WO2022110304A1 - 转子冲片、转子、电机、压缩机和制冷设备 - Google Patents

转子冲片、转子、电机、压缩机和制冷设备 Download PDF

Info

Publication number
WO2022110304A1
WO2022110304A1 PCT/CN2020/134783 CN2020134783W WO2022110304A1 WO 2022110304 A1 WO2022110304 A1 WO 2022110304A1 CN 2020134783 W CN2020134783 W CN 2020134783W WO 2022110304 A1 WO2022110304 A1 WO 2022110304A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
outer edge
magnetic pole
center line
magnet
Prior art date
Application number
PCT/CN2020/134783
Other languages
English (en)
French (fr)
Inventor
徐飞
邱小华
江波
Original Assignee
安徽美芝精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽美芝精密制造有限公司 filed Critical 安徽美芝精密制造有限公司
Publication of WO2022110304A1 publication Critical patent/WO2022110304A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the embodiments of the present application relate to the technical field of motor equipment, and in particular, to a rotor punch, a rotor, a motor, a compressor, and a refrigeration device.
  • a rotor punching structure with slits opened on the inner side of the outer circumference of the rotor is also used.
  • the manufacturability of this rotor structure is not good enough. Due to the large number of slits and the narrower slit width, the mold life is low. Frequent maintenance and poor manufacturability.
  • the embodiments of the present application aim to solve at least one of the technical problems existing in the prior art.
  • a first aspect of the embodiments of the present application provides a rotor punch.
  • a second aspect of embodiments of the present application provides a rotor.
  • a third aspect of the embodiments of the present application provides a motor.
  • a fourth aspect of embodiments of the present application provides a compressor.
  • a fifth aspect of the embodiments of the present application provides a refrigeration apparatus.
  • a rotor blank in view of this, according to a first aspect of the embodiments of the present application, the rotor blank includes a body and a plurality of magnet slots, the plurality of magnet slots are spaced around the centerline of the body, and the magnet slots are close to the body
  • One side wall of the outer edge of the magnet slot is the first slot wall, and one side wall of the magnet slot away from the outer edge of the body is the second slot wall
  • the first slot wall includes a plurality of stepped surfaces
  • the plurality of stepped surfaces include the first stepped surface and The second stepped surface, wherein the first stepped surface is disposed closer to the center line of the magnetic pole than the second stepped surface, and the distance between the first stepped surface and the second groove wall along the direction of the magnetic pole center line is smaller than the distance between the second stepped surface and the second groove wall along the direction of the magnetic pole center line The spacing in the direction of the pole centerline.
  • the rotor punch provided by the embodiment of the present application includes a body and a plurality of magnet slots. Specifically, a plurality of magnet slots are spaced along the center line of the body, and a side wall of the magnet slot close to the outer edge of the body is the first slot wall The side wall of the magnet slot away from the outer edge of the body is the second slot wall, and the side wall of the magnet slot away from the outer edge of the body is the side wall of the magnet slot close to the center line of the body.
  • the first groove wall includes a plurality of stepped surfaces, wherein the plurality of stepped surfaces include a first stepped surface and a second stepped surface, and the first stepped surface is disposed closer to the center line of the magnetic pole than the second stepped surface, that is, , in the circumferential direction of the main body, the second stepped surface and the first stepped surface are arranged in a left and right distribution.
  • the center line of the magnetic pole is the center line passing through the magnet slot.
  • the center line between the poles is also included between two adjacent magnet slots. That is, for one magnet slot, the center line passes through its center. The line is the center line of the magnetic pole, and the two sides of the magnet slot are the center line between the poles.
  • the distance between the first step surface and the second slot wall along the direction of the magnetic pole centerline is smaller than the distance between the second step surface and the second slot wall along the direction of the magnetic pole centerline, that is, in the direction along the magnetic pole center In the direction of the line, the thickness of the magnet slot where the first stepped surface is located is smaller than the thickness of the magnet slot where the second stepped surface is located.
  • the thickness of the magnet slot gradually increases from the proximity of the magnetic pole centerline to the interpole centerline on one side.
  • the thickness of the magnet slot gradually increases.
  • the first The distance between a groove wall and the outer edge of the main body gradually decreases, that is to say, the change trend of the distance between the multiple stepped surfaces of the first groove wall and the outer edge of the main body is a peak with the center of the magnetic pole as the peak.
  • the sinusoidal waveform changes, that is, from the middle to the two sides, the distance between the multiple stepped surfaces of the first slot wall and the outer edge of the body gradually decreases, so that the fundamental wave of the air-gap magnetic field and its harmonic amplitudes can be reduced and weakened.
  • the load armature reaction on the stator side effectively reduces the amplitude of the electromagnetic excitation force of each radial harmonic wave, thereby improving the efficiency of the motor with the rotor punch and reducing the electromagnetic vibration noise of the motor.
  • the variation trend of the distance between the plurality of stepped surfaces of the first groove wall and the outer edge of the main body can be a sine with the center of the magnetic pole as the peak.
  • the waveform change that is, the changing trend of the magnetic flux located in the rotor punch is limited, that is, the magnetic flux gradually decreases from the middle to the two sides, showing a sinusoidal waveform change with the center of the magnetic pole as the peak, thereby weakening the torque ripple of the motor.
  • the rotor punch provided according to the above technical solutions of the present application also has the following additional technical features:
  • the first groove wall further includes a plurality of connecting surfaces, any one of the connecting surfaces of the plurality of connecting surfaces is located between any two adjacent stepped surfaces among the plurality of stepped surfaces, and the connecting surfaces are respectively connected with Two adjacent step surfaces are connected, and one step surface forms a step with a connecting surface on the side facing the center line of the magnetic pole.
  • the first groove wall also includes a plurality of connecting surfaces.
  • the connecting surfaces are located between two adjacent stepped surfaces, that is, two ends of one connecting surface are respectively connected to two adjacent stepped surfaces. , so that the first step surface and the connecting surface facing the magnetic pole centerline side form a step, so that the first groove wall includes a plurality of steps.
  • the end point with the shortest radial distance from the center of the body is the first point, that is, the distance between the two end points of a step is the center of the body.
  • One end point with the closest radial distance is the reference point.
  • the center of the body is the center point of the center line of the body on the cross section of the rotor punching piece, wherein the cross section is a section perpendicular to the center line of the body.
  • the distance between the first point and the outer edge of the body in the preset direction is L
  • the angle between the connection between the first point and the center of the body and the center line between the poles on the side close to the step is ⁇
  • the distance between them in the preset direction is a sinusoidal waveform relative to the angle between the connection line between the end point and the center of the body and the center line between the poles, so that the torque ripple can be weakened, the harmonics of the induced voltage can be reduced, and the The amplitude of each radial harmonic electromagnetic excitation force is effectively reduced, thereby improving the efficiency of the motor with the rotor punching sheet and reducing the electromagnetic vibration noise of the motor.
  • the predetermined direction is the radial direction of the body.
  • the preset direction is specifically defined as the radial direction of the body.
  • the preset direction is the radial direction of the body, that is, two steps of any one of the multiple steps in the first groove wall.
  • the distance in the radial direction between the end point (the first point) with the closest radial distance from the center of the body and the outer edge of the body in the radial direction, relative to the angle between the line connecting the end point and the center of the body and the center line between the poles In other words, it is a sinusoidal waveform with the center line of the magnetic pole as the peak, which can effectively reduce the fundamental wave of the air-gap magnetic field and the amplitude of its harmonics, weaken the load armature reaction on the stator side, and effectively reduce the radial harmonics of each order.
  • the amplitude of the electromagnetic excitation force is further improved, and the efficiency of the motor with the rotor punching sheet is improved, and the electromagnetic vibration noise of the motor is reduced.
  • the end point with the closest radial distance to the center of the body is the second point
  • the distance between the second point and the outer edge of the body in the radial direction is H1
  • the distance between the second point and the body in the radial direction is H1.
  • P is the rotor number of poles.
  • the radial distance between the end point with the shortest radial distance from the center of the body and the outer edge of the body between the two end points of any one step in the plurality of steps of the first groove wall is relative to the line connecting the end point and the center of the body.
  • the change trend of the angle between the center lines between the poles is a sinusoidal waveform change with the center of the magnetic pole as the peak, which limits the change trend of the magnetic flux located in the rotor punching piece, that is, the magnetic flux gradually decreases from the middle to both sides. Small, showing a sinusoidal waveform change with the center of the magnetic pole as the peak, thereby weakening the torque ripple of the motor.
  • the predetermined direction is a direction parallel to the pole centerline.
  • the preset direction is specifically defined as the direction parallel to the center line of the magnetic pole.
  • the preset direction is the direction parallel to the center line of the magnetic pole.
  • it is a sinusoidal waveform with the center line of the magnetic pole as the peak, which can effectively reduce the amplitude of the fundamental wave of the air gap magnetic field and its harmonics, and weaken the load armature reaction on the stator side. , effectively reducing the amplitude of each radial harmonic electromagnetic excitation force, thereby improving the efficiency of the motor with the rotor punching piece, and reducing the electromagnetic vibration noise of the motor.
  • the end point closest to the radial distance from the center of the body is the third point, and the distance between the third point and the outer edge of the body in the direction parallel to the center line of the magnetic pole is H2,
  • P is the number of poles of the rotor, where C2 is not equal to C1.
  • the distance between the end point with the shortest radial distance from the center of the body and the outer edge of the body along the direction parallel to the center line of the magnetic pole is relative to the
  • the change trend of the angle between the end point and the center line of the body and the center line between the poles presents a sinusoidal waveform change with the center of the magnetic pole as the peak, thereby weakening the torque ripple of the motor.
  • it can also prevent the problem of magnetic saturation caused by opening a gap between the magnet slot and the outer edge of the body in the related art, resulting in a small width between the magnet slot and the outer edge of the body, and also avoid the problem of magnetic saturation in the related art.
  • There is a gap between the magnet slot and the outer edge of the body which leads to problems such as difficulty in processing the rotor sheet, which improves the efficiency of the motor and reduces the noise generated during the operation of the motor.
  • the preset direction may also be other directions between the radial direction and the direction parallel to the center line of the magnetic poles. It can be understood that as long as the distance between the plurality of stepped surfaces of the first groove wall and the outer edge of the body is within
  • the change trend in other directions can be a sinusoidal waveform with the center line of the magnetic pole as the peak relative to the angle between the endpoint with the smallest radial distance from the center of the body and the line connecting the center of the body and the center line between the poles. .
  • the number of steps is at least two, and the at least two steps are symmetrically arranged along the center line of the magnetic pole.
  • the number of steps is limited to at least two, and they are arranged symmetrically along the center line of the magnetic pole.
  • the number of steps is four, that is, there are two steps on the left and right sides of the pole centerline.
  • the position where the step surface and the connecting surface are connected is provided with a chamfer, the distances L1 and L2 in the preset direction between the two ends of the step and the outer edge of the body, and the distance between any point of the step and the body
  • the minimum value h1 of the spacing between the outer edges in the preset direction satisfies L1 ⁇ h1 ⁇ L2.
  • a chamfer is defined at the connection position between any one of the plurality of stepped surfaces and its adjacent connecting surface.
  • the chamfer may be a rounded corner, that is, the connection between the stepped surface and the connecting surface is limited. structure at the location. Further, the distances between the two ends of the step and the outer edge of the body in the preset direction are L1 and L2.
  • the distances in the preset direction are all located between the two end points of the steps and the distances in the
  • the connecting surface is a circular arc surface
  • the distances L3 and L4 in the preset direction between the two ends of the step and the outer edge of the main body, and the distance between any point of the step and the outer edge of the main body is in a predetermined direction. It is assumed that the minimum value h2 of the pitch in the direction satisfies L3 ⁇ h2 ⁇ L4.
  • the connecting surface is defined as a circular arc surface.
  • the distances between the two ends of the step and the outer edge of the body in the preset direction are L3 and L4.
  • one end of the connecting surface away from the outer edge of the body is inclined to one side of the center line of the magnetic pole.
  • the connecting surface is defined as an inclined surface. Specifically, the end of the connecting surface away from the outer edge of the main body is inclined to the side where the center line of the magnetic pole is located.
