WO2022110753A1 - 一种4d打印液晶弹性体制备方法及其在致动器中的应用 - Google Patents

一种4d打印液晶弹性体制备方法及其在致动器中的应用 Download PDF

Info

Publication number
WO2022110753A1
WO2022110753A1 PCT/CN2021/098283 CN2021098283W WO2022110753A1 WO 2022110753 A1 WO2022110753 A1 WO 2022110753A1 CN 2021098283 W CN2021098283 W CN 2021098283W WO 2022110753 A1 WO2022110753 A1 WO 2022110753A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
printing
solvent
crystal elastomer
printed
Prior art date
Application number
PCT/CN2021/098283
Other languages
English (en)
French (fr)
Inventor
丁建宁
江瑶瑶
李绿洲
袁宁一
Original Assignee
江苏大学
常州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学, 常州大学 filed Critical 江苏大学
Priority to DE112021003909.1T priority Critical patent/DE112021003909B4/de
Publication of WO2022110753A1 publication Critical patent/WO2022110753A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks

Definitions

  • the invention relates to a preparation method of a 4D printed liquid crystal elastomer, in particular to a preparation method of a 4D printed liquid crystal elastomer based on aqueous solvent curing and its application in an actuator.
  • 4D printing technology is an emerging manufacturing technology that combines 3D printing technology and intelligent structures. Its fourth dimension has the same characteristics as perceptual materials, namely perceiving external stimuli such as stress, strain, heat, light, electricity, magnetism, chemistry and radiation. and respond accordingly. As a class of responsive smart materials, liquid crystal elastomers have potential applications in artificial muscles, soft robots, and dynamic reversible functional structures.
  • the molecules inside the LCEs are arranged chaotically, which causes the light traveling through the amorphous LCEs to scatter when it encounters the small particles of the crystal, so the transparency of the LCEs is significantly reduced, and it is milky white under normal conditions. Therefore, as the printing progresses, the surface of the liquid crystal elastomer formed by photocuring also changes from transparent to milky white, which makes it difficult for light to pass through and cannot enter the material or the interior of the printing device, resulting in incomplete cross-linking and curing inside the material. The overall mechanical properties cannot be effectively improved and improved.
  • the inventor of the present invention actively conducts research and innovation based on years of rich practical experience and professional knowledge engaged in the design and manufacture of such products, and cooperates with the application of theory, in order to create a 4D printing method.
  • the preparation method of printing liquid crystal elastomer improves the mechanical properties of the material and makes it more practical.
  • the main purpose of the present invention is to provide a preparation method of a 4D printed liquid crystal elastomer based on water-based solvent curing, and the improvement of the mechanical properties of the material is achieved through the process optimization of the preparation method.
  • the specific molding principle of the water-based solvent-cured 4D printing liquid crystal elastomer in the present invention is as follows: on the one hand, since the liquid crystal elastomer has many hydrophobic groups that make it insoluble in water, the precursor liquid will not dissolve or disperse when squeezed into the water-based solvent, At the same time, the solvent in the precursor liquid and the water-based solvent are mutually soluble, so the solvent inside the precursor liquid and the water-based solvent will undergo solvent exchange, and the solvent in the precursor liquid is quickly dissolved in the water-based solvent, which makes the precursor liquid lose the solvent.
  • the oxidant in the precursor liquid is not fully reacted, although the aqueous solvent can replace the solvent in the precursor liquid to make it solidify rapidly, but the liquid crystal network structure is only solid and not completely cross-linked, resulting in a comparison of its mechanical properties.
  • the oxidant added in the solvent bath can well promote the formation of disulfide bonds by its unreacted sulfhydryl groups, and the network is further cross-linked and also accelerates its curing and molding, thereby improving the mechanical properties of the material.
  • the present invention provides a method for preparing a 4D printing liquid crystal elastomer.
  • the liquid crystal elastomer oligomer containing dynamic disulfide bonds is used as a printing precursor liquid ink, and a water-based solvent bath is used to realize rapid curing 4D printing, and the mechanical properties of the material are improved.
  • a water-based solvent bath is used to realize rapid curing 4D printing, and the mechanical properties of the material are improved.
  • liquid crystal elastomer polymer molecules are formed by cross-linking of disulfide bonds, which can be reconnected by thermal breakage, and can program the shape deformation behavior of liquid crystal elastomers. Therefore, by changing the printing speed and molding temperature , a locally programmed actuation-strain behavior can be designed.
  • a preparation method of a 4D printed liquid crystal elastomer comprises the following steps:
  • Preparation of the precursor liquid take the liquid crystal monomer, the linker, and the catalyst to dissolve in a solvent and continue to react for 12 hours. After the reaction is completed, the crosslinking agent and the oxidant are added in sequence and stirred for 1-12 hours to obtain a precursor liquid ink for printing;
  • Solvent bath preparation the aqueous solvent and the oxidant solution are uniformly mixed and placed in a 15cm ⁇ 15cm container to obtain a solvent bath for later use;
  • S3.4D printing inject the precursor ink prepared in S1 into the printing cylinder, place the solvent bath prepared in step S2 on the printing table, adjust the height of the printing nozzle and extend the nozzle below the surface of the solvent bath; at the same time, construct the structure to be formed
  • high-level slicing software is used to program the printing rate, and slicing is performed to obtain a file that can be directly read by the 4D printing device; based on the precursor liquid in the step S1 and the 3D model, turn on the air pump and run the file.
  • the 4D printing can be realized after the preparation of the precursor liquid ink, and the viscosity of the ink does not need to be considered; at the same time, the precursor liquid ink prepared by the present invention is sealed at room temperature.
  • the storage can be effectively stored for 10 days without coagulation and deterioration, and the mechanical and driving properties of the printed single liquid crystal elastomer fibers have not changed.
  • step S3 The liquid crystal elastomer device printed in step S3 is soaked in ethanol and deionized water for 20-30 minutes, then taken out, and then freeze-dried for 16-24 hours, and the target product can be obtained after drying. .
  • the liquid crystal monomer is RM82 or RM257; the linking agent is any one of PDT, EDDET or GDMP.
  • the catalyst is any one of n-dipropylamine, triethylamine or sodium ethoxide; the solvent is at least one of tetrahydrofuran or dichloromethane; and the cross-linking agent is PETMP.
  • the molar ratio of the liquid crystal monomer, the linking agent and the crosslinking agent is 1:(1.05-1.5):(0.05-0.5); the catalyst accounts for 0.5%-1.5% of the total amount of the liquid crystal monomer .
  • the oxidant used in step S1 and step S2 is any one of hydrogen peroxide solution, elemental iodine or peracetic acid.
  • the aqueous solvent is at least one of deionized water, methanol, ethanol, acetone or tetrahydrofuran, or a mixture of any two or more thereof.
