WO2022105216A1 - 工程机械及其支撑控制方法、装置、系统及介质 - Google Patents
工程机械及其支撑控制方法、装置、系统及介质 Download PDFInfo
- Publication number
- WO2022105216A1 WO2022105216A1 PCT/CN2021/100111 CN2021100111W WO2022105216A1 WO 2022105216 A1 WO2022105216 A1 WO 2022105216A1 CN 2021100111 W CN2021100111 W CN 2021100111W WO 2022105216 A1 WO2022105216 A1 WO 2022105216A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- support
- center
- gravity
- recommended
- bodywork
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 230000005484 gravity Effects 0.000 claims abstract description 105
- 238000010276 construction Methods 0.000 claims description 116
- 238000004364 calculation method Methods 0.000 claims description 30
- 238000003860 storage Methods 0.000 claims description 14
- 230000003993 interaction Effects 0.000 claims description 13
- 238000013507 mapping Methods 0.000 claims description 12
- 238000004422 calculation algorithm Methods 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 8
- 238000005457 optimization Methods 0.000 claims description 8
- 230000006870 function Effects 0.000 claims description 7
- 230000009471 action Effects 0.000 claims description 4
- 238000012905 input function Methods 0.000 claims description 4
- 230000036544 posture Effects 0.000 description 36
- 238000010586 diagram Methods 0.000 description 22
- 210000001364 upper extremity Anatomy 0.000 description 13
- 238000004590 computer program Methods 0.000 description 8
- 239000013598 vector Substances 0.000 description 8
- 238000012545 processing Methods 0.000 description 6
- 239000004744 fabric Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000002085 persistent effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000008434 yi-zhi Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/18—Control systems or devices
- B66C13/48—Automatic control of crane drives for producing a single or repeated working cycle; Programme control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S9/00—Ground-engaging vehicle fittings for supporting, lifting, or manoeuvring the vehicle, wholly or in part, e.g. built-in jacks
- B60S9/02—Ground-engaging vehicle fittings for supporting, lifting, or manoeuvring the vehicle, wholly or in part, e.g. built-in jacks for only lifting or supporting
- B60S9/10—Ground-engaging vehicle fittings for supporting, lifting, or manoeuvring the vehicle, wholly or in part, e.g. built-in jacks for only lifting or supporting by fluid pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/16—Applications of indicating, registering, or weighing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/18—Control systems or devices
- B66C13/20—Control systems or devices for non-electric drives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C23/00—Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
- B66C23/62—Constructional features or details
- B66C23/72—Counterweights or supports for balancing lifting couples
- B66C23/78—Supports, e.g. outriggers, for mobile cranes
- B66C23/80—Supports, e.g. outriggers, for mobile cranes hydraulically actuated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C23/00—Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
- B66C23/88—Safety gear
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C27/00—Fire-fighting land vehicles
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G21/00—Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
- E04G21/02—Conveying or working-up concrete or similar masses able to be heaped or cast
Definitions
- the invention relates to the field of construction machinery, in particular to a support control method, device, system and medium for construction machinery.
- Construction machinery such as professional and special vehicles (such as pump trucks, cranes, fire trucks, etc.) generally includes two parts: loading and unloading.
- the loading refers to the parts that have relative motion under operating conditions, such as booms, turntables, and ladders.
- Getting off refers to the parts that have no relative movement such as outriggers, chassis, and frame.
- the outrigger is used to ensure the safety and stability of the vehicle, and its support opening is very important for the bodywork to operate. For example, when the outriggers cannot be fully opened in a limited space, it is necessary to timely determine whether the vehicle can safely unfold the bodywork for operation.
- the detection or control of the outrigger support in the prior art mainly focuses on the support leveling, the speed regulation of the support deployment process, the detection of the support opening, etc., and does not involve the recommendation of the minimum opening required to realize the operation support. . Therefore, after the vehicle equipment enters the field, it may cause inefficiency due to repeated adjustment of the support state, and even an incorrect support state may cause the equipment to overturn.
- the purpose of the embodiments of the present invention is to provide a support control method, device, system and medium for a construction machine, which are used to at least partially solve the above technical problems.
- an embodiment of the present invention provides a support control method for a construction machine, including: acquiring a target position of the construction machine's bodywork for operation input by a user; calculating the bodywork in an optimal bodywork posture according to the target position Attitude information, wherein the optimal bodywork posture refers to the posture in which the center of gravity of the construction machine is closest to the inner side, and the inner side refers to the side where the distance from the center of gravity of the bodywork to the projection distance of the center of rotation of the construction machine is smaller ; According to the bodywork attitude information, calculate the center of gravity of the complete vehicle corresponding to the optimal bodywork attitude; under the condition that there is a unique target position and its corresponding center of gravity of the complete vehicle, calculate the center of gravity of the complete vehicle according to the The center of gravity determines the recommended support opening degree for the outriggers of the construction machine, wherein the recommended support opening degree is such that the distance between the edge line formed by the support fulcrum of the corresponding outrigger and the center of gravity
- the calculation of the top loading posture information under the optimal top loading posture according to the target position includes: obtaining the mapping relationship between the target position, the top loading posture information and the top loading structure parameter; and according to the mapping relationship, Under the condition that the target position is known, the structural parameters of the bodywork are known, and the optimal bodywork posture is used as the optimal criterion, an optimization algorithm is used to calculate the bodywork posture information.
- the determining the recommended support opening degree for the outriggers of the construction machinery according to the center of gravity of the whole vehicle includes: determining the deployment area of the outriggers of the construction machinery where the center of gravity of the whole vehicle is located; The recommended bracing opening of the outrigger associated with the outrigger deployment area.
- the outrigger deployment area includes a front side area, a left side area, a right side area, and a front side area, the left side area, and the right side area with reference to the construction machine. the outer area.
- the outrigger deployment area further includes a middle area corresponding to the main body part of the construction machine.
- the calculation and the determined The recommended support opening degrees of the outriggers associated with the outrigger deployment area of the recommended support opening degree of the corresponding outrigger; or determine the recommended support opening degree of the selected outrigger in the corresponding outrigger as a specified supporting opening degree, and then determine the corresponding outrigger based on the specified supporting opening degree Recommended support opening for the remaining outriggers in .
- the specified support opening is a minimum support opening, or the specified support opening of the selected leg and the recommended support opening of the remaining legs enable the corresponding leg to complete Recommended actions for outriggers.
- the support control method for the construction machine further includes: controlling the other outriggers other than the corresponding outrigger to The deployed state or the undeployed state is supported on the ground, wherein the deployed state includes deployment with a preset allowable minimum opening.
- the supporting control of the construction machine based on the recommended supporting opening includes one or more of the following: displaying the recommended supporting opening; reminding the user to manually adjust the corresponding outrigger based on the recommended supporting opening , or control the corresponding outrigger to automatically unfold at the recommended support opening; and when the real-time support opening of the corresponding outrigger is smaller than the recommended support opening, an alarm is issued.
- the method for controlling the support of the construction machinery further includes: in the case where there are multiple target positions and each target position corresponds to the center of gravity of the entire vehicle, determining the target position for the construction machinery according to the center of gravity of the entire vehicle.
- the recommended support opening degree of the outrigger wherein the recommended support opening degree enables the support polygon formed by the support fulcrum of all the outriggers to enclose all the calculated centers of gravity of the entire vehicle.
- the supporting polygons are selected based on any one of the following for determining the recommended supporting opening: selecting the one with the smallest area.
- Support polygon select the supporting polygon with the smallest perimeter; select the supporting polygon with the smallest difference between the longest side and the shortest side when the perimeters are the same; select the supporting polygon with edges parallel to the body; In the case of a leg with a specified support opening, select a support polygon so that the support polygon satisfies the preset rules.
- the present invention also provides a support control device for a construction machine, comprising: an input module for acquiring the target position of the construction machine's bodywork for operation entered by a user; a bodywork attitude calculation module for The target position calculates the bodywork posture information under the optimal bodywork posture, wherein the optimal bodywork posture refers to the posture that makes the center of gravity of the construction machinery closest to the inner side, and the inner side refers to the distance from the center of gravity of the bodywork to the project.
- the center of gravity calculation module of the whole vehicle is used to calculate the center of gravity of the whole vehicle corresponding to the optimal bodywork posture according to the bodywork attitude information;
- the support opening calculation module is used to calculate the center of gravity of the whole vehicle.
- a recommended support opening degree for the outriggers of the construction machine is determined according to the center of gravity of the entire vehicle, wherein the recommended support opening degree is such that The distance between the edge line formed by the support fulcrum of the corresponding outrigger and the center of gravity of the whole vehicle is less than a predetermined value and the edge line is outside the center of gravity of the whole vehicle; Construction machinery for support control.
- the support opening degree calculation module is further configured to determine, according to the center of gravity of the entire vehicle, the target position for the construction machinery when there are multiple target positions and each target position corresponds to the center of gravity of the entire vehicle.
- the recommended support opening degree of the outrigger wherein the recommended support opening degree enables the support polygon formed by the support fulcrum of all the outriggers to enclose all the calculated centers of gravity of the entire vehicle.
- the present invention also provides a support control device for a construction machine, comprising: a memory, which stores a program that can be run on a processor; and the processor, which is configured to implement the above-mentioned support control method when the program is executed .
- the present invention also provides a support control system for a construction machine, comprising: a human-computer interaction device for providing a user with an input function about the target position of the bodywork of the construction machine for work and about a recommended support opening for pre-calculation and the above-mentioned support control device, which is used to obtain the target position from the human-computer interaction device, calculate the recommended support opening for the construction machinery, and use the calculated recommended support opening
- a human-computer interaction device for providing a user with an input function about the target position of the bodywork of the construction machine for work and about a recommended support opening for pre-calculation and the above-mentioned support control device, which is used to obtain the target position from the human-computer interaction device, calculate the recommended support opening for the construction machinery, and use the calculated recommended support opening
- the human-computer interaction device is provided to remind.
- the support control system of the construction machine further includes: a support opening degree detection device, which is used to detect the real-time support opening degree of each outrigger, and provide it to the support control device.
- the present invention also provides a construction machine, which includes the above-mentioned support control system.
- the present invention also provides a machine-readable storage medium, where instructions are stored on the machine-readable storage medium, and the instructions are used to cause a machine to execute the above-mentioned support control method.