  • the inclination angle of the connecting surface can be related to the distance between the center of the connecting surface and the center of the main body. The angle between the line connecting the point with the closest radial distance and the center of the body and the center line between the poles is the same. Wherein, the inclination angles of the plurality of connecting surfaces are the same.
  • the connecting surface extends in a direction parallel to the center line of the magnetic pole.
  • the connecting surface extends in a direction parallel to the center line of the magnetic pole, that is, the connecting surface is perpendicular to the first slot wall, that is, another setting method of the connecting surface is defined.
  • the magnet slot includes a magnet slot section and a magnetic isolation slot section, the magnet slot section is used to place the magnet conducting body of the rotor, the magnetic isolation slot section is located at both ends of the magnet slot section, and the magnetic isolation slot section is connected with the magnet slot. segment connection.
  • the magnet slot also includes a magnet slot segment and a magnetic isolation slot segment.
  • the magnet slot segment is used to place the magnet conducting body of the rotor, and a magnetic isolation slot segment is provided at both ends of the magnet slot segment, wherein The magnetic isolation slot section is connected with the magnet slot section. Since the magnetic conductor is prevented from being in the magnet slot section, that is, the magnetic isolation slot section is the gap at the end of the magnet, by setting the magnetic isolation slot section, the magnetic leakage phenomenon at the end of the magnet conductor can be suppressed.
  • a rotor is provided, the rotor includes a rotor iron core and a plurality of magnetic conductors, wherein the rotor iron core includes a plurality of rotor punches provided by any of the above technical solutions, and thus the rotor is provided with the rotor. All the beneficial technical effects of punching will not be repeated here.
  • the magnet slot segments of the plurality of rotor punching pieces pass through along the axial direction of the rotor core to form slots, and the plurality of magnetic conductors are disposed in the slots in a one-to-one correspondence.
  • the rotor core is formed by stacking a plurality of rotor punching pieces, and the multiple rotor punching pieces have the same structure, so that the magnet slot segments can pass through along the axial direction of the rotor core to form a slot, and the magnet guide is connected to the insertion slot.
  • the slots are arranged in a one-to-one correspondence. Specifically, the magnetic conductor can be inserted into the slot.
  • the magnetic conductor can be a permanent magnet, and the permanent magnet can be a rare earth magnet. Further, the permanent magnet may be a non-spliced integral insert, which facilitates inserting the permanent magnet into the slot and improves the production efficiency of the rotor.
  • the polarities of the magnetic conductors in the adjacent two slots are opposite, that is, one N pole and one S pole.
  • the projection of the magnetizer on the cross section of the rotor core is a rectangle.
  • the projection of the magnetizer on the cross section of the rotor core is defined as a rectangle, that is to say, the structure of the magnetizer is limited to a cuboid structure, which is convenient for inserting the magnetizer into the slot and reduces the processing difficulty of the rotor.
  • the machining of the magnet slots is also facilitated, thereby further improving the production efficiency of the rotor.
  • a motor which includes the rotor provided by any of the above technical solutions, and thus has all the beneficial technical effects of the rotor, which will not be repeated here.
  • the motor further includes a stator, and the stator is sleeved on the outer side of the rotor. That is, the motor defined by this technical solution is a motor with a built-in rotor. Specifically, the motor can use a device using silicon carbide for the switching part of the main inverter circuit to drive the circuit.
  • a compressor which includes the motor provided by any of the above technical solutions, and thus has all the beneficial technical effects of the motor, which will not be repeated here.
  • a refrigeration device which includes the compressor provided by any of the above technical solutions, and thus has all the beneficial technical effects of the compressor, which will not be repeated here.
  • FIG. 1 shows a schematic structural diagram of a rotor punching sheet according to an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of a rotor punching sheet according to another embodiment of the present application
  • Fig. 3 shows a partial enlarged view of the rotor punch of the embodiment shown in Fig. 2;
  • Fig. 4 shows a partial enlarged view of the rotor punch of the embodiment shown in Fig. 3;
  • FIG. 5 shows a schematic structural diagram of a rotor punching sheet according to an embodiment of the present application
  • FIG. 6 is a schematic diagram showing the relationship between the angle from the center line between the poles and the induced voltage of the rotor die according to an embodiment of the present application;
  • FIG. 7 shows a schematic structural diagram of a compressor according to an embodiment of the present application.
  • the rotor punch 100 , the rotor 210 , the motor, the compressor 300 and the refrigeration equipment provided according to some embodiments of the present application will be described below with reference to FIGS. 1 to 7 .
  • an embodiment of the first aspect of the present application provides a rotor blank 100 .
  • the rotor blank 100 includes a body 110 and a plurality of magnet slots 120 , and a plurality of magnets
  • the slots 120 are distributed at intervals around the centerline of the body 110 , one side wall of the magnet slot 120 close to the outer edge of the body 110 is the first slot wall 121 , and one side wall of the magnet slot 120 away from the outer edge of the body 110 is the second slot wall 122 ,
  • the first groove wall 121 includes a plurality of stepped surfaces 1210, and the plurality of stepped surfaces 1210 includes a first stepped surface 1210 and a second stepped surface 1210, wherein the first stepped surface 1210 is closer to the magnetic pole centerline than the second stepped surface 1210. 130, the distance between the first stepped surface 1210 and the second slot wall 122 along the magnetic pole centerline 130 direction is smaller than the distance between the second stepped surface 1210
  • the rotor punch 100 provided in this embodiment of the present application includes a body 110 and a plurality of magnet slots 120 .
  • a plurality of magnet slots 120 are distributed at intervals along the center line of the body 110 , and the magnet slots 120 are close to a portion of the outer edge of the body 110 .
  • the side wall is the first slot wall 121
  • the side wall of the magnet slot 120 away from the outer edge of the main body 110 is the second slot wall 122
  • the side wall of the magnet slot 120 away from the outer edge of the main body 110 is the magnet slot 120 close to the main body 110 one side wall of the centerline.
  • the first groove wall 121 includes a plurality of stepped surfaces 1210 , wherein the plurality of stepped surfaces 1210 includes a first stepped surface 1210 and a second stepped surface 1210 , and the first stepped surface 1210 is closer than the second stepped surface 1210
  • the magnetic pole center line 130 is arranged, that is to say, in the circumferential direction of the body 110 , the second stepped surface 1210 and the first stepped surface 1210 are arranged in a left and right distribution.
  • the pole centerline 130 is the centerline passing through the magnet slot 120
  • the interpole centerline 140 is also included between two adjacent magnet slots 120 , that is, for one magnet slot 120 , passing through its center line is the magnetic pole center line 130, and on both sides of the magnet slot 120 is the inter-pole center line 140, that is, the first stepped surface 1210 is set close to the magnetic pole center line 130, and the second stepped surface 1210 is close to the inter-pole center line 140 set up.
  • the distance between the first stepped surface 1210 and the second groove wall 122 along the direction of the magnetic pole centerline 130 is smaller than the distance between the second stepped surface 1210 and the second groove wall 122 along the direction of the magnetic pole centerline 130, that is, That is to say, in the direction along the magnetic pole centerline 130, the thickness of the magnet slot 120 where the first stepped surface 1210 is located is smaller than the thickness of the magnet slot 120 where the second stepped surface 1210 is located.
  • the number is multiple, and between the magnetic pole centerline 130 and the interpole centerline 140 on one side, from close to the magnetic pole centerline 130 to the interpole centerline 140 on one side, the thickness of the magnet slot 120 gradually increases, correspondingly , between the magnetic pole centerline 130 and the interpole centerline 140 on the other side, from close to the magnetic pole centerline 130 to the interpole centerline 140 on the other side, the thickness of the magnet slot 120 gradually increases.
  • the shape is certain, and accordingly, from the center line 130 of the magnetic pole to the center line 140 between the poles on both sides, the distance between the first slot wall 121 and the outer edge of the body 110 gradually decreases, that is, the first
  • the variation trend of the distances between the multiple stepped surfaces 1210 of the groove wall 121 and the outer edge of the main body 110 is a sinusoidal waveform change with the center of the magnetic pole as the peak, that is, from the middle to both sides, the multiple steps of the first groove wall 121
  • the distance between the surface 1210 and the outer edge of the body 110 is gradually reduced, so that the amplitude of the fundamental wave of the air-gap magnetic field and its harmonics can be reduced, the load armature reaction on the stator 220 side can be weakened, and the radial harmonics can be effectively reduced.
  • the amplitude of the electromagnetic excitation force of the electromagnetic wave is improved, thereby improving the efficiency of the motor having the rotor punching sheet 100 and reducing the electromagnetic vibration noise of the motor.
  • the change trend of the distance between the plurality of stepped surfaces 1210 of the first groove wall 121 and the outer edge of the main body 110 in the same direction as the magnetic poles.
  • the change of the sinusoidal waveform with the peak at the center that is, the change trend of the magnetic flux located in the rotor punch 100 is limited, that is, the magnetic flux gradually decreases from the middle to the two sides, showing a sinusoidal waveform change with the center of the magnetic pole as the peak, thereby weakening the motor torque ripple.
  • the problem of magnetic saturation caused by the relatively small width between the magnet slot 120 and the outer edge of the body 110 due to the gap between the magnet slot 120 and the outer edge of the body 110 in the related art can also be avoided, and the problem of magnetic saturation can also be avoided.
  • a gap is formed between the magnet slot 120 and the outer edge of the main body 110 , which makes the rotor punching 100 difficult to process, improves the motor efficiency, and reduces the noise generated during the motor operation.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the first groove wall 121 further includes a plurality of connecting surfaces 1211 , any one of the connecting surfaces of the plurality of connecting surfaces 1211 . 1211 is located between any two adjacent stepped surfaces 1210 among the plurality of stepped surfaces 1210, the connecting surfaces 1211 are respectively connected with the two adjacent stepped surfaces 1210, and one stepped surface 1210 is connected to one of the side facing the magnetic pole centerline 130.
  • the connecting surface 1211 forms a step.
  • the point with the shortest radial distance from the center of the body 110 in the step is the first point, and the first point and the outer edge of the body 110 are in a preset direction
  • the first groove wall 121 also includes a plurality of connecting surfaces 1211.
  • the connecting surfaces 1211 are located between two adjacent stepped surfaces 1210, that is, the two ends of one connecting surface 1211 are connected to the phases respectively.
  • two adjacent stepped surfaces 1210 so that the first stepped surface 1210 and the connecting surface 1211 facing the magnetic pole centerline 130 side form a step, so that the first groove wall 121 includes multiple steps.
  • the end point with the shortest radial distance from the center of the body 110 is the first point, that is, the distance between the two end points that define a step.
  • the closest end point in the radial direction of the center of the body 110 is the reference point. It can be understood that the center of the body 110 is the center point of the center line of the body 110 on the cross section of the rotor die 100 , wherein the cross section is perpendicular to the center line of the body 110 section.
  • the distance between the first point and the outer edge of the main body 110 in the preset direction is L
  • the angle formed between the connection between the first point and the center of the main body 110 and the interpole center line 140 on the side close to the step is ⁇
  • C is a constant
  • P is the number of poles of the rotor 210 , that is, the end point of any step that is closest to the center of the body 110
  • the distance between the outer edge of the main body 110 in the preset direction relative to the angle between the end point and the center of the main body 110 and the center line 140 between the poles is a sinusoidal waveform, so that the torque ripple can be weakened and reduced.
  • the harmonics of the induced voltage can further effectively reduce the amplitude of the electromagnetic excitation force of each radial harmonic, thereby improving the efficiency of the motor with the rotor punch 100 and reducing the electromagnetic vibration noise of the motor.
  • the preset direction is the radial direction of the body 110 .
  • the preset direction is specifically defined as the radial direction of the body 110 , specifically, the preset direction is the radial direction of the body 110 , that is, any one of the multiple steps in the first groove wall 121
  • the distance in the radial direction between the end point (the first point) with the closest radial distance from the center of the body 110 among the two end points of the step and the outer edge of the body 110, relative to the line connecting the end point and the center of the body 110 and the pole In terms of the angle between the center lines 140 and the center line 140, it is a sinusoidal waveform with the center line 130 of the magnetic pole as the peak, which can effectively reduce the amplitude of the fundamental wave of the air gap magnetic field and its harmonics, and weaken the load armature reaction on the stator 220 side. , effectively reducing the amplitude of each radial harmonic electromagnetic excitation force, thereby improving the efficiency of the motor with the rotor punching sheet 100 and reducing the electromagnetic vibration noise of the motor.
  • the end point closest to the center of the body 110 in the radial direction is the second point, and the distance between the second point and the outer edge of the body 110 in the radial direction is H1, and the second point
