WO2022105944A1 - 考虑不同负荷结构和可靠性影响的10kV馈线最佳负载能力计算方法 - Google Patents
考虑不同负荷结构和可靠性影响的10kV馈线最佳负载能力计算方法 Download PDFInfo
- Publication number
- WO2022105944A1 WO2022105944A1 PCT/CN2022/072359 CN2022072359W WO2022105944A1 WO 2022105944 A1 WO2022105944 A1 WO 2022105944A1 CN 2022072359 W CN2022072359 W CN 2022072359W WO 2022105944 A1 WO2022105944 A1 WO 2022105944A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- load
- feeder
- distribution
- reliability
- structures
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000004364 calculation method Methods 0.000 claims abstract description 36
- 238000004088 simulation Methods 0.000 claims abstract description 16
- 238000010276 construction Methods 0.000 claims description 18
- 238000012423 maintenance Methods 0.000 claims description 17
- 230000005611 electricity Effects 0.000 claims description 16
- 238000011156 evaluation Methods 0.000 claims description 7
- 238000005192 partition Methods 0.000 claims description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000012797 qualification Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/04—Constraint-based CAD
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/08—Probabilistic or stochastic CAD
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/04—Power grid distribution networks
Definitions
- the invention relates to a method for calculating the optimum load capacity of a 10kV feeder.
- it relates to a calculation method for the optimal load capacity of 10kV feeders considering the influence of different load structures and reliability.
- the first prior art considers the load rate, peak load rate and actual operating years of the equipment, and proposes a load capacity evaluation method for electrical equipment that considers the entire life cycle.
- the second prior art combines the concept of load rate to define equipment utilization rate, and considers the "N-x" criterion, load characteristics, load development and other influencing factors, and proposes distribution network equipment load capacity evaluation standards and corresponding improvement measures.
- the third prior art uses the grey correlation threshold variable weight method to adjust the weights of multiple distribution network equipment utilization indicators determined by the AHP method to avoid the impact caused by the correlation of indicators, and proposes a method that uses the adjusted weights and optimized The idea is to determine the method of fuzzy measurement, and obtain the comprehensive evaluation value of equipment load capacity.
- the analysis of the optimal load capacity of distribution network equipment in the above research can be divided into two categories.
- the weight assignment method evaluates the operating efficiency of the equipment and its optimal load capacity. Although this type of method systematically shows the influence of different influencing factors on equipment operation efficiency, the selection of specific indicators and their corresponding weights lack scientific and reasonable basis.
- the other type is based on the “N-1” safety criterion to calculate the optimal load capacity of the equipment with rigid constraints. There is still a lot of room for improvement in the load capacity of the equipment obtained from the calculation.
- the load structure of the distribution network is complex and diverse, and few technicians conduct a detailed analysis of the difference in the load capacity of equipment under different load structures.
- the technical problem to be solved by the present invention is to provide a method that can not only solve the problem that it is difficult to reasonably measure the optimal load capacity of the line under different load structures by using the "N-1" criterion, but also fully consider the economical operation of the line under different load structures.
- the optimal load capacity calculation method of 10kV feeder considering the influence of different load structures and reliability is proposed.
- the technical scheme adopted in the present invention is: a method for calculating the optimal load capacity of 10kV feeder considering the influence of different load structures and reliability, comprising: establishing a calculation model for the optimal load capacity of 10kV feeder, and the calculation model is based on the total load capacity of the distribution line.
- the objective function is to minimize the input and grid income, and the constraints of equipment load rate, equipment load matching and reliability are used as constraints; then, the fmincon function in matlab simulation is called to solve the calculation model of the optimal load capacity of the 10kV feeder.
- the objective function formula is as follows:
- minB is the objective function
- C Rel is the objective function
- C eq is the 10kV feeder blackout loss cost, distribution line construction investment and maintenance cost, and power grid income, respectively.
- x, y, and z are the proportions of residential load, industrial load and commercial load in the line respectively;
- C Re , C In , and C Co represent the power outage loss per hour of residential, industrial and commercial unit loads respectively;
- C kj is the different Single user power failure loss of load structure; is the average load value of the user during the power outage time;
- t kj is the power outage time of the jth user during the kth fault;
- q is the total number of outage users during the kth fault;
- p is the total number of power outages within the specified time.
- Z eq is the total cost of a 10kV feeder
- ⁇ L , ⁇ K , and ⁇ P are the unit construction investment costs of distribution lines, switching elements and distribution transformers, respectively
- L is the length of distribution lines
- N k , N p is the number of switching elements and distribution transformers
- T eq is the life cycle of the equipment
- ⁇ L , ⁇ K , and ⁇ P are the annual maintenance cost rates of distribution lines, switching elements and distribution transformers, respectively
- f is the discount rate of the power industry.
- x, y, z are the proportion of residential load, industrial load and commercial load in the line respectively;
- C E,Re , C E,In , C E,Co are the electricity consumption of residential load, industrial load and commercial load respectively Electricity price;
- C E,s is the electricity price of a single user with different load structures;
- C B is the benchmark electricity price;
- the device load rate constraints are:
- m L is the load rate of medium-voltage distribution lines
- m P, d is the load rate of each distribution transformer
- the equipment load matching constraints are:
- AL is the capacity of the medium voltage distribution line
- AP is the capacity of the distribution transformer
- d is the number of the distribution transformer
- ASAI is the average power supply availability of the system
- N s is the number of users at load point s
- t s is the total annual outage time of load point s
- T n is the electricity demand time of users within one year.
- R is the reliability target set in conjunction with the operational basis of the distribution line.