- the solution of the present invention can obtain the recommended support opening required for the bodywork operation in advance, and provide guiding suggestions for support deployment based on the recommended support opening. Accordingly, the space required for outrigger deployment can be estimated in advance through the determined recommended support opening before the construction machinery arrives at the job site. Therefore, through the solution of the present invention, it is possible to know in advance whether the narrow environment meets the support requirements, and avoid the waste of time, manpower and economy caused by the construction machinery arriving at the site to repeatedly adjust the opening of the outriggers.
- FIG. 1 is a schematic flowchart of a support control method for a construction machine according to Embodiment 1 of the present invention.
- FIG. 2 is a diagram showing a mapping relationship between a target position related to a pump truck, boom attitude information, and a boom segment length vector.
- FIG. 3 is a schematic flowchart of calculating boom attitude information by using an optimization algorithm in Embodiment 1 of the present invention.
- FIG. 4( a ) and FIG. 4( b ) are diagrams respectively showing two examples of division of the outrigger deployment area in the embodiment of the present invention.
- FIG. 5( a ) is a schematic diagram of the principle of determining the recommended support opening based on the parallelism between the sideline and the vehicle body in an example of an embodiment of the present invention.
- FIG. 5(b) and FIG. 5(c) are schematic schematic diagrams of the principle of determining the recommended support opening degree of another support leg based on the minimum support opening degree of one support leg in an example of an embodiment of the present invention.
- Fig. 5(b) shows that the minimum opening of the front legs is set to determine the recommended opening of the rear legs
- Fig. 5(c) is that the minimum opening of the rear legs is set to determine the recommended opening of the front legs.
- FIG. 5(e) are schematic diagrams of the principle of determining the recommended support openings of the remaining legs based on the specified support openings of the selected legs in another example of the embodiment of the present invention.
- Fig. 5(d) shows that the designated opening degree of the front leg is set to determine the recommended opening degree of the rear leg
- Fig. 5(e) is that the designated opening degree of the rear leg is set to determine the recommended opening degree of the front leg.
- FIG. 6( e ) are schematic schematic diagrams of outriggers that correspond to FIGS. 5( a )- FIG. 5( e ) one-to-one but have an undeployed state in an embodiment of the present invention.
- Fig. 7(a)-Fig. 7(d) respectively show that the recommendation is determined based on the smallest area, the smallest perimeter, the parallel relationship between the edge and the vehicle body, and any outrigger has a specified support opening degree in the second embodiment of the present invention. Schematic diagram of the support opening.
- FIG. 8 is a schematic structural diagram of a support control device for a construction machine according to Embodiment 3 of the present invention.
- FIG. 9 is a schematic structural diagram of a support control system for a construction machine according to Embodiment 5 of the present invention.
- 100 a support control device
- 200 a human-computer interaction device
- 300 a support opening degree detection device
- an input module 120, a bodywork attitude calculation module; 130, a vehicle gravity center calculation module; 140, a support opening calculation module; 150, a control module.
- the bodywork involved in the following refers to the parts that have relative motion under the working conditions, such as the boom, the turntable, the ladder, etc.
- the embodiment of the present invention mainly refers to the boom, that is, the corresponding bodywork posture mainly refers to the boom.
- Attitude; getting off the vehicle refers to parts without relative motion such as outriggers, chassis, frame, etc.
- the embodiment of the present invention mainly relates to the recommendation of the support opening of the outriggers.
- the directional words used such as "front, rear, left, right, middle, outer” refer to the front side, rear side, Left, right, middle and outer.
- FIG. 1 is a schematic flowchart of a support control method for a construction machine according to an embodiment of the present invention, wherein the construction machine is a pump truck as an example.
- the support control method of the construction machine may include the following steps:
- Step S100 acquiring the target position of the bodywork of the construction machine input by the user for operation.
- the information of the target position can be acquired by means of user input.
- the target position can in principle be arbitrarily determined within the bodywork planning work area.
- the target position is preferably the extreme position of the bodywork planning operation.
- the extremely far position of the bodywork planning operation for example, in the same direction (rotation angle), there may be multiple distribution points such as A, B, C, and D.
- point D is the farthest point when the pump truck distributes in this area. If the material for point D can be satisfied, the material for other points can be satisfied. Therefore, the position of the D point is called the extreme position of the bodywork planning operation, such as the position of the concrete planning pouring point.
- the extreme position of the bodywork plan is, for example, a ladder target position.
- Step S200 Calculate the bodywork posture information under the optimal bodywork posture according to the target position.
- the optimal bodywork posture refers to the posture in which the center of gravity of the construction machine is closest to the inner side, and the inner side refers to the side where the distance between the center of gravity of the bodywork and the projection distance of the center of rotation of the construction machine is smaller.
- this step S200 may include: step S210, obtaining the mapping relationship between the target position and the bodywork attitude information and bodywork structure parameters; and step S220, according to the mapping relationship, in the known Under the condition that the target position, the structural parameters of the bodywork are known, and the optimal bodywork posture is used as the optimal criterion, an optimization algorithm is used to calculate the bodywork posture information.
- FIG. 2 is a diagram showing the mapping relationship between the target position involved in the pump truck, the boom attitude information, and the boom segment length vector.
- the bodywork attitude information such as boom inclination, boom extension, turntable rotation angle, etc.
- the three-dimensional coordinates P( ⁇ , d, h) of a cylindrical coordinate system are described, where ⁇ is the rotation angle, d is the distance from the projection of the cloth point on the horizontal plane to the rotation center, and h is the height of the cloth point from the horizontal
- the distribution point P has a corresponding mapping relationship with the boom attitude vector ⁇ and the boom segment length vector L as shown in the following formula (1), where the boom segment length vector L(l 1 ,l 2 ,l 3 , l 4 , l 5 , l 6 ) are the structural parameters of the boom of the pump truck:
- FIG. 3 is a schematic flowchart of calculating boom posture information by using an optimization algorithm in an embodiment of the present invention.
- the distribution point P when the distribution point P is known, there are often multiple vectors ⁇ that make equation (1) true, that is, the inverse solution of ⁇ by P is a multi-solution problem, and an additional criterion is needed to screen the solution set and find a solution that satisfies optimal solution to the condition.
- the following iterative algorithms and criteria can be used to calculate the boom attitude information:
- Step S302 calculate
- Step S303 input the cloth point Pe , and calculate the distance D between P and Pe .
- Step S304 judge whether D ⁇ Dmin is established, if not, then execute step SS305, otherwise, it is considered that a set of solutions has been found. And calculate the center of gravity GB of the boom according to this group of solutions.
- D min is the distance threshold value for judging reaching the cloth point, and it is preferably 500 mm.
- Step S305, ⁇ 6 is incremented by deta.
- deta is the incremental value of the included angle, preferably 1°.
- Step S306 determine whether ⁇ 6 is out of range, if not, return to step S302, otherwise, execute step S307.
- the range of ⁇ i refers to the value range of the angle between the arm of the i-th section and the arm of the previous section.
- the range is limited by the boom link and cylinder stroke, such as the value range of ⁇ 1 [0°, 90°], and the value range of ⁇ 2 [-180°, 0°].
- step S307 ⁇ 6 is restored to the initial value and ⁇ 5 is increased by deta, and according to this, in the order of ⁇ 5 to ⁇ 1 , the above steps S305-S307 are repeated for different ⁇ i iterations until it is finally determined that ⁇ 1 is out of range. Go to step S310.
- Step S308 according to the found solution Calculate the center of gravity GB of the boom.
- Step S309 determine whether the center of gravity GB is on the inner side, and if so, save the set of solutions. and execute step S310, otherwise discard the solution
- the inner side of the center of gravity GB is the judgment condition for the choice of the solution, wherein the side with the smaller projected distance between the center of gravity of the boom and the center of rotation is the inner side (reserved), and the side with the larger projected distance between the center of gravity of the boom and the center of rotation is the outer side (give up).
- step S310 when both the center of gravity GB is inward and ⁇ 1 is out of range, the optimal solution ⁇ is output.
- Step S300 Calculate the center of gravity of the entire vehicle corresponding to the optimal bodywork posture according to the bodywork posture information.
- the center of gravity of the entire vehicle under the optimal posture can be calculated.
- the center of gravity of the whole vehicle includes two parts: the center of gravity of the dismounting vehicle and the center of gravity of the upper assembly.
- the center of gravity of the dismounting vehicle is generally known and fixed.
- the method of calculating the center of gravity of the whole vehicle according to the center of gravity of the disembarkation, the structure of the bodywork and the posture of the bodywork is conventional in the prior art, so it will not be detailed here. described.
- Step S400 in the case that there is a unique target position and its corresponding center of gravity of the entire vehicle, determine a recommended support opening degree for the outriggers of the construction machine according to the center of gravity of the entire vehicle.
- the recommended support opening is such that the distance between the edge line formed by the support fulcrum of the corresponding outrigger and the center of gravity of the entire vehicle is less than a predetermined value and the edge line is outside the center of gravity of the entire vehicle.
- the predetermined value is preferably any value from 0 to 500 mm, more preferably any value from 300 mm to 400 mm.
- the inner side of the center of gravity (the direction away from the sideline or close to the center of rotation) is the optimal direction.
- the optimal solution means that among all possible bodywork postures, the posture that makes the center of gravity of the whole vehicle most inward, can be called the center of gravity of the whole vehicle of the optimal solution as the center of extreme inner weight.
- the edge line formed by the support fulcrum of the corresponding leg is close to and is on the outside of the center of the limit inner body (in the case of strict requirements, the edge line can just pass through the center of the limit inner body), the corresponding support opening The value is the limit minimum opening. If the support opening is less than the limit minimum opening, the vehicle bodywork cannot safely reach the extreme position of the bodywork plan.
- the extreme minimum opening degree at this time is the recommended support opening degree concerned by the embodiment of the present invention.
- step S400 it may include: step S410, determining the outrigger deployment area of the construction machine where the center of gravity of the complete vehicle is located; and step S420, calculating the outrigger expansion area associated with the determined outrigger deployment area. Recommended support opening.
- FIG. 4( a ) and FIG. 4( b ) respectively show two examples of division of the outrigger deployment area in the embodiment of the present invention.
