WO2016015637A1 - 光伏空调系统及其性能检测方法和性能检测装置 - Google Patents

光伏空调系统及其性能检测方法和性能检测装置 Download PDF

Info

Publication number
WO2016015637A1
WO2016015637A1 PCT/CN2015/085364 CN2015085364W WO2016015637A1 WO 2016015637 A1 WO2016015637 A1 WO 2016015637A1 CN 2015085364 W CN2015085364 W CN 2015085364W WO 2016015637 A1 WO2016015637 A1 WO 2016015637A1
Authority
WO
WIPO (PCT)
Prior art keywords
performance
subsystem
component
performance score
air conditioning
Prior art date
Application number
PCT/CN2015/085364
Other languages
English (en)
French (fr)
Inventor
李伟进
钟金扬
明开云
彭嘉欣
曾云洪
董玉红
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2016015637A1 publication Critical patent/WO2016015637A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the invention belongs to the technical field of air conditioning safety detection, and particularly relates to a photovoltaic air conditioning system, a performance detecting method thereof and a performance detecting device.
  • Photovoltaic air conditioning systems can directly use solar energy to increase solar energy utilization and minimize the consumption of non-renewable resources.
  • the structure of the photovoltaic air conditioning system is more complicated than the structure of the traditional air conditioning system, mainly including the photovoltaic system, the air conditioning host system and the micro grid system.
  • the photovoltaic system can convert solar energy into electrical energy, and the electrical energy converted by the photovoltaic system is used to supply power to the air conditioning host system, and the electrical energy converted by the photovoltaic system can also be transmitted to the microgrid system.
  • the performance testing process for the photovoltaic air conditioning system is roughly as follows: First, the staff collects the operational status information of the key components in the photovoltaic air conditioning system, and then summarizes the collected operational status information, and finally manually determines the photovoltaic air conditioning based on the operational status information. System performance.
  • an object of the present invention is to provide a performance detecting method and a performance detecting device for a photovoltaic air conditioning system, which can shorten the detection time and improve the accuracy of the detection result.
  • the present invention provides the following technical solutions:
  • the invention discloses a performance detecting method for a photovoltaic air conditioning system, which is applied to a photovoltaic air conditioning system.
  • a performance detecting device the photovoltaic air conditioning system is divided into a plurality of subsystems, each subsystem comprising a plurality of components to be inspected, the method comprising:
  • a performance score S of the photovoltaic air conditioning system Determining a performance score S of the photovoltaic air conditioning system, Where s(i) is the performance score of the i-th subsystem, k(i) is the weight of the i-th subsystem, and n is the number of subsystems.
  • determining a performance score of a subsystem includes:
  • determining a performance score of a subsystem includes:
  • the method further includes: determining corresponding prompt information according to the performance score of the photovoltaic air conditioning system, and outputting the prompt information.
  • the system to be detected is divided into a host system, a host electronic control system, a micro grid system, and a photovoltaic system.
  • the invention also discloses a performance detecting device for a photovoltaic air conditioning system, the photovoltaic air conditioning system is divided into a plurality of subsystems, each subsystem comprising a plurality of components to be inspected, the performance detecting device comprising:
  • An information acquiring unit configured to separately acquire running state information of the component to be inspected in each subsystem
  • a first processing unit configured to determine a performance score of each component to be inspected according to a preset correspondence between the running state information of the component to be inspected and the performance score;
  • a second processing unit configured to separately determine a performance score of each subsystem, wherein a performance score of one subsystem is determined by a performance score of the component to be inspected included in the subsystem;
  • a third processing unit configured to determine a performance score S of the photovoltaic air conditioning system, Where s(i) is the performance score of the i-th subsystem, k(i) is the weight of the i-th subsystem, and n is the number of subsystems.
  • the first processing unit includes a first processing module, and the first processing module calculates a sum of performance scores of the components to be inspected included in the subsystem, and determines the sum The value is the performance score of the subsystem.
  • the first processing unit includes a second processing module
  • the second processing module is configured to acquire weights of each component to be tested in the subsystem, and use a formula Determining a performance score s of the subsystem, wherein x(j) is a performance score of the jth to-be-checked component, q(j) is a weight of the jth to-be-checked component, and m is a to-be-included component Check the number of parts.
  • the performance detecting apparatus further includes: a fourth processing unit, configured to determine corresponding prompt information according to the performance score of the photovoltaic air conditioning system, and output the prompt information.
  • a fourth processing unit configured to determine corresponding prompt information according to the performance score of the photovoltaic air conditioning system, and output the prompt information.
  • the invention also discloses a photovoltaic air conditioning system, which comprises any one of the above performance detecting devices.
  • the performance detecting method of the photovoltaic air conditioning system disclosed by the present invention determines the operating state information of the component to be inspected, and uses the corresponding relationship between the operating state information of the component to be inspected and the performance score to determine the component to be inspected. The performance score is then determined by using the performance score of the component to be inspected, and then the performance score of the photovoltaic system is determined by using the performance score of each subsystem to complete the performance test of the photovoltaic air conditioning system. Based on the performance detecting method disclosed by the present invention, the performance detecting device directly acquires the running state information of the component to be inspected, and does not need to perform manual data collecting and summarizing, thereby shortening the detecting time. In addition, the performance detecting device automatically calculates each subsystem and the photovoltaic air conditioning system. The performance score does not cause calculation errors, which can improve the accuracy of the test results.
  • the internal performance detecting device can directly acquire the running state information of the component to be inspected, without manual data collecting and summarizing, thereby shortening the detecting time, and in addition, the performance detecting device automatically calculates each subsystem and The performance score of the PV air conditioning system will not cause calculation errors, which can improve the accuracy of the test results.
  • FIG. 1 is a flow chart of a performance detecting method of a photovoltaic air conditioning system disclosed by the present invention
  • FIG. 2 is a flow chart of another performance detecting method of the photovoltaic air conditioning system disclosed by the present invention.
  • FIG. 3 is a schematic structural view of a performance detecting device of a photovoltaic air conditioning system according to the present invention.
  • the invention discloses a performance detecting method for a photovoltaic air conditioning system, which can shorten the detection time and improve the accuracy of the detection result.
