WO2022105079A1 - 具有高叠片系数的非晶纳米晶合金带材、制造方法及应用 - Google Patents

具有高叠片系数的非晶纳米晶合金带材、制造方法及应用 Download PDF

Info

Publication number
WO2022105079A1
WO2022105079A1 PCT/CN2021/080904 CN2021080904W WO2022105079A1 WO 2022105079 A1 WO2022105079 A1 WO 2022105079A1 CN 2021080904 W CN2021080904 W CN 2021080904W WO 2022105079 A1 WO2022105079 A1 WO 2022105079A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
thickness
amorphous nanocrystalline
nozzle
nanocrystalline alloy
Prior art date
Application number
PCT/CN2021/080904
Other languages
English (en)
French (fr)
Inventor
陈文智
刘国栋
李百松
史杨
李志刚
Original Assignee
安泰非晶科技有限责任公司
安泰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安泰非晶科技有限责任公司, 安泰科技股份有限公司 filed Critical 安泰非晶科技有限责任公司
Publication of WO2022105079A1 publication Critical patent/WO2022105079A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/008Amorphous alloys with Fe, Co or Ni as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/04Cores, Yokes, or armatures made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the invention belongs to the field of strips, and in particular relates to an amorphous nanocrystalline alloy strip with a high lamination coefficient, a manufacturing method and applications.
  • Amorphous nanocrystalline alloys are a class of soft magnetic materials that have developed rapidly in recent years. Compared with traditional electrical steel, ferrite and other soft magnetic materials, they have higher magnetic permeability and lower AC loss, and have been widely used. It is used in the iron core of magnetic components such as transformers, inductors, mutual inductors, and motor stators. When used in transformers, inductors, transformers, motor stators, etc., the amorphous nanocrystalline alloy strips with a thickness of only about 0.025 mm are generally wound or stacked into iron cores.
  • the lamination factor (also known as lamination factor, space factor, etc.) of amorphous nanocrystalline alloy strips is defined as the difference between the actual cross-sectional area occupied by amorphous nanocrystalline materials on the cross-section of the stack of amorphous nanocrystalline alloy strips and the The ratio of the cross-sectional area of the stack.
  • the lamination factor of amorphous nanocrystalline alloy strip can be measured by the method of International Electrotechnical Commission standard IEC 60404-8-11. At present, the lamination factor of mainstream amorphous nanocrystalline alloy strip products is generally between 78% and 88%.
  • Chinese patent CN1175436C discloses an amorphous alloy strip with a high lamination factor, which can obtain a lamination factor higher than 86% by controlling the surface smoothness of the strip and making the thickness extremely uniform.
  • Chinese patent CN101384745A discloses an amorphous alloy thin strip with excellent space factor. By controlling the roughness of the cooling roll and other measures, the surface smoothness of the amorphous strip is improved, and finally the lamination factor of the amorphous strip reaches 80. %above.
  • the lamination factor of amorphous nanocrystalline alloy strips that can be stably provided at home and abroad has reached 88%, and the market has already paid attention to amorphous nanocrystalline alloy strips with lamination factor higher than 90%. material presents clear requirements.
  • the existing technology cannot guarantee that the lamination factor of the amorphous nanocrystalline alloy strip can reach more than 90% stably.
  • the present invention provides an amorphous nanocrystalline alloy strip with a high lamination coefficient, a manufacturing method and an application.
  • the thickness H 0 of the middle part of the strip is greater than the thicknesses HL and HR of the two sides of the strip, and the difference is not more than 2.5 microns:
  • the thickness difference between the thickness H 0 of the middle part of the strip and the thicknesses HL and HR of the two sides of the strip is 0.1-2.5 microns:
  • the thickness difference between the thickness H 0 of the middle part of the strip and the thicknesses HL and HR of the two sides of the strip is 0.5-1.5 microns:
  • the absolute value of the difference between the thickness of one edge of the strip and the thickness of the other side of the strip is not greater than 2.0 microns, that is:
  • the absolute value of the difference between the thickness of one edge of the strip and the thickness of the other side of the strip is not greater than 1.0 ⁇ m:
  • the thickness values of the other measurement points are between the middle thickness value and the corresponding edge thickness value:
  • HL is the thickness of the left edge of the strip
  • H 0 is the thickness of the middle part of the strip
  • Hi is the thickness of the measurement point between the left edge of the strip and the middle part of the strip in the width direction of the strip
  • H R is The thickness of the right edge of the strip
  • the absolute value of the thickness difference between any two adjacent thickness measurement points is not greater than 1.5 microns.
