WO2022110107A1 - 角度获取方法及相关装置 - Google Patents

角度获取方法及相关装置 Download PDF

Info

Publication number
WO2022110107A1
WO2022110107A1 PCT/CN2020/132650 CN2020132650W WO2022110107A1 WO 2022110107 A1 WO2022110107 A1 WO 2022110107A1 CN 2020132650 W CN2020132650 W CN 2020132650W WO 2022110107 A1 WO2022110107 A1 WO 2022110107A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
estimated
rotor
measured
measurement
Prior art date
Application number
PCT/CN2020/132650
Other languages
English (en)
French (fr)
Inventor
徐斌
沈艺峰
陈学锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080004993.3A priority Critical patent/CN112689953A/zh
Priority to PCT/CN2020/132650 priority patent/WO2022110107A1/zh
Publication of WO2022110107A1 publication Critical patent/WO2022110107A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage

Definitions

  • the present application relates to the field of electronic control, and in particular, to an angle acquisition method and a related device.
  • the motor has two indicators of high reliability control and high performance control.
  • To achieve high reliability control the phase redundancy of the motor body or a phase loss control algorithm is required. Achieving high performance control requires precise motor rotor angle.
  • the angle of the rotor is obtained through an angle sensor.
  • the angle sensor fails, it can quickly locate the faulty sensor, and perform corresponding fault-tolerant control to ensure the safe and controllable operation of the motor.
  • the present application provides a degree acquisition method and related device, which can not only ensure the reliability of the acquired angle of the rotor, ensure the safe and controllable operation of the motor, but also avoid adding too many angle sensors, which helps to simplify the motor control.
  • the hardware structure of the system reduces costs.
  • the present application provides an angle acquisition method for a motor control system, wherein the motor control system includes a motor and an angle sensor; the motor includes a first winding, a second winding and a rotor; the Methods include:
  • a measurement angle is obtained by the angle sensor, and the measurement angle is the angle of the rotor obtained by the angle sensor;
  • the angle of the rotor is determined from the first estimated angle, the second estimated angle and the measured angle.
  • the motor control system can obtain the first estimated angle according to the current of the first winding, and obtain the second estimated angle according to the current of the second winding, so that the first estimated angle and the second estimated angle can be combined with the angle
  • the measurement angle obtained by the sensor can obtain a highly reliable rotor angle, and it is not necessary to increase the number of angle sensors to obtain the rotor angle, so as to ensure the reliability of the obtained rotor angle. , to ensure the safe and controllable operation of the motor, and to avoid adding too many angle sensors, which helps to simplify the hardware structure of the motor control system and reduce costs.
  • the angle sensor includes a first angle sensor and a second angle sensor
  • the determining the angle of the rotor according to the first estimated angle, the second estimated angle and the measured angle includes:
  • the determining the angle of the rotor according to the first estimated angle, the second estimated angle, the first measured angle and the second measured angle includes:
  • the angle of the rotor is the first measurement angle
  • the angle of the rotor is the second measurement angle
  • the angle of the rotor is the first estimated angle or the second estimated angle.
  • the determining the angle of the rotor according to the first estimated angle, the second estimated angle, the first measured angle and the second measured angle further includes:
  • the difference between the first measured angle and the first estimated angle is within a set range, or the difference between the first measured angle and the second estimated angle is within a set range, determine the first measurement angle is authentic; and/or
  • the second measurement angle is plausible.
  • the number of the angle sensor is one; the determining the angle of the rotor according to the first estimated angle, the second estimated angle and the measured angle includes:
  • the angle of the rotor is the first measured angle
  • the angle of the rotor is the first estimated angle or the second estimated angle.
  • the present application provides an angle acquisition device for a motor control system, where the motor control system includes a motor and an angle sensor; the motor includes a first winding, a second winding and a rotor; the method includes:
  • an estimated angle obtaining unit configured to obtain a first estimated angle corresponding to the first winding, and a second estimated angle corresponding to the second winding, where the first estimated angle is obtained according to the current of the first winding , the second estimated angle is obtained according to the current of the second winding;
  • a measurement angle obtaining unit configured to obtain a measurement angle through the angle sensor, where the measurement angle is the angle of the rotor obtained by the angle sensor;
  • a processing unit configured to determine the angle of the rotor according to the first estimated angle, the second estimated angle and the measured angle.
  • the motor control system can obtain the first estimated angle according to the current of the first winding, and obtain the second estimated angle according to the current of the second winding, so that the first estimated angle and the second estimated angle can be combined with the angle
  • the measurement angle obtained by the sensor can obtain a highly reliable rotor angle, and it is not necessary to increase the number of angle sensors to obtain the rotor angle, so as to ensure the reliability of the obtained rotor angle. , to ensure the safe and controllable operation of the motor, and to avoid adding too many angle sensors, which helps to simplify the hardware structure of the motor control system and reduce costs.
  • the angle sensor includes a first angle sensor and a second angle sensor
  • the processing unit is specifically configured to:
  • the processing unit is specifically configured to:
  • the angle of the rotor is the first measurement angle
  • the angle of the rotor is the second measurement angle
  • the angle of the rotor is the first estimated angle or the second estimated angle.
  • the processing unit is specifically configured to:
  • the difference between the first measured angle and the first estimated angle is within a set range, or the difference between the first measured angle and the second estimated angle is within a set range, determine the first measurement angle is authentic; and/or
  • the second measurement angle is plausible.
  • the number of the angle sensor is one; in the aspect of determining the angle of the rotor according to the first estimated angle, the second estimated angle and the measured angle, the processing unit Specifically for:
  • the angle of the rotor is the first measured angle
  • the angle of the rotor is the first estimated angle or the second estimated angle.
  • the present application provides an angle acquisition device, comprising: a processor, when the processor executes the computer program or instructions in the memory, the method of any one of the embodiments of the first aspect is executed.
  • the present application provides a vehicle, including the angle acquisition device according to any embodiment of the second aspect or the third aspect.
  • FIG. 1 is a schematic structural diagram of a motor control system according to an embodiment of the present invention
  • FIG. 2A is a schematic flowchart of a method for obtaining an angle according to an embodiment of the present invention
  • 2B is a schematic flowchart of a method for obtaining an angle according to an embodiment of the present invention
  • 2C is a schematic flowchart of a method for obtaining an angle according to an embodiment of the present invention.
  • FIG. 3 is another schematic structural diagram of a motor control system according to an embodiment of the application.
  • FIG. 4 is another schematic flowchart involved in the method for obtaining an angle according to an embodiment of the present application.
  • FIG. 5 is another schematic flowchart involved in the angle acquisition method according to the embodiment of the present application.
  • FIG. 6 is another schematic flowchart involved in the method for obtaining an angle according to an embodiment of the present application.
  • FIG. 7 is another schematic flowchart involved in the angle acquisition method according to the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an angle obtaining device according to an embodiment of the present application.
  • FIG. 9 is another schematic structural diagram of an angle obtaining apparatus according to an embodiment of the present application.
  • FIG. 1 A schematic diagram of the structure of the motor control system shown in Figure 1.
  • the motor control system 100 includes a first winding 101 , a second winding 102 , a motor 103 , an angle sensor 104 , an angle estimation unit 105 and an angle diagnosis unit 106 .
  • the motor 103 includes a rotor and a stator, and the rotor is rotatable relative to the stator.
  • the first winding 101 and the second winding 102 are used to control the rotation of the rotor of the motor 103 relative to the stator.
  • the angle sensor 104 is used to obtain the angle of the rotor relative to the stator to obtain the measured angle.
  • the angle estimation unit 105 is configured to estimate the angle of the rotor according to the currents of the first winding and the second winding to obtain a first estimated angle corresponding to the first winding and a second estimated angle corresponding to the second winding.
  • the angle diagnosis unit 106 is configured to obtain the angle of the rotor according to the first estimated angle, the second estimated angle, and the measured angle obtained by the angle sensor 104 .
  • the angle of the rotor refers to the angle of the authentic rotor relative to the stator.
  • the angle estimation unit 105 and the angle diagnosis unit 106 may be a processing unit, and the processing unit includes the angle estimation unit 105 and the angle diagnosis unit 106 .
  • the angle estimating unit 105 and the angle diagnosing unit 106 may be deployed in a processor, where the processor implements the functions of the angle estimating unit 105 and the angle diagnosing unit 106 .
  • the angle estimation unit 105 and the angle diagnosis unit 106 may be deployed in a controller or a control unit, and the controller or control unit implements the functions of the angle estimation unit 105 and the angle diagnosis unit 106 .
  • the specific implementation of the controller or the control unit may be, for example, a single-chip microcomputer, a logic circuit, or the like.
  • the angle acquisition method may include the following steps:
  • the first winding and/or the second winding can be, for example, a three-phase winding.
  • the first estimated angle can be understood as an angle obtained by estimating the angle of the rotor relative to the stator according to the current of the first winding.
  • the second estimated angle can be understood as an angle obtained by estimating the angle of the rotor relative to the stator according to the current of the second winding.
  • the angle estimation unit 105 may include a first estimation unit and a second estimation unit.
  • the angle diagnosis unit 106 may obtain the first estimated angle ⁇ est1 from the first estimation unit, and obtain the second estimated angle ⁇ est2 from the second estimation unit.
  • the measurement angle is the angle of the rotor relative to the stator obtained by the angle sensor.
  • the measurement angle can be one or two, or more than two.