  • the aqueous solvent is a mixture of ethanol and 30% hydrogen peroxide solution in a volume ratio of (1-4):1.
  • the diameter of the nozzle in step S3 is 0.06-0.41 mm; the relative velocity of the nozzle is 3-6 mm/s.
  • Another object of the present invention is to apply the 4D printed liquid crystal elastomer device prepared by the preparation method of the preceding claims to an actuator; the liquid crystal molecules in the printed device are anisotropic, and the anisotropy of the liquid crystal molecules is in the It is formed by the shear force and stretching generated by extrusion during the printing process; and the driving strain is designed to further shape the printed device to obtain the desired actuator.
  • the present invention proposes a method for rapid curing of liquid crystal elastomer materials in 4D printing.
  • Liquid crystal elastomer oligomers containing dynamic disulfide bonds are used as precursor liquids and combined with water-based solvents for curing, and the water-based solvent curing is effectively applied in 4D.
  • it breaks through the manufacturing and processing limitations of traditional photo-curing or photo-thermal curing 4D printing process methods, and solves the defect of insufficient mechanical properties of opaque materials in 4D printing. Mechanical behavior.
  • the solvent bath used in the present invention a preferred combination is a mixture of 30% H 2 O 2 solution and ethanol solution, the use of a solvent bath can significantly improve the mechanical properties of a single fiber and the curing rate of printing, avoiding The collapse and adhesion caused by the gravity of the liquid crystal fibers were investigated; after testing, the driving strain of a single liquid crystal elastomer fiber reached 28% to 45%, and the mechanical properties reached 19.3 to 34.3 MPa. Thermal stimulation of the shaped printed device can achieve rapid reversible deformation with a response time of 5-30 s.
  • the liquid crystal elastomer itself has the characteristics of light weight and easy shrinkage and deformation
  • the subsequent use of freeze-drying technology can effectively improve the shrinkage rate of the device, so that the printed device can better maintain the overall
  • the low temperature environment can also promote the degree of cross-linking and polymerization of liquid crystal molecules, which further improves the mechanical properties.
  • the fibers or devices printed by the method of the present invention By stretching the fibers or devices printed by the method of the present invention with large deformation, they can be restored to the original state under normal conditions, and can also be quickly restored to the original state in aqueous solvents, which will help shape memory materials in the liquid phase. It provides more potential applications in terms of stimulus response; at the same time, through the local adjustment of printing speed and printing path, the nematic arrangement of liquid crystal elastomers can be controlled, and the liquid crystal polymer molecules formed by cross-linking with disulfide bonds can be broken by heat.
  • the technical solution of the present invention provides a feasible way for a single material to achieve gradient transformation of material properties, which broadens the design space and promotes 4D printing range, which will aid in the precision manufacturing of soft robotics and flexible electronics.
  • Fig. 1 is a graph of mechanical properties of liquid crystal fibers in a solvent bath introduced with hydrogen peroxide
  • Fig. 2 is a graph of mechanical properties of liquid crystal fibers in a solvent bath introduced with a third solvent
  • Figure 3 is a graph showing the mechanical properties of liquid crystal fibers in a solvent bath with different solvent components.
  • Liquid crystal monomer RM82 2-methyl-1,4-phenylene bis(4-((6-(acryloyloxy)hexyl)oxy)benzoate), Shijiazhuang Sidiano Fine Chemical Co., Ltd. company;
  • Liquid crystal monomer RM257 2-methyl-1,4-phenylene bis(4-(3-(acryloyloxy)propoxy)benzoate), Shijiazhuang Sidiano Fine Chemical Co., Ltd.;
  • Linker PDT 1,3-propanedithiol, Shanghai Aladdin Biochemical Technology Co., Ltd.;
  • Linking agent GDMP bis(3-mercaptopropionic acid) ethylene glycol, Shanghai Aladdin Biochemical Technology Co., Ltd.;
  • PETMP Pentaerythritol tetrakis (3-mercaptopropionate), Shanghai Aladdin Biochemical Technology Co., Ltd.;
  • Oxidant 30% hydrogen peroxide Sinopharm Chemical Reagent Co., Ltd.;
  • Oxidant element iodine Shanghai Aladdin Biochemical Technology Co., Ltd.;
  • Oxidant peracetic acid Shandong Temu Chemical Technology Co., Ltd.;
  • the 4D printing liquid crystal elastomer material is prepared by the preparation method of the present invention, and the specific operation steps are as follows:
  • Preparation of precursor liquid ink take the liquid crystal monomer RM257, the linking agent EDDET, and the catalyst n-dipropylamine in a mixed solvent of tetrahydrofuran and dichloromethane to dissolve and continue to react for 12 hours. After the reaction, add the cross-linking agent PETMP and 30% peroxide in turn The hydrogen solution was stirred for 6 hours to obtain the printing precursor ink; the molar ratio of RM257, EDDET and PETMP was 1:1.2:0.2; the catalyst n-dipropylamine accounted for 0.74% of the total liquid crystal monomer RM257.
  • S3.4D printing inject the precursor ink prepared in S1 into the printing cylinder, place the solvent bath prepared in step S2 on the printing table, adjust the height of the printing nozzle with a diameter of 0.26mm and extend the nozzle below the surface of the solvent bath At the same time, build a three-dimensional model of the device to be formed, use high-level slicing software to program the printing rate, and perform slicing to obtain a file that can be directly read by the 4D printing device; based on the precursor liquid and the three-dimensional model in step S1, turn on the air pump, run the file, Automatic 4D printing can be realized;
  • Printed device processing Immerse the printed device in step S3 in ethanol and deionized water for 30 min each, then take it out, and then freeze-dry it for 16 h. After drying, a 4D printed device made of liquid crystal elastomer material can be obtained.
  • the materials prepared by the above method can be used in actuators.
  • the 4D printing liquid crystal elastomer material is prepared by the preparation method of the present invention, and the specific operation steps are as follows:
  • precursor liquid ink take liquid crystal monomer RM257, linking agent PDT, catalyst triethylamine and dissolve in tetrahydrofuran solvent and continue to react for 12 hours. After the reaction is completed, add crosslinking agent PETMP and peracetic acid solution and stir for 6 hours. The printing precursor liquid ink is obtained; the molar ratio of RM257, EDDET and PETMP is 1:1.1:0.1; the catalyst triethylamine accounts for 0.74% of the total amount of the liquid crystal monomer RM257.
  • S3.4D printing inject the precursor ink prepared in S1 into the printing cylinder, place the solvent bath prepared in step S2 on the printing table, adjust the height of the printing nozzle with a diameter of 0.34mm and extend the nozzle below the surface of the solvent bath At the same time, build a three-dimensional model of the device to be formed, use high-level slicing software to program the printing rate, and perform slicing to obtain a file that can be directly read by the 4D printing device. Based on the precursor liquid and the three-dimensional model in step S1, turn on the air pump and run the file. Automatic 4D printing can be realized;