  • the radial distance between the end point with the shortest radial distance from the center of the body 110 and the outer edge of the body 110 among the two end points of any one of the steps of the first groove wall 121 is relative to the end point and the body 110
  • the change trend of the angle between the center line and the inter-pole center line 140 is a sinusoidal waveform change with the center of the magnetic pole as the peak, which limits the change trend of the magnetic flux located in the rotor punch 100, that is, from the middle
  • the magnetic flux on both sides gradually decreases, showing a sinusoidal waveform change with the center of the magnetic pole as the peak, thereby weakening the torque ripple of the motor.
  • the problem of magnetic saturation caused by the relatively small width between the magnet slot 120 and the outer edge of the body 110 due to the gap between the magnet slot 120 and the outer edge of the body 110 in the related art can also be avoided, and the problem of magnetic saturation can also be avoided.
  • a gap is formed between the magnet slot 120 and the outer edge of the main body 110 , which makes the rotor punching 100 difficult to process, improves the motor efficiency, and reduces the noise generated during the motor operation.
  • ⁇ 1 the angle between the line connecting the end point with the smallest radial distance from the center of the body 110 and the center of the body 110 in the first step and the center line 140 between the poles
  • ⁇ 2 the angle between the line connecting the end point with the smallest radial distance from the center of the body 110 and the center of the body 110 in the second step and the center line 140 between the poles
  • ⁇ n the angle between the line connecting the end point with the smallest radial distance from the center of the body 110 and the center of the body 110 in the nth step and the center line 140 between the poles
  • C1 is a constant
  • P is the number of poles
  • H1 are S1 to Sn.
  • the number of poles of the rotor 210 is limited to 6 poles.
  • it is a sinusoidal waveform with the center line 130 of the magnetic pole as the peak, which can effectively reduce the fundamental wave of the air gap magnetic field and the amplitude of its harmonics, weaken the load armature reaction on the stator 220 side, and effectively reduce the The amplitude of each radial harmonic electromagnetic excitation force is reduced, thereby improving the efficiency of the motor with the rotor punching sheet 100 and reducing the electromagnetic vibration noise of the motor.
  • the preset direction is a direction parallel to the magnetic pole center line 130 .
  • the preset direction is specifically defined as the direction parallel to the magnetic pole center line 130 , specifically, the preset direction is the direction parallel to the magnetic pole center line 130 , that is, the direction in the first slot wall 121
  • the distance between the two end points of any one step in the plurality of steps, the closest radial distance from the center of the body 110 (the first point) and the outer edge of the body 110 in the direction parallel to the center line 130 of the magnetic pole, relative to The angle between the line connecting the end point and the center of the body 110 and the center line 140 between poles is a sinusoidal waveform with the center line 130 of the magnetic pole as the peak, which can effectively reduce the amplitude of the fundamental wave of the air gap magnetic field and its harmonics. value, weaken the load armature reaction on the stator 220 side, effectively reduce the amplitude of each radial harmonic electromagnetic excitation force, thereby improving the efficiency of the motor with the rotor punch 100 and reducing the electromagnetic vibration noise of the motor.
  • the problem of magnetic saturation caused by the relatively small width between the magnet slot 120 and the outer edge of the body 110 due to the gap between the magnet slot 120 and the outer edge of the body 110 in the related art can also be avoided, and the problem of magnetic saturation can also be avoided.
  • a gap is formed between the magnet slot 120 and the outer edge of the main body 110 , which makes the rotor punching 100 difficult to process, improves the motor efficiency, and reduces the noise generated during the motor operation.
  • the preset direction may also be other directions between the radial direction and the direction parallel to the magnetic pole centerline 130 . It is understood that as long as the distance between the plurality of stepped surfaces 1210 of the first groove wall 121 and the outer edge of the main body 110 The variation trend of the distance between the two poles in other directions can be relative to the angle between the endpoint with the smallest radial distance from the center of the body 110 and the angle between the center line of the body 110 and the center line 140 between the poles, and the center line 130 of the magnetic pole.
  • the peak-top sine wave can be used.
  • the number of steps is at least two, and the at least two steps are symmetrically arranged along the center line 130 of the magnetic pole.
  • the number of steps is limited to at least two, which are symmetrically arranged along the magnetic pole centerline 130 . Specifically, if the number of steps is two, that is, there are one on the left and right sides of the magnetic pole centerline 130 . Steps, if the number of steps is four, that is, there are two steps on the left and right sides of the magnetic pole center line 130 respectively.
  • the distance between the step surface 1210 and the outer edge of the body 110 can be further changed in a sinusoidal waveform, thereby further reducing the fundamental wave of the air-gap magnetic field and its various
  • the amplitude of the sub-harmonic weakens the load armature reaction on the stator 220 side, effectively reduces the amplitude of the electromagnetic excitation force of each radial harmonic, thereby improving the efficiency of the motor with the rotor punching sheet 100 and reducing the electromagnetic field of the motor. vibration noise.
  • the position where the step surface 1210 is connected with the connecting surface 1211 is provided with a chamfer, and the distances L1 and L2 in the preset direction between the two ends of the step and the outer edge of the main body 110 ,
  • the minimum value h1 of the distance between any point in the step and the outer edge of the body 110 in the preset direction satisfies L1 ⁇ h1 ⁇ L2.
  • connection position of any one of the plurality of stepped surfaces 1210 and its adjacent connecting surface 1211 is defined as a chamfer.
  • the chamfer may be a rounded corner, that is, the stepped surface is defined.
  • the distances between the two ends of the step and the outer edge of the body 110 in the preset direction are L1 and L2.
  • the two ends of one step are respectively connected to the connecting surface 1211 of the previous step and the step of the next step.
  • the surface 1210 that is to say, the distance L1 between one end of a step and the outer edge of the body 110 in the preset direction is the distance between the end point of the previous step which is closest to the radial distance from the center of the body 110 and the outer edge of the body 110.
  • the distance in the preset direction, the other end of a step is the end point with the shortest radial distance from the step to the center of the body 110
  • L2 is the distance between the end point and the outer edge of the body 110 in the preset direction, that is, L1 and L2 are both.
  • the minimum value of the distance between any point in the step and the outer edge of the body 110 in the preset direction is between L1 and L2, that is to say, The distance between any point of the step and the outer edge of the main body 110 in the predetermined direction is located between the two end points of the step and the distance in the predetermined direction between the outer edge of the main body 110 .
  • the connecting surface 1211 is a circular arc surface, the distances L3 and L4 in the preset direction between the two ends of the step and the outer edge of the main body 110 , any point in the step and the main body 110
  • the minimum value h2 of the spacing between the outer edges in the preset direction satisfies L3 ⁇ h2 ⁇ L4.
  • the connecting surface 1211 is defined as a circular arc surface.
  • the distances in the preset direction between the two ends of the step and the outer edge of the body 110 are L3 and L4.
  • the two ends of one step are respectively connected to the connecting surface 1211 of the previous step and the step of the next step.
  • the surface 1210 that is to say, the distance L3 in the preset direction between one end of a step and the outer edge of the body 110 is the distance between the end point of the previous step that is closest to the radial distance from the center of the body 110 and the outer edge of the body 110.
  • the distance in the preset direction, the other end of a step is the end point with the shortest radial distance from the step to the center of the body 110
  • L4 is the distance between the end point and the outer edge of the body 110 in the preset direction, that is, L3 and L4 are both.
  • the minimum value of the distance between any point in the step and the outer edge of the body 110 in the preset direction is between L3 and L4, that is to say,
  • the distance between any point of the step and the outer edge of the main body 110 in the predetermined direction is located between the two end points of the step and the distance in the predetermined direction between the outer edge of the main body 110 .
  • one end of the connecting surface 1211 away from the outer edge of the body 110 is inclined to one side of the magnetic pole centerline 130 .
  • connection surface 1211 is defined as an inclined surface. Specifically, the end of the connection surface 1211 away from the outer edge of the body 110 is inclined to the side where the magnetic pole center line 130 is located.
  • the inclination angle of the connection surface 1211 may be the same as The angle between the point on the connection surface 1211 that is closest to the center of the body 110 in the radial direction and the line connecting the center of the body 110 and the center line 140 between the poles is the same.
  • the inclination angles of the plurality of connection surfaces 1211 are the same.
  • connection surface 1211 extends along a direction parallel to the magnetic pole center line 130 .
  • the connecting surface 1211 is defined to extend along the direction parallel to the magnetic pole centerline 130 , that is, the connecting surface 1211 is perpendicular to the first groove wall 121 , which defines another arrangement of the connecting surface 1211 .
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the magnet slot 120 further includes a magnet slot segment and a magnetic isolation slot segment 123 , and the magnet slot segment is used for placing the magnet conducting body 211 of the rotor 210 , and the isolation
  • the magnetic slot sections 123 are located at both ends of the magnet slot sections, and the magnetic isolation slot sections 123 communicate with the magnet slot sections.
  • the magnet slot 120 further includes a magnet slot segment and a magnetic isolation slot segment 123.
  • the magnet slot segment is used to place the magnet conducting body 211 of the rotor 210, and spacers are provided at both ends of the magnet slot segment.
  • the magnetic slot section 123 wherein the magnetic isolation slot section 123 is communicated with the magnet slot section, since the magnetic conductor 211 is prevented from being in the magnet slot section, that is, the magnetic isolation slot section 123 is a gap at the end of the magnet, by arranging the magnetic isolation slot section 123, it is possible to The magnetic leakage phenomenon at the end of the magnetic conductor 211 is suppressed.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • a rotor 210 is provided, the rotor 210 includes a rotor iron core and a plurality of magnetic conductors 211 , wherein the rotor iron core includes a plurality of rotor punches 100 provided in any of the above embodiments, Therefore, all the beneficial technical effects of the rotor punching piece 100 are provided, which will not be repeated here.
  • the magnet slot segments of the plurality of rotor punches 100 pass through along the axial direction of the rotor core to form slots, and the plurality of magnetic conductors 211 are disposed in the slots in a one-to-one correspondence.
  • the rotor core is formed by stacking a plurality of rotor punches 100, and the structures of the plurality of rotor punches 100 are the same, so that the magnet slot segments can pass through along the axial direction of the rotor core to form a slot, and the guide
  • the magnets 211 are arranged in a one-to-one correspondence with the slots, and specifically, the magnets 211 can be inserted into the slots.
  • the magnetic conductor 211 may be a permanent magnet, and the permanent magnet may be a rare earth magnet. Further, the permanent magnets may be non-spliced integral inserts, which facilitates inserting the permanent magnets into the slots and improves the production efficiency of the rotor 210 .
  • the polarities of the magnetic conductors 211 in two adjacent slots are opposite, that is, one N pole and one S pole.
  • the projection of the magnetic conductor 211 on the cross section of the rotor core is a rectangle.
  • the projection of the magnetic conductor 211 on the cross section of the rotor core is defined as a rectangle, that is, the structure of the magnetic conductor 211 is defined as a cuboid structure, which is convenient for inserting the magnetic conductor 211 into the slot and lowering the rotor.
  • the processing difficulty of the rotor 210 is difficult, and the processing of the magnet slot 120 is also facilitated, thereby further improving the production efficiency of the rotor 210 .
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • a motor which includes the rotor 210 provided in any of the above embodiments, and thus has all the beneficial technical effects of the rotor 210 , which will not be repeated here.
  • the motor further includes a stator 220 , and the stator 220 is sleeved on the outer side of the rotor 210 . That is, the motor defined in this technical solution is a motor built into the rotor 210. Specifically, the motor can be driven by a device using silicon carbide for the switching part of the inverter main circuit.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • a compressor 300 which includes the motor provided in any of the above embodiments, and thus has all the beneficial technical effects of the motor, which will not be repeated here.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • a refrigeration device which includes the compressor 300 provided in any of the above embodiments, and thus has all the beneficial technical effects of the compressor 300, which will not be repeated here.
  • connection may be a fixed connection, a detachable connection, or an integral connection; Directly connected or indirectly connected through an intermediary.
  • connection may be a fixed connection, a detachable connection, or an integral connection; Directly connected or indirectly connected through an intermediary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种转子冲片(100)、转子(210)、电机、压缩机(300)和制冷设备,转子冲片(100)包括:本体(110);多个磁体槽(120),围绕本体(110)的中心线间隔分布,磁体槽(120)靠近本体(110)的外边缘的一侧壁为第一槽壁(121),磁体槽(120)远离本体(110)的外边缘的一侧壁为第二槽壁(122),第一槽壁(121)包括多个台阶面(1210),多个台阶面(1210)包括第一台阶面(1210)和第二台阶面(1210);其中,第一台阶面(1210)相较于第二台阶面(1210)靠近磁极中心线(130)设置,第一台阶面(1210)与第二槽壁(122)沿磁极中心线(130)方向的间距小于第二台阶面(1210)与第二槽壁(122)沿磁极中心线(130)方向的间距,从而可以降低气隙磁场基波及其各次谐波幅值,削弱定子侧的负载电枢反应,有效减小各次径向谐波电磁激振力的幅值,进而提高具有该转子冲片(100)的电机的效率,减小电机电磁的振动噪声。