  • the ten-point average value of the roughness of the roller surface of the strip is R a ⁇ 0.50 ⁇ m; the ten-point average value of the roughness of the free surface of the strip material is R a ⁇ 0.40 ⁇ m.
  • the lamination factor of the tape is greater than 90%.
  • the lamination factor of the tape is greater than 92%.
  • X is at least one of the ferromagnetic metal elements Fe, Co, and Ni, and the total content a is between 65 and 85 at%;
  • Y is at least one of transition metal elements Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Ag, Au, Zn, Al and Sn, and the total content b is 0-10 at% between;
  • Z is at least one of amorphous-forming elements Si, B, P, and C, and the total content c is between 15 and 30 at %.
  • the main component alloy of the strip also contains impurity elements with a total amount not exceeding 0.5 at%.
  • An iron core comprising the strip described in any one of the above.
  • a magnetic component comprising the iron core of the above-mentioned strip, and the magnetic component is one of a transformer, an inductor, a mutual inductor and a motor stator.
  • a method for manufacturing an amorphous nanocrystalline alloy strip with a high lamination factor comprising:
  • the alloy liquid flows out from the nozzle, and the outer circumferential surface of the high-speed rotating cooling roller spreads under the nozzle to cool to form an amorphous nanocrystalline alloy strip;
  • the flow rate of the alloy liquid in the regions on both sides of the nozzle is less than the flow rate of the alloy liquid in the middle of the nozzle, so that a strip with a thickness in the middle part greater than that in the regions on both sides is obtained;
  • the static pressure of the alloy liquid at the nozzle is 20-60kPa.
  • the temperature of the alloy liquid in the nozzle package is between 1250°C and 1450°C.
  • the nozzle slit of the nozzle has the largest width in the middle, and the width of the nozzle slit on both sides of the edge continuously decreases from the largest width in the middle.
  • the distance between the middle part of the nozzle and the surface of the cooling roll is greater than or equal to the distance between the areas on both sides of the nozzle and the surface of the cooling roll.
  • the surface roughness Ra of the cooling roll is not greater than 0.40 microns.
  • the alloy used in the raw material has the following general expression:
  • X is at least one of the ferromagnetic metal elements Fe, Co, and Ni, and the total content a is between 65 and 85 at%;
  • Y is at least one of transition metal elements Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Cu, Ag, Au, Zn, Al, Sn, and the total content b is 0 to 10 at% between;
  • Z is at least one of amorphous-forming elements Si, B, P, and C, and the total content c is between 15 and 30 at %.
  • the alloy used for the raw material also contains impurity elements with a total amount not exceeding 0.5 at%.
  • the invention provides an amorphous nanocrystalline alloy strip with a high lamination coefficient and a manufacturing method thereof.
  • the invention controls the thickness of the middle part and the thickness of the two edges of the strip by improving the plate shape of the amorphous nanocrystalline alloy strip, and simultaneously The roughness of the sticking surface and the free surface of the strip is improved, and the lamination factor of the amorphous nanocrystalline alloy strip of the present invention is more than 90%.
  • the strip manufacturing method of the invention has the advantages of simple steps and convenient control.
  • the amorphous nanocrystalline alloy strip with a lamination factor exceeding 90% can be prepared by controlling the alloy liquid pressure, the alloy flow rate and the distance between the nozzle and the cooling roller, and further Reduce the size of magnetic components.
  • Figure 1 is a schematic diagram of the cross-section and thickness measurement points of an amorphous nanocrystalline alloy strip
  • Figure 2 is a graph showing the relationship between the strip shape and the lamination coefficient
  • Figure 3 is a graph showing the relationship between the surface roughness of the strip and the lamination factor.
  • Amorphous nanocrystalline alloys used as soft magnetic materials are mostly made of strips produced by planar flow technology, and iron cores of various shapes are formed by winding or lamination. Since the tape cannot have a perfectly flat surface, there must be some voids between the plies when coiled or laminated. In this way, the actual material cross-sectional area of the iron core after winding or lamination is smaller than the outer cross-sectional area, that is, the lamination factor is less than 100%.