  • Printing device processing Immerse the printing device in step S3 in ethanol and deionized water for 20 minutes, then take it out, and then freeze-dry it for 24 hours. After drying, a 4D-printed device made of liquid crystal elastomer material can be obtained.
  • the materials prepared by the above method can be used in actuators.
  • the 4D printing liquid crystal elastomer material is prepared by the preparation method of the present invention, and the specific operation steps are as follows:
  • precursor liquid ink take liquid crystal monomer RM257, linking agent GDMP, catalyst sodium ethoxide and dissolve in dichloromethane solvent and continue to react for 12 hours. After the reaction is completed, add cross-linking agent PETMP and elemental iodine solution and stir for 6 hours.
  • the printing precursor liquid ink is obtained; wherein the molar ratio of RM257, EDDET and PETMP is 1:1.1:0.1; the catalyst sodium ethoxide accounts for 0.74% of the total liquid crystal monomer RM257.
  • S3.4D printing inject the precursor ink prepared in S1 into the printing cylinder, place the solvent bath prepared in step S2 on the printing table, adjust the height of the printing nozzle with a diameter of 0.06mm and extend the nozzle below the surface of the solvent bath , at the same time, build a three-dimensional model of the device to be formed, use high-level slicing software to program the printing rate, and perform slicing to obtain a file that can be directly read by the 4D printing device. Based on the precursor liquid and the three-dimensional model in step S1, turn on the air pump and run file, you can realize automatic 4D printing;
  • Printing device processing Immerse the printing device in step S3 in ethanol and deionized water for 20 minutes, then take it out, and then freeze-dry it for 24 hours. After drying, a 4D-printed device made of liquid crystal elastomer material can be obtained.
  • the materials prepared by the above method can be used in actuators.
  • precursor liquid ink Take liquid crystal monomer RM257, linking agent EDDET, catalyst n-dipropylamine and dissolve in tetrahydrofuran solvent and continue to react for 8h, after the reaction is completed, add crosslinking agent PETMP and 30% hydrogen peroxide solution and stir for 24h, namely
  • the printing precursor liquid ink can be obtained; the molar ratio of RM257, EDDET and PETMP is 1:1.6:0.6; the catalyst n-dipropylamine accounts for 2% of the total liquid crystal monomer RM257.
  • Solvent bath preparation evenly mix ethanol and 30% hydrogen peroxide solution at a volume ratio of 1:1, and place them in a 15cm ⁇ 15cm container to obtain a solvent bath for use;
  • step S4 Printed device processing; the printed device in step S3 is soaked in ethanol and deionized water for 30 minutes and taken out, and then freeze-dried for 16 hours. After drying, a 4D printed device made of liquid crystal elastomer material can be obtained.
  • Preparation of precursor liquid ink take liquid crystal monomer RM257, linking agent EDDET, catalyst n-dipropylamine, photoinitiator Irgacure 369, dissolve in solvent and continue to react for 12h, and add cross-linking agent PETMP and 30% hydrogen peroxide in sequence after the reaction ends The solution was stirred for 6 hours to obtain the printing precursor ink; the molar ratio of RM257, EDDET and PETMP was 1:1.2:0.2; the catalyst n-dipropylamine accounted for 0.74% of the total liquid crystal monomer RM257.
  • S2.4D printing inject the precursor liquid ink prepared in step S1 into the printing cylinder, adjust the height of the printing nozzle with a diameter of 0.26mm and extend the nozzle below the solvent level; at the same time, build a three-dimensional model of the device to be formed, using a high
  • the slicing software is used to program the printing rate, and slicing is performed to obtain files that can be directly read by the 4D printing equipment; based on the precursor liquid and the 3D model in step S1, turn on the air pump and run the files to achieve automatic 4D printing;
  • Printing device processing Immerse the printing device in step S3 in ethanol and deionized water for 30 minutes, then take it out, and then freeze-dry it for 16 hours. After drying, a 4D-printed device made of liquid crystal elastomer material can be obtained.
  • the material prepared by the preparation method of the present invention has better mechanical properties.
  • a photoinitiator was introduced to achieve photocuring 4D printing, but the extruded fibers were cured slowly, resulting in fiber-fiber adhesion and layer-to-layer collapse; therefore, the network structure of the device was very incomplete, The preparation precision is low and the material properties are poor.
  • the present invention is based on the process conditions and steps of Example 1, changes the solvent composition in the solvent bath, tests the performance of the printed single liquid crystal fiber, and analyzes the influencing factors as follows:
  • the present invention uses 5 kinds of water-based solvent baths for 4D printing of liquid crystal elastomers. It can be seen from Figures 1-3 that the mechanical properties of a single fiber are in the order of ethanol > deionized water > methanol > tetrahydrofuran > acetone , and the introduction of hydrogen peroxide in the solvent bath significantly enhances the tensile strength of the fibers; at the same time, the use of a solvent bath composed of four solvents, acetone, methanol, tetrahydrofuran, and deionized water, will weaken the tensile strength of the fibers. The reason is: it has a great relationship with the swelling ratio of the solvent to the liquid crystal ink.
  • the swelling ratio of the five solvents used in the present invention to the liquid crystal ink is acetone, tetrahydrofuran, methanol, ethanol, and deionized water.
  • the solvent bath prepared with acetone, tetrahydrofuran and methanol is used, the solvent will swell the liquid crystal network and even destroy it, resulting in poor mechanical properties; while the liquid crystal ink is completely insoluble in deionized water, and the solvent in the deionized water and the fiber is only a solvent. Replacement; the swelling of liquid crystal ink by ethanol is very small, which can replace the solvent deeper inside the fiber, and the deep curing is more sufficient, so that the tensile strength of the fiber is higher than that in deionized water.
  • Example 2 Based on the above examples and experimental data, based on the process conditions and parameters of Example 1, three-dimensional petal-shaped devices and strip-shaped devices were printed, and they were shaped at 30 °C for 24 hours, and then thermal driving was performed. Application and thermal drive performance testing. The test results found:
  • the petal-shaped device At room temperature (25°C), the petal-shaped device exhibits an "open” state, and the elongated device exhibits a "straightened” state; when the temperature rises to 90°C, the petal-shaped device exhibits a "closed” state, and the elongated device exhibits a "closed” state.
  • the strip-shaped device shows a "bending" state, and the response time of both of them is 5s; when the temperature is rapidly lowered to 25 °C, the petal-shaped device returns to the "open” state, and the long-striped device returns to the "straightening" state.
  • the response time of both in this process is 25s; the response time of the petal-shaped device and the strip-shaped device in the whole process of the thermal driving cycle performance test is 30s.
  • the thermal driving performance test the reversible deformation of the 4D printed liquid crystal elastomer actuator in the present invention is verified, and the response time is fast.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ink Jet (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

