WO2022105255A1 - 探针异常识别方法及装置、存储介质和电子设备 - Google Patents

探针异常识别方法及装置、存储介质和电子设备 Download PDF

Info

Publication number
WO2022105255A1
WO2022105255A1 PCT/CN2021/105301 CN2021105301W WO2022105255A1 WO 2022105255 A1 WO2022105255 A1 WO 2022105255A1 CN 2021105301 W CN2021105301 W CN 2021105301W WO 2022105255 A1 WO2022105255 A1 WO 2022105255A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
preset
probes
temperature
density
Prior art date
Application number
PCT/CN2021/105301
Other languages
English (en)
French (fr)
Inventor
代召云
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/447,226 priority Critical patent/US20220155155A1/en
Publication of WO2022105255A1 publication Critical patent/WO2022105255A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present disclosure relates to the technical field of integrated circuits, and in particular, to a probe abnormality identification method and device, a storage medium and an electronic device.
  • heat treatment equipment During the production and processing of semiconductor memory devices, heat treatment equipment is usually used.
  • the above-mentioned heat treatment equipment is provided with a plurality of probes to monitor the temperature during the heat treatment process, so as to ensure the smooth progress of the heat treatment process.
  • the reading temperature of the probe is abnormal, the temperature inside the heat treatment equipment will not reach the preset temperature, and when the temperature is too high, the raw material wafer of the semiconductor memory device may be deformed and damaged.
  • a method for identifying the abnormality of the probe is required, so that the abnormal state of the probe can be judged when the heat treatment equipment is in an idle state, so as to ensure that the probe is in a normal working state during the heat treatment process.
  • a probe anomaly identification method for a device containing a plurality of probes comprising:
  • the device is heated to a preset temperature and an abnormal probe is identified from a plurality of the probes.
  • a probe anomaly identification device for a device including a plurality of probes, the device comprising:
  • a data processing module configured to obtain the current temperature data of the plurality of probes, and calculate the temperature difference between the current temperature data in pairs;
  • Abnormal preliminary judgment module used for comparing the size of the temperature difference and the preset temperature difference, if the temperature difference exceeds the preset temperature difference, determine that at least one of the probes is abnormal ;
  • An abnormality determination module configured to heat the device to a preset temperature, and determine abnormal probes from a plurality of the probes.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements any one of the above probe abnormality identification methods.
  • an electronic device comprising:
  • a memory for storing executable instructions for the processor
  • the processor is configured to execute the probe abnormality identification method described in any one of the above by executing the executable instruction.
  • the temperature difference between the current temperature data is calculated; and the temperature difference is compared with The size of the preset temperature difference, if the temperature difference exceeds the preset temperature difference, it is determined that at least one of the plurality of probes is abnormal; the device is heated to a preset temperature, from the plurality of probes Abnormal probes were identified in the probes.
  • the abnormal probe can be determined by heating the equipment to a preset temperature, so as to facilitate the timely maintenance or replacement of the abnormal probe, and reduce the equipment cost. The probability of abnormality of the probe during processing improves the process yield of the equipment.
  • the probe abnormality identification method provided by the exemplary embodiment of the present disclosure can not only be used for the probe abnormality identification during the process of the equipment, but also can be used for the probe abnormality identification when the equipment is in an idle state, so as to Ensure that the probe is in normal working condition during the process of the heat treatment equipment, and improve the process yield of the heat treatment equipment.
  • Fig. 1 schematically shows a temperature control schematic diagram of a heat treatment equipment
  • FIG. 2 schematically shows a flow chart of a method for identifying probe anomalies according to an exemplary embodiment of the present disclosure
  • FIG. 3 schematically shows a schematic diagram of a black body radiation curve
  • FIG. 4 schematically shows a schematic flowchart of a probe abnormality identification process provided according to an exemplary embodiment of the present disclosure
  • FIG. 5 schematically shows a schematic flowchart of a probe damage judgment process provided according to an exemplary embodiment of the present disclosure
  • FIG. 6 schematically shows a schematic interface diagram of a probe anomaly identification system according to an exemplary embodiment of the present disclosure
  • FIG. 7 schematically shows a block diagram of a probe abnormality identification device according to an exemplary embodiment of the present disclosure
  • FIG. 8 is a schematic block diagram of an electronic device in an exemplary embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a program product in an exemplary embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments can be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the same reference numerals in the drawings denote the same or similar structures, and thus their detailed descriptions will be omitted.
  • heat treatment equipment to heat treat the processed raw material wafers.
  • a high-temperature process tool to thermally process the wafer.
  • a plurality of probes are usually provided in the heat treatment equipment. Through the temperature read by the probe, the temperature inside the heat treatment equipment can be fed back to provide a reference for the heat treatment equipment to control and adjust its internal temperature.
  • the heat treatment apparatus 100 includes a controller 101 , a heater lamp driver 102 , a plurality of heater lamps 103 and a plurality of probes 104 .
  • the controller 101 is used to obtain heating instructions and control the heater lamp driver 102 to work.
  • the heater lamp driver 102 is used to control a plurality of heater lamps 103 to work.
  • the temperature inside the heat treatment device 100 will change.
  • the plurality of probes 104 will read the temperature inside the heat treatment device 100 and feed it back to the controller 101.
  • the controller 101 determines whether it is necessary to continue to control the heating lamp driver 102 to work to ensure that The temperature inside the heat treatment apparatus 100 reaches a predetermined temperature.
  • the controller 101 needs to acquire the temperature of the probe 104 in real time. If the reading temperature of the probe 104 drops, the controller 101 will determine the output power of the heating lamp driver 102 according to the magnitude of the dropped reading temperature, so as to control the plurality of heating lamps 103 to work and restore the temperature inside the heat treatment device 100 to the required temperature . Therefore, if the reading temperature of the probe 104 is abnormal, the controller 101 will still control the heating lamp driver 102 according to the abnormal reading temperature, so that the temperature inside the heat treatment apparatus 100 is not the actual temperature. Even the temperature inside the heat treatment equipment 100 is much higher than the required temperature, resulting in wafer breakage.
  • the exemplary embodiment of the present disclosure provides a probe abnormality identification method, which can be used not only for the probe abnormality identification of the heat treatment equipment during the process, but also for the probe abnormality when the heat treatment equipment is in an idle state. Identification, to ensure that the probe is in normal working condition during the process of the heat treatment equipment, and to improve the process yield of the heat treatment equipment.
  • the probe abnormality identification method may include the following steps:
  • Step S210 Acquire the current temperature data of a plurality of the probes, and calculate the temperature difference between the current temperature data in pairs.
  • Step S220 comparing the temperature difference with a preset temperature difference, and if the temperature difference exceeds the preset temperature difference, it is determined that at least one of the probes is abnormal.
  • Step S230 heating the device to a preset temperature, and determining an abnormal probe from the plurality of probes.
  • the probe abnormality identification method on the one hand, by calculating the temperature difference between the current temperature data of the two probes, and comparing the temperature difference with the preset temperature difference, when the temperature difference exceeds the preset temperature difference
  • the temperature difference is set, it can be determined that at least one of the probes is abnormal, that is, it can be preliminarily determined that the probe is abnormal, so as to provide a basis for subsequent work.
  • the abnormal probe can be determined by heating the equipment to a preset temperature, so as to facilitate the timely maintenance or replacement of the abnormal probe, and reduce the equipment cost. The probability of abnormality of the probe during processing improves the process yield of the equipment.