  • the motor control system may include a plurality of angle sensors, each of which may acquire at least one measured angle.
  • the motor control system may also include only one angle sensor, which can acquire at least one measured angle.
  • the measurement angle can be acquired by the angle diagnosis unit 106 through the angle sensor.
  • the angle diagnosis unit 106 may perform mutual verification according to the first estimated angle, the second estimated angle and the measured angle to obtain a credible rotor angle.
  • the motor control system can obtain the first estimated angle according to the current of the first winding, and obtain the second estimated angle according to the current of the second winding, so that the first estimated angle and the second estimated angle can be combined.
  • the estimated angle and the measurement angle obtained by the angle sensor can obtain a highly reliable rotor angle, and it is not necessary to increase the number of angle sensors to obtain the rotor angle, so as to ensure that the obtained angle is obtained.
  • the reliability of the angle of the rotor ensures the safe and controllable operation of the motor, and can avoid adding too many angle sensors, which helps to simplify the hardware structure of the motor control system and reduce the cost.
  • the angle sensor of the motor control system includes a first angle sensor and a second angle sensor; step 203 may include:
  • step 2031 may include: if the first measurement angle is credible, the angle of the rotor is the first measurement angle; if the first measurement angle is not credible, the second measurement angle is If the measured angle is credible, the angle of the rotor is the second measurement angle; if both the first measurement angle and the second measurement angle are unreliable, the angle of the rotor is the the first estimated angle or the second estimated angle.
  • whether the first measured angle is credible can be determined by: if the difference between the first measured angle and the first estimated angle is within a set range, or if the first measured angle and the If the difference between the two estimated angles is within a set range, it is determined that the first measured angle is credible.
  • Whether the second measured angle is credible can be determined by: if the difference between the second measured angle and the first estimated angle is within a set range, or if the difference between the second measured angle and the second estimated angle is If the difference between them is within the set range, it is determined that the second measurement angle is credible.
  • step 203 may include:
  • the angle of the rotor is the first measured angle
  • the measured angle is credible.
  • the angle of the rotor is the first estimated angle or the second estimated angle.
  • the difference between the measured angle and the second estimated angle is not within the set range, and the difference between the measured angle and the second estimated angle is not within the set range, it may be determined that the measured angle is unreliable.
  • the motor control system only needs to set an angle sensor, which can not only ensure the reliability of the obtained rotor angle, ensure the safe and controllable operation of the motor, but also avoid adding too many angle sensors, which helps to simplify the motor control.
  • the hardware structure of the system reduces costs.
  • the motor control system includes a motor, two three-phase windings, two angle sensors, a rotor angle estimation unit and an angle diagnosis unit.
  • the motor is a six-phase motor.
  • the two three-phase windings are the first winding M1 and the second winding M2, respectively.
  • the two angle sensors are a first angle sensor and a second angle sensor, respectively.
  • the first angle sensor and the second angle sensor are used to obtain the angle of the rotor relative to the stator.
  • the angle acquired by the first angle sensor may be understood as the first measurement angle
  • the angle acquired by the second angle sensor may be understood as the second measurement angle.
  • the motor control system also includes: multiple control units, 2 PWM drive units, 2 inverters, multiple current sensors and 2 coordinate transformation units.
  • the plurality of control units include: a control unit P1, a control unit P3, and a control unit P4.
  • the control unit may be, for example, a PI control unit.
  • the two PWM drive units include: PWM drive unit D1 and PWM drive unit D2.
  • the 2 inverters include: inverter I1 and inverter I2.
  • the two coordinate transformation units include a coordinate transformation unit T1 and a coordinate transformation unit T2.
  • the coordinate transformation unit may be, for example, a three-phase/two-phase coordinate transformation unit.
  • the plurality of current sensors include: current sensor C1, current sensor C2, current sensor C3, current sensor C4, current sensor C5, and current sensor C6.
  • the control unit P1 is used to output the d-axis command voltage Ud1* of the first winding M1 according to the difference ⁇ Id1 between the input d-axis target current Id1* and the d-axis actual current Id1; the control unit P2 is used to output the d-axis command voltage Ud1* of the first winding M1 according to the input q-axis target
  • the difference ⁇ Iq1 between the current Iq1* and the q-axis actual current Iq1 outputs the d-axis command voltage Uq1* of the first winding M1.
  • the d-axis target current Id1* is the d-axis component current in the vector control represented by the first winding M1 in the six-phase motor in the two-phase synchronous rotating coordinate system, and is used to weaken or enhance the magnitude of the magnetic field generated by the first winding M1.
  • the q-axis target current Iq1* is the q-axis component current in the vector control represented by the first winding M1 in the six-phase motor in the two-phase synchronous rotating coordinate system, and is used to control the electromagnetic torque generated by the first winding M1.
  • the PWM drive unit D1 is used to convert the d-axis command voltage Ud1* of the first winding M1 output by the control unit P1 and the d-axis command voltage Uq1* of the first winding M1 output by the control unit P2 into the PWM control of the first winding M1
  • the voltage signals PWMa, PWMb, and PWMc are output to the inverter I1.
  • PWMa controls the voltage of phase a of the first winding M1
  • PWMb controls the voltage of phase b of the first winding M1
  • PWMc controls the voltage of phase c of the first winding M1.
  • the inverter I1 is used for outputting the three-phase phase voltages Ua, Ub, Ub, Uc, and applied to the three windings a, b and c of the first winding M1.
  • the current sensors C1, C2 and C3 are respectively disposed on the three windings a, b, and c of the first winding M1, and are respectively used to obtain the currents Ia, Ib, and Ic of the three windings a, b, and c of the first winding M1.
  • the coordinate transformation unit T1 is used for converting Ia, Ib, and Ic into two-phase actual currents Id1 and Iq1 of the first winding M1 in the two-phase synchronous rotation coordinate system.
  • the two-phase actual currents Id1 and Iq1 are used for closed-loop control with the above-mentioned two-phase target current commands Id1* and Iq1*.
  • the rotor angle estimation unit E1 is used for estimating the first estimated angle ⁇ est1 corresponding to the first winding according to Id1 and Iq1.
  • the control unit P3 is used to output the d-axis command voltage Ud2* of the second winding M2 according to the difference ⁇ Id2 between the input d-axis target current Id2* and the d-axis actual current Id2; the control unit P4 is used to output the q-axis target current Iq2 according to the input *Difference ⁇ Iq2 from the q-axis actual current Iq2, the d-axis command voltage Uq2* of the second winding M2 is output.
  • the d-axis target current Id2* is the d-axis component current in the vector control represented by the second winding M2 in the six-phase motor in the two-phase synchronous rotating coordinate system, and is used to weaken or enhance the magnitude of the magnetic field generated by the second winding M2.
  • the q-axis target current Iq2* is the q-axis component current in vector control represented by the second winding M2 in the six-phase motor in the two-phase synchronous rotating coordinate system, and is used to control the electromagnetic torque generated by the second winding M2.
  • the PWM drive unit D2 is used to convert the d-axis command voltage Ud2* of the second winding M2 output by the control unit P2 and the d-axis command voltage Uq2* of the second winding M2 output by the control unit P2 into the PWM control of the second winding M2
  • the voltage signals PWMu, PWMv, and PWMw are output to the inverter I1.
  • PWMa controls the u-phase voltage of the second winding M2
  • PWMb controls the v-phase voltage of the second winding M2
  • PWMc controls the w-phase voltage of the second winding M2.
  • the inverter I2 is used to output the three-phase phase voltages Uu, Uv, Uw of the PWM control voltage signals PWMu, PWMv, PWMw according to the PWM control voltage signals PWMu, PWMv, PWMw of the phase voltage of the second winding M2, and apply them to the second winding M2. On the three windings u, v, and w of the winding M2.
  • the current sensors C3, C4, and C5 are respectively disposed on the three windings u, v, and w of the second winding M2, and are respectively used to obtain the currents Ia, Ib, and Ic of the three windings a, b, and c of the second winding M1.
  • the coordinate transformation unit T2 is used for converting Iu, Iv, Iw into two-phase actual currents Id2 and Iq2 of the second winding M2 in the two-phase synchronous rotation coordinate system.
  • the two-phase actual currents Id2 and Iq2 are used for closed-loop control with the above-mentioned two-phase target current commands Id2* and Iq2*.
  • the rotor angle estimation unit E2 is used for estimating the second estimated angle ⁇ est1 corresponding to the second winding according to Id2 and Iq2.
  • the angle diagnosis and verification unit is used for outputting the angle of the rotor according to the first estimated angle, the second estimated angle, the first measured angle and the second measured angle.
  • steps 201 to 203 in the above embodiment can be implemented by an angle diagnosis and verification unit.
  • the angle diagnosis and verification unit may obtain the first estimated angle from the rotor angle estimation unit E1, and obtain the second estimated angle from the rotor angle estimation unit E2.
  • the angle diagnosis and verification unit may obtain the first measurement angle ⁇ 1 from the first angle sensor, and obtain the second measurement angle ⁇ 2 from the second angle sensor.
  • step 203 the angle diagnosis and verification unit outputs the angle of the rotor according to the first estimated angle ⁇ est1 , the second estimated angle ⁇ est2 , the first measured angle ⁇ 1 and the second measured angle ⁇ 2 .
  • the following provides a specific solution for the angle diagnosis unit to output the angle ⁇ elec of the rotor according to the first estimated angle ⁇ est1 , the second estimated angle ⁇ est3 , the first measured angle ⁇ 1 and the second measured angle ⁇ 2 .
  • the solution in which the angle diagnosis unit outputs the angle of the rotor according to the first estimated angle, the second estimated angle, the first measured angle and the second measured angle may include the following steps:
  • the angle diagnosis unit judges whether the first measured angle ⁇ 1 is credible; if so, go to step 402; if not, go to step 404.
  • the angle diagnosis unit may determine whether the first measured angle ⁇ 1 is credible according to the condition judgment 1 and the condition judgment 2 .
  • conditional judgment 1 is:
  • conditional judgment 2 is:
  • the angle diagnosis unit may determine whether the first measured angle ⁇ 1 is credible according to the angle diagnosis result in the process of acquiring the angle of the rotor in the previous round.
