WO2022110204A1 - 一种电化学装置和电子装置 - Google Patents

一种电化学装置和电子装置 Download PDF

Info

Publication number
WO2022110204A1
WO2022110204A1 PCT/CN2020/132918 CN2020132918W WO2022110204A1 WO 2022110204 A1 WO2022110204 A1 WO 2022110204A1 CN 2020132918 W CN2020132918 W CN 2020132918W WO 2022110204 A1 WO2022110204 A1 WO 2022110204A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
material layer
electrochemical device
Prior art date
Application number
PCT/CN2020/132918
Other languages
English (en)
French (fr)
Inventor
金文博
董佳丽
何丽红
谢远森
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202080010017.9A priority Critical patent/CN113424348B/zh
Priority to PCT/CN2020/132918 priority patent/WO2022110204A1/zh
Priority to EP20963092.0A priority patent/EP4254547A1/en
Publication of WO2022110204A1 publication Critical patent/WO2022110204A1/zh
Priority to US18/324,419 priority patent/US20230299277A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the technical field of secondary batteries, and in particular relates to an electrochemical device and an electronic device including the electrochemical device.
  • an aspect of the present application provides an electrochemical device, which includes an electrolyte and a negative electrode sheet, the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer disposed on at least one surface of the negative electrode current collector, so The negative electrode active material layer includes a negative electrode active material, and the tortuosity T of the negative electrode active material layer satisfies the relationship: 1 ⁇ T ⁇ 2.5.
  • Lt can be understood as the shortest path for the electrolyte to pass through in the anode active material layer.
  • the inventors found that the degree of tortuosity has a significant effect on the wettability of the negative electrode sheet. Limiting the tortuosity of the pore structure of the negative electrode sheet can shorten the transmission path of the electrolyte in the negative electrode active material layer, which can significantly improve the production process and reduce the static time after injection and the low temperature discharge performance of the battery.
  • adjusting the tortuosity T is adopted to adjust the pore structure of the negative electrode sheet (ie, the tortuosity T is limited to T ⁇ 2.5), so as to improve the wettability of the negative electrode sheet.
  • the tortuosity T is affected by the particle size distribution, the compaction density of the negative electrode sheet, and the porosity.
  • Lt 2 ⁇ (PD ⁇ Dv99) ⁇ (1- ⁇ )
  • the unit is ⁇ m
  • L 0 is the negative electrode active material
  • PD is the value of the compaction density of the negative electrode active material layer, in g/cm 3
  • Dv99 represents the measured negative electrode active material 99% of the particle volume is smaller than this value
  • the unit is ⁇ m
  • is the porosity of the negative electrode sheet.
  • the compaction density PD of the negative electrode sheet By adjusting the compaction density PD of the negative electrode sheet, the negative electrode active material particle Dv99 and the porosity ⁇ , the transmission path Lt of the electrolyte in the negative electrode sheet is affected, and the tortuosity T of the negative electrode sheet is changed.
  • the tortuosity T of the pore structure of the negative electrode sheet satisfies a certain condition.
  • the tortuosity T is closely related to the compaction density PD and porosity ⁇ of the negative electrode sheet, and the porosity of the negative electrode sheet also affects the wettability.
  • the pore structure of the negative electrode active material layer is rich, the flow paths of the electrolyte are also rich, and the wettability of the electrolyte is improved.
  • the compaction density of the negative electrode sheet and/or the Dv99 of the negative electrode active material particles will affect the density and shape of the particles, which in turn affects the flow path of the electrolyte.
  • the Dv99 of the negative electrode active material particles in the negative electrode sheet satisfies 30 ⁇ D V 99 ⁇ 60, and the unit is ⁇ m.
  • the porosity ⁇ of the negative electrode active material layer in the negative electrode sheet satisfies: 20% ⁇ 40%.
  • the compaction density of the negative electrode active material layer in the negative electrode sheet is PD g/cm 3 , and the value of PD is 1.50 ⁇ PD ⁇ 1.75. If the negative electrode active material layer is too compacted, the particles will tend to be flat. Even if there are pores, the transmission path of the electrolyte will be significantly longer, which is not conducive to the circulation of the electrolyte. Therefore, by limiting the compaction density PD of the negative electrode active material layer to a certain range, it is possible to take into account the wettability of the electrolyte while ensuring the energy density of the electrochemical device.
  • the negative active material includes artificial graphite, natural graphite, or a combination thereof.
  • the tortuosity T may also be affected by particle morphology, sphericity, and OI value of the negative electrode sheet.
  • S50 represents the shape factor value corresponding to the cumulative particle volume content of 50%
  • Sphericity represents the ratio of the circular perimeter of the particle's equivalent projected area to its projected actual perimeter.
  • the negative electrode active material includes primary particles, secondary particles, or mixed particles composed of primary particles and secondary particles.
  • the Dv99 of the negative electrode active material particles satisfies 0.6L 0 ⁇ Dv99 ⁇ 0.9L 0 . If Dv99 is too large, it is not conducive to the uniform distribution between particles, and has a certain impact on the uniformity of the pore structure of the negative electrode active material layer, which in turn affects the wettability of the electrolyte, so 0.6L 0 ⁇ Dv99 ⁇ 0.9L 0 .
  • L 0 satisfies 30 ⁇ L 0 ⁇ 140, and the unit is ⁇ m.