- the outrigger deployment area can be divided into a front area, a left area, a right area, and the front area, the The left area and the outer area outside the right area.
- Fig. 4(b) on the basis of the four regions divided in Fig. 4(a), it may also include a middle region corresponding to the main body of the construction machine.
- the legs associated with the front area are the left front leg and the right front leg
- the legs associated with the left area are the left front leg and the left rear leg
- the legs associated with the right area are the right front leg and the right rear leg
- the legs associated with the outer area and the middle area may be all legs.
- step S420 preferably includes: making there In the case where the edge line formed by the supporting fulcrum of the corresponding outrigger is parallel to the body of the construction machine, use the corresponding parallel relationship to calculate the recommended supporting opening of the corresponding outrigger;
- the recommended support opening degree of the selected outrigger is determined as the designated support opening degree, and then the recommended support opening degrees of the remaining outriggers in the corresponding outrigger are determined based on the designated support opening degree.
- the remaining legs are legs other than the selected legs.
- the recommended support opening scheme of the outriggers. 5(a)-FIG. 5(e) and FIG. 6(a)-FIG. 6(e) are taken as examples to determine the recommended support opening of the outrigger associated with the left area, that is, the left front outrigger and Take the left rear outrigger as an example.
- other outriggers other than the control left front outrigger and the left rear outrigger in Fig. 5(a)-Fig. 5(e) are supported on the ground in an unfolded state.
- the outriggers other than the left front outrigger and the left rear outrigger are controlled to be supported on the ground in an undeployed state, and the deployed state includes deployment at a preset minimum allowable opening degree .
- FIG. 5( a ) is a schematic diagram of the principle of determining the recommended support opening based on the parallelism between the sideline and the vehicle body in an example of an embodiment of the present invention.
- the edge line corresponding to the limit inner body center 501 that satisfies the requirements is referred to as the limit support edge 502 .
- the limit support edge 502 cannot be farther than the maximum support edge 503 corresponding to the outrigger.
- the limit support edge 502 together with the adjacent edge determines the recommended support opening.
- FIG. 5( a ) when the limit support edge line 502 is parallel to the vehicle body, it is easy to know that the recommended support opening degrees of the two outriggers are easy to determine.
- FIG. 5(b) and FIG. 5(c) are schematic diagrams of the principle of determining the recommended support opening degree of another outrigger based on the minimum support opening degree of one outrigger in an example of an embodiment of the present invention, that is, the minimum support opening degree of the other outrigger is determined by the minimum
- the support opening is the specified support opening as described above.
- Fig. 5(b) shows that the minimum opening of the front legs is set to determine the recommended opening of the rear legs
- Fig. 5(c) is that the minimum opening of the rear legs is set to determine the recommended opening of the front legs.
- the recommended support opening of the other leg is easy to determine.
- FIG. 5(d) and FIG. 5(e) are schematic diagrams of the principle of determining the recommended support openings of the remaining legs based on the specified support openings of the selected legs in another example of the embodiment of the present invention.
- the specified support opening degree of the selected outrigger and the recommended support opening degree of the remaining outriggers enable the corresponding outrigger to complete the recommended action for the outrigger. That is, through this recommended action, a constraint relationship is formed between the two legs.
- Fig. 5(d) shows that the designated opening degree of the front leg is set to determine the recommended opening degree of the rear leg
- Fig. 5(e) is that the designated opening degree of the rear leg is set to determine the recommended opening degree of the front leg.
- FIG. 6(a)-FIG. 6(e) and FIG. 5(a)-FIG. 5(e) belong to a one-to-one correspondence relationship.
- Fig. 6(a)-Fig. 6(e) cooperate with Fig. 5(a)-Fig. 5(e), on the one hand, it shows that the embodiment of the present invention can be determined based on the parallel relationship between the sideline and the vehicle body and the specified support opening.
- the recommended support opening of the corresponding outrigger whose opening is to be recommended on the other hand, also shows that the support control method of the embodiment of the present invention does not require the deployment state of other outriggers other than the corresponding outrigger whose opening is to be recommended. It can be deployed arbitrarily or not, as long as it can be supported on the ground.
- Step S500 performing support control on the construction machine based on the recommended support opening.
- this step S500 may include one or more of the following: displaying the recommended support opening; reminding the user to manually adjust the corresponding outrigger based on the recommended support opening, or controlling the corresponding outrigger to adjust the recommended support opening at the recommended support opening. and when the real-time support opening of the corresponding outrigger is smaller than the recommended support opening, an alarm is issued.
- the display, reminder and alarm can be realized by configuring a display, an alarm, etc., so that the user can know the support condition of the construction machinery in time, so as to facilitate manual or automatic control.
- the alarm is realized by comparing the recommended support opening with the real-time support opening.
- the real-time support opening is smaller than the recommended support opening, the user will be warned through the display screen, etc., to remind the user that the upper body under the current support opening cannot reach the extreme position of the operation and should be adjusted.
- the actual support opening can be obtained by detection means, such as using a rope sensor, a swing angle sensor, an oil cylinder displacement sensor, machine vision, a laser range finder, etc., the real-time support opening of the outrigger can be obtained.
- the calculation of the recommended support opening degree is completed through steps S100-S500, and the user can control the support of the outrigger to the construction machine based on the recommended support opening degree, so as to enable the construction machine to carry out the bodywork plan to meet the user's needs the goal of.
- the support control method for a construction machine can obtain the recommended support opening required for the bodywork operation in advance, and provide guiding suggestions for support deployment based on the recommended support opening. Based on this, the space required for outrigger deployment can be estimated in advance through the determined recommended support opening before the construction machinery arrives at the job site, so that it can be known in advance whether the narrow environment meets the support requirements. Therefore, the solution of the embodiment of the present invention can avoid the waste of time, manpower, economy, etc. caused by the construction machinery arriving at the site to repeatedly adjust the opening degree (support position) of the outriggers.
- step S400 is mainly for the case where the target position is unique.
- the step S400 can be modified to target multiple target positions. For example, in an operation, the user may input three target positions A, B, and C in succession, in order to expect the construction machine to complete the fabrics for the three target positions A, B, and C in sequence. In this case, if the solution of the first embodiment is adopted, and the recommended support opening of the corresponding outrigger is determined for the three target positions A, B, and C respectively, it is necessary to control the deployment of the outrigger at least three times, so that the operation is relatively cumbersome.
- the second embodiment provides a support control method for a construction machine, which, on the basis of the first embodiment, further includes: when there are a plurality of the target positions and each target position corresponds to the center of gravity of the entire vehicle Under the circumstance, the recommended supporting opening degree for the outriggers of the construction machine is determined according to the center of gravity of the whole vehicle, wherein the recommended supporting opening degree enables the supporting polygon formed by the supporting fulcrums of all the outriggers to encompass all the calculated integrals. car center of gravity.
- the supporting polygons can be selected based on any one of the following for determining The recommended support opening:
- any leg has a specified support opening, select a support polygon so that the support polygon satisfies the preset rule.
- the "preset rules" include the minimum area of the supporting polygon, the minimum perimeter, the parallel body, and the like, which are not limited in this embodiment of the present invention.
- FIG. 7(a)-Fig. 7(d) A schematic diagram of the principle of determining the recommended support opening based on the smallest area, the smallest perimeter, the parallel relationship between the edge and the vehicle body, and the specified support opening of any outrigger in the example of the embodiment of the present invention is shown. understand.
- the formed support quadrilateral completely surrounds the center of all extreme inner sides and has the smallest area, according to which the recommended support opening of the four outriggers can be determined.
- the quadrilateral area is the smallest, so that the space required for the support can be reduced as much as possible on the basis of ensuring the safety of the support.
- the formed support quadrilateral completely surrounds the center of all extreme inner sides and has the smallest perimeter. According to this, the recommended support opening of the four legs can be determined. Among them, in the above point 3), when the perimeter is the same, the solution of selecting the supporting polygon with the smallest difference between the longest side and the shortest side can be understood with reference to FIG. 7(b).
- the formed support quadrilateral completely surrounds all extreme inner center centers, and the edge between the two left legs is parallel to the vehicle body. According to this, four Recommended support opening for outriggers.
- the formed support quadrilateral completely surrounds all extreme inner center centers, and the left front leg has a specified support opening.
- There are rules such as sidelines parallel to the body to determine the recommended brace opening for the remaining three outriggers.
- FIGS. 7( a ) to 7 ( d ) are exemplary, and if the quadrilaterals that meet the requirements are not unique, one of the supporting polygons can be arbitrarily determined, which is not limited in this embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of a support control device for a construction machine according to Embodiment 3 of the present invention.
- the support control device and the support control method of the above-mentioned embodiment are based on the same inventive idea.
- the support control device 100 of the construction machine may include: an input module 110 for acquiring the target position of the bodywork of the construction machine inputted by the user for operation; a bodywork attitude calculation module 120 for The target position calculates the bodywork posture information under the optimal bodywork posture, wherein the optimal bodywork posture refers to the posture that makes the center of gravity of the whole vehicle of the construction machinery closest to the inner side, and the inner side refers to the distance from the center of gravity of the bodywork to the The side with the smaller projection distance of the center of rotation of the construction machinery; the vehicle center of gravity calculation module 130 is used to calculate the center of gravity of the entire vehicle corresponding to the optimal bodywork posture according to the bodywork posture information; the support opening calculation module 140 , for determining the recommended support opening degree for the outriggers of the construction machinery according to the center of gravity of the entire vehicle when there is a unique target position and its corresponding center of gravity of the entire vehicle, wherein the recommended support The opening degree is such that the distance between the edge line formed by the supporting ful
- the input module 110 can communicate with the human-computer interaction device to receive one or more target positions input by the user through the human-computer interaction device.
- the bodywork attitude calculation module 120 includes: a mapping relationship acquisition unit for acquiring the mapping relationship between the target position, the bodywork attitude information and the bodywork structure parameters; and an optimal attitude calculation unit for For the mapping relationship, under the condition that the target position is known, the structural parameters of the bodywork are known, and the optimal bodywork posture is used as the optimal criterion, an optimization algorithm is used to calculate the bodywork posture information.