Description

转子冲片、转子、电机、压缩机和制冷设备
本申请要求于2020年11月30日提交到中国国家知识产权局、申请号为“202011380774.3”、发明名称为“转子冲片、转子、电机、压缩机和制冷设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请的实施例涉及电机设备技术领域,具体而言,涉及一种转子冲片、一种转子、一种电机、一种压缩机和一种制冷设备。
背景技术
目前,由于电机高速轻量化的发展趋势,对用于旋转式压缩机的电机提出了更高的要求。为了能够使气隙磁场波形正弦度更高,电机的振动噪音更低,相关技术中旋转式压缩机用电机的转子多采用不均匀气隙结构,然而,在电机运行在较高转速下时,不均匀气隙会使得这种转子受到更大的风摩损耗,对电机性能有造成不利影响,还会产生较大的风噪。
相关技术中还采用转子外圆内侧开设狭缝的转子冲片结构,然而,这种转子结构的制造性不够优良,由于狭缝的条数较多,且缝宽较细,导致模具寿命低,维护频繁,制造性差。
相关技术中也有采用转子外圆上开设狭缝的转子冲片结构,然而,在转子表面开设狭槽会降低气隙磁密,大幅降低磁铁利用率,电机的性价比降低。
发明内容
本申请的实施例旨在至少解决现有技术中存在的技术问题之一。
为此,本申请的实施例的第一方面提供了一种转子冲片。
本申请的实施例的第二方面提供了一种转子。
本申请的实施例的第三方面提供了一种电机。
本申请的实施例的第四方面提供了一种压缩机。
本申请的实施例的第五方面提供了一种制冷设备。
有鉴于此,根据本申请的实施例的第一方面,提供了一种转子冲片,转子冲片包括本体和多个磁体槽,多个磁体槽围绕本体的中心线间隔分布,磁体槽靠近本体的外边缘的一侧壁为第一槽壁,磁体槽远离本体的外边缘的一侧壁为第二槽壁,第一槽壁包括多个台阶面,多个台阶面包括第一台阶面和第二台阶面,其中,第一台阶面相较于第二台阶面靠近磁极中心线设置,第一台阶面与第二槽壁沿磁极中心线方向的间距小于第二台阶面与第二槽壁沿磁极中心线方向的间距。
本申请实施例提供的转子冲片包括本体和多个磁体槽,具体而言,沿本体的中心线间隔分布有多个磁体槽,磁体槽靠近本体的外边缘的一侧壁为第一槽壁,磁体槽远离本体的外边缘的一侧壁为第二槽壁,磁体槽远离本体的外边缘的一侧壁即为磁体槽靠近本体的中心线的一侧壁。进一步地,第一槽壁包括多个台阶面,其中,多个台阶面包括第一台阶面和第二台阶面,且第一台阶面相较于第二台阶面靠近磁极中心线设置,也就是说,在本体的周向方向上,第二台阶面与第一台阶面左右分布设置。能够理解的是,磁极中心线为穿过磁体槽的中心线,相应地,相邻两个磁体槽之间还包括极间中心线,也就是说,对于一个磁体槽而言,穿过其中心线的为磁极中心线,磁体槽两侧的为极间中心线,即第一台阶面靠近磁极中心线设置,第二台阶面靠近极间中心线设置。进一步地,第一台阶面与第二槽壁之间沿磁极中心线方向的间距要小于第二台阶面与第二槽壁之间沿磁极中心线方向的间距,也就是说,在沿磁极中心线的方向上,第一台阶面所处位置的磁体槽的厚度小于第二台阶面所处位置的磁体槽的厚度,相应地,由于台阶面的数量为多个,在磁极中心线与位于一侧的极间中心线之间,自靠近磁极中心线至一侧的极间中心线,磁体槽的厚度逐渐增大,对应地,磁极中心线与位于另一侧的极间中心线之间,自靠近磁极中心线至另一侧的极间中心线,磁体槽的厚度逐渐增大,由于转子冲片的形状是一定的,相应地,自磁极中心线至两侧的极间中心线,第一槽壁与本体的外边缘之间的间距,逐渐减小,也就是说,第一槽壁的多个台阶面与本体的外边缘之间的间距的变化趋势呈以磁极中心为峰顶的正弦波形变化,即由中间至两侧,第一槽壁的多个台阶面与本体的外边缘之间的间距逐渐减小,从而可以降低气隙 磁场基波及其各次谐波幅值,削弱定子侧的负载电枢反应,有效减小各次径向谐波电磁激振力的幅值,进而提高具有该转子冲片的电机的效率,减小电机电磁的振动噪声。
另外,通过在磁体槽的第一槽壁上设置多个台阶面,能够使第一槽壁的多个台阶面与本体的外边缘之间的间距的变化趋势呈以磁极中心为峰顶的正弦波形变化,也就是限制了位于转子冲片的磁通量的变化趋势,即由中间至两侧磁通量逐渐减小,呈现以磁极中心为峰顶的正弦波形变化,从而削弱电机的转矩脉动。此外,还可以防止相关技术中由于在磁体槽与本体的外边缘之间开设缝隙,导致磁体槽与本体的外边缘之间的宽度较小而导致的磁饱和问题,还可以避免相关技术中在磁体槽与本体的外边缘之间开设缝隙而导致转子冲片加工难度大等问题,提高电机效率,并降低电机运行过程中产生的噪音。
另外,根据本申请上述技术方案提供的转子冲片,还具有如下附加技术特征:
在一种可能的设计中,第一槽壁还包括多个连接面,多个连接面中的任意一个连接面位于多个台阶面中任意相邻的两个台阶面之间,连接面分别与相邻的两个台阶面连接,一个台阶面与朝向磁极中心线的一侧的一个连接面形成一个台阶,在转子冲片的横截面内,台阶中与本体中心之间径向距离最短的点为第一点,第一点与本体的外边缘在预设方向上的间距L、第一点与本体中心的连线与极间中心线之间的夹角α满足L=C×sin(α×P/2),其中,C为常数,P为极数,极间中心线为靠近台阶的极间中心线。
在该设计中,限定了第一槽壁还包括多个连接面,具体而言,连接面位于相邻两个台阶面之间,即一个连接面的两端分别连接相邻的两个台阶面,从而使得第一台阶面与朝向磁极中心线侧一侧的连接面形成一个台阶,进而使得第一槽壁包括多个台阶。进一步地,在转子冲片的横截面内,多个台阶中的任意一个台阶中,与本体中心之间径向距离最短的端点为第一点,即限定一个台阶的两个端点中距离本体中心径向距离最近的一个端点为参考点,能够理解的是,本体中心为本体中心线在转子冲片横截面的中心点,其中,横截面是垂直于本体中心线的截面。进一步地,第一点与本体的外边缘在预设方向上的间距为L,第一点与本体中心的连接与靠近该台阶的一侧的极间中心线之间所呈的 角度为α,其中,L和α满足L=C×sin(α×P/2),C为常数,P为转子的极数,也就是说,将任意一个台阶中距离本体中心最近的端点与本体的外边缘之间在预设方向上的间距相对于该端点和本体中心的连线与极间中心线所呈的角度,呈正弦波形,从而能够削弱转矩脉动,减小感应电压的谐波,进而能够有效减小各次径向谐波电磁激振力的幅值,进而提高具有该转子冲片的电机的效率,减小电机电磁的振动噪声。
在一种可能的设计中,预设方向为本体的径向。
在该设计中,具体限定了预设方向为本体的径向,具体而言,预设方向为本体的径向,也就是说,第一槽壁中的多个台阶中任意一个台阶的两个端点中距离本体中心径向距离最近的端点(第一点)与本体的外边缘之间在径向方向上的间距,相对于该端点和本体中心的连线与极间中心线之间的角度而言,呈以磁极中心线为峰顶的正弦波形,从而可以有效降低气隙磁场基波及其各次谐波幅值,削弱定子侧的负载电枢反应,有效减小各次径向谐波电磁激振力的幅值,进而提高具有该转子冲片的电机的效率,减小电机电磁的振动噪声。
能够理解的是,任意一个台阶的两个端点中与本体中心径向距离最近的端点为第二点,第二点与本体的外边缘在径向方向上的间距为H1,第二点与本体中心的连接与靠近该台阶的一侧的极间中心线之间所呈的角度为β,其中,H1和β满足H1=C1×sin(β×P/2),C1为常数,P为转子的极数。从而使得第一槽壁的多个台阶中任意一个台阶的两个端点中与本体中心径向距离最短的端点与本体的外边缘之间的径向间距,相对于该端点和本体中心连线与极间中心线之间所呈角度而言的变化趋势,呈以磁极中心为峰顶的正弦波形变化,也就是限制了位于转子冲片的磁通量的变化趋势,即由中间至两侧磁通量逐渐减小,呈现以磁极中心为峰顶的正弦波形变化,从而削弱电机的转矩脉动。此外,还可以防止相关技术中由于在磁体槽与本体的外边缘之间开设缝隙,导致磁体槽与本体的外边缘之间的宽度较小而导致的磁饱和问题,还可以避免相关技术中在磁体槽与本体的外边缘之间开设缝隙而导致转子冲片加工难度大等问题,提高电机效率,并降低电机运行过程中产生的噪音。
在一种可能的设计中,预设方向为与磁极中心线平行的方向。
在该设计中,具体限定了预设方向为与磁极中心线平行的方向,具体而言, 预设方向为与磁极中心线平行的方向,也就是说,第一槽壁中的多个台阶中任意一个台阶的两个端点中距离本体中心径向距离最近的端点(第一点)与本体的外边缘之间在平行于磁极中心线的方向上的间距,相对于该端点和本体中心的连线与极间中心线之间的角度而言,呈以磁极中心线为峰顶的正弦波形,从而可以有效降低气隙磁场基波及其各次谐波幅值,削弱定子侧的负载电枢反应,有效减小各次径向谐波电磁激振力的幅值,进而提高具有该转子冲片的电机的效率,减小电机电磁的振动噪声。
能够理解的是,任意一个台阶的两个端点中与本体中心径向距离最近的端点为第三点,第三点与本体的外边缘在与磁极中心线平行的方向上的间距为H2,第三点与本体中心的连接与靠近该台阶的一侧的极间中心线之间所呈的角度为γ,其中,H2和γ满足H2=C2×sin(γ×P/2),C2为常数,P为转子的极数,其中C2不等于C1。从而使得第一槽壁的多个台阶中任意一个台阶的两个端点中,与本体中心径向距离最短的端点与本体的外边缘之间沿平行于磁极中心线方向上的间距,相对于该端点和本体中心连线与极间中心线之间所呈角度而言的变化趋势,呈现以磁极中心为峰顶的正弦波形变化,从而削弱电机的转矩脉动。此外,还可以防止相关技术中由于在磁体槽与本体的外边缘之间开设缝隙,导致磁体槽与本体的外边缘之间的宽度较小而导致的磁饱和问题,还可以避免相关技术中在磁体槽与本体的外边缘之间开设缝隙而导致转子冲片加工难度大等问题,提高电机效率,并降低电机运行过程中产生的噪音。
另外,预设方向还可以是径向方向与平行于磁极中心线的方向之间的其他方向,能够理解的是,只要第一槽壁的多个台阶面与本体的外边缘之间的间距在其他方向上的变化趋势能够相对于台阶中距离本体中心径向距离最小的端点和本体中心连线与极间中心线之间的角度而言,呈以磁极中心线为峰顶的正弦波形即可。
