WO2022107426A1 - 物理量検出装置 - Google Patents

物理量検出装置 Download PDF

Info

Publication number
WO2022107426A1
WO2022107426A1 PCT/JP2021/032927 JP2021032927W WO2022107426A1 WO 2022107426 A1 WO2022107426 A1 WO 2022107426A1 JP 2021032927 W JP2021032927 W JP 2021032927W WO 2022107426 A1 WO2022107426 A1 WO 2022107426A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
sub
physical quantity
flow rate
chamber
Prior art date
Application number
PCT/JP2021/032927
Other languages
English (en)
French (fr)
Inventor
信章 五来
暁 上ノ段
直生 斉藤
崇裕 三木
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2022563590A priority Critical patent/JP7407305B2/ja
Priority to CN202180073879.0A priority patent/CN116391112A/zh
Priority to DE112021004518.0T priority patent/DE112021004518T5/de
Priority to US18/034,319 priority patent/US20230408316A1/en
Publication of WO2022107426A1 publication Critical patent/WO2022107426A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices

Definitions

  • the present invention relates to, for example, a physical quantity detecting device for detecting a physical quantity of intake air of an internal combustion engine.
  • Patent Document 1 describes a bypass flow path that takes in a part of the air flowing through the main flow path formed in the duct, and a sub-bypass flow path that branches from the bypass flow path and takes in a part of the air flowing through the bypass flow path. Is formed inside, and the structure of the air flow measuring device in which the sensor is installed in the sub-bypass flow path is shown.
  • the sensor has a diaphragm that detects the flow rate, and the element surface of the diaphragm is exposed to the sub-bypass flow path, and the back surface of the element of the diaphragm is exposed to the closed chamber that communicates with the circuit chamber through the ventilation hole. is doing.
  • the physical quantity detection device is required to have the ability to accurately measure the flow rate signal even if it is installed in various types of internal combustion engines.
  • the sound pressure generated by the turbocharger mounted downstream of the physical quantity detection device of the internal combustion engine affects the flow rate characteristics of the physical quantity detection device.
  • the resonance phenomenon of sound pressure on the element front side and the element back side of the diaphragm by the turbocharger affects the flow rate characteristics and causes a flow rate detection error.
  • a flow rate detection error occurs due to the sound pressure.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a physical quantity detecting device capable of suppressing the influence of the resonance phenomenon of sound pressure on the flow rate characteristics.
  • the physical quantity detection device of the present invention that solves the above problems is A physical quantity detection device that detects the physical quantity of the gas to be measured flowing through the main passage.
  • a housing arranged in the main passage, a sub-passage formed in the housing, a flow detection unit arranged in the sub-passage, a circuit unit electrically connected to the flow detection unit, and the above-mentioned
  • a circuit chamber formed in a housing and accommodating the circuit portion, and one end of the sub-passageway and the other end of the sub-passageway open to the circuit chamber to communicate between the sub-passageway and the circuit chamber, and the sub-passageway.
  • a first pressure introduction passage capable of introducing the pressure of the gas to be measured is provided in the circuit chamber.
  • the flow rate detection unit includes a diaphragm in which the surface of the diaphragm is exposed in the sub-passage and the back surface of the diaphragm is exposed in the closed chamber isolated from the sub-passage, and one end is opened in the circuit chamber and the other end is in the closed chamber. It has a second pressure introduction passage that opens to communicate between the circuit chamber and the closed chamber and can introduce the pressure of the gas to be measured from the circuit chamber to the closed chamber.
  • the circuit chamber is characterized by having at least one or more protrusions provided at positions facing the opening at which the other end of the first pressure introduction passage opens.
  • the present invention is to provide a physical quantity detection device capable of suppressing the influence of the resonance phenomenon of sound pressure on the flow rate characteristics.
  • FIG. 2 is a cross-sectional view of the cover of FIG. 2 cut at a joint surface with a housing.
  • FIG. 5 is a sectional view taken along line VI-VI of FIG. Sectional view of the chip package.
  • Enlarged view of the main part of FIG. FIG. 5 is a sectional view taken along line VIII-VIII of FIG. Enlarged view of the main part of FIG.
  • the embodiment for carrying out the invention solves various problems requested as an actual product, and particularly as a detection device for detecting a physical quantity of intake air of a vehicle. It solves various problems that are desirable for use and has various effects.
  • One of the various problems solved by the following examples is the content described in the column of the problems to be solved by the above-mentioned invention, and one of the various effects of the following examples is. These are the effects described in the column of effects of the invention.
  • the various problems solved by the following examples and the various effects produced by the following examples will be described in the description of the following examples. Therefore, the problems and effects described in the following examples are described in terms other than the contents of the problem column to be solved by the invention and the effect column of the invention.
  • FIG. 1 is a system diagram showing an embodiment in which a physical quantity detection device according to the present invention is used in an electronic fuel injection type internal combustion engine system 1.
  • the physical quantity detecting device of this embodiment is used in an internal combustion engine system 1 for an automobile.
  • the internal combustion engine system 1 has an engine 2 with a turbocharger 15, and in the main passage 22, in order from the upstream side, an air cleaner 4, a physical quantity detection device 20, an intercooler 6, a throttle valve 7, and an intake pipe 8 are provided. Is provided, and the exhaust catalyst 10 is provided in the exhaust passage 9.
  • a thermal humidity measuring device 11, an intake pressure sensor 12, and an intake temperature sensor 13 are attached to the intake pipe 8 to measure the humidity, pressure, and temperature of the intake air sucked into the engine 2.
  • the physical quantity detection device 20 detects physical quantities such as the flow rate, temperature, humidity, and pressure of the gas to be measured, which is the intake air taken in from the air cleaner 4 and flows through the main passage 22.
  • the physical quantity detected by the physical quantity detection device 20 is converted into an electric signal and input to the control device (ECU).
  • the control device calculates the fuel injection amount and ignition timing of the engine 2 by using the physical quantity of the intake air which is the output of the physical quantity detection device 20.
  • FIG. 2 is a front view of the physical quantity detecting device.
  • the physical quantity detecting device 20 is used in a state of being inserted into the inside of the main passage 22 through an attachment hole provided in the passage wall of the main passage 22 and fixed to the main passage 22.
  • the physical quantity detecting device 20 includes a housing arranged in the main passage 22 through which the gas to be measured flows.
  • the housing of the physical quantity detecting device 20 has a housing 100 and a cover 200 attached to the housing 100.
  • the housing 100 is formed, for example, by injection molding a synthetic resin material.