  • the thickness distribution of the sheet or strip material along the width direction is often referred to as the plate shape. It is generally believed that a sheet-like material will have the highest lamination factor when it has an ideal shape (ie, a flat surface, or has a uniform thickness). However, the inventor's research found that this rule does not hold for amorphous nanocrystalline alloy strips manufactured by planar flow technology. The highest lamination factor can be obtained only when the thickness of the position is greater than the thickness of the two edges within a certain range.
  • the inventors studied the variation law of lamination coefficient of 482 batches of amorphous strips with similar free surface roughness (Ra 0.38-0.42 microns) but different plate types.
  • the thickness distribution along the width direction of the above-mentioned strip was measured by the method of the International Electrotechnical Commission standard IEC 60404-8-11. The specific method is: starting from the middle part of the width of the strip, with a spacing of 10mm, measure the thickness of the strip point by point on both sides of the strip width, until the edges on both sides of the strip.
  • the value of m is related to the width of the strip.
  • the cross section and thickness measurement method of the strip are shown in Figure 1.
  • the inventor obtained the relationship curve between the strip shape and the lamination coefficient as shown in FIG. 2 . It can be seen that even if the strip shape is completely flat (that is, the thickness of the middle part of the strip is equal to the thickness of the edge), the lamination coefficient is not the highest, but when the thickness of the middle part of the strip is greater than the thickness of the edges on both sides of the strip When it is slightly larger (ie: H 0 > HL , and H 0 >HR ), that is, when the strip has a slightly convex central shape, it has a higher lamination factor. However, when the thickness of the middle part is more than 2.5 microns than the thickness of the edges on both sides, the lamination coefficient gradually decreases.
  • the tape has the highest lamination factor range.
  • the thickness of the two edges of the strip cannot be too different, and the absolute value of the thickness difference between the two should be controlled within 2.0 microns, namely:
  • the absolute value of the difference between the thickness values of any two adjacent measurement points should not be greater than 1.5 microns.
  • the inventor's research also found that the surface roughness of the strip has a relatively obvious influence on the lamination factor, and reducing the surface roughness can improve the lamination factor of the strip.
  • the relationship between the surface roughness and lamination coefficient of the strip is obtained as shown in Fig. 3 curve. It can be seen that when the surface roughness of the strip decreases, the lamination coefficient increases monotonically as a whole.
  • the ten-point average of the surface roughness of the strip on the roll is less than or equal to 0.50 ⁇ m
  • the ten-point average of the roughness of the free surface of the strip is The value Ra ⁇ 0.40 micrometer.
  • the invention relates to an amorphous nanocrystalline alloy strip with high lamination coefficient.
  • the thickness of the middle part of the strip is greater than the thickness of the edges on both sides of the strip, and the thickness of the middle part of the strip is the same as the thickness of the strip.
  • the difference between the thickness of the edges on both sides is not more than 2.5 microns;
  • the thickness of the strip at the measurement point in the middle of the strip is H 0
  • the thickness of the strip at the measurement point on the left edge of the strip is H L
  • the measurement point at the right edge is H L .
  • the strip thickness value corresponding to the point is HR
  • the relationship between H 0 and HL and HR is:
  • the absolute value of the thickness difference between the thickness of the middle part of the strip and the thickness of the edges on both sides of the strip is 0.1-2.5 microns. That is: in the width direction of the strip, the thickness of the strip at the measurement point in the middle of the strip is H 0 , the thickness of the strip at the measurement point on the left edge of the strip is H L , and the measurement point at the right edge The corresponding strip thickness value is H R , and the relationship between H 0 and H L and H R is:
  • the thickness difference between the thickness of the middle part of the strip and the thickness of the edges on both sides of the strip is 0.5-1.5 microns, namely: 0.5 ⁇ H 0 -HL ⁇ 1.5 microns, and 0.5 ⁇ H 0 -HR ⁇ 1.5 microns.
  • the absolute value of the thickness difference between the thickness of the strip on one side of the strip and the thickness of the strip on the other side of the strip is not greater than 2.0 microns, ie:
  • the absolute value of the thickness difference between the thicknesses of the two edges is not greater than 1.0 ⁇ m, ie:
  • the thickness of other points should be between the thickness of the middle part and the thickness of the corresponding edge, that is: H L ⁇ H i ⁇ H 0 , and H R ⁇ H j ⁇ H 0 .
  • the absolute value of the difference between the thickness values of any two adjacent measurement points should not be greater than 1.5 microns.
