WO2022111545A1 - 制冷设备及其应用的风道组件 - Google Patents

制冷设备及其应用的风道组件 Download PDF

Info

Publication number
WO2022111545A1
WO2022111545A1 PCT/CN2021/132900 CN2021132900W WO2022111545A1 WO 2022111545 A1 WO2022111545 A1 WO 2022111545A1 CN 2021132900 W CN2021132900 W CN 2021132900W WO 2022111545 A1 WO2022111545 A1 WO 2022111545A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air inlet
center line
guide rib
air duct
Prior art date
Application number
PCT/CN2021/132900
Other languages
English (en)
French (fr)
Inventor
梁龙旭
李同琴
程旺
Original Assignee
合肥美的电冰箱有限公司
合肥华凌股份有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥美的电冰箱有限公司, 合肥华凌股份有限公司, 美的集团股份有限公司 filed Critical 合肥美的电冰箱有限公司
Publication of WO2022111545A1 publication Critical patent/WO2022111545A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation

Definitions

  • the present application relates to the technical field of refrigeration equipment, and in particular, to a refrigeration equipment and an air duct assembly for its application.
  • the compartments used for storing items usually only have the function of refrigerating or freezing, and the functions are relatively single.
  • the freezer space of the traditional refrigeration equipment is usually insufficient for the use, and the user needs to purchase additional refrigeration equipment, which undoubtedly increases the user's cost.
  • the main technical problem to be solved by the present application is to provide an air duct assembly for refrigeration equipment and its application, which can improve the uniformity of air flow distribution.
  • the air duct assembly includes an air duct, and the air duct includes an air inlet section and an air outlet section; the air outlet section is provided with a diverting rib, and the diverting rib divides the air outlet section into a first sub-air duct and a second sub-air duct.
  • the center of the diverting rib The line coincides with the center line of the air duct; the air inlet section is provided with a first air guide rib, and the center line of the first air guide rib deviates from the center line of the air duct.
  • the air duct assembly also includes a first air inlet and a second air inlet, both of which are communicated with the air inlet section, and the orthographic projection of the first air guide rib on the reference plane overlaps with the orthographic projection of the first air inlet on the reference plane , the reference plane is perpendicular to the center line of the air duct, and the first air inlet is set to be able to be opened independently or simultaneously with the second air inlet.
  • the air inlet section includes a first side edge and a second side edge opposite to each other, the first side edge is located on a side of the first air inlet away from the second air inlet, and the second side edge is located on the second side edge.
  • the side of the air inlet away from the first air inlet; the distance between the center line of the first air guide rib and the first side edge in the predetermined direction and the distance between the center line of the first air guide rib and the second side edge in the predetermined direction The ratio ranges from 1:2 to 3:4, and the predetermined direction passes through the center of the first air guide rib and is perpendicular to the center line of the air duct.
  • the ratio of the length of the first air guide rib in the predetermined direction to the length of the air inlet section in the predetermined direction ranges from 1:7 to 1:5.
  • the air outlet area of the first air inlet is smaller than the air outlet area of the second air inlet; the distance between the center line of the first air guide rib and the first side edge in the predetermined direction
  • the ratio of the distance between the center line of the wind rib and the second side edge in the predetermined direction is 1:2; the ratio of the length of the first wind guide rib in the predetermined direction to the length of the air inlet section in the predetermined direction is 1:5 .
  • the air outlet area of the first air inlet is larger than the air outlet area of the second air inlet; the distance between the center line of the first air guide rib and the first side edge in the predetermined direction
  • the ratio of the distance between the center line of the wind rib and the second side edge in the predetermined direction is 3:4; the ratio of the length of the first wind guide rib in the predetermined direction to the length of the air inlet section in the predetermined direction is 1:7 .
  • the air duct assembly includes a second air guide rib, the center line of the second air guide rib is deviated from the center line of the air duct, and the orthographic projection of the second air guide rib on the reference plane is the same as the second air guide rib.
  • the orthographic projections of the tuyere on the reference plane overlap.
  • the ratio of the distance between the center line of the first wind guide rib and the first side edge in the predetermined direction and the distance between the center line of the second wind guide rib and the second side edge in the predetermined direction 3:2.
  • a side of the second air guide rib facing the second air inlet has a second air guide surface, and the second air guide surface is inclined toward the second air inlet.
  • the included angle between the second air guide surface and the center line of the air duct ranges from 20° to 25°.
  • the side of the first air guide rib facing the first air inlet has a first air guide surface, and the first air guide surface is disposed obliquely toward the first air inlet.
  • the included angle between the first air guide surface and the center line of the air duct ranges from 25° to 30°.
  • the center line of the first air guide rib is parallel to the center line of the air duct, and the center line of the first air guide rib is located on one side of the center line of the air duct.
  • the first air guide rib is rotatably disposed on the air inlet section, and the first air guide rib can be rotated to be inclined toward the first air inlet.
  • the air outlet area of the first air inlet is larger than the air outlet area of the second air inlet; the first air guide rib can be rotated to the center line of the first air guide rib and the center line of the air duct.
  • the included angle ranges from 25° to 35°.
  • the air outlet area of the first air inlet is smaller than the air outlet area of the second air inlet; the first air guide rib can be rotated to the center line of the first air guide rib and the center line of the air duct.
  • the included angle ranges from 40° to 50°.
  • the first air guide rib can be rotated until the center line of the first air guide rib coincides with the center line of the air duct.
  • the ratio of the air outlet area of the first air inlet to the air outlet area of the second air inlet is 1:2 or 2:1.
  • the air duct assembly includes a plurality of third air guide ribs, the plurality of third air guide ribs are arranged in the air inlet section according to a preset arrangement, and the plurality of third air guide ribs are opposite to the first air guide ribs. Close to the first air inlet and the second air inlet.
  • the air inlet section includes a converging section and an expanding section, the converging section is closer to the first air inlet and the second air inlet than the expanding section, and the air duct width of the expanding section is greater than that of the condensing section.
  • the refrigerating equipment includes an inner cavity, a refrigerating device and an air duct assembly as described in the above embodiments, and the refrigerating device delivers cold air to the storage space of the inner cavity through the air duct assembly.
  • the beneficial effects of the present application are: different from the prior art, the present application provides an air duct assembly for refrigeration equipment and its application.
  • the air duct assembly includes a first air inlet and a second air inlet, and the first air inlet is set to be able to be opened independently or simultaneously with the second air inlet, so as to realize the refrigerating and freezing conversion function of the compartment of the refrigeration equipment.
  • the air inlet section of the air duct assembly is provided with a first air guide rib, the center line of the first air guide rib is deviated from the center line of the air duct, and the orthographic projection of the first air guide rib on the reference plane is the same as the first air inlet.
  • the orthographic projections on the reference plane overlap.
  • FIG. 1 is a schematic structural diagram of a first embodiment of an air duct assembly of the present application
  • FIG. 2 is a schematic structural diagram of an embodiment of the first wind guide rib of the present application
  • Fig. 3 is the schematic diagram of the air flow in the air duct when the first air inlet of the air duct assembly shown in Fig. 1 is opened independently;
  • Fig. 4 is the schematic diagram of the air flow in the air duct when the first air inlet and the second air inlet are simultaneously opened in the air duct assembly shown in Fig. 1;
  • FIG. 5 is a schematic structural diagram of the second embodiment of the air duct assembly of the present application.
  • Fig. 6 is a schematic diagram of the air flow in the air duct when the first air inlet of the air duct assembly shown in Fig. 5 is opened independently;
  • Fig. 7 is a schematic diagram of the flow of air flow in the air duct when the first air inlet and the second air inlet are simultaneously opened in the air duct assembly shown in Fig. 5;
  • FIG. 8 is a schematic structural diagram of a third embodiment of an air duct assembly of the present application.
  • FIG. 9 is a schematic structural diagram of another state of the air duct assembly shown in FIG. 8;
  • Fig. 10 is a schematic diagram of the air flow in the air duct when the first air inlet of the air duct assembly shown in Fig. 8 is opened alone;
  • Fig. 11 is a schematic diagram of the air flow in the air duct when the first air inlet and the second air inlet are simultaneously opened in the air duct assembly shown in Fig. 8;
  • FIG. 12 is a schematic structural diagram of the fourth embodiment of the air duct assembly of the present application.
  • FIG. 13 is a schematic structural diagram of an embodiment of the refrigeration equipment of the present application.
  • FIG. 14 is a schematic cross-sectional structural diagram of the refrigeration equipment shown in FIG. 13 in the direction E-E.
  • an embodiment of the present application provides an air duct assembly.
  • the air duct assembly includes an air duct, and the air duct includes an air inlet section and an air outlet section; the air outlet section is provided with a diverting rib, and the diverting rib divides the air outlet section into a first sub-air duct and a second sub-air duct.
  • the center of the diverting rib The line coincides with the center line of the air duct; the air inlet section is provided with a first air guide rib, and the center line of the first air guide rib deviates from the center line of the air duct.
  • the air duct assembly also includes a first air inlet and a second air inlet, both of which are communicated with the air inlet section, and the orthographic projection of the first air guide rib on the reference plane overlaps with the orthographic projection of the first air inlet on the reference plane , the reference plane is perpendicular to the center line of the air duct, and the first air inlet is set to be able to be opened independently or simultaneously with the second air inlet. Details are described below.
  • FIG. 1 is a schematic structural diagram of a first embodiment of an air duct assembly of the present application.
  • the air duct assembly 10 is applied to refrigeration equipment, for example, to refrigeration equipment such as refrigerators.
  • the air duct assembly 10 is specifically used to deliver cold air to a compartment of the refrigeration equipment for storing articles, so as to realize the storage of articles in the compartment. Refrigerated or frozen storage.
  • the air duct assembly 10 includes an air duct 11 .
  • the air duct 11 includes an air inlet section 111 and an air outlet section 112 .
  • the air outlet section 112 is provided with a diverting rib 12, and the diverting rib 12 divides the air outlet section 112 into a first sub-air duct 1121 and a second sub-air duct 1122. The same) coincides with the center line of the air duct 11 (as shown by the dotted line B in FIG. 1 , the same below).
  • the center line is defined as the mid-perpendicular line of each element in the respective width direction (along the horizontal direction as shown in FIG. 1 ).
  • the air duct assembly 10 further includes a first air inlet 13 and a second air inlet 14 .
  • the first air inlet 13 and the second air inlet 14 are respectively communicated with the air inlet section 111 of the air duct 11 .
  • the first air inlet 13 is set to be able to be opened independently or simultaneously with the second air inlet 14, so as to realize the refrigerating and freezing conversion function of the compartment of the refrigeration equipment.
  • the cold air is only output to the air duct 11 through the first air inlet 13, and then transported to the compartment of the refrigeration equipment. At this time, the amount of cold air transported to the compartment of the refrigeration equipment is small.