- a mapping relationship acquisition unit for acquiring the mapping relationship between the target position, the bodywork attitude information and the bodywork structure parameters
- an optimal attitude calculation unit for For the mapping relationship, under the condition that the target position is known, the structural parameters of the bodywork are known, and the optimal bodywork posture is used as the optimal criterion, an optimization algorithm is used to calculate the bodywork posture information.
- the support opening degree calculation module 140 is further configured to determine the target position for the construction machine according to the center of gravity of the entire vehicle when there are multiple target positions and each target position corresponds to the center of gravity of the entire vehicle.
- the recommended support opening of the outriggers is further configured to determine the target position for the construction machine according to the center of gravity of the entire vehicle when there are multiple target positions and each target position corresponds to the center of gravity of the entire vehicle.
- the recommended support opening of the outriggers is further configured to determine the target position for the construction machine according to the center of gravity of the entire vehicle when there are multiple target positions and each target position corresponds to the center of gravity of the entire vehicle.
- the recommended support opening of the outriggers is further configured to determine the target position for the construction machine according to the center of gravity of the entire vehicle when there are multiple target positions and each target position corresponds to the center of gravity of the entire vehicle.
- the fourth embodiment of the present invention also provides a support control device for a construction machine, including: a memory, which stores a program that can be run on a processor; and the processor, which is configured to implement the above when executing the program. support control method.
- the support control device includes a processor and a memory, and the input module 110, the bodywork attitude calculation module 120, the vehicle gravity center calculation module 130, the support opening calculation module 140, and the control module 150 are all stored in the memory as program units. , the processor executes the above program unit stored in the memory to realize the corresponding function.
- the support control device may be a conventional device with computing capability and data sensing capability, such as PLC, single-chip computer, PC, controller, and the like.
- the processor includes a kernel, and the kernel calls the corresponding program unit from the memory.
- One or more kernels may be set, and the support control involved in the embodiments of the present invention may be implemented by adjusting kernel parameters.
- Memory may include non-persistent memory in computer readable media, random access memory (RAM) and/or non-volatile memory, such as read only memory (ROM) or flash memory (flash RAM), the memory including at least one memory chip.
- RAM random access memory
- ROM read only memory
- flash RAM flash memory
- FIG. 9 is a schematic structural diagram of a support control system for a construction machine according to Embodiment 5 of the present invention.
- the system may include: a human-computer interaction device 200 for providing the user with an input function regarding the target position of the bodywork of the construction machine for work and a reminder function regarding the pre-calculated recommended support opening. ; And the above-mentioned arbitrary support control device 100 is used to obtain the target position from the human-computer interaction device, and calculate the recommended support opening for the outriggers of the construction machinery, and the calculated recommended support The opening degree is provided to the human-computer interaction device for reminder.
- the human-computer interaction device 200 is a device that can perform manual input and display, such as a display screen, a touch screen, a tablet computer, a mobile phone and other devices with an input function. These devices can display recommended support information to the user in a graphical information window.
- the support control device 100 reference may be made to the other embodiments described above, and details are not described herein again.
- the support control system of the construction machine may further include: a support opening degree detection device 300 for detecting the real-time support opening degree of each outrigger and providing it to the support control device 100 .
- a support opening degree detection device 300 for detecting the real-time support opening degree of each outrigger and providing it to the support control device 100 .
- the support control device 100 may further include: a support opening degree detection device 300 for detecting the real-time support opening degree of each outrigger and providing it to the support control device 100 .
- a support opening degree detection device 300 for detecting the real-time support opening degree of each outrigger and providing it to the support control device 100 .
- the support control device 100 for example, provided to the support control device 100 to enable comparison of real-time support opening and recommended support opening.