- Step 1 Input the initial conditions, including the initial value of the load ratio and the initial value of the load ratio of different types of distribution lines;
- Step 2 According to the initial value of the load ratio and the initial value of the load rate, the investment in the construction of the distribution line, the maintenance cost and the power grid income in the objective function are calculated;
- Step 3 According to the ratio in the initial value of the input load ratio, the typical load characteristic curves of different types of loads are superimposed to obtain the user load characteristic curves representing different load structures;
- Step 4 Initialize the analog clock to 0, and randomly generate the running time TTF before failure of each of the three types of components: distribution lines, switching elements and distribution transformers; find the minimum running time TTF r , The rth element corresponding to TTF r generates the repair time TTR r and advances the analog clock to TTF r ;
- Step 5 Read the load value of the user carried by the distribution line when the rth element fails from the user load characteristic curve, and determine the power outage time of each user based on the fault analysis process of the feeder partition;
- Step 6 Generate a new random number and convert it into the new running time TTF r ′ of the rth element
- Step 7 Determine whether the analog clock has crossed the year, and if it is not in the new year, add the recorded outage time of all users to the outage time of the current year; if it is a new year, calculate the system reliability index;
- Step 8 Determine whether the simulation clock has advanced to the set time length required to meet the evaluation accuracy. If it is reached, the simulation process ends, and the system reliability indicators of each simulation year are counted and averaged. If it is not reached, return to Step 4;
- Step 9 Calculate the 10kV feeder outage loss cost in the objective function according to the average value of the system reliability index
- Step 10 Input the three variables in the objective function, namely, the loss cost of 10kV feeder outage, the construction investment and maintenance cost of distribution lines, and the power grid income into the fmincon function as parameters.
- the objective function result converges or reaches the maximum number of iterations , the solution is completed, and the initial value of the line load rate is output as the optimal load capacity of the line under the load structure; if the solution does not reach the termination condition, update the initial value of the load rate and return to step 2.
- the calculation system reliability index described in step 7 is to calculate the system average power supply availability ASAI of the 10kV feeder.
- the invention proposes a calculation method for the optimal load capacity of 10kV feeder considering the influence of different load structures and reliability, and proposes a calculation method for the optimal load capacity of 10kV feeder combining reliability and economy, which can be applied to the 10kV maximum load capacity under different load structures. Calculation of optimal load capacity.
- the invention reasonably evaluates the asset utilization level of the 10kV feeder, and provides a reference basis for the load planning and operation level analysis of the 10kV feeder.
- Fig. 1 is a flow chart for solving the calculation model of the optimal load capacity of the 10kV feeder in the present invention.
- the quality of power supply is mainly reflected by the voltage qualification rate.
- the voltage qualification rate can be regarded as another form of equipment loss, and its overall trend with load changes is similar to equipment loss. Excessive load will also have an adverse impact on the quality of power supply.
- the key indicators that can be obtained to calculate the optimal load capacity of the 10kV feeder include the investment cost of the 10kV feeder, reliability indicators and grid income.
- the method for calculating the optimal load capacity of the 10kV feeder considering the influence of different load structures and reliability of the present invention includes: establishing a calculation model for the optimal load capacity of the 10kV feeder, and the calculation model is based on the total input of the distribution line.
- the objective function is to minimize the income of the power grid, and the constraints of equipment load rate, equipment load matching and reliability are used as constraints; the fmincon function in the matlab simulation is called to solve the calculation model of the optimal load capacity of the 10kV feeder. in:
- the reliability index can choose the average power supply availability (ASAI). Since the difference of the average power supply availability can be reflected by different power outage losses, the economic analysis of the 10kV feeder life cycle mainly includes the cost of the 10kV feeder outage loss, equipment construction investment and Overhaul and maintenance costs and distribution line revenue. However, the structure of the power grid is complex, and it is difficult to directly measure the proportion of the revenue of distribution lines to the total revenue of the power grid.
- the invention uses the characteristic that the ratio is a constant, and takes the minimum total investment of the distribution line and the grid income as the goal, and indirectly measures the economy of the 10kV feeder.
- the objective function formula described in the present invention is as follows:
- min B is the objective function
- C Rel is the objective function
- C eq is the 10kV feeder blackout loss cost, distribution line construction investment and maintenance cost, and power grid income, respectively.
- the power failure loss is the economic loss caused by the power failure to the power grid and users. It varies greatly with the load type, quantity and power failure time. It is a variable cost in economic analysis.
- the power outage losses representing a single user with different load structures are superimposed, and then the calculation formula of the power outage loss cost C Rel of the 10kV feeder according to the present invention is obtained as follows:
- x, y, and z are the proportions of residential load, industrial load and commercial load in the line respectively;
- C Re , C In , and C Co represent the power outage loss per hour of residential, industrial and commercial unit loads respectively;
- C kj is the different Single user power failure loss of load structure; is the average load value of the user during the power outage time;
- t kj is the power outage time of the jth user during the kth fault;
- q is the total number of outage users during the kth fault;
- p is the total number of power outages within the specified time.
- Equipment construction investment and maintenance costs basically do not change with the type and quantity of loads, and are fixed costs in economic analysis.
- the calculation formula of the power distribution line construction investment and maintenance costs C eq according to the present invention is as follows:
- Z eq is the total cost of a 10kV feeder
- ⁇ L , ⁇ K , and ⁇ P are the unit construction investment costs of distribution lines, switching elements and distribution transformers, respectively
- L is the length of distribution lines
- N k , N p is the number of switching elements and distribution transformers
- T eq is the life cycle of the equipment
- ⁇ L , ⁇ K , and ⁇ P are the annual maintenance cost rates of distribution lines, switching elements and distribution transformers, respectively
- f is the discount rate of the power industry.