  • the compartment has refrigeration function.
  • the first air inlet 13 and the second air inlet 14 are opened at the same time, the cold air is output to the air duct 11 through the first air inlet 13 and the second air inlet 14 at the same time, and then sent to the compartment of the refrigeration equipment.
  • the compartment of the refrigeration equipment has a large amount of cold air, and the compartment has a freezing function, that is, the refrigeration and freezing conversion functions of the compartment of the refrigeration equipment are realized.
  • first air inlet 13 and the second air inlet 14 are respectively provided with structures for realizing opening and closing respectively, such as structures such as adjustable baffles.
  • structures for realizing opening and closing respectively such as structures such as adjustable baffles.
  • the air inlet section 111 of the air duct 11 is provided with a first air guide rib 15 , and the center line of the first air guide rib 15 (as shown by the dotted line C in FIG. 1 , the same below) deviates from the air duct 11 . centerline.
  • the orthographic projection of the first air guide rib 15 on the reference plane overlaps with the orthographic projection of the first air inlet 13 on the reference plane, wherein the reference plane is vertical on the plane of the centerline of the air duct 11 .
  • the sub-air duct 1122 makes the air flow distribution of the air duct 11 uniform, that is, it can improve the uniformity of the air flow distribution, so that the temperature distribution inside the compartment of the refrigeration equipment is uniform, which is conducive to the preservation of items and improves the user experience.
  • the air flow output from the first air inlet 13 and the second air inlet 14 flows naturally and uniformly to the first sub-air duct 1121 and the second sub-air duct 1122, That is, the airflow in the air duct 11 is also uniformly distributed at this time.
  • the air duct 11 is provided with an air inlet 113, and the air flow input to the air duct 11 enters the interior of the compartment of the refrigeration equipment through the air inlet 113, so as to perform cryogenic preservation of the items stored in the compartment.
  • the center line of the first air guide rib 15 is parallel to the center line of the air duct 11, and the center line of the first air guide rib 15 is located on one side of the center line of the air duct 11, so that the first air guide The center line of the rib 15 is offset from the center line of the air duct 11 .
  • the first air guide ribs 15 can divert the air flow output from the first air inlet 13, that is, part of the air flow is sent to the first sub-air duct 1121, and the other part of the air flow is sent to the
  • the second sub-air duct 1122 further makes the air flow distribution of the air duct 11 uniform, which can improve the uniformity of the air flow distribution.
  • the air inlet section 111 includes an opposite first side edge 1111 and a second side edge 1112, the first side edge 1111 is located on the side of the first air inlet 13 away from the second air inlet 14, and the second side edge 1112 is located at the second air inlet 14 is away from the side of the first air inlet 13 .
  • the ratio of the distance in the predetermined direction ranges from 1:2 to 3:4.
  • the predetermined direction passes through the center of the first air guide rib 15 (as shown by the point O1 in FIG. 1 , the same below) and is perpendicular to the center line of the air duct 11 .
  • the center O1 of the first air guide rib 15 is defined as the center vertical line C of the first air guide rib 15 in its length direction (along the vertical direction as shown in FIG. 1 ) and the The intersection of the vertical lines in the width direction (along the horizontal direction as shown in FIG. 1 ) (ie, the center line D of the first air guide ribs 15 ).
  • the first sub-air duct 1121 is disposed near the first air inlet 13
  • the second sub-air duct 1122 is disposed near the second air inlet 14 .
  • the ratio of the distance between the first air guide rib 15 and the first side edge 1111 in the predetermined direction and the distance between the first air guide rib 15 and the second side edge 1112 in the predetermined direction satisfies the above proportional range, so that the first air guide rib 15 is close to the centerline of the air duct 11, so as to avoid as much as possible the wind flow that is diverted through the first air guide rib 15 and flows to the second sub-air duct 1122 from the first air guide rib 15 and the shunt rib 12 when the first air inlet 13 is opened alone
  • the gap between them is returned to the first sub-air duct 1121 to further ensure the uniformity of the air flow distribution.
  • the ratio of the length of the first air guide rib 15 in the predetermined direction to the length of the air inlet section 111 in the predetermined direction ranges from 1:7 to 1:5.
  • the first air guide rib 15 has a sufficient width, so that the wind flow reaching the first air guide rib 15 is equally divided by the first air guide rib 15 as much as possible to ensure that it flows to the first sub-air duct as much as possible.
  • the air volume of the air flow in 1121 and the second sub-air duct 1122 is equal, which further ensures the uniformity of the air flow distribution.
  • the air outlet area of the first air inlet 13 and the air outlet area of the second air inlet 14 are designed to be different, which means that the air volume of the first air inlet 13 is different from the air volume of the second air inlet 14, but The sum of the air outlet area of the first air inlet 13 and the second air inlet 14 is fixed, that is, when the first air inlet 13 and the second air inlet 14 are opened at the same time, the air flow and air volume entering the air duct 11 is fixed and unchanged. .
  • the air outlet area of the first air inlet 13 may be smaller than the air outlet area of the second air inlet 14, which means that when the first air inlet 13 is opened alone, the air flow into the air duct 11 is small, and the air flow delivered to the refrigeration equipment is small.
  • the amount of cold air in the compartment is small, and the temperature of the room is relatively high at this time.
  • the ratio of the air outlet area of the first air inlet 13 to the air outlet area of the second air inlet 14 is preferably 1:2;
  • the air area can be larger than the air outlet area of the second air inlet 14, which means that when the first air inlet 13 is opened alone, the air flow of the input air duct 11 is larger, and the amount of cold air delivered to the compartment of the refrigeration equipment is larger.
  • the temperature of the room is relatively low, and the ratio of the air outlet area of the first air inlet 13 to the air outlet area of the second air inlet 14 is preferably 2:1; when the first air inlet 13 and the second air inlet 14 are opened at the same time, the input
  • the air flow and air volume of the air duct 11 is maximized, so that the amount of cold air delivered to the compartment of the refrigeration equipment is maximized, and the temperature of the compartment is the lowest at this time.
  • the first air inlet 13 will be independently The opening time chambers have different temperatures, that is, to realize diversified adjustment of the temperature zone where the compartments are located. For example, when the air outlet area of the first air inlet 13 is smaller than the air outlet area of the second air inlet 14, the first air inlet 13 is opened independently, and the chamber is in the refrigeration temperature zone at this time; When the air outlet area is larger than the air outlet area of the second air inlet 14 , the first air inlet 13 is opened independently, and the chamber is in the temperature-changing area at this time.
  • the air outlet area of the first air inlet 13 is defined as the area of the minimum cross-section of the first air inlet 13.
  • the minimum cross-section is parallel to the aforementioned reference plane.
  • the air outlet area of the second air inlet 14 is defined as the area of the smallest cross-section of the second air inlet 14, and the smallest cross-section is parallel to the above-mentioned reference plane.
  • the air outlet area of the first air inlet 13 is smaller than the air outlet area of the second air inlet 14 .
  • the first air guide rib 15 is close to the center line of the air duct 11, so as to avoid the wind flow that is diverted through the first air guide rib 15 and flows to the second sub-air duct 1122 from the first air inlet 13 when the first air inlet 13 is opened alone.
  • a gap between the air guide rib 15 and the diverting rib 12 flows back to the first sub-air duct 1121 to further ensure the uniformity of the air flow distribution.
  • the first air guide rib 15 has a sufficient width, so that when the first air inlet 13 is opened alone, the air flow reaching the first air guide rib 15 is divided as much as possible by the first air guide rib 15 to ensure the flow direction as much as possible.
  • the air volume of the air flow of the first sub-air duct 1121 and the second sub-air duct 1122 is equal, which further ensures the uniformity of the air flow distribution.
  • the side of the first air guide rib 15 facing the first air inlet 13 has a first air guide surface 151 , and the first air guide surface 151 is inclined toward the first air inlet 13 for guiding the wind flow to the second sub-wind.
  • the channel 1122 is beneficial to improve the effect of the first wind guide rib 15 in guiding the wind flow, and further ensure the uniformity of the wind flow distribution.
  • the included angle between the first air guide surface 151 and the center line of the air duct 11 ranges from 25° to 30°, preferably 25° or the like.
  • the included angle between the first air guide surface 151 and the center line of the air duct 11 is ⁇ 1, where the value of ⁇ 1 ranges from 25° to 30°, preferably 25°.
  • the air duct assembly 10 further includes a plurality of third air guide ribs 16, the plurality of third air guide ribs 16 are arranged in the air inlet section 111 according to a preset arrangement, and the plurality of third air guide ribs 16 are opposite to the first The air guide ribs 15 are close to the first air inlet 13 and the second air inlet 14 .
  • At least the cross-sectional areas of the ends of the third air guide rib 16 facing the first air inlet 13 and the second air inlet 14 gradually decrease in the direction of approaching the first air inlet 13 and the second air inlet 14, and can guide the air from the first air inlet 13 and the second air inlet 14.
  • the air flow entering the air duct 11 from the first air inlet 13 and the second air inlet 14 flows along the center line of the air duct 11, which alleviates the disorder of the air flow and further helps to ensure the uniformity of the air flow distribution.
  • the cross section of the third air guide rib 16 is perpendicular to the center line of the air duct 11 .
  • the above-mentioned plurality of third air guide ribs 16 are arranged in the air inlet section 111 according to a preset arrangement. Specifically, the plurality of third air guide ribs 16 may be arranged in sequence along the above-mentioned predetermined direction at intervals. For example, the number of the plurality of third wind guide ribs 16 is two, specifically the wind guide ribs 161 and the wind guide ribs 162, wherein the wind guide ribs 161 are close to the first side edge 1111, and the wind guide ribs 162 are close to the second side Edge 1112.
  • the air inlet section 111 includes a gathering section 1113 and an expanding section 1114.
  • the gathering section 1113 is closer to the first air inlet 13 and the second air inlet 14 than the expanding section 1114, that is, the air flow output from the first air inlet 13 and the second air inlet 14 is first. Pass through the gathering section 1113 , and then pass through the expansion section 1114 .
  • the width of the air duct of the expansion section 1114 is greater than that of the gathering section 1113, the gathering section 1113 is preferably equal to the air duct width at each position on the center line of the air duct 11, and the gathering section 1113 can
  • the wind flow output by the tuyere 13 and the second air inlet 14 has a certain gathering effect, so that the wind flow can flow along the center line of the air duct 11 as much as possible, which is further beneficial to ensure the uniformity of the wind flow distribution.
  • the wind flow output from the first air inlet 13 can be guided by the wind guide ribs 161
  • the wind flow output from the second air inlet 14 can be guided by the wind guide ribs 162, so that the air flow from the first air inlet 13 and the second air inlet 14 can be guided by the wind guide ribs 162.
  • the wind flow output by the second air inlet 14 flows along the center line of the air duct 11 , which can alleviate the disorder of the wind flow and further help ensure the uniformity of the wind flow distribution.
  • the center line of the air guide rib 161 is coincident with the center line of the first air guide rib 15 .
