WO2022107189A1 - 二酸化炭素還元装置 - Google Patents

二酸化炭素還元装置 Download PDF

Info

Publication number
WO2022107189A1
WO2022107189A1 PCT/JP2020/042734 JP2020042734W WO2022107189A1 WO 2022107189 A1 WO2022107189 A1 WO 2022107189A1 JP 2020042734 W JP2020042734 W JP 2020042734W WO 2022107189 A1 WO2022107189 A1 WO 2022107189A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
reduction
heat
carbon dioxide
transparent substrate
Prior art date
Application number
PCT/JP2020/042734
Other languages
English (en)
French (fr)
Inventor
晃洋 鴻野
裕也 渦巻
紗弓 里
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US18/250,265 priority Critical patent/US20230392268A1/en
Priority to JP2022563261A priority patent/JPWO2022107189A1/ja
Priority to PCT/JP2020/042734 priority patent/WO2022107189A1/ja
Publication of WO2022107189A1 publication Critical patent/WO2022107189A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/087Photocatalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/50Cells or assemblies of cells comprising photoelectrodes; Assemblies of constructional parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a carbon dioxide reducing device.
  • Non-Patent Document 1 discloses a carbon dioxide reducing device by light irradiation.
  • the oxidizing electrode When the oxidizing electrode is irradiated with light, the reducing device produces and separates electron / hole pairs at the oxidizing electrode, and oxygen and protons (H +) are generated by the oxidation reaction of water. Hydrogen is generated by the combination of protons and electrons at the reduction electrode, which causes a reduction reaction.
  • This reduction reaction produces carbon monoxide, formic acid, methane, etc. that can be used as energy resources.
  • Non-Patent Document 2 discloses a carbon dioxide reducing device in which a solar cell is used to improve the utilization efficiency of light energy.
  • the oxide electrode is formed of an optical semiconductor film, and the wavelength of sunlight that can be absorbed by this optical semiconductor film is, for example, a wavelength of 400 nm or less.
  • the range of wavelengths of light that can be absorbed by a semiconductor film differs depending on the type of semiconductor material, film thickness, and the like, and it is difficult for an optical semiconductor film (solar cell) to absorb all of the light energy. That is, the conventional carbon dioxide reducing device has a problem that light energy is wasted.
  • the present invention has been made in view of this problem, and an object of the present invention is to provide a carbon dioxide reducing device capable of effectively utilizing light energy over a wide wavelength range.
  • the carbon dioxide reducing device has an oxide electrode formed on a transparent substrate and receives light from the outside, an oxide tank holding an electrolytic solution in which the oxide electrode is immersed, and a reduction electrode.
  • a reduction tank that holds the electrolytic solution in which the reducing electrode is immersed and bubbling carbon dioxide from the outside, and an electrolytic solution that is arranged between the oxidation tank and the reduction tank and divides the electrolytic solution into an oxidation side and a reduction side.
  • the light transmitted through the transparent substrate is received and converted into heat by the electrolytic film and the heat absorbing plate facing the transparent substrate, and the heat of the heat absorbing plate is generated from the heat absorbing plate facing the heat absorbing plate and the thermoelectric material.
  • FIG. 1 is a schematic diagram showing a configuration example of a carbon dioxide reducing device according to the first embodiment of the present invention.
  • the left and right are defined as the X direction
  • the back of the drawing is defined as the Y direction
  • the top of the drawing is defined as the Z direction.
  • the carbon dioxide reduction device 100 shown in FIG. 1 includes an oxidation electrode 2, an oxidation tank 6, a reduction electrode 3, a reduction tank 7, an electrolyte membrane 4, and a thermoelectric element 9.
  • the carbon dioxide reducing device 100 produces carbon monoxide, formic acid, methane and the like that can be used as energy resources by a redox reaction.
  • the oxide electrode 2 is formed on the transparent substrate 1 and receives light 8 from the outside.
  • the transparent substrate 1 is, for example, a sapphire substrate having a predetermined area on a plane in the XY direction.
  • a compound exhibiting photoactivity or sidox activity such as a nitride semiconductor, titanium oxide, amorphous silicon, ruthenium complex, or sinium complex is formed on a flat surface to form an oxide electrode 2. Ru.
  • Light 8 is, for example, sunlight.
  • the light 8 does not have to be sunlight.
  • the oxidation tank 6 holds the electrolytic solution 5 in which the oxidation electrode 2 is immersed.
  • the electrolytic solution 5 is, for example, a potassium hydrogen carbonate aqueous solution, a sodium hydrogen carbonate aqueous solution, a potassium chloride aqueous solution, a sodium chloride aqueous solution, a potassium hydroxide aqueous solution, a rubidium hydroxide aqueous solution, a cesium hydroxide aqueous solution, and the like.
  • FIG. 1 shows an example in which light 8 is irradiated from the bottom of the oxide tank 6 in the Z direction.
  • the reducing electrode 3 is, for example, a porous body of copper, platinum, gold, silver, indium, palladium, gallium, nickel, tin, cadmium, and an alloy thereof.
  • a compound such as silver oxide, copper oxide, copper (II) oxide, nickel oxide, indium oxide, tin oxide, tungsten oxide, tungsten oxide (VI), copper oxide, or a porous body having an anionic ligand with a metal ion. It is a quality metal complex.
  • the reduction electrode 3 has a predetermined area on a plane in the XY direction.
  • the reducing electrode 3 may be arranged so as to form a plane in the Y direction, similarly to the electrolyte membrane 4 described later.
  • the reduction tank 7 holds the electrolytic solution 5 in which the reduction electrode 3 is immersed and carbon dioxide is bubbled from the outside.
  • the electrolytic solution 5 is the same as that in the oxide tank 6.
  • the electrolyte membrane 4 is arranged between the oxidizing tank 6 and the reducing tank 7, and divides the electrolytic solution 5 into an oxidizing side and a reducing side.