  • the angle diagnosis unit judges whether the second measured angle ⁇ 2 is credible; if so, execute step 403, and if not, execute step 404.
  • the angle diagnosis unit may determine whether the second measured angle ⁇ 2 is credible according to the condition judgment 3 .
  • Conditional judgment 3 is
  • the angle diagnosis unit may determine whether the first measured angle ⁇ 2 is credible according to the angle diagnosis result in the process of acquiring the angle of the rotor in the previous round.
  • the angle diagnosis unit performs the process of angle diagnosis 1.
  • the angle diagnosis unit may perform the process of angle diagnosis 1 through the angle diagnosis SW1 sub-module.
  • the angle diagnosis unit performs the process of angle diagnosis 2.
  • the angle diagnosis unit may perform the process of angle diagnosis 2 through the angle diagnosis SW2 sub-module.
  • the angle diagnosis unit judges whether the second measurement angle is credible; if so, perform step 406, and if not, perform step 407.
  • the angle diagnosis unit performs the process of angle diagnosis 3.
  • the angle diagnosis unit may perform the process of angle diagnosis 3 through the angle diagnosis SW3 sub-module.
  • the angle diagnosis unit performs the process of angle diagnosis 4.
  • the angle diagnosis unit may perform the process of angle diagnosis 4 through the angle diagnosis SW4 sub-module.
  • step 403 , step 404 , step 406 and step 407 are the process of performing angle diagnosis.
  • the angle ⁇ elec of the rotor is obtained according to the structure of angle diagnosis.
  • angle diagnosis 1, angle diagnosis 2, angle diagnosis 3 and angle diagnosis 4 will be described below with reference to the accompanying drawings.
  • step A1 Determine whether
  • conditional judgment 1 If the result of conditional judgment 1 is "Yes", it means that the first measurement angle and the second measurement angle have increased reliability.
  • step A2 Determine whether it satisfies:
  • A3. Determine the angle ⁇ elec of the rotor as the first measurement angle ⁇ 1.
  • step A4 Determine whether it satisfies:
  • conditional judgment 2 is used to judge whether ⁇ 1 is credible. If the result is yes, it can be determined that the angle of the rotor is the first measurement angle ⁇ 1; if not, the conditional judgment 3 is used to further judge whether ⁇ 2 is credible.
  • Conditional judgment 3 is
  • A5. Determine that the first measurement angle ⁇ 1 is unreliable, and ⁇ 2 is credible.
  • conditional judgment 3 it can be determined that ⁇ 2 is credible, that is, ⁇ 1 is not credible, and ⁇ 2 is credible. If conditional judgment 3 is not satisfied, it can be determined that ⁇ 2 is unreliable, that is, both ⁇ 1 and ⁇ 2 are unreliable.
  • step A7 Determine whether (
  • condition judgment 1 If the condition judgment 1 is not satisfied, it can be determined that the reliability of ⁇ 1 and ⁇ 2 is low, and then it is further judged whether the first estimated angle ⁇ est1 and the second estimated angle ⁇ est1 are reliable.
  • conditional judgment 4 is used to judge whether ⁇ est1 and ⁇ est2 are credible.
  • Conditional judgment 4 is (
  • conditional judgment 4 If the conditional judgment 4 is satisfied, it means that ⁇ 2 is unreliable, and if the conditional judgment 4 is not satisfied, it means that ⁇ 1 is unreliable.
  • the process of angle diagnosis 2 can be used to judge whether ⁇ 1 is credible.
  • the process of angle diagnosis 2 is as follows:
  • step B1 Determine whether it satisfies:
  • conditional judgment 2 is used to judge whether ⁇ 1 is credible.
  • Conditional judgment 2 is:
  • conditional judgment 2 it can be determined that ⁇ 1 is credible, and then the angle of the rotor can be determined to be the first measurement angle ⁇ 1. If Conditional Judgment 2 is not satisfied, it can be determined that the difference between ⁇ 1 and ⁇ est1 and ⁇ est2 is large, then it can be determined that the angle of the rotor is the first estimated angle ⁇ est1, and ⁇ 1 is unreliable.
  • the process of angle diagnosis 3 can be used to determine whether ⁇ 2 is credible.
  • the process of angle diagnosis 3 is as follows:
  • conditional judgment 3 is used to judge whether ⁇ 2 is credible.
  • Conditional judgment 3 is:
  • Condition Judgment 3 it can be determined that ⁇ 2 is credible, then the angle of the rotor can be determined to be the first measurement angle ⁇ 2; if Condition Judgment 3 is not satisfied, it can be determined that the difference between ⁇ 2 and ⁇ est1 and ⁇ est2 is both is larger, then the angle of the rotor can be determined to be the first estimated angle ⁇ 1, and ⁇ 2 is unreliable.
  • the process of the angle diagnosis 4 includes: determining the angle of the rotor as ⁇ est1. That is, when both ⁇ 1 and ⁇ 2 are unreliable, the angle ⁇ elec of the rotor is ⁇ est1.
  • the result of each angle diagnosis process can be used to determine whether the first measurement angle ⁇ 1 and/or the second measurement angle ⁇ 2 is credible when the angle of the rotor is acquired next time. That is, in the present application, the process of obtaining the angle of the rotor may be cyclic.
  • the angle diagnosis unit may determine that ⁇ 1 is credible if ⁇ 2 is determined to be credible according to the process of angle diagnosis 2 when the angle of the rotor was acquired last time, then when the angle of the rotor is acquired next time, in step 401, the angle diagnosis unit may determine that ⁇ 1 is credible . If ⁇ 2 is determined to be credible during the angle diagnosis 3 when the angle of the rotor was acquired last time, in step 402 or step 405, the angle diagnosis unit may determine that ⁇ 2 is credible.
  • the first angle sensor and the second angle sensor only two angle sensors (the first angle sensor and the second angle sensor) need to be set, and the first angle sensor and the second angle sensor obtain the first measurement angle ⁇ 1 and the second measurement angle
  • the angle ⁇ 2 is subjected to diagnostic verification with the estimated first estimated angle and the second estimated angle.
  • ⁇ 1 is unreliable, it can be considered that the first angle sensor is faulty or invalid, and when ⁇ 2 is unreliable, it can be considered that the second angle sensor is faulty or invalid.
  • both ⁇ 1 and ⁇ 2 are unreliable, it can be considered that both the first angle sensor and the second sensor are faulty or invalid. In this way, when the angle sensor fails or fails, the faulty angle sensor can be accurately found, and only two angle sensors need to be set, which effectively reduces the cost of hardware redundancy of the motor control system.
  • the measured angle obtained by the other angle sensor can also be used for diagnostic verification with the first estimated angle and the second estimated angle to obtain a credible rotor angle ⁇ elec.
  • the first estimated angle and the second estimated angle can be used for diagnostic verification to obtain a credible rotor angle ⁇ elec.
  • the angle ⁇ elec of the rotor may be determined as the first estimated angle ⁇ est1.
  • the technical solution of the present application can not only normally obtain a more credible angle of the rotor, but also find the angle in time.
  • the faulty or invalid angle sensor ensures the safe operation of the motor control system, and can also avoid the hardware redundancy of the motor control system and reduce the cost.
  • the first estimated angle ⁇ est1 is any one of the two estimated angles, and does not specifically refer to which estimated angle.
  • an embodiment of the present application further provides an angle acquisition device 800, including:
  • the estimated angle obtaining unit 801 is configured to obtain a first estimated angle corresponding to the first winding and a second estimated angle corresponding to the second winding, the first estimated angle is obtained according to the current of the first winding, and the second estimated angle is Obtained from the current of the second winding;
  • the measurement angle obtaining unit 802 is configured to obtain the measurement angle through the angle sensor, and the measurement angle is the angle of the rotor obtained by the angle sensor;
  • the processing unit 803 is configured to determine the angle of the rotor according to the first estimated angle, the second estimated angle and the measured angle.
  • the estimated angle obtaining unit 801 , the measured angle obtaining unit 802 and the processing unit 803 in this embodiment may be deployed in the angle diagnosis unit of the electronic control system.
  • the functions of the estimated angle obtaining unit 801 , the measured angle obtaining unit 802 and the processing unit 803 are realized by the angle diagnosis unit.
  • the angle obtaining device 800 can obtain the first estimated angle according to the current of the first winding, and obtain the second estimated angle according to the current of the second winding, so that the first estimated angle and the second estimated angle can be combined.
  • the measurement angle obtained by the angle sensor to obtain a highly reliable rotor angle, and it is not necessary to increase the number of angle sensors to obtain the rotor angle, so as to ensure that the obtained rotor angle can be achieved. It ensures the safe and controllable operation of the motor, and avoids adding too many angle sensors, which helps to simplify the hardware structure of the motor control system and reduce costs.
  • the angle sensor includes a first angle sensor and a second angle sensor
  • the processing unit 803 is specifically configured to:
  • the angle of the rotor is determined according to the first estimated angle, the second estimated angle, the first measured angle, and the second measured angle, and the first measured angle ⁇ 1 is obtained by the first angle sensor.
  • the angle of the rotor, the second measurement angle ⁇ 2 is the angle of the rotor obtained by the second angle sensor.
  • the processing unit 803 is specifically configured to:
  • the angle of the rotor is the first measurement angle
  • the angle of the rotor is the second measurement angle
  • the angle of the rotor is the first estimated angle or the second estimated angle.
  • the processing unit 803 is specifically configured to:
  • the difference between the first measured angle and the first estimated angle is within a set range, or the difference between the first measured angle and the second estimated angle is within a set range, determine the first measurement angle is authentic; and/or
  • the second measurement angle is plausible.
  • the number of the angle sensor is one; in the aspect of determining the angle of the rotor according to the first estimated angle, the second estimated angle and the measured angle, the processing unit 803 is specifically used for:
  • the angle of the rotor is the first measured angle
  • the angle of the rotor is the first estimated angle or the second estimated angle.
  • An embodiment of the present application further provides an angle obtaining apparatus 900, as shown in the schematic structural diagram in FIG. 9, the angle obtaining apparatus 900 includes a processor, and when the processor executes the computer program or instruction in the memory, executes any of the above-mentioned The steps of a method embodiment.
  • Embodiments of the present application also provide a vehicle.
  • the vehicle includes the motor control system of any of the above embodiments, or includes the angle acquisition device of any of the above embodiments.
  • the modules in the apparatus of the embodiment of the present application may be combined, divided and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种角度获取方法和装置,用于电机控制系统(100),电机控制系统(100)包括电机(103)和角度传感器(104);电机(103)包括第一绕组(101)、第二绕组(102)和转子;角度获取方法包括:获取第一绕组(101)对应的第一估计角度,以及获取第二绕组(102)对应的第二估计角度(201),第一估计角度是根据第一绕组(101)的电流得到的,第二估计角度是根据第二绕组(102)的电流得到的;通过角度传感器(104)获取测量角度(202),测量角度是角度传感器(104)获取到的转子的角度;根据第一估计角度、第二估计角度和测量角度,确定转子的角度(203)。角度获取方法和装置既能保证获取到的转子的角度的可靠性,保证电机(103)安全可控地运行,又能避免过多的增加角度传感器(104),有助于精简电机控制系统(100)的硬件结构,降低成本。