  • the preset arrangement of the plurality of third air guide ribs 16 described in this embodiment is not limited to the above-mentioned arrangement in sequence along a predetermined direction at intervals, and other embodiments of the present application can also be applied to this embodiment
  • the described third wind guide ribs 16 are not limited herein.
  • FIG. 3 shows the air flow in the air duct 11 when the first air inlet 13 is opened alone in this embodiment
  • FIG. 4 shows the air flow when the first air inlet 13 and the second air inlet 14 are opened at the same time in this embodiment. Wind flow in channel 11.
  • common refrigeration equipment such as refrigerators usually has two compartments, an upper and a lower compartment, and cold air is provided by the same set of refrigeration devices.
  • the air duct assembly 10 of this embodiment is applied to a refrigeration device having two upper and lower compartments, the air duct assembly 10 of this embodiment is used to deliver cold air to one of the compartments.
  • the air outlet area of the first air inlet 13 is smaller than the air outlet area of the second air inlet 14.
  • the compartment corresponding to the air duct assembly 10 and the other compartment The ratio of the air volume of the air duct assembly 10 is 1:3, which is beneficial to reduce the energy consumption of the refrigeration equipment; and when the first air inlet 13 and the second air inlet 14 are opened at the same time, the air volume of the corresponding compartment of the air duct assembly 10 and the other room The ratio is 2:3.
  • FIG. 5 is a schematic structural diagram of the second embodiment of the air duct assembly of the present application.
  • the difference between this embodiment and the above-mentioned embodiments is that the air outlet area of the first air inlet 13 is larger than the air outlet area of the second air inlet 14. Since the air outlet area of the first air inlet 13 in this embodiment is larger than the air outlet area of the first air inlet 13 in the above embodiment, the first air guide rib 15 in this embodiment is closer to the air duct than the above embodiment 11, so that the wind flow reaching the first wind guide rib 15 can be evenly divided, so as to ensure the uniformity of the wind flow distribution.
  • the air duct width of the air inlet section 111 of the air duct 11 remains unchanged, it can be seen that the distance between the first air guide rib 15 and the first side edge 1111 in the above predetermined direction and the first air guide rib 15 and the second side
  • the ratio of the distance of the edge 1112 in the predetermined direction is greater than the ratio shown in the above embodiment, that is, the first air guide rib 15 in this embodiment is closer to the center line of the air duct 11 .
  • the air volume of the air flow in the channel 1122 is equal, which further ensures the uniformity of the air flow distribution.
  • the angle between the first air guide surface 151 on the first air guide rib 15 and the center line of the air duct 11 is preferably 30° or the like. As shown in FIG. 5 , ⁇ 1 is preferably 30° or the like. In this way, the effect of the first air guide rib 15 in guiding the airflow direction can be improved to the greatest extent, and the uniformity of the airflow distribution can be ensured to the greatest extent.
  • the air outlet area of the first air inlet 13 is larger than the air outlet area of the second air inlet 14 in this embodiment, when the first air inlet 13 and the second air inlet 14 are opened at the same time, the air duct 11 is close to the second air inlet 14.
  • the wind pressure of a part of the first air inlet 13 is relatively high, while the wind pressure of the part of the air duct 11 close to the second air inlet 14 is relatively small, which makes it difficult for the wind flow input from the second air inlet 14 to flow naturally to the first sub-air duct 1121.
  • most of the wind flow input from the second air inlet 14 flows to the second sub-air duct 1122, which causes the problem of uneven distribution of wind flow.
  • the air duct assembly 10 further includes a second air guide rib 17 .
  • the center line of the second air guide rib 17 deviates from the center line of the air duct 11 , and the orthographic projection of the second air guide rib 17 on the reference plane overlaps with the orthographic projection of the second air inlet 14 on the reference plane.
  • the center line of the second air guide rib 17 is parallel to the center line of the air duct 11, and the center line of the second air guide rib 17 is located on one side of the center line of the air duct 11, so that the center of the second air guide rib 17 The line is deviated from the center line of the air duct 11 .
  • the second air inlet 14 when the second air inlet 14 is opened, after the wind flow output by the second air inlet 14 reaches the second air guide rib 17, a part of the wind flow is sent to the first sub-air duct 1121, and the other part of the wind flow is sent to the second sub-air flow.
  • the air duct 1122 makes the air flow in the air duct 11 evenly distributed, so as to further ensure the uniformity of the air flow distribution.
  • the air duct assembly 10 is not provided with the second air guide ribs 17. The reason is: the first air inlet The air outlet area of the air outlet 13 is smaller than the air outlet area of the second air inlet 14.
  • the wind pressure of the part of the air duct 11 close to the first air inlet 13 is smaller,
  • the wind pressure in the part of the air duct 11 close to the second air inlet 14 is relatively large, and the wind flow input from the second air inlet 14 will naturally flow to the first sub-air duct 1121 to make the air flow evenly distributed.
  • the side of the second air guide rib 17 facing the second air inlet 14 has a second air guide surface 171, and the second air guide surface 171 is inclined toward the second air inlet 14 for guiding the wind flow to the first sub-window.
  • the air duct 1121 is beneficial to improve the effect of the second air guide rib 17 in guiding the airflow direction, and further ensure the uniformity of the airflow distribution.
  • the included angle between the second air guide surface 171 and the center line of the air duct 11 ranges from 20° to 25°, preferably 20° or the like.
  • the included angle between the second air guide surface 171 and the center line of the air duct 11 is ⁇ 2, where the value of ⁇ 2 ranges from 20° to 25°, preferably 20°.
  • FIG. 6 shows the air flow in the air duct 11 when the first air inlet 13 is opened alone in this embodiment
  • FIG. 7 shows the air flow when the first air inlet 13 and the second air inlet 14 are opened at the same time in this embodiment. Wind flow in channel 11.
  • the air outlet area of the first air inlet 13 is larger than the air outlet area of the second air inlet 14.
  • the ratio of the air volume of the corresponding compartment of the air duct assembly 10 to another compartment is 1:2, and the air volume of the compartment corresponding to the air duct assembly 10 is larger, which is conducive to rapid cooling;
  • the ratio of the air volume between the compartment corresponding to the air duct assembly 10 and the other compartment is 2:3.
  • FIG. 8 is a schematic structural diagram of a third embodiment of an air duct assembly of the present application.
  • the difference between this embodiment and the above-mentioned embodiment is that the first air guide rib 15 is rotatably disposed on the air inlet section 111 . Further, the motor embedded in the air duct 11 can drive the first air guide rib 15 to rotate. The first air guide rib 15 can be rotated to be inclined toward the first air inlet 13, so that the center line of the first air guide rib 15 deviates from the center line of the air duct 11, and the orthographic projection of the first air guide rib 15 on the reference plane There is overlap with the orthographic projection of the first air inlet 13 on the reference plane.
  • the first air guide rib 15 when the first air guide rib 15 is rotatably arranged in the air inlet section 111, the first air guide rib 15 can rotate around a rotation center (as shown by the point O2 in FIG. 8 , the same below), and the rotation center is the same as The centerlines of the first air guide ribs 15 are coincident. Further, the rotation center coincides with the center of the first wind guide rib 15 .
  • the first air guide rib 15 can divert the wind flow output from the first air inlet 13, that is, part of the wind flow is sent to the first sub-air duct 1121, and the other A part of the air flow is sent to the second sub-air duct 1122, so that the air flow distribution of the air duct 11 is uniform, and the uniformity of the air flow distribution can be improved.
  • the deviation of the center line of the first air guide rib 15 from the center line of the air duct 11 means that the center line of the first air guide rib 15 and the center line of the air duct 11 are arranged at an angle.
  • the air outlet area of the first air inlet 13 is larger than the air outlet area of the second air inlet 14 , and the first air guide rib 15 can be rotated to the angle between the center line of the first air guide rib 15 and the center line of the air duct 11 . 25° to 35°.
  • the included angle between the center line of the first air guide rib 15 and the center line of the air duct 11 is ⁇ 3, and the angle ⁇ 3 in FIG. 8 is 30°.
  • the rotation center of the first air guide rib 15 coincides with the center line of the air duct 11 .
  • the first air guide rib 15 can be rotated to the center line of the first air guide rib 15 Coinciding with the center line of the air duct 11, the wind flow entering the air duct 11 from the first air inlet 13 and the second air inlet 14 flows evenly to the first sub-air duct 1121 and the second sub-air duct 1122, thereby improving the distribution of the air flow uniformity.
  • FIG. 10 shows the air flow in the air duct 11 when the first air inlet 13 is opened alone in this embodiment
  • FIG. 11 shows the air flow when the first air inlet 13 and the second air inlet 14 are opened at the same time in this embodiment. Wind flow in channel 11.
  • FIG. 12 is a schematic structural diagram of a fourth embodiment of the air duct assembly of the present application.
  • the air outlet area of the first air inlet 13 is smaller than the air outlet area of the second air inlet 14 , that is, the air outlet area of the first air inlet 13 is reduced compared to the above-mentioned embodiment, which means that the first air inlet 13 has a smaller air outlet area.
  • the air guide rib 15 needs to be rotated by a larger angle, so that the first air guide rib 15 can divert the wind flow output from the first air inlet 13 when the first air inlet 13 is opened alone, so as to ensure the uniformity of the air flow distribution.
  • the first air guide rib 15 can be rotated until the included angle between the center line of the first air guide rib 15 and the center line of the air duct 11 is preferably 40° to 50°. As shown in FIG. 12 , the angle ⁇ 3 is 45°.
  • the air duct assembly provided by the present application includes a first air inlet and a second air inlet, and the first air inlet is set to be able to be opened independently or simultaneously with the second air inlet, so as to realize the space between the refrigeration equipment. Refrigerator and freezer conversion function of the room.
  • the air inlet section of the air duct assembly is provided with a first air guide rib, the center line of the first air guide rib is deviated from the center line of the air duct, and the orthographic projection of the first air guide rib on the reference plane is the same as the first air inlet.
  • the orthographic projections on the reference plane overlap.
  • FIG. 13 is a schematic structural diagram of an embodiment of the refrigeration equipment of the present application
  • FIG. 14 is a cross-sectional structural schematic diagram of the refrigeration equipment shown in FIG. 13 in the direction E-E.
  • the refrigeration device 40 includes an inner cavity 20 , a refrigeration device 30 and an air duct assembly 10 .
  • the refrigeration device 30 , the air duct assembly 10 and the inner cavity 20 are connected in sequence, and the refrigeration device 30 delivers cold air to the storage space of the inner cavity 20 through the air duct assembly 10 .
  • the air duct assembly 10 has been described in detail in the above embodiments, and will not be repeated here.
  • the internal storage space of the inner cavity 20 is the compartment for storing articles described in the above embodiments.
  • the refrigeration device 30 may include a volute and a centrifugal fan disposed in the volute, which are within the understanding of those skilled in the art and will not be repeated here.
  • FIG. 14 shows that the inner cavity 20 includes a first inner cavity 21 and a second inner cavity 22 , and the air duct assembly 10 is provided on the back of the first inner cavity 21 for guiding the cold air to be delivered to the first inner cavity 21 of internal storage space.
  • the first inner cavity 21 and the second inner cavity 22 may be the case where the refrigeration equipment 40 described in the above embodiments has upper and lower compartments and the same set of refrigeration devices 30 provides cold air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