  • the electrolyte membrane 4 is, for example, any of Nafion (registered trademark), Foreblue, and Aquibion, which are electrolyte membranes having a carbon-fluorine skeleton, or Celemion, Neosepta, and the like, which are electrolyte membranes having a carbon hydrogen-based skeleton. ..
  • thermoelectric element 9 receives the light 8 transmitted through the transparent substrate 1 on the heat absorbing plate 9a facing the transparent substrate 1 and converts it into heat, and the heat absorbing plate 9a and the heat radiating plate 9b facing each other with the thermoelectric materials 12 and 14 interposed therebetween.
  • the heat of the endothermic plate 9b is dissipated from the heat absorbing plate 9b, the high potential side is connected to the oxide electrode 2, and the low potential side is connected to the reduction electrode 3.
  • thermoelectric materials 9e and 9g use a conjugated conductive polymer that has a conjugated double bond in the straight line of the polymer and electrons move on the ⁇ bond.
  • Conjugated conductive polymers include, for example, polythiophene, polyaniline, polyacetylene, polypyrrole, polycarbazolenvinylene, poly (3,4-ethylenedioxythiophene) and the like. These conjugated conductive polymers are known to exhibit high thermoelectric conversion characteristics even in a temperature range of 100 ° C. or lower.
  • the thermoelectric element 9 is configured by sandwiching the thermoelectric module 10 between a heat absorbing plate 9a and a heat radiating plate 9b.
  • the heat absorbing plate 9a and the heat radiating plate 9b are made of, for example, a copper material having a relatively high thermal conductivity.
  • the endothermic plate 9a receives the light transmitted through the oxide electrode 2 and the transparent substrate 1 and converts it into heat.
  • the heat generated in the heat absorbing plate 9a is radiated to the outside from the heat radiating plate 9b via the thermoelectric module 10.
  • the thermoelectric element 9 converts light having a wavelength of, for example, 400 nm or more that has passed through the transparent substrate 1 and the oxide electrode 2 into heat.
  • thermoelectric element 9 the relationship expressed by the following equation is established in the temperature difference ⁇ T (K), the potential difference ⁇ V (V), and the Seebeck coefficient ⁇ (V / K) which is a performance index, and the temperature difference ⁇ T and the potential difference ⁇ V are proportional to each other. It's a relationship.
  • the thermoelectric module 10 includes a positive electrode 11, a p-type thermoelectric material 12 1 , 122 , a common electrode 13 1 , 132 , 133 , an n - type thermoelectric material 14 1 , 142, and a negative electrode 15.
  • the endothermic plate 9a and the common electrodes 13 1 and 132 , and the heat sink 9b and each electrode (positive electrode 11, common electrode 132 , negative electrode 15) are each insulated by an insulating layer (not shown). ..
  • thermoelectric materials 12 1 and 12 2 the heat converted by the endothermic plate 9a is transferred to the heat radiating plate 9b by the holes acting as carriers.
  • n - type thermoelectric materials 14 1 and 142 electrons act as carriers to transfer heat to the heat sink 9b. Therefore, in FIG. 1, the voltage on the oxidation electrode 2 side is high and the voltage on the reduction electrode 3 side is low.
  • the carbon dioxide reducing device 100 contains an oxide electrode 2 formed on the transparent substrate 1 and receiving light from the outside, and an electrolytic solution 5 in which the oxide electrode 2 is immersed.
  • the oxide tank 6 to hold, the reduction electrode 3, the reduction tank 7 holding the electrolytic solution 5 in which the reduction electrode 3 is immersed and bubbling carbon dioxide from the outside, and the reduction tank 6 and the reduction tank 7 are arranged.
  • the electrolyte film 4 that divides the electrolytic solution 5 into the oxidizing side and the reducing side, and the heat absorbing plate 9a facing the transparent substrate 1 receive the light transmitted through the transparent substrate 1 and convert it into heat, and convert the heat absorbing plate 9a and the thermoelectric material 12 into heat.
  • thermoelectric element 9 that dissipates heat from the heat absorbing plate 9a facing the heat radiating plate 9b, connects the high potential side to the oxide electrode 2, and connects the low potential side to the reduction electrode 3.
  • FIG. 2 is a schematic diagram showing a configuration example of a carbon dioxide reducing device according to a second embodiment of the present invention.
  • the carbon dioxide reducing device 200 shown in FIG. 2 differs from the carbon dioxide reducing device 100 (FIG. 1) in that the solar cell 20 is provided.
  • the solar cell 20 is arranged between the transparent substrate 1 and the heat absorbing plate 9a, and a voltage is generated by the light 8 transmitted through the oxide electrode 2 and the transparent substrate 1.
  • a crystalline silicon solar cell any one of a crystalline silicon solar cell, a single crystal silicon solar cell, a polycrystalline silicon solar cell, an amorphous silicon solar cell, a compound semiconductor solar cell, and a dye sensitized solar cell can be used.
  • the solar cell 20 is configured by forming a cathode electrode 20a and an anode electrode 20b of the above materials on a transparent substrate 20c.
  • the cathode electrode 20a is connected to the oxide electrode 2, and the anode electrode 20b is connected to the negative electrode 11.
  • the band gap between the cathode electrode 20a and the anode electrode 20b is preferably narrower than the band gap of the oxidation electrode 2.
  • the carbon dioxide reducing device 200 includes a solar cell 20 in which the cathode electrode 20a is connected to the oxide electrode 2 and the anode electrode 20b is connected to the thermoelectric element 9 (negative electrode 11). This makes it possible to provide a carbon dioxide reducing device capable of effectively utilizing light energy over a wide wavelength range.
  • FIG. 3 is a schematic diagram showing a modified example of the solar cell 20 described in the second embodiment.
  • the solar cell 20 may be formed on the surface of the transparent substrate 1 opposite to the oxide electrode 2.
  • the solar cell 20 is exposed from the surface of the electrolytic solution 5.
  • the solar cell 20 of this modification is formed on the surface of the transparent substrate 1 on which the oxide electrode 2 is formed on the opposite side of the electrolytic solution 5, and is exposed from the surface of the electrolytic solution 5. This eliminates the need for the transparent substrate 20c and reduces the number of transparent substrates to one (transparent substrate 1), so that the efficiency of light energy utilization can be improved.