- the electricity price income is the main source of the income of the power distribution company, and it varies greatly with the load type and quantity.
- the calculation formula of the power grid income C Pro of the present invention is as follows:
- x, y, z are the proportion of residential load, industrial load and commercial load in the line respectively;
- C E,Re , C E,In , C E,Co are the electricity consumption of residential load, industrial load and commercial load respectively Electricity price;
- C E,s is the electricity price of a single user with different load structures;
- C B is the benchmark electricity price;
- the device load rate constraints are:
- m L is the load rate of medium-voltage distribution lines
- m P, d is the load rate of each distribution transformer
- the equipment load matching constraints are:
- AL is the capacity of the medium voltage distribution line
- AP is the capacity of the distribution transformer
- d is the number of the distribution transformer
- ASAI is the average power supply availability of the system
- N s is the number of users at load point s
- t s is the total annual outage time of load point s
- T n is the electricity demand time of users within one year.
- R is the reliability target set in conjunction with the operational basis of the distribution line.
- the method of calling the fmincon function in the matlab simulation of the present invention solves the calculation model of the optimal load capacity of the 10kV feeder, as shown in Figure 1, including:
- Step 1 Input the initial conditions, including the initial value of the load ratio of different types of distribution lines and the initial value of the load factor;
- Step 2 According to the initial value of the load ratio and the initial value of the load rate, the investment in the construction of the distribution line, the maintenance cost and the power grid income in the objective function are calculated;
- Step 3 According to the ratio in the initial value of the input load ratio, the typical load characteristic curves of different types of loads are superimposed to obtain the user load characteristic curves representing different load structures;
- Step 4 Initialize the analog clock to 0, and randomly generate the running time TTF before failure of each of the three types of components: distribution lines, switching elements and distribution transformers; find the minimum running time TTF r , The rth element corresponding to TTF r generates the repair time TTR r and advances the analog clock to TTF r ;
- Step 5 Read the load value of the user carried by the distribution line when the rth element fails from the user load characteristic curve, and determine the power outage time of each user based on the fault analysis process of the feeder partition;
- Step 6 Generate a new random number and convert it into the new running time TTF r ′ of the rth element
- Step 7 Determine whether the analog clock is in the new year, and if it is not in the new year, add the recorded outage time of all users to the outage time of the current year; if it is in the new year, calculate the system reliability index. is the calculation of the system average power supply availability ASAI of the 10kV feeder.