4D打印液晶弹性体制备方法,以含有动态二硫键的液晶弹性体低聚物为打印前驱液油墨,并采用水系溶剂固化,以实现4D打印液晶弹性体的器件。该方法可采用冷冻干燥技术,并在致动器中应用。

Description

一种4D打印液晶弹性体制备方法及其在致动器中的应用 技术领域
本发明涉及4D打印液晶弹性体的制备方法,尤其涉及基于水系溶剂固化4D打印液晶弹性体的制备方法及其在致动器中的应用。
背景技术
4D打印技术是将3D打印技术和智能结构结合的新兴制造技术,其第四维度具备和感知材料相同的特性,即感知应力、应变、热、光、电、磁、化学和辐射等外界刺激,并据此做出相应的响应。液晶弹性体作为一类响应型智能材料,在人工肌肉、软体机器人和动态可逆功能结构等方面都有潜在的应用前景。
目前已经出现了多种材料策略来实现4D打印液晶弹性体的形变结构,打印后的聚合物可以在制造后进行机械加工,以临时存储并响应刺激而恢复打印后的形状。这些材料策略均是基于光固化或者光热结合固化的方式来实现4D打印材料的快速成型。然而,在光固化打印中,其成型原理是利用光引发剂激活液晶低聚物的活性中心,使得小分子聚合形成大分子。液晶前驱液由无定形态的液相向液晶相的转变,从而形成了多畴的LCEs(液晶弹性体)。此时LCEs内部的分子杂乱无章地排列着,这样导致了在无定形态的LCEs中穿行的光遇到了晶体的小颗粒时,发生散射,于是LCEs的透明程度就显著下降,常态下呈乳白色。因此,随着打印进行,通过光固化成型的液晶弹性体表面也由透明变成乳白色,导致光难以透过而不能进入材料或打印器件的内部,造成材料内部不能完全交联和固化,因而材料的整体力学性能得不到有效的改善和提升。
有鉴于上述现有的4D打印液晶弹性体存在的缺陷,本发明人基于从事此类产品设计制造多年丰富的实务经验及专业知识,并配合学理的运用,积极加以研究创新,以期创设一种4D打印液晶弹性体的制备方法,提高材料的力学性能,使其更具有实用性。
发明内容
本发明的主要目的为提供一种基于水系溶剂固化4D打印液晶弹性体的制备方法,通过制备方法的工艺优化实现了材料力学性能的提升。
本发明中水系溶剂固化4D打印液晶弹性体具体成型原理为:一方面,由于液晶弹性体中具有很多疏水基团使得其不溶于水,因此前驱液挤入水系溶剂中不会溶解或散开,与此同时前驱液中的溶剂与水系溶剂是互溶的,因而在前驱液内部的溶剂与水系溶剂会发生溶剂交换,当前驱液中的溶剂快速溶于水系溶剂中,使得前驱液失去溶剂实现 简单凝固;另一方面,在前驱液中的氧化剂没有完全反应,虽然水系溶剂能够置换出前驱液中的溶剂使得其快速固化,但液晶网络结构只是固型并没有完全交联,导致其力学性能比较差,而溶剂浴中加入的氧化剂能够很好的促进其未反应的巯基形成二硫键,网络进一步交联充分并且也加速其固化成型,进而实现材料力学性能的提升。
为了达到上述目的,本发明所采用的技术方案是:
本发明提出一种4D打印液晶弹性体的制备方法,通过含有动态二硫键的液晶弹性体低聚物为打印前驱液油墨,采用水系溶剂浴实现了快速固化4D打印,材料的机械性能得到很大提升;其中,液晶弹性体聚合物分子是以二硫键交联形成,能够受热断键重连,可以实现地对液晶弹性体的形状变形行为进行编程,因而通过改变打印速度和塑形温度,可以设计出局部编程的致动应变行为。
作为优选的,一种4D打印液晶弹性体的制备方法包括如下操作步骤:
S1.制备前驱液:取液晶单体、连接剂、催化剂置于溶剂中溶解并持续反应12h,反应结束依次加入交联剂和氧化剂搅拌1-12h,得到打印用前驱液油墨;
S2.溶剂浴制备:将水系溶剂和氧化剂溶液均匀混合,置于15cm×15cm的容器中,得到溶剂浴备用;
S3.4D打印:将S1中制备的前驱液油墨注入打印筒,步骤S2中制备的溶剂浴置于打印台面上,调节打印喷头高度且将喷头伸入溶剂浴液面以下;同时,构建待成形器件的三维模型,采用高位切片软件进行打印速率编程设计,进行切片以得到4D打印设备能直接读取文件;基于所述步骤S1中前驱液及所述三维模型,开启气泵,运行文件,即可实现自动化4D打印;由于是采用水系溶剂固化方式进行4D打印,前驱液油墨配制完成即可实现4D打印成型,不需要考虑油墨粘度的大小;同时,通过本发明制备的前驱液油墨在常温下密封保存可以有效保存10天不凝固和变质,打印出的单根液晶弹性体纤维力学与驱动性能也没有发生变化。
S4.打印器件处理:将步骤S3中打印好的液晶弹性体器件依次置于乙醇、去离子水中各浸泡20-30min后取出,随即对其进行冷冻干燥16-24h,干燥结束即可获得目标产物。
作为优选的,在步骤S1中,液晶单体为RM82或RM257;连接剂为PDT、EDDET或GDMP中的任意一种。
作为优选的,在步骤S1中,催化剂为正二丙胺、三乙胺或乙醇钠中的任意一种;溶剂为四氢呋喃或二氯甲烷中的至少一种;交联剂为PETMP。
作为优选的,在步骤S1中,液晶单体、连接剂和交联剂的摩尔比为1:(1.05~1.5):(0.05~0.5);催化剂占液晶单体总量的0.5%~1.5%。
作为优选的,在步骤S1和步骤S2中所采用的氧化剂均为过氧化氢溶液、单质碘或过氧乙酸中的任意一种。
作为优选的,在步骤S2中,水系溶剂为去离子水、甲醇、乙醇、丙酮或四氢呋喃中的至少一种,或其中任意两种及以上的混合物。
作为优选的,在步骤S2中,水系溶剂为乙醇与30%过氧化氢溶液按体积比为(1~4):1进行混合的混合物。
作为优选的,步骤S3中的喷头直径为0.06~0.41mm;喷头相对速率为3~6mm/s。
本发明的另一目的为,将通过前述权利要求制备方法制备的4D打印液晶弹性体器件应用于致动器中;打印器件内的液晶分子呈各向异性,且液晶分子的各向异性是在打印过程中通过挤出产生的剪切力和拉伸形成的;且设计驱动应变方式,会进一步对打印器件塑形,从而获得所需的致动器。
通过上述技术方案,本发明的有益效果是:
1.本发明提出了一种液晶弹性体材料4D打印快速固化的方法,以含有动态二硫键的液晶弹性体低聚物为前驱液并结合水系溶剂固化,有效地将水系溶剂固化应用在4D打印材料领域,突破了传统光固化或光热固化4D打印工艺方法的制造加工限制,解决了不透明材料4D打印力学性能不足的缺陷,通过改变材料传统的固化方式,揭示材料固化本质,提高材料的机械性能。