  • the oxide electrode 2 was formed by epitaxially growing an n-type semiconductor GaN thin film and AlGaN on a sapphire substrate in this order, vacuum-depositing Ni on the sapphire substrate, and performing heat treatment to form a NiO co-catalyst thin film.
  • the transparent substrate and the oxide electrode 2 were immersed in the electrolytic solution 5.
  • a copper plate was used for the reduction electrode 3.
  • the reduction reaction of carbon dioxide proceeds on the surface of the copper plate.
  • Nafion (registered trademark) was used as the electrolyte membrane 4 that separates the oxidation tank 6 and the reduction tank 7.
  • thermoelectric element 9 As the thermoelectric element 9, a thermoelectric module 10 (manufactured by Fellow Tech Co., Ltd., FR-1S) having an area of 10 cm 2 was used.
  • a 300 W xenon lamp was used instead of sunlight. Wavelengths above 450 nm were cut with a filter, and the illuminance was set to 6.6 mW / cm 2 . Then, the irradiation surface of the light 8 of the oxide electrode 2 was set to 2.5 cm 2 .
  • Helium was bubbled in the oxidation tank 6 and carbon dioxide was bubbled in the reduction tank 7 at a flow rate of 5 ml / min and a pressure of 0.18 MPa. Helium bubbling was performed for the purpose of analyzing the reaction product. Helium and carbon dioxide were sufficiently replaced, and the above-mentioned light 8 was irradiated.
  • the current flowing between the oxide electrode 2 and the reduction electrode 3 by irradiation with light 8 was measured with an electrochemical measuring device (Solartron, 1287 type potentiogalvanostat).
  • the gas and liquid generated in the oxidation tank 6 and the reduction tank 7 were sampled, and the reaction product was analyzed using a gas chromatograph, a liquid chromatograph, and a gas chromatograph mass spectrometer.
  • the Faraday efficiency of the carbon dioxide reduction reaction was calculated.
  • the carbon dioxide Faraday efficiency indicates the ratio of the number of electrons used in the carbon dioxide reduction reaction to the number of electrons transferred between the oxidation electrode 2 and the reduction electrode 3 by light irradiation or voltage application.
  • the "number of electrons in the reduction reaction” in the formula (2) is obtained by converting the measured value of the integrated production amount of the reduction product of carbon dioxide into the number of electrons required for the production reaction.
  • the concentration of the reduction reaction product is A (ppm)
  • the flow rate of the carrier gas is B (L / sec)
  • the number of electrons required for the reduction reaction is Z (mol)
  • the Faraday constant is F (C / mol)
  • the gas model When the body is V m (L / mol) and the light irradiation or voltage application time is T (sec), the "number of electrons in the reduction reaction" can be calculated by the following equation.
  • a 300 W high-voltage xenon lamp (wavelength 450 nm or more cut with a filter) and light with an illuminance of 6.6 mW / cm 2 were used for the purpose of making the light easy to quantify.
  • the oxide electrode 2 was arranged so as to be an irradiation surface.
  • the heat absorbed by the heat absorbing plate 9a was given by simulating it with a hot plate.
  • the temperature of the heat radiating plate 9b was set to 25 ° C., and temperature gradients of 5 ° C., 10 ° C., and 15 ° C. were generated.
  • Experiment 2 was carried out in the same manner as in Experiment 1 with the configuration of the second embodiment (FIG. 2).
  • a single-cell single-crystal amorphous silicon solar cell having an area of 2.5 cm and a voltage of 0.6 V was used as the solar cell 20.
  • the temperature gradient was applied only at 5 ° C.
  • FIG. 4 shows the configuration of the carbon dioxide reducing device of the comparative example.
  • the comparative example has a configuration that does not include the thermoelectric element 9 and the solar cell 20. Therefore, the endothermic plate 9a is not heated by the hot plate.
  • the efficiency of the carbon dioxide reduction reaction can be improved by utilizing the thermal energy of light.
  • the light 8 was generated by the Kinosen lamp for the purpose of quantitatively controlling the temperature of the temperature gradient, but it is not possible to generate the above temperature gradient in the thermoelectric element 9 by using sunlight. It's easy.
  • the carbon dioxide reducing device 100 has an oxide electrode 2 formed on the transparent substrate 1 and receiving light 8 from the outside, and an electrolytic solution 5 in which the oxide electrode 2 is immersed. It is arranged between the oxide tank 6 and the reduction tank 6 and the reduction tank 7 which holds the electrolytic solution 5 in which the reduction electrode 3 is immersed and carbon dioxide is bubbled from the outside.
  • the electrolytic solution 5 is divided into an oxidizing side and a reducing side, and the light 8 transmitted through the transparent substrate 1 is received by the heat absorbing plate 9a facing the transparent substrate 1 and converted into heat, and is converted into heat by the heat absorbing plate 9a and thermoelectric.
  • thermoelectric element 9 that dissipates heat from the heat absorbing plate 9a from the heat radiating plates 9b facing each other with the materials 12 and 14 interposed therebetween, connects the high potential side to the oxide electrode 2, and connects the low potential side to the reduction electrode 3. This makes it possible to provide a carbon dioxide reducing device that can effectively utilize light energy over a wide wavelength range.
  • the present invention is not limited to the above embodiment, and can be modified within the scope of the gist thereof.
  • the shape of the heat sink 9b shows an example of a plate, but the present invention is not limited to this example.
  • the heat sink 9b may be shaped to include cooling fins.
  • the heat radiating destination of the heat radiating plate 9b may be a natural water flow or may be underground.
  • thermoelectric element 9 has shown an example of obtaining heat energy from the light 8
  • the discarded heat energy may be used.
  • the waste heat of a boiler such as a factory or a heat exchanger may be used.
  • the present invention can be widely used in the field of carbon dioxide recycling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