  • the probe abnormality identification method in this exemplary embodiment will be further described. It should be noted that the probe abnormality identification method may be executed by the controller 101 .
  • step S210 the current temperature data of a plurality of the probes are acquired, and the temperature difference between the current temperature data of each pair is calculated.
  • equipment for high-temperature heat treatment is usually provided with two or more probes, which are set at different positions to monitor the temperature inside the equipment in real time.
  • calculating the temperature difference value of the current temperature data of the pair of probes may include calculating the temperature difference value between the pair of probes in the plurality of probes, so as to improve the detection of possible abnormality The accuracy of the initial judgment of the needle.
  • current temperature data of multiple probes may be acquired at preset time intervals, and the current temperature data is temperature data of multiple probes at the same time. That is to say, the current temperature data of the two probes performing the temperature difference calculation are the temperature data at the same time.
  • step S220 the magnitude of the temperature difference is compared with a preset temperature difference, and if the temperature difference exceeds the preset temperature difference, it is determined that at least one of the probes is abnormal.
  • the temperature difference between the plurality of probes 104 will not be too large. Usually between 2 and 5 degrees Celsius. If the temperature difference between the two probes 104 is too large, it means that at least one of the two probes 104 is abnormal.
  • the two probes can be determined At least one of the probes 104 in 104 has an abnormality; and then combined with the comparison results of the temperature difference between the other two probes 104 and the preset temperature difference, it is further determined that the probes 104 may have abnormality The number of 104.
  • the temperature difference exceeds the preset temperature difference, it can be determined that at least one of the probes 104 is abnormal. At this time, it is necessary to turn off the power supply of the reaction chamber in the heat treatment equipment, and send an alarm message to prompt the staff to carry out the equipment. Further diagnosis and repair.
  • the size of the preset temperature difference can be set according to the actual situation, for example, 20 degrees Celsius, 30 degrees Celsius, and the like.
  • the preset temperature difference may be any value between 20 and 50 degrees Celsius.
  • the probe abnormality identification method can be implemented when the device is in an idle state before the process, thereby reducing the probability of probe abnormalities during the process of the device and improving the process yield of the device.
  • step S230 the device is heated to a preset temperature, and an abnormal probe is determined from a plurality of the probes.
  • steps S210 and S220 After it is determined through steps S210 and S220 that at least one probe is abnormal, it is necessary to determine the specific abnormal probe, including the probe that may be damaged, so that the staff can repair or replace the abnormal probe according to the actual situation. .
  • step S230 may be further performed only on the probes that may be abnormal determined in step S220, or the judgment of step S230 may be performed on all probes in the device to ensure that the possible abnormality can be detected. All probes were detected.
  • This exemplary embodiment is described by taking the detection of multiple probes in the device as an example.
  • the device is heated to the first sub-preset temperature, and the first temperature data of the plurality of probes are acquired; wherein, heating the device to the first sub-preset temperature can be performed by sending the device to the controller 101 in the heat treatment device 100 The instruction for heating to the first sub-preset temperature.
  • the controller 101 will control the heating lamp driver 102 to work at the required power to ensure that the plurality of heating lamps 103 heat the inside of the device to the first sub-preset temperature. temperature.
  • the probes are measured by radiant light, therefore, the abnormality of the probes can be judged in combination with the radiation density of the black body. That is, after the device is heated to the first sub-preset temperature, according to the first temperature data read by multiple probes, combined with the formula of black body radiation density:
  • h Planck's constant
  • c the speed of light
  • k the Boltzmann's constant
  • wavelength
  • T temperature
  • the corresponding wavelength ⁇ T1 can be obtained through the first temperature data T 1 .
  • the first radiation density ⁇ ( ⁇ 1 ) of the probe corresponding to the first temperature data T 1 can be obtained ; that is, according to the first temperature data and the black body radiation density formula, the first radiation density ⁇ ( ⁇ 1 ) corresponding to the reading temperature of the probe can be calculated.
  • the first preset black body radiation density ⁇ 1 corresponding to the first sub-preset temperature can be determined according to the black body radiation curve shown in FIG. 3 .
  • both the first sub-preset temperature and the first preset density difference range can be determined according to actual needs.
  • the first preset density difference value range may be -50 ⁇ 50 Joules/(m3 ⁇ Hertz). If the first density difference ⁇ 1 is outside -50 to 50 joules/(m3 ⁇ Hertz), it is determined that the probe is damaged. At this time, the prompt information of the number of damaged probes can be sent to facilitate the staff. Probe for repair or replacement.
  • the probe can be re-measured.
  • the device is heated to the second sub-preset temperature, and the second temperature data T 2 of the plurality of probes is obtained; the corresponding wavelength ⁇ T2 is obtained through the second temperature data T 2 .
  • the second radiation density ⁇ ( ⁇ 2 ) of the probe corresponding to the second temperature data T 2 can be obtained ; That is, according to the second temperature data and the black body radiation density formula, the second radiation density ⁇ ( ⁇ 2 ) corresponding to the reading temperature of the probe can be calculated.
  • the second preset black body radiation density ⁇ 2 corresponding to the second sub-preset temperature can be determined according to the black body radiation curve shown in FIG. 3 .
  • both the second sub-preset temperature and the second preset density difference range can be determined according to actual needs.
  • the second preset density difference range may also be -50 to 50 Joules/(m3 ⁇ Hertz). If the second density difference ⁇ 2 is outside -50 to 50 joules/(m3 ⁇ Hertz), it is determined that the probe is damaged. At this time, the prompt information of the number of damaged probes can be sent to facilitate the staff to The probe needs to be serviced or replaced.
  • the probe is determined to be normal probe.
  • the device is usually heated to different temperatures, and the probes are detected and judged twice, which is beneficial to detect all probes that may be abnormal and improve the accuracy of the judgment.
  • the above-mentioned detection and judgment may be performed on the probe twice, or more than two detection judgments may be performed, or only one detection and judgment may be performed.
  • This exemplary embodiment does not specifically limit this.
  • step S410 current temperature data of a plurality of probes are obtained; after the temperature data is obtained , enter step S420, calculate the temperature difference between two probes; then, step S430, enter judgment condition 1, judge whether the temperature difference exceeds the preset temperature difference; Proceed to acquire current temperature data for the probe.
  • step S440 is executed, the device is offline and an alarm message is sent; at the same time, step S450 is executed, and judgment condition 2 is entered to judge whether the probe is damaged; if the judgment condition 2 is met , then go to step S460, send the information of which probe is damaged, and notify the staff to check or replace the probe in time; if the judgment condition 2 is not satisfied, go to step S470, send the information that the probe is normal, and remind the staff to check or replace the probe in time; Check other possible situations; then end.
  • step S510 the device is heated to the first sub-preset temperature; step S520, calculate the first radiation density ⁇ ( ⁇ 1 ) corresponding to the reading temperature of the probe; step S530, enter judgment condition 3, judge whether ⁇ ( ⁇ 1 ) exceeds the first preset density difference range; if If yes, go to step S540 to send the probe damage information; if no, go to step S550 to heat up the device to the second sub-preset temperature; then go to step S560 to calculate the second radiation corresponding to the reading temperature of the probe Density ⁇ ( ⁇ 2 ); Step S570, enter judgment condition 4, and judge whether ⁇ ( ⁇ 2 ) exceeds the second preset density difference range; if so, execute step S580 to send the information of probe damage; if not, Then step S590 is executed, and the information that the probe is normal is sent.
  • FIG. 6 a schematic interface diagram of a probe abnormality identification system according to the present exemplary embodiment is shown.
