WO2022111292A1 - 一种基于声学黑洞的复合减振支撑架及其设计方法 - Google Patents

一种基于声学黑洞的复合减振支撑架及其设计方法 Download PDF

Info

Publication number
WO2022111292A1
WO2022111292A1 PCT/CN2021/130025 CN2021130025W WO2022111292A1 WO 2022111292 A1 WO2022111292 A1 WO 2022111292A1 CN 2021130025 W CN2021130025 W CN 2021130025W WO 2022111292 A1 WO2022111292 A1 WO 2022111292A1
Authority
WO
WIPO (PCT)
Prior art keywords
black hole
acoustic black
dimensional
dimensional acoustic
vibration
Prior art date
Application number
PCT/CN2021/130025
Other languages
English (en)
French (fr)
Inventor
温华兵
康钦伟
魏海婴
马正刚
李玉
刘尊程
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Priority to JP2023528233A priority Critical patent/JP7387219B2/ja
Publication of WO2022111292A1 publication Critical patent/WO2022111292A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/30Mounting of propulsion plant or unit, e.g. for anti-vibration purposes
    • B63H21/305Mounting of propulsion plant or unit, e.g. for anti-vibration purposes with passive vibration damping

Definitions

  • the invention relates to a composite vibration-damping support structure based on an acoustic black hole and a design method thereof, in particular to a vibration-damping support structure capable of suppressing the transmission of elastic waves.
  • the thickness variation of the structure satisfies the power function curve with an exponent greater than or equal to 2
  • the basic requirements of structural acoustic black holes can be met.
  • the bending wave is zero-reflected, and all the bending waves transmitted to the ABH region are "devoured".
  • the thickness of the structure changes to zero according to the power exponent, forming a truncation at the thickness of the tip.
  • a small local thickness will also increase the reflection coefficient of the structure to more than 50%, weakening the aggregation effect of the acoustic black hole. If the damping material is pasted in the area of the acoustic black hole, the reflection coefficient will be greatly reduced, which can effectively absorb energy and suppress vibration.
  • the anti-vibration mass is generally a strip, which is arranged at the joint of the plate along the vibration transmission path of the structure.
  • the sudden change (mass, stiffness, etc.) of the steady structure will cause the impedance mismatch of the structure, which has a good reflection effect on bending waves. .
  • the invention discloses a composite vibration damping support structure based on an acoustic black hole and a design method thereof, which utilizes the aggregation effect of the acoustic black hole on elastic waves to control the vibration generated by a power machine, realizes the dissipation of vibration energy and suppresses the propagation of the wave, and At the same time, a damping layer and a damping body are set to improve the damping effect.
  • the purpose of the present invention is to provide a vibration damping support structure that reduces the vibration transmission of a power mechanical structure.
  • the present invention adopts the following technical solutions:
  • a composite vibration damping support frame based on an acoustic black hole comprising a support frame main body, the support frame main body is composed of an upper panel and at least two vertical brackets to form at least one door frame type frame, the rear side of the frame is connected with a web, and the lower end is connected with a Vibration damper, two ends of the panel are respectively provided with a one-dimensional acoustic black hole wedge-shaped structure 1 and a one-dimensional acoustic black hole wedge-shaped structure 2, and at least two small-diameter two-dimensional acoustic black holes 1 and lower parts are arranged on the upper part of the bracket At least two large-diameter two-dimensional acoustic black holes II are arranged, at least two two-dimensional acoustic black hole arrays are arranged on the web, and one-dimensional acoustic black hole wedge-shaped structures III are respectively arranged at both ends, and the one-dimensional acoustic black hole wedge-shaped structures I , one-dimensional
  • the upper panel and the web are rectangular steel plates
  • the brackets are right-angled trapezoidal steel plates
  • the cross section of the vibration damping body is rectangular hollow or solid structural steel.
  • a one-dimensional acoustic black hole is a wedge-shaped structure with a section stretched along the normal direction;
  • a two-dimensional acoustic black hole is a pit-shaped structure with a section rotated along the y-axis.
  • one-dimensional acoustic black hole wedge structures are distributed on both ends of the upper panel and the web, and two sets of one-dimensional acoustic black hole wedge structures with different sizes are distributed on both ends of the upper panel, the width of which is half the width of the upper panel.
  • the array mode of the two-dimensional acoustic black hole array 3 is a rectangular array or a circular array, and the number of two-dimensional acoustic black holes in each array is 4-6.
  • the distances from the first two-dimensional acoustic black hole structure, the second two-dimensional acoustic black hole structure, and the third edge of the two-dimensional acoustic black hole array to the edge of the plate and the edges of two adjacent acoustic black holes should be greater than 0.3r to ensure structural strength. and improve the damping effect.
  • the thickness of the damping layer is 4 to 10 times of the local thickness of the acoustic black hole, which is a viscoelastic damping material.
  • connection is welding.
  • a design method for a composite vibration-damping support frame based on an acoustic black hole comprising the following steps:
  • S3-1 Obtained by the vibration-damping onset frequency transformation of the acoustic black hole aggregation effect is determined, where h is the slab thickness, ⁇ 1 is the material density, E1 is the material Young's modulus, and ⁇ is the material Poisson's ratio.
  • h the slab thickness
  • ⁇ 1 the material density
  • E1 the material Young's modulus
  • the material Poisson's ratio.
  • r 1 of the acoustic black hole can be calculated by substituting the vibration reduction starting frequency f into the formula;
  • S4-1 Calculate one-dimensional acoustic black hole wedge structure one (1-1), one-dimensional acoustic black hole wedge structure three (3-1), two-dimensional acoustic black hole structure one (2-1), two-dimensional acoustic black hole array (3 -2)
  • x 0 , x are the starting and ending points of the section of the acoustic black hole
  • E 1 , E 2 , ⁇ 1 , ⁇ 2 , ⁇ 1 , ⁇ 2 are the Young's modulus, density, and loss factor of the plate and damping layer, respectively
  • is Damping layer thickness
  • Use the reflection coefficient formula of one-dimensional acoustic black hole to quickly evaluate the reflection coefficient of each acoustic black hole structure;
  • the radius (or length) of the damping layer should be greater than 0.5 times the characteristic size r of the acoustic black hole, because most of the vibrational energy is consumed in the central area of the acoustic black hole, so it should be pasted in the central area of the acoustic black hole , covering the entire area as much as possible;
  • thicker damping layer ⁇ can improve the vibration reduction effect of acoustic black hole, taking into account the vibration reduction effect and economy of acoustic black hole, generally the loss factor of the damping material should be greater than 0.5 and the thickness of the damping layer should be the local thickness 4 to 10 times of h 0 , the reflection coefficient in the vibration reduction frequency band should be controlled within 0.5;
  • the present invention utilizes the acoustic black hole effect to change the phase velocity and group velocity of the wave in the structure through the change of the structure impedance, and realizes the wave gathering in the local area of the structure.
  • the change of impedance is realized by the change of the thickness of the plate in a certain exponential form
  • the bending wave velocity will gradually decrease as the thickness decreases, the wavelength will be compressed, and the wave amplitude will increase.
  • the wave velocity decreases as 0, so that no reflections are generated.
  • the vibration damper in the support structure restrains the vibration wave generated by the power machinery from propagating to the hull structure.
  • the acoustic black hole cannot completely absorb the bending waves, and some waves will "escape".
  • the wave, the reflected bending wave propagates in the brackets and webs and re-enters the region of the acoustic black hole, which improves the wave-gathering effect of the acoustic black hole.
  • the acoustic black hole is below the first cutoff frequency
  • the larger characteristic size of the acoustic black hole in the composite vibration-damping support structure design method is calculated based on the first cutoff frequency; other acoustic black hole characteristic sizes are derived from the second cutoff frequency from the smoothness condition to calculate.
  • the number of two-dimensional acoustic black holes on the bracket and the array method and number of the acoustic black holes on the web are determined by the size of the support structure and the convenience of its arrangement.
  • the vibrations generated by the power machinery are transmitted from the panels to the brackets or webs.
  • the wave collects within the acoustic black hole structure.
  • the central area of the acoustic black hole has a larger wave amplitude, and a damping layer is attached to the surface of the acoustic black hole area.
  • the damping layer uses shear deformation to convert mechanical energy into thermal energy, consuming vibration energy.
  • the invention dissipates the vibration energy generated by the power machine while supporting the power machine, and comprehensively utilizes the energy accumulation effect of the acoustic black hole, the damping and vibration reduction design technology and the impedance mismatch principle to control the bending wave and dissipate the vibration energy, thereby achieving
  • vibration reduction it has broad application prospects and is suitable for the support structure of various power machinery of ships.
  • the invention has more obvious vibration reduction effect, the average vibration reduction effect in the frequency band above 500Hz can reach more than 7dB, and the vibration reduction band gap can reach 70%, which has important application to the vibration reduction and noise reduction of marine power machinery. value.
  • the size of the one-dimensional acoustic black holes at the two ends of the panel and the web is not the same, and the radii of the upper and lower groups of the acoustic black holes on the bracket are also different, which broadens the vibration reduction frequency band of the acoustic black holes.
  • the introduction of anti-vibration mass and damping improves the aggregation effect of acoustic black holes.
  • the waves are concentrated in the black hole area, and only the damping layer is provided in this area, rather than the main body of the supporting structure, which reduces the use of materials and reduces the manufacturing cost.
  • An acoustic black hole structure is introduced, which reduces the mass of the main body of the supporting structure.