  • FIG. 1 is a flowchart of a method for detecting performance of a photovoltaic air conditioning system according to the present disclosure.
  • the photovoltaic air conditioning system is divided into a plurality of subsystems, each of which includes a plurality of components to be inspected.
  • the method is applied to a performance detecting device of a photovoltaic air conditioning system, comprising:
  • Step S1 respectively acquire running state information of the component to be inspected in each subsystem.
  • the performance detecting device is connected to each subsystem, and can acquire operating state information of each component to be inspected.
  • the running status information of the component to be inspected is the switch quantity information or the analog quantity information.
  • the running status information of the switch type component is the switch quantity information
  • the running state information of the analog quantity type component is analog quantity information (a value).
  • the operational status information of the component to be inspected can be obtained from the controller of each subsystem.
  • the controller of each subsystem is connected with the component to be inspected in the corresponding subsystem, or is communicatively connected with the sensor for detecting the running state of the component to be inspected to obtain the running state of the component to be inspected and output a control command.
  • the performance detecting device can directly communicate with the controller of each subsystem, and the performance detection The device obtains relevant operational status information from the controllers of the various subsystems.
  • the senor is arranged at an appropriate position according to the actual detection requirement. And arranging the connected sensors to communicate with the controllers of the subsystems, so that the performance detecting device obtains relevant operating state information from the controllers of the respective subsystems.
  • valve components in the system have only two working states: conduction and shutdown.
  • the operating status information of the valve components is the switching information, including the two operating status information of turning on and off; the operation of the compressor in the system.
  • the status information includes running frequency information (which is a numerical value) and motor temperature information, that is, analog quantity information.
  • the controller of the air conditioning host system can acquire the information from the compressor and transmit it to the performance detecting device; the operating state information of the fan in the system
  • the speed information is included, and the speed information is also analog information.
  • Step S2 determining the performance scores of the respective components to be inspected according to the correspondence between the running state information of the preset component and the performance score.
  • the performance detection device prestores the correspondence between the operational status information and the performance score of each component.
  • the running state information includes only the first state information and the second state information.
  • the correspondence between the operating state information and the performance score of the switch-type component includes: first state information and corresponding performance score, Two status information and corresponding performance scores.
  • the running state information is an operating parameter value
  • the corresponding relationship between the running state information and the performance score of the corresponding analog component includes: a plurality of operating parameter value segments and corresponding performance scores.
  • Step S3 Determine the performance scores of the respective subsystems separately. Wherein, the performance score of a subsystem is determined by the performance score of the component to be inspected included in the subsystem.
  • the performance score of a subsystem may be the sum of the performance scores of the various components to be inspected included in the subsystem.
  • the process of determining a performance score of a subsystem includes calculating a sum value of performance scores of the component to be inspected included in the subsystem; determining the sum value as a performance score of the subsystem.
  • Step S4 determining a performance score S of the photovoltaic air conditioning system, Where s(i) is the performance score of the i-th subsystem, k(i) is the weight of the i-th subsystem, and n is the number of subsystems.
  • the performance score S of the photovoltaic system can be determined. It should be noted here that the sum of the weights of the subsystems is 1, and the weight of the subsystem is determined according to the influence of the subsystem on the normal operation of the photovoltaic air conditioning system.
  • the performance detecting method for the photovoltaic air conditioning system disclosed by the present invention determines the performance score of the component to be inspected by using the corresponding relationship between the running state information and the performance score of the preset component after acquiring the operating state information of the component to be inspected, and then uses the performance score of the component to be inspected.
  • the performance score of the inspection component determines the performance score of the subsystem, and then the performance score of the photovoltaic system is determined by using the performance score of each subsystem to complete the performance detection of the photovoltaic air conditioning system.
  • the performance detecting device directly acquires the running state information of the component to be inspected, and does not need to perform manual data collecting and summarizing, thereby shortening the detecting time.
  • the performance detecting device automatically calculates each subsystem and the photovoltaic air conditioning system. The performance score does not cause calculation errors, which can improve the accuracy of the test results.
  • the performance score of the subsystem may also be determined in other ways, for example: obtaining the weight of each component to be inspected in the subsystem; using the formula Determining the performance score s of the subsystem, where x(j) is the performance score of the jth component to be inspected, q(j) is the weight of the jth component to be inspected, and m is the component to be inspected included in the subsystem quantity.
  • the sum of the weights of each component to be inspected in a subsystem is 1, and the weight of the component to be inspected is determined according to the influence of the component to be inspected on the normal operation of the subsystem. For example, compressors and fans are important equipment in the subsystem, and the corresponding compressors and fans have a greater weight.
  • FIG. 2 is a flowchart of another performance detecting method of the photovoltaic air conditioning system disclosed by the present invention.
  • the photovoltaic air conditioning system is divided into a plurality of subsystems, each of which includes a plurality of components to be inspected.
  • the method is applied to a performance detecting device of a photovoltaic air conditioning system, comprising:
  • Step S1 respectively acquire running state information of the component to be inspected in each subsystem.
  • Step S2 according to the corresponding relationship between the running state information and the performance score of the preset component, respectively Determine the performance score of each component to be inspected.
  • Step S3 Determine the performance scores of the respective subsystems separately. Wherein, the performance score of a subsystem is determined by the performance score of the component to be inspected included in the subsystem.
  • Step S4 determining a performance score S of the photovoltaic air conditioning system, Where s(i) is the performance score of the i-th subsystem, k(i) is the weight of the i-th subsystem, and n is the number of subsystems.
  • Step S5 determining corresponding prompt information according to the performance score of the photovoltaic air conditioning system.