本申请涉及制冷设备技术领域,公开了一种制冷设备及其应用的风道组件。该风道组件包括风道,风道包括进风段和出风段;出风段设有分流筋,分流筋将出风段分成第一子风道和第二子风道,分流筋的中心线与风道的中心线重合;进风段设有第一导风筋,第一导风筋的中心线偏离风道的中心线。该风道组件还包括第一进风口和第二进风口,与进风段连通,第一导风筋在参考平面上的正投影与第一进风口在参考平面上的正投影存在交叠,参考平面垂直于风道的中心线,第一进风口设置为能够单独开启或与第二进风口同时开启。通过上述方式,本申请能够改善风流分布的均匀性。

Description

制冷设备及其应用的风道组件
本申请要求于2020年11月26日提交的申请号为2020113497997,发明名称为“制冷设备及其应用的风道组件”的中国专利申请的优先权,其通过引用方式全部并入本申请。
【技术领域】
本申请涉及制冷设备技术领域,特别是涉及一种制冷设备及其应用的风道组件。
【背景技术】
传统诸如冰箱等制冷设备,其用于存放物品的间室通常只能实现冷藏或冷冻功能,功能比较单一。尤其是对于用户需要较大的冷冻空间,以冷冻大量食物的情况,传统制冷设备其冷冻室空间通常不足以满足使用,用户需要另行购买额外的制冷设备,无疑增加了用户的成本。
为了解决上述问题,目前,市面上已有具备冷藏和冷冻转换功能的制冷设备,从而根据需要实现冷藏和冷冻相互转换,以满足用户的需要。然而目前市面上的制冷设备其风道的风流分布不均匀,致使目前的制冷设备其间室内部的温度分布不均匀,不利于物品的保藏以及对用户的使用体验造成不良影响。
【发明内容】
有鉴于此,本申请主要解决的技术问题是提供一种制冷设备及其应用的风道组件,能够改善风流分布的均匀性。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种风道组件。该风道组件包括风道,风道包括进风段和出风段;出风段设有分流筋,分流筋将出风段分成第一子风道和第二子风道,分流筋的中心线与风道的中心线重合;进风段设有第一导风筋,第一导风筋的中心线偏离风道的中心线。该风道组件还包括第一进风口和第二进风口,均与进风段连通,第一导风筋在参考平面上的正投影与第一进风口在参考平面上的正投影存在交叠,参考平面垂直于风道的中心线,第一进风口设置为能够单独开启或与第二进风口同时开启。
在本申请的一实施例中,进风段包括相对的第一侧边缘和第二侧边缘,第一侧边缘位于第一进风口远离第二进风口的一侧,第二侧边缘位于第二进风口远离第一进风口的一侧;第一导风筋的中心线和第一侧边缘在预定方向上的距离与第一导风筋的中心线和第二侧边缘在预定方向上的距离的比例范围为1:2至3:4,预定方向经过第一导风筋的中心且垂直于风道的中心线。
在本申请的一实施例中,第一导风筋在预定方向上的长度与进风段在预定方向上的长度的比例范围为1:7至1:5。
在本申请的一实施例中,第一进风口的出风面积小于第二进风口的出风面积;第一导风筋的中心线和第一侧边缘在预定方向上的距离与第一导风筋的中心线和第二侧边缘在预定方向上的距离的比例为1:2;第一导风筋在预定方向上的长度与进风段在预定方向上的长度的比例为1:5。
在本申请的一实施例中,第一进风口的出风面积大于第二进风口的出风面积;第一导风筋的中心线和第一侧边缘在预定方向上的距离与第一导风筋的中心线和第二侧边缘在预定方向上的距离的比例为3:4;第一导风筋在预定方向上的长度与进风段在预定方向上的长度的比例为1:7。
在本申请的一实施例中,风道组件包括第二导风筋,第二导风筋的中心线偏离风道的中心线,第二导风筋在参考平面上的正投影与第二进风口在参考平面上的正投影存在交叠。
在本申请的一实施例中,第一导风筋的中心线和第一侧边缘在预定方向上的距离与第二导风筋的中心线和第二侧边缘在预定方向上的距离的比例为3:2。
在本申请的一实施例中,第二导风筋朝向第二进风口的一侧具有第二导风面,第二导风面朝向第二进风口倾斜设置。
在本申请的一实施例中,第二导风面与风道的中心线的夹角范围为20°至25°。
在本申请的一实施例中,第一导风筋朝向第一进风口的一侧具有第一导风面,第一导风面朝向第一进 风口倾斜设置。
在本申请的一实施例中,第一导风面与风道的中心线的夹角范围为25°至30°。
在本申请的一实施例中,第一导风筋的中心线平行于风道的中心线,第一导风筋的中心线位于风道的中心线的一侧。
在本申请的一实施例中,第一导风筋转动设置于进风段,第一导风筋可转动至朝向第一进风口倾斜设置。
在本申请的一实施例中,第一进风口的出风面积大于第二进风口的出风面积;第一导风筋可转动至第一导风筋的中心线与风道的中心线的夹角范围为25°至35°。
在本申请的一实施例中,第一进风口的出风面积小于第二进风口的出风面积;第一导风筋可转动至第一导风筋的中心线与风道的中心线的夹角范围为40°至50°。
在本申请的一实施例中,第一导风筋可转动至第一导风筋的中心线与风道的中心线重合。
在本申请的一实施例中,第一进风口的出风面积与第二进风口的出风面积的比例为1:2或2:1。
在本申请的一实施例中,风道组件包括若干第三导风筋,若干第三导风筋按照预设排布方式设置于进风段,若干第三导风筋相对第一导风筋靠近第一进风口和第二进风口。
在本申请的一实施例中,进风段包括聚拢段和扩张段,聚拢段相对扩张段靠近第一进风口和第二进风口,扩张段的风道宽度大于聚拢段的风道宽度。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种制冷设备。该制冷设备包括内腔体、制冷装置以及如上述实施例所阐述的风道组件,制冷装置通过风道组件向内腔体的储物空间输送冷气。
本申请的有益效果是:区别于现有技术,本申请提供一种制冷设备及其应用的风道组件。该风道组件包括第一进风口和第二进风口,第一进风口设置为能够单独开启或与第二进风口同时开启,以实现制冷设备的间室的冷藏和冷冻转换功能。
并且,该风道组件的进风段设有第一导风筋,第一导风筋的中心线偏离风道的中心线且第一导风筋在参考平面上的正投影与第一进风口在参考平面上的正投影存在交叠。如此一来,当第一进风口单独开启时,第一进风口输出的风流在到达第一导风筋后,一部分风流输送至第一子风道,另一部分风流输送至第二子风道,使得风道的风流分布均匀,即能够改善风流分布的均匀性,使得制冷设备的间室内部的温度分布均匀,进而有利于物品的保藏以及改善用户的使用体验。
【附图说明】
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。此外,这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
图1是本申请风道组件第一实施例的结构示意图;
图2是本申请第一导风筋一实施例的结构示意图;
图3是图1所示风道组件当第一进风口单独开启时风道内的风流流动情况的示意图;
图4是图1所示风道组件当第一进风口和第二进风口同时开启时风道内的风流流动情况的示意图;
图5是本申请风道组件第二实施例的结构示意图;
图6是图5所示风道组件当第一进风口单独开启时风道内的风流流动情况的示意图;
图7是图5所示风道组件当第一进风口和第二进风口同时开启时风道内的风流流动情况的示意图;
图8是本申请风道组件第三实施例的结构示意图;
图9是图8所示风道组件另一状态的结构示意图;
图10是图8所示风道组件当第一进风口单独开启时风道内的风流流动情况的示意图;
图11是图8所示风道组件当第一进风口和第二进风口同时开启时风道内的风流流动情况的示意图;
图12是本申请风道组件第四实施例的结构示意图;
图13是本申请制冷设备一实施例的结构示意图;
图14是图13所示制冷设备E-E方向的剖面结构示意图。
【具体实施方式】
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请的实施例,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
为解决现有技术中制冷设备其风道的风流分布不均匀的技术问题,本申请的一实施例提供一种风道组件。该风道组件包括风道,风道包括进风段和出风段;出风段设有分流筋,分流筋将出风段分成第一子风道和第二子风道,分流筋的中心线与风道的中心线重合;进风段设有第一导风筋,第一导风筋的中心线偏离风道的中心线。该风道组件还包括第一进风口和第二进风口,均与进风段连通,第一导风筋在参考平面上的正投影与第一进风口在参考平面上的正投影存在交叠,参考平面垂直于风道的中心线,第一进风口设置为能够单独开启或与第二进风口同时开启。以下进行详细阐述。
请参阅图1,图1是本申请风道组件第一实施例的结构示意图。
在一实施例中,风道组件10应用于制冷设备,例如应用于诸如冰箱等制冷设备,风道组件10具体用于将冷气输送至制冷设备用于存放物品的间室,实现间室内物品的冷藏或冷冻保藏。
风道组件10包括风道11。风道11包括进风段111和出风段112。出风段112设有分流筋12,分流筋12将出风段112分成第一子风道1121和第二子风道1122,分流筋12的中心线(如图1中虚线A所示,下同)与风道11的中心线(如图1中虚线B所示,下同)重合。由于本实施例风道组件10用于向其所应用的制冷设备的间室的不同部分提供冷气,因此需要风流在风道11分布均匀,有利于保证间室内不同部分的冷气量分布均匀,进而保证间室内不同部分的温度分布均匀,有利于物品的保藏以及改善用户的使用体验。其中,中心线定义为各元件在各自宽度方向(沿着如图1所示的水平方向)上的中垂线。
风道组件10还包括第一进风口13和第二进风口14。第一进风口13和第二进风口14分别与风道11的进风段111连通。其中,第一进风口13设置为能够单独开启或与第二进风口14同时开启,以实现制冷设备的间室的冷藏和冷冻转换功能。
具体地,当第一进风口13单独开启时,冷气仅通过第一进风口13输出至风道11,进而输送至制冷设备的间室,此时输送至制冷设备的间室的冷气量较少,间室具备冷藏功能。而当第一进风口13与第二进风口14同时开启时,冷气同时通过第一进风口13和第二进风口14输出至风道11,进而输送至制冷设备的间室,此时输送至制冷设备的间室的冷气量较多,间室具备冷冻功能,即实现制冷设备的间室的冷藏和冷冻转换功能。