Description

角度获取方法及相关装置 技术领域
本申请涉及电控领域,特别涉及一种角度获取方法及相关装置。
背景技术
相关技术中,在电机控制系统中,常常需要通过电机来实现其功能。电机有高可靠性控制、高性能控制两大指标。实现高可靠性控制,需要电机本体相冗余或具有缺相控制算法。实现高性能控制需要精确的电机的转子的角度。通常情况下,通过角度传感器获得转子的角度。为了保证电机的使用安全,需要对电机角度传感器输出的角度进行诊断校验,以输出一个可信的转子角度用来对电机进行控制。当角度传感器失效时,能快速定位故障传感器,并进行相应的容错控制,保证电机安全可控运行。
然而现有技术中,往往是通过采用多个角度传感器,进行角度的冗余诊断校验,得到一个可信的转子角度,保证电机安全可控地运行,这样的方案,会导致电机控制系统的硬件冗余,成本较高。
发明内容
本申请提供了一种度获取方法及相关装置,既能保证获取到的转子的角度的可靠性,保证电机安全可控地运行,又能避免过多的增加角度传感器,有助于精简电机控制系统的硬件结构,降低成本。
第一方面,本申请提供一种角度获取方法,用于电机控制系统,其特征在于,所述电机控制系统包括电机和角度传感器;所述电机包括第一绕组、第二绕组和转子;所述方法包括:
获取所述第一绕组对应的第一估计角度,以及获取所述第二绕组对应的第二估计角度,所述第一估计角度是根据所述第一绕组的电流得到的,所述第二估计角度是根据所述第二绕组的电流得到的;
通过所述角度传感器获取测量角度,所述测量角度是所述角度传感器获取到的所述转子的角度;
根据所述第一估计角度、所述第二估计角度和所述测量角度,确定所述转子的角度。
本申请的技术方案,电机控制系统可根据第一绕组的电流得到第一估计角度,根据第二绕组的电流得到第二估计角度,这样能够结合该第一估计角度和第二估计角度,以及角度传感器获得的测量角度,得到一个可信度较高的转子的角度,并不需要过多的增加角度传感器的数量来实现获取转子的角度,从而实现既能保证获取到的转子的角度的可靠性,保证电机安全可控地运行,又能避免过多的增加角度传感器,有助于精简电机控制系统的硬件结构,降低成本。
在某些实施方式中,所述角度传感器包括第一角度传感器和第二角度传感器;
所述根据所述第一估计角度、所述第二估计角度和所述测量角度,确定所述转子的角度包括:
根据所述第一估计角度、所述第二估计角度、第一测量角度以及第二测量角度,确定 所述转子的角度,所述第一测量角度是所述第一角度传感器获取到的所述转子的角度,所述第二测量角度是所述第二角度传感器获取到的所述转子的角度。
这样,能够根据第一估计角度、第二估计角度、第一测量角度以及第二测量角度,进行相互校验,得到一个较可信的角度,提升转子的角度的可靠程度。
在某些实施方式中,所述根据所述第一估计角度、所述第二估计角度、第一测量角度以及第二测量角度,确定所述转子的角度包括:
若所述第一测量角度是可信的,则所述转子的角度为所述第一测量角度;
若所述第一测量角度是不可信的,所述第二测量角度是可信的,则所述转子的角度为所述第二测量角度;
若所述第一测量角度和所述第二测量角度均是不可信的,则所述转子的角度为所述第一估计角度或所述第二估计角度。
这样,能够得到一个可信度较高的转子的角度。
在某些实施方式中,所述根据所述第一估计角度、所述第二估计角度、第一测量角度以及第二测量角度,确定所述转子的角度还包括:
若所述第一测量角度与所述第一估计角度的差值在设定范围内,或所述第一测量角度与所述第二估计角度之间的差值在设定范围内,则确定所述第一测量角度是可信的;和/或
若所述第二测量角度与所述第一估计角度的差值在设定范围内,或所述第二测量角度与所述第二估计角度之间的差值在设定范围内,则确定所述第二测量角度是可信的。
这样,能够根据第一估计角度、第二估计角度、第一测量角度以及第二测量角度,进行相互校验,得到一个较可信的角度。
在某些实施方式中,所述角度传感器的数量为1个;所述根据所述第一估计角度、所述第二估计角度和所述测量角度,确定所述转子的角度包括:
若所述测量角度是可信的,则所述转子的角度为所述第一测量角度;
若所述测量角度是不可信的,则所述转子的角度为所述第一估计角度或所述第二估计角度。
这样,能够实现仅设置一个角度传感器,也能得到一个可信度较高的转子的角度,精简电机控制系统的硬件结构,降低成本。
第二方面,本申请提供一种角度获取装置,用于电机控制系统,所述电机控制系统包括电机和角度传感器;所述电机包括第一绕组、第二绕组和转子;所述方法包括:
估计角度获取单元,用于获取所述第一绕组对应的第一估计角度,以及获取所述第二绕组对应的第二估计角度,所述第一估计角度是根据所述第一绕组的电流得到的,所述第二估计角度是根据所述第二绕组的电流得到的;
测量角度获取单元,用于通过所述角度传感器获取测量角度,所述测量角度是所述角度传感器获取到的所述转子的角度;
处理单元,用于根据所述第一估计角度、所述第二估计角度和所述测量角度,确定所述转子的角度。
本申请的技术方案,电机控制系统可根据第一绕组的电流得到第一估计角度,根据第二绕组的电流得到第二估计角度,这样能够结合该第一估计角度和第二估计角度,以及角 度传感器获得的测量角度,得到一个可信度较高的转子的角度,并不需要过多的增加角度传感器的数量来实现获取转子的角度,从而实现既能保证获取到的转子的角度的可靠性,保证电机安全可控地运行,又能避免过多的增加角度传感器,有助于精简电机控制系统的硬件结构,降低成本。
在某些实施方式中,所述角度传感器包括第一角度传感器和第二角度传感器;
所述根据所述第一估计角度、所述第二估计角度和所述测量角度,确定所述转子的角度方面,处理单元具体用于:
根据所述第一估计角度、所述第二估计角度、第一测量角度以及第二测量角度,确定所述转子的角度,所述第一测量角度是所述第一角度传感器获取到的所述转子的角度,所述第二测量角度是所述第二角度传感器获取到的所述转子的角度。
在某些实施方式中,在所述根据所述第一估计角度、所述第二估计角度、第一测量角度以及第二测量角度,确定所述转子的角度方面,处理单元具体用于:
若所述第一测量角度是可信的,则所述转子的角度为所述第一测量角度;
若所述第一测量角度是不可信的,所述第二测量角度是可信的,则所述转子的角度为所述第二测量角度;
若所述第一测量角度和所述第二测量角度均是不可信的,则所述转子的角度为所述第一估计角度或所述第二估计角度。
在某些实施方式中,在所述根据所述第一估计角度、所述第二估计角度、第一测量角度以及第二测量角度,确定所述转子的角度方面,处理单元具体用于:
若所述第一测量角度与所述第一估计角度的差值在设定范围内,或所述第一测量角度与所述第二估计角度之间的差值在设定范围内,则确定所述第一测量角度是可信的;和/或
若所述第二测量角度与所述第一估计角度的差值在设定范围内,或所述第二测量角度与所述第二估计角度之间的差值在设定范围内,则确定所述第二测量角度是可信的。
在某些实施方式中,所述角度传感器的数量为1个;在所述根据所述第一估计角度、所述第二估计角度和所述测量角度,确定所述转子的角度方面,处理单元具体用于:
若所述测量角度是可信的,则所述转子的角度为所述第一测量角度;
若所述测量角度是不可信的,则所述转子的角度为所述第一估计角度或所述第二估计角度。
应理解,上述角度获取方法的实施例中的相关说明也适用于本申请实施例的角度获取装置。为避免冗余,此处不再赘述。
第三方面,本申请提供一种角度获取装置,包括:处理器,当所述处理器执行所述存储器中的计算机程序或指令时,使得上述第一方面任一实施方式的方法被执行。
第四方面,本申请提供一种车辆,包括上述第二方面或第三方面任一实施方式的角度获取装置。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种电机控制系统的结构示意图;
图2A为本发明实施例提供的角度获取方法的流程示意图;
图2B为本发明实施例提供的角度获取方法的流程示意图;
图2C为本发明实施例提供的角度获取方法的流程示意图;
图3为本申请实施例的电机控制系统的另一结构示意图;
图4为本申请实施例的角度获取方法涉及的另一流程示意图;
图5为本申请实施例的角度获取方法涉及的另一流程示意图;
图6为本申请实施例的角度获取方法涉及的另一流程示意图;
图7为本申请实施例的角度获取方法涉及的另一流程示意图;
图8为本申请实施例的角度获取装置的结构示意图;
图9为本申请实施例的角度获取装置的另一结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示的电机控制系统的结构示意图。
电机控制系统100包括第一绕组101、第二绕组102、电机103、角度传感器104、角度估计单元105以及角度诊断单元106。电机103包括转子和定子,转子能够相对于定子转动。第一绕组101和第二绕组102用于控制电机103的转子相对于定子转动。角度传感器104用于获取转子相对于定子的角度得到测量角度。角度估计单元105用于根据第一绕组和第二绕组的电流,对转子的角度进行估计,得到第一绕组对应的第一估计角度和第二绕组对应的第二估计角度。角度诊断单元106用于根据第一估计角度、第二估计角度,以及角度传感器104获取到的测量角度得到转子的角度。转子的角度是指,可信的转子相对于定子的角度。
其中,角度估计单元105以及角度诊断单元106可以为一个处理单元,该处理单元包括角度估计单元105和角度诊断单元106。或者角度估计单元105以及角度诊断单元106可以部署在处理器,该处理器实现角度估计单元105以及角度诊断单元106的功能。或者,角度估计单元105以及角度诊断单元106可以部署在控制器或控制单元,该控制器或控制单元实现角度估计单元105以及角度诊断单元106的功能。控制器或控制单元的具体实现例如可以是单片机、逻辑电路等。
下面结合附图详细阐述本申请的技术方案。
如图2A所示的流程示意图,本申请实施例的角度获取方法可包括以下步骤:
201、获取第一绕组对应的第一估计角度θest1,以及获取第二绕组对应的第二估计角 度θest2,第一估计角度是根据第一绕组的电流得到的,第二估计角度是根据第二绕组的电流得到的;
第一绕组和/或第二绕组例如可以是三相绕组。
第一估计角度可以理解为,根据第一绕组的电流对转子相对于定子的角度进行估计得到的角度。
第二估计角度可以理解为,根据第二绕组的电流对转子相对于定子的角度进行估计得到的角度。
例如,角度估计单元105可包括第一估计单元和第二估计单元。角度诊断单元106可从第一估计单元获取第一估计角度θest1,以及从第二估计单元获取第二估计角度θest2。
202、通过角度传感器获取测量角度,测量角度是角度传感器获取到的转子的角度;
测量角度,是角度传感器获取到的转子相对于定子的角度。