  • the cover 200 is made of, for example, a plate-shaped member made of a metal material or a synthetic resin material, and in this embodiment, it is made of an injection-molded product made of an aluminum alloy or a synthetic resin material.
  • the housing 100 includes a flange 111 for fixing the physical quantity detecting device 20 to the main passage 22, a connector 112 protruding from the flange 111 and exposed to the outside from the intake body for electrical connection with an external device, and a flange. It has a measuring unit 113 extending from 111 toward the center of the main passage 22.
  • the measuring unit 113 has a thin and long shape extending straight from the flange 111, and has a wide front surface 121 and a back surface 122, and a pair of narrow side surfaces 123 and 124.
  • the measuring unit 113 projects from the inner wall of the main passage 22 toward the center of the passage 22 in a state where the physical quantity detecting device 20 is attached to the main passage 22.
  • the front surface 121 and the back surface 122 are arranged in parallel along the central axis of the main passage 22, and the side surface 123 on one side in the longitudinal direction of the measurement unit 113 among the narrow side surfaces 123 and 124 of the measurement unit 113 is the main passage 22.
  • the side surface 124 on the other side in the lateral direction of the measuring unit 113 is arranged to face the downstream side of the main passage 22. With the physical quantity detecting device 20 attached to the main passage 22, the tip of the measuring unit 113 is the lower surface 125.
  • the measurement unit 113 is provided with a sub-passage inlet 131 on the side surface 123, and a first outlet 132 and a second outlet 133 on the side surface 124.
  • the sub-passage inlet 131, the first outlet 132, and the second outlet 133 are provided at the tip of the measuring unit 113 extending from the flange 111 toward the center of the main passage 22.
  • the physical quantity detecting device 20 has a shape in which the measuring unit 113 extends long in a direction orthogonal to the center line of the main passage 22, but the widths of the side surfaces 123 and 124 have a narrow shape. As a result, the physical quantity detecting device 20 can suppress the fluid resistance to a small value with respect to the gas to be measured.
  • FIG. 3 is a view showing a state in which the cover is removed from the housing of the physical quantity detection device
  • FIG. 4 is a rear view of the cover
  • FIG. 5 is a cross-sectional view of the cover of FIG. 2 cut at a joint surface with the housing.
  • the longitudinal direction of the measuring unit 113 which is the direction in which the measuring unit 113 extends from the flange 111, is the Z axis, and the measuring unit is in the direction extending from the sub-passage inlet 131 of the measuring unit 113 toward the first exit 132.
  • the short side direction of 113 may be referred to as an X axis
  • the thickness direction of the measurement unit 113 which is a direction from the front surface 121 to the back surface 122 of the measurement unit 113, may be referred to as a Y axis.
  • the measurement unit 113 of the housing 100 is provided with a flow rate sensor 411, which is a flow rate detection element, an intake air temperature sensor 321 and a humidity sensor 322.
  • the flow rate sensor 411 is arranged in the middle of the passage of the sub-passage 134.
  • the flow rate sensor 411 detects the flow rate of the gas to be measured flowing through the main passage.
  • the intake air temperature sensor 321 is arranged in the middle of the passage of the temperature detection passage 136, one end of which is open near the sub-passage inlet 131 of the side surface 123 and the other end of which is open on both the front surface 121 and the back surface of the measurement unit 113.
  • the intake air temperature sensor 321 detects the temperature of the gas to be measured flowing through the main passage.
  • the humidity sensor 322 is arranged in the humidity measurement room 137 of the measurement unit 113.
  • the humidity sensor 322 measures the humidity of the gas to be measured taken into the humidity measuring chamber 137 from the window portion 138 opening on the back surface of the
  • the measurement unit 113 is provided with a sub-passage 134 and a circuit chamber 135 for accommodating the circuit board 300.
  • the circuit chamber 135 and the sub-passage 134 have a structure in which the cover 200 is attached to the front surface 121 of the measuring unit 113 to cover and cover the circuit chamber 135 and the sub-passage 134 so as to be closed.
  • the cover 200 has a flat plate shape that covers the front surface 121 of the measuring unit 113. As shown in FIG. 4, the cover 200 is provided with a rib 221 on the back surface. The rib 221 is formed along the adhesive portion with the measuring unit 113. As shown in FIG. 5, the measuring unit 113 is provided with a concave groove 141 on the front surface 121, and the rib 221 is inserted into the measuring unit 113. The cover 200 is adhered with an adhesive with the rib 221 inserted in the concave groove 141 of the measuring unit 113.
  • the circuit chamber 135 is provided in a region on one side (side surface 123 side) in the X-axis direction, which is a position on the upstream side in the flow direction of the gas to be measured in the main passage 22.
  • the sub-passage 134 has a region on the Z-axis direction tip side (lower surface 125 side) of the measurement unit 113 with respect to the circuit chamber 135 and a position on the main passage 22 on the downstream side in the flow direction of the measured gas with respect to the circuit chamber 135. It is provided over the region on the other side (side surface 124 side) in the X-axis direction.
  • the sub-passage 134 has a first sub-passage A and a second sub-passage B that branches in the middle of the first sub-passage A.
  • the first sub-passage A extends between the sub-passage inlet 131 that opens to the side surface 123 on one side of the measurement unit 113 and the first exit 132 that opens to the side surface 124 on the other side of the measurement unit 113. It has a configuration extending along the X-axis direction of 113.
  • the first sub-passage A has a flow path extending from the sub-passage inlet 131 along the flow direction of the gas to be measured in the main passage 22 and connecting to the first outlet 132.
  • the first sub-passage A can take in the gas to be measured flowing in the main passage 22 from the sub-passage inlet 131, and return the taken-in gas to be measured from the first outlet 132 to the main passage 22.
  • the first sub-passage A is formed by covering the first sub-passage groove recessed in the front surface of the measuring unit 113 with the region 201 of the cover 200.
  • the second sub-passage B branches at an intermediate position of the first sub-passage A, is bent toward the proximal end side (flange side) of the measuring unit 113, and extends along the Z-axis direction of the measuring unit 113. .. Then, the base end portion of the measurement unit 113 bends toward the other side (side surface 124 side) of the measurement unit 113 in the X-axis direction, makes a U-turn toward the tip end portion of the measurement unit 113, and again in the Z-axis direction of the measurement unit 113. It extends along.
  • the second outlet 133 is arranged to face the downstream side in the flow direction of the gas to be measured in the main passage 22.
  • the second outlet 133 has an opening area substantially equal to or slightly larger than that of the first outlet 132, and is formed at a position adjacent to the measurement unit 113 on the longitudinal proximal end side of the first outlet 132.
  • the second sub-passage B has a flow path that reciprocates along the Z-axis direction of the measuring unit 113.
  • the second sub-passage B branches in the middle of the first sub-passage A and extends toward the base end side (direction away from the first sub-passage A) of the measurement unit 113 and the outbound passage portion B1 for measurement.