  • the acoustic black hole structure is used instead of the vibration-damping hole structure of the support structure, which will not affect the strength of the support structure, and is suitable for supporting power machinery in the case of elastic installation and rigid installation, reducing power Mechanical vibration transmission.
  • FIG. 1 is a schematic structural diagram of a rectangular array form of the present invention
  • Fig. 2 is the structure schematic diagram of the annular array form of the present invention.
  • Fig. 3 is the panel plan view of the present invention.
  • Fig. 4 is the sectional view of panel A-A of the present invention.
  • Fig. 5 is the left side view of the toggle plate of the present invention.
  • Fig. 6 is the sectional view of the bracket of the present invention along B-B;
  • Figure 7 is a front view of the web in the form of a rectangular array of the present invention.
  • Fig. 8 is the C-C sectional view of the rectangular array form web of the present invention.
  • Figure 9 is a front view of the web in the form of an annular array of the present invention.
  • Fig. 10 is the D-D sectional view of the web in the form of an annular array of the present invention.
  • FIG. 11 is a flow chart of the design method of the present invention.
  • FIG. 1-10 it is a composite vibration-damping support frame based on an acoustic black hole of the present invention, which is used to support the ship's power machinery while consuming the vibration energy on the transmission path.
  • upper panel 1, bracket 2, web 3, vibration damper 4, one-dimensional acoustic black hole wedge structure 1-1, one-dimensional acoustic black hole wedge structure 2 1-2 and one-dimensional acoustic black hole wedge structure 3-1 the bracket two-dimensional acoustic black hole 1 2-1 and the two-dimensional acoustic black hole structure 2 2-2, the web two-dimensional acoustic black hole array 3-2, and the damping layer 5.
  • the power machine weight is supported by the upper panel 1 , the bracket 2 and the web 3 .
  • the upper panel 1 is made of steel and has a rectangular shape.
  • the lower end face of the upper panel 1 is connected with the upper end face of the bracket 2 and the web 3 by welding.
  • the bracket 2 is made of steel, and the shape is a right-angled trapezoid.
  • the upper end face is connected to the upper panel 1 by welding, and one end face is connected to the web 3 by welding.
  • the bracket 2 is provided with a two-dimensional acoustic black hole structure—2-1, two-dimensional Acoustic black hole structure II 2-2, the small group of two-dimensional acoustic black hole structure I 2-1 is located close to the upper bottom of the trapezoid, and the large group of two-dimensional acoustic black hole structure II 2-2 is located close to the upper bottom of the trapezoid.
  • a damping layer 5 is pasted on one side of the plane of the two-dimensional acoustic black hole region.
  • the web 3 is made of steel and has a rectangular shape. Its upper end face is connected to the upper panel 1 by welding, and it is connected to the end face of the bracket 2 by welding.
  • the web 3 is attached with a two-dimensional acoustic black hole array 3-2, a two-dimensional acoustic black hole.
  • the damping layer 5 is pasted on the flat side of the area.
  • the cross-sectional shape of the vibration damper 4 is rectangular, and the width of the cross section is 5 to 10 times the thickness of the web 3 or the bracket 2;
  • the lower end faces of the webs 3 are respectively welded at the middle positions of the connecting surfaces of the vibration dampers 4 .
  • the damping layer 5 is a viscoelastic damping material, which can be made of asphalt, water-soluble, latex or epoxy resin with appropriate fillers and solvents, and is bonded with high-strength glue to form an integral structure of the steel plate and the damping layer 5 .
  • a design method for a composite vibration-damping support frame based on an acoustic black hole including the following steps (see Figure 11):
  • the vibration reduction starting frequency f can be Substitute into the formula to calculate the characteristic size r 1 of its acoustic black hole;
  • S4-1 Calculate the one-dimensional acoustic black hole wedge-shaped structure 1-1, the one-dimensional acoustic black hole wedge-shaped structure 3-1, the two-dimensional acoustic black hole structure-2-1, and the two-dimensional acoustic black hole array 3-2
  • x 0 , x are the starting and ending points of the section of the acoustic black hole
  • E 1 , E 2 , ⁇ 1 , ⁇ 2 , ⁇ 1 , ⁇ 2 are the Young's modulus, density, and loss factor of the plate and damping layer, respectively
  • is Damping layer thickness
  • Use the reflection coefficient formula of one-dimensional acoustic black hole to quickly evaluate the reflection coefficient of each acoustic black hole structure;
  • the radius (or length) of the damping layer should be greater than 0.5 times the characteristic size r of the acoustic black hole, because most of the vibrational energy is consumed in the central area of the acoustic black hole, so it should be pasted in the central area of the acoustic black hole , covering the entire area as much as possible;
  • thicker damping layer ⁇ can improve the vibration reduction effect of acoustic black hole, taking into account the vibration reduction effect and economy of acoustic black hole, generally the loss factor of the damping material should be greater than 0.5 and the thickness of the damping layer should be the local thickness 4 to 10 times of h 0 , the reflection coefficient in the vibration reduction frequency band should be controlled within 0.5;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Building Environments (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