- Step 8 Determine whether the simulation clock has advanced to the set time length required to meet the evaluation accuracy. If it is reached, the simulation process ends, and the system reliability indicators of each simulation year are counted and averaged. If it is not reached, return to Step 4;
- Step 9 Calculate the 10kV feeder outage loss cost in the objective function according to the average value of the system reliability index
- Step 10 Input the three variables in the objective function, namely, the loss cost of 10kV feeder outage, the construction investment and maintenance cost of distribution lines, and the power grid income into the fmincon function as parameters.
- the objective function result converges or reaches the maximum number of iterations , the solution is completed, and the initial value of the line load rate is output as the optimal load capacity of the line under the load structure; if the solution does not reach the termination condition, update the initial value of the load rate and return to step 2.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一种考虑不同负荷结构和可靠性影响的10kV馈线最佳负载能力计算方法,包括:建立10kV馈线最佳负载能力计算模型,所述的计算模型是以配电线路总投入与电网收益最小为目标函数,以设备负载率约束、设备负荷匹配约束和可靠性约束为约束条件;然后,调用matlab仿真中fmincon函数对10kV馈线最佳负载能力计算模型进行求解。本发明的考虑不同负荷结构的10kV馈线最佳负载能力计算方法,提出了一种可靠性与经济性结合的10kV馈线最佳负载能力计算方法,可以适用于不同负荷结构下10kV最佳负载能力的计算。本发明的合方法理地评价了10kV馈线的资产利用水平,为10kV馈线的负荷规划以及运行水平分析提供参考依据。
Description
本发明涉及一种10kV馈线最佳负载能力计算方法。特别是涉及一种考虑不同负荷结构和可靠性影响的10kV馈线最佳负载能力计算方法。
科学合理地评价配电网最佳负载能力对提高设备利用水平、保障配网可靠供电和节约投资费用有重大意义,因而成为当前技术人员所关注的焦点。第一种现有技术考虑设备的负荷率、负载率峰值以及实际运行年限,提出一种考虑全寿命周期的电气设备负载能力评价方法。第二种现有技术结合负载率的概念对设备利用率进行定义,并考虑“N-x”准则、负荷特性、负荷发展等影响因素,提出配电网设备负载能力评价标准及相应的提升措施。第三种现有技术采用灰色关联阈值变权方法调整层次分析法AHP确定的多个配电网设备利用率指标权重,避免指标关联造成的影响,并提出一种利用调整后的权重和最优化思想确定模糊测度的方法,得到设备负载能力综合评价值。
上述研究对配电网设备最佳负载能力的分析分为两类,一类是结合运行效率的概念,分析配电网运行效率的主要影响因素,归纳出合理的运行效率评价指标,结合各类权重赋值方法对设备运行效率及其最佳负载能力进行评价。该类方法虽然系统地展示出不同影响因素对于设备运行效率的影响,但是具体指标的选择及其对应的权重缺少科学合理的依据。另一类是基于“N-1”安全准则的刚性约束计算设备最佳负载能力,计算得到设备负载能力仍有很大的提升空间。此外配电网负荷结构复杂多样,鲜有技术人员针对不同负荷结构下设备负载能力的差异性进行详尽地分析。
综上所述,如何提出一种考虑不同负荷结构和可靠性影响的10kV馈线最佳负载能力计算方法来科学合理地评价当前中压配电线路运行情况,成为本领域技术人员亟待解决的技术问题。
发明内容
本发明所要解决的技术问题是,提供一种不仅能解决采用“N-1”准则难以合理度量在不同负荷结构下线路最佳负载能力的问题,还能充分考虑在不同负荷结构下线路运行经济性的考虑不同负荷结构和可靠性影响的10kV馈线最佳负载能力计算方法。
本发明所采用的技术方案是:一种考虑不同负荷结构和可靠性影响的10kV馈线最佳负载能力计算方法,包括:建立10kV馈线最佳负载能力计算模型,所述计算模型以配电线路总投入与电网收益最小为目标函数,以设备负载率约束、设备负荷匹配约束和可靠性约束为约束条件;然后,调用matlab仿真中fmincon函数对10kV馈线最佳负载能力计算模型进行求解。
所述的目标函数公式如下:
式中:minB为目标函数,C
Rel、C
eq、C
Pro分别为10kV馈线停电损失成本、配电线路建设投资和检修维护费用以及电网收益。
所述的10kV馈线停电损失成本C
Rel计算公式如下:
C
kj=xC
Re+yC
In+zC
Co (2)
式中:x、y、z分别为线路中居民负荷、工业负荷和商业负荷的比例;C
Re、C
In、C
Co分别代表每小时居民、工业和商业单位负荷的停电损失;C
kj为不同负荷结构的单个用户停电损失;
为该用户在停电时间内的平均负荷值;t
kj为第k次故障时第j个用户停电时间;q为第k次故障时停电用户总数;p为在规定时间内故障停电的总次数。
所述的配电线路建设投资和检修维护费用C
eq计算公式如下:
式中:Z
eq为一条10kV馈线的总费用;π
L、π
K、π
P分别为配电线路、开关元件和配变的单位建设投资费用;L为配电线路长度;N
k、N
p为开关元件和配变数量;T
eq为设备的寿命周期;β
L、β
K、β
P分别为配电线路、开关元件和配变的年检修费用率;f为电力工业贴现率。
所述的电网收益C
Pro计算公式如下:
C
E,s=xC
E,Re+yC
E,In+zC
E,Co (6)
式中:x、y、z分别为线路中居民负荷、工业负荷和商业负荷的比例;C
E,Re、C
E,In、C
E,Co分别为居民负荷、工业负荷和商业负荷的用电电价;C
E,s为不同负荷结构的单个用户的电价;C
B为标杆电价;M
s(t)为第s个负荷点实时负荷值;a为中压配电线路的负荷点总数。
所述的约束条件中:
设备负载率约束为:
0≤m
L≤1 (9)
0≤m
P,d≤1 (10)