- the support opening detection device 300 is, for example, a rope sensor, a swing angle sensor, a cylinder displacement sensor, a machine vision, a laser range finder and other sensors or a combination thereof, and the corresponding support can be obtained by comprehensively processing the data detected by each sensor.
- the leg supports the opening in real time.
- inventions of the present invention also provide a construction machine, where the construction machine includes the above-mentioned support control system.
- the construction machinery is, for example, a pump truck, a crane, a fire truck, and the like.
- inventions of the present invention further provide a machine-readable storage medium, where instructions are stored on the machine-readable storage medium, and the instructions are used to cause a machine to execute the above-mentioned support control method.
- the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
- computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
- These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
- the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
- a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
- processors CPUs
- input/output interfaces network interfaces
- memory volatile and non-volatile memory
- Memory may include non-persistent memory in computer readable media, random access memory (RAM) and/or non-volatile memory in the form of, for example, read only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
- RAM random access memory
- ROM read only memory
- flash RAM flash memory
- Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology.
- Information may be computer readable instructions, data structures, modules of programs, or other data.
- Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
- computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Operation Control Of Excavators (AREA)
- Jib Cranes (AREA)
Abstract
一种工程机械的支撑控制方法、装置、系统及介质,所述控制方法包括:获取用户输入的工程机械的上装进行作业的目标位置;根据目标位置计算最优上装姿态下的上装姿态信息,其中最优上装姿态是指使得工程机械的整车重心最靠近内侧的姿态,且内侧是指上装重心距离距工程机械的回转中心投影距离小的一侧;根据上装姿态信息,计算对应于最优上装姿态的整车重心;以及根据整车重心计算针对工程机械的支腿的推荐支撑开度,其中推荐支撑开度使得相应支腿的支撑支点形成的边线与所述整车重心之间的距离小于预定值并且处于整车重心的外侧。该工程机械的支撑控制方法可以预先得到上装作业所需的推荐支撑开度,从而对支撑展开提供指导性建议。
Description
相关申请的交叉引用
本申请要求2020年11月17日提交的中国专利申请202011287217.7的权益,该申请的内容通过引用被合并于本文。
本发明涉及工程机械领域,具体地涉及一种工程机械的支撑控制方法、装置、系统及介质。
专业、特种车辆等工程机械(如泵车、起重机、消防车等)一般包括上装和下车两部分,其中上装是指臂架、转台、云梯等在作业工况下具有相对运动的部分,而下车是指支腿、底盘、车架等无相对运动的部分。其中,支腿用于保障车辆安全稳定性,其支撑开度对于上装进行作业至关重要。举例而言,在有限空间中支腿无法全部打开情况下,需要及时判断车辆是否能够安全展开上装进行作业。
但是,现有技术对于支腿支撑的检测或控制主要集中在支撑调平、支撑展开过程的调速、支撑开度的检测等方面,没有涉及对实现作业支撑所需满足的最小开度的推荐。因此,车辆设备入场后可能因为反复调整支撑状态而导致效率低下,甚至不正确的支撑状态会导致设备倾翻。
发明内容
本发明实施例的目的是提供一种工程机械的支撑控制方法、装置、系统及介质,用于至少部分地解决上述技术问题。
为了实现上述目的,本发明实施例提供一种工程机械的支撑控制方法,包括:获取用户输入的所述工程机械的上装进行作业的目标位置;根据所述目标位置计算最优上装姿态下的上装姿态信息,其中所述最优上装姿态是指使得所述工程机械的整车重心最靠近内侧的姿态,且所述内侧是指上装重心距离距所述工程机械的回转中心投影距离小的一侧;根据所述上装姿态信息,计算对应于所述最优上装姿态的所述整车重心;在存在唯一的所述目标位置及其对应的所述整车重心的情况下,根据所述整车重心确定针对所述工程机械的支腿的推荐支撑开度,其中所述推荐支撑开度使得相应支腿的支撑支点形成的边线与所述整车重心之间的距离小于预定值并且该边线处于所述整车重心的外侧;以及基于所述推荐支撑开度对所述工程机械进行支撑控制。
进一步的,所述根据所述目标位置计算最优上装姿态下的上装姿态信息包括:获取所述目标位置与所述上装姿态信息及上装结构参数之间的映射关系;以及根据所述映射关系,在已知所述目标位置、已知所述上装结构参数且将所述最优上装姿态作为最优判据的条件下,采用最优化算法计算所述上装姿态信息。
进一步的,所述根据所述整车重心确定针对所述工程机械的支腿的推荐支撑开度包括:确定所述整车重心所在的所述工程机械的支腿展开区域;以及计算与所确定的支腿展开区域相关联的支腿的推荐支撑开度。
进一步的,所述支腿展开区域包括以所述工程机械为参照的前侧区域、左侧区域、右侧区域以及在所述前侧区域、所述左侧区域和所述右侧区域之外的外部区域。
进一步的,所述支腿展开区域还包括所述工程机械的主体部分对应的中部区域。
进一步的,在满足所述相应支腿的支撑支点形成的边线与所述整车重心之间的距离小于预定值并且该边线处于所述整车重心的外侧的条件下,所述计算与所确定的支腿展开区域相关联的支腿的推荐支撑开度包括:在使得存在相应支腿的支撑支点形成的边线与所述工程机械的车身相平行的情况下,利用对应的平行关系计算所述相应支腿的所述推荐支撑开度;或者将所述相应支腿中的选定支腿的推荐支撑开度确定为指定支撑开度,再基于所述指定支撑开度确定所述相应支腿中的剩余支腿的推荐支撑开度。
进一步的,所述指定支撑开度是最小支撑开度,或者所述选定支腿的所述指定支撑开度与所述剩余支腿的所述推荐支撑开度使得所述相应支腿能够完成针对支腿的推荐动作。
进一步的,在所述计算所确定的支腿展开区域相关联的支腿的推荐支撑开度之后,所述工程机械的支撑控制方法还包括:控制所述相应支腿之外的其他支腿以展开状态或未展开状态支撑于地面,其中所述展开状态包括以预设的允许最小开度展开。
进一步的,所述基于所述推荐支撑开度对所述工程机械进行支撑控制包括以下一者或多者:显示所述推荐支撑开度;提醒用户基于所述推荐支撑开度手动调节对应支腿,或者控制对应支腿以所述推荐的支撑开度自动展开;以及在对应支腿的实时支撑开度小于所述推荐支撑开度时,进行报警。
进一步的,所述工程机械的支撑控制方法还包括:在存在多个所述目标位置且各个目标位置各自对应有所述整车重心的情况下,根据所述整车重心确定针对所述工程机械的支腿的推荐支撑开度,其中所述推荐支撑开度使得所有支腿的支撑支点形成的支撑多边形能够包围所计算的所有整车重心。
进一步的,在存在多个能够包围所述所有整车重心的所述支撑多边形的情况下,基于以下任意一者来选择所述支撑多边形以用于确定所述推荐支撑开度:选择面积最小的支撑多边形;选择周长最小的支撑多边形;在周长相同的情况下,选择最长边与最短边的差值最小的支撑多边形;选择具有与车身相平行的边线的支撑多边形;以及在任意支腿具有指定支撑开度的情况下,选择支撑多边形以使该支撑多边形满足预设规则。
另一方面,本发明还提供一种工程机械的支撑控制装置,包括:输入模块,用于获取用户输入的所述工程机械的上装进行作业的目标位置;上装姿态计算模块,用于根据所述目标位置计算最优上装姿态下的上装姿态信息,其中所述最优上装姿态是指使得所述工程机械的整车重心最靠近内侧的姿态,且所述内侧是指上装重心距离距所述工程机械的回转中心投影距离小的一侧;整车重心计算模块,用于根据所述上装姿态信息,计算对应于所述最优上装姿态的所述整车重心;支撑开度计算模块,用于在存在唯一的所述目标位置及其对应的所述整车重心的情况下,根据所述整车重心确定针对所述工程机械的支腿的推荐支撑开度,其中所述推荐支撑开度使得相应支腿的支撑支点形成的边线与所述整车重心之间的距离小于预定值并且该边线处于所述整车重心的外侧;以及控制模块,用于基于所述推荐支撑开度对所述工程机械进行支撑控制。
进一步的,所述支撑开度计算模块还用于在存在多个所述目标位置且各个目标位置各自对应有所述整车重心的情况下,根据所述整车重心确定针对所述工程机械的支腿的推荐支撑开度,其中所述推荐支撑开度使得所有支腿的支撑支点形 成的支撑多边形能够包围所计算的所有整车重心。
本发明还提供一种工程机械的支撑控制装置,包括:存储器,其存储有能够在处理器上运行的程序;以及所述处理器,其被配置为执行所述程序时实现上述的支撑控制方法。
本发明还提供一种工程机械的支撑控制系统,包括:人机交互装置,用于向用户提供关于所述工程机械的上装进行作业的目标位置的输入功能以及关于针对预计算的推荐支撑开度的提醒功能;以及上述的支撑控制装置,用于从所述人机交互装置获取所述目标位置,并计算出针对所述工程机械的推荐支撑开度,以及将所计算出的推荐支撑开度提供给所述人机交互装置进行提醒。
进一步的,所述工程机械的支撑控制系统还包括:支撑开度检测装置,用于检测各支腿的实时支撑开度,并提供给所述支撑控制装置。
本发明还提供一种工程机械,所述工程机械包括上述的支撑控制系统。
本发明还提供一种机器可读存储介质,所述机器可读存储介质上存储有指令,该指令用于使得机器执行上述的支撑控制方法。
通过上述技术方案,本发明方案可以预先得到上装作业所需的推荐支撑开度,并基于该推荐支撑开度对支撑展开提供指导性建议。据此,可在工程机械在抵达作业现场前,通过确定的推荐支撑开度来提前预估支腿展开所需空间。因此,通过本发明方案,可提前了解狭小环境是否满足支撑要求,避免工程机械抵达现场反复调整支腿开度所造成的时间、人力、经济等方面的浪费。
本发明实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图是用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施例,但并不构成对本发明实施例的限制。在附图中:
图1是本发明实施例一的工程机械的支撑控制方法的流程示意图。
图2是示出泵车涉及的目标位置、臂架姿态信息及臂节长度向量之间的映射关系的图。
图3是本发明实施例一中采用最优化算法计算臂架姿态信息的流程示意图。
