WO2021213148A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2021213148A1
WO2021213148A1 PCT/CN2021/083984 CN2021083984W WO2021213148A1 WO 2021213148 A1 WO2021213148 A1 WO 2021213148A1 CN 2021083984 W CN2021083984 W CN 2021083984W WO 2021213148 A1 WO2021213148 A1 WO 2021213148A1
Authority
WO
WIPO (PCT)
Prior art keywords
compartment
return air
evaporation chamber
air
wall
Prior art date
Application number
PCT/CN2021/083984
Other languages
English (en)
French (fr)
Inventor
朱云涛
刘庆林
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Priority to AU2021259543A priority Critical patent/AU2021259543B2/en
Publication of WO2021213148A1 publication Critical patent/WO2021213148A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features

Definitions

  • the invention relates to a refrigerator, in particular to a refrigerator with reduced frosting.
  • the existing side-by-side refrigerator has a freezer compartment on one side, and a refrigerating room or a greenhouse on the other side.
  • the refrigerating room or a greenhouse is provided with a return air duct connected to the freezer.
  • the return air outlet of the return air duct is located It is close to the evaporator in the freezer.
  • the evaporator near the return air outlet is likely to be frosted and block the return air outlet, which affects the normal return air of the cold room or the greenhouse, thereby affecting the refrigeration The cooling effect of the room or the greenhouse.
  • the object of the present invention is to provide a refrigerator with reduced frosting.
  • the present invention provides a refrigerator including a first compartment and a second compartment arranged in a side-by-side door, and an evaporation chamber arranged in the first compartment, wherein the refrigerator further includes A supply air duct and a return air duct connected to the evaporation chamber and the second compartment and respectively located on the upper and lower sides, the return air duct having a return air outlet connected to the evaporation chamber and a return air inlet connected to the second compartment , The return air duct is gradually narrowed from the return air inlet toward the return air outlet.
  • the return air duct has a return air upper inner wall and a return air lower inner wall, and the upper inner wall and the lower inner wall respectively extend obliquely and downwardly from the return air inlet toward the return air inlet.
  • the inclination angle of the upper inner wall of the return air is greater than the inclination angle of the lower inner wall of the return air.
  • the refrigerator further includes a blocking device arranged in cooperation with the return air duct to block the air flow between the evaporation chamber and the second compartment.
  • the blocking device is a one-way valve that only allows airflow from the second chamber to the evaporation chamber.
  • the refrigerator further includes an evaporator arranged in the evaporation chamber, and the lower end of the evaporator is not lower than the upper end of the return air outlet.
  • the refrigerator further includes a third compartment arranged above the first compartment and the second compartment, and a return air passage connecting the third compartment and the evaporation chamber, and the return air
  • the channel has an opening arranged in the evaporation chamber and located below the evaporator, and the center line in the transverse direction of the opening is located on the side of the center line in the transverse direction of the evaporator away from the second compartment.
  • the second compartment has a return air area cooperating with the return air inlet, and the return air area has a plurality of air holes penetrating in a transverse direction.
  • the air supply duct has an upper air supply inner wall and a lower air supply inner wall, and both the upper and lower air supply inner walls extend from the evaporation chamber to the second compartment in an upwardly inclined extension. .
  • the refrigerator further includes an air supply channel arranged on the rear side of the second compartment, and an air door arranged in the air supply channel to supply air in a transverse direction, and the upper end of the air door is away from each other in the transverse direction.
  • the side of the evaporation chamber is inclined.
  • the refrigerator of the present invention has a structure that gradually narrows from the return air inlet to the return air outlet by setting the return air duct.
  • the flow velocity gradually increases, making the flow velocity on the return air outlet side larger, so that the return air flow can move a greater distance in the lateral direction, thereby increasing
  • the contact area between the return air flow and the evaporator reduces the risk of excessive frost on the side of the evaporator close to the return air outlet and block the return air outlet.
  • Fig. 1 is a three-dimensional schematic diagram of the refrigerator of the present invention.
  • Fig. 2 is a front view of the refrigerator of the present invention.
  • Figure 3 is a front view of Figure 2 with part of the structure hidden.
  • Figure 4 is a three-dimensional schematic view after the first compartment is hidden.
  • Fig. 5 is a perspective schematic view after the second compartment is hidden.
  • Figure 6 is a side view with the second compartment hidden.
  • Fig. 7 is a side view with the first compartment hidden.
  • Fig. 8 is a three-dimensional exploded view of the supply air duct, the supply air duct and the return air duct.
  • Fig. 9 is an exploded perspective view of Fig. 8 from another perspective.
  • Fig. 10 is a perspective schematic view of the damper in Fig. 8.
  • Fig. 11 is a cross-sectional view along the AA direction in Fig. 1.
  • the refrigerator includes a first compartment 1 and a second compartment 2 with a side-by-side door, and an evaporation chamber 11 disposed in the first compartment 1 , wherein, the refrigerator further includes a supply air duct 3 and a return air duct 4 which communicate with the evaporation chamber 11 and the second compartment 2 in the transverse direction and are respectively located on the upper and lower sides, and the return air duct 4 has a communication evaporation
  • the return air outlet 41 of the chamber 11 and the return air inlet 42 of the second compartment 2 are connected, and the return air duct 4 is gradually narrowed from the return air inlet 42 toward the return air outlet 41.
  • the first compartment 1 is a freezing compartment
  • the second compartment 2 is a temperature changing room
  • the freezing room is arranged on the left side of the changing room.
  • the second compartment 2 can also be a refrigerating compartment, and the positions of the first compartment 1 and the second compartment 2 can also be exchanged.
  • the evaporation chamber 11 is arranged on the rear side of the first compartment 1, and the refrigerator includes an evaporator 12 arranged in the evaporation chamber 11 and a freezing fan 13 located above the evaporator 12.
  • the width of the evaporator 12 in the transverse direction matches the width of the first compartment 1 in the transverse direction.