测量角度可以为一个也可以为2个,或者大于2个。
例如,电机控制系统可以包括多个角度传感器,每个角度传感器可以获取一个至少一个测量角度。电机控制系统也可以仅包括一个角度传感器,该一个角度传感器可以获取至少一个测量角度。
具体地,可由角度诊断单元106通过角度传感器获取测量角度。
203、根据第一估计角度、第二估计角度和测量角度,确定转子的角度。
例如,角度诊断单元106可根据第一估计角度第二估计角度和测量角度进行相互校验,得到一个可信的转子角度。
可以看出,本申请实施例的技术方案,电机控制系统可根据第一绕组的电流得到第一估计角度,根据第二绕组的电流得到第二估计角度,这样能够结合该第一估计角度和第二估计角度,以及角度传感器获得的测量角度,得到一个可信度较高的转子的角度,并不需要过多的增加角度传感器的数量来实现获取转子的角度,从而实现既能保证获取到的转子的角度的可靠性,保证电机安全可控地运行,又能避免过多的增加角度传感器,有助于精简电机控制系统的硬件结构,降低成本。
基于图2A对应的实施例,如图2B所示的流程示意图,在一些可选地实施例中,电机控制系统的角度传感器包括第一角度传感器和第二角度传感器;步骤203可包括:
2031、根据第一估计角度θest1、第二估计角度θest2、第一测量角度θ1以及第二测量角度θ2,确定转子的角度,第一测量角度θ1是第一角度传感器获取到的转子的角度,第二测量角度θ2是第二角度传感器获取到的转子的角度。
这样,能够根据第一估计角度、第二估计角度、第一测量角度以及第二测量角度,进行相互校验,得到一个较可信的角度,提升转子的角度的可靠程度。
具体地,步骤2031可包括:若所述第一测量角度是可信的,则所述转子的角度为所述第一测量角度;若所述第一测量角度是不可信的,所述第二测量角度是可信的,则所述转子的角度为所述第二测量角度;若所述第一测量角度和所述第二测量角度均是不可信的,则所述转子的角度为所述第一估计角度或所述第二估计角度。
例如,可通过这样的方式确定第一测量角度是否可信:若所述第一测量角度与所述第一估计角度的差值在设定范围内,或所述第一测量角度与所述第二估计角度之间的差值在设定范围内,则确定所述第一测量角度是可信的。
可通过这样的方式确定第二测量角度是否可信:若第二测量角度与所述第一估计角度的差值在设定范围内,或所述第二测量角度与所述第二估计角度之间的差值在设定范围内,则确定所述第二测量角度是可信的。
基于图2A对应的实施例,如图2C所示的流程示意图,在一些可选地实施例中,电机控制系统的角度传感器的数量为1个;步骤203可包括:
2032、若所述测量角度是可信的,则所述转子的角度为所述第一测量角度;
例如,若测量角度与第一估计角度的差值在设定范围内,或者测量角度与第二估计角度的差值在设定范围内,则可以确定测量角度是可信的。
2033、若所述测量角度是不可信的,则所述转子的角度为所述第一估计角度或所述第二估计角度。
例如,若测量角度与第二估计角度的差值在不在设定范围内,且测量角度与第二估计角度的差值不在设定范围内,则可以确定测量角度是不可信的。
这样,电机控制系统,仅需要设置一个角度传感器,既能保证获取到的转子的角度的可靠性,保证电机安全可控地运行,又能避免过多的增加角度传感器,有助于精简电机控制系统的硬件结构,降低成本。
为便于理解,下面提供一个更具体的实施例。
如图3所示的电机控制系统的结构示意图,电机控制系统包括电机、两个三相绕组,两个角度传感器,转子角度估计单元以及角度诊断单元。该电机为六相电机。
两个三相绕组分别为第一绕组M1和第二绕组M2。
两个角度传感器分别为第一角度传感器和第二角度传感器。第一角度传感器和第二角度传感器用于获取转子相对于定子的角度。第一角度传感器获取到的角度可以理解为第一测量角度,第二角度传感器获取到的角度可以理解为第二测量角度。
电机控制系统还包括:多个控制单元,2个PWM驱动单元,2个逆变器、多个电流传感器以及2个坐标变换单元。
多个控制单元包括:控制单元P1、控制单元P3和控制单元P4。控制单元例如可以是PI控制单元。
2个PWM驱动单元包括:PWM驱动单元D1和PWM驱动单元D2。
2个逆变器包括:逆变器I1和逆变器I2。
2个坐标变换单元包括坐标变换单元T1和坐标变换单元T2。坐标变换单元例如可以是三相/两相坐标变换单元。
多个电流传感器包括:电流传感器C1、电流传感器C2、电流传感器C3、电流传感器C4、电流传感器C5以及电流传感器C6。
其中,控制单元P1用于根据输入的d轴目标电流Id1*与d轴实际电流Id1之差ΔId1, 输出第一绕组M1的d轴指令电压Ud1*;控制单元P2用于根据输入的q轴目标电流Iq1*与q轴实际电流Iq1之差ΔIq1,输出第一绕组M1的d轴指令电压Uq1*。
d轴目标电流Id1*是六相电机中第一绕组M1在两相同步旋转坐标系中表示的矢量控制中的d轴分量电流,并且用来减弱或增强第一绕组M1产生的磁场大小。q轴目标电流Iq1*是六相电机中第一绕组M1在两相同步旋转坐标系中表示的矢量控制中的q轴分量电流,并且用来控制第一绕组M1产生的电磁转矩。
PWM驱动单元D1用于将控制单元P1输出的第一绕组M1的d轴指令电压Ud1*和控制单元P2输出的第一绕组M1的d轴指令电压Uq1*,转换成第一绕组M1的PWM控制电压信号PWMa、PWMb、PWMc,并输出至逆变器I1。其中PWMa控制第一绕组M1的a相电压,PWMb控制第一绕组M1的b相电压,PWMc控制第一绕组M1的c相电压。
逆变器I1用于根据PWM驱动单元D1用于根据第一绕组M1相电压的PWM控制电压信号PWMa、PWMb、PWMc,输出PWM控制电压信号PWMa、PWMb、PWMc的三相相电压Ua、Ub、Uc,并施加到第一绕组M1的a、b、c三个绕组上。
电流传感器C1、C2和C3分别设置在第一绕组M1的a、b、c三个绕组,分别用于获取第一绕组M1的a、b、c三个绕组的电流Ia、Ib、Ic。
坐标变换单元T1用于将Ia、Ib、Ic转换成第一绕组M1在两相同步旋转坐标系下的两相实际电流Id1和Iq1。两相实际电流Id1和Iq1用于与上述的两相目标电流指令Id1*和Iq1*做闭环控制。
转子角度估计单元E1用于根据Id1和Iq1估计第一绕组对应的第一估计角度θest1。
控制单元P3用于根据输入的d轴目标电流Id2*与d轴实际电流Id2之差ΔId2,输出第二绕组M2的d轴指令电压Ud2*;控制单元P4用于根据输入的q轴目标电流Iq2*与q轴实际电流Iq2之差ΔIq2,输出第二绕组M2的d轴指令电压Uq2*。
d轴目标电流Id2*是六相电机中第二绕组M2在两相同步旋转坐标系中表示的矢量控制中的d轴分量电流,并且用来减弱或增强第二绕组M2产生的磁场大小。q轴目标电流Iq2*是六相电机中第二绕组M2在两相同步旋转坐标系中表示的矢量控制中的q轴分量电流,并且用来控制第二绕组M2产生的电磁转矩。
PWM驱动单元D2用于将控制单元P2输出的第二绕组M2的d轴指令电压Ud2*和控制单元P2输出的第二绕组M2的d轴指令电压Uq2*,转换成第二绕组M2的PWM控制电压信号PWMu、PWMv、PWMw,并输出至逆变器I1。其中PWMa控制第二绕组M2的u相电压,PWMb控制第二绕组M2的v相电压,PWMc控制第二绕组M2的w相电压。
逆变器I2用于根据第二绕组M2相电压的PWM控制电压信号PWMu、PWMv、PWMw,输出PWM控制电压信号PWMu、PWMv、PWMw的三相相电压Uu、Uv、Uw,并施加到第二绕组M2的u、v、w三个绕组上。
电流传感器C3、C4和C5分别设置在第二绕组M2的u、v、w三个绕组,分别用于获取第二绕组M1的a、b、c三个绕组的电流Ia、Ib、Ic。
坐标变换单元T2用于将Iu、Iv、Iw转换成第二绕组M2在两相同步旋转坐标系下的两相实际电流Id2和Iq2。两相实际电流Id2和Iq2用于与上述的两相目标电流指令Id2*和 Iq2*做闭环控制。
转子角度估计单元E2用于根据Id2和Iq2估计第二绕组对应的第二估计角度θest1。
角度诊断校验单元用于根据第一估计角度、第二估计角度、第一测量角度和第二测量角度输出转子的角度。
可以理解,上述实施例中的步骤201-203可通过角度诊断校验单元实现。
具体地,步骤201中,角度诊断校验单元可从转子角度估计单元E1获取第一估计角度,从转子角度估计单元E2获取第二估计角度。
步骤202中,角度诊断校验单元可从第一角度传感器获取第一测量角度θ1,从第二角度传感器获取第二测量角度θ2。
步骤203中,角度诊断校验单元根据第一估计角度θest1、第二估计角度θest2、第一测量角度θ1和第二测量角度θ2输出转子的角度。
下面提供一个角度诊断单元根据第一估计角度θest1、第二估计角度θest3、第一测量角度θ1和第二测量角度θ2输出转子的角度θelec的具体方案。
如图4所示的流程示意图,图中θ1_Flag==1表示第一测量角度是可信的;θ1_Flag==0表示第一测量角度是不可信的;θ2_Flag==1表示第二测量角度是可信的;θ2_Flag==0表示第二测量角度是不可信的;第一次获取转子的角度时,θ1_Flag==1且θ2_Flag==1。
角度诊断单元根据第一估计角度、第二估计角度、第一测量角度和第二测量角度输出转子的角度的方案可包括以下步骤:
401、角度诊断单元判断第一测量角度θ1是否是可信的;若是,执行步骤402,若否,执行步骤404。
角度诊断单元可根据条件判断1和条件判断2确定第一测量角度θ1是否是可信的。
具体地,条件判断1为:|θ1-θ2|<5°,条件判断2为:|θ1-θest1|<10°或者|θ1-θest2|<10°;若条件判断1和条件判断2均为满足,则可确定第一测量角度θ1是可信的。
可以理解,如果|θ1-θ2|<5°,则说明θ1和θ2直接的差距较小,θ1和θ2的可信度较高,可进一步判断θ1和θ2是否可信。
若|θ1-θest1|<10°或者|θ1-θest2|<10°,则说明θ1与θest1或θest2中的至少一个是接近的,则可以进一步确定θ1的可信度是足够高的,那么可以确定θ1是可信的。
或者说,角度诊断单元可根据上一轮的获取转子的角度的过程中的角度诊断结果,确定第一测量角度θ1是否是可信的。
402、角度诊断单元判断第二测量角度θ2是否是可信的;若是执行步骤403,若否执行步骤404。
角度诊断单元可根据条件判断3确定第二测量角度θ2是否是可信的。
条件判断3为|θ2-θest1|<10°或者|θ2-θest2|<10°。若条件判断3是满足的,则可以确定θ2是可信的。
可以理解,若|θ2-θest1|<10°或者|θ2-θest2|<10°,则说明θ2与θest1或θest2中的至少一个是接近的,则可以进一步确定θ2的可信度是足够高的,那么可以确定θ2是可信的。