在一种可能的设计中,台阶的数量为至少两个,至少两个台阶沿磁极中心线对称设置。
在该设计中,限定了台阶的数量为至少两个,并沿磁极中心线对称设置,具体而言,若台阶的数量为两个,即在磁极中心线的左右两侧各有一个台阶,若台阶的数量为四个,即在磁极中心线的左右两侧各有两个台阶。通过在磁极 中心线两侧的台阶沿磁极中心线对称设置,能够进一步将台阶面与本体外边缘之间的间距呈以正弦波形变化,从而可以进一步降低气隙磁场基波及其各次谐波幅值,削弱定子侧的负载电枢反应,有效减小各次径向谐波电磁激振力的幅值,进而提高具有该转子冲片的电机的效率,减小电机电磁的振动噪声。
在一种可能的设计中,台阶面与连接面相连接的位置设置有倒角,台阶的两端与本体的外边缘之间在预设方向上的间距L1和L2、台阶中任意一点与本体的外边缘之间在预设方向上的间距的最小值h1满足L1≤h1≤L2。
在该设计中,限定了多个台阶面中任意一个台阶面与其相邻的连接面的连接位置设置有倒角,具体地,该倒角可以为圆角,即限定了台阶面与连接面相连接的位置处的结构。进一步地,台阶的两端与本体的外边缘之间在预设方向上的间距为L1和L2,详细地,一个台阶的两端分别连接前一个台阶的连接面和后一个台阶的台阶面,也就是说,一个台阶的一端与本体的外边缘之间在预设方向上的间距L1为前一个台阶的距离本体中心径向距离最近的端点与本体外边缘之间在预设方向上的间距,一个台阶的另一端即该台阶距离本体中心径向距离最短的端点,L2为该端点与本体外边缘之间在预设方向上的间距,即L1和L2均符合L=C×sin(α×P/2)的关系式,该台阶中任意一点与本体外边缘之间在预设方向上的间距的最小值位于L1和L2之间,也就是说,该台阶中任意一点与本体外边缘之间在预设方向上的间距均位于台阶的两个端点与本体外边缘之间在预设方向上的间距之间。
在一种可能的设计中,连接面为圆弧面,台阶的两端与本体的外边缘之间在预设方向上的间距L3和L4、台阶中任意一点与本体的外边缘之间在预设方向上的间距的最小值h2满足L3≤h2≤L4。
在该设计中,限定了连接面为圆弧面。进一步地,台阶的两端与本体的外边缘之间在预设方向上的间距为L3和L4,详细地,一个台阶的两端分别连接前一个台阶的连接面和后一个台阶的台阶面,也就是说,一个台阶的一端与本体的外边缘之间在预设方向上的间距L3为前一个台阶的距离本体中心径向距离最近的端点与本体外边缘之间在预设方向上的间距,一个台阶的另一端即该台阶距离本体中心径向距离最短的端点,L4为该端点与本体外边缘之间在预设方向上的间距,即L3和L4均符合L=C×sin(α×P/2)的关系式,该台阶中 任意一点与本体外边缘之间在预设方向上的间距的最小值位于L3和L4之间,也就是说,该台阶中任意一点与本体外边缘之间在预设方向上的间距均位于台阶的两个端点与本体外边缘之间在预设方向上的间距之间。
在一种可能的设计中,连接面中远离本体的外边缘的一端向磁极中心线的一侧倾斜设置。
在该设计中,限定了连接面为斜面,具体而言,连接面远离本体外边缘的一端向磁极中心线所在的一侧倾斜设置,另外,连接面的倾斜角度可以与连接面中距离本体中心径向距离最近的点和本体中心的连线与极间中心线之间所呈的角度一致。其中,多个连接面的倾斜角度一致。
在一种可能的设计中,连接面沿平行于磁极中心线的方向延伸设置。
在该设计中,限定了连接面沿平行于磁极中心线的方向延伸设置,也就是说,连接面垂直于第一槽壁,即限定了连接面另一种设置方式。
在一种可能的设计中,磁体槽包括磁体槽段和隔磁槽段,磁体槽段用于放置转子的导磁体,隔磁槽段位于磁体槽段的两端,隔磁槽段与磁体槽段连通。
在该设计中,限定了磁体槽还包括磁体槽段和隔磁槽段,具体而言,磁体槽段用于放置转子的导磁体,在磁体槽段的两端设备设置隔磁槽段,其中,隔磁槽段与磁体槽段连通,由于导磁体防止在磁体槽段,即隔磁槽段为磁体端部的空隙,通过设置隔磁槽段,能够抑制导磁体端部的漏磁现象。
根据本申请的第二个方面,提供了一种转子,转子包括转子铁芯和多个导磁体,其中,转子铁芯包括多个如上述任一技术方案提供的转子冲片,因而具备该转子冲片的全部有益技术效果,在此不再赘述。
进一步地,多个转子冲片的磁体槽段沿转子铁芯的轴向贯通以形成插槽,多个导磁体一一对应设置在多个插槽中。
在该设计中,转子铁芯由多个转子冲片堆叠而成,多个转子冲片的结构相同,从而使得磁体槽段能够沿转子铁芯的轴向贯通以形成插槽,导磁体与插槽一一对应设置,具体地,导磁体能够插设于插槽内。
需要说明的是,导磁体可以为永磁体,永磁体可以为稀土磁铁。进一步地,永磁体可以为非拼接的整体插片,便于将永磁体插入插槽内,提高转子的生产效率。
其中,相邻两个插槽内导磁体的极性相反,即一个N极,一个S极。
在一种可能的设计中,导磁体在转子铁芯的横截面上的投影为矩形。
在该设计中,限定了导磁体在转子铁芯横截面上的投影为矩形,也就是说,限定了导磁体的结构为长方体结构,便于将导磁体插入插槽内,降低转子的加工难度,另外,也便于磁体槽的加工,进一步提高转子的生产效率。
根据本申请的第三个方面,提供了一种电机,包括如上述任一技术方案提供的转子,因而具备该转子的全部有益技术效果,在此不再赘述。
进一步地,电机还包括定子,定子套设于转子的外侧。即该技术方案限定的电机是转子内置的电机,具体地,该电机可以采用将碳化硅用于逆变主电路的开关部的器件进行电路的驱动。
根据本申请的第四个方面,提供了一种压缩机,包括如上述任一技术方案提供的电机,因而具备该电机的全部有益技术效果,在此不再赘述。
根据本申请的第五个方面,提供了一种制冷设备,包括如上述任一技术方案提供的压缩机,因而具备该压缩机的全部有益技术效果,在此不再赘述。
根据本申请的附加方面和优点将在下面的描述部分中给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请的一个实施例的转子冲片的结构示意图;
图2示出了根据本申请的另一个实施例的转子冲片的结构示意图;
图3示出了图2所示实施例的转子冲片的局部放大图;
图4示出了图3所示实施例的转子冲片的局部放大图;
图5示出了根据本申请的一个实施例的转子冲片的结构示意图;
图6示出了根据本申请的一个实施例的转子冲片的距极间中心线的角度与感应电压的关系的示意图;
图7示出了根据本申请的一个实施例的压缩机的结构示意图。
其中,图1至图7中附图标记与部件名称之间的对应关系为:
100转子冲片,110本体,120磁体槽,121第一槽壁,1210台阶面,1211连接面,122第二槽壁,123隔磁槽段,130磁极中心线,140极间中心线,210转子,211导磁体,220定子,300压缩机。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图7来描述根据本申请的一些实施例提供的转子冲片100、转子210、电机、压缩机300和制冷设备。
实施例一:
如图1、图2、图3和图4所示,本申请第一个方面的实施例提供了一种转子冲片100,转子冲片100包括本体110和多个磁体槽120,多个磁体槽120围绕本体110的中心线间隔分布,磁体槽120靠近本体110的外边缘的一侧壁为第一槽壁121,磁体槽120远离本体110的外边缘的一侧壁为第二槽壁122,第一槽壁121包括多个台阶面1210,多个台阶面1210包括第一台阶面1210和第二台阶面1210,其中,第一台阶面1210相较于第二台阶面1210靠近磁极中心线130设置,第一台阶面1210与第二槽壁122沿磁极中心线130方向的间距小于第二台阶面1210与第二槽壁122沿磁极中心线130方向的间距。
本申请实施例提供的转子冲片100包括本体110和多个磁体槽120,具体而言,沿本体110的中心线间隔分布有多个磁体槽120,磁体槽120靠近本体110的外边缘的一侧壁为第一槽壁121,磁体槽120远离本体110的外边缘的一侧壁为第二槽壁122,磁体槽120远离本体110的外边缘的一侧壁即为磁 体槽120靠近本体110的中心线的一侧壁。进一步地,第一槽壁121包括多个台阶面1210,其中,多个台阶面1210包括第一台阶面1210和第二台阶面1210,且第一台阶面1210相较于第二台阶面1210靠近磁极中心线130设置,也就是说,在本体110的周向方向上,第二台阶面1210与第一台阶面1210左右分布设置。能够理解的是,磁极中心线130为穿过磁体槽120的中心线,相应地,相邻两个磁体槽120之间还包括极间中心线140,也就是说,对于一个磁体槽120而言,穿过其中心线的为磁极中心线130,磁体槽120两侧的为极间中心线140,即第一台阶面1210靠近磁极中心线130设置,第二台阶面1210靠近极间中心线140设置。进一步地,第一台阶面1210与第二槽壁122之间沿磁极中心线130方向的间距要小于第二台阶面1210与第二槽壁122之间沿磁极中心线130方向的间距,也就是说,在沿磁极中心线130的方向上,第一台阶面1210所处位置的磁体槽120的厚度小于第二台阶面1210所处位置的磁体槽120的厚度,相应地,由于台阶面1210的数量为多个,在磁极中心线130与位于一侧的极间中心线140之间,自靠近磁极中心线130至一侧的极间中心线140,磁体槽120的厚度逐渐增大,对应地,磁极中心线130与位于另一侧的极间中心线140之间,自靠近磁极中心线130至另一侧的极间中心线140,磁体槽120的厚度逐渐增大,由于转子冲片100的形状是一定的,相应地,自磁极中心线130至两侧的极间中心线140,第一槽壁121与本体110的外边缘之间的间距,逐渐减小,也就是说,第一槽壁121的多个台阶面1210与本体110的外边缘之间的间距的变化趋势呈以磁极中心为峰顶的正弦波形变化,即由中间至两侧,第一槽壁121的多个台阶面1210与本体110的外边缘之间的间距逐渐减小,从而可以降低气隙磁场基波及其各次谐波幅值,削弱定子220侧的负载电枢反应,有效减小各次径向谐波电磁激振力的幅值,进而提高具有该转子冲片100的电机的效率,减小电机电磁的振动噪声。