透明基板1の上に成膜され外部からの光8を受光する酸化電極2と、酸化電極2が浸漬される電解液5を保持する酸化槽6と、還元電極3と、還元電極6が浸漬され、外部から二酸化炭素がバブリングされる電解液5を保持する還元槽7と、酸化槽6と還元槽7の間に配置され電解液5を酸化側と還元側に二分する電解質膜4と、透明基板1と対向する吸熱板9aに、透明基板1を透過した光を受光して熱に変換し、吸熱板9aと熱電材料12,14を挟んで対向する放熱板9bから吸熱板9aの熱を放熱し、高電位側を酸化電極2に接続させ、低電位側を還元電極3に接続させる熱電素子9とを備える。

Description

二酸化炭素還元装置
 本発明は、二酸化炭素還元装置に関する。
 地球温暖化の主因として大気中の二酸化炭素濃度の増加が挙げられている。二酸化炭素の排出量の削減は、世界的規模で長期的な課題になっている。一方、エネルギー問題として中長期的に、化石燃料に頼ったエネルギー供給の見直しが迫られ、次世代のエネルギー供給源の創出が求められている。
 二酸化炭素の排出を抑制してエネルギーを得る手段としては、排熱、雪氷熱、振動、電磁波等の未使用エネルギーや、太陽光等の再生可能エネルギーを活用する技術開発が進められている。これらの発電技術は、電気エネルギーを創出するに止まりエネルギーを貯蓄することができない。また、化石燃料を原料とした化学製品を創ることもできない。
 これらの課題を同時に解決する方法として、光エネルギーを用いて二酸化炭素を還元する技術が注目されている。例えば非特許文献1は、光照射による二酸化炭素の還元装置を開示している。その還元装置は、酸化電極に光を照射すると、酸化電極で電子・正孔対の生成及び分離が生じ、水の酸化反応により酸素及びプロトン(H+)が生成される。還元電極でプロトンと電子の結合により水素が生成され、還元反応が引き起こされる。この還元反応により、エネルギー資源として利用できる一酸化炭素、ギ酸、及びメタン等が生成される。
 また、例えば非特許文献2には、太陽電池を用いて光エネルギーの利用効率を高めた二酸化炭素還元装置が開示されている。
Satoshi Yotsuhashi et al."CO2Conversion with Light and Water by GaN Photo electroade",Japanese Journal of Applied Physics,51,2012,p.02BP07-1-p.02BP07-3 Qingxin Jia et al."Direct Gas-phase CO2reduction for Solar Methane Generation Using a Gas Diffusion Electrode with a BiVO4:Mo and a Cu-In-e Photoanode",Chem .Lett.,47,2018,p.436-p.439
 しかしながら、従来の方法では光エネルギーの利用効率が十分でなかった。酸化電極は光半導体膜で形成されるが、この光半導体膜で吸収できる太陽光の波長は例えば400nm以下の波長である。半導体膜で吸収できる光の波長の範囲は、半導体材料の種類、膜厚等によって異なり、光エネルギーの全てを光半導体膜(太陽電池)で吸収するのは困難である。つまり、従来の二酸化炭素還元装置は、光エネルギーを無駄にしていたという課題がある。
 本発明は、この課題に鑑みてなされたものであり、広い波長領域に亘って光エネルギーを有効に利用できる二酸化炭素還元装置を提供することを目的とする。
 本発明の一態様に係る二酸化炭素還元装置は、透明基板の上に成膜され外部からの光を受光する酸化電極と、前記酸化電極が浸漬される電解液を保持する酸化槽と、還元電極と、前記還元電極が浸漬され、外部から二酸化炭素がバブリングされる前記電解液を保持する還元槽と、前記酸化槽と前記還元槽の間に配置され前記電解液を酸化側と還元側に二分する電解質膜と、前記透明基板と対向する吸熱板に、前記透明基板を透過した光を受光して熱に変換し、前記吸熱板と熱電材料を挟んで対向する放熱板から前記吸熱板の熱を放熱し、高電位側を前記酸化電極に接続させ、低電位側を前記還元電極に接続させる熱電素子とを備えることを要旨とする。
 本発明によれば、広い波長領域に亘って光エネルギーを有効に利用できる二酸化炭素還元装置を提供することができる。
本発明の第1実施形態に係る二酸化炭素還元装置の構成例を示す模式図である。 本発明の第2実施形態に係る二酸化炭素還元装置の構成例を示す模式図である。 図2に示す太陽電池の変形例を示す模式図である。 比較例に係る二酸化炭素還元装置の構成例を示す模式図である。
 以下、本発明の実施形態について図面を用いて説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。
 〔第1実施形態〕
 図1は、本発明の第1実施形態に係る二酸化炭素還元装置の構成例を示す模式図である。図1において、左右をX方向、図面の奥をY方向、図面の上をZ方向と定義する。
 図1に示す二酸化炭素還元装置100は、酸化電極2、酸化槽6、還元電極3、還元槽7、電解質膜4、及び熱電素子9を備える。二酸化炭素還元装置100は、酸化還元反応により、エネルギー資源として利用できる一酸化炭素、ギ酸、及びメタン等を生成する。
 酸化電極2は、透明基板1の上に成膜され外部からの光8を受光する。透明基板1は、XY方向の平面に所定の面積を持つ例えばサファイヤ基板である。その透明基板1の上に、例えば、窒化物半導体、酸化チタン、アモルファスシリコン、ルテニウム錯体、又はシニウム錯体等の光活性やシドックス活性を示す化合物が平面上に成膜されて酸化電極2が形成される。
 光8は、例えば太陽光である。なお、光8は、太陽光で無くても構わない。例えばキセノンランプ、疑似太陽光源、ハロゲンランプ、水銀ランプ、又はこれらの光源の組合せた光である。
 酸化槽6は、酸化電極2が浸漬される電解液5を保持する。電解液5は、例えば、炭酸水素カリウム水溶液、炭酸水素ナトリウム水溶液、塩化カリウム水溶液、塩化ナトリウム水溶液、水酸化カリウム水溶液、水酸化ルビジウム水溶液、及び水酸化セシウム水溶液等である。図1は、光8が酸化槽6の底からZ方向に照射される例を示す。