  • Step S6 output prompt information.
  • the different performance scores of the PV air conditioning system characterize the PV air conditioning system in different states, such as the excellent state of the PV air conditioning system, poor state, and faults.
  • the performance detection device prestores the correspondence between the performance score segment of the photovoltaic air conditioning system and the prompt information. After determining the performance score of the photovoltaic air conditioning system, the corresponding prompt information can be determined, and then the prompt information is output.
  • the performance detecting method of the photovoltaic air conditioning system shown in FIG. 2 can determine the performance information corresponding to the performance score after determining the performance score of the photovoltaic air conditioning system, and output the prompt information, so that the user can more intuitively know the photovoltaic.
  • the operating status of the air conditioning system can determine the performance information corresponding to the performance score after determining the performance score of the photovoltaic air conditioning system, and output the prompt information, so that the user can more intuitively know the photovoltaic.
  • the photovoltaic air conditioning system is divided into a host system, a host electronic control system, a micro grid system, and a photovoltaic system.
  • the components to be inspected of the host system include a compressor, a water pump and a solenoid valve
  • the components to be inspected of the host electronic control system include a main control board, a display terminal, a driving board and an open component
  • the components to be inspected of the micro grid system include a communication interface.
  • the main board, the components to be inspected of the photovoltaic system include a panel and a confluence conversion unit.
  • the weight is determined by using the performance scores of the individual parts to be inspected and the corresponding weights to determine the performance score of the host system.
  • the performance score of the photovoltaic system is determined by using the performance scores of the individual components to be inspected and the corresponding weights.
  • the weights of the host system, the host electronic control system, the micro grid system and the photovoltaic system are obtained, and the performance scores of the photovoltaic air conditioning system are determined by using the performance scores of the subsystems and the corresponding weights.
  • the corresponding prompt information is determined according to the performance score of the photovoltaic air conditioning system, and then the prompt information is output.
  • the invention also discloses a performance detecting device for a photovoltaic air conditioning system to implement the above performance detecting method.
  • the photovoltaic air conditioning system is divided into a plurality of subsystems, each of which includes a plurality of components to be inspected.
  • FIG. 3 is a schematic structural diagram of a performance detecting device of a photovoltaic air conditioning system according to the present invention.
  • the performance detecting device includes an information acquiring unit 100, a first processing unit 200, a second processing unit 300, and a third processing unit 400.
  • the information obtaining unit 100 is configured to separately acquire running state information of the component to be inspected in each subsystem.
  • the performance detecting device is connected to each subsystem, and the information acquiring unit 100 is capable of acquiring operating state information of each component to be inspected.
  • the operating state information of the component to be inspected is the switching amount information or the analog quantity information.
  • the running status information of the switch type component is the switch quantity information
  • the running state information of the analog quantity type component is analog quantity information (a value).
  • the first processing unit 200 is configured to determine a performance score of each component to be inspected according to a correspondence between the running state information of the preset component and the performance score.
  • the performance detection device prestores the correspondence between the operational status information and the performance score of each component.
  • the running state information includes only the first state information and the second state information.
  • the correspondence between the operating state information and the performance score of the switch-type component includes: first state information and corresponding performance score, Two status information and corresponding performance scores.
  • the operating status information is an operating parameter value, and the corresponding operating status of the analog component
  • the correspondence between the interest rate and the performance score includes: a plurality of operating parameter value segments and corresponding performance scores.
  • the second processing unit 300 is configured to determine a performance score of each subsystem separately, wherein a performance score of one subsystem is determined by a performance score of the component to be inspected included in the subsystem.
  • a third processing unit 400 configured to determine a performance score S of the photovoltaic air conditioning system, Where s(i) is the performance score of the i-th subsystem, k(i) is the weight of the i-th subsystem, and n is the number of subsystems.
  • the performance detecting device of the photovoltaic air conditioning system disclosed by the invention directly obtains the running state information of the component to be inspected, and does not need manual data collection and summarization, thereby shortening the detection time.
  • the performance detecting device automatically calculates each subsystem and the photovoltaic air conditioning system. The performance score does not cause calculation errors, which can improve the accuracy of the test results.
  • the first processing unit 200 can determine the performance score of the component to be detected in various manners. Accordingly, the first processing unit 200 has a different structure.
  • the first processing unit 200 includes a first processing module.
  • the first processing module is configured to calculate a sum of performance scores of the components to be inspected included in the subsystem, and determine the sum value as a performance score of the subsystem.
  • the first processing unit 200 includes a second processing module.
  • the second processing module is configured to obtain weights of each component to be inspected in the subsystem, and use a formula Determining the performance score s of the subsystem, where x(j) is the performance score of the jth part to be inspected, q(j) is the weight of the jth part to be inspected, and m is the number of parts to be inspected included in the subsystem .
  • a fourth processing unit may be further provided, and the fourth processing unit is connected to the third processing unit 400 for determining a corresponding performance according to the performance score of the photovoltaic air conditioning system. Prompt message, output prompt message.
  • the invention also discloses a photovoltaic air conditioning system comprising any of the performance detecting devices disclosed above according to the invention.
  • the internal performance detecting device can directly acquire the running state information of the component to be inspected, without manual data collecting and summarizing, thereby shortening the detecting time, and in addition, the performance detecting device automatically calculates each subsystem and The performance score of the PV air conditioning system will not cause calculation errors, which can improve the accuracy of the test results.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种光伏空调系统的性能检测方法、光伏空调系统及其性能检测装置,在获取待检部件的运行状态信息后,利用预设的待检部件的运行状态信息和性能分数的对应关系,确定待检部件的性能分数,之后利用待检部件的性能分数确定子系统的性能分数,之后利用各个子系统的性能分数确定光伏空调系统的性能分数,完成对光伏空调系统的性能检测。基于所述的性能检测方法,性能检测装置直接获取待检部件的运行状态信息,无需进行人工数据采集和汇总,因此可以缩短检测时间,另外,性能检测装置自动计算各子系统以及光伏空调系统的性能分数,不会出现计算误差,可以提高检测结果的准确度。