  • a return passage portion that is folded back at the base end portion side of the portion 113 (the end portion of the separation passage portion), makes a U-turn, and extends toward the tip portion side (direction approaching the first sub-passage A) of the measurement portion 113. Has B2.
  • the return passage portion B2 is a flow path connected to a second outlet 133 that opens toward the downstream side in the flow direction of the measured gas at a position on the downstream side in the flow direction of the measured gas in the main passage 22 with respect to the sub-passage inlet 131.
  • the second sub-passage B can be returned to the main passage 22 from the second outlet 133 by passing the gas to be measured that has flowed from the first sub-passage A.
  • the second sub-passage B is formed by covering the second sub-passage groove 152 recessed in the front surface of the measuring unit 113 with the area 202 of the cover 200.
  • a first introduction passage 161 capable of introducing the pressure of the gas to be measured from the second sub-passage B into the circuit chamber 135 is provided.
  • the first introduction passage 161 has one end opened in the second sub-passage B and the other end opened in the circuit chamber 135 to communicate between the second sub-passage B and the circuit chamber 135.
  • the first introduction passage 161 has an introduction port 162 that opens into the second sub-passage B.
  • the introduction port 162 is arranged at a position offset outward from the side wall surface of the second sub-passage B.
  • the introduction port 162 of the second sub-passage B is a folded-back portion that folds back from the outward passage portion B1 of the second sub-passage B to the return passage portion B2. Is also arranged at a curved portion located on the return passage portion B2 side.
  • the first introduction passage 161 advances from the introduction port 162 toward the base end side of the measurement unit 113 along the Z-axis direction of the measurement unit 113, and is bent in a substantially L shape toward the side surface 123 of the measurement unit 113. It travels along the X-axis direction and has a shape continuous with the opening 163 that opens into the circuit chamber 135.
  • a flow rate sensor (flow rate detection unit) 411 is arranged at an intermediate position of the outward passage portion B1 of the second sub-passage B.
  • the introduction port 162 is provided at a position downstream of the flow rate sensor 411 in the measured gas flow direction of the second sub-passage B.
  • the flow rate sensor 411 is provided in the sensor assembly 400, and the sensor assembly 400 is mounted on the circuit board 300.
  • circuit components such as a sensor assembly 400, a pressure sensor 320, an intake air temperature sensor 321 and a humidity sensor 322 are mounted on the mounting surface on the front side, and chip resistance and chips are mounted on the mounting surface on the back side. Circuit parts (not shown) such as capacitors are provided.
  • the longitudinal direction of the circuit board 300 extends from the base end portion to the tip end portion of the measurement unit 113, and the lateral direction of the circuit board 300 extends from the side surface 123 to the side surface 124 of the measurement unit 113. It is arranged in the measuring unit 113 so as to exist.
  • the circuit board 300 has a substrate main body 301 arranged in the circuit chamber 135, and has a first protruding portion 302 arranged in the temperature detection passage 136 and a second protruding portion 303 arranged in the humidity measurement chamber 137. And the third protruding portion 304 arranged in the outward passage portion B1 of the second sub-passage B are provided so as to extend flush with each other from the substrate main body 301.
  • An intake air temperature sensor 321 is mounted on the tip of the first protrusion 302, and a humidity sensor 322 is mounted on the second protrusion 303.
  • the third protruding portion 304 is arranged to face the sensor assembly 400 in the outward passage portion B1 of the second sub-passage B.
  • the third protruding portion 304 of the circuit board 300 closes the open portion of the concave groove 404 of the sensor assembly 400 to form the first passage portion D1. Further, the third protruding portion 304 of the circuit board 300 forms the second passage portion D2 with the bottom wall surface 152a of the second sub-passage groove 152.
  • the base end portion of the support 401 is fixed to the circuit board 300 in the circuit chamber 135, the tip end portion is arranged so as to project to the second sub-passage groove 152, and the flow rate sensor 411 is provided at the tip end portion.
  • the flow rate sensor 411 is supported by the sensor assembly 400 so as to be exposed to the outward passage portion B1 of the second sub-passage B.
  • the flow rate sensor 411 is arranged so as to face the circuit board 300 protruding from the circuit chamber 135 with a predetermined distance, and measures the flow rate of the gas to be measured passing through the second sub-passage B.
  • FIG. 7 is an enlarged view of the sensor assembly 400 shown in FIG.
  • the sensor assembly 400 has a resin package structure in which the flow rate sensor 411, the LSI 412, and the lead frame 413 are molded with resin.
  • the flow rate sensor 411 and the LSI 412 are mounted on one surface of the lead frame 413.
  • the sensor assembly 400 is formed by sealing the flow rate sensor 411 with a resin so that the diaphragm of the flow rate sensor 411 is exposed.
  • the sensor assembly 400 has a flat plate-shaped support 401 formed of a mold resin and having a predetermined plate thickness.
  • the base end portion 401A of the support body 401 is arranged in the circuit chamber 135, and the tip end portion 401B of the support body 401 is arranged so as to project into the second sub-passage groove 152.
  • the sensor assembly 400 is electrically connected to and mechanically fixed to the circuit board 300 by a fixing portion.
  • a concave groove 404 is formed at the tip of the support 401.
  • the concave groove 404 is formed so as to extend in the width direction of the tip of the support 401 at the tip of the support 401, and the flow rate sensor 411 is exposed at an intermediate position in the extending direction. Have been placed.
  • the flow rate sensor 411 has a sensor element 405 having a diaphragm structure.
  • the sensor element 405 of the flow rate sensor 411 has a diaphragm in which the diaphragm surface 411a is exposed in the outward passage portion B1 of the second sub-passage B, and the diaphragm back surface 411b is exposed in the closed chamber 421 isolated from the sub-passage 134. ..
  • a heater portion is arranged on the diaphragm surface 411a, and a pair of electric resistance portions are arranged at positions separated from each other with the heater portion interposed therebetween.
  • the air passing through the diaphragm surface 411a is heated by the heater unit, the heat distribution changes according to the air flow, and the flow rate of the gas to be measured is based on the change in electrical resistance according to the change in the heat distribution. To measure.
  • the closed chamber 421 is provided in the sensor element 405 of the flow rate sensor 411.
  • the sensor element 405 is mounted on one side of the lead frame 413, and the closing chamber 421 is closed by the polyimide tape 414 attached to the other side of the lead frame 413, and has a closed space isolated from the outside. is doing.
  • the sensor assembly 400 is provided with a ventilation passage 422 in which one end is opened in the circuit chamber 135 and the other end is opened in the closed chamber 421 to communicate between the circuit chamber 135 and the closed chamber 421.
  • a continuous concave groove is formed between the opening hole 423 and the closing chamber 421.
  • a sheet-shaped polyimide tape 414 is attached to the other surface of the lead frame 413 so as to close the open portion of the concave groove, one end of which is open to the closed chamber 421 and the other end of which is continuous ventilation to the opening hole 423.
  • a passage 422 is formed.