式中:m
L为中压配电线路负载率;m
P,d为各配变负载率;
设备负荷匹配约束为:
式中:A
L为中压配电线路的容量;A
P为配变的容量;d为配变的个数;
可靠性约束为:
式中:ASAI为系统平均供电可用度;N
s为负荷点s的用户数;t
s为负荷点s的年总停运时间;T
n为用户一年内的需电时间。R为结合配电线路运行基础设定的可靠性目标。
所述的调用matlab仿真中fmincon函数对10kV馈线最佳负载能力计算模型进行求解,包括如下步骤:
步骤1:输入初始条件,包括配电线路不同类型的负荷比例初值以及负载率初值;
步骤2:根据负荷比例初值和负载率初值计算目标函数中的配电线路建设投资和检修维护费用以及电网收益;
步骤3:按照输入负荷比例初值中的比例,对不同类型负荷的典型负荷特性曲线进行叠加,得到代表不同负荷结构的用户负荷特性曲线;
步骤4:初始化模拟时钟为0,随机生成配电线路、开关元件和配变这3类元件中的每一个元件的失效前运行时间TTF;找出最小的运行时间TTF
r,对最小的运行时间TTF
r所对应的第r个元件生成修复时间TTR
r,并将模拟时钟推进到TTF
r;
步骤5:由用户负荷特性曲线读取第r个元件故障时配电线路所带用户的负荷值,并基于馈线分区的故障分析过程,确定各用户的停电时间;
步骤6:生成一个新的随机数,并转化为第r个元件新的运行时间TTF
r′;
步骤7:判断模拟时钟是否跨年,未跨年则将记录的所有用户停电时间累加到当年停运时间中;如跨年,则计算系统可靠性指标;
步骤8:判断模拟时钟是否推进到了设定的满足评估精度所需时间长度,达到,则模拟过程结束,统计各个模拟年的系统可靠性指标并求平均值,未达到则返回步骤4;
步骤9:根据系统可靠性指标的平均值计算目标函数中的10kV馈线停电损失成本;
步骤10:将目标函数中的三个变量即,10kV馈线停电损失成本、配电线路建设投资和检修维护费用以及电网收益作为参数输入到fmincon函数中,当目标函数结果收敛或达到最大迭代次数时,求解结束,输出线路负载率初值作为该负荷结构下线路最佳负载能力;若求解未达到终止条件,则更新负载率初值返回步骤2。
步骤7中所述的计算系统可靠性指标,是计算10kV馈线的系统平均供电可用度ASAI。
本发明的考虑不同负荷结构和可靠性影响的10kV馈线最佳负载能力计算方法,提出了一种可靠性与经济性结合的10kV馈线最佳负载能力计算方法,可以适用于不同负荷结构下10kV最佳负载能力的计算。本发明合理地评价了10kV馈线的资产利用水平,为10kV馈线的负荷规划以及运行水平分析提供参考依据。
图1是本发明中对10kV馈线最佳负载能力计算模型进行求解的流程图。
下面结合实施例和附图对本发明的考虑不同负荷结构和可靠性影响的10kV馈线最佳负载能力计算方法做出详细说明。
研究10kV馈线最佳负载能力需综合考虑总投入的经济性和运行的安全性, 具体包括以下三个方面:
(1)利用经济性。利用经济性主要通过10kV馈线所带总负荷体现。对于相同的网架结构,10kV馈线所带总负荷越大,单位负荷对应的10kV馈线建设成本则越低,10kV馈线利用越经济。
(2)供电质量。供电质量主要通过电压合格率体现。电压合格率可以看作设备损耗的另一种表现形式,其随负荷变化的整体趋势与设备损耗类似,过高的负荷对供电质量也将产生不利的影响。
(3)供电持续性。供电持续性主要通过供电可靠率体现。对于相同的网架结构,10kV馈线所带总负荷越大,设备故障后负荷转供的难度也将随之增加,部分负荷可能因为设备容量的限制无法及时转出,这对10kV馈线的供电可靠率有不利的影响。
基于上述分析,可以得到的计10kV馈线最佳负载能力的关键指标包括10kV馈线投资成本、可靠性指标及电网收益。
基于如上所述,本发明的考虑不同负荷结构和可靠性影响的10kV馈线最佳负载能力计算方法,包括:建立10kV馈线最佳负载能力计算模型,所述的计算模型是以配电线路总投入与电网收益最小为目标函数,以设备负载率约束、设备负荷匹配约束和可靠性约束为约束条件;调用matlab仿真中fmincon函数对10kV馈线最佳负载能力计算模型进行求解。其中:
可靠性指标可以选择平均供电可用度(ASAI),由于平均供电可用度的差异性可以通过不同的停电损失反映,所以10kV馈线全寿命周期经济性分析主要包括10kV馈线停电损失成本、设备建设投资和检修维护费用以及配电线路收益。但是电网结构复杂,配电线路收益占电网总收益的比例难以直接衡量。本发明用该比例为常数的特点,以配电线路总投入与电网收益最小为目标,间接地衡量10kV馈线的经济性。本发明中所述的目标函数公式如下:
式中:min B为目标函数,C
Rel、C
eq、C
Pro分别为10kV馈线停电损失成本、配电线路建设投资和检修维护费用以及电网收益。
常用的可靠性成本计量方式是停电损失。停电损失是由于故障停电对电网和用户造成的经济损失,随负荷类型、数量以及停电时间变化较大,是经济性分析中的可变成本。先按照不同类型负荷各自停电损失及比例叠加得到代表不同负荷结构单个用户的停电损失,进一步再得到本发明所述的10kV馈线停电损失成本C
Rel计算公式如下:
C
kj=xC
Re+yC
In+zC
Co (2)
式中:x、y、z分别为线路中居民负荷、工业负荷和商业负荷的比例;C
Re、C
In、C
Co分别代表每小时居民、工业和商业单位负荷的停电损失;C
kj为不同负荷结构的单个用户停电损失;
为该用户在停电时间内的平均负荷值;t
kj为第k次故障时第j个用户停电时间;q为第k次故障时停电用户总数;p为在规定时间内故障停电的总次数。
设备建设投资和检修维护费用基本不随负荷类型及数量变化,是经济性分析中的固定成本,本发明所述的配电线路建设投资和检修维护费用C
eq计算公式如下:
式中:Z
eq为一条10kV馈线的总费用;π
L、π
K、π
P分别为配电线路、开关元件和配变的单位建设投资费用;L为配电线路长度;N
k、N
p为开关元件和配变数量;T
eq为设备的寿命周期;β
L、β
K、β
P分别为配电线路、开关元件和配变的年检修费用率;f为电力工业贴现率。
电价收益是配电公司收益的主要来源,随负荷类型及数量变化较大,本发明所述的电网收益C
Pro计算公式如下:
C
E,s=xC
E,Re+yC
E,In+zC
E,Co (6)
式中:x、y、z分别为线路中居民负荷、工业负荷和商业负荷的比例;C
E,Re、C
E,In、C
E,Co分别为居民负荷、工业负荷和商业负荷的用电电价;C
E,s为不同负荷结构的单个用户的电价;C
B为标杆电价;M
s(t)为第s个负荷点实时负荷值;a为中压配电线路的负荷点总数。
所述的约束条件中:
设备负载率约束为:
0≤m
L≤1 (9)
0≤m
P,d≤1 (10)
式中:m
L为中压配电线路负载率;m
P,d为各配变负载率;
设备负荷匹配约束为:
式中:A
L为中压配电线路的容量;A
P为配变的容量;d为配变的个数;
可靠性约束为:
式中:ASAI为系统平均供电可用度;N
s为负荷点s的用户数;t
s为负荷点s的年总停运时间;T
n为用户一年内的需电时间。R为结合配电线路运行基础设定的可靠性目标。
本发明所述的调用matlab仿真中fmincon函数对10kV馈线最佳负载能力计算模型进行求解,如图1所示,包括:
步骤1:输入初始条件,包括配电线路不同类型的负荷比例初值以及负载率 初值;
步骤2:根据负荷比例初值和负载率初值计算目标函数中的配电线路建设投资和检修维护费用以及电网收益;