  • the bonding force between the negative electrode active material layer and the negative electrode current collector is F ⁇ 6N.
  • the negative electrode active material layer of the negative electrode sheet is The cohesive force between the current collectors is limited to F ⁇ 6N.
  • the OI value of the negative electrode sheet is affected by the arrangement of the negative electrode active material particles in the negative electrode active material layer, and this value may affect the tortuosity of the negative electrode active material, thereby affecting the low-temperature performance of the electrochemical device.
  • the areal density of the anode active material layer is 0.035 mg/mm 2 to 0.091 mg/mm 2 .
  • the negative electrode sheet further includes a binder and a dispersant.
  • the binder is selected from organic latex materials, for example from styrene-butadiene latex.
  • the dispersing agent may be selected from dispersing agents commonly used in the art, such as polymeric carbohydrate materials. In the present application, the dispersing agent may be selected from sodium carboxymethyl cellulose.
  • the negative electrode sheet further includes a conductive agent
  • the conductive agent can be selected from conductive agents commonly used in the art, such as one or more combinations of carbon nanotubes, conductive carbon black, and graphene.
  • the present application also provides an electronic device including the electrochemical device as described above.
  • the electrolyte includes a compound containing a sulfur-oxygen double bond; the compound containing a sulfur-oxygen double bond includes methylene methanedisulfonate (MMDS), propenyl-1,3-sulfonic acid Acid lactone (PES), 1,3-propane disulfonic anhydride (SA), 1,3-propane sultone (PS), 2,4-butane sultone (BS) or vinyl sulfate (DTD) at least one of them.
  • MMDS methylene methanedisulfonate
  • PES propenyl-1,3-sulfonic acid Acid lactone
  • SA 1,3-propane disulfonic anhydride
  • PS 1,3-propane sultone
  • BS 2,4-butane sultone
  • DTD vinyl sulfate
  • the content of the compound containing a sulfur-oxygen double bond is 0.1%-5%.
  • the electrolyte solution further contains a sulfur-oxygen double bond compound, which can further improve the low-temperature discharge performance of the electrochemical device.
  • the electrolyte includes lithium difluorophosphate.
  • the content of the lithium difluorophosphate is 1% or less.
  • the viscosity of the electrolyte will increase, the wettability of the negative electrode sheet will be affected, and the low-temperature performance of the electrochemical device will be affected.
  • the electrolyte transmission path can be shortened and the wettability of the negative electrode sheet can be improved.
  • the use of the negative electrode sheet of the present application can significantly improve the reduction of the static time after liquid injection in the production process and the low temperature discharge performance of the battery.
  • Fig. 1 is the schematic diagram of the meaning of the parameter involved in the tortuosity calculation of the negative electrode active material
  • Fig. 2 is the schematic diagram of Lt and L 0 of negative electrode sheet
  • Figure 3 shows the morphology of the graphite particles on the negative electrode sheet
  • Fig. 4 is the SEM image of the cross section of the negative electrode sheet
  • FIG. 5 is an enlarged SEM view of the cross section of the negative electrode sheet.
  • the negative electrode active material graphite, the binder styrene-butadiene rubber, and the thickener sodium carboxymethyl cellulose are mixed according to the weight ratio of 97:2:1, and then fully stirred and mixed in an appropriate amount of deionized water solvent to form a uniform
  • the negative electrode slurry this slurry is coated on the current collector Cu foil, dried and cold pressed to obtain a negative electrode sheet.
  • the graphite material whose particle size Dv99 range is 30 ⁇ m-50 ⁇ m (Dv99 in Example 6 is 40 ⁇ m) is selected, and the weight range of the single-sided negative electrode active material layer of the negative electrode sheet is 0.035mg/mm 2 to 0.091 mg/mm 2 , (in Example 6, the weight of the negative electrode active material layer on one side of the negative electrode sheet is about 0.045 mg/mm 2 ), in order to ensure the tortuosity of the negative electrode sheet T ⁇ 2.5 while taking into account the processing performance, Dv99 needs to meet 0.6 THK ⁇ Dv99 ⁇ 0.9THK, therefore, the thickness of the single-sided negative electrode active material layer after cold pressing is controlled to a range of THK of 34 ⁇ m-83 ⁇ m, the compaction of the negative electrode sheet to a PD range of 1.55g/cm 3 -1.75g/cm 3 , and the cooling of the negative electrode sheet is controlled.
  • the pressure range is controlled to be 10m/min-50m/min
  • the positive electrode selects lithium iron phosphate as the positive electrode active material, and it is fully stirred and mixed with the conductive agent acetylene black and the binder polyvinylidene fluoride in an appropriate amount of N-methylpyrrolidone solvent in a weight ratio of 96.3:2.2:1.5 to make it A uniform positive electrode slurry is formed; the slurry is coated on the current collector Al foil, dried and cold pressed to obtain a positive electrode sheet.
  • ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) were prepared in a mass ratio of 20 : 20:30:30 for mixing, then add 2% fluoroethylene carbonate and 2% 1,3-propane sultone, dissolve and stir well, add lithium salt LiPF 6 , and mix well to obtain a basic electrolyte .
  • concentration of LiPF 6 is 1 mol/L.
  • the percentage content of substances in the electrolyte is the mass percentage calculated based on the total mass of the electrolyte.
  • a PE porous polymer film is selected as the separator, and the above-mentioned negative electrode sheet and positive electrode sheet are wound together with the separator, placed in an aluminum plastic film, and then injected, left to stand, and formed into a lithium ion secondary battery.