  • the ventilation passage 422 communicates between the closed chamber 421 where the back surface of the diaphragm 411b is exposed and the circuit chamber 135.
  • the ventilation passage 422 constitutes a second introduction passage capable of introducing the pressure of the gas to be measured from the circuit chamber 135 to the closed chamber 421.
  • FIG. 8 is an enlarged view of a main part of FIG. 5
  • FIG. 9 is a sectional view taken along line VIII-VIII of FIG. 5
  • FIG. 10 is an enlarged view of a main part of FIG.
  • the circuit chamber 135 is provided with at least one protrusion 210 at a position facing the opening 163 of the first introduction passage 161.
  • the protrusion 210 is formed by a plurality of uneven shapes.
  • the protrusion 210 is integrally formed with the cover 200.
  • the protrusion 210 is provided between the side wall of the circuit chamber 135 and the circuit board 300 so that the gas to be measured can move between the second sub-passage B and the circuit chamber 135 through the first introduction passage 161.
  • a predetermined gap is formed between the two.
  • the protrusion 210 has a first protrusion 211 and a second protrusion 212, for example, as shown in FIGS. 4 and 9.
  • the first protrusion 211 is arranged in the circuit chamber 135 at a position facing the opening 163 of the first introduction passage 161, and the second protrusion 212 is placed in the first introduction passage with the first protrusion 211 in between. It is arranged at a position away from the opening 163 of 161.
  • the first protrusion 211 has a rectangular parallelepiped shape having a length W1 substantially the same as the opening width W0 of the opening 163, and is arranged so as to face each other over the entire width of the opening width W0 of the opening 163.
  • the second protrusion 212 has a rectangular parallelepiped shape having a length W2 longer than the opening width W0 of the opening 163, and is arranged side by side in parallel with the first protrusion 211.
  • the protrusion 210 forms a space S1 between the tip of the first protrusion 211 and the substrate main body 301 of the circuit board 300, and is between the first protrusion 211 and the second protrusion 212.
  • a space S2 is formed in the space S2
  • a space S3 is formed between the tip of the second protrusion 212 and the substrate main body 301 of the circuit board 300.
  • the space S1 on the side closer to the opening 163 of the first introduction passage 161 is narrower (the cross-sectional area is smaller), and the space S2 on the side farther from the opening 163 of the first introduction passage 161.
  • the space S2 and the space S3 are narrower in the space S3 than in the space S2.
  • FIG. 11A and 11B are views for explaining the difference between the invention and the comparative example
  • FIG. 11 (1) shows the structure of the comparative example having no protrusion 210
  • FIG. 11 (2) shows the protrusion.
  • the structure of the product of the present invention having 210 is shown
  • FIG. 11 (3) is a graph showing the relationship between the sound pressure and the distance to the measurement point when there is a protrusion and when there is no protrusion.
  • the turbocharger 15 is arranged downstream, and the sound wave generated by the turbocharger passes from the second sub-passage B through the first introduction passage 161 and enters the circuit chamber 135.
  • the sound wave SW that has entered the circuit chamber 135 through the opening 163 of the first introduction passage 161 has no obstacle, so that the sound pressure is hardly attenuated. It proceeds to the depth of the circuit chamber 135, passes through the ventilation passage 422 from the opening hole 423 of the sensor assembly 400, and reaches the closed chamber 421 where the back surface of the diaphragm is exposed. Therefore, resonance of sound pressure occurs between the element front surface side and the element back surface side of the diaphragm, and the temperature distribution of the heater portion of the diaphragm may change due to thermal convection due to a thermoacoustic phenomenon, which may cause a flow rate detection error.
  • the sound wave SW that has entered the circuit chamber 135 through the opening 163 of the first introduction passage 161 may be blocked by the protrusion 210 and proceed straight.
  • the sound pressure of the sound wave SW is diffracted and attenuated and becomes smaller.
  • the sound pressure is smaller than when there is no protrusion.
  • the sound wave SW that entered the circuit chamber 135 from the opening 163 of the first introduction passage 161 proceeded from the space S1 to the space S2, and when the cross-sectional area became large, the speed and pressure decreased due to the expansion of the fluid and became smaller. Only energy passes through space S3 and the remaining energy is attenuated by reflection in space S2. Since the sound wave is reflected at the place where the impedance suddenly changes (rapid expansion / contraction), it is reflected at the entrance between the space S2 and the space S1 and at the exit between the space S2 and the space S3. Due to this reflection, sound wave interference occurs in the spaces S1, S2, and S3, the energy of the sound wave is consumed, and the sound pressure becomes small.
  • the sound pressure in the second sub-passage B can be positively attenuated, and the sound wave can be suppressed from being transmitted to the closed chamber 421 while having a large energy. Therefore, it is possible to prevent the occurrence of sound pressure resonance on the element front surface side and the element back surface side of the diaphragm, and to improve the flow rate detection accuracy.
  • FIG. 12 is a diagram showing sound pressure measurement results of the product of the present invention and a comparative example.
  • the maximum sound pressure level difference near a predetermined frequency is 28 [dB] in the comparative example, whereas the maximum sound pressure is 25 [dB] in the product of the present invention, and the product of the present invention is compared. It can be understood that the sound pressure is reduced and improved compared to the example.
  • FIG. 13 is a diagram showing a modified example of the present embodiment corresponding to FIG.
  • the protrusion 210 has a plurality of third protrusions 213.
  • Each of the plurality of third protrusions 213 has a rod shape, and is arranged in the circuit chamber 135 at a position facing the opening 163 of the first introduction passage 161.
  • the plurality of third protrusions 213 are arranged so as to spread in a staggered manner at predetermined intervals from each other over a length substantially the same as the opening width W0 of the opening 163.
  • the plurality of third protrusions 213 are arranged at intervals so as to block the sound wave SW that has entered the circuit chamber 135 from the opening 163 of the first introduction passage 161 so that the sound wave SW cannot proceed straight.
  • the sound pressure in the second sub-passage B can be positively attenuated as in the above-described embodiment, and the sound wave is transmitted to the closed chamber 421 while having a large energy. It can be suppressed. Therefore, it is possible to prevent the occurrence of sound pressure resonance on the element front surface side and the element back surface side of the diaphragm, and to improve the flow rate detection accuracy. Further, the amount of sound pressure attenuation can be arbitrarily adjusted by changing the number of the third protrusions 213.
  • the present invention is not limited to the above-described embodiments, and various designs are designed without departing from the spirit of the present invention described in the claims. You can make changes.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本発明の課題は、音圧の共鳴現象による流量特性への影響を抑制できる物理量検出装置を得ることである。本発明の物理量検出装置は、主通路に配置される筐体と、筐体に形成された副通路と、副通路に配置される流量検出部と、流量検出部に電気的に接続された回路部と、筺体に形成されて回路部を収容する回路室と、副通路に一端が開口し他端が回路室に開口して副通路と回路室との間を連通する第1導入通路と、を備えた物理量検出装置であって、流量検出部は、副通路にダイアフラム表面が露出し、回路室に連通する閉塞室にダイアフラム裏面が露出するダイアフラムを有し、回路室は、第1導入通路の他端が開口する開口部に対向する位置に設けられた少なくとも一つ以上の突起部を有する。