另外,通过在磁体槽120的第一槽壁121上设置多个台阶面1210,能够使第一槽壁121的多个台阶面1210与本体110的外边缘之间的间距的变化趋势呈以磁极中心为峰顶的正弦波形变化,也就是限制了位于转子冲片100的磁通量的变化趋势,即由中间至两侧磁通量逐渐减小,呈现以磁极中心为峰顶的正弦波形变化,从而削弱电机的转矩脉动。此外,还可以防止相关技术中 由于在磁体槽120与本体110的外边缘之间开设缝隙,导致磁体槽120与本体110的外边缘之间的宽度较小而导致的磁饱和问题,还可以避免相关技术中在磁体槽120与本体110的外边缘之间开设缝隙而导致转子冲片100加工难度大等问题,提高电机效率,并降低电机运行过程中产生的噪音。
实施例二:
如图1、图2、图3和图4所示,在上述实施例的基础上,进一步地,第一槽壁121还包括多个连接面1211,多个连接面1211中的任意一个连接面1211位于多个台阶面1210中任意相邻的两个台阶面1210之间,连接面1211分别与相邻的两个台阶面1210连接,一个台阶面1210与朝向磁极中心线130的一侧的一个连接面1211形成一个台阶,在转子冲片100的横截面内,台阶中与本体110中心之间径向距离最短的点为第一点,第一点与本体110的外边缘在预设方向上的间距L、第一点与本体110中心的连线与极间中心线140之间的夹角α满足L=C×sin(α×P/2),其中,C为常数,P为极数,极间中心线140为靠近台阶的极间中心线140。
在该实施例中,限定了第一槽壁121还包括多个连接面1211,具体而言,连接面1211位于相邻两个台阶面1210之间,即一个连接面1211的两端分别连接相邻的两个台阶面1210,从而使得第一台阶面1210与朝向磁极中心线130侧一侧的连接面1211形成一个台阶,进而使得第一槽壁121包括多个台阶。进一步地,在转子冲片100的横截面内,多个台阶中的任意一个台阶中,与本体110中心之间径向距离最短的端点为第一点,即限定一个台阶的两个端点中距离本体110中心径向距离最近的一个端点为参考点,能够理解的是,本体110中心为本体110中心线在转子冲片100横截面的中心点,其中,横截面是垂直于本体110中心线的截面。进一步地,第一点与本体110的外边缘在预设方向上的间距为L,第一点与本体110中心的连接与靠近该台阶的一侧的极间中心线140之间所呈的角度为α,其中,L和α满足L=C×sin(α×P/2),C为常数,P为转子210的极数,也就是说,将任意一个台阶中距离本体110中心最近的端点与本体110的外边缘之间在预设方向上的间距相对于该端点和本体110中心的连线与极间中心线140所呈的角度,呈正弦波形,从而能够削弱转矩脉动,减小感应电压的谐波,进而能够有效减小各次径向谐波电磁激振力 的幅值,进而提高具有该转子冲片100的电机的效率,减小电机电磁的振动噪声。
进一步地,预设方向为本体110的径向。
在该实施例中,具体限定了预设方向为本体110的径向,具体而言,预设方向为本体110的径向,也就是说,第一槽壁121中的多个台阶中任意一个台阶的两个端点中距离本体110中心径向距离最近的端点(第一点)与本体110的外边缘之间在径向方向上的间距,相对于该端点和本体110中心的连线与极间中心线140之间的角度而言,呈以磁极中心线130为峰顶的正弦波形,从而可以有效降低气隙磁场基波及其各次谐波幅值,削弱定子220侧的负载电枢反应,有效减小各次径向谐波电磁激振力的幅值,进而提高具有该转子冲片100的电机的效率,减小电机电磁的振动噪声。
能够理解的是,任意一个台阶的两个端点中与本体110中心径向距离最近的端点为第二点,第二点与本体110的外边缘在径向方向上的间距为H1,第二点与本体110中心的连接与靠近该台阶的一侧的极间中心线140之间所呈的角度为β,其中,H1和β满足H1=C1×sin(β×P/2),C1为常数,P为转子210的极数。从而使得第一槽壁121的多个台阶中任意一个台阶的两个端点中与本体110中心径向距离最短的端点与本体110的外边缘之间的径向间距,相对于该端点和本体110中心连线与极间中心线140之间所呈角度而言的变化趋势,呈以磁极中心为峰顶的正弦波形变化,也就是限制了位于转子冲片100的磁通量的变化趋势,即由中间至两侧磁通量逐渐减小,呈现以磁极中心为峰顶的正弦波形变化,从而削弱电机的转矩脉动。此外,还可以防止相关技术中由于在磁体槽120与本体110的外边缘之间开设缝隙,导致磁体槽120与本体110的外边缘之间的宽度较小而导致的磁饱和问题,还可以避免相关技术中在磁体槽120与本体110的外边缘之间开设缝隙而导致转子冲片100加工难度大等问题,提高电机效率,并降低电机运行过程中产生的噪音。
如图6所示,在一个具体的实施例中,对多个台阶中任意一个台阶的端部与本体110的外边缘之间的径向宽度进行解释和说明:
S1:第一台阶的两个端点中距离本体110中心径向距离最小的端点与本体110的外边缘之间的径向间距,
S2:第二台阶的两个端点中距离本体110中心径向距离最小的端点与本体110的外边缘之间的径向间距,
……
Sn:第n个台阶的两个端点中距离本体110中心径向距离最小的端点与本体110的外边缘之间的径向间距,
β1:第一台阶中距离本体110中心径向距离最小的端点和本体110中心的连线与极间中心线140所呈的角度,
β2:第二台阶中距离本体110中心径向距离最小的端点和本体110中心的连线与极间中心线140所呈的角度,
……
βn:第n个台阶中距离本体110中心径向距离最小的端点和本体110中心的连线与极间中心线140所呈的角度,
其满足关系:
S1=C1×sin(β1×P/2)
S2=C1×sin(β2×P/2)
……
Sn=C1×sin(βn×P/2)
其中,C1为常数,P为极数,H1的取值为S1至Sn。
表1台阶的端部与本体的外边缘之间的径向宽度
P β1 弧度 β2 弧度 β3 弧度 C1 S1 S2 S3
6 12.401 0.2164 14.886 0.2598 17.432 0.3042 2.3061 1.3944 1.6209 2.0682
如表1所示,限定了转子210的极数为6极,将台阶端部与本体110的外边缘在径向方向上的间距相对于台阶端部与本体110中心连线与极间中心线140所呈的角度而言,呈以磁极中心线130为峰顶的正弦波形,从而可以有效降低气隙磁场基波及其各次谐波幅值,削弱定子220侧的负载电枢反应,有效减小各次径向谐波电磁激振力的幅值,进而提高具有该转子冲片100的电机的效率,减小电机电磁的振动噪声。
进一步地,预设方向为与磁极中心线130平行的方向。
在该实施例中,具体限定了预设方向为与磁极中心线130平行的方向,具体而言,预设方向为与磁极中心线130平行的方向,也就是说,第一槽壁121中的多个台阶中任意一个台阶的两个端点中距离本体110中心径向距离最近的端点(第一点)与本体110的外边缘之间在平行于磁极中心线130的方向上的间距,相对于该端点和本体110中心的连线与极间中心线140之间的角度而言,呈以磁极中心线130为峰顶的正弦波形,从而可以有效降低气隙磁场基波及其各次谐波幅值,削弱定子220侧的负载电枢反应,有效减小各次径向谐波电磁激振力的幅值,进而提高具有该转子冲片100的电机的效率,减小电机电磁的振动噪声。
能够理解的是,任意一个台阶的两个端点中与本体110中心径向距离最近的端点为第三点,第三点与本体110的外边缘在与磁极中心线130平行的方向上的间距为H2,第三点与本体110中心的连接与靠近该台阶的一侧的极间中心线140之间所呈的角度为γ,其中,H2和γ满足H2=C2×sin(γ×P/2),C2为常数,P为转子210的极数,其中C2不等于C1。从而使得第一槽壁121的多个台阶中任意一个台阶的两个端点中,与本体110中心径向距离最短的端点与本体110的外边缘之间沿平行于磁极中心线130方向上的间距,相对于该端点和本体110中心连线与极间中心线140之间所呈角度而言的变化趋势,呈现以磁极中心为峰顶的正弦波形变化,从而削弱电机的转矩脉动。此外,还可以防止相关技术中由于在磁体槽120与本体110的外边缘之间开设缝隙,导致磁体槽120与本体110的外边缘之间的宽度较小而导致的磁饱和问题,还可以避免相关技术中在磁体槽120与本体110的外边缘之间开设缝隙而导致转子冲片100加工难度大等问题,提高电机效率,并降低电机运行过程中产生的噪音。
另外,预设方向还可以是径向方向与平行于磁极中心线130的方向之间的其他方向,能够理解的是,只要第一槽壁121的多个台阶面1210与本体110的外边缘之间的间距在其他方向上的变化趋势能够相对于台阶中距离本体110中心径向距离最小的端点和本体110中心连线与极间中心线140之间的角度而言,呈以磁极中心线130为峰顶的正弦波形即可。
进一步地,台阶的数量为至少两个,至少两个台阶沿磁极中心线130对称设置。
在该实施例中,限定了台阶的数量为至少两个,并沿磁极中心线130对称设置,具体而言,若台阶的数量为两个,即在磁极中心线130的左右两侧各有一个台阶,若台阶的数量为四个,即在磁极中心线130的左右两侧各有两个台阶。通过在磁极中心线130两侧的台阶沿磁极中心线130对称设置,能够进一步将台阶面1210与本体110外边缘之间的间距呈以正弦波形变化,从而可以进一步降低气隙磁场基波及其各次谐波幅值,削弱定子220侧的负载电枢反应,有效减小各次径向谐波电磁激振力的幅值,进而提高具有该转子冲片100的电机的效率,减小电机电磁的振动噪声。
实施例三:
在一个具体的实施例中,进一步地,台阶面1210与连接面1211相连接的位置设置有倒角,台阶的两端与本体110的外边缘之间在预设方向上的间距L1和L2、台阶中任意一点与本体110的外边缘之间在预设方向上的间距的最小值h1满足L1≤h1≤L2。