  • the ten-point average value of the roughness of the roller surface of the strip is R a ⁇ 0.50 microns
  • the ten-point average value of the roughness of the roller surface of the strip is R a ⁇ 0.40 microns
  • the ten-point average value of the roughness of the free surface of the strip is R a ⁇ 0.40 ⁇ m;
  • the ten-point average value of the roughness of the free surface of the strip is R a ⁇ 0.30 microns
  • the lamination factor of the strip is not less than 90%
  • the lamination factor of the tape is not less than 92%.
  • the present invention also provides an iron core comprising the above-mentioned strip.
  • the present invention also provides a magnetic component, the magnetic component includes the above-mentioned iron core, and the magnetic component is one of other magnetic components such as a transformer, an inductor, a mutual inductor and a motor stator.
  • the present invention realizes that the amorphous nanocrystalline alloy strip of the present invention has a lamination coefficient exceeding 90% through the above-mentioned control of the lateral distribution of the strip thickness and the roughness of the free surface of the strip and the surface of the sticking roller.
  • the present invention also provides a method for manufacturing the above-mentioned amorphous nanocrystalline alloy strip with a high lamination factor, which is specifically manufactured by a plane flow process.
  • the manufacturing method of the present invention includes:
  • Step 1 Melt a certain proportion of raw materials into an alloy liquid in a smelting furnace
  • Step 2 Adjust the temperature of the smelted alloy liquid and buffer the production rhythm
  • Step 3 pour the alloy liquid into the nozzle package with a slit nozzle at the bottom;
  • Step 4 The alloy liquid flows out from the nozzle, and is spread on the outer circumferential surface of the high-speed rotating cooling roller below the nozzle to cool to form an amorphous nanocrystalline alloy strip.
  • the temperature adjustment of the alloy liquid and the production rhythm buffer are usually carried out in the tundish, and the tundish can also be omitted when the strip is prepared on a small scale or in the laboratory.
  • the flow rate of alloy liquid at the edges of the nozzle on both sides is controlled to be smaller than the flow rate of the alloy liquid in the middle of the nozzle (corresponding to the middle part of the strip), so that the thickness of the prepared strip in the middle is greater than Area thickness on both sides.
  • the temperature of the alloy liquid in the nozzle package is between 1250 and 1450 °C;
  • the temperature of the alloy liquid in the nozzle package is between 1300°C and 1420°C.
  • the static pressure of the alloy liquid at the nozzle is 20-60kPa
  • the static pressure of the alloy liquid at the nozzle is between 30 and 50 kPa.
  • the width of the nozzle slit can be set to decrease continuously from the middle to the two edges, so that the gap between the middle part of the nozzle slit and the edge part is The width difference is between 0 and 0.1 mm.
  • roller nozzle spacing it is also possible to set the shape of the bottom surface of the nozzle and adjust the distance between the nozzle and the surface of the cooling roller (referred to as the roller nozzle spacing) to ensure that the roller nozzle spacing in the middle of the nozzle (corresponding to the middle part of the strip width) is greater than or equal to the nozzle edge (corresponding to the two strips).
  • the distance between the roller nozzles of the two transverse edges), the difference between the two is between 0 and 0.1 mm.
  • the surface roughness of the cooling roll should be controlled, specifically, the surface roughness Ra of the cooling roll should be controlled to be no greater than 0.40 microns.
  • the surface of the cooling roller is processed in advance, and the surface of the cooling roller is continuously polished by sandpaper (cloth) wheel, metal brush wheel or resin brush wheel containing abrasive particles during the belt making process to ensure the state of the cooling roller surface.
  • amorphous nanocrystalline alloy ribbons have the following general expressions:
  • X is at least one of the ferromagnetic metal elements Fe, Co, and Ni, and the total content a is between 65 and 85 at%;
  • Y is the transition metal elements Ti, Zr, Hf, V, Nb, Ta, Cr, Mo , at least one of W, Mn, Cu, Ag, Au, Zn, Al, Sn, and the total content b is between 0 and 10 at%;
  • Z is at least one of the amorphous forming elements Si, B, P, C, etc. species, and the total content c is between 15 and 30 at%.
  • the alloy may also contain impurity elements with a total amount of not more than 0.5 at%, where at% is the atomic percent content.
  • manufacture iron-based, cobalt-based, iron-nickel-based amorphous alloy or nanocrystalline alloy strips of different widths and thicknesses The temperature of alloy liquid in the nozzle package, the width of the nozzle gap, the distance between the roller nozzles, the alloy liquid pressure at the nozzle, the surface speed of the cooling roll, the surface roughness of the roll surface and other parameters are set. Process parameters that are not within the scope of the present invention are also set as comparative examples.