图4(a)和图4(b)是分别示出了本发明实施例中关于支腿展开区域的两种划分示例的图。
图5(a)是本发明实施例的示例中基于边线与车身的平行确定推荐支撑开度的原理示意图。图5(b)和图5(c)是本发明实施例的一示例中基于一个支腿的最小支撑开度确定另一个支腿的推荐支撑开度的原理示意图。其中,图5(b)是设定了前腿最小开度以确定后腿推荐开度,图5(c)是设定了后腿最小开度以确定前腿推荐开度。图5(d)和图5(e)是本发明实施例的另一示例中基于选定支腿的指定支撑开度来确定剩余支腿的推荐支撑开度的原理示意图。其中,图5(d)是设定了前腿指定开度以确定后腿推荐开度,图5(e)是设定了后腿指定开度以确定前腿推荐开度。
图6(a)-图6(e)是本发明实施例中与图5(a)-图5(e)一一对应但存在未展开状态的支腿的原理示意图。
图7(a)-图7(d)是分别示出了本发明实施例二的示例中基于面积最小、周长最小、边线与车身的平行关系以及任意支腿具有指定支撑开度来确定推荐支 撑开度的原理示意图。
图8是本发明实施例三的工程机械的支撑控制装置的结构示意图。
图9是本发明实施例五的一种工程机械的支撑控制系统的结构示意图。
附图标记说明
501、极限内侧重心;502、极限支撑边线;503、最大支撑边线;
100、支撑控制装置;200、人机交互装置;300、支撑开度检测装置;
110、输入模块;120、上装姿态计算模块;130、整车重心计算模块;140、支撑开度计算模块;150、控制模块。
以下结合附图对本发明实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明实施例,并不用于限制本发明实施例。
需说明的是,下文涉及的上装是指臂架、转台、云梯等在作业工况下具有相对运动的部分,而本发明实施例主要是指臂架,即对应的上装姿态主要是指臂架姿态;下车是指支腿、底盘、车架等无相对运动的部分,而本发明实施例主要涉及对于其中的支腿的支撑开度的推荐。另外,在本发明实施例中,在未作相反说明的情况下,使用的方位词,如“前、后、左、右、中、外”是指图中相应轮廓的前侧、后侧、左侧、右侧、中部和外部。
实施例一
图1是本发明实施例的工程机械的支撑控制方法的流程示意图,其中所述工程机械以泵车为例。如图1所示,所述工程机械的支撑控制方法可以包括以下步骤:
步骤S100,获取用户输入的所述工程机械的上装进行作业的目标位置。
其中,在上装作业区域已知的情况下,可通过用户输入的方式获取所述目标位置的信息。另外,所述目标位置原则上可在上装计划作业区域内任意确定。但在实际中,该目标位置优选采用上装计划作业极远位置。对于所述上装计划作业极远位置,举例而言,在同一个方向(回转角度)下,可以有A、B、C、D等多个布料点。其中,D点是泵车在该区域进行布料时的最远点,若能满足针对D点的布料,则针对其他点的布料都可以满足。因此将该D点的位置称为上装计划作业极远位置,例如混凝土计划浇筑点位置。另外,针对消防车辆,上装计划极远位置例如是云梯目标位置。这些对于本领域技术人员是可以理解的,在此不再赘述。
步骤S200,根据所述目标位置计算最优上装姿态下的上装姿态信息。
其中,所述最优上装姿态是指使得所述工程机械的整车重心最靠近内侧的姿态,且所述内侧是指上装重心距离距所述工程机械的回转中心投影距离小的一侧。
在优选的实施例中,该步骤S200可以包括:步骤S210,获取所述目标位置与所述上装姿态信息及上装结构参数之间的映射关系;以及步骤S220,根据所述映射关系,在已知所述目标位置、已知所述上装结构参数且将所述最优上装姿态作为最优判据的条件下,采用最优化算法计算所述上装姿态信息。
针对步骤S210,举例而言,图2是示出泵车涉及的目标位置、臂架姿态信息及臂节长度向量之间的映射关系的图。
参考步骤S100及步骤S200,易知可根据上装计划作业极远位置计算得到上 装姿态信息,如臂架倾角、臂架伸长量、转台转角等信息。在此,以六节臂泵车为例,泵车的臂架姿态信息可由一个7维向量θ(θ
0,θ
1,θ
2,θ
3,θ
4,θ
5,θ
6)描述,其中θ
0为回转角度,θ
i(i=1,2...6)为第i节节臂与第i-1节节臂间的夹角;泵车的混凝土浇筑点(即目标位置)可由一个柱坐标系的三维坐标P(α,d,h)描述,其中α为回转角度,d为布料点在水平面投影距回转中心的距离,h为布料点距水平面的高度。
从图2可知,布料点P与臂架姿态向量θ和臂节长度向量L有着对应的如下面的式(1)所示的映射关系,其中臂节长度向量L(l
1,l
2,l
3,l
4,l
5,l
6)为泵车臂架的结构常参数:
P=f(θ,L) (1)
针对步骤S220,承接图2的示例,图3是本发明实施例中采用最优化算法计算臂架姿态信息的流程示意图。参考图3,当已知布料点P时,往往存在多个向量θ使式(1)成立,即由P反解θ是一个多解问题,需要一个额外判据对解集进行筛选,找到满足条件的最优解。具体地,如图3所示,可采用以下迭代算法和判据计算出臂架姿态信息:
其中,在结构参数L已知的情况下,可参考式(1)进行该计算。
步骤S303,输入布料点P
e,计算P与P
e的距离D。
其中,D
min是判断到达布料点的距离阈值,优选为500mm。
步骤S305,θ
6增加deta。
其中,deta为夹角增量值,优选为1°。
步骤S306,判断θ
6是否超出范围,若没有则返回步骤S302,否则执行步骤S307。
其中,θ
i范围指第i节臂与前一节臂夹角的取值范围。该范围受臂架连杆和油缸行程限制,如θ
1取值范围[0°,90°],θ
2取值范围[-180°,0°]。
步骤S307,θ
6恢复初值且θ
5增加deta,且据此开始,按照θ
5至θ
1的顺序,针对不同θ
i迭代重复上述的步骤S305-S307直到最终判定θ
1超出范围,至转至步骤S310。
具体地,重心G
B靠内侧是进行解的取舍的判断条件,其中臂架重心距回转中心投影距离小的一侧为内侧(保留),臂架重心距回转中心投影距离大的一侧为外侧(舍弃)。
步骤S310,在满足重心G
B靠内侧和θ
1超出范围这两者的情况下,输出最优解θ。
需说明的是,图3示出的臂架姿态反解只是一种示例的可行最优化算法,也可使用其他优化反解算法和其他最优解判据来得到臂架姿态向量(信息)。
返回至上文的步骤S100及步骤S200,下面继续介绍本发明实施例的工程机械的支撑控制方法的后续步骤S300和步骤S400。
步骤S300,根据所述上装姿态信息,计算对应于所述最优上装姿态的所述整车重心。
承接于图3的示例,在反解出最优解θ之后,可计算出最优姿态下的整车重心。需说明的是,整车重心包括下车重心和上装重心两个部分,下车重心一般是固定已知,上装重心取决于上装结构和上装姿态,而上装结构一般也是固定已知的。并且,在本发明实施例得到上装姿态信息的情况下,本领域技术人员根据下车重心、上装结构和上装姿态来计算整车重心的方法在现有技术中是常规的,故此处不再详述。
步骤S400,在存在唯一的所述目标位置及其对应的所述整车重心的情况下,根据所述整车重心确定针对所述工程机械的支腿的推荐支撑开度。
其中,所述推荐支撑开度使得相应支腿的支撑支点形成的边线与所述整车重心之间的距离小于预定值并且该边线处于所述整车重心的外侧。举例而言,所述预定值优选为0至500mm中的任意值,更为优选为300mm至400mm中的任意值。
举例而言,根据图3中所示的姿态取舍判据,在满足上装达到作业极远位置的前提条件下,重心内侧(远离边线或靠近回转中心的方向)为优化方向。最优解(最优姿态)意味着在所有可能的上装姿态中,令整车重心最靠内侧的姿态,可称最优解的整车重心为极限内侧重心。当相应支腿的支撑支点形成的边线靠近并处于所述极限内侧重心的外侧(在要求严格的情况下,可使所述边线刚好穿过所述极限内侧重心)时,所对应的支撑开度值为极限最小开度。若支撑开度小于极限最小开度,则车辆上装无法安全到达上装计划作业极远位置。此时的极限最 小开度即为本发明实施例所关注的推荐支撑开度。
进一步的,对于步骤S400,可以包括:步骤S410,确定所述整车重心所在的所述工程机械的支腿展开区域;以及步骤S420,计算与所确定的支腿展开区域相关联的支腿的推荐支撑开度。
对于步骤S410,举例而言,图4(a)和图4(b)分别示出了本发明实施例中关于支腿展开区域的两种划分示例。其中,如图4(a)所示,所述支腿展开区域可以划分为包括以所述工程机械为参照的前侧区域、左侧区域、右侧区域以及在所述前侧区域、所述左侧区域和所述右侧区域之外的外部区域。再如图4(b)所示,其在图4(a)所划分的四个区域的基础上,还可以包括所述工程机械的主体部分对应的中部区域。
易理解的是,与前侧区域相关联的支腿为左前支腿和右前支腿,与左侧区域相关联的支腿为左前支腿和左后支腿,与右侧区域相关联的支腿为右前支腿和右后支腿,与外部区域和中部区域相关联的支腿则可以是全部支腿。
在满足所述相应支腿的支撑支点形成的边线与所述整车重心之间的距离小于预定值并且该边线处于所述整车重心的外侧的条件下,步骤S420优选为包括:在使得存在相应支腿的支撑支点形成的边线与所述工程机械的车身相平行的情况下,利用对应的平行关系计算所述相应支腿的所述推荐支撑开度;或者将所述相应支腿中的选定支腿的推荐支撑开度确定为指定支撑开度,再基于所述指定支撑开度确定所述相应支腿中的剩余支腿的推荐支撑开度。其中,所述剩余支腿是选定支腿之外的支腿。
下面将通过图5(a)-图5(e)及图6(a)-图6(e)来具体介绍在此提及的基于边线与车身的平行关系以基于指定支撑开度来确定相应支腿的推荐支撑开度的方案。该5(a)-图5(e)及图6(a)-图6(e)中以确定与左侧区域相关联的支腿的推荐支撑开度为例,即是以左前支腿和左后支腿为例。其中,图5(a)-图5(e)中控制左前支腿和左后支腿之外的其他支腿以展开状态支撑于地面。图6(a)-图6(e)中控制左前支腿和左后支腿之外的其他支腿以未展开状态支撑于地面,且所述展开状态包括以预设的允许最小开度展开。
举例而言,图5(a)是本发明实施例的示例中基于边线与车身的平行确定推荐支撑开度的原理示意图。满足要求的对应于极限内侧重心501的边线(即,与极限内侧重心501之间的距离小于预定值并且处于极限内侧重心的外侧的边线)被称为极限支撑边线502。该极限支撑边线502不能远于支腿对应的最大支撑边线503。并且,该极限支撑边线502与相邻边线一起确定了推荐支撑开度。如图5(a)所示,在极限支撑边线502与车身平行的情况下,易知两个支腿的推荐支撑开度都是易于确定的。
举例而言,图5(b)和图5(c)是本发明实施例的一示例中基于一个支腿的最小支撑开度确定另一个支腿的推荐支撑开度的原理示意图,即以最小支撑开度为上述的指定支撑开度。其中,图5(b)是设定了前腿最小开度以确定后腿推荐开度,图5(c)是设定了后腿最小开度以确定前腿推荐开度。如图5(b)和图5(c)所示,在已知其中一个支腿的最小支撑开度的情况下,另一支腿的推荐支撑开度是易于确定的。
举例而言,图5(d)和图5(e)是本发明实施例的另一示例中基于选定支腿的指定支撑开度来确定剩余支腿的推荐支撑开度的原理示意图。其中,所述选定支腿的所述指定支撑开度与所述剩余支腿的所述推荐支撑开度使得所述相应支腿能够完成针对支腿的推荐动作。即,通过该推荐动作,两个支腿之间形成约 束关系。其中,图5(d)是设定了前腿指定开度以确定后腿推荐开度,图5(e)是设定了后腿指定开度以确定前腿推荐开度。如图5(d)和图5(e)所示,在已知其中一个支腿(即选定支腿)的指定支撑开度的情况下,根据两个支腿之间的约束关系,是可适应性确定另一支腿(即剩余支腿)的推荐支撑开度的。
进一步地,图6(a)-图6(e)与图5(a)-图5(e)属于一一对应的关系。该图6(a)-图6(e)与图5(a)-图5(e)相配合,一方面表现了本发明实施例能够基于边线与车身的平行关系、指定支撑开度来确定待推荐开度的相应支腿的推荐支撑开度,另一方面还表现了本发明实施例的支撑控制方法对于待推荐开度的相应支腿之外的其他支腿的展开状态不作要求,可任意展开也可不展开,仅要求能够支撑于地面。
步骤S500,基于所述推荐支撑开度对所述工程机械进行支撑控制。
优选地,该步骤S500可以包括以下一者或多者:显示所述推荐支撑开度;提醒用户基于所述推荐支撑开度手动调节对应支腿,或者控制对应支腿以所述推荐的支撑开度自动展开;以及在对应支腿的实时支撑开度小于所述推荐支撑开度时,进行报警。
其中,所述显示、提醒及报警例如可通过配置显示器、报警器等来实现,使得用户能够及时获知工程机械的支撑情况,以便于进行手动或自动控制。
更为优选地,关于所述报警,举例而言,通过比较推荐支撑开度与实时支撑开度来实现报警。在实时支撑开度小于推荐支撑开度时,通过显示屏等方式对用户进行警示,提醒用户当前支撑开度下上装无法达到作业极远位置,应予以调节。其中,实际支撑开度可以通过检测手段得到,如采用拉绳传感器、摆角传感器、油缸位移传感器、机器视觉、激光测距仪等,可以得到支腿的实时支撑开度。