Description

光伏空调系统及其性能检测方法和性能检测装置 技术领域
本发明属于空调安全检测技术领域,尤其涉及光伏空调系统及其性能检测方法和性能检测装置。
背景技术
光伏空调系统能够直接利用太阳能供电,提高了太阳能利用率,最大程度的降低对不可再生资源的消耗。光伏空调系统的结构相对于传统的空调系统的结构更为复杂,主要包括光伏系统、空调主机系统和微电网系统。其中,光伏系统能够将太阳能转换成电能,光伏系统转换成的电能用于为空调主机系统供电,同时,光伏系统转换成的电能也可以传输至微电网系统。
由于光伏空调系统的结构和运行过程都较为复杂,为了保证光伏空调系统的稳定运行,要对其进行性能检测。目前,针对光伏空调系统的性能检测过程大致为:首先,工作人员采集光伏空调系统中的关键部件的运行状态信息,然后对采集到的运行状态信息进行汇总,最后基于运行状态信息人工判断光伏空调系统的性能。
由于工作人员要对大量的关键部件进行运行状态信息采集,之后再对大量检测数据进行人工汇总,这会占用很长时间,另外在人工汇总数据以及人工判断系统性能的过程中易发生错误,导致检测结果的准确度较低的技术问题。
发明内容
有鉴于此,本发明的目的在于提供一种光伏空调系统的性能检测方法及性能检测装置,能够缩短检测时间,并提高检测结果的准确度。
为实现上述目的,本发明提供如下技术方案:
本发明公开一种光伏空调系统的性能检测方法,应用于光伏空调系统的 性能检测装置,所述光伏空调系统被划分为多个子系统,每个子系统包括多个待检部件,所述方法包括:
分别获取各子系统中待检部件的运行状态信息;
根据预设的待检部件的运行状态信息和性能分数的对应关系,分别确定各个待检部件的性能分数;
分别确定各个子系统的性能分数,其中,一个子系统的性能分数由所述子系统所包含的待检部件的性能分数确定;
确定所述光伏空调系统的性能分数S,
Figure PCTCN2015085364-appb-000001
其中,s(i)为第i个子系统的性能分数,k(i)为第i个子系统的权重,n为子系统的数量。
优选的,在上述方法中,确定一个子系统的性能分数,包括:
计算所述子系统所包含的待检部件的性能分数的和值;
确定所述和值为所述子系统的性能分数。
优选的,在上述方法中,确定一个子系统的性能分数,包括:
获取所述子系统中各个待检部件的权重;
利用公式
Figure PCTCN2015085364-appb-000002
确定所述子系统的性能分数s,其中,x(j)为第j个待检部件的性能分数,q(j)为第j个待检部件的权重,m为所述子系统包含的待检部件的数量。
优选的,上述方法还包括:根据所述光伏空调系统的性能分数确定相应的提示信息,输出所述提示信息。
优选的,将所述待检测系统划分为主机系统、主机电控系统、微电网系统和光伏系统。
本发明还公开一种光伏空调系统的性能检测装置,所述光伏空调系统被划分为多个子系统,每个子系统包括多个待检部件,所述性能检测装置包括:
信息获取单元,用于分别获取各子系统中待检部件的运行状态信息;
第一处理单元,用于根据预设的待检部件的运行状态信息和性能分数的对应关系,分别确定各个待检部件的性能分数;
第二处理单元,用于分别确定各个子系统的性能分数,其中,一个子系统的性能分数由所述子系统所包含的待检部件的性能分数确定;
第三处理单元,用于确定所述光伏空调系统的性能分数S,
Figure PCTCN2015085364-appb-000003
其中,s(i)为第i个子系统的性能分数,k(i)为第i个子系统的权重,n为子系统的数量。
优选的,在上述性能检测装置中,所述第一处理单元包括第一处理模块,所述第一处理模块计算所述子系统所包含的待检部件的性能分数的和值,确定所述和值为所述子系统的性能分数。
优选的,在上述性能检测装置中,所述第一处理单元包括第二处理模块,所述第二处理模块用于获取所述子系统中各个待检部件的权重,利用公式
Figure PCTCN2015085364-appb-000004
确定所述子系统的性能分数s,其中,x(j)为第j个待检部件的性能分数,q(j)为第j个待检部件的权重,m为所述子系统包含的待检部件的数量。
优选的,上述性能检测装置还包括:第四处理单元,用于根据所述光伏空调系统的性能分数确定相应的提示信息,输出所述提示信息。
本发明还公开一种光伏空调系统,所述光伏空调系统包括上述任意一种性能检测装置。
由此可见,本发明公开的光伏空调系统的性能检测方法,在获取待检部件的运行状态信息后,利用预设的待检部件的运行状态信息和性能分数的对应关系,确定待检部件的性能分数,之后利用待检部件的性能分数确定子系统的性能分数,之后利用各个子系统的性能分数确定光伏空调系统的性能分数,完成对光伏空调系统的性能检测。基于本发明公开的性能检测方法,性能检测装置直接获取待检部件的运行状态信息,无需进行人工数据采集和汇总,因此可以缩短检测时间,另外,性能检测装置自动计算各子系统以及光伏空调系统的性能分数,不会出现计算误差,可以提高检测结果的准确度。
本发明公开的光伏空调系统,其内部的性能检测装置能够直接获取待检部件的运行状态信息,无需进行人工数据采集和汇总,因此可以缩短检测时间,另外,性能检测装置自动计算各子系统以及光伏空调系统的性能分数,不会出现计算误差,可以提高检测结果的准确度。
为了实现上述以及相关目的,本发明的一个或多个方面包括后面将详细说明并在权利要求中特别指出的特征。下面的说明以及附图详细说明了本发 明的某些示例性方面。然而,这些方面指示的仅仅是可使用本发明的原理的各种方式中的一些方式。此外,本发明旨在包括所有这些方面以及它们的等同物。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。通过参考以下结合附图的说明及权利要求书的内容,并且随着对本发明的更全面理解,本发明的其它目的及结果将更加明白及易于理解。在附图中:
图1为本发明公开的光伏空调系统的一种性能检测方法的流程图;
图2为本发明公开的光伏空调系统的另一种性能检测方法的流程图;
图3为本发明公开的光伏空调系统的一种性能检测装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明公开一种光伏空调系统的性能检测方法,能够缩短检测时间,并提高检测结果的准确度。
参见图1,图1为本发明公开的一种光伏空调系统的性能检测方法的流程图。本发明中将光伏空调系统划分为多个子系统,每个子系统包括多个待检部件。该方法应用于光伏空调系统的性能检测装置,包括:
步骤S1:分别获取各子系统中待检部件的运行状态信息。
性能检测装置与各个子系统连接,能够获取各个待检部件的运行状态信息。这里需要说明的是,待检部件的运行状态信息为开关量信息或者模拟量信息。具体的,开关型部件的运行状态信息为开关量信息,模拟量型部件的运行状态信息为模拟量信息(一个数值)。
待检部件的运行状态信息可从各子系统的控制器中获得。各子系统的控制器与相应子系统内的待检部件连接,或与用于检测待检部件运行状态的传感器通信连接,以获取待检部件的运行状态、输出控制指令。
对于已经具备运行状态信息反馈功能的待检部件,或已自带通讯接口和传感器、具有运行状态信息输出功能的待检部件,性能检测装置可直接与各子系统的控制器通讯连接,性能检测装置从各子系统的控制器中获得相关运行状态信息。
对于自身运行状态信息反馈功能不足的待检部件,或自带传感器类型或数量不足的待检部件,或不具有运行状态信息反馈功能的待检部件,则根据实际检测需求在适当的位置布置传感器,并将布置的传感器与各子系统的控制器通讯连接,以便性能检测装置从各子系统的控制器中获得相关运行状态信息。
例如:系统中的部分阀门类部件只有导通和关闭两个工作状态,则阀门类部件的运行状态信息为开关量信息,包括导通和关闭两个运行状态信息;系统中的压缩机的运行状态信息包括运行频率信息(为一数值)、电机温度信息,即为模拟量信息,空调主机系统的控制器可以从压缩机获取这些信息并传输给性能检测装置;系统中的风机的运行状态信息包括转速信息,该转速信息也为模拟量信息。
步骤S2:根据预设的部件的运行状态信息和性能分数的对应关系,分别确定各个待检部件的性能分数。
性能检测装置中预存有各个部件的运行状态信息和性能分数的对应关系。对于开关型部件,其运行状态信息仅包括第一状态信息和第二状态信息,相应的,开关型部件的运行状态信息和性能分数的对应关系包括:第一状态信息和对应的性能分数,第二状态信息和对应的性能分数。对于模拟量型部件,其运行状态信息为一个运行参数值,相应的模拟量型部件的运行状态信息和性能分数的对应关系包括:多个运行参数值区段和对应的性能分数。在获取待检部件的运行状态信息后,就可以根据预设的部件的运行状态信息和性能分数的对应关系,确定该待检部件的性能分数。
步骤S3:分别确定各个子系统的性能分数。其中,一个子系统的性能分数由该子系统所包含的待检部件的性能分数确定。
实施中,一个子系统的性能分数可以为该子系统所包含的各个待检部件的性能分数之和。确定子系统的性能分数的过程包括:计算子系统所包含的待检部件的性能分数的和值;确定该和值为该子系统的性能分数。
步骤S4:确定光伏空调系统的性能分数S,
Figure PCTCN2015085364-appb-000005
其中,s(i)为第i个子系统的性能分数,k(i)为第i个子系统的权重,n为子系统的数量。
在确定各个子系统的性能分数之后,就可以确定光伏系统的性能分数S。这里需要说明的是,各个子系统的权重之和为1,子系统的权重依据该子系统对光伏空调系统正常运行所产生的影响确定。
本发明公开的光伏空调系统的性能检测方法,在获取待检部件的运行状态信息后,利用预设的部件的运行状态信息和性能分数的对应关系,确定待检部件的性能分数,之后利用待检部件的性能分数确定子系统的性能分数,之后利用各个子系统的性能分数确定光伏空调系统的性能分数,完成对光伏空调系统的性能检测。基于本发明公开的性能检测方法,性能检测装置直接获取待检部件的运行状态信息,无需进行人工数据采集和汇总,因此可以缩短检测时间,另外,性能检测装置自动计算各子系统以及光伏空调系统的性能分数,不会出现计算误差,可以提高检测结果的准确度。
实施中,还可以采用其他方式确定子系统的性能分数,例如:获取子系统中各个待检部件的权重;利用公式
Figure PCTCN2015085364-appb-000006
确定该子系统的性能分数s,其中,x(j)为第j个待检部件的性能分数,q(j)为第j个待检部件的权重,m为该子系统包含的待检部件的数量。
一个子系统中各个待检部件的权重之和为1,待检部件的权重依据该待检部件对子系统正常运行所产生的影响确定。例如:压缩机和风机是子系统中的重要设备,相应的压缩机和风机的权重较大。
参见图2,图2为本发明公开的光伏空调系统的另一种性能检测方法的流程图。本发明中将光伏空调系统划分为多个子系统,每个子系统包括多个待检部件。该方法应用于光伏空调系统的性能检测装置,包括:
步骤S1:分别获取各子系统中待检部件的运行状态信息。
步骤S2:根据预设的部件的运行状态信息和性能分数的对应关系,分别 确定各个待检部件的性能分数。
步骤S3:分别确定各个子系统的性能分数。其中,一个子系统的性能分数由该子系统所包含的待检部件的性能分数确定。