  • the air supply duct 3 is arranged at the top of the first compartment 1 and the second compartment 2 and is located on the side of the freezing fan 13 in the transverse direction, so that it is convenient for the freezing fan 13 to evaporate the inside of the chamber 11.
  • the cold air quickly blows into the air supply duct 3.
  • the air supply duct 3 is an insulating member made of insulating material, usually made of foam, and the air supply duct 3 has an air supply inlet 31 connected to the evaporation chamber 11 , Connecting to the air outlet 32 of the second compartment 2.
  • the blowing duct 3 has an upper blowing inner wall 33 and a blowing lower inner wall 34.
  • the blowing upper inner wall 33 and the blowing lower inner wall 34 both extend upwardly from the evaporation chamber 11 to the second compartment 2.
  • the upper inner wall 33 and the lower inner wall 34 of the blowing air extend from the blowing inlet 31 to the blowing outlet 32 side in an upwardly inclined manner.
  • the upper inner wall 33 and the lower inner wall 34 both extend upwardly from left to right.
  • the upper air blowing inner wall 33 and the air blowing lower inner wall 34 both extend upwardly and obliquely from right to left.
  • the moist air in the second compartment 2 may enter the air supply duct 3.
  • the moist air comes into contact with the low temperature in the evaporation chamber 11, condensation is likely to occur.
  • the upper inner wall 33 of the air supply and the lower inner wall 34 of the air supply flow into the evaporation chamber 11 to prevent the air supply duct 3 from freezing and blocking the air supply duct 3.
  • the return air duct 4 is gradually narrowed from right to left.
  • the return air duct 4 is gradually narrowed from left to right. Therefore, when the air flow in the second compartment 2 flows from the return air inlet 42 to the return air outlet 41, the flow velocity gradually increases, so that the flow velocity on the side of the return air outlet 41 is larger, so that the return air flow can move more in the lateral direction.
  • the lower end of the evaporator 12 is not lower than the upper end of the return air outlet 41.
  • the evaporator 12 When the width in the transverse direction is relatively small, the evaporator 12 can be arranged away from the return air outlet 41 in the transverse direction.
  • the return air duct 4 has an upper return air inner wall 43 and a return lower inner wall 44.
  • the return air upper inner wall 43 and the return air lower inner wall 44 respectively go from the return air inlet 42 to the return air inlet. 42 direction obliquely extends downward.
  • the condensation generated in the return air duct 4 can flow into the evaporation chamber 11 along the upper inner wall 43 of the return air and the lower inner wall 44 of the return air, and finally the water receiving device in the evaporation chamber 11 is collected
  • the return air flow is inclined downward as a whole, which further reduces the contact area between the return air flow and the evaporator 12 on the side close to the return air outlet 41, thereby reducing the risk of frosting there.
  • the inclination angle of the upper inner wall 43 of the return air is greater than the inclination angle of the lower inner wall 44 of the return air, so that the size of the return air outlet 41 can be further reduced, and the gas flow rate at the return air outlet 41 can be increased, so that the gas can move more.
  • a longer distance to contact more area on the evaporator 12 can reduce the risk of excessive frost on the side of the evaporator 12 close to the return air outlet 41 and block the return air outlet 41.
  • the amount of cold air flowing back into the second compartment 2 in the evaporation chamber 11 is also reduced.
  • the second compartment 2 further has a return air area provided in cooperation with the return air inlet 42, and the return air area has a plurality of air holes 21 penetrating in a transverse direction. Therefore, the amount of cold air flowing back into the second compartment 2 in the evaporation chamber 11 is reduced. In turn, the temperature fluctuation in the second compartment 2 is reduced.
  • the refrigerator also includes a connection with the return air duct 4 A blocking device (not shown) that is matched to block the air flow between the evaporation chamber 11 and the second compartment 2.
  • the blocking device is a one-way valve that only allows airflow from the second compartment 2 to the evaporation chamber 11, that is, the cold air in the evaporation chamber 11 cannot enter the second compartment 2.
  • the blocking device may also be an electric damper.
  • the refrigerator further includes a third compartment (not shown) arranged above the first compartment 1 and the second compartment 2, communicating with the third compartment and The return air passage of the evaporation chamber 11, the third compartment is a refrigerating compartment, the return air passage has a slot 14 arranged in the evaporation chamber 11 and below the evaporator 12, and the slot 14 is in a transverse direction
  • the center line of the evaporator 12 is located on the side of the evaporator 12 away from the second compartment 2 in the transverse direction.
  • the slot 14 is arranged under the evaporator 12, on the one hand, it can prevent the refrigerating fan 13 from directly blowing the return air flow of the third compartment into the second compartment 2, which affects the storage effect of the second compartment 2. .
  • the slot 14 is set farther away from the second compartment 2 so that the return air from the third compartment can contact the evaporator 12 far away from the second compartment 2 as much as possible. Therefore, the frosting area of the evaporator 12 near the return air outlet 41 is reduced.
  • the refrigerator further includes an air supply channel 5 arranged on the rear side of the second compartment 2, and an air door 6 arranged in the air supply channel 5 to supply air in the transverse direction, so The air door 6 is arranged close to the evaporation chamber 11 in the transverse direction.
  • the damper 6 includes a door frame 61, a door body 62 pivotally connected to the door frame 61, an opening 63 located in the middle of the door frame 61, a position adjacent to the opening 63 from the door frame 61 and a position separated from the opening 63 by a certain distance.
  • the first protrusion 64 and the second protrusion 65 protruding in the direction of the wind, a damper groove 66 is formed between the first protrusion 64 and the second protrusion 65.
  • the first protrusion 64 protrudes from the periphery of the opening 63
  • the second protrusion 65 protrudes from the periphery of the door frame 61.
  • the protruding length of the first protruding portion 64 is smaller than the protruding degree of the second protruding portion 65, and a sealing member may be provided around the first protruding portion 64 to cooperate with the door 62 to prevent the evaporation chamber 11
  • the cold air inside enters the second compartment 2, and the second protrusion 65 can enhance the structural strength of the door frame 61, and at the same time facilitate the installation of the door body 62 and assembly in the air supply channel 5.