在该实施例中,限定了多个台阶面1210中任意一个台阶面1210与其相邻的连接面1211的连接位置设置有倒角,具体地,该倒角可以为圆角,即限定了台阶面1210与连接面1211相连接的位置处的结构。进一步地,台阶的两端与本体110的外边缘之间在预设方向上的间距为L1和L2,详细地,一个台阶的两端分别连接前一个台阶的连接面1211和后一个台阶的台阶面1210,也就是说,一个台阶的一端与本体110的外边缘之间在预设方向上的间距L1为前一个台阶的距离本体110中心径向距离最近的端点与本体110外边缘之间在预设方向上的间距,一个台阶的另一端即该台阶距离本体110中心径向距离最短的端点,L2为该端点与本体110外边缘之间在预设方向上的间距,即L1和L2均符合L=C×sin(α×P/2)的关系式,该台阶中任意一点与本体110外边缘之间在预设方向上的间距的最小值位于L1和L2之间,也就是说,该台阶中任意一点与本体110外边缘之间在预设方向上的间距均位于台阶的两个端点与本体110外边缘之间在预设方向上的间距之间。
在另一个具体的实施例中,进一步地,连接面1211为圆弧面,台阶的两端与本体110的外边缘之间在预设方向上的间距L3和L4、台阶中任意一点与本体110的外边缘之间在预设方向上的间距的最小值h2满足L3≤h2≤L4。
在该实施例中,限定了连接面1211为圆弧面。进一步地,台阶的两端与本体110的外边缘之间在预设方向上的间距为L3和L4,详细地,一个台阶的两端分别连接前一个台阶的连接面1211和后一个台阶的台阶面1210,也就是说,一个台阶的一端与本体110的外边缘之间在预设方向上的间距L3为前一个台阶的距离本体110中心径向距离最近的端点与本体110外边缘之间在预设方向上的间距,一个台阶的另一端即该台阶距离本体110中心径向距离最短的端点,L4为该端点与本体110外边缘之间在预设方向上的间距,即L3和L4均符合L=C×sin(α×P/2)的关系式,该台阶中任意一点与本体110外边缘之间在预设方向上的间距的最小值位于L3和L4之间,也就是说,该台阶中任意一点与本体110外边缘之间在预设方向上的间距均位于台阶的两个端点与本体110外边缘之间在预设方向上的间距之间。
如图1至图4所示,在一个具体的实施例中,进一步地,连接面1211中远离本体110的外边缘的一端向磁极中心线130的一侧倾斜设置。
在该实施例中,限定了连接面1211为斜面,具体而言,连接面1211远离本体110外边缘的一端向磁极中心线130所在的一侧倾斜设置,另外,连接面1211的倾斜角度可以与连接面1211中距离本体110中心径向距离最近的点和本体110中心的连线与极间中心线140之间所呈的角度一致。其中,多个连接面1211的倾斜角度一致。
如图5所示,在另一个具体的实施例中,进一步地,连接面1211沿平行于磁极中心线130的方向延伸设置。
在该实施例中,限定了连接面1211沿平行于磁极中心线130的方向延伸设置,也就是说,连接面1211垂直于第一槽壁121,即限定了连接面1211另一种设置方式。
实施例四:
如图1至图4所示,在上述任一实施例的基础上,进一步地,磁体槽120包括磁体槽段和隔磁槽段123,磁体槽段用于放置转子210的导磁体211,隔磁槽段123位于磁体槽段的两端,隔磁槽段123与磁体槽段连通。
在该实施例中,限定了磁体槽120还包括磁体槽段和隔磁槽段123,具体而言,磁体槽段用于放置转子210的导磁体211,在磁体槽段的两端设备设置 隔磁槽段123,其中,隔磁槽段123与磁体槽段连通,由于导磁体211防止在磁体槽段,即隔磁槽段123为磁体端部的空隙,通过设置隔磁槽段123,能够抑制导磁体211端部的漏磁现象。
实施例五:
根据本申请的第二个方面,提供了一种转子210,转子210包括转子铁芯和多个导磁体211,其中,转子铁芯包括多个如上述任一实施例提供的转子冲片100,因而具备该转子冲片100的全部有益技术效果,在此不再赘述。
进一步地,多个转子冲片100的磁体槽段沿转子铁芯的轴向贯通以形成插槽,多个导磁体211一一对应设置在多个插槽中。
在该实施例中,转子铁芯由多个转子冲片100堆叠而成,多个转子冲片100的结构相同,从而使得磁体槽段能够沿转子铁芯的轴向贯通以形成插槽,导磁体211与插槽一一对应设置,具体地,导磁体211能够插设于插槽内。
需要说明的是,导磁体211可以为永磁体,永磁体可以为稀土磁铁。进一步地,永磁体可以为非拼接的整体插片,便于将永磁体插入插槽内,提高转子210的生产效率。
其中,相邻两个插槽内导磁体211的极性相反,即一个N极,一个S极。
进一步地,导磁体211在转子铁芯的横截面上的投影为矩形。
在该实施例中,限定了导磁体211在转子铁芯横截面上的投影为矩形,也就是说,限定了导磁体211的结构为长方体结构,便于将导磁体211插入插槽内,降低转子210的加工难度,另外,也便于磁体槽120的加工,进一步提高转子210的生产效率。
实施例六:
根据本申请的第三个方面,提供了一种电机,包括如上述任一实施例提供的转子210,因而具备该转子210的全部有益技术效果,在此不再赘述。
进一步地,电机还包括定子220,定子220套设于转子210的外侧。即 该技术方案限定的电机是转子210内置的电机,具体地,该电机可以采用将碳化硅用于逆变主电路的开关部的器件进行电路的驱动。
实施例七:
如图7所示,根据本申请的第四个方面,提供了一种压缩机300,包括如上述任一实施例提供的电机,因而具备该电机的全部有益技术效果,在此不再赘述。
实施例八:
根据本申请的第五个方面,提供了一种制冷设备,包括如上述任一实施例提供的压缩机300,因而具备该压缩机300的全部有益技术效果,在此不再赘述。
在本说明书的描述中,术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种转子冲片,其中,包括:
    本体;
    多个磁体槽,围绕所述本体的中心线间隔分布,所述磁体槽靠近所述本体的外边缘的一侧壁为第一槽壁,所述磁体槽远离所述本体的外边缘的一侧壁为第二槽壁,所述第一槽壁包括多个台阶面,所述多个台阶面包括第一台阶面和第二台阶面;
    其中,所述第一台阶面相较于所述第二台阶面靠近磁极中心线设置,所述第一台阶面与所述第二槽壁沿磁极中心线方向的间距小于所述第二台阶面与所述第二槽壁沿磁极中心线方向的间距。
  2. 根据权利要求1所述的转子冲片,其中,所述第一槽壁还包括:
    多个连接面,所述多个连接面中的任意一个连接面位于所述多个台阶面中任意相邻的两个台阶面之间,所述连接面分别与相邻的两个所述台阶面连接,一个所述台阶面与朝向磁极中心线的一侧的一个所述连接面形成一个台阶;
    在所述转子冲片的横截面内,所述台阶中与所述本体中心之间径向距离最短的点为第一点,所述第一点与所述本体的外边缘在预设方向上的间距L、所述第一点与所述本体中心的连线与极间中心线之间的夹角α满足L=C×sin(α×P/2),其中,C为常数,P为极数,所述极间中心线为靠近所述台阶的极间中心线。
  3. 根据权利要求2所述的转子冲片,其中,
    所述预设方向为所述本体的径向。
  4. 根据权利要求2所述的转子冲片,其中,
    所述预设方向为与磁极中心线平行的方向。
  5. 根据权利要求2所述的转子冲片,其中,
    所述台阶的数量为至少两个,至少两个所述台阶沿磁极中心线对称设置。
  6. 根据权利要求2所述的转子冲片,其中,
    所述台阶面与所述连接面相连接的位置设置有倒角,所述台阶的两端与所述本体的外边缘之间在所述预设方向上的间距L1和L2、所述台阶中任意一点 与所述本体的外边缘之间在所述预设方向上的间距的最小值h1满足L1≤h1≤L2。
  7. 根据权利要求2所述的转子冲片,其中,
    所述连接面为圆弧面,所述台阶的两端与所述本体的外边缘之间在所述预设方向上的间距L3和L4、所述台阶中任意一点与所述本体的外边缘之间在所述预设方向上的间距的最小值h2满足L3≤h2≤L4。
  8. 根据权利要求2至7中任一项所述的转子冲片,其中,
    所述连接面中远离所述本体的外边缘的一端向磁极中心线所在的一侧倾斜设置。
  9. 根据权利要求2至7中任一项所述的转子冲片,其中,
    所述连接面沿平行于磁极中心线的方向延伸设置。
  10. 根据权利要求1至7中任一项所述的转子冲片,其中,所述磁体槽包括:
    磁体槽段,所述磁体槽段用于放置转子的导磁体;
    隔磁槽段,位于所述磁体槽段的两端,所述隔磁槽段与所述磁体槽段连通。
  11. 一种转子,其中,所述转子包括:
    转子铁芯,包括多个如权利要求1至10中任一项所述的转子冲片,多个所述转子冲片的磁体槽段沿所述转子铁芯的轴向贯通以形成插槽;
    多个导磁体,所述多个导磁体一一对应设置在所述多个插槽中。
  12. 根据权利要求11所述的转子,其中,
    所述导磁体在所述转子铁芯的横截面上的投影为矩形。
  13. 一种电机,其中,包括:
    如权利要求11或12所述的转子;
    定子,套设于所述转子的外侧。
  14. 一种压缩机,其中,包括如权利要求13所述的电机。
  15. 一种制冷设备,其中,包括如权利要求14所述的压缩机。
PCT/CN2020/134783 2020-11-30 2020-12-09 转子冲片、转子、电机、压缩机和制冷设备 WO2022110304A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011380774.3 2020-11-30
CN202011380774.3A CN112467908B (zh) 2020-11-30 2020-11-30 转子冲片、转子、电机、压缩机和制冷设备