或者说,角度诊断单元可根据上一轮的获取转子的角度的过程中的角度诊断结果,确 定第一测量角度θ2是否是可信的。
403、角度诊断单元执行角度诊断1的过程。
例如,角度诊断单元可通过角度诊断SW1子模块执行角度诊断1的过程。
404、角度诊断单元执行角度诊断2的过程。
例如,角度诊断单元可通过角度诊断SW2子模块执行角度诊断2的过程。
405、角度诊断单元判断第二测量角度是否是可信的;若是执行步骤406,若否执行步骤407。
角度诊断单元确定θ2是否是可信的具体举例可参考上述步骤402对应的举例,此处不再赘述。
406、角度诊断单元执行角度诊断3的过程。
例如,角度诊断单元可通过角度诊断SW3子模块执行角度诊断3的过程。
407、角度诊断单元执行角度诊断4的过程。
例如,角度诊断单元可通过角度诊断SW4子模块执行角度诊断4的过程。
该方案中,步骤403、步骤404、步骤406以及步骤407为进行角度诊断的过程,在角度诊断的过程中,根据角度诊断的结构得到转子的角度θelec。
下面结合附图分别阐述角度诊断1、角度诊断2、角度诊断3以及角度诊断4的过程。
如图5所示的流程示意图,角度诊断1的过程如下:
A1、判断是否满足|θ1-θ2|<5°;若是,执行步骤A2,若否,执行步骤A7。
可以理解,|θ1-θ2|<5°为条件判断1,若条件判断1的结果为“是”,说明第一测量角度和第二测量角度具有加高的可信度。
A2、判断是否满足:|θ1-θest1|<10°或者|θ1-θest2|<10°;若是,执行步骤A3;若否,执行步骤A4。
A3、确定转子的角度θelec为第一测量角度θ1。
A4、判断是否满足:|θ2-θest1|<10°或者|θ2-θest2|<10°;若是,执行步骤A5,若否,执行步骤A6。
进一步地,利用条件判断2判断θ1是否可信。若结果为是,则可确定转子的角度为第一测量角度θ1;若否,则利用条件判断3进一步判断θ2是否可信。条件判断3为|θ2-θest1|<10°或者|θ2-θest2|<10°。
A5、确定第一测量角度θ1是不可信的,θ2是可信的。
A6、确定第一测量角度θ1和第二测量角度θ2都是不可信的,然后进行角度诊断4的过程。
若满足条件判断3,则可以确定θ2是可信的,也即,θ1是不可信的,θ2是可信的。若不满足条件判断3,则可确定θ2是不可信的,也即,θ1和θ2都是不可信的。
A7、判断是否满足(|θ1-θest1|+|θ1-θest2|)<(|θ2-θest1|+|θ2-θest2|);若是,执行步骤A8;若否,执行步骤A9。
如果不满足条件判断1,则可以确定θ1和θ2的可信度较低,则进一步判断第一估计角度θest1和第二估计角度θest1是否可信。
具体地,利用条件判断4判断θest1和θest2是否可信。条件判断4为(|θ1-θest1|+|θ1-θest2|) <(|θ2-θest1|+|θ2-θest2|)。
A8、确定第二测量角度θ2是不可信的,然后进行角度诊断2的过程。
A9、确定第一测量角度θ1是不可信的,然后进行角度诊断3的过程。
若满足条件判断4,则说明θ2是不可信的,若不满足条件判断4,则说明θ1是不可信的。
如图6所示的流程示意图,角度诊断2的过程可用于判断θ1是否可信。角度诊断2的过程如下:
B1、判断是否满足:|θ1-θest1|<10°或者|θ1-θest2|<10°;若是,执行步骤B2,若否,执行步骤B3。
具体地,利用条件判断2判断θ1是否可信。条件判断2为:|θ1-θest1|<10°或者|θ1-θest2|<10°。
B2、确定转子的角度θelec为第一测量角度θ1。
B3、确定转子的角度θelec为第一估计角度θest1,且第一测量角度θ1是不可信的。
若条件判断2是满足的,则可以确定θ1是可信的,那么可确定转子的角度为第一测量角度θ1。若条件判断2是不满足的,则可确定θ1与θest1和θest2的差异均较大,那么可确定转子的角度为第一估计角度θest1,且θ1是不可信的。
继续参阅如图7所示的流程示意图,角度诊断3的过程可用于判断θ2是否可信。角度诊断3的过程如下:
C1、判断是否满足:|θ2-θest1|<10°或者|θ2-θest2|<10°;若是,执行步骤B2,若否,执行步骤B3。
具体地,利用条件判断3判断θ2是否可信。条件判断3为:|θ2-θest1|<10°或者|θ2-θest2|<10°。
C2、确定转子的角度θelec为第二测量角度θ2。
C3、确定转子的角度θelec为第一测量角度θ1,且第二测量角度θ2是不可信的。
若条件判断3是满足的,则可以确定θ2是可信的,那么可确定转子的角度为第一测量角度θ2,若条件判断3是不满足的,则可确定θ2与θest1和θest2的差异均较大,那么可确定转子的角度为第一估计角度θ1,且θ2是不可信的。
角度诊断4的过程包括:确定转子的角度为θest1。也即是说,当θ1和θ2均不可信时,转子的角度θelec为θest1。
应理解,本申请实施例中,每个角度诊断的过程的结果,可用于下一次获取转子的角度时,确定第一测量角度θ1和/或第二测量角度θ2是否可信。也即,本申请中,获取转子的角度的过程可以是循环的。
例如,若根据上一次获取转子的角度时,角度诊断2的过程中,确定θ1是可信的,那么在下一次获取转子的角度时,在步骤401中,角度诊断单元可确定θ1是可信的。若在上一次获取转子的角度时,角度诊断3的过程中,确定θ2是可信的,在步骤402或者步骤 405中,角度诊断单元可确定θ2是可信的。
可以看出,该实施例的技术方案中,仅需要设置两个角度传感器(第一角度传感器和第二角度传感器),第一角度传感器和第二角度传感器得到第一测量角度θ1和第二测量角度θ2,与估计得到的第一估计角度和第二估计角度进行诊断校验。当θ1不可信时,可认为第一角度传感器故障或失效,当θ2不可信时,可认为第二角度传感器故障或失效。当θ1和θ2均不可信时,可认为第一角度传感器和第二传感器均故障或失效。这样可以在角度传感器故障或失效时,准确地找到故障的角度传感器,而且仅需要设置两个角度传感器,有效电机控制系统的硬件冗余,降低成本。
而且,当其中任一角度传感器发生故障或失效,也能利用另一个角度传感器得到的测量角度与第一估计角度和第二估计角度进行诊断校验,得到一个可信的转子的角度θelec。
即使两个角度传感器都故障,也能利用第一估计角度和第二估计角度进行诊断校验,得到一个可信的转子的角度θelec。例如,条件判断1和条件判断2均不满足时,可确定转子的角度θelec为第一估计角度θest1。
这样,在两个角度传感器中的任一角度传感器发生故障或失效,或者两个角度传感器均故障时,本申请的技术方案,不仅能够正常获得一个较可信的转子的角度,也能够及时找到故障或失效的角度传感器,保证电机控制系统的安全运行,也能够避免电机控制系统的硬件冗余,降低成本。
应理解,本申请实施例中,在包括两个三相电机的电机控制系统中,能够根据两个三相电机得到两个估计角度。第一估计角度θest1为两个估计角度中的任意一个估计角度,并不特指哪一个估计角度。
如图8所示的结构示意图,本申请实施例还提供一种角度获取装置800,包括:
估计角度获取单元801,用于获取第一绕组对应的第一估计角度,以及获取第二绕组对应的第二估计角度,第一估计角度是根据第一绕组的电流得到的,第二估计角度是根据第二绕组的电流得到的;
测量角度获取单元802,用于通过角度传感器获取测量角度,测量角度是角度传感器获取到的转子的角度;
处理单元803,用于根据第一估计角度、第二估计角度和测量角度,确定转子的角度。
应理解,该实施例中的估计角度获取单元801、测量角度获取单元802以及处理单元803可部署在电控系统的角度诊断单元。由角度诊断单元实现上述估计角度获取单元801、测量角度获取单元802以及处理单元803的功能。
本申请实施例的技术方案,角度获取装置800可根据第一绕组的电流得到第一估计角度,根据第二绕组的电流得到第二估计角度,这样能够结合该第一估计角度和第二估计角度,以及角度传感器获得的测量角度,得到一个可信度较高的转子的角度,并不需要过多的增加角度传感器的数量来实现获取转子的角度,从而实现既能保证获取到的转子的角度的可靠性,保证电机安全可控地运行,又能避免过多的增加角度传感器,有助于精简电机控制系统的硬件结构,降低成本。
在某些实施例中,所述角度传感器包括第一角度传感器和第二角度传感器;
所述根据所述第一估计角度、所述第二估计角度和所述测量角度,确定所述转子的角度方面,处理单元803具体用于:
根据所述第一估计角度、所述第二估计角度、第一测量角度以及第二测量角度,确定所述转子的角度,所述第一测量角度θ1是所述第一角度传感器获取到的所述转子的角度,所述第二测量角度θ2是所述第二角度传感器获取到的所述转子的角度。
在某些实施例中,在所述根据所述第一估计角度、所述第二估计角度、第一测量角度以及第二测量角度,确定所述转子的角度方面,处理单元803具体用于:
若所述第一测量角度是可信的,则所述转子的角度为所述第一测量角度;
若所述第一测量角度是不可信的,所述第二测量角度是可信的,则所述转子的角度为所述第二测量角度;
若所述第一测量角度和所述第二测量角度均是不可信的,则所述转子的角度为所述第一估计角度或所述第二估计角度。
在某些实施例中,在所述根据所述第一估计角度、所述第二估计角度、第一测量角度以及第二测量角度,确定所述转子的角度方面,处理单元803具体用于:
若所述第一测量角度与所述第一估计角度的差值在设定范围内,或所述第一测量角度与所述第二估计角度之间的差值在设定范围内,则确定所述第一测量角度是可信的;和/或
若所述第二测量角度与所述第一估计角度的差值在设定范围内,或所述第二测量角度与所述第二估计角度之间的差值在设定范围内,则确定所述第二测量角度是可信的。
在某些实施例中,所述角度传感器的数量为1个;在所述根据所述第一估计角度、所述第二估计角度和所述测量角度,确定所述转子的角度方面,处理单元803具体用于:
若所述测量角度是可信的,则所述转子的角度为所述第一测量角度;
若所述测量角度是不可信的,则所述转子的角度为所述第一估计角度或所述第二估计角度。
应理解,上述角度获取方法的实施例中的相关说明也适用于本申请实施例的角度获取装置800。为避免冗余,此处不再赘述。
本申请实施例还提供一种角度获取装置900,如图9所示的结构示意图,角度获取装置900包括处理器,当所述处理器执行所述存储器中的计算机程序或指令时,执行上述任一方法实施例的步骤。
本申请实施例还提供一种车辆。车辆包括上述任一实施例的电机控制系统,或包括上述任一实施例的角度获取装置。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (12)

