Lは、入射角10°、20°、30°、40°、及び50°で入射させた時の前記反射光の前記L値と、入射角5°で入射させた時の前記反射光の前記L値との差の最大値である。△aは、入射角10°、20°、30°、40°、及び50°で入射させた時の前記反射光の前記a値と、入射角5°で入射させた時の前記反射光の前記a値との差の最大値である。△bは、入射角10°、20°、30°、40°、及び50°で入射させた時の前記反射光の前記b値と、入射角5°で入射させた時の前記反射光の前記b値との差の最大値である。)
  5.  前記光学機能層が、低屈折率材料層と、前記低屈折率材料層よりも高屈折率の材料からなる高屈折率材料層とが、交互に積層された積層体からなり、
     前記積層体の前記透明基材側には、前記高屈折率材料層からなる膜厚7.5nm以上の第1高屈折率材料層が配置され、
     前記第1高屈折率材料層に接して前記低屈折率材料層からなる膜厚27nm~37nmの第1低屈折率材料層が配置され、
     前記積層体の前記防汚層側には、前記低屈折率材料層からなる膜厚85nm~103nmの第2低屈折率材料層が配置されている請求項1~請求項4のいずれか一項に記載の光学積層体。
  6.  前記第1低屈折率材料層と前記第2低屈折率材料層との間に、高屈折率材料層からなる膜厚105nm~120nmの第2高屈折率材料層が配置され、
     前記光学機能層が、前記第1高屈折率材料層と前記第1低屈折率材料層と前記第2高屈折率材料層と前記第2低屈折率材料層の4層からなる請求項5に記載の光学積層体。
  7.  前記透明基材と前記光学機能層との間に、密着層が備えられ、
     前記密着層が、金属、合金、金属酸化物、金属フッ化物、金属硫化物、金属窒化物から選ばれるいずれか1種または2種以上からなる請求項1~請求項6のいずれか一項に記載の光学積層体。
  8.  前記密着層が、酸素欠乏状態にある金属酸化物からなる請求項7に記載の光学積層体。
  9.  前記透明基材と前記密着層との間に、ハードコート層を備える請求項7または請求項8に記載の光学積層体。
  10.  請求項1~請求項9のいずれか一項に記載の光学積層体を備えることを特徴とする物品。
  11.  前記光学積層体が、画像表示装置の表面に備えられている請求項10に記載の物品。
PCT/JP2021/043096 2020-11-27 2021-11-25 光学積層体および物品 WO2022114037A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237007301A KR20230043212A (ko) 2020-11-27 2021-11-25 광학 적층체 및 물품
EP21898009.2A EP4254022A1 (en) 2020-11-27 2021-11-25 Optical laminate and article
US18/036,936 US20240019605A1 (en) 2020-11-27 2021-11-25 Optical laminate and article
CN202180074516.9A CN116368405A (zh) 2020-11-27 2021-11-25 光学层叠体及物品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-196902 2020-11-27
JP2020196902A JP7042895B1 (ja) 2020-11-27 2020-11-27 光学積層体および物品

Publications (1)

Publication Number Publication Date
WO2022114037A1 true WO2022114037A1 (ja) 2022-06-02

Family

ID=81214531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043096 WO2022114037A1 (ja) 2020-11-27 2021-11-25 光学積層体および物品

Country Status (7)

Country Link
US (1) US20240019605A1 (ja)
EP (1) EP4254022A1 (ja)
JP (2) JP7042895B1 (ja)
KR (1) KR20230043212A (ja)
CN (1) CN116368405A (ja)
TW (1) TW202229929A (ja)
WO (1) WO2022114037A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6956909B2 (ja) * 2020-03-23 2021-11-02 デクセリアルズ株式会社 光学積層体および物品
JP2024110316A (ja) * 2023-02-02 2024-08-15 株式会社トッパンTomoegawaオプティカルフィルム 反射防止フィルム、これを用いた偏光板及び表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529715A (ja) * 2006-03-10 2009-08-20 サン−ゴバン グラス フランス 反射光がニュートラル色を示す、反射防止コーティングを備える透明な基板
US20150225572A1 (en) * 2014-02-13 2015-08-13 Corning Incorporated High performance antimicrobial coating
JP2016177186A (ja) * 2015-03-20 2016-10-06 大日本印刷株式会社 反射防止フィルム、該反射防止フィルムを用いた表示装置、及び反射防止フィルムの選択方法
JP2019028364A (ja) 2017-08-02 2019-02-21 日東電工株式会社 反射防止フィルム
WO2020162195A1 (ja) * 2019-02-06 2020-08-13 日東電工株式会社 粘着剤層付き反射防止フィルム、自発光型表示装置およびその製造方法
JP2020196902A (ja) 2019-05-23 2020-12-10 アース製薬株式会社 固形洗浄剤及び該固形洗浄剤を用いた洗浄方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3413369A1 (en) * 2003-09-19 2018-12-12 Sony Corporation Organic light emitting display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529715A (ja) * 2006-03-10 2009-08-20 サン−ゴバン グラス フランス 反射光がニュートラル色を示す、反射防止コーティングを備える透明な基板
US20150225572A1 (en) * 2014-02-13 2015-08-13 Corning Incorporated High performance antimicrobial coating
JP2016177186A (ja) * 2015-03-20 2016-10-06 大日本印刷株式会社 反射防止フィルム、該反射防止フィルムを用いた表示装置、及び反射防止フィルムの選択方法
JP2019028364A (ja) 2017-08-02 2019-02-21 日東電工株式会社 反射防止フィルム
WO2020162195A1 (ja) * 2019-02-06 2020-08-13 日東電工株式会社 粘着剤層付き反射防止フィルム、自発光型表示装置およびその製造方法
JP2020196902A (ja) 2019-05-23 2020-12-10 アース製薬株式会社 固形洗浄剤及び該固形洗浄剤を用いた洗浄方法

Also Published As

Publication number Publication date
KR20230043212A (ko) 2023-03-30
TW202229929A (zh) 2022-08-01
CN116368405A (zh) 2023-06-30
JP2022085293A (ja) 2022-06-08
JP7042895B1 (ja) 2022-03-28
EP4254022A1 (en) 2023-10-04
US20240019605A1 (en) 2024-01-18
JP2022085904A (ja) 2022-06-08

Similar Documents

Publication Publication Date Title
JP6956909B2 (ja) 光学積層体および物品
KR102315469B1 (ko) 하드 코트 필름, 광학 적층체 및 화상 표시 장치
WO2022114037A1 (ja) 光学積層体および物品
WO2014119507A1 (ja) 反射防止フィルムおよびその製造方法
JP2019012294A (ja) 反射防止フィルムおよびその製造方法
US20150369965A1 (en) Anti-reflection film and production method therefor
JP2024061739A (ja) 反射防止フィルムおよび画像表示装置
WO2023218894A1 (ja) 光学積層体及び物品
WO2024142641A1 (ja) 光学積層体及び物品
WO2024080298A1 (ja) 光学積層体および物品
JP2024093111A (ja) 光学積層体、表示装置、ディスプレイ、光学積層体の製造方法
JP2004279515A (ja) 反射防止材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237007301

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18036936

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202317035413

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021898009

Country of ref document: EP

Effective date: 20230627