一种基于声学黑洞的复合减振支撑架及其设计方法。支撑架包括由上面板(1)、至少2块竖直肘板(2)构成至少一个门框型框架,框架的后侧连接有腹板(3),下端连有阻振体(4),上面板(1)的两端自前至后分别设有一维声学黑洞楔形结构一(1-1)和一维声学黑洞楔形结构二(1-2),肘板(2)上部设有至少2个小直径二维声学黑洞一(2-1)、下部设有至少2个大直径二维声学黑洞二(2-2),腹板(3)上设有至少2个二维声学黑洞阵列(3-2),两端分别设有一维声学黑洞楔形结构三(3-1),所有黑洞结构相对应的一侧平面上分别敷设有阻尼层(5)。该支撑架在支撑的同时耗散动力机械产生的振动能,达到复合减振目的。

Description

一种基于声学黑洞的复合减振支撑架及其设计方法 技术领域
本发明涉及一种基于声学黑洞的复合减振支撑结构及其设计方法,具体涉及一种能够抑制弹性波传递的减振支撑结构。
背景技术
船舶上有多种动力机械,尤其在机舱内包括主机、传动装置和其它辅机等动力机械,在运转时不可避免的会产生振动和噪声。常用减振措施是改变支撑结构的尺寸、刚性、隔振器和阻尼减振技术,但这样会增加支撑结构的重量和材料成本,也对支撑结构的布置和安装有着更高的要求。因此,寻求新型支撑结构在不增加重量尺寸的情况下,同时保证较好的减振效果非常有必要。
理想的声学黑洞结构(Acoustic Black Hole,ABH)为截面厚度遵循幂函数h(x)=εx m+h 0衰减的楔形结构,其中h(x)为x处声学黑洞结构的厚度,ε为常数,幂指数m为正有理数,h 0为声学黑洞结构的局部厚度(理想声学黑洞的h 0为0)。当结构的厚度变化满足指数大于等于2的幂函数曲线时,就能满足结构声学黑洞的基本要求。在理想条件下,弯曲波零反射,将传导至ABH区域的弯曲波全部“吞噬”,但在实际制造中,很难实现结构厚度按照幂指数变化至零,在尖端厚度形成截断。很小的局部厚度也会使结构的反射系数增大到50%以上,削弱声学黑洞的聚集效应,在声学黑洞区域粘贴阻尼材料,反射系数将会大幅降低,可以有效吸收能量,抑制振动。
阻振质量一般是条体,沿着结构振动传递路径配置在板的结合处,定常结构发生突变(质量、刚度等),会引起结构的阻抗失配,对弯曲波起到很好的反射作用。
本发明公开了一种基于声学黑洞的复合减振支撑结构及其设计方法,利用声学黑洞对弹性波的聚集效应对动力机械产生的振动进行控制,实现振动能的耗散和抑制波的传播,同时设置阻尼层和阻振体,提高减振效果。
发明内容
本发明目的旨在提供一种减小动力机械结构振动传递的减振支撑结构。
为实现上述目的,本发明采用如下技术方案:
一种基于声学黑洞的复合减振支撑架,包括支撑架主体,支撑架主体由上面板、至少2块竖直肘板构成至少一个门框型框架,框架的后侧连接有腹板,下端连接有阻振体,所述面板的两端自前至后分别设置有一维声学黑洞楔形结构一和一维声学黑洞楔形结构二,所述肘板上部设置有至少2个小直径二维声学黑洞一、下部设置有至少2个大直径二维声学黑洞二,所述腹板上设置有至少2个二维声学黑洞阵列,两端分别设置有一维声学黑洞楔形结构三,所述一维声学黑洞楔形结构一,一维声学黑洞楔形结构二,一维声学黑洞楔形结构三,二维声学黑洞结构一,二维声学黑洞结构二和二维声学黑洞阵列相对应的一侧平面上分别敷设有阻尼层。
进一步优选的,所述上面板和腹板为矩形钢板,肘板为直角梯形钢板,阻振体的断截面为矩形空心或实心结构钢。
进一步优选的,所述声学黑洞,其截面符合h(x)=εx m+h 0的衰减规律,其中h 0为0.2~1mm。一维声学黑洞是截面沿法向拉伸而成的楔形结构;二维声学黑洞是截面沿y轴旋转而成的凹坑型结构。
进一步优选的,所述上面板和腹板两端边缘分布一维声学黑洞楔形结构,上面板两端边缘分布两组大小不同的一维声学黑洞楔形结构,其宽度为上面板宽度的一半。
进一步优选的,所述二维声学黑洞阵列三的阵列方式为矩形阵列或环形阵列,每个阵列的二维声学黑洞的个数为4-6个。
进一步优选的,所述二维声学黑洞结构一、二维声学黑洞结构二和二维声学黑洞阵列三边缘到板的边缘、两相邻声学黑洞的边缘的距离应大于0.3r,以保证结构强度和提高减振效果。
进一步优选的,所述阻尼层厚度为声学黑洞局部厚度的4~10倍,其为粘弹性阻尼材料。
进一步优选的,所述连接为焊接。
为达到上述目的,本发明实现目的所采取的另一技术方案是:
一种基于声学黑洞的复合减振支撑架的设计方法,包括以下步骤:
S1:利用振动测试系统测出动力机械的振动线谱,确定减振起始频率f;
S2:确定幂律m,一般m取2.0~2.5;对于较大的m,可使振动传递至边界时的反射系数显著降低,但是m越大,制造越困难,且在低频时可能会不满足平滑性条件;
S3:计算声学黑洞特征尺寸r(一维声学黑洞为长度,二维声学黑洞为半径);
S3-1:由声学黑洞聚集效应的减振起始频率变换得到
Figure PCTCN2021130025-appb-000001
进行确定,其中h表示平板厚度,ρ 1为材料密度,E 1为材料杨氏模量,υ为材料泊松比。对一维声学黑洞楔形结构一(1-1)、一维声学黑洞楔形结构三(3-1),二维声学黑洞结构一(2-1)、二维声学黑洞阵列(3-2),可将减振起始频率f代入公式计算得到其声学黑洞特征尺寸r 1