 還元電極3は、例えば、銅、白金、金、銀、インジウム、パラジウム、ガリウム、ニッケル、錫、カドミウム、及び、それらの合金の多孔質体である。又は、酸化銀、酸化銅、酸化銅(II)、酸化ニッケル、酸化インジム、酸化錫、酸化タングステン、酸化タングステン(VI)、酸化銅等の化合物、若しくは金属イオンとアニオン性配位子を有する多孔質金属錯体である。還元電極3は、酸化電極2と同様にXY方向の平面に所定の面積を持つ。なお、還元電極3は、後述する電解質膜4と同様にY方向に平面を形成するように配置しても構わない。
 還元槽7は、還元電極3が浸漬され、外部から二酸化炭素がバブリングされる電解液5を保持する。電解液5は酸化槽6中のものと同じである。
 電解質膜4は、酸化槽6と還元槽7の間に配置され電解液5を酸化側と還元側に二分する。電解質膜4は、例えば、炭素-フッ素から成る骨格を持つ電解質膜であるナフィオン(登録商標)、フォアブルー、アクイビオンの何れか、又は炭素水素系骨格を持つ電解質膜であるセレミオンやネオセプタ等である。
 熱電素子9は、透明基板1と対向する吸熱板9aに、透明基板1を透過した光8を受光して熱に変換し、吸熱板9aと熱電材料12,14を挟んで対向する放熱板9bから吸熱板9bの熱を放熱し、高電位側を酸化電極2に接続させ、低電位側を還元電極3に接続させる。
 熱電材料9e,9gは、高分子の直鎖に共役二重結合を有し、π結合上を電子が移動する共役系導電性高分子を用いる。共役系導電性高分子は、例えば、ポリチオフェン、ポリアニリン、ポリアセチレン、ポリピロール、ポリカルバゾレンビニレン、ポリ(3,4-エチレンジオキシチオフェン)等である。これらの共役系導電性高分子は、100℃以下の温度領域においても高い熱電変換特性を示すことが知られている。
 図1に示すように、熱電素子9は、熱電モジュール10を、吸熱板9aと放熱板9bで挟んで構成される。吸熱板9aと放熱板9bは、熱伝導率が比較的に高い例えば銅材で構成される。吸熱板9aは、酸化電極2と透明基板1を透過して来た光を受光して熱に変換する。吸熱板9aで生じた熱は、熱電モジュール10を介して放熱板9bから外部へ放熱される。熱電素子9は、透明基板1と酸化電極2を透過して来た例えば400nm以上の波長の光を熱に変換する。
 熱電素子9は、温度差ΔT(K)、電位差ΔV(V)、性能指標であるゼーベック係数α(V/K)において、次式で表される関係が成り立ち、温度差ΔTと電位差ΔVは比例関係である。
Figure JPOXMLDOC01-appb-M000001
 熱電モジュール10は、正電極11、p型熱電材料12,12、共通電極13,13,13、n型熱電材料14,14、及び負電極15を備える。吸熱板9aと共通電極13,13、及び放熱板9bと各電極(正電極11、共通電極13、負電極15)のそれぞれの間は絶縁層(図示せず)で絶縁されている。
 p型熱電材料12,12は、吸熱板9aで変換した熱を、正孔がキャリアとなって放熱板9bに移動させる。n型熱電材料14,14は、電子がキャリアとなって熱を放熱板9bに移動させる。したがって、図1では酸化電極2側の電圧が高く、還元電極3側の電圧が低くなる。なお、p型とn型の熱電材料は、図1に示す例では2層しか積層されていないが実際は多層に積層される。
 以上説明したように、本実施形態に係る二酸化炭素還元装置100は、透明基板1の上に成膜され外部からの光を受光する酸化電極2と、酸化電極2が浸漬される電解液5を保持する酸化槽6と、還元電極3と、還元電極3が浸漬され、外部から二酸化炭素がバブリングされる電解液5を保持する還元槽7と、酸化槽6と還元槽7の間に配置され電解液5を酸化側と還元側に二分する電解質膜4と、透明基板1と対向する吸熱板9aに透明基板1を透過した光を受光して熱に変換し、吸熱板9aと熱電材料12,14を挟んで対向する放熱板9bから吸熱板9aの熱を放熱し、高電位側を酸化電極2に接続させ、低電位側を還元電極3に接続させる熱電素子9とを備える。これにより、例えば太陽光の光エネルギーを、広い波長領域に亘って有効に利用できる二酸化炭素還元装置を提供することができる。
 〔第2実施形態〕
 図2は、本発明の第2実施形態に係る二酸化炭素還元装置の構成例を示す模式図である。図2に示す二酸化炭素還元装置200は、太陽電池20を備える点で二酸化炭素還元装置100(図1)と異なる。
 太陽電池20は、透明基板1と吸熱板9aとの間に配置され、酸化電極2と透明基板1を透過した光8で電圧を生じさせる。太陽電池20は、結晶系シリコン太陽電池、単結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池、化合物半導体太陽電池、色素増感太陽電池の何れかを用いることができる。
 太陽電池20は、透明基板20cの上に上記の材料のカソード電極20aとアノード電極20bが成膜されて構成される。カソード電極20aは酸化電極2に接続され、アノード電極20bは負電極11に接続される。
 カソード電極20aとアノード電極20bのバンドギャップは、酸化電極2のバンドギャップより狭いことが好ましい。
 以上説明したように本実施形態に係る二酸化炭素還元装置200は、酸化電極2にカソード電極20aを接続させ、アノード電極20bを熱電素子9(負電極11)に接続させる太陽電池20を備える。これにより、更に光エネルギーを広い波長領域に亘って有効に利用できる二酸化炭素還元装置を提供することができる。
 (変形例)
 図3は、第2実施形態で説明した太陽電池20の変形例を示す模式図である。図3に示すように、太陽電池20は、酸化電極2と反対側の透明基板1の表面に形成してもよい。なお、太陽電池20は、電解液5の表面から露出させる。
 このように、本変形例の太陽電池20は、酸化電極2が成膜される透明基板1の電解液5と反対側の面に形成され、電解液5の表面から露出している。これにより、透明基板20cが不要になり、透明基板の数が1枚(透明基板1)に減らせるので光エネルギーの利用効率を高めることができる。
 (実験)
 上記の実施例で電気化学測定を行った。実験条件を説明する。