步骤3:按照输入负荷比例初值中的比例,对不同类型负荷的典型负荷特性曲线进行叠加,得到代表不同负荷结构的用户负荷特性曲线;
步骤4:初始化模拟时钟为0,随机生成配电线路、开关元件和配变这3类元件中的每一个元件的失效前运行时间TTF;找出最小的运行时间TTF
r,对最小的运行时间TTF
r所对应的第r个元件生成修复时间TTR
r,并将模拟时钟推进到TTF
r;
步骤5:由用户负荷特性曲线读取第r个元件故障时配电线路所带用户的负荷值,并基于馈线分区的故障分析过程,确定各用户的停电时间;
步骤6:生成一个新的随机数,并转化为第r个元件新的运行时间TTF
r′;
步骤7:判断模拟时钟是否跨年,未跨年则将记录的所有用户停电时间累加到当年停运时间中;如跨年,则计算计算系统可靠性指标,所述的计算系统可靠性指标,是计算10kV馈线的系统平均供电可用度ASAI。
步骤8:判断模拟时钟是否推进到了设定的满足评估精度所需时间长度,达到,则模拟过程结束,统计各个模拟年的系统可靠性指标并求平均值,未达到则返回步骤4;
步骤9:根据系统可靠性指标的平均值计算目标函数中的10kV馈线停电损失成本;
步骤10:将目标函数中的三个变量即,10kV馈线停电损失成本、配电线路建设投资和检修维护费用以及电网收益作为参数输入到fmincon函数中,当目标函数结果收敛或达到最大迭代次数时,求解结束,输出线路负载率初值作为该负荷结构下线路最佳负载能力;若求解未达到终止条件,则更新负载率初值返回步骤2。
Claims (8)
- 一种考虑不同负荷结构和可靠性影响的10kV馈线最佳负载能力计算方法,其特征在于,包括:建立10kV馈线最佳负载能力计算模型,所述计算模型以配电线路总投入与电网收益最小为目标函数,以设备负载率约束、设备负荷匹配约束和可靠性约束为约束条件;然后,调用matlab仿真中fmincon函数对10kV馈线最佳负载能力计算模型进行求解。
- 根据权利要求1所述的考虑不同负荷结构和可靠性影响的10kV馈线最佳负载能力计算方法,其特征在于,所述的调用matlab仿真中fmincon函数对10kV馈线最佳负载能力计算模型进行求解,包括如下步骤:步骤1:输入初始条件,包括配电线路不同类型的负荷比例初值以及负载率初值;步骤2:根据负荷比例初值和负载率初值计算目标函数中的配电线路建设投资和检修维护费用以及电网收益;步骤3:按照输入负荷比例初值中的比例,对不同类型负荷的典型负荷特性曲线进行叠加,得到代表不同负荷结构的用户负荷特性曲线;步骤4:初始化模拟时钟为0,随机生成配电线路、开关元件和配变这3类元件中的每一个元件的失效前运行时间TTF;找出最小的运行时间TTF r,对最小的运行时间TTF r所对应的第r个元件生成修复时间TTR r,并将模拟时钟推进到TTF r;步骤5:由用户负荷特性曲线读取第r个元件故障时配电线路所带用户的负荷值,并基于馈线分区的故障分析过程,确定各用户的停电时间;步骤6:生成一个新的随机数,并转化为第r个元件新的运行时间TTF r′;步骤7:判断模拟时钟是否跨年,未跨年则将记录的所有用户停电时间累加到当年停运时间中;如跨年,则计算系统可靠性指标;步骤8:判断模拟时钟是否推进到了设定的满足评估精度所需时间长度,达到,则模拟过程结束,统计各个模拟年的系统可靠性指标并求平均值,未达到则返回步骤4;步骤9:根据系统可靠性指标的平均值计算目标函数中的10kV馈线停电损失成本;步骤10:将目标函数中的三个变量即,10kV馈线停电损失成本、配电线路建设投资和检修维护费用以及电网收益作为参数输入到fmincon函数中,当目标函数结果收敛或达到最大迭代次数时,求解结束,输出线路负载率初值作为该负荷结构下线路最佳负载能力;若求解未达到终止条件,则更新负载率初值返回步骤2。
- 根据权利要求7所述的考虑不同负荷结构和可靠性影响的10kV馈线最佳负载能力计算方法,其特征在于,步骤7中所述的计算系统可靠性指标,是计算10kV馈线的系统平均供电可用度ASAI。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011293511.9A CN112364516A (zh) | 2020-11-18 | 2020-11-18 | 考虑不同负荷结构的10kV馈线最佳负载能力计算方法 |
CN202011293511.9 | 2020-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022105944A1 true WO2022105944A1 (zh) | 2022-05-27 |
Family
ID=74534276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/072359 WO2022105944A1 (zh) | 2020-11-18 | 2022-01-17 | 考虑不同负荷结构和可靠性影响的10kV馈线最佳负载能力计算方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112364516A (zh) |
WO (1) | WO2022105944A1 (zh) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115049266A (zh) * | 2022-06-20 | 2022-09-13 | 杜挺 | 基于多元负荷特性的配电网布局方法 |
CN115313370A (zh) * | 2022-08-19 | 2022-11-08 | 国网安徽省电力有限公司巢湖市供电公司 | 一种配电网负荷叠加分析方法 |
CN115441434A (zh) * | 2022-08-16 | 2022-12-06 | 国网四川省电力公司成都供电公司 | 区域电网内变压器负荷均衡分配方法、装置 |
CN115640743A (zh) * | 2022-09-30 | 2023-01-24 | 国网江苏省电力有限公司常州供电分公司 | 基于贝叶斯优化参数神经网络的配电负荷-馈线智能匹配方法 |
CN116154778A (zh) * | 2023-04-19 | 2023-05-23 | 广东电网有限责任公司佛山供电局 | 一种配电网首段环网自动分析方法、装置及设备 |
CN116599062A (zh) * | 2023-07-18 | 2023-08-15 | 湖北长江电气有限公司 | 一种用于分析配网线路供电能力的方法及系统 |
CN116777308A (zh) * | 2023-08-23 | 2023-09-19 | 中国铁路设计集团有限公司 | 一种考虑站、线、网综合作用的客专线路所能力评估方法 |
CN116910949A (zh) * | 2023-06-13 | 2023-10-20 | 江苏科能电力工程咨询有限公司 | 220kV变电站主接线可靠性和经济性优化评估方法 |
CN117154954A (zh) * | 2023-10-31 | 2023-12-01 | 国网浙江省电力有限公司宁波供电公司 | 一种基于遗传算法的配电网馈线自动化终端的配置方法 |
CN117578603A (zh) * | 2023-10-10 | 2024-02-20 | 国网浙江省电力有限公司金华供电公司 | 一种基于区域新能源调节的网架负载均衡方法 |
CN117895659A (zh) * | 2024-03-14 | 2024-04-16 | 山东理工大学 | 一种智能电网自动化调度方法及系统 |