S3-2:对于上面板(1)和肘板(2)上的声学黑洞,较大一组一维声学黑洞楔形结构一(1-2)、二维声学黑洞结构二(2-2)参数由
Figure PCTCN2021130025-appb-000002
进而确定半径
Figure PCTCN2021130025-appb-000003
S4:计算声学黑洞截面函数;
S4-1:计算一维声学黑洞楔形结构一(1-1)、一维声学黑洞楔形结构三(3-1)、二维声学黑洞结构一(2-1)、二维声学黑洞阵列(3-2)截面函数h 1(x),ε 1由板厚h和声学黑洞特征尺寸r 1决定,
Figure PCTCN2021130025-appb-000004
h 1(x)=ε 1x m+h 0
S4-2:计算一维声学黑洞楔形结构二(1-2)、二维声学黑洞结构二(2-2)截面函数h 2(x)=ε 2x m+h 0
S5:计算反射系数,为弯曲波的输出与输入量之比:
Figure PCTCN2021130025-appb-000005
其中x 0,x为声学黑洞的截面的起止点;E 1,E 2,ρ 1,ρ 2,η 1,η 2分别为板和阻尼层的杨氏模量、密度、损耗因子;δ为阻尼层厚度;
Figure PCTCN2021130025-appb-000006
为波数,其中c为波在板中的波速,f为波的频率;在未粘贴阻尼时,声学黑洞很小的局部厚度也会使反射系数较大,降低声学黑洞的聚波效应效果。利用一维声学黑洞的反射系数公式快速评估各声学黑洞结构的反射系数;
未敷设阻尼层时声学黑洞及支撑结构的阻尼损耗因子较小,同时由于声学黑洞局部厚度不可避免地存在,会使支撑结构的减振效果不明显,在声学黑洞的中心区域敷设阻尼层,可有效抑制声学黑洞结构的反射系数;阻尼层半径(或长度)应大于0.5倍声学黑洞特征尺寸r,因为振动能大部分都在声学黑洞中心区域消耗掉,因此,应粘贴在声学黑洞的中心区域,尽可能覆盖全部区域;更厚的阻尼层δ可提高声学黑洞的减振效果,兼顾声学黑洞的减振效果 和经济性,一般应使阻尼材料的损耗因子大于0.5且阻尼层厚度为局部厚度h 0的4~10倍,应将减振频段内的反射系数控制在0.5以内;
S6:验证平滑性条件:
Figure PCTCN2021130025-appb-000007
Figure PCTCN2021130025-appb-000008
若不满足平滑性条件和反射系数控制要求,重复S2及以后的步骤,直至满足条件要求。
本发明的工作原理:本发明利用声学黑洞效应,通过结构阻抗的变化,致使结构中波的相速度和群速度发生变化,在结构局部区域实现波的聚集。薄板结构中,如果阻抗的变化通过板的厚度以一定指数形式变化来实现,弯曲波速会随着厚度的减小逐渐减小,波长被压缩,波幅增大,在理想的情况下波速减小为0,这样就不会在产生反射。同时利用阻抗失配原理,支撑结构中的阻振体对动力机械产生的振动波抑制其向船体结构的传播。振动从面板向船体传递过程中,由于声学黑洞存在局部厚度,声学黑洞不能完全吸收弯曲波,部分波会“逃逸”出去,同时肘板、腹板的弯曲刚度小于阻振体,会反射部分弯曲波,反射的弯曲波在肘板和腹板中传播再次进入声学黑洞区域,提高了声学黑洞的聚波效果。
声学黑洞在低于第一截止频率
Figure PCTCN2021130025-appb-000009
时,完全不会有作用,当激励在高于第一截止频率后,因为声学黑洞的特征长度大于弯曲波在平板中的半波长,声学黑洞效应才开始逐渐起作用。复合减振支撑结构设计方法中较大特征尺寸的声学黑洞就是基于第一截止频率来计算的;其他的声学黑洞特征尺寸由平滑性条件推导而来的第二截止频率
Figure PCTCN2021130025-appb-000010
来计算的。肘板上二维声学黑洞的数量和腹板上声学黑洞的阵列方式及数量由支撑结构尺寸和是否方便布置而定。
动力机械产生的振动由面板传递到肘板或腹板。当振动波在肘板上时传递时,波会聚集在声学黑洞结构内。因为声学黑洞的聚波效果,声学黑洞中心区域波幅较大,在声学黑洞区域表面上贴有阻尼层,阻尼层利用剪切变形将机械能转化为热能,消耗振动能量。
本发明的有益效果:
本发明在支撑动力机械的同时耗散动力机械产生的振动能,综合利用声学黑洞的能量聚集效应、阻尼减振设计技术和阻抗失配原理,对弯曲波进行控制和振动能耗散,进而达到减振目的,具有广阔的应用前景,适用于船舶各种动力机械的支撑结构。本发明与普通支撑结构型式相比,减振效果更加明显,在500Hz以上频带的平均减振效果可达7dB以上,减振带 隙达到70%,对船舶动力机械减振降噪具有重要的应用价值。在面板和腹板两端的一维声学黑洞大小并不相同,肘板上的上下两组声学黑洞的半径也不一样,拓宽了声学黑洞的减振频段。同时阻振质量和阻尼的引入,提高了声学黑洞的聚集效应。波聚集在黑洞区域内,只对此区域设有阻尼层,而非是整个支撑结构主体,减少了材料的使用,减少制造成本,同时与普通肘板相比,在同样厚度的情况下,因为引入了声学黑洞结构,使得支撑结构主体的质量减小。与减振孔式支撑结构相比,由于采用声学黑洞结构代替支撑结构的减振孔结构,不会影响支撑结构的强度,适用于在弹性安装和刚性安装情况下对动力机械进行支撑,减少动力机械的振动传递。
附图说明
图1是本发明的矩形阵列形式结构示意图;
图2是本发明的环形阵列形式结构示意图;
图3是本发明的面板俯视图;