  • the low temperature in the evaporation chamber 11 can easily penetrate to the side of the second compartment 2 through the damper 6, thereby causing condensation of the gas near the damper 6, especially when When condensation occurs in the damper groove 66, it is easy to freeze the door body 62 and the door frame 61. Therefore, in this embodiment, the lower side of the damper 6 and the horizontal plane are arranged at an angle, so that the condensation in the damper groove 66 can be concentrated to a corner of the lower side, reducing the risk of icing.
  • the upper and lower sides of the damper 6 are also inclined downwardly away from the horizontal direction. Specifically, the upper side of the damper 6 is inclined to the side away from the evaporation chamber 11 Therefore, the condensation in the damper groove 66 can obliquely flow downwards until it is completely discharged from the damper groove 66 to prevent the damper 6 from freezing. Not only the structure is simple, but also the production cost is low. Of course, in other embodiments, a drainage structure can also be provided in the air supply channel 5, or a water receiving pipe matching the corner can be provided to allow condensation to drain out of the damper slot 66 to avoid freezing.
  • the upper end of the damper 6 is inclined to the right and backward, respectively.
  • the inclination direction of the damper 6 can also be adjusted according to the positional relationship between the first compartment 1 and the second compartment 2, and the drainage design.
  • the air supply channel 5 includes a front air duct foam 51 and a rear air duct foam 52 that cooperate with each other in the front and rear, and are wrapped around the rear and lower parts of the air door 6.
  • the middle air duct foam 53 above the front, the damper 6 is connected to the front air duct foam 51 and the rear air duct foam 52 through the middle air duct foam 53.
  • the middle air duct foam 53 is installed on the damper 6 first.
  • the air door 6 is installed in the rear air duct foam 52, and the air supply duct 5 can be formed after the front air duct foam 51 is assembled.
  • the front air duct foam 51, the rear air duct foam 52 and the middle air duct foam 53 form an air supply cavity 54 extending in the up and down direction
  • the refrigerator also has an air duct cover arranged on the front side of the front air duct foam 51 A plate 55 and a plurality of air outlets 56 passing through the air duct cover 55 and the front air duct foam 51 in the front-rear direction and spaced in the vertical direction.
  • the rear air duct foam 52 also has an air guiding surface 57 located on the side of the air outlet 56 of the air door 6 in the transverse direction and spaced apart from the air door 6, and the air guiding surface 57 extends away from the evaporation cavity from top to bottom.
  • the side of the chamber 11 extends obliquely.
  • the air supply channel 5 further has a rib 58 arranged in the air duct and located on the side of the opening side of the damper 6. Specifically, the rib 58 extends from the rear wind
  • the channel foam 52 is formed by protruding forward, the upper end of the protruding rib 58 is inclined to the side away from the evaporation chamber 11, and the inclination angle is approximately equal to the inclination angle of the upper side of the damper 6.
  • the protruding rib 58 can also be set by itself according to the rotation direction of the door body 62 of the damper 6 and the inclination direction and angle of the damper 6.
  • the damper 6 has a closed state when the door body 62 is closed, a cooling state when the door body 62 is opened, and a stabilizing state with the opening angle between the closed state and the cooling state.
  • the damper 6 is in the stabilizing state There is a gap between the protruding rib 58 and the door 62 for air flow.
  • the distance from the pivoting position of the door body 62 and the door frame 61 to the end of the protruding rib 58 is greater than the rotation radius of the door body 62 with the pivoting position as the center. Therefore, when the damper 6 is in a stable state, the end of the door 62 and the rib 58 are connected in a straight line, and the gap is the distance between the end of the door 62 and the end of the rib 58.
  • the damper 6 can be adjusted to be in a stable state.
  • the cold air in the evaporation chamber 11 can still flow into the second compartment 2 through the gap.
  • the gas enters the evaporation chamber 11 through the return air duct 4, so that there is still a certain degree of gas circulation in the second compartment 2, which prevents the gas in the second compartment 2 from continuously flowing into the evaporation chamber when the damper 6 is closed.
  • the negative pressure generated from the chamber 11 from time to time reduces the door opening force of the second chamber 2 and improves user comfort.
  • the second compartment 2 is a variable temperature room
  • the air door 6 can always be maintained in a stable state, and the gap between the door body 62 and the rib 58 can continue to connect to the second room.
  • the compartment 2 is cooled to achieve the purpose of refrigeration. Therefore, there is no need to repeatedly adjust the opening and closing of the air door 6 to reduce the number of opening and closing times of the air door 6 and thereby reduce the failure rate of the air door 6.
  • the door opening angle of the door body 62 in the stabilized state is 25-35°, preferably 30°, and the distance between the rib 58 and the door frame 61 is 25-35 mm.
  • the end of the rib 58 is arranged in an arc shape, and the door 62 and the rib 58
  • the gap between 58 ranges from 3-7mm, preferably 5mm.
  • the distance from the pivoting position of the door body 62 and the door frame 61 to the end of the protruding rib 58 may also be smaller than the rotation radius of the door body 62 with the pivoting position as the center. That is, when the door body 62 is opened, the protruding rib 58 prevents the door body 62 from being fully opened. At this time, the door body 62 can also be opened to a stabilizing state, so that there is a certain gap between the door body 62 and the protruding rib 58. And the opening angle of the door body 62 when the damper 6 is in the cooling state is between the closed state and the stabilized state. In order to ensure that in the refrigeration state, the cold air in the evaporation chamber 11 can effectively enter the second compartment 2 through the damper 6 and send The air duct foam of the air duct 5 can be redesigned to provide sufficient air output.
  • the return air duct 4 is arranged in a gradually narrowing structure from the return air inlet 42 toward the return air outlet 41.
  • the flow velocity gradually increases, so that the flow velocity on the side of the return air outlet 41 is larger, so that the return air flow can move further in the lateral direction.
  • the distance in turn increases the contact area between the return air flow and the evaporator 12, and reduces the risk of excessive frost on the side of the evaporator 12 close to the return air outlet 41 and block the return air outlet 41.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