  • the electrolytes and lithium ion batteries of Examples 1 to 11 and Comparative Examples 1 to 2 were prepared according to the above preparation method; and the battery was tested for cycle performance.
  • the battery was placed in a 25°C incubator to stand, and the time t 1 was started after the liquid injection until the time t 2 after the surface of the negative electrode was saturated with the electrolyte. Whether all positions of the sheet are infiltrated by the electrolyte, especially the corners and edges, if all the infiltrations are considered complete, the infiltration time t is t 2 -t 1 .
  • the compaction PD of the pole piece, the particle size Dv99 and the porosity ⁇ affect the transmission path Lt of the electrolyte in the pole piece, thereby changing the tortuosity T of the pole piece.
  • the transmission path of the electrolyte in the pole piece Lt 2 ⁇ (PD ⁇ Dv99) ⁇ (1- ⁇ ), when the compaction PD of the control pole piece, the particle size Dv99 and the porosity ⁇ meet certain conditions, the Lt/L 0
  • the value can satisfy ⁇ 2.5, that is, the tortuosity T ⁇ 2.5.
  • Examples 1 to 11 indicate that the tortuosity T of the aperture of the negative electrode sheet satisfies T ⁇ 2.5 for the standing time after liquid injection and the low-temperature discharge performance of the battery; Comparative Examples 1 to 2 indicate that the tortuosity of the negative electrode sheet does not meet the requirements of T ⁇ 2.5. Satisfy the above conditions corresponding to the standing time after liquid injection and the low temperature discharge performance of the battery.
  • Example 1 to Example 11 in Table 1 it can be found that the smaller tortuosity of the aperture of the negative electrode sheet is beneficial to the wettability junction of the electrode sheet and the low-temperature discharge performance of the battery.
  • the tortuosity of Examples 1 to 11 are all ⁇ 2.5. It can be found that the standing time after liquid injection is relatively short, and the rate performance is excellent. This is because the lower tortuosity can ensure that the pore structure in the pole piece is abundant, and The particles will not be flat, which is very conducive to the circulation of the electrolyte inside the negative electrode sheet. The circulation speed and path of the electrolyte are rich, which can reduce the standing time after injection and improve the production efficiency.
  • the good wettability of the electrolyte is beneficial to the low-temperature discharge capacity of the battery, and the low temperature will affect the circulation of the electrolyte.
  • the negative electrode sheet has rich pore structure and uniform distribution, this effect will be small, and the battery will also perform excellent at low temperature. rate performance. From Comparative Example 1 to Comparative Example 2, it can be found that when the tortuosity T is greater than 2.5, the standing time after injection is significantly increased, and the low temperature rate performance of the battery is also significantly deteriorated.
  • the test data are shown in Table 2.
  • Example 6 0.68 28 83.1%
  • Example 12 0.70
  • Example 13 0.73
  • Example 14 0.78 twenty four 84.5%
  • Example 15 0.80
  • Example 16 0.85
  • Example 17 0.90
  • Example 18 0.92 28 84.0%
  • Example 15 In order to further ensure the structural stability, low temperature performance and capacity density of the negative electrode sheet, further optimization was carried out on the basis of Example 15. In order to ensure the stability of the structure of the negative electrode sheet, avoid decarburization and powder removal, which will affect the battery performance, ensure reliable bonding strength between the negative electrode active material layer and the current collector, and limit the adhesion between the active material layer of the negative electrode sheet and the current collector. The knot force F ⁇ 6N.
  • the OI value of the negative electrode sheet has a significant impact on the low temperature performance of the battery. If the OI value is too high, in addition to weak low-temperature discharge capacity, it may also cause safety risks such as lithium precipitation. Therefore, the negative electrode sheet is limited to 5 ⁇ OI value ⁇ 15.
  • the areal density of the negative electrode sheet is limited to 0.035mg/mm 2 -0.091mg/mm 2 .
  • the negative electrode active material can be artificial graphite, natural graphite or mixed graphite, preferably artificial graphite, and for the structure of graphite, primary particles, secondary particles or composite particles can be used.
  • the improvement of the bonding force is beneficial to low-temperature discharge, and the OI value of the negative electrode sheet or the layer density of the negative electrode active material will cause a slight loss of low temperature performance. Therefore, the particle size bonding force F, the OI value of the negative electrode sheet and the negative electrode The sheet density within a certain range can optimize the resting time after liquid injection and the low temperature discharge performance of the battery.
  • the present application can improve the wettability of the negative electrode active material by setting the tortuosity of the pores between the negative electrode active materials in the negative electrode sheet T ⁇ 2.5.
  • the negative electrode sheet of the present application the static time after liquid injection of the lithium electronic battery can be shortened, and the low-temperature discharge performance of the battery can be improved.
  • Example 15 On the basis of Example 15, the composition of the electrolyte was further optimized to optimize the standing time after injection and the low-temperature discharge performance of the battery.
  • the test data are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种电化学装置及电子装置,电化学装置包括电解液和负极片;负极片包括负极集流体和设置在负极集流体至少一个表面上的负极活性材料层,负极活性材料层包含负极活性材料,负极活性材料层的迂曲度T满足关系:1<T≤2.5;迂曲度T为电解液在负极活性材料层的孔隙中的传输路径长度L t与负极活性材料层的厚度L 0的比值。通过将迂曲度T限定在特定的范围内,可以使电解液传输路径变短,提高负极片的浸润性,从而缩短生产过程中电化学装置注液后的静置时间,同时改善电化学装置的低温放电性能。