图4是本发明的面板A-A向剖面图;
图5是本发明的肘板左视图;
图6是本发明的肘板B-B向剖面图;
图7是本发明的矩形阵列形式腹板正视图;
图8是本发明的矩形阵列形式腹板C-C向剖面图;
图9是本发明的环形阵列形式腹板正视图;
图10是本发明的环形阵列形式腹板D-D向剖面图;
图11是本发明的设计方法流程图。
具体实施方式
如图1-10所示,为本发明的一种基于声学黑洞的复合减振支撑架,用于支撑船舶动力机械,同时消耗传递路径上的振动能量。包括上面板1、肘板2、腹板3、阻振体4、一维声学黑洞楔形结构一1-1、一维声学黑洞楔形结构二1-2和一维声学黑洞楔形结构三3-1、肘板二维声学黑洞一2-1与二维声学黑洞结构二2-2、腹板二维声学黑洞阵列3-2、阻尼层5。
动力机械重量由上面板1、肘板2和腹板3支撑。
上面板1材料为钢材,形状为矩形。上面板1下端面与肘板2、腹板3上端面通过焊接相连。在上面板1两端边缘有一维声学黑洞楔形结构一1-1、一维声学黑洞楔形结构二1-2, 一维声学黑洞区域的平面粘贴阻尼层5。
肘板2材料为钢材,形状为直角梯形,其上端面与上面板1焊接相连,一侧端面与腹板3焊接相连,肘板2上设置有二维声学黑洞结构一2-1、二维声学黑洞结构二2-2,小的一组二维声学黑洞结构一2-1位置为靠近梯形上底,大的一组二维声学黑洞结构二2-2位置为靠近梯形上底。二维声学黑洞区域的平面一侧粘贴阻尼层5。
腹板3材料为钢材,形状为矩形,其上端面与上面板1焊接相连,与肘板2一侧端面焊接相连,腹板3上附有二维声学黑洞阵列3-2,二维声学黑洞区域的平面一侧粘贴阻尼层5。
阻振体4的横截面外形为矩形,横截面的宽度为腹板3或肘板2厚度的5~10倍;阻振体4设置于肘板2与腹板3下端处,肘板2与腹板3的下端面分别焊接在所述阻振体4的连接表面的中部位置。
阻尼层5为粘弹性阻尼材料,可由沥青、水溶物、乳胶或环氧树脂适当的添加填料和溶剂制成,并通过高强度胶水粘合后使钢板和阻尼层5形成整体结构。
一种基于声学黑洞的复合减振支撑架的设计方法,包括以下步骤(参见图11):
S1:利用振动测试系统测出动力机械的振动线谱,确定减振起始频率f;
S2:确定幂律m,一般m取2.0~2.5;对于较大的m,可使振动传递至边界时的反射系数显著降低,但是m越大,制造越困难,且在低频时可能会不满足平滑性条件;
S3:计算声学黑洞特征尺寸r(一维声学黑洞为长度,二维声学黑洞为半径);
S3-1:由声学黑洞聚集效应的减振起始频率变换得到
Figure PCTCN2021130025-appb-000011
进行确定,其中h表示平板厚度,ρ 1为材料密度,E 1为材料杨氏模量,υ为材料泊松比。对一维声学黑洞楔形结构一1-1、一维声学黑洞楔形结构三3-1,二维声学黑洞结构一2-1、二维声学黑洞阵列3-2,可将减振起始频率f代入公式计算得到其声学黑洞特征尺寸r 1
S3-2:对于上面板1和肘板2上的声学黑洞,较大一组一维声学黑洞楔形结构一1-2、二维声学黑洞结构二2-2参数由
Figure PCTCN2021130025-appb-000012
进而确定半径
Figure PCTCN2021130025-appb-000013
S4:计算声学黑洞截面函数;
S4-1:计算一维声学黑洞楔形结构一1-1、一维声学黑洞楔形结构三3-1、二维声学黑洞结构一2-1、二维声学黑洞阵列3-2截面函数h 1(x),ε 1由板厚h和声学黑洞特征尺寸r 1决定,
Figure PCTCN2021130025-appb-000014
h 1(x)=ε 1x m+h 0
S4-2:计算一维声学黑洞楔形结构二1-2、二维声学黑洞结构二2-2截面函数h 2(x)=ε 2x m+h 0
S5:计算反射系数,为弯曲波的输出与输入量之比:
Figure PCTCN2021130025-appb-000015
其中x 0,x为声学黑洞的截面的起止点;E 1,E 2,ρ 1,ρ 2,η 1,η 2分别为板和阻尼层的杨氏模量、密度、损耗因子;δ为阻尼层厚度;
Figure PCTCN2021130025-appb-000016
为波数,其中c为波在板中的波速,f为波的频率;在未粘贴阻尼时,声学黑洞很小的局部厚度也会使反射系数较大,降低声学黑洞的聚波效应效果。利用一维声学黑洞的反射系数公式快速评估各声学黑洞结构的反射系数;
未敷设阻尼层时声学黑洞及支撑结构的阻尼损耗因子较小,同时由于声学黑洞局部厚度不可避免地存在,会使支撑结构的减振效果不明显,在声学黑洞的中心区域敷设阻尼层,可有效抑制声学黑洞结构的反射系数;阻尼层半径(或长度)应大于0.5倍声学黑洞特征尺寸r,因为振动能大部分都在声学黑洞中心区域消耗掉,因此,应粘贴在声学黑洞的中心区域,尽可能覆盖全部区域;更厚的阻尼层δ可提高声学黑洞的减振效果,兼顾声学黑洞的减振效果和经济性,一般应使阻尼材料的损耗因子大于0.5且阻尼层厚度为局部厚度h 0的4~10倍,应将减振频段内的反射系数控制在0.5以内;
S6:验证平滑性条件:
Figure PCTCN2021130025-appb-000017
Figure PCTCN2021130025-appb-000018
若不满足平滑性条件和反射系数控制要求,重复S2及以后的步骤,直至满足条件要求。