2.本发明中采用的溶剂浴,优选的一种组合为30%H 2O 2溶液与乙醇溶液的混合物,采用溶剂浴其能够显著提高单根纤维的力学性能和打印成型的固化速率,避免了由于液晶纤维的重力导致的坍塌和粘连;经过测试得出单根液晶弹性体纤维的驱动应变达到28%~45%,力学性能达到19.3~34.3MPa。对塑形后的打印器件进行热致刺激,可实现快速的可逆变形,其响应时间可在5-30s内完成。
4.在本发明的制备工艺中,虽然液晶弹性体本身具有质轻、易收缩形变等特点,但后续采用了冷冻干燥技术,有效改善了器件的收缩率,使得打印器件能够更好地保持整体的形貌特征;同时,冷冻干燥过程中,低温环境也能够促进液晶分子交联聚合度,进一步提高了力学性能。
5.通过对采用本发明方法打印的纤维或器件大形变拉伸,在常态下能够恢复到原始状态,而在水系溶剂中也能够快速响应恢复到原始状态,这将为形状记忆材料在液相刺 激响应方面提供更多的潜在应用;同时,通过对打印速度和打印路径的局部调整,可以控制液晶弹性体的向列排列,结合二硫键交联形成的液晶聚合物分子能够受热断键重连,可以成功地对液晶弹性体的形状变形行为进行编程;因此,本发明的技术方案为单一材料实现材料性能的梯度转变提供了一种可行的途径,它拓宽了设计空间,推动了4D打印的范围,这将有助于软性机器人和柔性电子产品的精密制造。
附图说明
图1为引入过氧化氢的溶剂浴中液晶纤维力学性能图谱;
图2为引入第三种溶剂的溶剂浴中液晶纤维力学性能图谱;
图3为不同溶剂组分的溶剂浴中液晶纤维力学性能图谱。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本发明的实施例中,各种材料的具体来源如下所示:
液晶单体RM82:2-甲基-1,4-亚苯基双(4-((6-(丙烯酰氧基)己基)氧基)苯甲酸酯),石家庄斯迪亚诺精细化工有限公司;
液晶单体RM257:2-甲基-1,4-亚苯基双(4-(3-(丙烯酰氧基)丙氧基)苯甲酸酯),石家庄斯迪亚诺精细化工有限公司;
连接剂PDT:1,3-丙二硫醇,上海阿拉丁生化科技股份有限公司;
连接剂EDDET:2,2’-(乙二氧基)二乙硫醇,上海阿拉丁生化科技股份有限公司;
连接剂GDMP:双(3-巯基丙酸)乙二醇,上海阿拉丁生化科技股份有限公司;
催化剂正二丙胺:上海阿拉丁生化科技股份有限公司;
催化剂三乙胺:上海阿拉丁生化科技股份有限公司;
催化剂乙醇钠:上海阿拉丁生化科技股份有限公司;
四氢呋喃:上海凌峰化学试剂有限公司;
二氯甲烷:上海凌峰化学试剂有限公司;
交联剂PETMP:季戊四醇四(3-巯基丙酸)酯,上海阿拉丁生化科技股份有限公司;
氧化剂30%过氧化氢:国药集团化学试剂有限公司;
氧化剂单质碘:上海阿拉丁生化科技股份有限公司;
氧化剂过氧乙酸:山东特姆化工科技有限公司;
甲醇:国药集团化学试剂有限公司;
乙醇:无水乙醇,国药集团化学试剂有限公司;
丙酮:上海凌峰化学试剂有限公司;
去离子水:自制。
实施例1
采用本发明的制备方法制备4D打印液晶弹性体材料,具体操作步骤如下:
S1.制备前驱液油墨:取液晶单体RM257、连接剂EDDET、催化剂正二丙胺置于四氢呋喃与二氯甲烷混合溶剂中溶解并持续反应12h,反应结束后依次加入交联剂PETMP和30%过氧化氢溶液搅拌6h,即可得到打印前驱液油墨;其中RM257、EDDET、PETMP的摩尔比为1:1.2:0.2;催化剂正二丙胺占液晶单体RM257总量的0.74%。
S2.制备溶剂浴:将乙醇和30%过氧化氢溶液以体积比为3:1均匀混合,置于15cm×15cm的容器中,即得溶剂浴备用;
S3.4D打印:将S1中制备的前驱液油墨注入打印筒,步骤S2中制备的溶剂浴置于打印台面上,调节以直径为0.26mm打印喷头的高度且将喷头伸入溶剂浴液面以下;同时,构建待成形器件的三维模型,采用高位切片软件进行打印速率编程设计,进行切片以得到4D打印设备能直接读取文件;基于步骤S1中前驱液及三维模型,开启气泵,运行文件,即可实现自动化4D打印;
S4.打印器件处理:将步骤S3中的打印器件依次置于乙醇和去离子水中各浸泡30min后取出,随即对其进行冷冻干燥16h,干燥结束即可获得由液晶弹性体材料4D打印的器件。
采用上述方法制备的材料可以应用于致动器中。
实施例2
采用本发明的制备方法制备4D打印液晶弹性体材料,具体操作步骤如下:
S1.制备前驱液油墨:取液晶单体RM257、连接剂PDT、催化剂三乙胺置于四氢呋喃溶剂中溶解并持续反应12h,反应结束依次加入交联剂PETMP和过氧乙酸溶液搅拌6h,即可得到打印前驱液油墨;其中RM257、EDDET和PETMP的摩尔比为1:1.1:0.1;催化剂三乙胺占液晶单体RM257总量的0.74%。
S2.制备溶剂浴:将水与过氧乙酸溶液以体积比为2:1均匀混合,置于15cm×15cm的容器中,即得溶剂浴备用;
S3.4D打印:将S1中制备的前驱液油墨注入打印筒,步骤S2中制备的溶剂浴置于打印台面上,调节以直径为0.34mm打印喷头的高度且将喷头伸入溶剂浴液面以下;同时,构建待成形器件的三维模型,采用高位切片软件进行打印速率编程设计,进行切片以得到4D打印设备能直接读取文件,基于步骤S1中前驱液及三维模型,开启气泵,运行文件,即可实现自动化4D打印;
S4.打印器件处理:将步骤S3中的打印器件依次置于乙醇和去离子水中各浸泡20min后取出,随即对其进行冷冻干燥24h,干燥结束即可获得由液晶弹性体材料4D打印的器件。
采用上述方法制备的材料可以应用于致动器中。
实施例3
采用本发明的制备方法制备4D打印液晶弹性体材料,具体操作步骤如下:
S1.制备前驱液油墨:取液晶单体RM257、连接剂GDMP、催化剂乙醇钠置于二氯甲烷溶剂中溶解并持续反应12h,反应结束依次加入交联剂PETMP和单质碘溶液搅拌6h,即可得到打印前驱液油墨;其中RM257、EDDET、PETMP的摩尔比为1:1.1:0.1;催化剂乙醇钠占液晶单体RM257总量的0.74%。
S2.制备溶剂浴:将乙醇、丙酮与30%过氧化氢溶液以4:1:1的体积比均匀混合,置于15cm×15cm的容器中,即得溶剂浴备用;
S3.4D打印:将S1中制备的前驱液油墨注入打印筒,步骤S2中制备的溶剂浴置于打印台面上,调节以直径为0.06mm打印喷头的高度且将喷头伸入溶剂浴液面以下,同时,构建待成形器件的三维模型,采用高位切片软件进行打印速率编程设计,进行切片以得到4D打印设备能直接读取文件,基于步骤S1中前驱液及所述三维模型,开启气泵,运行文件,即可实现自动化4D打印;