  1. 一种角度获取方法,用于电机控制系统,其特征在于,所述电机控制系统包括电机和角度传感器;所述电机包括第一绕组、第二绕组和转子;所述方法包括:
    获取所述第一绕组对应的第一估计角度,以及获取所述第二绕组对应的第二估计角度,所述第一估计角度是根据所述第一绕组的电流得到的,所述第二估计角度是根据所述第二绕组的电流得到的;
    通过所述角度传感器获取测量角度,所述测量角度是所述角度传感器获取到的所述转子的角度;
    根据所述第一估计角度、所述第二估计角度和所述测量角度,确定所述转子的角度。
  2. 根据权利要求1所述的方法,其特征在于,所述角度传感器包括第一角度传感器和第二角度传感器;
    所述根据所述第一估计角度、所述第二估计角度和所述测量角度,确定所述转子的角度包括:
    根据所述第一估计角度、所述第二估计角度、第一测量角度以及第二测量角度,确定所述转子的角度,所述第一测量角度是所述第一角度传感器获取到的所述转子的角度,所述第二测量角度是所述第二角度传感器获取到的所述转子的角度。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第一估计角度、所述第二估计角度、第一测量角度以及第二测量角度,确定所述转子的角度包括:
    若所述第一测量角度是可信的,则所述转子的角度为所述第一测量角度;
    若所述第一测量角度是不可信的,所述第二测量角度是可信的,则所述转子的角度为所述第二测量角度;
    若所述第一测量角度和所述第二测量角度均是不可信的,则所述转子的角度为所述第一估计角度或所述第二估计角度。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述第一估计角度、所述第二估计角度、第一测量角度以及第二测量角度,确定所述转子的角度还包括:
    若所述第一测量角度与所述第一估计角度的差值在设定范围内,或所述第一测量角度与所述第二估计角度之间的差值在设定范围内,则确定所述第一测量角度是可信的;和/或
    若所述第二测量角度与所述第一估计角度的差值在设定范围内,或所述第二测量角度与所述第二估计角度之间的差值在设定范围内,则确定所述第二测量角度是可信的。
  5. 根据权利要求1所述的方法,其特征在于,所述角度传感器的数量为1个;所述根据所述第一估计角度、所述第二估计角度和所述测量角度,确定所述转子的角度包括:
    若所述测量角度是可信的,则所述转子的角度为所述第一测量角度;
    若所述测量角度是不可信的,则所述转子的角度为所述第一估计角度或所述第二估计 角度。
  6. 一种角度获取装置,用于电机控制系统,其特征在于,所述电机控制系统包括电机和角度传感器;所述电机包括第一绕组、第二绕组和转子;所述方法包括:
    估计角度获取单元,用于获取所述第一绕组对应的第一估计角度,以及获取所述第二绕组对应的第二估计角度,所述第一估计角度是根据所述第一绕组的电流得到的,所述第二估计角度是根据所述第二绕组的电流得到的;
    测量角度获取单元,用于通过所述角度传感器获取测量角度,所述测量角度是所述角度传感器获取到的所述转子的角度;
    处理单元,用于根据所述第一估计角度、所述第二估计角度和所述测量角度,确定所述转子的角度。
  7. 根据权利要求6所述的角度获取装置,其特征在于,在某些实施例中,所述角度传感器包括第一角度传感器和第二角度传感器;
    所述根据所述第一估计角度、所述第二估计角度和所述测量角度,确定所述转子的角度方面,处理单元具体用于:
    根据所述第一估计角度、所述第二估计角度、第一测量角度以及第二测量角度,确定所述转子的角度,所述第一测量角度是所述第一角度传感器获取到的所述转子的角度,所述第二测量角度是所述第二角度传感器获取到的所述转子的角度。
  8. 根据权利要求7所述的角度获取装置,其特征在于,在所述根据所述第一估计角度、所述第二估计角度、第一测量角度以及第二测量角度,确定所述转子的角度方面,处理单元具体用于:
    若所述第一测量角度是可信的,则所述转子的角度为所述第一测量角度;
    若所述第一测量角度是不可信的,所述第二测量角度是可信的,则所述转子的角度为所述第二测量角度;
    若所述第一测量角度和所述第二测量角度均是不可信的,则所述转子的角度为所述第一估计角度或所述第二估计角度。
  9. 根据权利要求8所述的角度获取装置,其特征在于,在所述根据所述第一估计角度、所述第二估计角度、第一测量角度以及第二测量角度,确定所述转子的角度方面,处理单元具体用于:
    若所述第一测量角度与所述第一估计角度的差值在设定范围内,或所述第一测量角度与所述第二估计角度之间的差值在设定范围内,则确定所述第一测量角度是可信的;和/或
    若所述第二测量角度与所述第一估计角度的差值在设定范围内,或所述第二测量角度与所述第二估计角度之间的差值在设定范围内,则确定所述第二测量角度是可信的。
  10. 根据权利要求6所述的角度获取装置,其特征在于,所述角度传感器的数量为1 个;在所述根据所述第一估计角度、所述第二估计角度和所述测量角度,确定所述转子的角度方面,处理单元具体用于:
    若所述测量角度是可信的,则所述转子的角度为所述第一测量角度;
    若所述测量角度是不可信的,则所述转子的角度为所述第一估计角度或所述第二估计角度。
  11. 一种角度获取装置,其特征在于,包括:处理器,当所述处理器执行所述存储器中的计算机程序或指令时,使得权利要求1-5任一项的所述方法被执行。
  12. 一种车辆,其特征在于,包括权利要求6-11任一项所述的角度获取装置。
PCT/CN2020/132650 2020-11-30 2020-11-30 角度获取方法及相关装置 WO2022110107A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080004993.3A CN112689953A (zh) 2020-11-30 2020-11-30 角度获取方法及相关装置
PCT/CN2020/132650 WO2022110107A1 (zh) 2020-11-30 2020-11-30 角度获取方法及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132650 WO2022110107A1 (zh) 2020-11-30 2020-11-30 角度获取方法及相关装置