Abstract

一种具有高叠片系数的非晶纳米晶合金带材、制造方法及应用,具有高叠片系数的非晶纳米晶合金带材,在所述带材的宽度方向,所述带材的中间部位厚度H 0大于带材两侧边缘厚度H L和H R,且其差值不大于2.5微米。通过改进非晶纳米晶合金带材的板型,控制带材的中部厚度及两侧边缘厚度,同时改进带材的贴辊面和自由面粗糙度,实现非晶纳米晶合金带材的叠片系数超过90%。

Description

具有高叠片系数的非晶纳米晶合金带材、制造方法及应用 技术领域
本发明属于带材领域,具体涉及一种具有高叠片系数的非晶纳米晶合金带材、制造方法及应用。
背景技术
非晶纳米晶合金是近年来迅速发展起来的一类软磁材料,与传统的电工钢、铁氧体等软磁材料相比具有更高的磁导率、更低的交流损耗,已经广泛应用于变压器、电感器、互感器、电机定子等磁性元器件中的铁心。在用于变压器、电感器、互感器、电机定子等场合时,一般是将厚度仅有约0.025毫米的非晶纳米晶合金带材卷绕或堆叠成铁芯。
为了减小铁芯及元器件体积,总希望非晶纳米晶合金带材具有尽可能高的叠片系数。非晶纳米晶合金带材的叠片系数(也称为叠层系数、占空系数等)定义为非晶纳米晶合金带材堆叠体横截面上非晶纳米晶材料所占实际截面积与该堆叠体外形截面积之比。非晶纳米晶合金带材的叠片系数可采用国际电工委员会标准IEC 60404-8-11的方法测量。目前,主流非晶纳米晶合金带材产品的叠片系数一般在78%~88%之间。
中国专利CN1175436C公开了一种高叠片系数的非晶合金带材,它通过控制带材表面光滑度、并使厚度极度均匀,获得高于86%的叠片系数。
中国专利CN101384745A公开了一种占空系数优异的非晶合金薄带,通过控制冷却辊的粗糙度等措施,改善非晶带材的表面光滑度,最终使非晶带材的叠片系数达到80%以上。
随着工艺技术的不断提高,目前国内外可以稳定提供的非晶纳米晶合金带材的叠片系数已经达到88%,而且,市场已经对叠片系数高于90%的非晶纳米晶合金带材提出了明确的需求。但是,现有技术还不能保证非晶纳米晶合金带材的叠片系数稳定达到90%以上。
发明内容
本发明为解决上述问题,提供了一种具有高叠片系数的非晶纳米晶合金带材、制造方法及应用。
一种具有高叠片系数的非晶纳米晶合金带材,
在所述带材的宽度方向,所述带材的中间部位厚度H 0大于带材两侧边缘厚度H L和H R,且其差值不大于2.5微米:
H 0-H L≤2.5微米,且H 0-H R≤2.5微米。
进一步地,所述带材中间部位厚度H 0与所述带材两侧边缘厚度H L和H R的厚度差为0.1~2.5微米:
0.1≤H 0-H L≤2.5微米,且0.1≤H 0-H R≤2.5微米。
进一步地,所述带材中间部位厚度H 0与所述带材两侧边缘厚度H L和H R的厚度差为0.5~1.5微米:
0.5≤H 0-H L≤1.5微米,且0.5≤H 0-H R≤1.5微米。
进一步地,在所述带材的宽度方向,所述带材一侧边缘厚度值与另一侧边缘厚度值之差的绝对值不大于2.0微米,即:
|H L-H R|≤2.0微米。
进一步地,在所述带材的宽度方向,所述带材一侧边缘厚度值与另一侧边缘厚度值之差的绝对值不大于1.0微米:
|H L-H R|≤1.0微米。
进一步地,在所述带材的宽度方向,除中间部位和两个边缘外,其它各个测量点的厚度值处于中间厚度值与相应边缘厚度值之间:
H L≤H i≤H 0,且H R≤H j≤H 0
式中,H L为带材左边缘厚度,H 0为带材中间部位厚度,H i为在带材的宽度方向,带材左边缘与带材中间部位之间测量点的厚度,H R为带材右边缘厚度,H j为在带材的宽度方向,带材中间部位与带材右边缘之间测量点的厚度,i=1,2,...,m;j=1,2,...,m。
进一步地,在所述带材的宽度方向,任意两个相邻厚度测量点之间的厚度差的绝对值不大于1.5微米。
进一步地,所述带材的贴辊面粗糙度的十点平均值R a≤0.50微米;所 述带材的自由面粗糙度的十点平均值R a≤0.40微米。