Description

物理量検出装置
 本発明は、例えば内燃機関の吸入空気の物理量を検出する物理量検出装置に関する。
 特許文献1には、ダクト内に形成される主流路を流れる空気の一部を取り込むバイパス流路と、バイパス流路から分岐してバイパス流路を流れる空気の一部を取り込むサブバイパス流路とが内部に形成され、サブバイパス流路にセンサが設置された空気流量測定装置の構造が示されている。センサは、流量を検出するダイアフラムを有しており、ダイアフラムのエレメント表面がサブバイパス流路に露出し、換気孔を介して回路室に連通する閉塞室にダイアフラムのエレメント裏面が露出する構成を有している。
特開2020-34508号公報
 物理量検出装置は、さまざまな種類の内燃機関に搭載しても、正確に流量信号を測定できる性能が求められている。近年、内燃機関の物理量検出装置より下流に搭載されるターボチャージャによって生じる音圧が、物理量検出装置の流量特性に影響を及ぼすことが分かってきている。ターボチャージャによるダイアフラムのエレメント表面側とエレメント裏面側における音圧の共鳴現象が流量特性に影響を与えて流量の検出誤差を発生させている。上記した従来の構成、つまり、物理量検出装置の換気孔と副通路または主通路との間を連通路で連通するだけの構成では、音圧によって流量の検出誤差が発生するという課題がある。
 本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、音圧の共鳴現象による流量特性への影響を抑制できる物理量検出装置を提供することである。
 上記課題を解決する本発明の物理量検出装置は、
 主通路を流れる被計測気体の物理量を検出する物理量検出装置であって、
 前記主通路に配置される筐体と、該筐体に形成された副通路と、該副通路に配置される流量検出部と、該流量検出部に電気的に接続された回路部と、前記筺体に形成されて前記回路部を収容する回路室と、前記副通路に一端が開口し他端が前記回路室に開口して前記副通路と前記回路室との間を連通し、前記副通路から前記回路室に前記被計測気体の圧力を導入可能な第1圧力導入通路と、を備え、
 前記流量検出部は、前記副通路にダイアフラム表面が露出し、前記副通路から隔絶された閉塞室にダイアフラム裏面が露出するダイアフラムと、前記回路室に一端が開口し、前記閉塞室に他端が開口して前記回路室と前記閉塞室との間を連通し、前記回路室から前記閉塞室に前記被計測気体の圧力を導入可能な第2圧力導入通路とを有し、
 前記回路室は、前記第1圧力導入通路の他端が開口する開口部に対向する位置に設けられた少なくとも一つ以上の突起部とを有することを特徴とする。
 本発明によれば、音圧の共鳴現象による流量特性への影響を抑制できる物理量検出装置を提供することである。
 本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
内燃機関制御システムに本発明に係る物理量検出装置を使用した一実施例を示すシステム図。 物理量検出装置の正面図。 物理量検出装置のハウジングからカバーを取り外した状態を示す図。 カバーの裏面を示す斜視図。 図2のカバーをハウジングとの接合面で切断した断面図。 図5のVI-VI線断面図。 チップパッケージの断面図。 図5の要部拡大図。 図5のVIII-VIII線断面図。 図9の要部拡大図。 発明品と比較例との差を説明する図。 本発明品と比較例の音圧測定結果を示す図。 第1実施形態の変形例を説明する図。
 以下に説明する、発明を実施するための形態(以下、実施例)は、実際の製品として要望されている種々の課題を解決しており、特に車両の吸入空気の物理量を検出する検出装置として使用するために望ましい色々な課題を解決し、種々の効果を奏している。下記実施例が解決している色々な課題の内の一つが、上述した発明が解決しようとする課題の欄に記載した内容であり、また下記実施例が奏する種々の効果のうちの1つが、発明の効果の欄に記載された効果である。下記実施例が解決している色々な課題について、さらに下記実施例により奏される種々の効果について、下記実施例の説明の中で述べる。従って、下記実施例の中で述べる、実施例が解決している課題や効果は、発明が解決しようとする課題の欄や発明の効果の欄の内容以外の内容についても記載されている。
 以下の実施例で、同一の参照符号は、図番が異なっていても同一の構成を示しており、同じ作用効果を成す。既に説明済みの構成について、図に参照符号のみを付し、説明を省略する場合がある。
<第1実施形態>
 図1は、電子燃料噴射方式の内燃機関システム1に、本発明に係る物理量検出装置を使用した一実施例を示す、システム図である。
 本実施形態の物理量検出装置は、自動車用の内燃機関システム1に用いられる。内燃機関システム1は、ターボチャージャ15付きのエンジン2を有しており、主通路22には、上流側から順番に、エアクリーナ4、物理量検出装置20、インタークーラ6、スロットルバルブ7、吸気管8が設けられ、排気通路9には排気触媒10が設けられている。そして、吸気管8には、熱式湿度測定装置11と、吸気圧力センサ12と、吸気温度センサ13が取り付けられており、エンジン2に吸入される吸入空気の湿度、圧力、温度を測定する。
 物理量検出装置20は、エアクリーナ4から取り込まれて主通路22を流れる吸入空気である被計測気体の流量、温度、湿度、圧力などの物理量を検出する。物理量検出装置20によって検出された物理量は、電気信号に変換されて制御装置(ECU)に入力される。制御装置は、物理量検出装置20の出力である吸入空気の物理量を用いてエンジン2の燃料噴射量や点火時期を演算する。
 図2は、物理量検出装置の正面図である。
 物理量検出装置20は、主通路22の通路壁に設けられた取り付け孔から主通路22の内部に挿入して主通路22に固定された状態で使用される。物理量検出装置20は、被計測気体が流れる主通路22に配置される筐体を備えている。物理量検出装置20の筐体は、ハウジング100と、ハウジング100に取り付けられるカバー200を有している。ハウジング100は、例えば合成樹脂製材料を射出成形することによって形成されている。そして、カバー200は、例えば金属材料や合成樹脂材料からなる板状部材によって構成されており、本実施例では、アルミニウム合金あるいは合成樹脂材料の射出成形品によって構成されている。
 ハウジング100は、物理量検出装置20を主通路22に固定するためのフランジ111と、フランジ111から突出して外部機器との電気的な接続を行うために吸気ボディから外部に露出するコネクタ112と、フランジ111から主通路22の中心に向かって突出するように延びる計測部113を有している。
 計測部113は、フランジ111から真っ直ぐ延びる薄くて長い形状を成し、幅広な正面121と背面122、及び幅狭な一対の側面123、124を有している。計測部113は、物理量検出装置20を主通路22に取り付けた状態で、主通路22の内壁から主通路22の通路中心に向かって突出する。そして、正面121と背面122が主通路22の中心軸に沿って平行に配置され、計測部113の幅狭な側面123、124のうち計測部113の長手方向一方側の側面123が主通路22の上流側に対向配置され、計測部113の短手方向他方側の側面124が主通路22の下流側に対向配置される。物理量検出装置20を主通路22に取り付けた状態で、計測部113の先端部を下面125とする。
 計測部113は、側面123に副通路入口131が設けられ、側面124に第1出口132及び第2出口133が設けられている。副通路入口131と第1出口132及び第2出口133は、フランジ111から主通路22の中心方向に向かって延びる計測部113の先端部に設けられている。物理量検出装置20は、計測部113が主通路22の中心線に直交する方向に長く伸びる形状を成しているが、側面123、124の幅は、狭い形状を成している。これにより、物理量検出装置20は、被計測気体に対しては流体抵抗を小さい値に抑えることができる。
 図3は、物理量検出装置のハウジングからカバーを取り外した状態を示す図、図4は、カバーの背面図、図5は、図2のカバーをハウジングとの接合面で切断した断面図である。なお、以下の説明では、フランジ111から計測部113が延びる方向である計測部113の長手方向をZ軸、計測部113の副通路入口131から第1出口132に向かって延びる方向である計測部113の短手方向をX軸、計測部113の正面121から背面122に向かう方向である計測部113の厚さ方向をY軸と称する場合がある。