 酸化電極2は、サファイア基板上にn型半導体であるGaNの薄膜、AlGaNの順にエピタキシャル成長させ、その上にNiを真空蒸着し、熱処理を行うことでNiOの助触媒薄膜を形成して構成した。透明基板と酸化電極2は、電解液5に浸漬させた。
 電解液5は、1.0mol/Lの水酸化カリウム水溶液を用いた。
 還元電極3は銅板を用いた。銅板の表面において二酸化炭素の還元反応が進行する。
 酸化槽6と還元槽7を分ける電解質膜4は、ナフィオン(登録商標)を用いた。
 熱電素子9は、面積が10cm2の熱電モジュール10(フェローテック社製、FR-1S)を用いた。
 光8は、太陽光の代わりに300Wのキセノンランプを用いた。450nm以上の波長をフィルターでカットし、照度を6.6mW/cm2とした。そして、酸化電極2の光8の照射面を2.5cm2とした。
 酸化槽6にヘリウム、還元槽7に二酸化炭素を、それぞれ流量5ml/minで且つ圧力0.18MPaでバブリングした。ヘリウムのバブリングは、反応生成物を分析する目的で行った。ヘリウムと二酸化炭素を十分に置換し、上記の光8を照射した。
 光8の照射によって、酸化電極2と還元電極3の間に流れる電流を、電気化学測定装置(Solartron社製、1287型ポテンショガルバノスタット)で測定した。
 酸化槽6及び還元槽7で生じるガスと液体を採取し、ガスクロマトグラフ、液体クロマトグラフ、及びガスクロマトグラフ質量分析計を用いて反応生成物を分析した。
 二酸化炭素還元反応のファラデー効率を計算した。二酸化炭素のファラデー効率は、光照射又は電圧印加によって酸化電極2と還元電極3の間を移動した電子数に対して、二酸化炭素還元反応に使われた電子数の割合を示すものである。
Figure JPOXMLDOC01-appb-M000002
 ここで式(2)の「還元反応の電子数」は、二酸化炭素の還元生成物の積算生成量の測定値を、その生成反応に必要な電子数に換算することで求める。還元反応生成物の濃度をA(ppm)、キャリアガスの流量をB(L/sec)、還元反応に必要な電子数をZ(mol)、ファラデー定数をF(C/mol)、気体のモデル体をV(L/mol)、光照射又は電圧印加時間をT(sec)とした場合、「還元反応の電子数」は次式で計算できる。
Figure JPOXMLDOC01-appb-M000003
 (実験1)
 実験1は、第1実施形態(図1)の構成で二酸化炭素還元反応のファラデー効率を求めた。
 光8は、定量化が容易な光にする目的で300Wの高圧キセノンランプ(波長450nm以上をフィルターでカット)、照度6.6mW/cm2の光を用いた。そして、酸化電極2が照射面となるように配置した。
 また、吸熱板9aで吸収する熱は、ホットプレートで模擬して与えた。放熱板9bの温度は25℃とし、5℃、10℃、15℃の温度勾配を生じさせた。
 (実験2)
 実験2は、第2実施形態(図2)の構成で実験1と同様に行った。
 太陽電池20は、面積2.5cm、電圧0.6Vの単セルの単結晶アモルファスシリコン太陽電池を用いた。なお、温度勾配は5℃のみについて行った。
 (比較例)
 図4は、比較例の二酸化炭素還元装置の構成を示す。図4に示すように、比較例は熱電素子9と太陽電池20を備えない構成である。よって、ホットプレートによる吸熱版9aの加熱も行わない。
 実験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 温度勾配が5℃の実験1と2のファラデー効率を比較すると、24%向上している。これは、太陽電池20の電圧0.6Vによって還元電極3が低い電圧にバイアスされたことによる効果である。
 また、実験1の温度勾配10℃と15℃に示すように、熱電素子9の温度差を増加させることでファラデー効率が向上することが確認できた。これは、還元電極3のバイアス電圧が増加することにより、一酸化炭素の生成量が増加したほか、ギ酸、メタンの生成量が増加したためだと考えられる。
 このように、本実施形態に係る二酸化炭素還元装置100,200によれば、光の熱エネルギーを利用することで、二酸化炭素還元反応の効率を向上させることができる。なお、上記の実験では、温度勾配の温度を定量的に管理することも目的に、光8をキノセンランプで生じさせたが、太陽光を用いて熱電素子9に上記の温度勾配を生じさせることは容易である。
 以上説明したように、本実施形態に係る二酸化炭素還元装置100は、透明基板1の上に成膜され外部からの光8を受光する酸化電極2と、酸化電極2が浸漬される電解液5を保持する酸化槽6と、還元電極3と、還元電極3が浸漬され、外部から二酸化炭素がバブリングされる電解液5を保持する還元槽7と、酸化槽6と還元槽7の間に配置され電解液5を酸化側と還元側に二分する電解質膜4と、透明基板1と対向する吸熱板9aに透明基板1を透過した光8を受光して熱に変換し、吸熱板9aと熱電材料12,14を挟んで対向する放熱板9bから吸熱板9aの熱を放熱し、高電位側を酸化電極2に接続させ、低電位側を還元電極3に接続させる熱電素子9とを備える。これにより、広い波長領域に亘って光エネルギーを有効に利用できる二酸化炭素還元装置を提供することができる。
 本発明は、上記の実施形態に限定されるものではなく、その要旨の範囲内で変形が可能である。例えば、放熱板9bの形状は板の例を示したが、本発明はこの例に限定されない。放熱板9bは冷却フィンを備える形状にしてもよい。また、放熱板9bの熱の放熱先は自然の水流でもよいし、地中であってもよい。
 また、熱電素子9は、光8から熱エネルギーを得る例を示したが、廃棄される熱エネルギーを利用するようにしても構わない。例えば、工場等のボイラーや熱交換器の排熱を用いてもよい。
 このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 本発明は、二酸化炭素の再資源化に関する分野に広く利用することができる。
1:透明基板
2:酸化電極
3:還元電極
4:電解質膜
5:電解液
6:酸化槽
7:還元槽
8:光
9:熱電素子
9a:吸熱板
9b:放熱板
10:熱電モジュール
11:正電極
12:p型熱電材料
13:共通電極
14:n型熱電材料
15:負電極
20:太陽電池
20a:カソード電極
20b:アノード電極