进一步地,所述带材的叠片系数大于90%。
进一步地,所述带材的叠片系数大于92%。
进一步地,所述带材的主要成分具有如下的一般表达式:
X aY bZ c
其中,X为铁磁性金属元素Fe、Co、Ni中的至少一种,总含量a在65~85at%之间;
Y为过渡金属元素Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Ag、Au、Zn及Al、Sn中的至少一种,总含量b在0~10at%之间;
Z为非晶形成元素Si、B、P、C中的至少一种,总含量c在15~30at%之间。
进一步地,所述带材的主要成分合金中还含有总量不超过0.5at%的杂质元素。
一种铁芯,所述铁芯包含上述任意一项所述的带材。
一种磁性元器件,所述磁性元器件包含上述带材的铁芯,所述磁性元器件为变压器、电感器、互感器和电机定子中的一种。
一种具有高叠片系数的非晶纳米晶合金带材的制造方法,包括:
将原料熔化成合金液;
将合金液浇入底部带有喷嘴的喷嘴包中;
合金液从喷嘴中流出,铺展在喷嘴下方的高速旋转的冷却辊外圆周表面冷却形成非晶纳米晶合金带材;
所述合金液从喷嘴中流出过程中,喷嘴两侧区域的合金液流量小于喷嘴中部的合金液流量,得到中间部位厚度大于两侧区域厚度的带材;
喷嘴处合金液的静压力在20~60kPa。
进一步地,其特征在于,所述喷嘴包中合金液的温度在1250~1450℃之间。
进一步地,其特征在于,所述喷嘴的喷嘴缝中间宽度最大,由中间最大宽度向两侧边缘的喷嘴缝宽度连续减小。
进一步地,其特征在于,所述喷嘴中部与所述冷却辊表面的距离大于等于所述喷嘴两侧区域与所述冷却辊表面的距离。
进一步地,其特征在于,所述冷却辊表面粗糙度R a不大于0.40微米。
进一步地,其特征在于,所述原料所用的合金具有如下的一般表达式:
X aY bZ c
其中,X为铁磁性金属元素Fe、Co、Ni中的至少一种,总含量a在65~85at%之间;
Y为过渡金属元素Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Ag、Au、Zn、Al、Sn中的至少一种,总含量b在0~10at%之间;
Z为非晶形成元素Si、B、P、C中的至少一种,总含量c在15~30at%之间。
进一步地,所述原料所用的合金中还含有总量不超过0.5at%的杂质元素。
本发明的有益效果:
本发明提供了具有高叠片系数的非晶纳米晶合金带材及其制造方法,本发明通过改进非晶纳米晶合金带材的板型,控制带材的中部厚度及两侧边缘厚度,同时改进带材的贴辊面和自由面粗糙度,实现本发明的非晶纳米晶合金带材的叠片系数超过90%。本发明的带材制造方法,步骤简单,控制方便,通过控制合金液压力、合金流量以及喷嘴与冷却辊之间的间距即可制备叠片系数超过90%的非晶纳米晶合金带材,进一步减小磁性元器件的体积。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所指出的结构来实现和获得。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地, 下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为非晶纳米晶合金带材的横截面及厚度测量点示意图;
图2为带材板型与叠片系数的关系曲线图;
图3为带材表面粗糙度与叠片系数的关系曲线图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地说明,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
作为软磁材料使用的非晶纳米晶合金,目前大多采用由平面流技术制造的带材,通过卷绕或叠片形成各种形状的铁心。由于带材不可能具有理想的平整表面,因此在卷绕或叠片时在片层之间必然会存在一些空隙。这样,卷绕或叠片后的铁心中实际材料横截面积小于其外形横截面积,即叠片系数小于100%。