本发明提供了一种冰箱,包括呈对开门设置第一间室和第二间室、设置于第一间室内的蒸发腔室,其中,所述冰箱还包括沿横向方向连通蒸发腔室和第二间室且分别位于上下侧的送风风道和回风风道,所述回风风道具有连通蒸发腔室的回风出口、连通第二间室的回风进口,所述回风风道自回风进口朝回风出口方向呈逐渐收窄设置。本发明增大回风气流与蒸发器的接触面积,降低蒸发器靠近回风出口侧结霜过多而堵塞回风出口的风险。

Description

冰箱 技术领域
本发明涉及一种冰箱,尤其涉及一种减少结霜的冰箱。
背景技术
现有的对开门冰箱一侧为冷冻室,另一侧为冷藏室或变温室,冷藏室或变温室内设置有和冷冻室相连通的回风风道,一般回风风道的回风出口位置与冷冻室内的蒸发器距离较近,然而,冰箱长期使用过程中,靠近回风出口侧的蒸发器容易结霜将回风出口堵住,影响冷藏室或变温室的正常回风,进而影响冷藏室或变温室的制冷效果。
有鉴于此,有必要对现有的冰箱予以改进,以解决上述问题。
发明内容
本发明的目的在于提供一种减少结霜的冰箱。
为实现上述发明目的,本发明提供了一种冰箱,包括呈对开门设置第一间室和第二间室、设置于第一间室内的蒸发腔室,其中,所述冰箱还包括沿横向方向连通蒸发腔室和第二间室且分别位于上下侧的送风风道和回风风道,所述回风风道具有连通蒸发腔室的回风出口、连通第二间室的回风进口,所述回风风道自回风进口朝回风出口方向呈逐渐收窄设置。
作为本发明的进一步改进,所述回风风道具有回风上内壁和回风下内壁,所述上内壁和下内壁均分别自回风进口朝回风进口方向倾斜向下延伸设置。
作为本发明的进一步改进,所述回风上内壁的倾斜角度大于回风下 内壁的倾斜角度。
作为本发明的进一步改进,所述冰箱还包括与所述回风风道配合设置以阻断蒸发腔室和第二间室气流流动的阻隔装置。
作为本发明的进一步改进,所述阻隔装置为仅允许气流从第二间室流向蒸发腔室的单向阀。
作为本发明的进一步改进,所述冰箱还包括设置于蒸发腔室内的蒸发器,所述蒸发器的下端不低于所述回风出口的上端。
作为本发明的进一步改进,所述冰箱还包括设置于第一间室和第二间室上方的第三间室、连通所述第三间室和蒸发腔室的回风通道,所述回风通道具有设置于蒸发腔室内且位于蒸发器下方的开口,所述开口横向方向的中心线位于蒸发器横向方向的中心线远离第二间室的一侧。
作为本发明的进一步改进,所述第二间室具有与所述回风进口配合设置的回风区域,所述回风区域具有多个沿横向方向贯穿的气孔。
作为本发明的进一步改进,所述送风风道具有送风上内壁和送风下内壁,所述送风上内壁和送风下内壁均自蒸发腔室向第二间室呈向上倾斜延伸设置。
作为本发明的进一步改进,所述冰箱还包括设置于第二间室后侧的送风通道、设置于送风通道内且沿横向方向送风的风门,所述风门的上端沿横向方向向远离蒸发腔室侧倾斜设置。
本发明的有益效果:本发明的冰箱通过将回风风道设置为自回风进口朝回风出口方向呈逐渐收窄结构。当第二间室内的气流从回风进口向回风出口流动时,流速逐渐增加,使得回风出口侧的流速较大,从而使回风气流可以沿横向方向移动更远的距离,进而增大回风气流与蒸发器的接触面积,降低蒸发器靠近回风出口侧结霜过多而堵塞回风出口的风险。
附图说明
图1是本发明冰箱的立体示意图。
图2是本发明冰箱的正视图。
图3是图2中隐藏部分结构后的正视图。
图4是隐藏第一间室后的立体示意图。
图5是隐藏第二间室后的立体示意图。
图6是隐藏第二间室后的侧视图。
图7是隐藏第一间室后的侧视图。
图8是送风风道、送风通道及回风风道的立体分解图。
图9是图8另一视角的立体分解图。
图10是图8中风门的立体示意图。
图11是图1中沿AA方向的剖视图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
请参图1至图11所示为本发明冰箱的实施例,所述冰箱包括呈对开门设置第一间室1和第二间室2、设置于第一间室1内的蒸发腔室11,其中,所述冰箱还包括沿横向方向连通蒸发腔室11和第二间室2且分别位于上下侧的送风风道3和回风风道4,所述回风风道4具有连通蒸发腔室11的回风出口41、连通第二间室2的回风进口42,所述回风风道4自回风进口42朝回风出口41方向呈逐渐收窄设置。
具体地,如图1至图3所示,在本实施例中,所述第一间室1为冷冻室,所述第二间室2为变温室,且冷冻室设置于变温室左侧。当然在其他实施例中,所述第二间室2也可以为冷藏室,所述第一间室1和第二间室2也可互换位置。所述蒸发腔室11设置于所述第一间室1的后侧,所述冰箱包括设置于所述蒸发腔室11内的蒸发器12及位于所述蒸发器12上方的冷冻风机13。所述蒸发器12沿横向方向的宽度与第一间室1沿横向方向的宽度相匹配。