Description

一种电化学装置和电子装置 技术领域
本申请属于二次电池技术领域,具体地涉及一种电化学装置以及包括该电化学装置的电子装置。
背景技术
随着电化学装置,例如锂离子电池市场不断扩大,对电池的性能要求也在一直不断提升,其中低温放电性能就是一个重要的指标,尤其是对于电动车、电动工具等。此外,动力市场对电池的成本要求限制非常高,必须保证成本低廉,而生产时间周期对成本的影响非常大。为满足市场需求,就需要开发出具有优异电解液浸润性的负极片和具有优异低温性能的锂离子电池。现有技术在电池注液后通常是常温与高温静止较长时间来保证电解液完全浸润极片,时间比较久,严重影响到电池生产速度。此外,该方式对于改善电池的倍率性能非常有限,已经无法满足市场对低温放电的需求了,因此,就需要通过开发新技术来满足成本与低温放电性能的需求。
发明内容
为满足上述成本与低温放电性能的需求,本申请通过如下方面实现。
具体地,本申请的一方面提供一种电化学装置,其包括电解液和负极片,所述负极片包括负极集流体和设置在所述负极集流体至少一个表面上的负极活性材料层,所述负极活性材料层包含负极活性材料,所述负极活性材料层的迂曲度T满足关系:1<T≤2.5。
在本申请中,迂曲度T被定义为电解液在负极活性材料层的孔隙中通过的传输路径长度Lt与负极活性材料层厚度L 0的比值,即T=Lt/L 0,如图1所示。Lt可以理解为电解液在负极活性材料层中通过的最短路径。
在本申请中,发明人发现,迂曲度对负极片的浸润性具有显著影响。限制负极片孔隙结构的迂曲度,可以使得电解液在负极活性材料层中的传输路径变短,这对于生产过程减少注液后静止时间和电池的低温放电性能都有明显改善作用。
在本申请中,采用调整迂曲度T来调整负极片的孔隙结构(即,将迂曲度T限定为T≤2.5),从而改善负极片的浸润性。迂曲度T会受到颗粒尺寸分布、负极片压实密度、孔隙率的影响。在迂曲度T计算方法中,电解液在负极片中的传输路径Lt的值可用公式Lt=2×(PD×Dv99)×(1-ε)计算,单位为μm,L 0即为负极活性材料层远离负极集流体一侧的表面到负极集流体的垂直距离的值,单位为μm,PD为负极活性材料层压实密度的值,单位为g/cm 3,Dv99代表测得的负极活性材料颗粒体积有99%小于该值的数值,单位为μm,ε为负极片的孔隙率。通过调整负极片压实密度PD、负极活性材料颗粒Dv99和孔隙率ε,从而影响电解液在负极片中的传输路径Lt,改变负极片迂曲度T。在本申请中,负极片的孔隙结构的迂曲度T满足一定条件。同时,迂曲度T与负极片压实密度PD和孔隙率ε密切相关,负极片的孔隙率对浸润性也有影响。如果负极活性材料层孔隙结构丰富,则电解液流通路径也丰富,电解液浸润性得到改善。负极片压实密度和/或负极活性材料颗粒的Dv99会影响到颗粒的排布密集程度与形状,进而影响到电解液的流通路径。
在本申请的一个实施例中,所述负极片中的负极活性材料颗粒的Dv99为的值满足30≤D V99≤60,单位为μm。
在本申请的一个实施例中,所述负极片中的负极活性材料层的孔隙率ε满足:20%≤ε≤40%。
在本申请的一个实施例中,所述负极片中的负极活性材料层的压实密度为PD g/cm 3,PD的值为1.50≤PD≤1.75。负极活性材料层压实过高会使得颗粒趋于扁平状,即使存在孔隙,电解液的传输路径也会明显变长,不利于电解液的流通。因此,将负极活性材料层的压实密度PD限定在一定范围内,能够在保证电化学装置的能量密度的情况下兼顾电解液的浸润性能。
在本申请的一个实施例中,所述负极活性材料包含人造石墨、天然石墨或其组合。
在本申请中,迂曲度T还可能受到颗粒形貌、球形度、负极片OI值的影响。
在本申请的一个实施例中,所述负极活性材料的颗粒球形度占比满 足:S50=0.70-0.90;
S50表示颗粒体积累积含量为50%对应的形状因子值;
球形度表示颗粒等效投影面积的圆形周长与其投影的实际周长之比。
在本申请的一个实施例中,所述负极活性材料包含一次颗粒、二次颗粒、或由一次颗粒和二次颗粒组成的混合颗粒。
在本申请的一个实施例中,所述负极活性材料颗粒的Dv99满足0.6L 0≤Dv99≤0.9L 0。如果Dv99过大,不利于颗粒间分布均匀,对负极活性材料层的孔径结构的均一性产生一定影响,进而影响电解液浸润性,因此限定0.6L 0≤Dv99≤0.9L 0
在本申请的一个实施例中,L 0满足30≤L 0≤140,单位为μm。
在本申请的一个实施例中,所述负极活性材料层与所述负极集流体之间的粘结力F≥6N。为了保证负极片结构的稳定性,避免负极活性材料层从负极集流体脱落,影响电池性能,保证负极活性材料与集流体之间具有可靠的粘结强度,因此将负极片的负极活性材料层与集流体之间的粘结力限制为F≥6N。
在本申请的一个实施例中,所述负极片的OI值满足:5≤OI值≤15,OI值由公式OI值=C004/C110计算得到;其中,采用X射线衍射图谱测试,C004是在54.30°至54.60°的特征峰面积的值,C110是在77.35°至77.50°的特征峰面积的值,OI值=C004/C110。负极片的OI值受负极活性材料层中负极活性材料颗粒的排列情况的影响,该值可能影响负极活性材料迂曲度,从而影响电化学装置的低温性能。