薄板或薄带材料沿宽度方向的厚度分布常称为板型。一般认为,薄片状材料在具有理想板型(即平整表面,或具有均匀的厚度)时,将具有最高的叠片系数。但发明人的研究发现,对于用平面流技术制造的非晶纳米晶合金带材来说,这种规律并不成立,非晶纳米晶合金带材在具有中央略凸板型,即带材宽度中间位置的厚度在一定范围内大于两个边缘厚度时,才能得到最高的叠片系数。
发明人研究了482个批次、具有接近的自由面表面粗糙度(Ra=0.38~0.42微米)但不同板型的非晶带材的叠片系数变化规律。采用国际电工委员会标准IEC 60404-8-11的方法测量上述带材沿宽度方向的厚度分布。具体方法是:从带材宽度的中间部位开始,以10mm的间距,分别向带材宽度的两侧依次逐点测量带材厚度,直至带材两侧边缘。带材中 间部位的厚度值标记为H 0;带材左侧边缘处的厚度值标记为H L;带材右侧边缘处的厚度值标记为H R;带材左侧其它位置的厚度值标记为H i,其中i表示位于中间部位H 0左侧的第i个测量点,i=1,2,...,m;带材右侧其它位置的厚度值标记为H j,其中j表示位于中间部位H 0右侧的第j个测量点,j=1,2,...,m。m的取值与带材宽度有关。带材的横截面及厚度测量方法如附图1所示。
经过上述研究,发明人得到了如附图2所示的带材板型与叠片系数的关系曲线。可以看出,即使带材板型是完全平整的(即:带材中间部位厚度与边缘厚度相等),其叠片系数也并非最高,而是当带材中间部位厚度比带材两侧边缘厚度稍大时(即:H 0>H L,且H 0>H R),即带材具有中央略凸板型时,才具有更高的叠片系数。但当中间部位厚度大于两侧边缘厚度2.5微米以上时,叠片系数又逐渐降低。因此,只有带材板型呈中央略凸型、即中间部位厚度比两侧边缘厚度大2.5微米以内时(即:0<H 0-H L≤2.5微米,且0<H 0-H R≤2.5微米),带材具有最高的叠片系数范围。
为了使带材具有最高的叠片系数,除了带材中间部位的厚度应在一定范围内大于边缘厚度之外,带材其它部位的厚度也必须控制在一定范围内。具体地说,带材在除了中间部位和边缘以外的其它部位的厚度必须控制在中间部位厚度与边缘厚度之间(即:H L≤H i≤H 0,且H R≤H j≤H 0。其中i=1,2,...,m;j=1,2,...,m)。
此外,为了使带材具有最高的叠片系数,带材两个边缘的厚度不能相差过大,二者的厚度差的绝对值应控制在2.0微米之内,即:|H L-H R|≤2.0微米。另外,沿带材的宽度方向,任意两个相邻测量点的厚度值之差的绝对值应不大于1.5微米。
发明人的研究还发现,带材表面粗糙度对叠片系数具有比较明显的影响,减小表面粗糙度可以提高带材的叠片系数。在研究了309个批次、具有相似板型但不同表面粗糙度的非晶带材的叠片系数变化规律后,得到了如附图3所示的带材表面粗糙度与叠片系数的关系曲线。可以看出,当带材表面粗糙度降低时,叠片系数整体上呈单调上升趋势。因此,改善带材 的表面粗糙度对提高叠片系数是有利的,即:带材的贴辊面粗糙度的十点平均值R a≤0.50微米,带材的自由面粗糙度的十点平均值R a≤0.40微米。
在深入研究了非晶纳米晶合金带材的表面状态与叠片系数的关系、得到了带材板型和表面粗糙度对叠片系数的影响规律之后,通过合理优化制造工艺,可获得具有所希望的中央略凸板型和良好表面质量的非晶纳米晶合金带材,从而提高带材的叠片系数。
本发明涉及一种具有高叠片系数的非晶纳米晶合金带材,在带材的宽度方向,带材中间部位厚度大于带材两侧边缘厚度,且带材中间部位厚度与所述带材两侧边缘厚度之差不大于2.5微米;
具体的,在带材的宽度方向,所带材中间部位测量点处带材厚度值为H 0,位于带材左侧边缘测量点处对应的带材厚度值为H L,位于右侧边缘测量点处对应的带材厚度值为H R,H 0与H L、H R的关系为:
H 0-H L≤2.5微米,且H 0-H R≤2.5微米;