步骤S4:确定光伏空调系统的性能分数S,
Figure PCTCN2015085364-appb-000007
其中,s(i)为第i个子系统的性能分数,k(i)为第i个子系统的权重,n为子系统的数量。
步骤S5:根据光伏空调系统的性能分数确定相应的提示信息。
步骤S6:输出提示信息。
光伏空调系统的不同的性能分数表征了光伏空调系统处于不同的状态,如光伏空调系统状态优、状态差、存在故障等。在性能检测装置中预存有光伏空调系统的性能分数区段和提示信息的对应关系,在确定光伏空调系统的性能分数后,就可以确定相应的提示信息,之后输出该提示信息。
本发明图2所示的光伏空调系统的性能检测方法,在确定光伏空调系统的性能分数之后,还可以确定与该性能分数对应的提示信息,并输出该提示信息,便于用户更直观的获知光伏空调系统的运行状态。
下面结合一个实例对本发明公开的性能检测方法进行说明。
将光伏空调系统划分为主机系统、主机电控系统、微电网系统和光伏系统。其中,主机系统的待检部件包括压缩机、水泵和电磁阀,主机电控系统的待检部件包括主控制板、显示终端、驱动板和空开部件,微电网系统的待检部件包括通讯接口和主板,光伏系统的待检部件包括电池板和汇流转换单元。
获取主机系统中压缩机、水泵和电磁阀的运行状态信息,依据预设的部件的运行状态信息和性能分数的对应关系,确定压缩机、水泵和电磁阀的性能分数,之后获取各个待检部件的权重,利用各个待检部件的性能分数和相应的权重确定主机系统的性能分数。
获取主机电控系统中主控制板、显示终端、驱动板和空开部件的运行状态信息,依据预设的部件的运行状态信息和性能分数的对应关系,确定主控制板、显示终端、驱动板和空开部件的性能分数,之后获取各个待检部件的权重,利用各个待检部件的性能分数和相应的权重确定主机电控系统的性能分数。
获取微电网系统中通讯接口和主板的运行状态信息,依据预设的部件的运行状态信息和性能分数的对应关系,确定通讯接口和主板的性能分数,之后获取各个待检部件的权重,利用各个待检部件的性能分数和相应的权重确定微电网系统的性能分数。
获取光伏系统中电池板和汇流转换单元的运行状态信息,依据预设的部件的运行状态信息和性能分数的对应关系,确定电池板和汇流转换单元的性能分数,之后获取各个待检部件的权重,利用各个待检部件的性能分数和相应的权重确定光伏系统的性能分数。
之后,获取主机系统、主机电控系统、微电网系统和光伏系统的权重,利用各子系统的性能分数和相应的权重确定光伏空调系统的性能分数。根据光伏空调系统的性能分数确定相应的提示信息,之后输出该提示信息。
本发明还公开一种光伏空调系统的性能检测装置,以实现上述性能检测方法。本发明中将光伏空调系统划分为多个子系统,每个子系统包括多个待检部件。
参见图3,图3为本发明公开的光伏空调系统的一种性能检测装置的结构示意图。该性能检测装置包括信息获取单元100、第一处理单元200、第二处理单元300和第三处理单元400。
其中:
信息获取单元100,用于分别获取各子系统中待检部件的运行状态信息。
性能检测装置与各个子系统连接,信息获取单元100能够获取各个待检部件的运行状态信息。这里需要说明的是待检部件的运行状态信息为开关量信息或者模拟量信息。具体的,开关型部件的运行状态信息为开关量信息,模拟量型部件的运行状态信息为模拟量信息(一个数值)。
第一处理单元200,用于根据预设的部件的运行状态信息和性能分数的对应关系,分别确定各个待检部件的性能分数。
性能检测装置中预存有各个部件的运行状态信息和性能分数的对应关系。对于开关型部件,其运行状态信息仅包括第一状态信息和第二状态信息,相应的,开关型部件的运行状态信息和性能分数的对应关系包括:第一状态信息和对应的性能分数,第二状态信息和对应的性能分数。对于模拟量型部件,其运行状态信息为一个运行参数值,相应的模拟量型部件的运行状态信 息和性能分数的对应关系包括:多个运行参数值区段和对应的性能分数。在获取待检部件的运行状态信息后,就可以根据预设的部件的运行状态信息和性能分数的对应关系,确定该待检部件的性能分数。
第二处理单元300,用于分别确定各个子系统的性能分数,其中,一个子系统的性能分数由子系统所包含的待检部件的性能分数确定。
第三处理单元400,用于确定光伏空调系统的性能分数S,
Figure PCTCN2015085364-appb-000008
其中,s(i)为第i个子系统的性能分数,k(i)为第i个子系统的权重,n为子系统的数量。
本发明公开的光伏空调系统的性能检测装置,直接获取待检部件的运行状态信息,无需进行人工数据采集和汇总,因此可以缩短检测时间,另外,性能检测装置自动计算各子系统以及光伏空调系统的性能分数,不会出现计算误差,可以提高检测结果的准确度。
实施中,第一处理单元200可以通过多种方式确定待检测部件的性能分数,相应的,第一处理单元200具有不同结构。
例如:第一处理单元200包括第一处理模块。第一处理模块用于计算子系统所包含的待检部件的性能分数的和值,确定和值为子系统的性能分数。
例如:第一处理单元200包括第二处理模块。第二处理模块用于获取子系统中各个待检部件的权重,利用公式
Figure PCTCN2015085364-appb-000009
确定子系统的性能分数s,其中,x(j)为第j个待检部件的性能分数,q(j)为第j个待检部件的权重,m为子系统包含的待检部件的数量。
作为优选方式,在图3所示性能检测装置的基础上,还可以进一步设置第四处理单元,该第四处理单元与第三处理单元400连接,用于根据光伏空调系统的性能分数确定相应的提示信息,输出提示信息。