Claims (3)

  1.  透明基板の上に成膜され外部からの光を受光する酸化電極と、
     前記酸化電極が浸漬される電解液を保持する酸化槽と、
     還元電極と、
     前記還元電極が浸漬され、外部から二酸化炭素がバブリングされる前記電解液を保持する還元槽と、
     前記酸化槽と前記還元槽の間に配置され前記電解液を酸化側と還元側に二分する電解質膜と、
     前記透明基板と対向する吸熱板に、前記透明基板を透過した光を受光して熱に変換し、前記吸熱板と熱電材料を挟んで対向する放熱板から前記吸熱板の熱を放熱し、高電位側を前記酸化電極に接続させ、低電位側を前記還元電極に接続させる熱電素子と
     を備える二酸化炭素還元装置。
  2.  前記酸化電極にカソード電極を接続させ、アノード電極を前記熱電素子に接続させる太陽電池を備える請求項1に記載の二酸化炭素還元装置。
  3.  前記太陽電池は、
     前記酸化電極が成膜される前記透明基板の前記電解液と反対側の面に形成され、前記電解液の表面から露出している請求項2に記載の二酸化炭素還元装置。
PCT/JP2020/042734 2020-11-17 2020-11-17 二酸化炭素還元装置 WO2022107189A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/250,265 US20230392268A1 (en) 2020-11-17 2020-11-17 Carbon Dioxide Reduction Device
JP2022563261A JPWO2022107189A1 (ja) 2020-11-17 2020-11-17
PCT/JP2020/042734 WO2022107189A1 (ja) 2020-11-17 2020-11-17 二酸化炭素還元装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/042734 WO2022107189A1 (ja) 2020-11-17 2020-11-17 二酸化炭素還元装置