  • a certain preset temperature difference can be set as the alarm value in the interface 600, for example, 12 degrees Celsius; by clicking the query button 610 on the interface, the current temperature data of the probe can be manually queried once and displayed in the On the interface; by clicking the automatic query button 620 on the interface, the acquired temperature and the comparison result can be automatically displayed at preset time intervals; after the system runs the data analysis and judgment, if the temperature difference exceeds the preset temperature difference, it can be displayed on the interface
  • a prompt message is displayed in the prompt box 630, indicating that a certain probe is abnormal. For example, the probe 4 etc. with a large data difference are displayed.
  • the present exemplary embodiment does not specifically limit the specific content of the prompt information.
  • the specific operation process may be manually controlled by staff, or may be automatically controlled and executed by a program, which is not particularly limited in this exemplary embodiment.
  • the probe abnormality identification method on the basis of determining that the probe may be abnormal by comparing the temperature difference between the probes, by heating the probe to a preset temperature, Then the corresponding blackbody radiation density judgment is carried out. Compared with judging the damage of the probe only by the temperature, the damage of the probe is judged by the blackbody radiation density, and the influence of temperature and wavelength on the performance of the probe is comprehensively considered. Judge the damage of the probe. Therefore, the accuracy of the judgment is higher and the result is more reliable.
  • a probe abnormality identification device is also provided, which is used in a device including a plurality of probes.
  • the probe abnormality identification device 700 may include: a data processing module 710, a preliminary abnormality judgment module 720, and an abnormality determination module 730, wherein:
  • the data processing module 710 can be used to obtain the current temperature data of the plurality of probes, and calculate the temperature difference between the current temperature data in pairs;
  • the abnormality preliminary judgment module 720 can be used to compare the size of the temperature difference with a preset temperature difference, and if the temperature difference exceeds the preset temperature difference, determine at least one of the probes Abnormal;
  • the abnormality determination module 730 may be used to heat the device to a preset temperature, and determine abnormal probes from a plurality of the probes.
  • an electronic device capable of implementing the above method is also provided.
  • aspects of the present application may be implemented as a system, method or program product. Therefore, various aspects of the present application can be embodied in the following forms, namely: a complete hardware implementation, a complete software implementation (including firmware, microcode, etc.), or a combination of hardware and software aspects, which may be collectively referred to herein as implementations "circuit", “module” or "system”.
  • the electronic device 800 according to this embodiment of the present application is described below with reference to FIG. 8 .
  • the electronic device 800 shown in FIG. 8 is only an example, and should not impose any limitations on the functions and scope of use of the embodiments of the present application.
  • electronic device 800 takes the form of a general-purpose computing device.
  • the components of the electronic device 800 may include, but are not limited to: the above-mentioned at least one processing unit 810, the above-mentioned at least one storage unit 820, a bus 830 connecting different system components (including the storage unit 820 and the processing unit 810), and a display unit 840.
  • the storage unit 820 stores program codes, and the program codes can be executed by the processing unit 810, so that the processing unit 810 executes the various examples according to the present application described in the above-mentioned “Exemplary Methods” section of this specification steps of sexual implementation.
  • the processing unit 810 may execute step S210 as shown in FIG.
  • step S220 compare The size of the temperature difference and the preset temperature difference, if the temperature difference exceeds the preset temperature difference, it is determined that at least one of the probes is abnormal; step S230, the device Heating to a preset temperature, an abnormal probe is determined from a plurality of the probes.
  • the storage unit 820 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 8201 and/or a cache storage unit 8202 , and may further include a read only storage unit (ROM) 8203 .
  • RAM random access storage unit
  • ROM read only storage unit
  • the storage unit 820 may also include a program/utility 8204 having a set (at least one) of program modules 8205 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, An implementation of a network environment may be included in each or some combination of these examples.
  • the bus 830 may be representative of one or more of several types of bus structures, including a memory cell bus or memory cell controller, a peripheral bus, a graphics acceleration port, a processing unit, or a local area using any of a variety of bus structures bus.
  • the electronic device 800 may also communicate with one or more external devices 870 (eg, keyboards, pointing devices, Bluetooth devices, etc.), with one or more devices that enable a user to interact with the electronic device 800, and/or with Any device (eg, router, modem, etc.) that enables the electronic device 800 to communicate with one or more other computing devices. Such communication may take place through input/output (I/O) interface 850 . Also, the electronic device 800 may communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet) through a network adapter 860 . As shown, network adapter 860 communicates with other modules of electronic device 800 via bus 830 . It should be understood that, although not shown, other hardware and/or software modules may be used in conjunction with electronic device 800, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives and data backup storage systems.
  • the exemplary embodiments described herein may be implemented by software, or may be implemented by software combined with necessary hardware. Therefore, the technical solutions according to the embodiments of the present disclosure may be embodied in the form of software products, and the software products may be stored in a non-volatile storage medium (which may be CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to cause a computing device (which may be a personal computer, a server, a terminal device, or a network device, etc.) to execute the method according to an embodiment of the present disclosure.
  • a computing device which may be a personal computer, a server, a terminal device, or a network device, etc.
  • a computer-readable storage medium on which a program product capable of implementing the above-described method of the present specification is stored.
  • various aspects of the present application can also be implemented in the form of a program product, which includes program code, which is used to cause the program product to run on a terminal device when the program product is executed.
  • the terminal device performs the steps according to various exemplary embodiments of the present application described in the above-mentioned "Example Method" section of this specification.
  • a program product 900 for implementing the above method according to an embodiment of the present application is described, which can adopt a portable compact disk read only memory (CD-ROM) and include program codes, and can be used in a terminal device, For example running on a personal computer.
  • CD-ROM portable compact disk read only memory
  • the program product of the present application is not limited thereto, and in this document, a readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • the program product may employ any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples (non-exhaustive list) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
  • a computer readable signal medium may include a propagated data signal in baseband or as part of a carrier wave with readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a readable signal medium can also be any readable medium, other than a readable storage medium, that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
  • Program code embodied on a readable medium may be transmitted using any suitable medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Program code for carrying out the operations of the present application may be written in any combination of one or more programming languages, including object-oriented programming languages—such as Java, C++, etc., as well as conventional procedural Programming Language - such as the "C" language or similar programming language.
  • the program code may execute entirely on the user computing device, partly on the user device, as a stand-alone software package, partly on the user computing device and partly on a remote computing device, or entirely on the remote computing device or server execute on.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (eg, using an Internet service provider business via an Internet connection).
  • LAN local area network
  • WAN wide area network