可选地,第一进风口13和第二进风口14分别设置有用于实现各自开启和关闭的结构,例如可以是可调节的挡板等结构。通过控制第一进风口13和第二进风口14各自对应的该结构动作,以分别实现第一进风口13和第二进风口14的开启和关闭。
在本实施例中,风道11的进风段111设有第一导风筋15,第一导风筋15的中心线(如图1中虚线C所示,下同)偏离风道11的中心线。并且,第一导风筋15在参考平面(如图1中平面α所示,下同)上的正投影与第一进风口13在参考平面上的正投影存在交叠,其中参考平面为垂直于风道11的中心线的平面。
如此一来,当第一进风口13单独开启时,第一进风口13输出的风流在到达第一导风筋15后,一部分风流输送至第一子风道1121,另一部分风流输送至第二子风道1122,使得风道11的风流分布均匀,即能够改善风流分布的均匀性,使得制冷设备的间室内部的温度分布均匀,进而有利于物品的保藏以及改善用户的使用体验。而当第一进风口13与第二进风口14同时开启时,自第一进风口13和第二进风口14输出的风流自然而然地均匀流向第一子风道1121和第二子风道1122,即此时风道11内的风流同样分布均匀。
需要说明的是,风道11设有进风口113,输入至风道11的风流通过进风口113进入制冷设备的间室内部,以对间室内存放的物品进行低温保藏。
请继续参阅图1。在一实施例中,第一导风筋15的中心线平行于风道11的中心线,并且第一导风筋15的中心线位于风道11的中心线的一侧,使得第一导风筋15的中心线偏离风道11的中心线。当第一进 风口13单独开启时,第一导风筋15能够对自第一进风口13输出的风流起到分流作用,即使得一部分风流输送至第一子风道1121,另一部分风流输送至第二子风道1122,进而使得风道11的风流分布均匀,能够改善风流分布的均匀性。
进风段111包括相对的第一侧边缘1111和第二侧边缘1112,第一侧边缘1111位于第一进风口13远离第二进风口14的一侧,第二侧边缘1112位于第二进风口14远离第一进风口13的一侧。
第一导风筋15的中心线和第一侧边缘1111在预定方向(如图1中虚线β所示,下同)上的距离与第一导风筋15的中心线和第二侧边缘1112在预定方向上的距离的比例范围为1:2至3:4。其中,预定方向经过第一导风筋15的中心(如图1中点O1所示,下同)且垂直于风道11的中心线。
请一并参阅图2,第一导风筋15的中心O1定义为第一导风筋15在其长度方向(沿着如图1所示的竖直方向)上的中垂线C与在其宽度方向(沿着如图1所示的水平方向)上的中垂线(即第一导风筋15的中心线D)的交点。
请继续参阅图1,第一子风道1121靠近第一进风口13设置,第二子风道1122靠近第二进风口14设置。第一导风筋15和分流筋12之间具有一定的间隙。第一导风筋15和第一侧边缘1111在预定方向上的距离与第一导风筋15和第二侧边缘1112在预定方向上的距离的比例满足上述比例范围,使得第一导风筋15靠近风道11的中心线,以尽量避免当第一进风口13单独开启时经第一导风筋15分流且流向第二子风道1122的风流自第一导风筋15和分流筋12之间的间隙回流至第一子风道1121,进一步保证风流分布的均匀性。
并且,进一步地,在一些具体的实施例中,第一导风筋15在预定方向上的长度与进风段111在预定方向上的长度的比例范围为1:7至1:5。如此一来,使得第一导风筋15具有足够的宽度,进而使得到达第一导风筋15的风流尽可能地被第一导风筋15等量分流,尽可能保证流向第一子风道1121和第二子风道1122的风流的风量相等,进一步保证风流分布的均匀性。
在一具体的实施例中,第一进风口13的出风面积与第二进风口14的出风面积差异设计,意味着第一进风口13的风量不同于第二进风口14的风量,但第一进风口13和第二进风口14的出风面积总和是固定不变的,即当第一进风口13与第二进风口14同时开启时输入风道11的风流风量是固定不变的。
具体地,第一进风口13的出风面积可以小于第二进风口14的出风面积,意味着当第一进风口13单独开启时输入风道11的风流风量较小,输送至制冷设备的间室的冷气量较少,此时间室的温度较高,第一进风口13的出风面积与第二进风口14的出风面积的比例优选为1:2;第一进风口13的出风面积可以大于第二进风口14的出风面积,意味着当第一进风口13单独开启时输入风道11的风流风量较大,输送至制冷设备的间室的冷气量较多,此时间室的温度较低,第一进风口13的出风面积与第二进风口14的出风面积的比例优选为2:1;当第一进风口13与第二进风口14同时开启时,输入风道11的风流风量最大化,使得输送至制冷设备的间室的冷气量最大化,此时间室的温度最低。
可以看出,通过第一进风口13的出风面积与第二进风口14的出风面积的差异设计,当第一进风口13具有不同大小的出风口时,会使得第一进风口13单独开启时间室具有不同的温度,即实现间室所处温区的多样化调节。举例而言,当第一进风口13的出风面积小于第二进风口14的出风面积时,第一进风口13单独开启,此时间室处于冷藏温区;而当第一进风口13的出风面积大于第二进风口14的出风面积时,第一进风口13单独开启,此时间室处于变温区。
需要说明的是,由于第一进风口13的最小截面决定了第一进风口13输出风流的风量,因此第一进风口13的出风面积定义为第一进风口13的最小截面的面积,该最小截面平行于上述的参考平面。同理,第二进风口14的出风面积定义为第二进风口14的最小截面的面积,该最小截面平行于上述的参考平面。
由于第一进风口13的出风面积与第二进风口14的出风面积差异设计,导致其出风量也会有差异,因此要想送入间室内的风流分布的均匀性,则对应的第一导风筋15的特征要进一步优化。进一步地,请继续参阅图1。在一实施例中,第一进风口13的出风面积小于第二进风口14的出风面积。第一导风筋15的中心线和第一侧边缘1111在上述预定方向上的距离L1、第一导风筋15的中心线和第二侧边缘1112在预定方向上的距离L2具有如是关系:L1:L2=1:2。第一导风筋15在预定方向上的长度L3、进风段111在预定方向上的长度L4具有如是关系:L3:L4=1:5。
如此一来,第一导风筋15靠近风道11的中心线,以尽量避免当第一进风口13单独开启时经第一导风筋15分流且流向第二子风道1122的风流自第一导风筋15和分流筋12之间的间隙回流至第一子风道1121,进一步保证风流分布的均匀性。并且,第一导风筋15具有足够的宽度,使得当第一进风口13单独开启时到达第一导风筋15的风流尽可能地被第一导风筋15等量分流,尽可能保证流向第一子风道1121和第二子风道1122的风流的风量相等,进一步保证风流分布的均匀性。
进一步地,第一导风筋15朝向第一进风口13的一侧具有第一导风面151,第一导风面151朝向第一进风口13倾斜设置,用于引导风流流向第二子风道1122,有利于改善第一导风筋15引导风流流向的效果,进一步保证风流分布的均匀性。
可选地,第一导风面151与风道11的中心线的夹角范围为25°至30°,优选为25°等。如图1所示,第一导风面151与风道11的中心线的夹角为θ1,其中θ1的取值范围为25°至30°,优选为25°等。如此一来,能够最大限度地改善第一导风筋15引导风流流向的效果,最大限度地保证风流分布的均匀性。
进一步地,由于制冷设备通常由蜗流离心风机提供冷气,因此自第一进风口13和第二进风口14输出的风流存在一定的偏向。有鉴于此,风道组件10还包括若干第三导风筋16,该若干第三导风筋16按照预设排布方式设置于进风段111,该若干第三导风筋16相对第一导风筋15靠近第一进风口13和第二进风口14。第三导风筋16至少其朝向第一进风口13和第二进风口14的端部的横截面面积沿靠近第一进风口13和第二进风口14的方向逐渐减小,能够引导自第一进风口13和第二进风口14输入风道11的风流沿风道11的中心线流动,缓解风流流向紊乱的情况,进一步有利于保证风流分布的均匀性。其中,第三导风筋16的横截面垂直于风道11的中心线。
上述若干第三导风筋16按照预设排布方式设置于进风段111具体可以是该若干第三导风筋16沿上述的预定方向依次间隔排布。举例而言,该若干第三导风筋16的数量为两个,具体是导风筋161和导风筋162,其中导风筋161靠近第一侧边缘1111,导风筋162靠近第二侧边缘1112。
进风段111包括聚拢段1113和扩张段1114,聚拢段1113相对扩张段1114靠近第一进风口13和第二进风口14,即自第一进风口13和第二进风口14输出的风流先经过聚拢段1113,而后经过扩张段1114。其中,扩张段1114的风道宽度大于聚拢段1113的风道宽度,聚拢段1113优选为其在风道11的中心线上的各个位置的风道宽度相等,聚拢段1113能够对自第一进风口13和第二进风口14输出的风流起到一定的聚拢作用,使得风流尽可能沿风道11的中心线流动,进一步有利于保证风流分布的均匀性。
对于上述若干第三导风筋16包括导风筋161和导风筋162的举例,导风筋161的中心线和第一侧边缘1111在聚拢段1113中的部分之间的距离L5、导风筋162的中心线和第二侧边缘1112在聚拢段1113中的部分之间的距离L6、聚拢段1113的风道宽度L7具有如是关系:L5=L6、L5:L6:L7=1:1:5。如此一来,自第一进风口13输出的风流能够接受导风筋161的引导,而自第二进风口14输出的风流能够接受导风筋162的引导,使得自第一进风口13和第二进风口14输出的风流沿风道11的中心线流动,能够缓解风流流向紊乱的情况,进一步有利于保证风流分布的均匀性。
可选地,导风筋161的中心线与第一导风筋15的中心线重合。
当然,本实施例所阐述若干第三导风筋16的预设排布方式并不局限于上文所述的沿预定方向依次间隔排布,并且本申请的其它实施例也可以应用本实施例所阐述的第三导风筋16,在此不做限定。