所述送风风道3设置于所述第一间室1和第二间室2的顶端且沿横向方向位于所述冷冻风机13一侧,如此,可便于冷冻风机13将蒸发腔室11内的冷气快速吹至送风风道3内。在本实施例中,所述送风风道3为由保温材料制成的保温件,一般通常由泡沫制成,所述送风风道3具有连通所述蒸发腔室11的送风进口31、连通第二间室2的送风出口32。
所述送风风道3具有送风上内壁33和送风下内壁34,所述送风上内壁33和送风下内壁34均自蒸发腔室11向第二间室2呈向上倾斜延伸设置,即所述送风上内壁33和送风下内壁34均自送风进口31向送风出口32侧呈向上倾斜延伸设置。在本实施例中,所述送风上内壁33和送风下内壁34均自左向右呈向上倾斜延伸设置,当然在其他实施例中,例如,当第一间室1位于第二间室2右侧时,所述送风上内壁33和送风下内壁34则均自右向左呈向上倾斜延伸设置。
其目的是在于,第二间室2内的湿空气有可能进入送风风道3内,当该湿空气接触到蒸发腔室11内的低温时,容易产生凝露,该凝露可分别沿送风上内壁33和送风下内壁34流至蒸发腔室11内,避免送风风道3结冰堵塞送风风道3。
如图4和图5所示,在本实施例中,所述回风风道4自右向左呈逐渐收窄设置。当第一间室1位于第二间室2右侧时,则回风风道4自左向右呈逐渐收窄设置。因此,当第二间室2内的气流从回风进口42向回风出口41流动时,流速逐渐增加,使得回风出口41侧的流速较大,从 而使回风气流可以沿横向方向移动更远的距离,进而增大回风气流与蒸发器12的接触面积,降低蒸发器12靠近回风出口41侧结霜过多而堵塞回风出口41的风险。
为进一步降低回风出口41侧结霜过多,在本实施例中,所述蒸发器12的下端不低于所述回风出口41的上端,当然在其他实施例中,所述蒸发器12沿横向方向的宽度相对较小时,可将蒸发器12沿横向方向设置于远离所述回风出口41处。
在本实施例中,所述回风风道4具有回风上内壁43和回风下内壁44,所述回风上内壁43和回风下内壁44均分别自回风进口42朝回风进口42方向倾斜向下延伸设置。一方面,可以使回风风道4内产生的凝露顺着所述回风上内壁43和回风下内壁44流至蒸发腔室11内,最后有蒸发腔室11内的接水装置收集,另一方面,也使得回风气流流向整体倾斜向下,进一步减少回风气流与靠近回风出口41侧蒸发器12的接触面积,从而降低该处的结霜风险。
并且所述回风上内壁43的倾斜角度大于回风下内壁44的倾斜角度,从而可进一步减小回风出口41的大小,增大回风出口41处的气体流速,进而使得气体可移动更远的距离,以接触蒸发器12上的更多面积,降低蒸发器12靠近回风出口41侧结霜过多而堵塞回风出口41的风险。同时也减小蒸发腔室11内冷气回流至第二间室2内的量。
在本实施例中,所述第二间室2还具有与所述回风进口42配合设置的回风区域,所述回风区域具有多个沿横向方向贯穿的气孔21。从而降低蒸发腔室11内冷气回流至第二间室2内的量。进而减少第二间室2内的温度波动。
为避免蒸发腔室11内的冷气经所述回风风道4回流至所述第二间室2内,造成第二间室2内温度波动,所述冰箱还包括与所述回风风道4配合设置以阻断蒸发腔室11和第二间室2气流流动的阻隔装置(未图示)。在本实施例中,所述阻隔装置为仅允许气流从第二间室2流向蒸发 腔室11的单向阀,即蒸发腔室11内的冷气无法进入第二间室2。不仅结构简单,成本较低,且不影响正常气体循环。当然在其他实施例中,所述阻隔装置也可以为电动风门。
如图3所示,在本实施例中,所述冰箱还包括设置于第一间室1和第二间室2上方的第三间室(未图示)、连通所述第三间室和蒸发腔室11的回风通道,所述第三间室为冷藏室,所述回风通道具有设置于蒸发腔室11内且位于蒸发器12下方的开槽14,所述开槽14横向方向的中心线位于蒸发器12横向方向的中心线远离第二间室2的一侧。
将所述开槽14设置于蒸发器12下方,一方面,可以避免冷冻风机13直接将第三间室的回风气流直接吹送至第二间室2内,影响第二间室2的储藏效果。另一方面,所述开槽14更加地远离所述第二间室2设置,也可使所述第三间室的回风尽可能地多接触远离第二间室2侧的蒸发器12,从而减少靠近所述回风出口41处的蒸发器12结霜面积。
如图10所示,在本实施例中,所述冰箱还包括设置于第二间室2后侧的送风通道5、设置于送风通道5内且沿横向方向送风的风门6,所述风门6沿横向方向靠近所述蒸发腔室11设置。
具体的,所述风门6包括门框61、枢接于门框61的门体62、位于门框61中间的开口63、自门框61相邻开口63的位置处和与开口63间隔一定距离的位置处分别向出风方向突伸的第一突伸部64和第二突伸部65,所述第一突伸部64和第二突伸部65之间形成风门槽66。