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

一种探针异常识别方法及装置、存储介质和电子设备,涉及集成电路技术领域。该探针异常识别方法包括:获取多个探针的当前温度数据,计算两两当前温度数据之间的温度差值(S210);比较温度差值与预设温差的大小,如果温度差值超过预设温差,则确定多个探针中至少一个探针出现异常(S220);将设备加热到预设温度,从多个探针中确定出异常探针(S230)。不仅可以用于设备在制程过程中的探针异常识别,还可以用于设备处于空闲状态时的探针异常识别,以确保热处理设备在制程过程中,探针处于正常工作状态,提高热处理设备的制程良率。

Description

探针异常识别方法及装置、存储介质和电子设备
相关申请的交叉引用
本公开要求于2020年11月17日提交的申请号为202011287319.9名称为“探针异常识别方法及装置、存储介质和电子设备”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及集成电路技术领域,尤其涉及一种探针异常识别方法及装置、存储介质和电子设备。
背景技术
半导体存储器件在生产加工过程中,通常会用到热处理设备。上述热处理设备通过设置多个探针,以对热处理的过程中的温度进行监控,确保热处理过程的顺利进行。
在热处理制程过程中,如果探针的读温异常,会导致热处理设备内部的温度达不到预设温度,而在温度过高时,很可能导致半导体存储器件的原材料晶圆发生形变而损坏。
因此,需要一种探针异常的识别方法,以在热处理设备处于空闲状态的时候,即可对探针的异常状态做出判断,以确保热处理过程中探针处于正常工作状态。
发明内容
根据本公开的一方面,提供一种探针异常识别方法,用于包含多个探针的设备,所述方法包括:
获取所述多个探针的当前温度数据,计算两两所述当前温度数据之间的温度差值;
比较所述温度差值与预设温差的大小,如果所述温度差值超过所述预设温差,则确定多个所述探针中至少一个所述探针出现异常;
将所述设备加热到预设温度,从多个所述探针中确定出异常探针。
根据本公开的一方面,提供一种探针异常识别装置,用于包含多个探针的设备,所述装置包括:
数据处理模块,用于获取所述多个探针的当前温度数据,计算两两所述当前温度数据之间的温度差值;
异常初步判断模块,用于比较所述温度差值与预设温差的大小,如果所述温度差值超过所述预设温差,则确定多个所述探针中至少一个所述探针出现异常;
异常确定模块,用于将所述设备加热到预设温度,从多个所述探针中确定出异常探针。
根据本公开的一方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任意一项所述的探针异常识别方法。
根据本公开的一方面,提供一种电子设备,包括:
处理器;以及
存储器,用于存储所述处理器的可执行指令;
其中,所述处理器配置为经由执行所述可执行指令来执行上述中任意一项所述的探针异常识别方法。
本公开提供的技术方案可以包括以下有益效果:
本公开的示例性实施例中的探针异常识别方法和装置,通过获取多个所述探针的当前温度数据,计算两两所述当前温度数据的温度差值;比较所述温度差值与预设温差的大小,如果所述温度差值超过所述预设温差,则确定多个所述探针中至少一个所述探针出现异常;将所述设备加热到预设温度,从多个所述探针中确定出异常探针。一方面,通过计算任一两个探针的当前温度数据的温度差值,并将温度差值与预设温差进行比较,在温度差值超过预设温差时,即可确定多个探针中至少一个探针出现异常,也就是说,可以初步判断出探针存在异常的情况,以便于为后续工作提供依据。另一方面,在初步判断出探针存在异常的情况之后,可以通过将设备加热到预设温度来确定发生异常的探针,从而便于对该异常探针及时进行维修或者更换,减小设备在加工过程中探针出现异常的概率,提高设备的制程良率。再一方面,本公开的示例性实施方式提供的探针异常识别方法,不仅可以用于设备在制程过程中的探针异常识别,还可以用于设备处于空闲状态时的探针异常识别,以确保热处理设备在制程过程中,探针处于正常工作状态,提高热处理设备的制程良率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性示出了一种热处理设备的温度控制示意图;
图2示意性示出了根据本公开的示例性实施方式的一种探针异常识别方法的流程图;
图3示意性示出了一种黑体辐射曲线示意图;
图4示意性示出了根据本公开的示例性实施方式提供的探针异常识别过程的流程示意图;
图5示意性示出了根据本公开的示例性实施方式提供的探针损坏判断过程的流程示意图;
图6示意性示出了根据本公开的示例性实施方式的一种探针异常识别系统的界面示 意图;
图7示意性示出了根据本公开的示例性实施方式的探针异常识别装置的方框图;
图8为本公开示一示例性实施例中的电子设备的模块示意图;
图9为本公开示一示例性实施例中的程序产品示意图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本公开将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。其他相对性的用语,例如“高”“低”“顶”“底”“左”“右”等也作具有类似含义。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“所述”用以表示存在一个或多个要素/组成区分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成区分/等之外还可存在另外的要素/组成区分/等。
在半导体集成电路设备的生产加工过程中,通常需要使用热处理设备对加工原材料晶圆进行热处理。例如,在镀膜过程中,需要使用高温制程机台对晶圆进行热加工处理等。为了对热处理过程中的温度进行监控,通常会在热处理设备中设置多个探针。通过探针所读取的温度,可以反馈热处理设备内部的温度,以为热处理设备对其内部温度的控制调节提供参考依据。
参照图1,示出了一种热处理设备的温度控制示意图。如图1所示,该热处理设备100包括控制器101、加热灯驱动器102、多个加热灯103和多个探针104。其中,控制器101用于获取加热指令,并控制加热灯驱动器102工作,加热灯驱动器102用于控制多个加热灯103工作,加热灯103工作后,热处理设备100内部的温度会发生变化。此时,多个探针104会读取到热处理设备100内部的温度,并反馈给控制器101,控制器101在获取到反馈的温度后,判断是否需要继续控制加热灯驱动器102工作,以确保热处理设备100内部的温度达到预定温度。
在热处理设备100的整个工作过程中,控制器101需要实时获取探针104的温度。如果探针104的读温下降,控制器101会根据下降的读温的大小确定加热灯驱动器102的输出功率,以控制多个加热灯103工作,将热处理设备100内部的温度恢复到需要的温度。 因此,如果探针104的读温出现异常,控制器101依然会根据异常的读温来控制加热灯驱动器102,从而导致热处理设备100内部的温度并不是实际需要的温度。甚至于出现热处理设备100内部的温度远远高出需求温度,导致晶圆破碎的情况发生。
为此,本公开的示例性实施方式提供了一种探针异常识别方法,不仅可以用于热处理设备在制程过程中的探针异常识别,还可以用于热处理设备处于空闲状态时的探针异常识别,以确保热处理设备在制程过程中,探针处于正常工作状态,提高热处理设备的制程良率。
参照图2,示出了根据本公开的示例性实施方式的一种探针异常识别方法的流程图。如图2所示,该探针异常识别方法可以包括以下步骤:
步骤S210,获取多个所述探针的当前温度数据,计算两两所述当前温度数据之间的温度差值。
步骤S220,比较所述温度差值与预设温差的大小,如果所述温度差值超过所述预设温差,则确定多个所述探针中至少一个所述探针出现异常。
步骤S230,将所述设备加热到预设温度,从多个所述探针中确定出异常探针。