本发明还公开一种光伏空调系统,该光伏空调系统包括本发明上述公开的任意一种性能检测装置。本发明公开的光伏空调系统,其内部的性能检测装置能够直接获取待检部件的运行状态信息,无需进行人工数据采集和汇总,因此可以缩短检测时间,另外,性能检测装置自动计算各子系统以及光伏空调系统的性能分数,不会出现计算误差,可以提高检测结果的准确度。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语 仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种光伏空调系统的性能检测方法,应用于光伏空调系统的性能检测装置,其特征在于,所述光伏空调系统被划分为多个子系统,每个子系统包括多个待检部件,所述方法包括:
    分别获取各子系统中待检部件的运行状态信息;
    根据预设的所述待检部件的运行状态信息和性能分数的对应关系,分别确定各个待检部件的性能分数;
    分别确定各个子系统的性能分数,其中,一个子系统的性能分数由所述子系统所包含的所述待检部件的性能分数确定;
    确定所述光伏空调系统的性能分数S,
    Figure PCTCN2015085364-appb-100001
    其中,s(i)为第i个子系统的性能分数,k(i)为第i个子系统的权重,n为子系统的数量。
  2. 根据权利要求1所述的方法,其特征在于,确定一个子系统的性能分数,包括:
    计算所述子系统所包含的所述待检部件的性能分数的和值;
    确定所述和值为所述子系统的性能分数。
  3. 根据权利要求1所述的方法,其特征在于,确定一个子系统的性能分数,包括:
    获取所述子系统中各个待检部件的权重;
    利用公式
    Figure PCTCN2015085364-appb-100002
    确定所述子系统的性能分数s,其中,x(j)为第j个待检部件的性能分数,q(j)为第j个待检部件的权重,m为所述子系统包含的待检部件的数量。
  4. 根据权利要求1至3中的任意一项所述的方法,其特征在于,还包括:
    根据所述光伏空调系统的性能分数确定相应的提示信息,输出所述提示信息。
  5. 根据权利要求1所述的方法,其特征在于,将所述待检测系统划分为主机系统、主机电控系统、微电网系统和光伏系统。
  6. 根据权利要求4所述的方法,其特征在于,根据所述光伏空调系统的性能分数确定相应的提示信息,输出所述提示信息的步骤包括:
    读取所述光伏空调系统的性能分数与所述提示信息之间的对应关系;
    根据所述对应关系确定所述性能分数对应的所述提示信息;
    输出所述提示信息。
  7. 根据权利要求1所述的方法,其特征在于,所述运行状态信息包括:开关量信息或者模拟量信息。
  8. 一种光伏空调系统的性能检测装置,其特征在于,所述光伏空调系统被划分为多个子系统,每个子系统包括多个待检部件,所述性能检测装置包括:
    信息获取单元,用于分别获取各子系统中待检部件的运行状态信息;
    第一处理单元,用于根据预设的所述待检部件的运行状态信息和性能分数的对应关系,分别确定各个待检部件的性能分数;
    第二处理单元,用于分别确定各个子系统的性能分数,其中,一个子系统的性能分数由所述子系统所包含的所述待检部件的性能分数确定;
    第三处理单元,用于确定所述光伏空调系统的性能分数S,
    Figure PCTCN2015085364-appb-100003
    其中,s(i)为第i个子系统的性能分数,k(i)为第i个子系统的权重,n为子系统的数量。
  9. 根据权利要8所述的性能检测装置,其特征在于,所述第一处理单元包括第一处理模块,
    所述第一处理模块计算所述子系统所包含的所述待检部件的性能分数的和值,确定所述和值为所述子系统的性能分数。
  10. 根据权利要8所述的性能检测装置,其特征在于,所述第一处理单元包括第二处理模块,
    所述第二处理模块用于获取所述子系统中各个待检部件的权重,利用公式
    Figure PCTCN2015085364-appb-100004
    确定所述子系统的性能分数s,其中,x(j)为第j个待检部件的性能分数,q(j)为第j个待检部件的权重,m为所述子系统包含的待检部件的数量。
  11. 根据权利要求8至10中的任意一项所述的性能检测装置,其特征在于,还包括:
    第四处理单元,用于根据所述光伏空调系统的性能分数确定相应的提示信息,输出所述提示信息。
  12. 根据权利要11所述的装置,其特征在于,所述第四处理单元包括:
    读取模块,用于读取所述光伏空调系统的性能分数与所述提示信息之间的对应关系;
    确定模块,用于根据所述对应关系确定所述性能分数对应的所述提示信息;
    输出模块,用于输出所述提示信息。
  13. 根据权利要求8所述的装置,其特征在于,所述运行状态信息包括:开关量信息或者模拟量信息。
  14. 一种光伏空调系统,其特征在于,所述光伏空调系统包括如权利要求8至13中任一项所述的性能检测装置。
PCT/CN2015/085364 2014-07-30 2015-07-28 光伏空调系统及其性能检测方法和性能检测装置 WO2016015637A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410371393.7A CN104122108A (zh) 2014-07-30 2014-07-30 光伏空调系统及其性能检测方法和性能检测装置
CN201410371393.7 2014-07-30