在本实施例中,所述第一突伸部64自开口63四周突伸形成,所述第二突伸部65自门框61四周突伸形成。且第一突伸部64的突伸长度小于第二突伸部65的突伸长度,所述第一突伸部64的四周可设置密封件与所述门体62配合以防止蒸发腔室11内的冷气进入第二间室2,所述第二突伸部65可增强门框61的结构强度,同时也便于安装所述门体62及组装于送风通道5内。
由于第二间室2内的气体湿度较大,所述蒸发腔室11内的低温极易 通过风门6渗透至第二间室2侧,从而使得风门6附近的气体产生凝露,尤其是当风门槽66内产生凝露时容易结冰冻结门体62与门框61。因此,在本实施例中,所述风门6的下侧和水平面呈夹角设置,从而使得风门槽66内的凝露可集中至下侧的一角处,降低结冰风险。
在本实施例中,为了使风门槽66内的凝露排出,所述风门6的上下侧还偏离水平方向下倾斜设置,具体的,所述风门6的上侧向远离蒸发腔室11侧倾斜设置,因此,风门槽66内的凝露可倾斜向下流动直至完全排出风门槽66,避免风门6结冰。不仅结构简单,且生产成本较低。当然在其他实施例中,同时还可以通过在送风通道5内设置排水结构,或者设置与该角落相配合的接水管,进而使得凝露排出风门槽66,避免结冰。
结合图2和图4,在本实施例中,所述风门6的上端分别向右和向后倾斜设置。当然在其他实施例中,所述风门6的倾斜方向也可以根据第一间室1和第二间室2的位置关系、排水设计等方面调整。
如图8和图9所示,为了方便安装和密封所述风门6,所述送风通道5包括前后相互配合的前风道泡沫51和后风道泡沫52、包覆于风门6后下方和前上方的中间风道泡沫53,所述风门6通过中间风道泡沫53与前风道泡沫51和后风道泡沫52连接设置,安装时,先将所述中间风道泡沫53安装于风门6的后下方和前上方,再将风门6安装于后风道泡沫52内,在组装前风道泡沫51即可形成所述送风通道5。
所述前风道泡沫51、后风道泡沫52和中间风道泡沫53形成沿上下方向延伸的送风腔54,所述冰箱还具有设置于所述前风道泡沫51前侧的风道盖板55、沿前后方向贯穿所述风道盖板55和前风道泡沫51且沿上下方向间隔设置的多个出风口56。所述后风道泡沫52还具有沿横向方向位于所述风门6的出风口56一侧且与风门6间隔设置的导风面57,所述导风面57自上而下呈向远离蒸发腔室11侧倾斜延伸设置。当风门6出风时,气流可沿所述导风面57向下流动,从而便于将冷气均匀地从 所述出风口56处通入第二间室2内。
如图11所示,在本实施例中,所述送风通道5还具有设置于风道内且位于风门6的开门侧一旁的突肋58,具体的,所述突肋58自所述后风道泡沫52向前突伸形成,所述突肋58的上端呈向远离蒸发腔室11侧倾斜设置,且倾斜角度大致与风门6上侧倾斜角度大致相等。当然在其他实施例中,所述突肋58也可以根据风门6的门体62旋转方向、风门6倾斜方向及角度,自行设置。
具体的,所述风门6具有门体62关闭时的闭合状态、门体62打开时的制冷状态、开门角度位于闭合状态和制冷状态之间的稳压状态,所述风门6处于稳压状态时,所述突肋58与门体62之间具有供气流流通的间隙。
在本实施例中,所述门体62和门框61枢接位置到所述突肋58末端的距离大于门体62以该枢接位置为圆心的旋转半径。因此,当风门6处于稳压状态时,门体62的末端与突肋58之间呈直线连接,所述间隙即门体62的末端与突肋58末端之间的距离。
通过设置所述突肋58,一方面,可以调整风门6处于稳压状态,此时,蒸发腔室11内的冷气依然可以通过所述间隙流入第二间室2内,第二间室2内的气体通过回风风道4进入蒸发腔室11,从而使第二间室2内依然存在一定程度的气体循环,避免了风门6处于闭合状态时,第二间室2内的气体不断流入蒸发腔室11时而产生的负压,减小了第二间室2的开门力,提高用户舒适度。
另一方面,门体62闭合时,门体62与门框61之间的细微缝隙内会出现凝露,由于缝隙较小,凝露不易流动,凝露残存在该缝隙内并逐渐结冰,最终容易冻结风门槽66,造成风门6无法正常开闭。因此,当调整风门6处于稳压状态时,门体62开设一定角度,从而增大可门体62与门框61之间的距离,即使门框61上产生凝露也会向下流动,不会冻结风门6。
同时,由于第二间室2为变温室,当变温室作为冷藏室使用时,可始终保持所述风门6为稳压状态,通过门体62与突肋58之间的间隙持续对第二间室2供冷以达到冷藏目的,因此,无需重复调节风门6开闭,降低风门6开闭次数,进而降低风门6故障率。
为保证风门6处于稳压状态时,门体62与门框61之间具有一定角度,以使得门体62与门框61之间的缝隙足够大,凝露无法停留在该间隙内,在本实施例中,所述门体62在稳压状态时的开门角度范围为25-35°,优选为30°,突肋58与门框61之间的距离范围为25-35mm。