 ハウジング100の計測部113には、流量検出素子である流量センサ411と、吸気温度センサ321と、湿度センサ322が設けられている。流量センサ411は、副通路134の通路途中に配置されている。流量センサ411は、主通路を流れる被計測気体の流量を検出する。吸気温度センサ321は、側面123の副通路入口131近傍に一端が開口し、他端が計測部113の正面121と背面の両方に開口する温度検出通路136の通路途中に配置されている。吸気温度センサ321は、主通路を流れる被計測気体の温度を検出する。湿度センサ322は、計測部113の湿度計測室137に配置されている。湿度センサ322は、計測部113の背面に開口する窓部138から湿度計測室137に取り入れられた被計測気体の湿度を計測する。
 計測部113には、副通路134と、回路基板300を収容するための回路室135が設けられている。回路室135と副通路134は、計測部113の正面121にカバー200を取り付けることによって覆われて蓋がされ、閉塞される構造となっている。
 カバー200は、計測部113の正面121を覆う平板形状を有している。カバー200は、図4に示すように、背面にリブ221が設けられている。リブ221は、計測部113との接着部分に沿って形成されている。図5に示すように、計測部113には、正面121に凹溝141が設けられており、リブ221が挿入されるようになっている。カバー200は、計測部113の凹溝141にリブ221を挿入した状態で接着剤により接着される。
 回路室135は、主通路22において被計測気体の流れ方向上流側の位置となるX軸方向一方側(側面123側)の領域に設けられている。そして、副通路134は、回路室135よりも計測部113のZ軸方向先端側(下面125側)の領域と、回路室135よりも主通路22における被計測気体の流れ方向下流側の位置となるX軸方向他方側(側面124側)の領域に亘って設けられている。
 副通路134は、第1副通路Aと、第1副通路Aの途中で分岐する第2副通路Bとを有している。第1副通路Aは、計測部113の一方側の側面123に開口する副通路入口131と、計測部113の他方側の側面124に開口する第1出口132との間に亘って、計測部113のX軸方向に沿って延在する構成を有している。第1副通路Aは、副通路入口131から主通路22内における被計測気体の流れ方向に沿って延在し、第1出口132までつながる流路を有する。第1副通路Aは、主通路22内を流れる被計測気体を副通路入口131から取り込み、その取り込んだ被計測気体を第1出口132から主通路22に戻すことができる。第1副通路Aは、計測部113の正面に凹設された第1副通路溝がカバー200の領域201によって覆われることによって形成される。
 第2副通路Bは、第1副通路Aの途中位置で分岐して計測部113の基端部側(フランジ側)に向かって屈曲され、計測部113のZ軸方向に沿って延在する。そして、計測部113の基端部で計測部113のX軸方向他方側(側面124側)に向かって折れ曲がり、計測部113の先端部に向かってUターンし、再び計測部113のZ軸方向に沿って延在する。そして、第1出口132の手前で計測部113のX軸方向他方側(側面124側)に向かって屈曲され、計測部113の側面124に開口する第2出口133に連続する構成を有している。第2出口133は、主通路22における被計測気体の流れ方向下流側に向かって対向配置される。第2出口133は、第1出口132とほぼ同等若しくは若干大きい開口面積を有しており、第1出口132よりも計測部113の長手方向基端部側に隣接した位置に形成されている。
 第2副通路Bは、計測部113のZ軸方向に沿って往復する流路を有する。第2副通路Bは、第1副通路Aの途中で分岐して、計測部113の基端部側(第1副通路Aから離れる方向)に向かって延在する往通路部B1と、計測部113の基端部側(離反通路部の端部)で折り返されてUターンし、計測部113の先端部側(第1副通路Aに接近する方向)に向かって延在する復通路部B2を有している。復通路部B2は、副通路入口131よりも主通路22内における被計測気体の流れ方向下流側の位置において被計測気体の流れ方向下流側に向かって開口する第2出口133につながる流路を有する。第2副通路Bは、第1副通路Aから分岐されて流れ込んだ被計測気体を通過させて第2出口133から主通路22に戻すことができる。第2副通路Bは、計測部113の正面に凹設された第2副通路溝152がカバー200の領域202によって覆われることによって形成される。
 第2副通路Bの通路途中には、第2副通路Bから回路室135に被計測気体の圧力を導入可能な第1導入通路161が設けられている。第1導入通路161は、第2副通路Bに一端が開口し、回路室135に他端が開口して、第2副通路Bと回路室135との間を連通している。第1導入通路161は、第2副通路Bに開口する導入口162を有している。導入口162は、第2副通路Bの側壁面から外側にオフセットした位置に配置されている。
 第2副通路Bの導入口162は、第2副通路Bの往通路部B1から復通路部B2に折り返す折返し部において、半円弧状にカーブする外周側の側壁面でかつ折返し部の頂部よりも復通路部B2側に位置する曲がり部分に配置されている。第1導入通路161は、導入口162から計測部113のZ軸方向に沿って計測部113の基端部側に向かって進み、計測部113の側面123に向かって略L字状に折曲されてX軸方向に沿って進み、回路室135に開口する開口部163に連続する形状を有する。
 そして、第2副通路Bの往通路部B1の途中位置には、流量センサ(流量検出部)411が配置されている。導入口162は、第2副通路Bの被計測気体流れ方向において流量センサ411よりも下流側の位置に設けられている。流量センサ411は、センサアセンブリ400に設けられており、センサアセンブリ400は、回路基板300に実装されている。
 回路基板300は、表側の実装面に、センサアセンブリ400、圧力センサ320、吸気温度センサ321、及び湿度センサ322等の回路部品が実装されており、裏面側の実装面には、チップ抵抗やチップコンデンサなどの回路部品(不図示)が設けられている。回路基板300は、回路基板300の長手方向が計測部113の基端部から先端部に向かって延在し、回路基板300の短手方向が計測部113の側面123から側面124に向かって延在するように計測部113内に配置される。
 回路基板300は、回路室135内に配置される基板本体301を有しており、温度検出通路136に配置される第1突出部302と、湿度計測室137に配置される第2突出部303と、第2副通路Bの往通路部B1に配置される第3突出部304とがそれぞれ基板本体301から面一に延びるように設けられている。第1突出部302の先端部には、吸気温度センサ321が実装され、第2突出部303には湿度センサ322が実装されている。第3突出部304は、第2副通路Bの往通路部B1においてセンサアセンブリ400と対向して配置される。回路基板300の第3突出部304は、センサアセンブリ400の凹溝404の開放部分を閉塞して第1通路部D1を形成する。また、回路基板300の第3突出部304は、第2副通路溝152の底壁面152aとの間に第2通路部D2を形成する。
 センサアセンブリ400は、支持体401の基端部が回路室135内で回路基板300に固定され、先端部が第2副通路溝152に突出して配置されており、先端部に流量センサ411が設けられている。流量センサ411は、第2副通路Bの往通路部B1に露出するようにセンサアセンブリ400に支持されている。流量センサ411は、回路室135から突出する回路基板300との間に所定の間隔を有して対向して配置されており、第2副通路Bを通過する被計測気体の流量を測定する。
 図7は、図6に示すセンサアセンブリ400の拡大図である。
 センサアセンブリ400は、流量センサ411とLSI412とリードフレーム413を樹脂でモールドした樹脂パッケージの構造を有している。流量センサ411とLSI412は、リードフレーム413の一方面に実装されている。センサアセンブリ400は、流量センサ411のダイアフラムが露出するように流量センサ411を樹脂で封止することによって形成されている。
 センサアセンブリ400は、モールド樹脂によって形成された所定の板厚を有する平板形状の支持体401を有している。センサアセンブリ400は、支持体401の基端部401Aが回路室135内に配置され、支持体401の先端部401Bが第2副通路溝152に突出して配置される。センサアセンブリ400は、固定部によって、回路基板300に電気的に接続され、かつ、機械的に固定される。