如上,通过步骤S100-S500完成了关于推荐支撑开度的计算,并使得用户可基于推荐支撑开度控制支腿对工程机械的支撑,进而达到使所述工程机械能够进行上装计划以满足用户需求的目的。
综上,本发明实施例的工程机械的支撑控制方法可以预先得到上装作业所需的推荐支撑开度,并基于该推荐支撑开度对支撑展开提供指导性建议。据此,可在工程机械在抵达作业现场前,通过确定的推荐支撑开度来提前预估支腿展开所需空间,并因此可提前了解狭小环境是否满足支撑要求。因此,通过本发明实施例的方案,可避免工程机械抵达现场反复调整支腿开度(支撑位置)所造成的时间、人力、经济等方面的浪费。
实施例二
本发明实施例二相对于实施例一,主要区别在于步骤S400。在实施例一中,步骤S400主要是针对目标位置唯一的情形。在实施例二中,该步骤S400可修改为针对多个目标位置。举例而言,在一次作业中,用户可能会连续输入A、B、C三个目标位置,以期望工程机械按顺序完成对于A、B、C三个目标位置的布料。在该情形下,若采用实施例一的方案,每次分别对A、B、C三个目标位置确定相应支腿的推荐支撑开度,则需要对支腿展开进行至少三次控制,使得操作相对繁琐。
对此,在实施例二中提供了一种工程机械的支撑控制方法,其在实施例一基础上,还包括:在存在多个所述目标位置且各个目标位置各自对应有所述整车重心的情况下,根据所述整车重心确定针对所述工程机械的支腿的推荐支撑开度,其中所述推荐支撑开度使得所有支腿的支撑支点形成的支撑多边形能够包围所 计算的所有整车重心。
需说明的是,满足“包围所计算的所有整车重心”的多边形可能是有多个的,据此在优选的实施例中,可基于以下任意一者来选择所述支撑多边形以用于确定所述推荐支撑开度:
1)选择面积最小的支撑多边形;
2)选择周长最小的支撑多边形;
3)在周长相同的情况下,选择最长边与最短边的差值最小的支撑多边形;
4)选择具有与车身相平行的边线的支撑多边形;以及
5)在任意支腿具有指定支撑开度的情况下,选择支撑多边形以使该支撑多边形满足预设规则。其中,所述“预设规则”包括支撑多边形面积最小、周长最小、平行车身等等,本发明实施例对此并不限制。
以具有a、b、c三个极限内侧重心(整车重心)、且由四条支腿形成的支撑四边形以包括三个极限内侧重心为例,图7(a)-图7(d)分别示出了本发明实施例的示例中基于面积最小、周长最小、边线与车身的平行关系以及任意支腿具有指定支撑开度来确定推荐支撑开度的原理示意图,其中相同标号可参考图5进行理解。
如图7(a)所示,其对应的推荐策略中,形成的支撑四边形完全包围了所有极限内侧重心且面积最小,据此可确定四个支腿的推荐支撑开度。并且,四边形面积最小,使得在保证支撑安全的基础上,可能尽可能地减小支撑所需要的空间大小。
如图7(b)所示,其对应的推荐策略中,形成的支撑四边形完全包围了所有极限内侧重心且周长最小,据此可确定四个支腿的推荐支撑开度。其中,上述第3)点中在周长相同的情况下,选择最长边与最短边的差值最小的支撑多边形的方案可参考图7(b)进行理解。
如图7(c)所示,其对应的推荐策略中,形成的支撑四边形完全包围了所有极限内侧重心,且左侧两个支腿之间的边线与车身相平行,据此可确定四个支腿的推荐支撑开度。
如图7(d)所示,其对应的推荐策略中,形成的支撑四边形完全包围了所有极限内侧重心,且左前腿具有指定支撑开度,据此可进一步基于多边形面积最小、周长最小、存在与车身平行的边线等规则来确定其余三个支腿的推荐支撑开度。
需要说明的是,图7(a)-图7(d)中的四边形是示例性,若满足要求的四边形不是唯一的,则可任意确定其中一个支撑多边形,本发明实施例对此不作限定。
该实施例二中,对于其他实施细节,比如对于各个目标位置对应的整车重心的计算以及对于支腿展开区域,可参考实施例一进行理解,在此不再赘述。
实施例三
图8是本发明实施例三的工程机械的支撑控制装置的结构示意图,该支撑控制装置与上述实施例的支撑控制方法基于相同的发明思路。
如图8所示,所述工程机械的支撑控制装置100可以包括:输入模块110,用于获取用户输入的所述工程机械的上装进行作业的目标位置;上装姿态计算模块120,用于根据所述目标位置计算最优上装姿态下的上装姿态信息,其中所述最优上装姿态是指使得所述工程机械的整车重心最靠近内侧的姿态,且所述内侧 是指上装重心距离距所述工程机械的回转中心投影距离小的一侧;整车重心计算模块130,用于根据所述上装姿态信息,计算对应于所述最优上装姿态的所述整车重心;支撑开度计算模块140,用于在存在唯一的所述目标位置及其对应的所述整车重心的情况下,根据所述整车重心确定针对所述工程机械的支腿的推荐支撑开度,其中所述推荐支撑开度使得相应支腿的支撑支点形成的边线与所述整车重心之间的距离小于预定值并且该边线处于所述整车重心的外侧;以及控制模块150,用于基于所述推荐支撑开度对所述工程机械进行支撑控制。
其中,所述输入模块110可与人机交互装置通信,以接收用户通过人机交互装置输入的一个或多个目标位置。
优选地,所述上装姿态计算模块120包括:映射关系获取单元,用于获取所述目标位置与所述上装姿态信息及上装结构参数之间的映射关系;以及最优姿态计算单元,用于根据所述映射关系,在已知所述目标位置、已知所述上装结构参数且将所述最优上装姿态作为最优判据的条件下,采用最优化算法计算所述上装姿态信息。
优选地,所述支撑开度计算模块140还用于在存在多个所述目标位置且各个目标位置各自对应有所述整车重心的情况下,根据所述整车重心确定针对所述工程机械的支腿的推荐支撑开度。其中,所述推荐支撑开度使得所有支腿的支撑支点形成的支撑多边形能够包围所计算的所有整车重心。
关于本发明实施例三的支撑控制装置的其他实施细节及效果可参考前述关于支撑控制方法的实施例,在此则不再进行赘述。
实施例四
本发明实施例四也提出了一种工程机械的支撑控制装置,包括:存储器,其存储有能够在处理器上运行的程序;以及所述处理器,其被配置为执行所述程序时实现上述的支撑控制方法。
其中,所述支撑控制装置包括处理器和存储器,上述输入模块110、上装姿态计算模块120、整车重心计算模块130、支撑开度计算模块140和控制模块150等均作为程序单元存储在存储器中,由处理器执行存储在存储器中的上述程序单元来实现相应的功能。所述支撑控制装置可以是常规的具有计算能力和数据传感能力的装置,例如PLC、单片机、PC、控制器等。
处理器中包含内核,由内核去存储器中调取相应的程序单元。内核可以设置一个或以上,通过调整内核参数来实现本发明实施例涉及的支撑控制。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
实施例五
图9是本发明实施例五的一种工程机械的支撑控制系统的结构示意图。如图9所示,该系统可以包括:人机交互装置200,用于向用户提供关于所述工程机械的上装进行作业的目标位置的输入功能以及关于针对预计算的推荐支撑开度的提醒功能;以及上述任意的支撑控制装置100,用于从所述人机交互装置获取所述目标位置,并计算出针对所述工程机械的支腿的推荐支撑开度,以及将所计算出的推荐支撑开度提供给所述人机交互装置进行提醒。
其中,所述人机交互装置200是可以进行手动输入和显示的装置,如具有输 入功能的显示屏、触摸屏、平板电脑、手机等装置。这些装置能够以图形化信息窗口向用户展示推荐支撑信息。所述支撑控制装置100则可参考上述其他实施例,在此不再进行赘述。
优选地,所述工程机械的支撑控制系统还可以包括:支撑开度检测装置300,用于检测各支腿的实时支撑开度,并提供给所述支撑控制装置100。举例而言,提供给所述支撑控制装置100以实现实时支撑开度和推荐支撑开度的比较。
其中,支撑开度检测装置300例如是拉绳传感器、摆角传感器、油缸位移传感器、机器视觉、激光测距仪等传感器或它们的组合,对各个传感器检测的数据进行综合处理可以得到对应的支腿实时支撑开度。
本发明其他实施例还提供了一种工程机械,所述工程机械包括上述的支撑控制系统。
其中,所述工程机械例如是泵车、起重机、消防车等。
本发明其他实施例还提供了一种机器可读存储介质,所述机器可读存储介质上存储有指令,该指令用于使得机器执行上述的支撑控制方法。
本发明其他实施例还提供了一种计算机程序产品,当在数据处理设备上执行时,适于执行初始化有如上述支撑控制方法的步骤的程序。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模 块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。
Claims (18)
- 一种工程机械的支撑控制方法,其特征在于,所述工程机械的支撑控制方法包括:获取用户输入的所述工程机械的上装进行作业的目标位置;根据所述目标位置计算最优上装姿态下的上装姿态信息,其中所述最优上装姿态是指使得所述工程机械的整车重心最靠近内侧的姿态,且所述内侧是指上装重心距离距所述工程机械的回转中心投影距离小的一侧;根据所述上装姿态信息,计算对应于所述最优上装姿态的所述整车重心;在存在唯一的所述目标位置及其对应的所述整车重心的情况下,根据所述整车重心确定针对所述工程机械的支腿的推荐支撑开度,其中所述推荐支撑开度使得相应支腿的支撑支点形成的边线与所述整车重心之间的距离小于预定值且该边线处于所述整车重心的外侧;以及基于所述推荐支撑开度对所述工程机械进行支撑控制。
- 根据权利要求1所述的工程机械的支撑控制方法,其特征在于,所述根据所述目标位置计算最优上装姿态下的上装姿态信息包括:获取所述目标位置与所述上装姿态信息及上装结构参数之间的映射关系;以及根据所述映射关系,在已知所述目标位置、已知所述上装结构参数且将所述最优上装姿态作为最优判据的条件下,采用最优化算法计算所述上装姿态信息。
- 根据权利要求1所述的工程机械的支撑控制方法,其特征在于,所述根据所述整车重心确定针对所述工程机械的支腿的推荐支撑开度包括:确定所述整车重心所在的所述工程机械的支腿展开区域;以及计算与所确定的支腿展开区域相关联的支腿的推荐支撑开度。
- 根据权利要求3所述的工程机械的支撑控制方法,其特征在于,所述支腿展开区域包括以所述工程机械为参照的前侧区域、左侧区域、右侧区域以及在所述前侧区域、所述左侧区域和所述右侧区域之外的外部区域。
- 根据权利要求4所述的工程机械的支撑控制方法,其特征在于,所述支腿展开区域还包括所述工程机械的主体部分对应的中部区域。
- 根据权利要求3所述的工程机械的支撑控制方法,其特征在于,在满足所述相应支腿的支撑支点形成的边线与所述整车重心之间的距离小于预定值并且该边线处于所述整车重心的外侧的条件下,所述计算与所确定的支腿展开区域相关联的支腿的推荐支撑开度包括:在使得存在相应支腿的支撑支点形成的边线与所述工程机械的车身相平行的情况下,利用对应的平行关系计算所述相应支腿的所述推荐支撑开度;或者将所述相应支腿中的选定支腿的推荐支撑开度确定为指定支撑开度,再基于所述指定支撑开度确定所述相应支腿中的剩余支腿的推荐支撑开度。
- 根据权利要求6所述的工程机械的支撑控制方法,其特征在于,所述指 定支撑开度是最小支撑开度,或者所述选定支腿的所述指定支撑开度与所述剩余支腿的所述推荐支撑开度使得所述相应支腿能够完成针对支腿的推荐动作。
- 根据权利要求3所述的工程机械的支撑控制方法,其特征在于,在所述计算所确定的支腿展开区域相关联的支腿的推荐支撑开度之后,所述工程机械的支撑控制方法还包括:控制所述相应支腿之外的其他支腿以展开状态或未展开状态支撑于地面,其中所述展开状态包括以预设的允许最小开度展开。
- 根据权利要求1所述的工程机械的支撑控制方法,其特征在于,所述基于所述推荐支撑开度对所述工程机械进行支撑控制包括以下一者或多者:显示所述推荐支撑开度;提醒用户基于所述推荐支撑开度手动调节对应支腿,或者控制对应支腿以所述推荐的支撑开度自动展开;以及在对应支腿的实时支撑开度小于所述推荐支撑开度时,进行报警。
- 根据权利要求1至9中任意一项所述的工程机械的支撑控制方法,其特征在于,所述工程机械的支撑控制方法还包括:在存在多个所述目标位置且各个目标位置各自对应有所述整车重心的情况下,根据所述整车重心确定针对所述工程机械的支腿的推荐支撑开度,其中所述推荐支撑开度使得所有支腿的支撑支点形成的支撑多边形能够包围所计算的所有整车重心。
- 根据权利要求10所述的工程机械的支撑控制方法,其特征在于,在存在多个能够包围所述所有整车重心的所述支撑多边形的情况下,基于以下任意一者来选择所述支撑多边形以用于确定所述推荐支撑开度:选择面积最小的支撑多边形;选择周长最小的支撑多边形;在周长相同的情况下,选择最长边与最短边的差值最小的支撑多边形;选择具有与车身相平行的边线的支撑多边形;以及在任意支腿具有指定支撑开度的情况下,选择支撑多边形以使该支撑多边形满足预设规则。