为保证冷气能顺利从门体62与突肋58之间的间隙流通,且凝露不会留存在该间隙内,所述突肋58的末端呈圆弧状设置,且门体62与突肋58之间的间隙范围为3-7mm,优选为5mm。
当然在其他实施例中,所述门体62和门框61枢接位置到所述突肋58末端的距离也可小于门体62以该枢接位置为圆心的旋转半径。即当门体62打开时,所述突肋58会阻止门体62完全打开,此时,门体62同样可以打开至稳压状态,使得门体62和突肋58之间具有一定间隙。并且风门6处于制冷状态时的门体62打开角度位于闭合状态和稳压状态之间,为保证在制冷状态下,蒸发腔室11内的冷气能有效通过风门6进入第二间室2,送风通道5的风道泡沫可重新设计以便提供足够的出风量。
综上所述,本发明的冰箱通过将回风风道4设置为自回风进口42朝回风出口41方向呈逐渐收窄结构。当第二间室2内的气流从回风进口42向回风出口41流动时,流速逐渐增加,使得回风出口41侧的流速较大,从而使回风气流可以沿横向方向移动更远的距离,进而增大回风气流与蒸发器12的接触面积,降低蒸发器12靠近回风出口41侧结霜过多而堵塞回风出口41的风险。
应当理解,虽然本说明书按照实施例加以描述,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见, 本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施例。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施例的具体说明,并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施例或变更均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种冰箱,包括呈对开门设置第一间室和第二间室、设置于第一间室内的蒸发腔室,其特征在于:所述冰箱还包括沿横向方向连通蒸发腔室和第二间室且分别位于上下侧的送风风道和回风风道,所述回风风道具有连通蒸发腔室的回风出口、连通第二间室的回风进口,所述回风风道自回风进口朝回风出口方向呈逐渐收窄设置。
  2. 如权利要求1所述的冰箱,其特征在于:所述回风风道具有回风上内壁和回风下内壁,所述上内壁和下内壁均分别自回风进口朝回风进口方向倾斜向下延伸设置。
  3. 如权利要求2所述的冰箱,其特征在于:所述回风上内壁的倾斜角度大于回风下内壁的倾斜角度。
  4. 如权利要求1所述的冰箱,其特征在于:所述冰箱还包括与所述回风风道配合设置以阻断蒸发腔室和第二间室气流流动的阻隔装置。
  5. 如权利要求4所述的冰箱,其特征在于:所述阻隔装置为仅允许气流从第二间室流向蒸发腔室的单向阀。
  6. 如权利要求1所述的冰箱,其特征在于:所述冰箱还包括设置于蒸发腔室内的蒸发器,所述蒸发器的下端不低于所述回风出口的上端。
  7. 如权利要求6所述的冰箱,其特征在于:所述冰箱还包括设置于第一间室和第二间室上方的第三间室、连通所述第三间室和蒸发腔室的回风通道,所述回风通道具有设置于蒸发腔室内且位于蒸发器下方的开口,所述开口横向方向的中心线位于蒸发器横向方向的中心线远离第二间室的一侧。
  8. 如权利要求1所述的冰箱,其特征在于:所述第二间室具有与所述回风进口配合设置的回风区域,所述回风区域具有多个沿横向方向贯 穿的气孔。
  9. 如权利要求8所述的冰箱,其特征在于:所述送风风道具有送风上内壁和送风下内壁,所述送风上内壁和送风下内壁均自蒸发腔室向第二间室呈向上倾斜延伸设置。
  10. 如权利要求1所述的冰箱,其特征在于:所述冰箱还包括设置于第二间室后侧的送风通道、设置于送风通道内且沿横向方向送风的风门,所述风门的上端沿横向方向向远离蒸发腔室侧倾斜设置。
PCT/CN2021/083984 2020-09-10 2021-03-30 冰箱 WO2021213148A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021259543A AU2021259543B2 (en) 2020-09-10 2021-03-30 Refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021981230.8 2020-09-10
CN202021981230.8U CN213273353U (zh) 2020-09-10 2020-09-10 冰箱