根据本示例性实施方式中的探针异常识别方法,一方面,通过计算两两探针的当前温度数据的温度差值,并将温度差值与预设温差进行比较,在温度差值超过预设温差时,即可确定多个探针中至少一个探针出现异常,也就是说,可以初步判断出探针存在异常的情况,以便于为后续工作提供依据。另一方面,在初步判断出探针存在异常的情况之后,可以通过将设备加热到预设温度来确定发生异常的探针,从而便于对该异常探针及时进行维修或者更换,减小设备在加工过程中探针出现异常的概率,提高设备的制程良率。
下面,将对本示例性实施方式中的探针异常识别方法进行进一步的说明,需要说明的是,该探针异常识别方法可以由控制器101来执行。
在步骤S210中,获取多个所述探针的当前温度数据,计算两两所述当前温度数据的温度差值。
在实际应用中,对于进行高温热处理的设备,通常设置有两个或两个以上的多个探针,通过多个探针设置在不同的位置,以对设备内部的温度进行实时监控。
在本示例性实施方式中,计算两两探针的当前温度数据的温度差值可以包括,计算多个探针中的两两探针之间的温度差值,以提高对可能出现异常的探针初步判断的精度。
在实际应用中,可以按照预设时间间隔来获取多个探针的当前温度数据,且该当前温度数据为多个探针在同一时刻的温度数据。也就是说,进行温度差值计算的两个探针的当前温度数据为同一时刻的温度数据。
在步骤S220中,比较所述温度差值与预设温差的大小,如果所述温度差值超过所述预设温差,则确定多个所述探针中至少一个所述探针出现异常。
对于对半导体存储器件的原材料晶圆进行热处理的设备而言,由于其内部采用的是多个加热灯103的光源直接照射的方式,因此,多个探针104之间的温差不会太大,一般在 2~5摄氏度之间。如果两个探针104之间的温差过大,则说明两个探针104中至少有一个探针104发生了异常。
本示例性实施方式中,通过将两个探针104之间的当前温度数据的温度差值与预设温差的大小进行比较,如果温度差值超过预设温差,则可以确定这两个探针104中至少有一个探针104发生了异常;再结合其他的两两探针104之间的温度差值与预设温差的比较结果,进一步确定出多个探针104中可能出现异常的探针104的个数。
如果有温度差值超过预设温差,则可以确定多个探针104中至少有一个出现异常,此时,就需要关闭热处理设备中反应室的电源,并发送报警信息以提示工作人员对设备进行进一步地诊断和维修。
在实际应用中,预设温差的大小可以根据实际情况设置,例如,20摄氏度、30摄氏度等。本示例性实施方式中,对于对半导体存储器件的原材料晶圆进行热处理的设备而言,预设温差可以为20~50摄氏度之间的任一值。
本示例性实施方式中,通过将温度差值与预设温差进行比较,在温度差值超过预设温差时,即可确定多个探针中至少一个探针出现异常,也就是说,可以初步判断出探针存在异常的情况,以便于工作人员及时采取措施。并且,本示例性实施方式提供的探针异常识别方法可以在设备进行制程之前空闲状态的时候实施,从而可以减小设备在加工过程中探针出现异常的概率,提高设备的制程良率。
在步骤S230中,将所述设备加热到预设温度,从多个所述探针中确定出异常探针。
在通过步骤S210和步骤S220确定出至少有一个探针出现异常的情况之后,需要确定出具体出现异常的探针,包括可能损坏的探针,以便于工作人员根据实际情况维修或者更换异常探针。
在实际应用中,可以只对由步骤S220确定出的可能出现异常的探针进一步进行步骤S230的判断,也可以对设备中的所有探针都进行步骤S230的判断,以确保可以将可能出现异常的探针全部检测出来。
本示例性实施方式以对设备中的多个探针都进行检测为例进行说明。首先,将设备加热到第一子预设温度,获取多个探针的第一温度数据;其中,将设备加热到第一子预设温度可以通过向热处理设备100中的控制器101发送将设备加热到第一子预设温度的指令,控制器101在接收到指令后,会控制加热灯驱动器102工作在需要的功率下,以确保多个加热灯103将设备内部加热到第一子预设温度。
由于上述热处理设备100中,探针是通过辐射光测温的,因此,可以结合黑体辐射密度对探针进行异常判断。即,在设备被加热到第一子预设温度后,根据多个探针读取的第一温度数据,结合黑体辐射密度公式:
Figure PCTCN2021105301-appb-000001
其中,h是普朗克常数,c是光速,k是玻尔兹曼常数,λ是波长,T是温度。
根据维恩位移定律,可以通过第一温度数据T 1获得对应的波长λ T1。将读取的第一温度数据T 1作为T值,将λ T1作为λ值代入到公式(1)中,可以得到第一温度数据T 1对应的探针的第一辐射密度ρ(λ 1);即根据第一温度数据和黑体辐射密度公式,可以计算出探针的读温对应的第一辐射密度ρ(λ 1)。
根据图3所示的黑体辐射曲线可以确定出第一子预设温度对应的第一预设黑体辐射密度ρ 1。例如,第一子预设温度为800摄氏度的时候,在其对应波长λ 1为2.2μm的情况下,从黑体辐射曲线中可以确定出第一预设黑体辐射密度为ρ 1=200焦耳/(立方米·赫兹)。
计算第一辐射密度ρ(λ 1)与第一预设黑体辐射密度ρ 1的第一密度差值Δρ 1,如果第一密度差值Δρ 1超过第一预设密度差值范围,则确定该探针为异常探针,且存在损坏的情况。
在实际应用中,第一子预设温度和第一预设密度差值范围均可以根据实际需要确定。例如,在第一子预设温度为800摄氏度的情况下,第一预设密度差值范围可以是-50~50焦耳/(立方米·赫兹)。如果第一密度差值Δρ 1在-50~50焦耳/(立方米·赫兹)之外,则确定探针损坏,此时可以发送第几个探针损坏的提示信息,以便于工作人员对该探针进行检修或更换。
如果第一密度差值Δρ 1未超过第一预设密度差值范围,即第一密度差值Δρ 1在-50~50焦耳/(立方米·赫兹)之间,则可以对探针再进行一次检测,将设备加热到第二子预设温度,获取多个探针的第二温度数据T 2;通过第二温度数据T 2获得对应的波长λ T2。将读取的第二温度数据T 2作为T值,将λ T2作为λ值代入到公式(1)中,可以得到第二温度数据T 2对应的探针的第二辐射密度ρ(λ 2);即根据第二温度数据和黑体辐射密度公式,可以计算出探针的读温对应的第二辐射密度ρ(λ 2)。
根据图3所示的黑体辐射曲线可以确定出第二子预设温度对应的第二预设黑体辐射密度ρ 2。例如,第二子预设温度为1200摄氏度的时候,在其对应波长λ 2为1.4μm的情况下,从黑体辐射曲线中可以确定出第一预设黑体辐射密度为ρ 2=800焦耳/(立方米·赫兹)。
计算第二辐射密度ρ(λ 2)与第二预设黑体辐射密度ρ 2的第二密度差值Δρ 2,如果第二密度差值Δρ 2超过第二预设密度差值范围,则确定探针为异常探针。
在实际应用中,第二子预设温度和第二预设密度差值范围均可以根据实际需要确定。例如,在第二子预设温度为1200摄氏度的情况下,第二预设密度差值范围也可以是-50~50焦耳/(立方米·赫兹)。如果第二密度差值Δρ 2在-50~50焦耳/(立方米·赫兹)之外,则确定该探针损坏,此时可以发送第几个探针损坏的提示信息,以便于工作人员对该探针 进行检修或更换。
如果第二密度差值Δρ 2未超过第二预设密度差值范围,即第二密度差值Δρ 2在-50~50焦耳/(立方米·赫兹)之间,则确定该探针为正常探针。
本示例性实施方式中,通常将设备升温到不同的温度,对探针进行两次检测判断,有利于将可能出现异常的探针全部检测出来,提高判断的精确度。
在实际应用中,可以对探针进行上述两次检测判断,也可以进行两次以上的检测判断,或者也可以只进行一次检测判断。本示例性实施方式对此不作特殊限定。
参照图4中,示出了本示例性实施方式的一种探针异常识别过程的流程示意图;如图4所示,步骤S410,获取多个探针的当前温度数据;在获取到温度数据后,进入步骤S420,计算两两探针的温度差值;接着,步骤S430,进入判断条件1,判断温度差值是否超过预设温差;如果否,即不满足判断条件1,则执行步骤S410,继续获取探针的当前温度数据。如果是,即满足判断条件1,则确定有探针异常,执行步骤S440,将设备离线并发送报警信息;同时,执行步骤S450,进入判断条件2,判断探针是否损坏;如果满足判断条件2,则执行步骤S460,发送第几个探针损坏的信息,通知工作人员及时对探针检查或更换;如果不满足判断条件2,则执行步骤S470,发送探针正常的信息,提示工作人员对其他可能的情况进行排查;再结束。