Publications (1)

Publication Number Publication Date
WO2022107189A1 true WO2022107189A1 (ja) 2022-05-27

Family

ID=81708514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042734 WO2022107189A1 (ja) 2020-11-17 2020-11-17 二酸化炭素還元装置

Country Status (3)

Country Link
US (1) US20230392268A1 (ja)
JP (1) JPWO2022107189A1 (ja)
WO (1) WO2022107189A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116284A (ja) * 1974-07-30 1976-02-09 Komatsu Electronics
JPH0413880A (ja) * 1990-05-07 1992-01-17 Mitsubishi Heavy Ind Ltd 水分解装置
JP2011529531A (ja) * 2008-07-29 2011-12-08 イエダ・リサーチ・アンド・デベロツプメント・カンパニー・リミテツド 化学ポテンシャルエネルギー生成のためのシステム及び方法
WO2013031063A1 (ja) * 2011-08-31 2013-03-07 パナソニック株式会社 二酸化炭素を還元する方法
JP2016050359A (ja) * 2014-08-29 2016-04-11 パナソニックIpマネジメント株式会社 二酸化炭素の還元方法、及び二酸化炭素の還元装置
US20170167035A1 (en) * 2013-11-27 2017-06-15 Industry-University Cooperation Foundation Hanyang University Erica Campus Hybrid type device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116284A (ja) * 1974-07-30 1976-02-09 Komatsu Electronics
JPH0413880A (ja) * 1990-05-07 1992-01-17 Mitsubishi Heavy Ind Ltd 水分解装置
JP2011529531A (ja) * 2008-07-29 2011-12-08 イエダ・リサーチ・アンド・デベロツプメント・カンパニー・リミテツド 化学ポテンシャルエネルギー生成のためのシステム及び方法
WO2013031063A1 (ja) * 2011-08-31 2013-03-07 パナソニック株式会社 二酸化炭素を還元する方法
US20170167035A1 (en) * 2013-11-27 2017-06-15 Industry-University Cooperation Foundation Hanyang University Erica Campus Hybrid type device
JP2016050359A (ja) * 2014-08-29 2016-04-11 パナソニックIpマネジメント株式会社 二酸化炭素の還元方法、及び二酸化炭素の還元装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OHTA, T.: "Photochemical and photoelectrochemical hydrogen production from water", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 13, no. 6, 1988, pages 333 - 339, XP025450555, DOI: 10.1016/0360-3199(88)90094-8 *

Also Published As

Publication number Publication date
JPWO2022107189A1 (ja) 2022-05-27
US20230392268A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
Wang et al. Strategies to improve light utilization in solar fuel synthesis
Higashi et al. Transparent Ta3N5 photoanodes for efficient oxygen evolution toward the development of tandem cells
Kim et al. Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV–visible–NIR optoelectronic devices
Fu et al. Spontaneous solar water splitting with decoupling of light absorption and electrocatalysis using silicon back-buried junction
JP5236125B1 (ja) 二酸化炭素を還元する方法
US20180269003A1 (en) Solar fuels generator
Sekimoto et al. Tandem photo-electrode of InGaN with two Si pn junctions for CO2 conversion to HCOOH with the efficiency greater than biological photosynthesis
Luo et al. Demonstration of photoelectrochemical‐type photodetectors using seawater as electrolyte for portable and wireless optical communication
JP6249362B2 (ja) 二酸化炭素を還元する方法、二酸化炭素還元セル及び二酸化炭素還元装置
US10036093B2 (en) Heterojunction elevated-temperature photoelectrochemical cell
Pornrungroj et al. Thermoelectric–photoelectrochemical water splitting under concentrated solar irradiation
US9005421B2 (en) Silicides for photoelectrochemical water splitting and/or the production of electricity
WO2015001729A1 (ja) 二酸化炭素を還元する方法
Zhang et al. Arificial leaves for solar fuels
Wang et al. Photoelectrochemical reduction of carbon dioxide using Ge doped GaN nanowire photoanodes
JP2014227563A (ja) 二酸化炭素還元用光化学電極、二酸化炭素還元装置、及び二酸化炭素の還元方法
JP6474000B2 (ja) 二酸化炭素の還元方法、及び二酸化炭素の還元装置
Sekimoto et al. Wireless InGaN–Si/Pt device for photo-electrochemical water splitting
WO2018079103A1 (ja) 二酸化炭素還元装置
WO2022107189A1 (ja) 二酸化炭素還元装置
Warren et al. Photoelectrochemical water splitting: silicon photocathodes for hydrogen evolution
Huang et al. Artificial Leaf for Solar‐Driven Ammonia Conversion at Milligram‐Scale Using Triple Junction III‐V Photoelectrode
CN109037423A (zh) 一种兼具吸光和催化性能的多功能温差发电器件及其制备方法与应用
Piriyev et al. Dual bandgap operation of a GaAs/Si photoelectrode
WO2022249314A1 (ja) 二酸化炭素還元装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563261

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962353

Country of ref document: EP

Kind code of ref document: A1