Publications (1)

Publication Number Publication Date
WO2021213148A1 true WO2021213148A1 (zh) 2021-10-28

Family

ID=75940997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083984 WO2021213148A1 (zh) 2020-09-10 2021-03-30 冰箱

Country Status (3)

Country Link
CN (1) CN213273353U (zh)
AU (1) AU2021259543B2 (zh)
WO (1) WO2021213148A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113899160A (zh) * 2021-11-03 2022-01-07 青岛海尔电冰箱有限公司 制冷设备的控制方法
CN113983743A (zh) * 2021-11-03 2022-01-28 青岛海尔电冰箱有限公司 制冷设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213273352U (zh) * 2020-09-10 2021-05-25 青岛海尔电冰箱有限公司 冰箱
CN218349004U (zh) * 2022-05-11 2023-01-20 青岛海尔电冰箱有限公司 一种冰箱

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359777A (ja) * 1991-06-06 1992-12-14 Hitachi Ltd 冷蔵庫
JP2004085070A (ja) * 2002-08-27 2004-03-18 Matsushita Refrig Co Ltd 冷蔵庫
CN201803550U (zh) * 2010-07-08 2011-04-20 合肥美的荣事达电冰箱有限公司 一种风冷冰箱及一种冷冻室回风系统
CN105091457A (zh) * 2015-07-31 2015-11-25 合肥美的电冰箱有限公司 风冷冰箱及其控制方法和控制系统
CN105115217A (zh) * 2015-07-23 2015-12-02 合肥美的电冰箱有限公司 风冷冰箱
US20180164020A1 (en) * 2016-12-13 2018-06-14 Whirlpool Corporation Refrigeration appliance fan
CN208817809U (zh) * 2018-04-13 2019-05-03 青岛海尔股份有限公司 冰箱
CN209027173U (zh) * 2018-08-29 2019-06-25 博西华电器(江苏)有限公司 冰箱
CN213273352U (zh) * 2020-09-10 2021-05-25 青岛海尔电冰箱有限公司 冰箱

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359777A (ja) * 1991-06-06 1992-12-14 Hitachi Ltd 冷蔵庫
JP2004085070A (ja) * 2002-08-27 2004-03-18 Matsushita Refrig Co Ltd 冷蔵庫
CN201803550U (zh) * 2010-07-08 2011-04-20 合肥美的荣事达电冰箱有限公司 一种风冷冰箱及一种冷冻室回风系统
CN105115217A (zh) * 2015-07-23 2015-12-02 合肥美的电冰箱有限公司 风冷冰箱
CN105091457A (zh) * 2015-07-31 2015-11-25 合肥美的电冰箱有限公司 风冷冰箱及其控制方法和控制系统
US20180164020A1 (en) * 2016-12-13 2018-06-14 Whirlpool Corporation Refrigeration appliance fan
CN208817809U (zh) * 2018-04-13 2019-05-03 青岛海尔股份有限公司 冰箱
CN209027173U (zh) * 2018-08-29 2019-06-25 博西华电器(江苏)有限公司 冰箱
CN213273352U (zh) * 2020-09-10 2021-05-25 青岛海尔电冰箱有限公司 冰箱

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113899160A (zh) * 2021-11-03 2022-01-07 青岛海尔电冰箱有限公司 制冷设备的控制方法
CN113983743A (zh) * 2021-11-03 2022-01-28 青岛海尔电冰箱有限公司 制冷设备

Also Published As

Publication number Publication date
AU2021259543A1 (en) 2023-04-20
CN213273353U (zh) 2021-05-25
AU2021259543B2 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
WO2021213148A1 (zh) 冰箱
JP6543699B2 (ja) 空冷式冷蔵庫
WO2021213147A1 (zh) 冰箱
WO2019129241A1 (zh) 冰箱
CN109764598A (zh) 一种冰箱
CN110145913B (zh) 一种冰箱
WO2021212970A1 (zh) 冰箱
WO2019120107A1 (zh) 冰箱
JP2601057B2 (ja) 冷凍冷蔵庫
CN204963364U (zh) 用于冰箱的风门及具有其的冰箱
CN114165965B (zh) 冰箱
WO2019129242A1 (zh) 冰箱
CN207214593U (zh) 风冷冰箱
CN107940866A (zh) 用于冰箱的单系统可控多温区的风道系统及其冰箱
CN109990532A (zh) 具有门体干燥室的冰箱
CN216592408U (zh) 风道组件、冰箱
CN106766582B (zh) 一种冰箱
JP5791425B2 (ja) 冷凍冷蔵庫
WO2020211442A1 (zh) 储冰盒及制冷设备
CN112611151A (zh) 风冷冰箱
CN102937353B (zh) 冰箱
CN219199672U (zh) 用于冰箱的变温风道组件及冰箱
CN221259206U (zh) 风循环装置及制冷设备
WO2024120394A1 (zh) 冷藏冷冻装置
CN218645863U (zh) 一种冰箱冷冻室风道组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021259543

Country of ref document: AU

Date of ref document: 20210330

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21792655

Country of ref document: EP

Kind code of ref document: A1