图3展示了本实施例中当第一进风口13单独开启时风道11内的风流流动情况,图4展示了本实施例中当第一进风口13和第二进风口14同时开启时风道11内的风流流动情况。
举例而言,常见的制冷设备,如冰箱等,通常具有上下两个间室并由同一套制冷装置提供冷气。在本实施例的风道组件10应用于具有上下两个间室的制冷设备的情况下,本实施例的风道组件10用于向其中一个间室输送冷气。具体地,本实施例中第一进风口13的出风面积小于第二进风口14的出风面积,当第一进风口13单独开启时,风道组件10对应的间室与另一间室的风量之比为1:3,有利于降低制冷设备的能耗;而当第一进风口13和第二进风口14同时开启时,风道组件10对应的间室与另一间室的风量之比为2:3。
请参阅图5,图5是本申请风道组件第二实施例的结构示意图。
在一实施例中,本实施例与上述实施例的不同之处在于:第一进风口13的出风面积大于第二进风口 14的出风面积。由于本实施例中第一进风口13的出风面积大于上述实施例的第一进风口13的出风面积,因此本实施例的第一导风筋15相对上述实施例而言更加靠近风道11的中心线,使得到达第一导风筋15的风流能够被均匀分流,以保证风流分布的均匀性。
具体地,本实施例中第一导风筋15的中心线和第一侧边缘1111在上述预定方向上的距离W1、第一导风筋15的中心线和第二侧边缘1112在预定方向上的距离W2具有如是关系:W1:W2=3:4。由于风道11的进风段111的风道宽度不变,可见本实施例第一导风筋15和第一侧边缘1111在上述预定方向上的距离与第一导风筋15和第二侧边缘1112在预定方向上的距离的比例大于上述实施例所示比例,即本实施例的第一导风筋15更加靠近风道11的中心线。
并且,第一导风筋15在预定方向上的长度W3、进风段111在预定方向上的长度W4具有如是关系:W3:W4=1:7,使得第一导风筋15具有足够的宽度,进而使得当第一进风口13单独开启时到达第一导风筋15的风流尽可能地被第一导风筋15等量分流,尽可能保证流向第一子风道1121和第二子风道1122的风流的风量相等,进一步保证风流分布的均匀性。
在本实施例中,第一导风筋15上的第一导风面151与风道11的中心线的夹角优选为30°等。如图5所示,θ1优选为30°等。如此一来,能够最大限度地改善第一导风筋15引导风流流向的效果,最大限度地保证风流分布的均匀性。
进一步地,由于本实施例中第一进风口13的出风面积大于第二进风口14的出风面积,当第一进风口13和第二进风口14同时开启时,风道11中靠近第一进风口13的部分风压较大,而风道11中靠近第二进风口14的部分风压较小,导致自第二进风口14输入的风流较难自然流向第一子风道1121,致使自第二进风口14输入的风流大部分流向第二子风道1122而引发风流分布不均的问题。
有鉴于此,风道组件10还包括第二导风筋17。第二导风筋17的中心线偏离风道11的中心线,并且第二导风筋17在参考平面上的正投影与第二进风口14在参考平面上的正投影存在交叠。优选地,第二导风筋17的中心线平行于风道11的中心线,第二导风筋17的中心线位于风道11的中心线的一侧,使得第二导风筋17的中心线偏离风道11的中心线。如此一来,当第二进风口14开启时,第二进风口14输出的风流在到达第二导风筋17后,一部分风流输送至第一子风道1121,另一部分风流输送至第二子风道1122,使得风道11内的风流分布均匀,以进一步保证风流分布的均匀性。
第一导风筋15的中心线和第一侧边缘1111在预定方向上的距离W1、第二导风筋17的中心线和第二侧边缘1112在预定方向上的距离W5具有如是关系:W1:W5=3:2,以进一步保证第二进风口14输出的风流在到达第二导风筋17后,一部分风流能够在第二导风筋17的引导下流向第一子风道1121,进而保证风流分布的均匀性。
需要说明的是,上述第一进风口13的出风面积小于第二进风口14的出风面积的实施例中,风道组件10未设置第二导风筋17,其原因在于:第一进风口13的出风面积小于第二进风口14的出风面积,当第一进风口13和第二进风口14同时开启时,风道11中靠近第一进风口13的部分风压较小,而风道11中靠近第二进风口14的部分风压较大,自第二进风口14输入的风流会自然流向第一子风道1121而使得风流分布均匀。
更进一步地,第二导风筋17朝向第二进风口14的一侧具有第二导风面171,第二导风面171朝向第二进风口14倾斜设置,用于引导风流流向第一子风道1121,有利于改善第二导风筋17引导风流流向的效果,进一步保证风流分布的均匀性。
可选地,第二导风面171与风道11的中心线的夹角范围为20°至25°,优选为20°等。如图5所示,第二导风面171与风道11的中心线的夹角为θ2,其中θ2的取值范围为20°至25°,优选为20°等。如此一来,能够最大限度地改善第二导风筋17引导风流流向的效果,最大限度地保证风流分布的均匀性。
图6展示了本实施例中当第一进风口13单独开启时风道11内的风流流动情况,图7展示了本实施例中当第一进风口13和第二进风口14同时开启时风道11内的风流流动情况。
对于上述制冷设备具有上下两个间室并由同一套制冷装置提供冷气的情况,本实施例中第一进风口13的出风面积大于第二进风口14的出风面积,当第一进风口13单独开启时,风道组件10对应的间室与另一间室的风量之比为1:2,风道组件10对应的间室的风量较大,有利于快速降温;而当第一进风口13和 第二进风口14同时开启时,风道组件10对应的间室与另一间室的风量之比为2:3。
请参阅图8,图8是本申请风道组件第三实施例的结构示意图。
在一实施例中,本实施例与上述实施例的不同之处在于:第一导风筋15转动设置于进风段111。进一步地,可以由埋设于风道11的电机带动第一导风筋15转动。第一导风筋15可转动至朝向第一进风口13倾斜设置,使得第一导风筋15的中心线偏离风道11的中心线,并且第一导风筋15在参考平面上的正投影与第一进风口13在参考平面上的正投影存在交叠。需要说明的是,第一导风筋15转动设置于进风段111表现为第一导风筋15能够绕一转动中心(如图8中点O2所示,下同)自转,该转动中心与第一导风筋15的中心线重合。进一步地,该转动中心与第一导风筋15的中心重合。
如此一来,当第一进风口13单独开启时,第一导风筋15能够对自第一进风口13输出的风流起到分流作用,即使得一部分风流输送至第一子风道1121,另一部分风流输送至第二子风道1122,进而使得风道11的风流分布均匀,能够改善风流分布的均匀性。
在本实施例中,第一导风筋15的中心线偏离风道11的中心线表现为第一导风筋15的中心线与风道11的中心线成角度设置,并且本实施例中第一进风口13的出风面积大于第二进风口14的出风面积,第一导风筋15可转动至第一导风筋15的中心线与风道11的中心线的夹角范围优选为25°至35°。如图8所示,第一导风筋15的中心线与风道11的中心线的夹角为θ3,图8中角θ3为30°。
请参阅图9,第一导风筋15的转动中心与风道11的中心线重合。当第一进风口13和第二进风口14同时开启时,为避免倾斜设置的第一导风筋15影响风流的分布,第一导风筋15可转动至第一导风筋15的中心线与风道11的中心线重合,使得自第一进风口13和第二进风口14输入风道11的风流均匀流向第一子风道1121和第二子风道1122,进而能够改善风流的分布均匀性。
图10展示了本实施例中当第一进风口13单独开启时风道11内的风流流动情况,图11展示了本实施例中当第一进风口13和第二进风口14同时开启时风道11内的风流流动情况。
请参阅图12,图12是本申请风道组件第四实施例的结构示意图。
在替代实施例中,第一进风口13的出风面积小于第二进风口14的出风面积,即相对于上述实施例而言第一进风口13的出风面积减小,意味着第一导风筋15需要转动更大角度,才能使得第一导风筋15当第一进风口13单独开启时能够对自第一进风口13输出的风流起到分流作用,保证风流分布的均匀性。具体地,第一导风筋15可转动至第一导风筋15的中心线与风道11的中心线的夹角范围优选为40°至50°。如图12所示,角θ3为45°。
综上所述,本申请所提供的风道组件,其包括第一进风口和第二进风口,第一进风口设置为能够单独开启或与第二进风口同时开启,以实现制冷设备的间室的冷藏和冷冻转换功能。
并且,该风道组件的进风段设有第一导风筋,第一导风筋的中心线偏离风道的中心线且第一导风筋在参考平面上的正投影与第一进风口在参考平面上的正投影存在交叠。如此一来,当第一进风口单独开启时,第一进风口输出的风流在到达第一导风筋后,一部分风流输送至第一子风道,另一部分风流输送至第二子风道,使得风道的风流分布均匀,即能够改善风流分布的均匀性,使得制冷设备的间室内部的温度分布均匀,进而有利于物品的保藏以及改善用户的使用体验。
请参阅图13和图14,图13是本申请制冷设备一实施例的结构示意图,图14是图13所示制冷设备E-E方向的剖面结构示意图。
在一实施例中,制冷设备40包括内腔体20、制冷装置30以及风道组件10。制冷装置30、风道组件10以及内腔体20依次连通,制冷装置30通过风道组件10向内腔体20的储物空间输送冷气。
需要说明的是,风道组件10已在上述实施例中详细阐述,在此就不再赘述。内腔体20的内部储物空间即为上述实施例所阐述的用于存放物品的间室。制冷装置30可以包括蜗壳以及设于蜗壳中的离心风机,其属于本领域技术人员的理解范畴,在此就不再赘述。
图14展示了内腔体20包括第一内腔体21和第二内腔体22,风道组件10设于第一内腔体21的背部,用于引导冷气输送至第一内腔体21的内部储物空间。其中,第一内腔体21和第二内腔体22可以是上述实施例所阐述的制冷设备40具有上下两个间室并由同一套制冷装置30提供冷气的情况。
此外,在本申请中,除非另有明确的规定和限定,术语“相连”、“连接”、“层叠”等术语应做广义理 解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (20)