在本申请的一个实施例中,所述负极活性材料层的面密度为0.035mg/mm 2至0.091mg/mm 2
在本申请的一个实施例中,所述负极片还包括粘结剂、分散剂。粘结剂选自有机乳胶材料,例如选自丁苯乳胶。分散剂可以选自本领域常用的分散剂,例如聚合物糖类材料。在本申请中,分散剂可选自羧甲基纤维素钠。
在本申请的一个实施例中,所述负极片还包括导电剂,导电剂可以选自本领域常用的导电剂,例如碳纳米管、导电炭黑、石墨烯中的一种或两种以上组合。本申请还提供一种电子装置,包括如上所述的电化学装置。
本申请的一个实施例中,所述电解液包括含有硫氧双键的化合物;所 述含有硫氧双键的化合物包含甲烷二磺酸亚甲酯(MMDS)、丙烯基-1,3-磺酸内酯(PES)、1,3-丙烷二磺酸酐(SA)、1,3-丙烷磺内酯(PS)、2,4-丁烷磺内酯(BS)或硫酸乙烯酯(DTD)中的至少一种。
本申请的一个实施例中,基于所述电解液的重量,所述含有硫氧双键的化合物的含量为0.1%-5%。在所述电解液中进一步包含硫氧双键化合物,能更进一步改善电化学装置的低温放电性能。
本申请的一个实施例中,所述电解液包含二氟磷酸锂。
本申请的一个实施例中,基于所述电解液的重量,所述二氟磷酸锂的含量为1%以下。当二氟磷酸锂含量高于1%时,会导致电解液粘度增大,负极片的浸润性受到影响,导致电化学装置的低温性能受到影响。
本申请提供的技术方案可以达到以下有益效果:
本申请通过限定负极片中的迂曲度T在特定的范围内,可以使电解液传输路径变短,提高负极片的浸润性。采用本申请的负极片,对生产过程减少注液后静止时间和电池的低温放电性能都有明显的改善作用。
附图说明
图1是负极活性材料的迂曲度计算涉及的参数的含义的示意图;
图2是负极片的Lt与L 0的示意图;
图3示出负极片上的石墨颗粒的形貌;
图4是负极片截面的SEM图;
图5是负极片截面的SEM放大图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例及附图,对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请提供的技术方案及所给出的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
锂离子二次电池的制备
在本申请中,选取的负极活性材料石墨满足上述的描述:石墨颗粒球 形度占比满足S50=0.70-0.89,粒度满足0.6L 0≤Dv99≤0.9L 0。将负极活性材料石墨、粘结剂丁苯橡胶、增稠剂羧甲基纤维素钠按照重量比97∶2∶1配比,再用适量的去离子水溶剂中充分搅拌混合,使其形成均匀的负极浆料;将此浆料涂覆于集流体Cu箔上,烘干、冷压,得到负极片。以实施例6做为示例,选择石墨材料的颗粒度Dv99范围为30μm-50μm(实施例6中Dv99为40μm)的石墨材料,负极片单面负极活性材料层的重量范围为0.035mg/mm 2至0.091mg/mm 2,(在实施例6中负极片单面负极活性材料层的重量为约0.045mg/mm 2),为保证负极片迂曲度T≤2.5同时兼顾加工性能,Dv99需满足0.6THK≤Dv99≤0.9THK,因此控制冷压后单面负极活性材料层厚度THK范围为34μm-83μm,控制负极片压实PD范围为1.55g/cm 3-1.75g/cm 3,控制负极片冷压速度范围控制为10m/min-50m/min。
正极选取磷酸铁锂作为正极活性材料,将其与导电剂乙炔黑、粘结剂聚偏二氟乙烯按重量比96.3∶2.2∶1.5在适量的N-甲基吡咯烷酮溶剂中充分搅拌混合,使其形成均匀的正极浆料;将此浆料涂覆于集流体Al箔上,烘干、冷压,得到正极片。
电解液的制备:在干燥的氩气气氛手套箱中,将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)按照质量比为20∶20∶30∶30进行混合,接着加入2%的氟代碳酸乙烯酯和2%的1,3-丙烷磺内酯,溶解并充分搅拌后加入锂盐LiPF 6,混合均匀后获得基础电解液。其中,LiPF 6的浓度为1mol/L。电解液中物质的百分含量为基于电解液的总质量计算得到的质量百分数。
隔离膜选择PE多孔聚合物薄膜作为隔离膜,取上述负极片和正极片与隔离膜一起卷绕,放置于铝塑膜中,之后注液、静置、化成,制成锂离子二次电池。
按照上述制备方法制备实施例1至实施例11以及对比例1至对比例2的电解液及锂离子电池;并对电池进行循环性能测试。
循环测试流程:
低温放电倍率测试流程:
(1)调整炉温至25℃,静置5min;
(2)0.5C放电至2.5V;
(3)静置30min;
(4)0.2C充电至3.6V,恒压充电至电流为0.025C;
(5)静置10min;
(6)1.0C放电至电压为2.5V(基准容量);
(7)静置10min;
(8)0.2C充电至3.6V,恒压至0.025C;
(9)静置10min;
(10)调节炉温至-10℃,静置60min;
(11)1.0C放电至2.5V;