Claims (9)

  1. 一种基于声学黑洞的复合减振支撑架,包括支撑架主体,其特征在于,所述支撑架主体由上面板(1)、至少2块竖直肘板(2)构成至少一个门框型框架,所述框架的后侧连接有腹板(3),下端连接有阻振体(4),所述上面板(1)的两端自前至后分别设置有一维声学黑洞楔形结构一(1-1)和一维声学黑洞楔形结构二(1-2),所述肘板(2)上部设置有至少2个小直径二维声学黑洞一(2-1)、下部设置有至少2个大直径二维声学黑洞二(2-2),所述腹板(3)上设置有至少2个二维声学黑洞阵列(3-2),两端分别设置有一维声学黑洞楔形结构三(3-1),所述一维声学黑洞楔形结构一(1-1),一维声学黑洞楔形结构二(1-2),二维声学黑洞结构一(2-1),二维声学黑洞结构二(2-2),一维声学黑洞楔形结构三(3-1)和二维声学黑洞阵列(3-2)相对应的一侧平面上分别敷设有阻尼层(5)。
  2. 根据权利要求1所述的一种基于声学黑洞的复合减振支撑架,其特征在于,所述上面板(1)和腹板(3)均为矩形钢板,所述肘板(2)为直角梯形钢板,所述阻振体(4)的断截面为矩形空心或实心结构钢。
  3. 根据权利要求1所述的一种基于声学黑洞的复合减振支撑架,其特征在于,所述声学黑洞的截面符合h(x)=εx m+h 0的衰减规律,式中h 0为0.2~1mm;其中,所述一维声学黑洞是截面沿法向方向拉伸而成的楔形结构;二维声学黑洞是截面沿y轴旋转而成的凹坑型结构。
  4. 根据权利要求1所述的一种基于声学黑洞的复合减振支撑架,其特征在于,所述上面板(1)两端边缘分布两组大小不同的一维声学黑洞楔形结构一(1-1)和一维声学黑洞楔形结构二(1-2),其宽度均为上面板(1)的宽度的一半。
  5. 根据权利要求1所述的一种基于声学黑洞的复合减振支撑架,其特征在于,所述二维声学黑洞阵列三(3-2)的阵列方式为矩形阵列或环形阵列,每个阵列的二维声学黑洞的个数为4-6个。
  6. 根据权利要求1所述的一种基于声学黑洞的复合减振支撑架,其特征在于,所述二维声学黑洞结构一(2-1)、二维声学黑洞结构二(2-2)和二维声学黑洞阵列三(3-2)的边缘到板边缘、两相邻声学黑洞的边缘的距离为大于0.3r,其中r为声学黑洞特征尺寸。
  7. 根据权利要求1所述的一种基于声学黑洞的复合减振支撑架,其特征在于,所述阻尼层(5)厚度为声学黑洞局部厚度h 0的4~10倍,其为粘弹性阻尼材料。
  8. 根据权利要求1所述的一种基于声学黑洞的复合减振支撑架,其特征在于,所述连接为焊接。
  9. 一种根据权利要求1-8任一项所述的一种基于声学黑洞的复合减振支撑架的设计方法,其特征在于,包括以下步骤:
    S1:利用振动测试系统测出动力机械的振动线谱,确定减振起始频率f;
    S2:确定幂律m,m取2.0~2.5;当m取较大时,可使振动传递至边界时的反射系数显著降低,但是m越大,制造越困难,且在低频时可能会不满足平滑性条件;
    S3:计算声学黑洞特征尺寸r,其中,一维声学黑洞特征尺寸r为长度,二维声学黑洞特征尺寸r为半径;具体内容和步骤是:
    S3-1:由声学黑洞聚集效应的减振起始频率变换得到
    Figure PCTCN2021130025-appb-100001
    进行确定,其中h表示平板厚度,ρ 1为材料密度,E 1为材料杨氏模量,υ为材料泊松比;对一维声学黑洞楔形结构一(1-1)、一维声学黑洞楔形结构三(3-1),二维声学黑洞结构一(2-1)、二维声学黑洞阵列(3-2),将减振起始频率f代入公式计算得到其声学黑洞特征尺寸r 1
    S3-2:对于上面板(1)和肘板(2)上的声学黑洞,较大一组一维声学黑洞楔形结构一(1-2)、二维声学黑洞结构二(2-2)参数由
    Figure PCTCN2021130025-appb-100002
    进而确定半径
    Figure PCTCN2021130025-appb-100003
    S4:计算声学黑洞截面函数;具体内容和步骤是:
    S4-1:计算一维声学黑洞楔形结构一(1-1)、一维声学黑洞楔形结构三(3-1)、二维声学黑洞结构一(2-1)、二维声学黑洞阵列(3-2)截面函数h 1(x),ε 1由板厚h和声学黑洞特征尺寸r 1决定,
    Figure PCTCN2021130025-appb-100004
    h 1(x)=ε 1x m+h 0
    S4-2:计算一维声学黑洞楔形结构二(1-2)、二维声学黑洞结构二(2-2)截面函数h 2(x)=ε 2x m+h 0
    S5:计算反射系数,为弯曲波的输出与输入量之比:
    Figure PCTCN2021130025-appb-100005
    其中x 0,x为声学黑洞的截面的起止点;E 1,E 2,ρ 1,ρ 2,η 1,η 2分别为板和阻尼层的杨氏模量、密度、损耗因子;δ为阻尼层厚度;
    Figure PCTCN2021130025-appb-100006
    为波数,其中c为波在板中的波速,f 为波的频率;在未粘贴阻尼时,声学黑洞很小的局部厚度也会使反射系数较大,降低声学黑洞的聚波效应效果;利用一维声学黑洞的反射系数公式快速评估各声学黑洞结构的反射系数;
    未敷设阻尼层时声学黑洞及支撑结构的阻尼损耗因子较小,同时由于声学黑洞局部厚度不可避免地存在,会使支撑结构的减振效果不明显,在声学黑洞的中心区域敷设阻尼层,可有效抑制声学黑洞结构的反射系数;阻尼层半径或长度应大于0.5倍声学黑洞特征尺寸r,因为振动能大部分都在声学黑洞中心区域消耗掉,因此,应粘贴在声学黑洞的中心区域,尽可能覆盖全部区域;更厚的阻尼层δ可提高声学黑洞的减振效果,兼顾声学黑洞的减振效果和经济性,一般应使阻尼材料的损耗因子大于0.5且阻尼层厚度为局部厚度h 0的4~10倍,应将减振频段内的反射系数控制在0.5以内;
    S6:验证平滑性条件:
    Figure PCTCN2021130025-appb-100007
    Figure PCTCN2021130025-appb-100008
    若不满足平滑性条件和反射系数控制要求,重复S2及以后的步骤,直至满足条件要求。
PCT/CN2021/130025 2020-11-27 2021-11-11 一种基于声学黑洞的复合减振支撑架及其设计方法 WO2022111292A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023528233A JP7387219B2 (ja) 2020-11-27 2021-11-11 音響ブラックホールによる複合型制振支持フレーム、及びその設計方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011354374.5A CN112478119B (zh) 2020-11-27 2020-11-27 一种基于声学黑洞的复合减振支撑架及其设计方法
CN202011354374.5 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022111292A1 true WO2022111292A1 (zh) 2022-06-02

Family

ID=74935786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130025 WO2022111292A1 (zh) 2020-11-27 2021-11-11 一种基于声学黑洞的复合减振支撑架及其设计方法

Country Status (3)