  1. 一种风道组件,其中,包括:
    风道,包括进风段和出风段;所述出风段设有分流筋,所述分流筋将所述出风段分成第一子风道和第二子风道,所述分流筋的中心线与所述风道的中心线重合;所述进风段设有第一导风筋,所述第一导风筋的中心线偏离所述风道的中心线;
    第一进风口和第二进风口,均与所述进风段连通,所述第一导风筋在参考平面上的正投影与所述第一进风口在所述参考平面上的正投影存在交叠,所述参考平面垂直于所述风道的中心线,所述第一进风口设置为能够单独开启或与所述第二进风口同时开启。
  2. 根据权利要求1所述的风道组件,其中,
    所述进风段包括相对的第一侧边缘和第二侧边缘,所述第一侧边缘位于所述第一进风口远离所述第二进风口的一侧,所述第二侧边缘位于所述第二进风口远离所述第一进风口的一侧;
    所述第一导风筋的中心线和所述第一侧边缘在预定方向上的距离与所述第一导风筋的中心线和所述第二侧边缘在所述预定方向上的距离的比例范围为1:2至3:4,所述预定方向经过所述第一导风筋的中心且垂直于所述风道的中心线。
  3. 根据权利要求2所述的风道组件,其中,所述第一导风筋在所述预定方向上的长度与所述进风段在所述预定方向上的长度的比例范围为1:7至1:5。
  4. 根据权利要求3所述的风道组件,其中,
    所述第一进风口的出风面积小于所述第二进风口的出风面积;
    所述第一导风筋的中心线和所述第一侧边缘在所述预定方向上的距离与所述第一导风筋的中心线和所述第二侧边缘在所述预定方向上的距离的比例为1:2;
    所述第一导风筋在所述预定方向上的长度与所述进风段在所述预定方向上的长度的比例为1:5。
  5. 根据权利要求3所述的风道组件,其中,
    所述第一进风口的出风面积大于所述第二进风口的出风面积;
    所述第一导风筋的中心线和所述第一侧边缘在所述预定方向上的距离与所述第一导风筋的中心线和所述第二侧边缘在所述预定方向上的距离的比例为3:4;
    所述第一导风筋在所述预定方向上的长度与所述进风段在所述预定方向上的长度的比例为1:7。
  6. 根据权利要求5所述的风道组件,其中,
    所述风道组件包括第二导风筋,所述第二导风筋的中心线偏离所述风道的中心线,所述第二导风筋在所述参考平面上的正投影与所述第二进风口在所述参考平面上的正投影存在交叠。
  7. 根据权利要求6所述的风道组件,其中,所述第一导风筋的中心线和所述第一侧边缘在所述预定方向上的距离与所述第二导风筋的中心线和所述第二侧边缘在所述预定方向上的距离的比例为3:2。
  8. 根据权利要求6所述的风道组件,其中,所述第二导风筋朝向所述第二进风口的一侧具有第二导风面,所述第二导风面朝向所述第二进风口倾斜设置。
  9. 根据权利要求8所述的风道组件,其中,所述第二导风面与所述风道的中心线的夹角范围为20°至25°。
  10. 根据权利要求1至9任一项所述的风道组件,其中,所述第一导风筋朝向所述第一进风口的一侧具有第一导风面,所述第一导风面朝向所述第一进风口倾斜设置。
  11. 根据权利要求10所述的风道组件,其中,所述第一导风面与所述风道的中心线的夹角范围为25°至30°。
  12. 根据权利要求1至9任一项所述的风道组件,其中,所述第一导风筋的中心线平行于所述风道的中心线,所述第一导风筋的中心线位于所述风道的中心线的一侧。
  13. 根据权利要求1所述的风道组件,其中,所述第一导风筋转动设置于所述进风段,所述第一导风筋可转动至朝向所述第一进风口倾斜设置。
  14. 根据权利要求13所述的风道组件,其中,
    所述第一进风口的出风面积大于所述第二进风口的出风面积;
    所述第一导风筋可转动至所述第一导风筋的中心线与所述风道的中心线的夹角范围为25°至35°。
  15. 根据权利要求13所述的风道组件,其中,
    所述第一进风口的出风面积小于所述第二进风口的出风面积;
    所述第一导风筋可转动至所述第一导风筋的中心线与所述风道的中心线的夹角范围为40°至50°。
  16. 根据权利要求13所述的风道组件,其中,所述第一导风筋可转动至所述第一导风筋的中心线与所述风道的中心线重合。
  17. 根据权利要求1至9及13至16任一项所述的风道组件,其中,所述第一进风口的出风面积与所述第二进风口的出风面积的比例为1:2或2:1。
  18. 根据权利要求1至9及13至16任一项所述的风道组件,其中,所述风道组件包括若干第三导风筋,所述若干第三导风筋按照预设排布方式设置于所述进风段,所述若干第三导风筋相对所述第一导风筋靠近所述第一进风口和所述第二进风口。
  19. 根据权利要求1至9及13至16任一项所述的风道组件,其中,所述进风段包括聚拢段和扩张段,所述聚拢段相对所述扩张段靠近所述第一进风口和所述第二进风口,所述扩张段的风道宽度大于所述聚拢段的风道宽度。
  20. 一种制冷设备,其中,所述制冷设备包括内腔体、制冷装置以及如权利要求1至19任一项所述的风道组件,所述制冷装置通过所述风道组件向所述内腔体的储物空间输送冷气。
PCT/CN2021/132900 2020-11-26 2021-11-24 制冷设备及其应用的风道组件 WO2022111545A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011349799.7 2020-11-26
CN202011349799.7A CN114543425B (zh) 2020-11-26 2020-11-26 制冷设备及其应用的风道组件