(12)0.2C充电至3.6V,恒压充电至电流为0.025C;
(13)静置10min;
(14)1.0C放电至2.5V(-10℃放电容量);
(15)调节炉温至25℃,静置60min;
(16)测试结束。
注液后静置时间测试:
注液后电池置于25℃恒温箱中静置,从注液后开始计时t 1,直至负极片表面被电解液浸透后时间t 2,每隔一小时拆解一枚电池,观察整条极片是否所有位置都被电解液浸润,尤其是拐角处与边缘处,如果全部浸润则认为浸润完成,浸润时间t即为t 2-t 1
各实施例和对比例的参数以及测试结果见表1。
极片压实PD、颗粒度Dv99与孔隙率ε影响电解液在极片中的传输路径Lt,进而改变极片迂曲度T。电解液在极片中的传输路径Lt=2×(PD×Dv99)×(1-ε),在控制极片压实PD、颗粒度Dv99与孔隙率ε满足一定条件时,Lt/L 0的值即可满足≤2.5,即迂曲度T≤2.5。
在表1中,实施例1至实施例11为负极片孔径的迂曲度T满足T≤2.5的注液后静置时间和电池低温放电性能;对比例1至对比例2为负极片迂曲度不满足上述条件所对应的注液后静置时间和电池低温放电性能。
表1
Figure PCTCN2020132918-appb-000001
从表1的实施例1至实施例11可以发现,较小的负极片孔径的迂曲度有利于极片浸润性结和电池低温放电性能。实施例1至实施例11的迂曲度均≤2.5,可以发现注液后的静置时间比较短,而且倍率性能优异,这是因为较低的迂曲度可以保证极片中的孔隙结构丰富,且颗粒不至于呈现扁平状,非常有利于电解液在负极片内部的流通,电解液的流通速度与路径丰富,可以减少注液后的静置时间,提高了生产效率。此外,电解液浸润性好对于电池的低温放电能力有利,低温会影响电解液流通,但是在负极片孔隙结构丰富,分布均匀的时候,这种影响会较小,电池低温下也会表现出优异的倍率性能。从对比例1至对比例2可以发现当迂曲度T大于2.5时,注液后静置时间明显增加,电池的低温倍率性能也明显恶化。
为了进一步控制负极片中孔结构的均匀分布,在实施例6的基础上进一步优化。限制负极活性材料的颗粒球形度占比满足S50=0.70-0.90,S50过大,不利于颗粒的相间均匀,负极片的孔隙路径规则单一,不利于电解液的多路径流通。S50过小,说明带菱角的颗粒比较多,这种情况下颗粒相间插孔分布,导致孔隙结构明显减少,不利于电解液的浸润与流通,从而影响到电池的低温性能,因此限定负极活性材料的颗粒球形度占比满足 S50=0.70-0.90。
在实施例6的基础上进一步限制负极活性材料的颗粒球形度占比满足S50=0.70-0.90来优化注液后静置时间和电池的低温放电性能。测试数据见表2。
表2
  S50 注液后静置时间t(h) -10℃放电倍率
实施例6 0.68 28 83.1%
实施例12 0.70 26 84.1%
实施例13 0.73 25 84.4%
实施例14 0.78 24 84.5%
实施例15 0.80 25 84.5%
实施例16 0.85 26 84.4%
实施例17 0.90 26 84.2%
实施例18 0.92 28 84.0%
通过表2可以发现,在材料颗粒球形度占比满足S50=0.70-0.90时,注液后静置时间与低温放电性能表现均比较优异。
为了进一步保证负极片的结构稳定性、低温性能和能力密度,在实施例15的基础上进一步优化。为了保证负极片结构的稳定性,避免脱碳掉粉,影响电池性能,保证负极活性材料层与集流体之间具有可靠的粘结强度,限制负极片的活性材料层与集流体之间的粘结力F≥6N。负极片OI值对于电池的低温性能具有明显影响,OI值过高,除了低温放电能力弱,还可能产生析锂等安全风险,因此限制负极片5≤OI值≤15。为了保证电池的低温性能与能量密度,限制负极片的面密度范围为0.035mg/mm 2-0.091mg/mm 2。负极活性材料可以是人造石墨、天然石墨或者混合石墨,优选人造石墨,对于石墨的结构,一次颗粒、二次颗粒或者复合颗粒均可以。
在实施例15的基础上进一步限制粘结力F、OI值与负极片面密度来优化注液后静置时间和电池的低温放电性能。测试数据见表3。
表3
Figure PCTCN2020132918-appb-000002
通过表3可以发现,粘结力提高对于低温放电有利,负极片OI值或负极活性材料层面密度较大会对低温性能带来轻微损失,因此限制颗粒度粘结力F、负极片OI值与负极片面密度在一定范围可以优化注液后静置时间和电池的低温放电性能。
综上所述,本申请通过将负极片中负极活性材料之间孔隙的迂曲度T≤2.5,可以提高负极活性材料的浸润性。采用本申请的负极片,可以缩短锂电子电池的注液后静止时间,并改善电池的低温放电性能。
在实施例15的基础上进一步优化电解液组成来优化注液后静置时间和电池的低温放电性能。测试数据见表4。
表4
Figure PCTCN2020132918-appb-000003
Figure PCTCN2020132918-appb-000004
“-”表示未添加
通过表4可以发现,适当的调整电解液的组成,能够更进一步改善负极片的浸润性能,同时改善电池的低温放电倍率。