Publications (1)

Publication Number Publication Date
WO2022110107A1 true WO2022110107A1 (zh) 2022-06-02

Family

ID=75457704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132650 WO2022110107A1 (zh) 2020-11-30 2020-11-30 角度获取方法及相关装置

Country Status (2)

Country Link
CN (1) CN112689953A (zh)
WO (1) WO2022110107A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569994A (en) * 1992-11-06 1996-10-29 Georgia Tech Research Corporation Method and apparatus for sensorless control of permanent-magnet synchronous motors
US20010002784A1 (en) * 1999-12-02 2001-06-07 Hitachi, Ltd. Motor control device
CN101814891A (zh) * 2009-02-24 2010-08-25 Hkr候技股份有限公司 用于操作电机的方法和装置
CN105915127A (zh) * 2016-06-01 2016-08-31 同济大学 一种电机转子位置冗余测量方法、系统及电子设备
CN106549618A (zh) * 2016-12-19 2017-03-29 旭利无锡电气技术有限公司 基于磁场角度冗余算法的电动汽车安全系统及其控制方法
CN107453669A (zh) * 2017-08-30 2017-12-08 北京新能源汽车股份有限公司 电机转子位置检测方法、装置及电动汽车
CN110971155A (zh) * 2019-12-13 2020-04-07 株洲易力达机电有限公司 一种冗余位置信号的pmsm控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7002318B1 (en) * 2004-09-23 2006-02-21 General Motors Corporation Position sensor fault tolerant control for automotive propulsion system
CN107017822A (zh) * 2017-06-01 2017-08-04 北京工业大学 一种无刷直流电机转子位置传感器故障的容错控制方法
CN110233588A (zh) * 2019-06-18 2019-09-13 山东理工大学 一种电动汽车驱动用永磁同步电机转子位置检测冗余装置和控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569994A (en) * 1992-11-06 1996-10-29 Georgia Tech Research Corporation Method and apparatus for sensorless control of permanent-magnet synchronous motors
US20010002784A1 (en) * 1999-12-02 2001-06-07 Hitachi, Ltd. Motor control device
CN101814891A (zh) * 2009-02-24 2010-08-25 Hkr候技股份有限公司 用于操作电机的方法和装置
CN105915127A (zh) * 2016-06-01 2016-08-31 同济大学 一种电机转子位置冗余测量方法、系统及电子设备
CN106549618A (zh) * 2016-12-19 2017-03-29 旭利无锡电气技术有限公司 基于磁场角度冗余算法的电动汽车安全系统及其控制方法
CN107453669A (zh) * 2017-08-30 2017-12-08 北京新能源汽车股份有限公司 电机转子位置检测方法、装置及电动汽车
CN110971155A (zh) * 2019-12-13 2020-04-07 株洲易力达机电有限公司 一种冗余位置信号的pmsm控制方法

Also Published As

Publication number Publication date
CN112689953A (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN109842336B (zh) 一种五相永磁电机一相短路容错直接转矩控制方法
US7928675B2 (en) Feedback control method and apparatus for electric motor
US10718845B2 (en) Method and device for diagnosing phase current sensor defects in control system of synchronous rotary electric machine of motor vehicle
JP2012222881A (ja) ブラシレスモータ及びその制御方法
JP2010029030A (ja) モータ制御装置
JP6848622B2 (ja) 電力変換器及びその制御装置
CN112394312B (zh) 三相电机驱动系统电流传感器故障诊断方法
WO2019064749A1 (ja) 故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP6143988B1 (ja) モータ制御装置
JP6503962B2 (ja) 電流センサ異常診断装置
WO2022110107A1 (zh) 角度获取方法及相关装置
JP2011019302A (ja) モータ駆動システムの制御装置
JP2018191506A (ja) 電気モータの回転子の電気抵抗を識別するための方法
JP6493046B2 (ja) 電流センサ異常診断装置
JP6407175B2 (ja) 電力変換器制御装置
US20150263637A1 (en) Converter system and method for converting alternating current
JP2000116176A (ja) 3相交流モータの制御装置
JP2004096933A (ja) 3相交流電動機の制御装置
JP6451533B2 (ja) 電流センサ異常診断装置
WO2021117303A1 (ja) モータの減磁診断装置およびモータ制御装置の減磁診断方法
JP5744151B2 (ja) 電動機の駆動装置および電動機の駆動方法
WO2015105093A1 (ja) 電動機の制御装置
WO2019207754A1 (ja) 電動機制御装置
JP2004343878A (ja) 電動機の制御装置
CN115102465B (zh) 六相永磁电机的控制方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962996

Country of ref document: EP

Kind code of ref document: A1