在执行步骤S450的过程中,参照图5,示出了本示例性实施方式的提供的探针损坏判断过程的流程示意图;如图5所示,步骤S510,将设备升温到第一子预设温度;步骤S520,计算出探针的读温对应的第一辐射密度ρ(λ 1);步骤S530,进入判断条件3,判断ρ(λ 1)是否超过第一预设密度差值范围;如果是,则执行步骤S540,发送探针损坏的信息;如果否,则执行步骤S550,将设备升温到第二子预设温度;接着,步骤S560,计算出探针的读温对应的第二辐射密度ρ(λ 2);步骤S570,进入判断条件4,判断ρ(λ 2)是否超过第二预设密度差值范围;如果是,则执行步骤S580,发送探针损坏的信息;如果否,则执行步骤S590,发送探针正常的信息。
参照图6中,示出了本示例性实施方式的一种探针异常识别系统的界面示意图。如图6所示,界面600中可以设置一个确定的预设温差作为警报数值,例如,12摄氏度;通过点击界面上的查询按钮610,可以单次手动查询探针的当前温度数据,并显示在界面上;通过点击界面上的自动查询按钮620,可以间隔预设时间自动显示获取的温度和比较结果;在系统运行完数据分析判断后,如果有温度差值超过预设温差,则可以在界面提示框630中显示提示信息,提示某一个探针有异常。例如,显示有数据差值大的探针4等。本示例性实施方式对于提示信息的具体内容不作特殊限定。
在发送可能有异常探针的信息之后,需要提示工作人员进行检查,并控制设备加热到不同的温度等。具体的操作过程可以是工作人员手动来控制,也可以是由程序自动控制执行,本示例性实施方式对此不作特殊限定。
综上所述,本示例性实施方式提供的探针异常识别方法,在通过探针之间的温度差值比较确定出探针可能出现异常的基础上,通过对探针加热到预设温度,再进行相应的黑体辐射密度判断,相比于仅仅通过温度来判断探针的损坏,通过黑体辐射密度来判断探针的损坏,综合考虑了温度和波长对探针性能的影响,可以从原理上对探针的损坏进行判断。因此,判断的精度更高,结果更可靠。
需要说明的是,尽管在附图中以特定顺序描述了本申请中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
此外,在本示例实施例中,还提供了一种探针异常识别装置,用于包含多个探针的设备。参考图7,该探针异常识别装置700可以包括:数据处理模块710、异常初步判断模块720、异常确定模块730,其中:
数据处理模块710,可以用于获取所述多个探针的当前温度数据,计算两两所述当前温度数据之间的温度差值;
异常初步判断模块720,可以用于比较所述温度差值与预设温差的大小,如果所述温度差值超过所述预设温差,则确定多个所述探针中至少一个所述探针出现异常;
异常确定模块730,可以用于将所述设备加热到预设温度,从多个所述探针中确定出异常探针。
上述中各探针异常识别装置的虚拟模块的具体细节已经在对应的探针异常识别方法中进行了详细的描述,因此此处不再赘述。
应当注意,尽管在上文详细描述中提及了探针异常识别装置的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
此外,上述附图仅是根据本申请示例性实施例的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。
在本公开的示例性实施例中,还提供了一种能够实现上述方法的电子设备。
所属技术领域的技术人员能够理解,本申请的各个方面可以实现为系统、方法或程序产品。因此,本申请的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。
下面参照图8来描述根据本申请的这种实施方式的电子设备800。图8显示的电子设备800仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图8所示,电子设备800以通用计算设备的形式表现。电子设备800的组件可以包 括但不限于:上述至少一个处理单元810、上述至少一个存储单元820、连接不同系统组件(包括存储单元820和处理单元810)的总线830、显示单元840。
其中,所述存储单元820存储有程序代码,所述程序代码可以被所述处理单元810执行,使得所述处理单元810执行本说明书上述“示例性方法”部分中描述的根据本申请各种示例性实施方式的步骤。例如,所述处理单元810可以执行如图2中所示的步骤S210,获取多个所述探针的当前温度数据,计算两两所述当前温度数据之间的温度差值;步骤S220,比较所述温度差值与预设温差的大小,如果所述温度差值超过所述预设温差,则确定多个所述探针中至少一个所述探针出现异常;步骤S230,将所述设备加热到预设温度,从多个所述探针中确定出异常探针。
存储单元820可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)8201和/或高速缓存存储单元8202,还可以进一步包括只读存储单元(ROM)8203。
存储单元820还可以包括具有一组(至少一个)程序模块8205的程序/实用工具8204,这样的程序模块8205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线830可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备800也可以与一个或多个外部设备870(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备800交互的设备通信,和/或与使得该电子设备800能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口850进行。并且,电子设备800还可以通过网络适配器860与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器860通过总线830与电子设备800的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备800使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行根据本公开实施方式的方法。
在本公开的示例性实施例中,还提供了一种计算机可读存储介质,其上存储有能够实现本说明书上述方法的程序产品。在一些可能的实施方式中,本申请的各个方面还可以实 现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行本说明书上述“示例性方法”部分中描述的根据本申请各种示例性实施方式的步骤。
参考图9所示,描述了根据本申请的实施方式的用于实现上述方法的程序产品900,其可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在终端设备,例如个人电脑上运行。然而,本申请的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本申请操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
此外,上述附图仅是根据本申请示例性实施例的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其他实施例。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯 用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限定。