Country Link
JP (1) JP7387219B2 (zh)
CN (1) CN112478119B (zh)
WO (1) WO2022111292A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116341222A (zh) * 2023-03-09 2023-06-27 南京理工大学 一种树形结构的声学黑洞动力吸振器设计方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112478119B (zh) * 2020-11-27 2021-12-07 江苏科技大学 一种基于声学黑洞的复合减振支撑架及其设计方法
CN114030247B (zh) * 2021-11-09 2023-09-29 江苏科技大学 一种基于声学黑洞的吸隔声轻质复合板
CN114623181A (zh) * 2022-03-03 2022-06-14 中国铁路南宁局集团有限公司 一种用于尖轨振动控制的吸附式周期性声学黑洞减振器
CN115394274B (zh) * 2022-08-30 2023-07-07 哈尔滨工程大学 一种基于声学黑洞效应的多层复合高效减振板结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2578802A1 (en) * 2010-05-24 2013-04-10 IHI Corporation Vibration damping blade for fluid
US20180335406A1 (en) * 2017-05-16 2018-11-22 University Of South Carolina Acoustic Black Hole for Sensing Applications
CN110094452A (zh) * 2018-01-30 2019-08-06 香港理工大学 利用声学黑洞特征的宽频带振动抑制装置
CN111851332A (zh) * 2020-07-02 2020-10-30 华东交通大学 一种基于声学黑洞的轨旁声屏障
CN112478119A (zh) * 2020-11-27 2021-03-12 江苏科技大学 一种基于声学黑洞的复合减振支撑架及其设计方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3069200U (ja) 1999-11-24 2000-06-06 株式会社新来島どっく 主機台における頂板の支持構造
JP2008111538A (ja) 2006-10-31 2008-05-15 Toyota Motor Corp 制振材料の取付け構造および取付け方法
JP2010144868A (ja) 2008-12-19 2010-07-01 Ihi Corp 弾性くさびダンパ
JP5598084B2 (ja) 2010-05-20 2014-10-01 株式会社Ihi 回転シャフト用の弾性くさびダンパ
CN203996859U (zh) * 2014-06-17 2014-12-10 江苏省镇江船厂(集团)有限公司 船舶复合减振基座
CN106023978B (zh) * 2016-05-23 2019-08-02 南京航空航天大学 双层板声学黑洞减振降噪结构
CN108313252B (zh) * 2018-03-27 2024-05-03 福州大学 基于金属橡胶的减振基座及工作方法
CN110848116A (zh) * 2019-10-24 2020-02-28 湖南埃瓦新能源科技有限公司 一种空气能热泵用的减振降噪装置
CN111862921A (zh) * 2020-08-31 2020-10-30 裘天政 一种附加式偏心声学黑洞减振结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2578802A1 (en) * 2010-05-24 2013-04-10 IHI Corporation Vibration damping blade for fluid
US20180335406A1 (en) * 2017-05-16 2018-11-22 University Of South Carolina Acoustic Black Hole for Sensing Applications
CN110094452A (zh) * 2018-01-30 2019-08-06 香港理工大学 利用声学黑洞特征的宽频带振动抑制装置
CN111851332A (zh) * 2020-07-02 2020-10-30 华东交通大学 一种基于声学黑洞的轨旁声屏障
CN112478119A (zh) * 2020-11-27 2021-03-12 江苏科技大学 一种基于声学黑洞的复合减振支撑架及其设计方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116341222A (zh) * 2023-03-09 2023-06-27 南京理工大学 一种树形结构的声学黑洞动力吸振器设计方法
CN116341222B (zh) * 2023-03-09 2024-05-28 南京理工大学 一种树形结构的声学黑洞动力吸振器设计方法

Also Published As

Publication number Publication date
JP2023546520A (ja) 2023-11-02
JP7387219B2 (ja) 2023-11-28
CN112478119A (zh) 2021-03-12
CN112478119B (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2022111292A1 (zh) 一种基于声学黑洞的复合减振支撑架及其设计方法
Narayanan et al. Sound transmission through a damped sandwich panel
Bowyer et al. Effect of geometrical and material imperfections on damping flexural vibrations in plates with attached wedges of power law profile
US20210237394A1 (en) Acoustic material structure and method for assembling same and acoustic radiation structure
CN212694826U (zh) 一种附加式偏心声学黑洞减振结构
KR101057422B1 (ko) 가공용 소재 및 그것을 이용한 성형 부재
WO2022228269A1 (zh) 一种薄层低频水声隔声超材料
CN112687254B (zh) 一种提高隔吸声性能的微穿孔波纹-蜂窝超材料板结构
CN112581928B (zh) 一种降噪用的声学黑洞周期夹芯梁结构
Bowyer et al. A review of experimental investigations into the acoustic black hole effect and its applications for reduction of flexural vibrations and structure-borne sound
CN203996859U (zh) 船舶复合减振基座
CN112652287A (zh) 一种声学黑洞夹芯平板减振结构
Sugimoto et al. Low frequency liners for turbofan engines
CN101830271A (zh) 船舶复合减振托板结构
Bayod Application of elastic wedge for vibration damping of turbine blade
Howe Structural and acoustic noise produced by turbulent flow over an elastic trailing edge
Hosokawa et al. Free vibrations of clamped symmetrically laminated skew plates
Wang et al. A new type of two-dimensional acoustic black hole-based vibration absorber
CN116682401B (zh) 一种嵌套式声学黑洞梁结构
CN111186548B (zh) 一种剪扭支撑高阻抗基座
CN220600346U (zh) 减振装置、悬置支座总成和工程机械
Shen et al. Sound transmission loss of sandwich polycarbonate pane in automobile
CN220035758U (zh) 一种阻尼断桥复合隔声板
Abe et al. Theoretical Study of Sound Insulation Simulations (About Attaching Effect of Sound Absorbing Material and Consideration of Sound Insulation Performance by Height of Origami Core)
KR200249211Y1 (ko) 스피커캐비넷

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896793

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023528233

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896793

Country of ref document: EP

Kind code of ref document: A1