Publications (1)

Publication Number Publication Date
WO2022111545A1 true WO2022111545A1 (zh) 2022-06-02

Family

ID=81667927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132900 WO2022111545A1 (zh) 2020-11-26 2021-11-24 制冷设备及其应用的风道组件

Country Status (2)

Country Link
CN (1) CN114543425B (zh)
WO (1) WO2022111545A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204460895U (zh) * 2015-03-05 2015-07-08 合肥美菱股份有限公司 一种应用于风冷冰箱冷藏室的风道组件
CN108917269A (zh) * 2018-08-07 2018-11-30 澳柯玛股份有限公司 一种用于多温区冰箱的风道组件
CN208282471U (zh) * 2018-05-30 2018-12-25 长虹美菱股份有限公司 一种双风门控制风向及风量的冰箱
CN110108078A (zh) * 2019-04-24 2019-08-09 澳柯玛股份有限公司 一种用于风冷冰箱的冷藏室风道组件
CN110749141A (zh) * 2019-10-23 2020-02-04 合肥晶弘电器有限公司 一种冰箱冷藏风道调节结构及冰箱
US20200124339A1 (en) * 2017-06-19 2020-04-23 Hisense Ronshen (Guangdong) Refrigerator Co., Ltd. Refrigerator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945365B2 (ja) * 2007-08-02 2012-06-06 日立アプライアンス株式会社 冷蔵庫
RU2664037C2 (ru) * 2014-05-19 2018-08-14 Булат Иушевич Аманов Ветроэнергетическая установка вертикального типа
KR102214651B1 (ko) * 2014-08-21 2021-02-10 주식회사 위니아딤채 덕트어셈블리 및 냉장고
CN107345732B (zh) * 2016-05-06 2021-10-08 博西华电器(江苏)有限公司 冰箱
CN107560287B (zh) * 2017-09-04 2020-04-14 海信(山东)冰箱有限公司 一种风冷冰箱的风道组件及风冷冰箱
CN211476419U (zh) * 2019-12-06 2020-09-11 青岛海尔特种电冰柜有限公司 一种卧式风冷冷柜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204460895U (zh) * 2015-03-05 2015-07-08 合肥美菱股份有限公司 一种应用于风冷冰箱冷藏室的风道组件
US20200124339A1 (en) * 2017-06-19 2020-04-23 Hisense Ronshen (Guangdong) Refrigerator Co., Ltd. Refrigerator
CN208282471U (zh) * 2018-05-30 2018-12-25 长虹美菱股份有限公司 一种双风门控制风向及风量的冰箱
CN108917269A (zh) * 2018-08-07 2018-11-30 澳柯玛股份有限公司 一种用于多温区冰箱的风道组件
CN110108078A (zh) * 2019-04-24 2019-08-09 澳柯玛股份有限公司 一种用于风冷冰箱的冷藏室风道组件
CN110749141A (zh) * 2019-10-23 2020-02-04 合肥晶弘电器有限公司 一种冰箱冷藏风道调节结构及冰箱

Also Published As

Publication number Publication date
CN114543425A (zh) 2022-05-27
CN114543425B (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
WO2019101000A1 (zh) 集成制冰机的冰箱
US20190128588A1 (en) Air duct assembly and refrigerator
US20080256964A1 (en) Refrigerator and controlling method of the same
JP2013145082A (ja) 冷凍冷蔵庫
WO2018032607A1 (zh) 一种风冷冰箱及其控制方法
WO2021213148A1 (zh) 冰箱
WO2021212970A1 (zh) 冰箱
WO2017166575A1 (zh) 冷藏冷冻装置
CN108800721A (zh) 一种冰箱风道组件及风冷冰箱
CN109708383A (zh) 一种用于风冷冰箱的风道组件结构及其制冷控制方法
CN106225378A (zh) 一种风冷冰箱风腔结构及风冷冰箱
WO2017113769A1 (zh) 一种风直冷变换式冰箱
WO2022111545A1 (zh) 制冷设备及其应用的风道组件
KR20030064552A (ko) 냉장고의 냉기분배 시스템
WO2021213147A1 (zh) 冰箱
WO2019137090A1 (zh) 用于冰箱的风道组件及冰箱
CN107421216B (zh) 一种用于多温区冷藏室的风道组件及冰箱
CN107062747A (zh) 一种冰箱风道组件以及冰箱
US3126721A (en) Figure
WO2024008120A1 (zh) 冰箱及其风道系统
JP2014043980A (ja) 冷蔵庫
KR20130016987A (ko) 냉각 선반이 장착된 냉장고
CN107940866A (zh) 用于冰箱的单系统可控多温区的风道系统及其冰箱
CN217442044U (zh) 冷藏室内具有独立控温区的冰箱
JP5895145B2 (ja) 冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897045

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.10.2023)