 支持体401の先端部には、凹溝404が形成されている。凹溝404は、支持体401の先端部において、支持体401の先端部の幅方向に亘って延在するように形成されており、延在する方向の中間位置に流量センサ411が露出して配置されている。流量センサ411は、ダイアフラム構造のセンサエレメント405を有している。流量センサ411のセンサエレメント405は、第2副通路Bの往通路部B1にダイアフラム表面411aが露出し、副通路134から隔絶された閉塞室421にダイアフラム裏面411bが露出するダイアフラムを有している。
 ダイアフラム表面411aには、ヒータ部が配置され、ヒータ部を挟んで互いに離れた位置に一対の電気抵抗部が配置されている。流量センサ411は、ダイアフラム表面411aを通過する空気がヒータ部により加熱され、熱分布が空気の流れに応じて変化し、熱分布の変化に応じた電気抵抗の変化に基づいて被計測気体の流量を測定する。
 閉塞室421は、流量センサ411のセンサエレメント405に設けられている。センサエレメント405は、リードフレーム413の一方面に実装されており、閉塞室421は、リードフレーム413の他方面に貼り付けられるポリイミドテープ414によって閉塞されており、外部から隔絶された閉塞空間を有している。
 センサアセンブリ400には、回路室135に一端が開口し、閉塞室421に他端が開口して回路室135と閉塞室421との間を連通する換気通路422が設けられている。リードフレーム413の他方面には、開口孔423と閉塞室421との間に亘って連続する凹溝が形成されている。リードフレーム413の他方面には、凹溝の開放部分を塞ぐようにシート状のポリイミドテープ414が貼り付けられており、一端が閉塞室421に開口し、他端が開口孔423に連続する換気通路422が形成されている。換気通路422は、ダイアフラム裏面411bが露出する閉塞室421と回路室135との間を連通している。換気通路422は、回路室135から閉塞室421に被計測気体の圧力を導入可能な第2導入通路を構成する。
 図8は、図5の要部拡大図、図9は、図5のVIII-VIII線断面図、図10は、図9の要部拡大図である。
 回路室135には、第1導入通路161の開口部163に対向する位置に少なくとも一つ以上の突起部210が設けられている。突起部210は、複数の凹凸形状によって形成されている。突起部210は、カバー200と一体に形成されている。突起部210は、被計測気体が第1導入通路161を通過して第2副通路Bと回路室135との間を移動できるように、回路室135の側壁との間、及び回路基板300との間に所定の間隙を形成している。
 突起部210は、例えば図4及び図9に示されるように、第1突起部211と第2突起部212を有している。第1突起部211は、回路室135内において第1導入通路161の開口部163と対向する位置に配置され、第2突起部212は、第1突起部211を間に介して第1導入通路161の開口部163から離間する位置に配置されている。第1突起部211は、開口部163の開口幅W0とほぼ同じ長さW1の直方体形状を有しており、開口部163の開口幅W0の全幅に亘って対向して配置されている。第2突起部212は、開口部163の開口幅W0よりも長い長さW2の直方体形状を有しており、第1突起部211と平行に並んで配置されている。
 突起部210は、図10に示すように、第1突起部211の先端と回路基板300の基板本体301との間に空間S1を形成し、第1突起部211と第2突起部212の間に空間S2を形成し、第2突起部212の先端と回路基板300の基板本体301との間に空間S3を形成する。空間S1と空間S2は、第1導入通路161の開口部163に近い側の空間S1の方が狭く(断面積が小さく)、第1導入通路161の開口部163から遠い側の空間S2の方が広い(断面積が大きい)という関係を有している(S1<S2)。そして、空間S2と空間S3は、空間S3の方が空間S2よりも狭くなっている。
 図11は、発明品と比較例との差を説明する図であり、図11(1)は、突起部210を有していない比較例の構造を示し、図11(2)は、突起部210を有する本発明品の構造を示し、図11(3)は、突起部がある場合と突起部がない場合とにおける、音圧と測定点までの距離との関係を示すグラフである。
 本実施形態における物理量検出装置20は、下流にターボチャージャ15が配置されており、そのターボチャージャによって生じる音波が第2副通路Bから第1導入通路161を通過して回路室135に侵入する。
 図11(1)に示すように、比較例の場合、第1導入通路161の開口部163から回路室135に侵入した音波SWは、障害物がないので、その音圧がほとんど減衰することなく回路室135の奥まで進み、センサアセンブリ400の開口孔423から換気通路422を通過してダイアフラム裏面が露出する閉塞室421に到達する。したがって、ダイアフラムのエレメント表面側とエレメント裏面側における音圧の共鳴が発生し、ダイアフラムのヒータ部の温度分布が熱音響現象による熱対流により変化し、流量の検出誤差を発生させるおそれがある。
 一方、図11(2)に示すように、本発明品の場合、第1導入通路161の開口部163から回路室135に侵入した音波SWは、突起部210によって遮られて真っ直ぐに進むことができず、音波SWの音圧は、回折減衰され、小さくなる。例えば、図11(3)に示すように、突起がある場合は、突起がない場合と比較して音圧が小さくなっている。
 また、第1導入通路161の開口部163から回路室135に侵入した音波SWは、空間S1から空間S2に進んで断面積が大きくなると流体の膨張により、その速度と圧力が減じ、小さくなったエネルギだけが空間S3を通過し、残りのエネルギは、空間S2内での反射により減衰する。音波は、インピーダンスが急変する(急拡大・急縮小)箇所で反射するので、空間S2と空間S1との間である入口及び空間S2と空間S3との間である出口において反射する。この反射により、空間S1、S2、S3で音波の干渉が発生し、音波のエネルギが消費され、音圧が小さくなる。
 したがって、第2副通路B内の音圧を積極的に減衰させることができ、音波が大きなエネルギを有したまま閉塞室421まで伝達されるのを抑制することができる。したがって、ダイアフラムのエレメント表面側とエレメント裏面側における音圧の共鳴の発生を防ぎ、流量の検出精度を高くすることができる。
 図12は、本発明品と比較例の音圧測定結果を示す図である。
 所定周波数付近の音圧レベル差が、比較例では最大音圧28[dB]であるのに対し、本発明品では最大音圧が25[dB]となっており、本発明品の方が比較例よりも音圧が減されて、改善されていることが理解できる。
 図13は、図8に対応する本実施形態の変形例を示す図である。
 変形例では、突起部210は、複数の第3突起部213を有している。複数の第3突起部213は、それぞれが棒形状を有しており、回路室135内において第1導入通路161の開口部163と対向する位置に配置されている。複数の第3突起部213は、開口部163の開口幅W0とほぼ同じ長さに亘って、互いに所定の間隔をおいて千鳥状に広がるように配置されている。複数の第3突起部213は、第1導入通路161の開口部163から回路室135に侵入した音波SWが真っ直ぐに進むことができないように遮る程度の間隔を有して配置されている。
 変形例によれば、上述の実施例と同様に、第2副通路B内の音圧を積極的に減衰させることができ、音波が大きなエネルギを有したまま閉塞室421まで伝達されるのを抑制することができる。したがって、ダイアフラムのエレメント表面側とエレメント裏面側における音圧の共鳴の発生を防ぎ、流量の検出精度を高くすることができる。また、第3突起部213の本数を変更することによって音圧の減衰量を任意に調整することができる。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
15 ターボチャージャ、20:物理量検出装置、100:ハウジング(筐体)、200:カバー(筐体)、134:副通路、135:回路室、161:第1導入通路、162:導入口、163:開口部、210:突起部、211:第1突起部、212:第2突起部、213:第3突起部、300:回路基板(回路部)、400:センサアセンブリ、411:流量センサ(流量検出部)、411a:ダイアフラム表面、411b:ダイアフラム裏面、422:換気通路、B:第2副通路、B1:往通路部、B2:復通路部