CN118336735A (zh) * | 2024-04-12 | 2024-07-12 | 国网冀北电力有限公司经济技术研究院 | 一种面向终端用户可靠性需求的配电网终端配置方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112364516A (zh) * | 2020-11-18 | 2021-02-12 | 国网青海省电力公司经济技术研究院 | 考虑不同负荷结构的10kV馈线最佳负载能力计算方法 |
CN113049919B (zh) * | 2021-03-23 | 2024-07-02 | 绍兴大明电力设计院有限公司 | 一种中压馈线供电负荷特性的多样性识别方法及系统 |
CN113394776B (zh) * | 2021-07-07 | 2023-01-24 | 国网天津市电力公司 | 一种基于柔性冷热需求的配电网供电能力评估方法 |
CN113771675B (zh) * | 2021-10-09 | 2023-05-09 | 南方电网数字电网研究院有限公司 | 有序充电方法和系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150241892A1 (en) * | 2014-02-21 | 2015-08-27 | International Business Machines Corporation | Predictive smart grid re-structuring based on expected load and power generation |
CN105514990A (zh) * | 2015-12-10 | 2016-04-20 | 中国电力科学研究院 | 综合经济性与安全性的输电线路利用率提高平台及方法 |
CN110490454A (zh) * | 2019-08-20 | 2019-11-22 | 广西电网有限责任公司电力科学研究院 | 基于配网设备运行效率评价的配网资产运行效率计算方法 |
CN112364516A (zh) * | 2020-11-18 | 2021-02-12 | 国网青海省电力公司经济技术研究院 | 考虑不同负荷结构的10kV馈线最佳负载能力计算方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8190299B2 (en) * | 2006-07-19 | 2012-05-29 | Rovnyak Steven M | Integrated and optimized distributed generation and interconnect system controller |
CN104715294A (zh) * | 2015-04-02 | 2015-06-17 | 国家电网公司 | 一种配电网规划方案评价数据处理系统 |
WO2018218227A1 (en) * | 2017-05-25 | 2018-11-29 | Opus One Solutions (Usa) Corporation | Integrated distribution planning systems and methods for electric power systems |
US11018793B2 (en) * | 2017-07-04 | 2021-05-25 | Nokia Technologies Oy | Network optimisation |
CN111369083A (zh) * | 2018-12-25 | 2020-07-03 | 中国电力科学研究院有限公司 | 一种面向电网项目投资效益的评价方法与系统 |
CN111864742B (zh) * | 2020-07-29 | 2021-10-08 | 国网河北省电力有限公司经济技术研究院 | 一种主动配电系统扩展规划方法、装置及终端设备 |
-
2020
- 2020-11-18 CN CN202011293511.9A patent/CN112364516A/zh active Pending
-
2022
- 2022-01-17 WO PCT/CN2022/072359 patent/WO2022105944A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150241892A1 (en) * | 2014-02-21 | 2015-08-27 | International Business Machines Corporation | Predictive smart grid re-structuring based on expected load and power generation |
CN105514990A (zh) * | 2015-12-10 | 2016-04-20 | 中国电力科学研究院 | 综合经济性与安全性的输电线路利用率提高平台及方法 |
CN110490454A (zh) * | 2019-08-20 | 2019-11-22 | 广西电网有限责任公司电力科学研究院 | 基于配网设备运行效率评价的配网资产运行效率计算方法 |
CN112364516A (zh) * | 2020-11-18 | 2021-02-12 | 国网青海省电力公司经济技术研究院 | 考虑不同负荷结构的10kV馈线最佳负载能力计算方法 |
Non-Patent Citations (1)
Title |
---|
BAI HAO, LEI JINYONG;ZHOU CHANGCHENG;WU ZHENGRONG;TANG BINGNAN: "Calculation Method for Optimal Load Capacity of Medium-voltage Distribution System Considering the Balance Between Safety and Economy", PROCEEDINGS OF THE CSU-EPSA, vol. 32, no. 12, 31 August 2020 (2020-08-31), pages 119 - 123, XP055931094, ISSN: 1003-8930, DOI: 10.19635/j.cnki.csu-epsa.000584 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115049266A (zh) * | 2022-06-20 | 2022-09-13 | 杜挺 | 基于多元负荷特性的配电网布局方法 |
CN115441434A (zh) * | 2022-08-16 | 2022-12-06 | 国网四川省电力公司成都供电公司 | 区域电网内变压器负荷均衡分配方法、装置 |
CN115313370A (zh) * | 2022-08-19 | 2022-11-08 | 国网安徽省电力有限公司巢湖市供电公司 | 一种配电网负荷叠加分析方法 |
CN115313370B (zh) * | 2022-08-19 | 2023-05-09 | 国网安徽省电力有限公司巢湖市供电公司 | 一种配电网负荷叠加分析方法 |