Claims (11)

  1. 一种电化学装置,其包括电解液和负极片;所述负极片包括负极集流体和设置在所述负极集流体至少一个表面上的负极活性材料层,所述负极活性材料层包含负极活性材料,其特征在于,所述负极活性材料层的迂曲度T满足关系:1<T≤2.5;
    其中,所述迂曲度T为电解液在负极活性材料层的孔隙中通过的传输路径长度L t与单面负极活性材料层的厚度L 0的比值。
  2. 根据权利要求1所述的电化学装置,其特征在于,所述负极活性材料层的孔隙率ε满足:20%≤ε≤40%。
  3. 根据权利要求1所述的电化学装置,其特征在于,所述负极活性材料层的压实密度PD g/cm 3满足关系式:1.50≤PD≤1.75。
  4. 根据权利要求1所述的电化学装置,其特征在于,所述负极活性材料的颗粒球形度占比满足:S50=0.70-0.90;
    S50表示颗粒体积累积含量为50%对应的形状因子值;
    球形度为颗粒等效投影面积的圆形周长与其投影的实际周长之比。
  5. 根据权利要求1所述的电化学装置,其特征在于,所述负极活性材料颗粒的Dv99与L 0满足:0.6 L 0≤Dv99≤0.9 L 0
  6. 根据权利要求1所述的电化学装置,其特征在于,所述负极活性材料层与所述负极集流体之间的粘结力F≥6N。
  7. 根据权利要求1所述的电化学装置,其特征在于,所述负极片的OI值满足:5≤OI值≤15,OI值由公式OI值=C004/C110计算得到;
    其中,采用X射线衍射图谱测试,C004是负极片在54.30°至54.60°的特征峰面积的值,C110是在77.35°至77.50°附近的特征峰面积的值。
  8. 根据权利要求1所述的电化学装置,其特征在于,所述负极活性材料层的面密度为0.035mg/mm 2至0.091mg/mm 2
  9. 根据权利要求1所述的电化学装置,其特征在于,所述电解液包括含有硫氧双键的化合物;
    所述含有硫氧双键的化合物包含甲烷二磺酸亚甲酯、丙烯基-1,3-磺酸内酯、1,3-丙烷二磺酸酐、1,3-丙烷磺内酯、2,4-丁烷磺内酯或硫酸乙烯酯中的至少一种,基于所述电解液的重量,所述含有硫氧双键的化合物的含 量为0.1%-5%。
  10. 根据权利要求1所述的电化学装置,其特征在于,所述电解液包含二氟磷酸锂,基于所述电解液的重量,所述二氟磷酸锂的含量为1%以下。
  11. 一种电子装置,包含权利要求1至10中任一项所述的电化学装置。
PCT/CN2020/132918 2020-11-30 2020-11-30 一种电化学装置和电子装置 WO2022110204A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080010017.9A CN113424348B (zh) 2020-11-30 2020-11-30 一种电化学装置和电子装置
PCT/CN2020/132918 WO2022110204A1 (zh) 2020-11-30 2020-11-30 一种电化学装置和电子装置
EP20963092.0A EP4254547A1 (en) 2020-11-30 2020-11-30 Electrochemical device and electronic device
US18/324,419 US20230299277A1 (en) 2020-11-30 2023-05-26 Electrochemical apparatus and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132918 WO2022110204A1 (zh) 2020-11-30 2020-11-30 一种电化学装置和电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/324,419 Continuation US20230299277A1 (en) 2020-11-30 2023-05-26 Electrochemical apparatus and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2022110204A1 true WO2022110204A1 (zh) 2022-06-02

Family

ID=77712089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132918 WO2022110204A1 (zh) 2020-11-30 2020-11-30 一种电化学装置和电子装置

Country Status (4)

Country Link
US (1) US20230299277A1 (zh)
EP (1) EP4254547A1 (zh)
CN (1) CN113424348B (zh)
WO (1) WO2022110204A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115832166B (zh) * 2021-09-23 2024-01-12 宁德时代新能源科技股份有限公司 正极极片、二次电池、电池模块、电池包和用电装置
CN113964375A (zh) * 2021-10-25 2022-01-21 东莞新能源科技有限公司 一种电化学装置及电子装置
WO2023230954A1 (zh) * 2022-06-01 2023-12-07 宁德时代新能源科技股份有限公司 二次电池、电池模块、电池包及用电装置
CN115394954A (zh) * 2022-10-08 2022-11-25 厦门海辰储能科技股份有限公司 电极极片和电化学装置
WO2024082273A1 (zh) * 2022-10-21 2024-04-25 宁德时代新能源科技股份有限公司 二次电池、用电装置和制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108199005A (zh) * 2018-01-03 2018-06-22 浙江衡远新能源科技有限公司 一种电池极片的碾压方法及设备
CN109841831A (zh) * 2019-03-21 2019-06-04 宁德新能源科技有限公司 负极材料及包含该负极材料的负极及电化学装置
CN110265625A (zh) * 2018-11-12 2019-09-20 宁德时代新能源科技股份有限公司 负极极片及锂离子二次电池
CN110400932A (zh) * 2018-04-24 2019-11-01 国轩高科美国研究院 一种电化学电芯及其制备方法
CN110660955A (zh) * 2018-06-29 2020-01-07 宁德时代新能源科技股份有限公司 负极极片、其制备方法及电化学装置
US20200106094A1 (en) * 2014-11-03 2020-04-02 24M Technologies, Inc. Pre-lithiation of electrode materials in a semi-solid electrode
CN111354944A (zh) * 2020-03-20 2020-06-30 宁德新能源科技有限公司 负极活性材料及使用其的电化学装置和电子装置
CN111916670A (zh) * 2020-09-23 2020-11-10 珠海冠宇电池股份有限公司 一种负极片及其应用
CN111933892A (zh) * 2020-07-27 2020-11-13 珠海冠宇电池股份有限公司 一种负极片及其制备方法和包括该负极片的锂离子二次电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8323815B2 (en) * 2006-06-16 2012-12-04 Porous Power Technology, LLC Optimized microporous structure of electrochemical cells
EP3753034A1 (en) * 2018-02-13 2020-12-23 Fisker Inc. Low tortuosity electrodes and electrolytes, and methods of their manufacture
KR102590425B1 (ko) * 2018-10-24 2023-10-18 주식회사 엘지에너지솔루션 입경이 상이한 흑연 및 실리콘계 소재를 포함하는 음극 및 이를 포함하는 리튬 이차전지
CN110957470B (zh) * 2019-12-06 2021-05-18 华中科技大学 具有垂直孔道结构的锂离子电池极片的制备方法及产品
CN111312985A (zh) * 2020-02-27 2020-06-19 湖北亿纬动力有限公司 一种孔隙率梯次分布的极片及其制备方法和用途