S4.打印器件处理:将步骤S3中的打印器件依次置于乙醇和去离子水中各浸泡20min后取出,随即对其进行冷冻干燥24h,干燥结束即可获得由液晶弹性体材料4D打印的器件。
采用上述方法制备的材料可以应用于致动器中。
对比例1
液晶弹性体的制备和4D打印工艺的步骤具体如下:
S1.前驱液油墨制备;取液晶单体RM257、连接剂EDDET、催化剂正二丙胺置于四氢呋喃溶剂中溶解并持续反应8h,反应结束依次加入交联剂PETMP和30%过氧化氢溶液搅拌24h,即可得到打印前驱液油墨;RM257、EDDET、PETMP的摩尔比为1:1.6:0.6;催化剂正二丙胺占液晶单体RM257总量的2%。
S2.溶剂浴制备;将乙醇和30%过氧化氢溶液以体积比为1:1均匀混合,置于15cm×15cm的容器中,即得溶剂浴,备用;
S3.4D打印;将S1中制备的前驱液油墨注入打印筒,步骤S2中制备的溶剂浴置于打印台面上,调节以直径为0.41mm打印喷头的高度且将喷头伸入溶剂液面以下;同时,构建待成形器件的三维模型,采用高位切片软件进行打印速率编程设计,进行切片以得到4D打印设备能直接读取文件;基于所述步骤S1中前驱液及所述三维模型,开启气泵,运行文件,即可实现自动化4D打印;
S4.打印器件处理;将步骤S3中的打印器件依次置于乙醇、去离子水中各浸泡30min后取出,随即对其进行冷冻干燥16h,干燥结束即可获得由液晶弹性体材料4D打印的器件。
对比例2
对比例制备4D打印材料具体工艺步骤如下:
S1.制备前驱液油墨:取液晶单体RM257、连接剂EDDET、催化剂正二丙胺、光引发剂Irgacure 369置于溶剂中溶解并持续反应12h,反应结束依次加入交联剂PETMP和30%过氧化氢溶液搅拌6h,即可得到打印前驱液油墨;其中RM257、EDDET和PETMP的摩尔比为1:1.2:0.2;催化剂正二丙胺占液晶单体RM257总量的0.74%。
S2.4D打印:将步骤S1中制备的前驱液油墨注入打印筒,调节以直径为0.26mm打印喷头的高度且将喷头伸入溶剂液面以下;同时,构建待成形器件的三维模型,采用高位切片软件进行打印速率编程设计,进行切片以得到4D打印设备能直接读取文件;基于步骤S1中前驱液及三维模型,开启气泵,运行文件,即可实现自动化4D打印;
S3.打印器件处理:将步骤S3中的打印器件依次置于乙醇、去离子水中各浸泡30min后取出,随即对其进行冷冻干燥16h,干燥结束即可获得由液晶弹性体材料4D打印的器件。
对实施例1-3和对比例1-2制备的前驱液油墨、纤维和器件分别进行性能检测,结果如表1所示:
表1前驱液油墨、纤维和产品性能测试结果
序号 油墨有效期 拉伸强度 驱动应变 产品收缩率 外观形貌
实施例1 10天 34.3MPa 44.6% 1.5% 结构有序、规整
实施例2 9天 19.3MPa 28.1% 2.4% 结构有序、规整
实施例3 10天 23.9MPa 36.7% 1.8% 结构有序、规整
对比例1 2h 3.2MPa 18.3% 25% 油墨易凝固,不规整
对比例2 10天 1.4MPa 10.9% 固化缓慢,且粘连、坍塌
从表中性能测试结果可以看出,采用本发明制备方法制备的材料具有更优的力学性能。在对比例2制备的油墨中,引入光引发剂实现光固化4D打印,但是挤出的纤维固化缓慢,导致纤维与纤维间粘连,层与层间坍塌;因此导致器件的网络结构非常不完整,制备精度低,材料性能差。
本发明基于实施例1的工艺条件与步骤,改变溶剂浴中的溶剂成分,对打印出的单根液晶纤维的性能进行测试,分析其影响因素具体如下:
1、乙醇溶剂浴中引入过氧化氢的影响。基于实施例1,在乙醇溶剂浴中加入30%过氧化氢溶液后,打印单根液晶弹性体纤维的拉伸强度由12.5MPa(附图1中曲线B)提高到34.3MPa(附图1中曲线A),过氧化氢的引入明显提高了力学性能;其主要原因是溶剂浴中加入的氧化剂能够促进其未反应的巯基形成二硫键,进一步加速了固化并形成网络,从而使得拉伸强度增大。
2、溶剂浴中不同溶剂的影响。基于实施例1,将含过氧化氢的乙醇溶剂浴中的乙醇分别替换成甲醇、丙酮、四氢呋喃、去离子水四种水系溶剂,打印单根液晶弹性体纤维,并分别测试不同溶剂浴中单根纤维的力学性能,具体如附图2所示(曲线A为丙酮;曲线B为四氢呋喃;曲线C为甲醇;曲线D为去离子水),拉伸强度为去离子水>甲醇>四氢呋喃>丙酮。
3、不同纯水系溶剂浴的影响。基于实施例1,将含过氧化氢的乙醇溶剂浴分别换成甲醇、丙酮、四氢呋喃、去离子水的四种纯水系溶剂,打印单根液晶弹性体纤维,并分别测试不同溶剂浴中单根纤维的力学性能,具体如附图3所示(曲线A为丙酮;曲线B为四氢呋喃;曲线C为甲醇;曲线D为去离子水),拉伸强度为去离子水>甲醇>四氢呋喃>丙酮。
4、本发明采用了5种水系溶剂浴进行4D打印的液晶弹性体固化成型,结合附图 1-3可知,其单根纤维的力学性能大小依次为乙醇>去离子水>甲醇>四氢呋喃>丙酮,并且溶剂浴中过氧化氢的引入明显加强了纤维的拉伸强度;同时,采用丙酮、甲醇、四氢呋喃、去离子水四种溶剂组成的溶剂浴,会减弱对纤维的拉伸强度,其主要原因为:与溶剂对液晶油墨的溶胀率有很大关系,本发明使用的五种溶剂对液晶油墨的溶胀率由大到小依次为丙酮、四氢呋喃、甲醇、乙醇、去离子水;因而在使用丙酮、四氢呋喃、甲醇配制成的溶剂浴时,溶剂会溶胀液晶网络,甚至破坏,从而导致力学性能变差;而液晶油墨是完全不溶于去离子水,去离子水与纤维中的溶剂只发生溶剂置换;乙醇对液晶油墨的溶胀非常小,可以将纤维内部更深处的溶剂置换出来,深度固化更加充分,从而比去离子水中的纤维拉伸强度大。
5、综上所述实施例与实验数据,基于实施例1的工艺条件和参数,打印出了三维花瓣形器件与长条形器件,并对其在30℃塑形24h,即可进行热驱动应用与热驱动性能测试。测试结果发现:
在常温下(25℃),花瓣形器件表现为“开放”状态,长条形器件表现为“伸直”状态;当温度升高到90℃时,花瓣形器件表现出“闭合”状态,长条形器件表现出“弯曲”状态,此过程两者的响应时间均为5s;将温度迅速降低到25℃时,花瓣形器件又恢复到“开放”状态,长条形器件恢复到“伸直”状态,此过程两者的响应时间均为25s;花瓣形器件与长条形器件在此热驱动循环性能测试全过程中的响应时间为30s。通过热驱动性能测试,验证了本发明中4D打印出的液晶弹性体致动器的可逆形变,响应时间快。
本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (10)