Publications (1)

Publication Number Publication Date
WO2022110304A1 true WO2022110304A1 (zh) 2022-06-02

Family

ID=74805380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134783 WO2022110304A1 (zh) 2020-11-30 2020-12-09 转子冲片、转子、电机、压缩机和制冷设备

Country Status (2)

Country Link
CN (1) CN112467908B (zh)
WO (1) WO2022110304A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140084744A1 (en) * 2012-09-27 2014-03-27 Denso Corporation Rotary electric machine
CN108599421A (zh) * 2018-06-19 2018-09-28 珠海凌达压缩机有限公司 转子冲片、斜极转子及电机
CN108923559A (zh) * 2018-08-15 2018-11-30 珠海格力节能环保制冷技术研究中心有限公司 电机转子和永磁电机
CN109672286A (zh) * 2018-12-06 2019-04-23 东南大学 一种不对称磁障式永磁磁阻同步电机转子结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5518026B2 (ja) * 2011-10-19 2014-06-11 三菱電機株式会社 回転子、その回転子を備えた電動機、その電動機を備えた圧縮機、その圧縮機を備えた冷凍サイクル装置、およびその冷凍サイクル装置を備えた空気調和機
JP5995057B2 (ja) * 2012-04-24 2016-09-21 富士電機株式会社 磁石埋込型永久磁石回転電機のロータおよびその組立方法
CN204633494U (zh) * 2015-05-25 2015-09-09 广东美芝制冷设备有限公司 外转子式电机的转子和具有该转子的压缩机
CN105099028B (zh) * 2015-08-18 2018-02-09 重庆凌达压缩机有限公司 电机的转子铁芯及电机
JP6481642B2 (ja) * 2016-03-03 2019-03-13 トヨタ自動車株式会社 ロータの製造方法
CN206542315U (zh) * 2016-12-16 2017-10-03 日本电产凯宇汽车电器(江苏)有限公司 一种汽车刹车系统无刷电机转子冲片
CN209072187U (zh) * 2018-12-20 2019-07-05 珠海格力节能环保制冷技术研究中心有限公司 永磁电机及电机转子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140084744A1 (en) * 2012-09-27 2014-03-27 Denso Corporation Rotary electric machine
CN108599421A (zh) * 2018-06-19 2018-09-28 珠海凌达压缩机有限公司 转子冲片、斜极转子及电机
CN108923559A (zh) * 2018-08-15 2018-11-30 珠海格力节能环保制冷技术研究中心有限公司 电机转子和永磁电机
CN109672286A (zh) * 2018-12-06 2019-04-23 东南大学 一种不对称磁障式永磁磁阻同步电机转子结构

Also Published As

Publication number Publication date
CN112467908A (zh) 2021-03-09
CN112467908B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
JP4709132B2 (ja) 永久磁石埋込型モータの回転子及び送風機用電動機及び圧縮機用電動機
JPWO2013061397A1 (ja) 永久磁石埋込型モータの回転子並びに圧縮機及び冷凍空調装置
JP5242720B2 (ja) 永久磁石埋込型モータの回転子
WO2022110304A1 (zh) 转子冲片、转子、电机、压缩机和制冷设备
CN111711292A (zh) 转子结构、电机及压缩机
CN110620447B (zh) 永磁电机及压缩机
JP5959616B2 (ja) 永久磁石埋込型モータの回転子並びに圧縮機及び冷凍空調装置
CN112003399A (zh) 转子、电机、压缩机及空调器、车辆
CN113364177B (zh) 斜极转子、电机、压缩机及空调器
CN115912706A (zh) 一种转子结构、电机和压缩机
CN212435453U (zh) 转子结构、电机及压缩机
CN109038890B (zh) 电机
CN216851480U (zh) 电机的转子和电机
JP2009100530A (ja) 回転電動機のロータ構造
CN219247552U (zh) 一种定子冲片、定子铁芯及电机
CN219351382U (zh) 转子结构和电机
CN216146169U (zh) 一种永磁电机转子冲片结构
EP4191835A1 (en) Rotor of interior permanent magnet synchronous motor
CN210120440U (zh) 转子、电机、压缩机和制冷设备
CN218976439U (zh) 转子冲片、转子、电机及压缩机
CN219717972U (zh) 一种永磁同步电机转子冲片
CN216959469U (zh) 自起动同步磁阻电机转子和电机
CN216819529U (zh) 自起动同步磁阻电机转子和电机
CN112421822B (zh) 转子铁芯、转子结构、电机和压缩机以及具有其的电器
CN112436628B (zh) 电机、压缩机和制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963192

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20963192

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21-11-2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20963192

Country of ref document: EP

Kind code of ref document: A1