Claims (13)

  1. 一种探针异常识别方法,用于包含多个探针的设备,所述方法包括:
    获取所述多个探针的当前温度数据,计算两两所述当前温度数据之间的温度差值;
    比较所述温度差值与预设温差的大小,如果所述温度差值超过所述预设温差,则确定多个所述探针中至少一个所述探针出现异常;
    将所述设备加热到预设温度,从多个所述探针中确定出异常探针。
  2. 根据权利要求1所述的探针异常识别方法,其中,所述将所述设备加热到预设温度,从多个所述探针中确定出异常探针的步骤,包括:
    将所述设备加热到第一子预设温度,获取多个所述探针的第一温度数据;
    确定所述第一子预设温度对应的第一预设黑体辐射密度;
    根据所述第一温度数据和黑体辐射密度公式,计算所述探针的第一辐射密度;
    计算所述第一辐射密度与所述第一预设黑体辐射密度的第一密度差值,如果所述第一密度差值超过第一预设密度差值范围,则确定所述探针为异常探针。
  3. 根据权利要求2所述的探针异常识别方法,其中,所述第一预设密度差值范围是-50~50焦耳/(立方米·赫兹)。
  4. 根据权利要求2所述的探针异常识别方法,其中,所述方法还包括:
    如果所述第一密度差值未超过所述第一预设密度差值范围,则将所述设备加热到第二子预设温度,获取多个所述探针的第二温度数据;
    确定所述第二子预设温度对应的第二预设黑体辐射密度;
    根据所述第二温度数据和所述黑体辐射密度公式,计算所述探针的第二辐射密度;
    计算所述第二辐射密度与所述第二预设黑体辐射密度的第二密度差值,如果所述第二密度差值超过第二预设密度差值范围,则确定所述探针为异常探针;
    如果所述第二密度差值未超过所述第二预设密度差值范围,则确定所述探针为正常探针。
  5. 根据权利要求4所述的探针异常识别方法,其中,所述第二预设密度差值范围是-50~50焦耳/(立方米·赫兹)。
  6. 根据权利要求2所述的探针异常识别方法,其中,所述第一子预设温度为800摄氏度,所述第一预设黑体辐射密度为200焦耳/(立方米·赫兹)。
  7. 根据权利要求4所述的探针异常识别方法,其中,所述第二子预设温度为1200摄氏度,所述第二预设黑体辐射密度为800焦耳/(立方米·赫兹)。
  8. 根据权利要求1所述的探针异常识别方法,其中,所述方法还包括:
    如果所述温度差值超过所述预设温差,则发送报警信息。
  9. 根据权利要求1或8所述的探针异常识别方法,其中,所述预设温差为20~50摄氏度。
  10. 根据权利要求1所述的探针异常识别方法,其中,所述获取多个所述探针的当前温度数据的步骤,包括:
    按照预设时间间隔,获取多个所述探针在同一时刻的温度数据。
  11. 一种探针异常识别装置,用于包含多个探针的设备,其中,所述装置包括:
    数据处理模块,用于获取所述多个探针的当前温度数据,计算两两所述当前温度数据之间的温度差值;
    异常初步判断模块,用于比较所述温度差值与预设温差的大小,如果所述温度差值超过所述预设温差,则确定多个所述探针中至少一个所述探针出现异常;
    异常确定模块,用于将所述设备加热到预设温度,从多个所述探针中确定出异常探针。
  12. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现如权利要求1至10中任一项所述的探针异常识别方法。
  13. 一种电子设备,其中,包括:
    处理器;
    存储器,用于存储一个或多个程序,当所述一个或多个程序被所述处理器执行时,使得所述处理器实现如权利要求1至10中任一项所述的探针异常识别方法。
PCT/CN2021/105301 2020-11-17 2021-07-08 探针异常识别方法及装置、存储介质和电子设备 WO2022105255A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/447,226 US20220155155A1 (en) 2020-11-17 2021-09-09 Method and apparatus for identifying probe abnormity, storage medium, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011287319.9A CN114512416A (zh) 2020-11-17 2020-11-17 探针异常识别方法及装置、存储介质和电子设备
CN202011287319.9 2020-11-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/447,226 Continuation US20220155155A1 (en) 2020-11-17 2021-09-09 Method and apparatus for identifying probe abnormity, storage medium, and electronic device