  1. 一种4D打印液晶弹性体的制备方法,其特征在于:以液晶弹性体的低聚物为前驱液油墨,通过水系溶剂固化的方式实现4D打印的液晶弹性体器件。
  2. 根据权利要求1所述的一种4D打印液晶弹性体的制备方法,其特征在于:包括如下操作步骤:
    S1.制备前驱液:取液晶单体、连接剂、催化剂置于溶剂中溶解并持续反应12h,反应结束依次加入交联剂和氧化剂搅拌1-12h,得到打印用前驱液油墨;
    S2.溶剂浴制备:将水系溶剂和氧化剂溶液均匀混合,置于容器中,得到溶剂浴备用;
    S3.4D打印:将S1中制备的前驱液油墨注入打印筒,步骤S2中制备的溶剂浴置于打印台面上,调节打印喷头高度且将喷头伸入溶剂浴液面以下;同时,构建待成形器件的三维模型,采用高位切片软件进行打印速率编程设计,进行切片以得到4D打印设备能直接读取文件;基于所述步骤S1中前驱液及所述三维模型,开启气泵,运行文件,即可实现自动化4D打印;
    S4.打印器件处理:将步骤S3中打印好的液晶弹性体器件依次置于乙醇、去离子水中各浸泡20-30min后取出,随即对其进行冷冻干燥16-24h,干燥结束即可获得目标产物。
  3. 根据权利要求2所述的一种4D打印液晶弹性体的制备方法,其特征在于:在所述步骤S1中,所述液晶单体为RM82或RM257;所述连接剂为PDT、EDDET或GDMP中的任意一种。
  4. 根据权利要求2或3所述的一种4D打印液晶弹性体的制备方法,其特征在于:在所述步骤S1中,所述催化剂为正二丙胺、三乙胺或乙醇钠中的任意一种;所述溶剂为四氢呋喃或二氯甲烷中的至少一种;所述交联剂为PETMP。
  5. 根据权利要求2或3所述的一种4D打印液晶弹性体的制备方法,其特征在于:在所述步骤S1中,液晶单体、连接剂和交联剂的摩尔比为1:(1.05~1.5):(0.05~0.5);所述催化剂占液晶单体总量的0.5%~1.5%。
  6. 根据权利要求2所述的一种4D打印液晶弹性体的制备方法,其特征在于:在所述步骤S1和步骤S2中所采用的氧化剂均为过氧化氢溶液、单质碘或过氧乙酸中的任意一种。
  7. 根据权利要求2所述的一种4D打印液晶弹性体的制备方法,其特征在于:在所 述步骤S2中,水系溶剂为去离子水、甲醇、乙醇、丙酮或四氢呋喃中的至少一种,或其中任意两种及以上的混合物。
  8. 根据权利要求2或7所述的一种4D打印液晶弹性体的制备方法,其特征在于:在所述步骤S2中,溶剂浴为乙醇与30%过氧化氢溶液按体积比为(1~4):1进行混合的混合物。
  9. 根据权利要求2所述的一种4D打印液晶弹性体的制备方法,其特征在于:所述步骤S3中的喷头直径为0.06~0.41mm;喷头相对速率为3~6mm/s。
  10. 将通过前述权利要求制备方法制备4D打印的液晶弹性体器件应用于致动器中。
PCT/CN2021/098283 2020-11-30 2021-06-04 一种4d打印液晶弹性体制备方法及其在致动器中的应用 WO2022110753A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021003909.1T DE112021003909B4 (de) 2020-11-30 2021-06-04 Ein Verfahren zur Herstellung eines Flüssigkristall-Elastomers für den 4D-Druck und seine Verwendung in einem Aktuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011377471.6A CN112521798B (zh) 2020-11-30 2020-11-30 一种4d打印液晶弹性体制备方法及其在致动器中的应用
CN202011377471.6 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022110753A1 true WO2022110753A1 (zh) 2022-06-02