Claims (9)

  1.  主通路を流れる被計測気体の物理量を検出する物理量検出装置であって、
     前記主通路に配置される筐体と、該筐体に形成された副通路と、該副通路に配置される流量検出部と、該流量検出部に電気的に接続された回路部と、前記筐体に形成されて前記回路部を収容する回路室と、前記副通路に一端が開口し他端が前記回路室に開口して前記副通路と前記回路室との間を連通し、前記副通路から前記回路室に前記被計測気体の圧力を導入可能な第1導入通路と、を備え、
     前記流量検出部は、前記副通路にダイアフラム表面が露出し、前記副通路から隔絶された閉塞室にダイアフラム裏面が露出するダイアフラムと、前記回路室に一端が開口し、前記閉塞室に他端が開口して前記回路室と前記閉塞室との間を連通し、前記回路室から前記閉塞室に前記被計測気体の圧力を導入可能な第2導入通路とを有し、
     前記回路室は、前記第1導入通路の他端が開口する開口部に対向する位置に少なくとも一つ以上の突起部が設けられていることを特徴とする物理量検出装置。
  2.  前記突起部は、前記開口部と対向する位置に配置される第1突起部と、該第1突起部を間に介して前記開口部から離間する位置に配置される第2突起部とを有していることを特徴とする請求項1に記載の物理量検出装置。
  3.  前記第1突起部は、前記開口部の開口幅と同じ長さを有し、前記開口部の開口幅の全幅に亘って対向して配置され、
     前記第2突起部は、前記開口部の開口幅よりも長い長さを有しており、前記第1突起部と平行に並んで配置されていることを特徴とする請求項2に記載の物理量検出装置。
  4.  前記突起部は、それぞれが棒形状を有した複数の第3突起部を有していることを特徴とする請求項1に記載の物理量検出装置。
  5.  前記複数の第3突起部は、前記開口部の開口幅と同じ長さに亘って、互いに所定の間隔をおいて千鳥状に広がるように配置されていることを特徴とする請求項4に記載の物理量検出装置。
  6.  前記第1導入通路は、前記副通路の側壁面から外側にオフセットした位置に導入口が配置されていることを特徴とする請求項1に記載の物理量検出装置。
  7.  前記副通路は、所定の軸方向に沿って軸方向一方側に向かって延在する往通路部と、該往通路部の端部でUターンして軸方向他方側に向かって延在する復通路部とを有しており、
     前記導入口は、前記副通路の前記往通路部から前記復通路部に折り返す折返し部において、半円弧状にカーブする外周側の側壁面でかつ前記折返し部の頂部よりも前記復通路部側に位置する曲がり部分に配置されていることを特徴とする請求項6に記載の物理量検出装置。
  8.  前記副通路には、前記被計測気体の流量を検出する前記流量検出部が配置されており、 前記導入口は、前記副通路の被計測気体流れ方向において前記流量検出部よりも下流側の位置に設けられていることを特徴とする請求項7に記載の物理量検出装置。
  9.  前記流量検出部は、前記副通路の前記往通路部に設けられていることを特徴とする請求項8に記載の物理量検出装置。
PCT/JP2021/032927 2020-11-20 2021-09-08 物理量検出装置 WO2022107426A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022563590A JP7407305B2 (ja) 2020-11-20 2021-09-08 物理量検出装置
CN202180073879.0A CN116391112A (zh) 2020-11-20 2021-09-08 物理量检测装置
DE112021004518.0T DE112021004518T5 (de) 2020-11-20 2021-09-08 Erfassungsvorrichtung für eine physikalische Größe
US18/034,319 US20230408316A1 (en) 2020-11-20 2021-09-08 Physical Quantity Detection Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020193614 2020-11-20
JP2020-193614 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022107426A1 true WO2022107426A1 (ja) 2022-05-27

Family

ID=81708749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032927 WO2022107426A1 (ja) 2020-11-20 2021-09-08 物理量検出装置

Country Status (5)

Country Link
US (1) US20230408316A1 (ja)
JP (1) JP7407305B2 (ja)
CN (1) CN116391112A (ja)
DE (1) DE112021004518T5 (ja)
WO (1) WO2022107426A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052975A (ja) * 2010-09-03 2012-03-15 Hitachi Automotive Systems Ltd 熱式空気流量センサ
JP2017181521A (ja) * 2017-06-07 2017-10-05 株式会社デンソー 流量センサ
JP2020034508A (ja) * 2018-08-31 2020-03-05 日立オートモティブシステムズ株式会社 物理量検出装置
US20200158546A1 (en) * 2017-04-11 2020-05-21 Robert Bosch Gmbh Sensor for detecting at least one property of a fluid medium
US20200263623A1 (en) * 2017-09-20 2020-08-20 Robert Bosch Gmbh Method and device for controlling a heating element for heating a sensor element of a mass air-flow sensor for a vehicle and mass air-flow sensor system for a vehicle
JP2021067510A (ja) * 2019-10-21 2021-04-30 日立Astemo株式会社 物理量検出装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052975A (ja) * 2010-09-03 2012-03-15 Hitachi Automotive Systems Ltd 熱式空気流量センサ
US20200158546A1 (en) * 2017-04-11 2020-05-21 Robert Bosch Gmbh Sensor for detecting at least one property of a fluid medium
JP2017181521A (ja) * 2017-06-07 2017-10-05 株式会社デンソー 流量センサ
US20200263623A1 (en) * 2017-09-20 2020-08-20 Robert Bosch Gmbh Method and device for controlling a heating element for heating a sensor element of a mass air-flow sensor for a vehicle and mass air-flow sensor system for a vehicle
JP2020034508A (ja) * 2018-08-31 2020-03-05 日立オートモティブシステムズ株式会社 物理量検出装置
JP2021067510A (ja) * 2019-10-21 2021-04-30 日立Astemo株式会社 物理量検出装置

Also Published As

Publication number Publication date
DE112021004518T5 (de) 2023-06-29
CN116391112A (zh) 2023-07-04
JPWO2022107426A1 (ja) 2022-05-27
US20230408316A1 (en) 2023-12-21
JP7407305B2 (ja) 2023-12-28

Similar Documents

Publication Publication Date Title
US5696321A (en) Thermal-type air flow measuring instrument with fluid-direction judging capability
US8549901B2 (en) Sensor structure
US6619140B2 (en) Fluid flow meter having thermal flow sensor disposed in one of a plurality of fluid passages
JP6568593B2 (ja) 物理量検出装置
US7234349B2 (en) Air flow rate measuring device having bypass passage
US11255709B2 (en) Physical quantity measurement device having inlet with inclined ceiling
JP6600755B2 (ja) 流量検出装置
US6189379B1 (en) Thermal type air flow measuring instrument for internal combustion engine
WO2022107426A1 (ja) 物理量検出装置
JP7122462B2 (ja) 物理量検出装置
EP0685713B1 (en) System with thermal type air flow measuring instrument for internal combustion engine
EP1396709A1 (en) Heating resistor flow rate measuring instrument
JP6995020B2 (ja) 物理量検出装置
JP6876018B2 (ja) 物理量検出装置
JP3782650B2 (ja) 空気流量測定装置
CN113167620B (zh) 物理量测定装置
WO2021145106A1 (ja) 空気流量測定装置
WO2020202721A1 (ja) 物理量測定装置
WO2022162994A1 (ja) 物理量検出装置
JP2000002573A (ja) 気体流量計測装置
JP4006463B2 (ja) 流量測定モジュール及び内燃機関の制御方法
JP3793765B2 (ja) 発熱抵抗式空気流量測定モジュール
JPH04225119A (ja) 熱線式空気流量計
JP2006119157A (ja) 空気流量測定モジュール
JP2007232744A (ja) 空気流量測定モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563590

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18034319

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 21894301

Country of ref document: EP

Kind code of ref document: A1