Publications (1)

Publication Number Publication Date
WO2016015637A1 true WO2016015637A1 (zh) 2016-02-04

Family

ID=51767609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085364 WO2016015637A1 (zh) 2014-07-30 2015-07-28 光伏空调系统及其性能检测方法和性能检测装置

Country Status (2)

Country Link
CN (1) CN104122108A (zh)
WO (1) WO2016015637A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122108A (zh) * 2014-07-30 2014-10-29 珠海格力电器股份有限公司 光伏空调系统及其性能检测方法和性能检测装置
CN105181369B (zh) * 2015-08-20 2018-11-16 Tcl王牌电器(惠州)有限公司 家庭影院设备的检测系统和方法
CN109470953B (zh) * 2018-11-07 2020-01-17 珠海格力电器股份有限公司 一种光伏空调的电气安全测试方法
CN114076687A (zh) * 2020-08-18 2022-02-22 合肥通用制冷设备有限公司 空调故障检测装置和空调故障检测设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042100A2 (en) * 2000-11-27 2002-05-30 Phil Trigiani Method for diagnosing performance of air-conditioning systems
CN103234254A (zh) * 2013-04-12 2013-08-07 惠州Tcl家电集团有限公司 基于服务器的空调性能参数优化的方法、空调及服务器
CN203490089U (zh) * 2013-09-25 2014-03-19 珠海格力电器股份有限公司 空调性能检测器
CN103759961A (zh) * 2014-01-23 2014-04-30 国家电网公司 一种电制冷冷水机组中央空调系统能效评估方法
CN203586455U (zh) * 2013-12-11 2014-05-07 珠海格力电器股份有限公司 光伏空调系统
CN104122108A (zh) * 2014-07-30 2014-10-29 珠海格力电器股份有限公司 光伏空调系统及其性能检测方法和性能检测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042100A2 (en) * 2000-11-27 2002-05-30 Phil Trigiani Method for diagnosing performance of air-conditioning systems
CN103234254A (zh) * 2013-04-12 2013-08-07 惠州Tcl家电集团有限公司 基于服务器的空调性能参数优化的方法、空调及服务器
CN203490089U (zh) * 2013-09-25 2014-03-19 珠海格力电器股份有限公司 空调性能检测器
CN203586455U (zh) * 2013-12-11 2014-05-07 珠海格力电器股份有限公司 光伏空调系统
CN103759961A (zh) * 2014-01-23 2014-04-30 国家电网公司 一种电制冷冷水机组中央空调系统能效评估方法
CN104122108A (zh) * 2014-07-30 2014-10-29 珠海格力电器股份有限公司 光伏空调系统及其性能检测方法和性能检测装置

Also Published As

Publication number Publication date
CN104122108A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
CN102692066B (zh) 变频空调故障诊断控制系统及控制方法
WO2016015637A1 (zh) 光伏空调系统及其性能检测方法和性能检测装置
CN100368974C (zh) 自动消除触摸屏触点坐标温差漂移的方法及装置
CN106788920B (zh) 一种波特率偏差检测方法、装置及空调室内机
TW202010243A (zh) 太陽能光電故障檢測系統及方法
CN202600668U (zh) 自动消除电容式触摸屏触点坐标温差漂移的装置
CN107607342A (zh) 空调机房设备群的健康能效检测方法
CN203490089U (zh) 空调性能检测器
CN203964992U (zh) 一种分布式水库水位监测系统
CN207457875U (zh) 一种可程序恒温恒湿试验机
CN104931828A (zh) 一种cpu rv转换效率的测试系统及方法
CN203069733U (zh) 基于振动检测的用于gis型式试验时局部放电点定位装置
CN201247150Y (zh) 一种便携式水轮机调速器测试装置
CN209102368U (zh) 一种液力缓速器控制阀检测系统
CN205805980U (zh) 一种风机的测试系统
CN107304747B (zh) 用于偏航系统的主风能测试方法及装置、偏航系统
CN104503512B (zh) 一种恒温节点故障自检方法
CN206787991U (zh) 一种双传感器扬尘检测装置
CN103712718B (zh) 现场即时检测排风热回收装置热交换效率的装置
CN208013321U (zh) 一种汽车节气门功能测试装置
CN208999825U (zh) 一种电池热管理控制器的检测装置及系统
Zhao et al. Design of a data acquisition system for building electrical fault diagnosis
CN203394815U (zh) 基于无线数据传输的风机机组能效实时测试装置
Lai et al. Non-Intrusive Load Monitoring applied in energy efficiency of the smart manufacturing industry: A case of air-conditioner
CN205748687U (zh) 温度热流无线巡回检测仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827326

Country of ref document: EP

Kind code of ref document: A1