Family

ID=74995343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098283 WO2022110753A1 (zh) 2020-11-30 2021-06-04 一种4d打印液晶弹性体制备方法及其在致动器中的应用

Country Status (3)

Country Link
CN (1) CN112521798B (zh)
DE (1) DE112021003909B4 (zh)
WO (1) WO2022110753A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112521798B (zh) * 2020-11-30 2021-11-26 常州大学 一种4d打印液晶弹性体制备方法及其在致动器中的应用
CN113527686A (zh) * 2021-07-01 2021-10-22 清华大学 液晶弹性体的制备方法与液晶驱动元件
CN113980273A (zh) * 2021-10-21 2022-01-28 清华大学 液晶弹性体驱动器及其制备方法
CN115785668A (zh) * 2022-11-04 2023-03-14 浙江大学 一种光响应动态液晶弹性体驱动器材料及其制备方法
CN115431513B (zh) * 2022-11-04 2023-01-31 之江实验室 一种基于液晶弹体致动的柔性触觉反馈阵列的制备方法
CN116445172A (zh) * 2023-04-04 2023-07-18 淮阴工学院 一种含三氮苯咔唑盘状光固化液晶的4d打印形状记忆树脂材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104558389A (zh) * 2014-12-23 2015-04-29 湘潭大学 一种具有自愈合能力的液晶共聚物材料及其制备方法
CN110054718A (zh) * 2018-01-19 2019-07-26 清华大学 组合物、多畴液晶弹性体、单畴液晶弹性体及其制备、加工和焊接方法
CN110172116A (zh) * 2019-04-26 2019-08-27 华中科技大学 一种基于液晶弹性体及4d打印的制备方法及产品
CN111607086A (zh) * 2020-05-27 2020-09-01 南雄中科院孵化器运营有限公司 一种高导热可重塑液晶弹性体复合材料及制备方法与应用
US20200282649A1 (en) * 2019-03-05 2020-09-10 Foundation For Research And Business, Seoul National University Of Science And Technology Four-Dimensional Printing Method Using Thermal Anisotropy and Thermal Transformation, and the Resulting Product
CN111907055A (zh) * 2020-06-11 2020-11-10 西安交通大学 一种多重热塑性形状记忆聚合物4d打印方法
CN112521798A (zh) * 2020-11-30 2021-03-19 常州大学 一种4d打印液晶弹性体制备方法及其在致动器中的应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7515231B2 (en) * 2005-09-30 2009-04-07 Teledyne Scientific & Imaging, Llc Low temperature nematic liquid crystal alignment material and LCD compensator incorporating the liquid crystal alignment material
US9983162B2 (en) * 2012-06-01 2018-05-29 The University Of Tennessee Research Foundation Method and device for detection of bioavailable drug concentration
JP2018070857A (ja) * 2016-10-20 2018-05-10 パナソニックIpマネジメント株式会社 アクチュエータ、液晶エラストマーおよび液晶エラストマーの製造方法
CN106883863B (zh) * 2017-03-23 2018-10-02 清华大学 液晶弹性体驱动元件及其制备方法,以及液晶弹性体的应用
JP2018168307A (ja) * 2017-03-30 2018-11-01 Dic株式会社 活性エネルギー線硬化性組成物、硬化塗膜、及び、積層体
US11014285B2 (en) * 2017-08-19 2021-05-25 Board Of Regents, The University Of Texas System Extrusion printing of liquid crystal elastomers
CN108481734B (zh) * 2018-02-14 2019-12-03 北京大学 基于三维激光直写的4d微纳打印方法
US20210324539A1 (en) 2018-07-26 2021-10-21 President And Fellows Of Harvard College Alpha-keratin solutions comprising alpha-kera tin intermediate filaments in liquid crystal phase, methods of preparation, and uses thereof
CN109485837B (zh) * 2018-11-23 2020-12-25 常州大学 一种侧基含肉桂基交联单体的主链型液晶弹性体及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104558389A (zh) * 2014-12-23 2015-04-29 湘潭大学 一种具有自愈合能力的液晶共聚物材料及其制备方法
CN110054718A (zh) * 2018-01-19 2019-07-26 清华大学 组合物、多畴液晶弹性体、单畴液晶弹性体及其制备、加工和焊接方法
US20200282649A1 (en) * 2019-03-05 2020-09-10 Foundation For Research And Business, Seoul National University Of Science And Technology Four-Dimensional Printing Method Using Thermal Anisotropy and Thermal Transformation, and the Resulting Product
CN110172116A (zh) * 2019-04-26 2019-08-27 华中科技大学 一种基于液晶弹性体及4d打印的制备方法及产品
CN111607086A (zh) * 2020-05-27 2020-09-01 南雄中科院孵化器运营有限公司 一种高导热可重塑液晶弹性体复合材料及制备方法与应用
CN111907055A (zh) * 2020-06-11 2020-11-10 西安交通大学 一种多重热塑性形状记忆聚合物4d打印方法
CN112521798A (zh) * 2020-11-30 2021-03-19 常州大学 一种4d打印液晶弹性体制备方法及其在致动器中的应用

Also Published As

Publication number Publication date
DE112021003909B4 (de) 2023-12-21
CN112521798A (zh) 2021-03-19
DE112021003909T5 (de) 2023-05-11
CN112521798B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2022110753A1 (zh) 一种4d打印液晶弹性体制备方法及其在致动器中的应用
Zhang et al. Recent advances in 3D printing of tough hydrogels: A review
Odent et al. Highly elastic, transparent, and conductive 3D‐printed ionic composite hydrogels
Yu et al. Three-dimensional printing of shape memory composites with epoxy-acrylate hybrid photopolymer
Shi et al. Solvent assisted pressure-free surface welding and reprocessing of malleable epoxy polymers
Liu et al. Self-healing and injectable polysaccharide hydrogels with tunable mechanical properties
CN111349257B (zh) 一种光编程构筑3d形状记忆材料的方法及所得产品和应用
CN109942838B (zh) 一种可用于3d打印的纤维素导电水凝胶的制备方法
Mauriello et al. 3D/4D printing of polyurethanes by vat photopolymerization
CN103450414A (zh) 一种光敏树脂的组合物及其制备方法和光敏树脂
CN111378090A (zh) 一种杂化作用动态聚合物
CN113881279A (zh) 一种3d打印形状记忆环氧树脂墨水及其制备方法和应用、3d打印环氧树脂
CN113583188A (zh) 一种用于激光3d打印的高耐候高韧性光固化材料及其制备方法
WO2017127506A1 (en) Stimuli-responsive liquid crystalline networks
Xiang et al. 3D-printed high-toughness double network hydrogels via digital light processing
Feng et al. Reinforcing 3D print methacrylate resin/cellulose nanocrystal composites: Effect of cellulose nanocrystal modification
CN112795235B (zh) 一种纳米复合水凝胶油墨的制备及其在3d打印中的应用
Li et al. Noncovalently cross-linked polymeric materials reinforced by well-designed in situ-formed nanofillers
Gerdroodbar et al. Vitrimer chemistry for 4D printing formulation
Zhu et al. Photocuring 3D printable self-healing polymers
Jiang et al. Surface engineering of cellulose nanocrystals via SI-AGET ATRP of glycidyl methacrylate and ring-opening reaction for fabricating self-healing nanocomposite hydrogels
Xiong et al. Self‐Growing Organic Materials
CN111533927B (zh) 一种pH和温度双响应UV交联壳聚糖可注射水凝胶的制备方法
Lu et al. Photocuring 3d Printing of Hydrogels: Techniques, Materials And Applications in Tissue Engineering And Flexible Devices
CN111793175B (zh) 一种增强型多重刺激光固化3d打印形状记忆材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896262

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21896262

Country of ref document: EP

Kind code of ref document: A1