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200106094A1 (en) * 2014-11-03 2020-04-02 24M Technologies, Inc. Pre-lithiation of electrode materials in a semi-solid electrode
CN108199005A (zh) * 2018-01-03 2018-06-22 浙江衡远新能源科技有限公司 一种电池极片的碾压方法及设备
CN110400932A (zh) * 2018-04-24 2019-11-01 国轩高科美国研究院 一种电化学电芯及其制备方法
CN110660955A (zh) * 2018-06-29 2020-01-07 宁德时代新能源科技股份有限公司 负极极片、其制备方法及电化学装置
CN110265625A (zh) * 2018-11-12 2019-09-20 宁德时代新能源科技股份有限公司 负极极片及锂离子二次电池
CN109841831A (zh) * 2019-03-21 2019-06-04 宁德新能源科技有限公司 负极材料及包含该负极材料的负极及电化学装置
CN111354944A (zh) * 2020-03-20 2020-06-30 宁德新能源科技有限公司 负极活性材料及使用其的电化学装置和电子装置
CN111933892A (zh) * 2020-07-27 2020-11-13 珠海冠宇电池股份有限公司 一种负极片及其制备方法和包括该负极片的锂离子二次电池
CN111916670A (zh) * 2020-09-23 2020-11-10 珠海冠宇电池股份有限公司 一种负极片及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHEARING P.R., HOWARD L.E., JØRGENSEN P.S., BRANDON N.P., HARRIS S.J.: "Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery", ELECTROCHEMISTRY COMMUNICATIONS, ELSEVIER AMSTERDAM, NL, vol. 12, no. 3, 1 March 2010 (2010-03-01), NL , pages 374 - 377, XP055933026, ISSN: 1388-2481, DOI: 10.1016/j.elecom.2009.12.038 *

Also Published As

Publication number Publication date
CN113424348A (zh) 2021-09-21
EP4254547A1 (en) 2023-10-04
CN113424348B (zh) 2022-12-27
US20230299277A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
WO2022110204A1 (zh) 一种电化学装置和电子装置
CN103199258B (zh) 锂离子电池正极材料、正极制备方法及锂离子电池
CN108258193A (zh) 一种负极片及其制备方法、锂离子电池
CN108767191B (zh) 一种锂离子电池正极浆料的制备方法
CN110739485A (zh) 一种低温锂离子电池
CN107706360A (zh) 一种锂离子电池复合负极材料的制备方法
CN107204446B (zh) 锂离子电池正极材料及其制备方法
CN106486694B (zh) 一种高能量密度三元nca电池及其制备方法
CN108075125A (zh) 一种石墨烯/硅碳负极复合材料及其制备方法和应用
WO2022021933A1 (zh) 非水电解质二次电池用负极材料及其制备方法
CN108258241A (zh) 一种利用zif-8多孔碳材料抑制锂枝晶生长的锂电池负极
CN115566255B (zh) 一种二次电池及用电设备
CN111969181A (zh) 基于成膜添加剂的锂离子电池负极片及其制备方法、应用
CN109755469B (zh) 一种锂硫电池用薄层状电极及其制备和应用
US20240145710A1 (en) Negative electrode sheet and battery applying same
CN116093417A (zh) 钠离子电池和储能设备
CN115207263A (zh) 一种二次电池
CN113594459B (zh) 一种具有多层结构的复合负极材料及其制备方法和应用
CN104752682A (zh) 一种锂硫电池的硫/碳复合正极材料制备方法
CN113903980A (zh) 锂离子电池
CN109546109A (zh) 一种高温稳定型锂电池正极
CN111509228B (zh) 一种多孔碳包覆还原态TiO2-n的锂硫电池正极材料及其制法
CN116314590A (zh) 一种钠离子电池及其制备方法
CN115566136A (zh) 一种负极片及其制备方法和锂离子电池
CN115312777A (zh) 一种低曲折度厚电极及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020963092

Country of ref document: EP

Effective date: 20230630