CN115640743A (zh) * | 2022-09-30 | 2023-01-24 | 国网江苏省电力有限公司常州供电分公司 | 基于贝叶斯优化参数神经网络的配电负荷-馈线智能匹配方法 |
CN115640743B (zh) * | 2022-09-30 | 2023-09-08 | 国网江苏省电力有限公司常州供电分公司 | 基于贝叶斯优化参数神经网络的配电负荷-馈线智能匹配方法 |
CN116154778A (zh) * | 2023-04-19 | 2023-05-23 | 广东电网有限责任公司佛山供电局 | 一种配电网首段环网自动分析方法、装置及设备 |
CN116154778B (zh) * | 2023-04-19 | 2023-07-04 | 广东电网有限责任公司佛山供电局 | 一种配电网首段环网自动分析方法、装置及设备 |
CN116910949A (zh) * | 2023-06-13 | 2023-10-20 | 江苏科能电力工程咨询有限公司 | 220kV变电站主接线可靠性和经济性优化评估方法 |
CN116599062B (zh) * | 2023-07-18 | 2023-09-19 | 湖北长江电气有限公司 | 一种用于分析配网线路供电能力的方法及系统 |
CN116599062A (zh) * | 2023-07-18 | 2023-08-15 | 湖北长江电气有限公司 | 一种用于分析配网线路供电能力的方法及系统 |
CN116777308A (zh) * | 2023-08-23 | 2023-09-19 | 中国铁路设计集团有限公司 | 一种考虑站、线、网综合作用的客专线路所能力评估方法 |
CN116777308B (zh) * | 2023-08-23 | 2023-11-24 | 中国铁路设计集团有限公司 | 一种考虑站、线、网综合作用的客专线路所能力评估方法 |
CN117578603A (zh) * | 2023-10-10 | 2024-02-20 | 国网浙江省电力有限公司金华供电公司 | 一种基于区域新能源调节的网架负载均衡方法 |
CN117578603B (zh) * | 2023-10-10 | 2024-05-14 | 国网浙江省电力有限公司金华供电公司 | 一种基于区域新能源调节的网架负载均衡方法 |
CN117154954A (zh) * | 2023-10-31 | 2023-12-01 | 国网浙江省电力有限公司宁波供电公司 | 一种基于遗传算法的配电网馈线自动化终端的配置方法 |
CN117154954B (zh) * | 2023-10-31 | 2024-01-05 | 国网浙江省电力有限公司宁波供电公司 | 一种基于遗传算法的配电网馈线自动化终端的配置方法 |
CN117895659A (zh) * | 2024-03-14 | 2024-04-16 | 山东理工大学 | 一种智能电网自动化调度方法及系统 |
CN117895659B (zh) * | 2024-03-14 | 2024-05-31 | 山东理工大学 | 一种智能电网自动化调度方法及系统 |
CN118336735A (zh) * | 2024-04-12 | 2024-07-12 | 国网冀北电力有限公司经济技术研究院 | 一种面向终端用户可靠性需求的配电网终端配置方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112364516A (zh) | 2021-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022105944A1 (zh) | 考虑不同负荷结构和可靠性影响的10kV馈线最佳负载能力计算方法 | |
Diaz-Aguiló et al. | Field-validated load model for the analysis of CVR in distribution secondary networks: Energy conservation | |
CN104951866B (zh) | 一种县级供电企业线损综合管理对标评价体系及评价方法 | |
CN102521652B (zh) | 一种电网运营效率评价决策方法 | |
CN105356461B (zh) | 一种低压电网负荷不平衡治理项目碳减排量的核算方法 | |
CN110490454B (zh) | 基于配网设备运行效率评价的配网资产运行效率计算方法 | |
CN107871214A (zh) | 一种多能互补供能系统综合评价指标体系建立方法 | |
CN107730076B (zh) | 一种区域配电网设备综合利用效率分析方法 | |
CN108280565A (zh) | 综合考虑经济运行及投资回收的变压器经济容量选型方法 | |
CN106780114A (zh) | 荷‑网‑源协调控制后的电网降损效果综合量化评价方法 | |
CN113112136A (zh) | 一种配电网可靠性综合评估方法及系统 | |
CN110543696A (zh) | 一种未建模小机组参与电力市场出清和安全校核的方法 | |
CN114742488B (zh) | 一种主变压器运行风险评估方法和系统 | |
CN105701609A (zh) | 基于综合评价指标的调峰电源布局方法 | |
CN117458608A (zh) | 一种计及需求响应的低压配电网运行可靠性评估方法 | |
CN112541252A (zh) | 一种基于可靠性评估的接线方式优化方法及系统 | |
CN106971255A (zh) | 一种配网自动化方案综合评估系统 | |
KR100705610B1 (ko) | 전기설비 신뢰도를 활용한 투자 우선순위 결정 방법 | |
Zheng et al. | Robust transmission expansion planning incorporating demand response and N-1 contingency | |
CN112446614A (zh) | 一种基于用户停电损失的不停电作业优先级评估方法 | |
CN108599168B (zh) | 一种用于对大电网计划潮流进行合理性评估的方法及系统 | |
Munasinghe | Electricity pricing; a comprehensive framework | |
Liu et al. | System dynamics analysis of capacity market demand curve considering investors’ risk aversion | |
CN111080062A (zh) | 跨区跨省电力交易风险与收益的量化分析方法及系统 | |
CN109829610A (zh) | 一种计及负荷时序特性的配网可靠性提升最优投资方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22724392 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.09.2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22724392 Country of ref document: EP Kind code of ref document: A1 |