- 一种工程机械的支撑控制装置,其特征在于,所述工程机械的支撑控制装置包括:输入模块,用于获取用户输入的所述工程机械的上装进行作业的目标位置;上装姿态计算模块,用于根据所述目标位置计算最优上装姿态下的上装姿态信息,其中所述最优上装姿态是指使得所述工程机械的整车重心最靠近内侧的姿态,且所述内侧是指上装重心距离距所述工程机械的回转中心投影距离小的一侧;整车重心计算模块,用于根据所述上装姿态信息,计算对应于所述最优上装姿态的所述整车重心;支撑开度计算模块,用于在存在唯一的所述目标位置及其对应的所述整车重心的情况下,根据所述整车重心确定针对所述工程机械的支腿的推荐支撑开度,其中所述推荐支撑开度使得相应支腿的支撑支点形成的边线与所述整车重心之 间的距离小于预定值并且该边线处于所述整车重心的外侧;以及控制模块,用于基于所述推荐支撑开度对所述工程机械进行支撑控制。
- 根据权利要求12所述工程机械的支撑控制装置,其特征在于,所述支撑开度计算模块还用于在存在多个所述目标位置且各个目标位置各自对应有所述整车重心的情况下,根据所述整车重心确定针对所述工程机械的支腿的推荐支撑开度,其中所述推荐支撑开度使得所有支腿的支撑支点形成的支撑多边形能够包围所计算的所有整车重心。
- 一种工程机械的支撑控制装置,其特征在于,包括:存储器,其存储有能够在处理器上运行的程序;以及所述处理器,其被配置为执行所述程序时实现权利要求1至11中任意一项所述的支撑控制方法。
- 一种工程机械的支撑控制系统,其特征在于,所述工程机械的支撑控制系统包括:人机交互装置,用于向用户提供关于所述工程机械的上装进行作业的目标位置的输入功能以及关于针对预计算的推荐支撑开度的提醒功能;以及权利要求12至14中任意一项所述的支撑控制装置,用于从所述人机交互装置获取所述目标位置,并计算出针对所述工程机械的支腿的推荐支撑开度,以及将所计算出的推荐支撑开度提供给所述人机交互装置进行提醒。
- 根据权利要求15所述的工程机械的支撑控制系统,其特征在于,所述工程机械的支撑控制系统还包括:支撑开度检测装置,用于检测各支腿的实时支撑开度,并提供给所述支撑控制装置。
- 一种工程机械,其特征在于,所述工程机械包括根据权利要求15或16所述的支撑控制系统。
- 一种机器可读存储介质,其特征在于,所述机器可读存储介质上存储有指令,该指令用于使得机器执行根据权利要求1-11中任一项所述的支撑控制方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011287217.7 | 2020-11-17 | ||
CN202011287217.7A CN112441511B (zh) | 2020-11-17 | 2020-11-17 | 工程机械及其支撑控制方法、装置、系统及介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022105216A1 true WO2022105216A1 (zh) | 2022-05-27 |
Family
ID=74738647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/100111 WO2022105216A1 (zh) | 2020-11-17 | 2021-06-15 | 工程机械及其支撑控制方法、装置、系统及介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112441511B (zh) |
WO (1) | WO2022105216A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112441511B (zh) * | 2020-11-17 | 2021-08-24 | 中联重科股份有限公司 | 工程机械及其支撑控制方法、装置、系统及介质 |
US11922530B2 (en) * | 2020-11-24 | 2024-03-05 | Verizon Connect Development Limited | Systems and methods for utilizing models to determine real time estimated times of arrival for scheduled appointments |
CN113807163B (zh) * | 2021-07-28 | 2023-12-19 | 中科云谷科技有限公司 | 泵车的支腿放置方法、泵车的支腿放置装置及存储介质 |
CN114802127B (zh) * | 2022-04-25 | 2024-09-24 | 湖南中联重科应急装备有限公司 | 用于车辆的控制方法及控制装置、控制器和车辆 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005068777A (ja) * | 2003-08-22 | 2005-03-17 | Tobishima Corp | ポンプ脈動連動急結剤供給システム |
CN102330498A (zh) * | 2011-07-14 | 2012-01-25 | 长沙中联重工科技发展股份有限公司 | 泵车及其控制方法和装置 |
CN102588505A (zh) * | 2012-02-06 | 2012-07-18 | 三一重工股份有限公司 | 泵车稳定性控制系统、控制方法及泵车 |
CN102880145A (zh) * | 2012-09-28 | 2013-01-16 | 三一重工股份有限公司 | 支腿控制系统和工程机械 |
JP2015124051A (ja) * | 2013-12-26 | 2015-07-06 | 株式会社タダノ | 作業車 |
CN104847118A (zh) * | 2014-11-21 | 2015-08-19 | 北汽福田汽车股份有限公司 | 一种混凝土泵车防侧翻控制系统及方法 |
CN105292082A (zh) * | 2014-05-29 | 2016-02-03 | 中联重科股份有限公司 | 一种防工程机械倾翻的控制方法、控制装置及工程机械 |
JP2018095363A (ja) * | 2016-12-09 | 2018-06-21 | 株式会社タダノ | 作業車両 |
CN111559330A (zh) * | 2020-04-29 | 2020-08-21 | 三一汽车制造有限公司 | 车辆的控制方法、控制装置、车辆和计算机可读存储介质 |
CN112441511A (zh) * | 2020-11-17 | 2021-03-05 | 中联重科股份有限公司 | 工程机械及其支撑控制方法、装置、系统及介质 |
-
2020
- 2020-11-17 CN CN202011287217.7A patent/CN112441511B/zh active Active
-
2021
- 2021-06-15 WO PCT/CN2021/100111 patent/WO2022105216A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005068777A (ja) * | 2003-08-22 | 2005-03-17 | Tobishima Corp | ポンプ脈動連動急結剤供給システム |
CN102330498A (zh) * | 2011-07-14 | 2012-01-25 | 长沙中联重工科技发展股份有限公司 | 泵车及其控制方法和装置 |
CN102588505A (zh) * | 2012-02-06 | 2012-07-18 | 三一重工股份有限公司 | 泵车稳定性控制系统、控制方法及泵车 |
CN102880145A (zh) * | 2012-09-28 | 2013-01-16 | 三一重工股份有限公司 | 支腿控制系统和工程机械 |
JP2015124051A (ja) * | 2013-12-26 | 2015-07-06 | 株式会社タダノ | 作業車 |
CN105292082A (zh) * | 2014-05-29 | 2016-02-03 | 中联重科股份有限公司 | 一种防工程机械倾翻的控制方法、控制装置及工程机械 |
CN104847118A (zh) * | 2014-11-21 | 2015-08-19 | 北汽福田汽车股份有限公司 | 一种混凝土泵车防侧翻控制系统及方法 |
JP2018095363A (ja) * | 2016-12-09 | 2018-06-21 | 株式会社タダノ | 作業車両 |
CN111559330A (zh) * | 2020-04-29 | 2020-08-21 | 三一汽车制造有限公司 | 车辆的控制方法、控制装置、车辆和计算机可读存储介质 |
CN112441511A (zh) * | 2020-11-17 | 2021-03-05 | 中联重科股份有限公司 | 工程机械及其支撑控制方法、装置、系统及介质 |
Also Published As
Publication number | Publication date |
---|---|
CN112441511B (zh) | 2021-08-24 |
CN112441511A (zh) | 2021-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022105216A1 (zh) | 工程机械及其支撑控制方法、装置、系统及介质 | |
US9944499B2 (en) | Crane maneuvering assistance | |
Chang et al. | A fast path planning method for single and dual crane erections | |
US20180179029A1 (en) | Crane 3d workspace spatial techniques for crane operation in proximity of obstacles | |
EP3309110B1 (en) | Crane function performance enhancement for non-symmetrical outrigger arrangements | |
JP6177400B1 (ja) | クレーン車 | |
EP3037376A1 (en) | Crane 3d workspace spatial techniques for crane operation in proximity of obstacles | |
US11603294B2 (en) | Method and system for controlling operation of crane, and crane | |
CN104136900A (zh) | 重心位置检测装置、重心位置检测方法及程序 | |
CN110673653A (zh) | 工程机械的防倾翻控制方法、装置及该工程机械 | |
KR102339320B1 (ko) | 크레인 자동 머신 가이던스 시스템 및 그의 제어 방법 | |
CN113353823B (zh) | 基于起重机性能表数据库的起重机控制方法 | |
CN111721561B (zh) | 判断回转操作的稳定性的方法和装置及工程机械 | |
JP2024123271A (ja) | 情報取得システム | |
JP7327052B2 (ja) | アウトリガを有する車体の水平姿勢判定装置 | |
JP2022190556A (ja) | クレーン | |
JP5241081B2 (ja) | 荷台を有する移動式クレーンの安定限界監視装置。 | |
CN111608392B (zh) | 用于混凝土设备的防倾翻控制方法和系统、混凝土设备 | |
JP2018095368A (ja) | クレーン | |
JPH05317B2 (zh) | ||
CN113859117B (zh) | 用于工程机械的塌陷识别方法、处理器、装置及工程机械 | |
WO2019073456A1 (en) | METHOD AND SYSTEM FOR PREDICTIVE STABILITY CONTROL FOR TRUCK MOUNTED CRANES | |
CN113353821B (zh) | 起重机多维性能表生成方法 | |
JP7081926B2 (ja) | 移動体、動作制御システム、及び移動体システム | |
CN117263032A (zh) | 工程机械及其安全控制方法、装置和介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21893370 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21893370 Country of ref document: EP Kind code of ref document: A1 |