Publications (1)

Publication Number Publication Date
WO2022105255A1 true WO2022105255A1 (zh) 2022-05-27

Family

ID=81546203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105301 WO2022105255A1 (zh) 2020-11-17 2021-07-08 探针异常识别方法及装置、存储介质和电子设备

Country Status (2)

Country Link
CN (1) CN114512416A (zh)
WO (1) WO2022105255A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115908365A (zh) * 2022-12-13 2023-04-04 广州盖盟达工业品有限公司 一种纠正单次领用物料件数的方法及系统
CN116455679A (zh) * 2023-06-16 2023-07-18 杭州美创科技股份有限公司 异常数据库运维流量监控方法、装置及计算机设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6139180A (en) * 1998-03-27 2000-10-31 Vesuvius Crucible Company Method and system for testing the accuracy of a thermocouple probe used to measure the temperature of molten steel
CN103911603A (zh) * 2013-01-05 2014-07-09 光达光电设备科技(嘉兴)有限公司 监控装置、监控方法及气相沉积设备
CN108281717A (zh) * 2017-11-30 2018-07-13 深圳市科列技术股份有限公司 一种针对电池管理系统的热力图生成方法和装置
CN111845448A (zh) * 2020-07-31 2020-10-30 中国汽车工程研究院股份有限公司 一种基于概率突变法则的温度异常探针的识别算法
CN111934032A (zh) * 2020-07-31 2020-11-13 中国汽车工程研究院股份有限公司 动力电池温度特性的图形化表示及温度异常单体识别方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6139180A (en) * 1998-03-27 2000-10-31 Vesuvius Crucible Company Method and system for testing the accuracy of a thermocouple probe used to measure the temperature of molten steel
CN103911603A (zh) * 2013-01-05 2014-07-09 光达光电设备科技(嘉兴)有限公司 监控装置、监控方法及气相沉积设备
CN108281717A (zh) * 2017-11-30 2018-07-13 深圳市科列技术股份有限公司 一种针对电池管理系统的热力图生成方法和装置
CN111845448A (zh) * 2020-07-31 2020-10-30 中国汽车工程研究院股份有限公司 一种基于概率突变法则的温度异常探针的识别算法
CN111934032A (zh) * 2020-07-31 2020-11-13 中国汽车工程研究院股份有限公司 动力电池温度特性的图形化表示及温度异常单体识别方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115908365A (zh) * 2022-12-13 2023-04-04 广州盖盟达工业品有限公司 一种纠正单次领用物料件数的方法及系统
CN115908365B (zh) * 2022-12-13 2023-12-08 广州万物集工业互联网科技有限公司 一种纠正单次领用物料件数的方法及系统
CN116455679A (zh) * 2023-06-16 2023-07-18 杭州美创科技股份有限公司 异常数据库运维流量监控方法、装置及计算机设备
CN116455679B (zh) * 2023-06-16 2023-09-08 杭州美创科技股份有限公司 异常数据库运维流量监控方法、装置及计算机设备

Also Published As

Publication number Publication date
CN114512416A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2022105255A1 (zh) 探针异常识别方法及装置、存储介质和电子设备
US11959653B2 (en) Cloud and edge integrated energy optimizer
CN1860487A (zh) 使用第一原理仿真分析半导体处理工具执行的处理的系统和方法
TW201028808A (en) Self-diagnostic semiconductor equipment
CN1867896A (zh) 用于工具上半导体仿真的系统和方法
CN1799054A (zh) 用基本原理仿真辅助半导体制造过程的系统和方法
US11126519B2 (en) Monitoring device, monitoring method and non-transitory storage medium
CN111652375B (zh) 基于贝叶斯推理及虚拟传感的冷却盘管故障智能检测诊断方法及装置
US10863653B2 (en) Thermal testing system and method of thermal testing
TWI683215B (zh) 計算裝置中使用管理控制器的散熱管理方法與系統
US20220207492A1 (en) Information processing apparatus, information processing system, and part ordering method
CN113377178B (zh) 笔记本电脑散热控制方法、系统、处理终端、储存介质
US20120065808A1 (en) Fan Speed Control Method and Related Computer System
JP4887628B2 (ja) 半導体製造装置、コンピュータプログラム及び記憶媒体
US20150346007A1 (en) Detecting Anomalies Based on an Analysis of Input and Output Energies
Zhang et al. A multi-model fusion soft measurement method for cement clinker f-CaO content based on K-means++ and EMD-MKRVM
US20160365262A1 (en) Semiconductor fabrication facility data collection system
WO2016015637A1 (zh) 光伏空调系统及其性能检测方法和性能检测装置
US20220155155A1 (en) Method and apparatus for identifying probe abnormity, storage medium, and electronic device
US11774385B2 (en) Contactless inspection apparatus of heat pipe and method thereof
CN101472438B (zh) 电子系统散热需求确认方法
Chen et al. Detecting data center cooling problems using a data-driven approach
TW201400834A (zh) 電子元件測試分級設備、測試分級方法及其完測電子元件
US20240026541A1 (en) Information processing apparatus, storage medium, and process condition optimization method
US20220291035A1 (en) Aggregation method and processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893407

Country of ref document: EP

Kind code of ref document: A1