进一步地,带材中间部位厚度与带材两侧边缘厚度的厚度差绝对值在0.1~2.5微米。即:在带材的宽度方向,所带材中间部位测量点处带材厚度值为H 0,位于带材左侧边缘测量点处对应的带材厚度值为H L,位于右侧边缘测量点处对应的带材厚度值为H R,H 0与H L、H R的关系为:
0.1≤H 0-H L≤2.5微米,且0.1≤H 0-H R≤2.5微米。
更进一步的,带材中间部位厚度与带材两侧边缘厚度的厚度差为0.5~1.5微米,即:0.5≤H 0-H L≤1.5微米,且0.5≤H 0-H R≤1.5微米。
具体的,在带材的宽度方向,带材一侧带材厚度值与另一侧带材厚度值的厚度差绝对值不大于2.0微米,即:|H L-H R|≤2.0微米。
进一步地,在带材的宽度方向,两个边缘厚度的厚度差绝对值不大于1.0微米,即:|H L-H R|≤1.0微米。
具体的,在带材的宽度方向,除了中间和两个边缘以外,其它各点的厚度均应处于中间部位厚度与相应边缘的厚度之间,即:H L≤H i≤H 0,且H R≤H j≤H 0。其中i=1,2,...,m;j=1,2,...,m。
具体的,在带材的宽度方向,任意两个相邻测量点的厚度值之差的绝 对值应不大于1.5微米。
具体的,带材的贴辊面粗糙度的十点平均值R a≤0.50微米;
进一步地,带材的贴辊面粗糙度的十点平均值R a≤0.40微米;
具体的,带材的自由面粗糙度的十点平均值R a≤0.40微米;
进一步地,带材的自由面粗糙度的十点平均值R a≤0.30微米;
具体的,带材的叠片系数不低于90%;
进一步地,带材的叠片系数不低于92%。
本发明还提供了一种铁芯,所述铁芯包含上述带材。
本发明还提供了一种磁性元器件,磁性元器件包含上述铁芯,磁性元器件为变压器、电感器、互感器和电机定子等其他磁性元件中的一种。
本发明通过上述对带材厚度的横向分布以及带材自由面与贴辊面粗糙度的控制,实现本发明的非晶纳米晶合金带材具有超过90%的叠片系数,满足上述条件的非晶纳米晶合金带材在磁性元器件铁芯中的应用。
本发明还提供了一种制造上述具有高叠片系数的非晶纳米晶合金带材的制造方法,具体采用平面流工艺制造。
本发明的制造方法包括:
步骤一:将一定配比的原材料用冶炼炉熔化成合金液;
步骤二:对冶炼好的合金液进行温度调节及生产节奏缓冲;
步骤三:将合金液浇入底部带有狭缝喷嘴的喷嘴包中;
步骤四:合金液从喷嘴中流出,铺展在喷嘴下方的高速旋转的冷却辊外圆周表面冷却形成非晶纳米晶合金带材。
其中,合金液的温度调节及生产节奏缓冲通常在中间包中进行,在小规模或实验室制备带材时也可省去中间包。
合金液从喷嘴中流出过程中,控制喷嘴两侧边缘(对应于带材边缘)的合金液流量小于喷嘴中部(对应于带材中间部位)的合金液流量,实现制备出的带材中部厚度大于两侧区域厚度。
喷嘴包中合金液的温度在1250~1450℃之间;
进一步地,喷嘴包中合金液的温度在1300~1420℃之间。
喷嘴处合金液的静压力在20~60kPa;
进一步地,喷嘴处合金液的静压力在30~50kPa之间。
在本发明的制造方法中,为进一步保证能够制备出具有中央略凸板型的带材,可以设置喷嘴缝的宽度从中间向两个边缘呈连续减小,使喷嘴缝中间部位与边缘部位的宽度差值在0~0.1毫米之间。
也可以设置喷嘴底面的形状并调节喷嘴与冷却辊表面的间距(简称辊嘴间距),保证喷嘴中部(对应于带材宽度的中间部位)的辊嘴间距大于等于喷嘴边缘(对应于带材两个横向边缘)的辊嘴间距,二者差值在0~0.1毫米之间。
为了保证所制造的非晶纳米晶合金带材的表面具有低的粗糙度,要控制冷却辊表面的粗糙度,具体的,控制冷却辊表面粗糙度R a不大于0.40微米。
冷却辊的表面预先经过加工,并且在制带过程中通过砂纸(布)轮、金属毛刷轮或含有研磨颗粒的树脂毛刷轮对冷却辊表面连续打磨,保证冷却辊表面的状态。
非晶纳米晶合金带材的主要成分具有如下的一般表达式:
X aY bZ c
其中,X为铁磁性金属元素Fe、Co、Ni中的至少一种,总含量a在65~85at%之间;Y为过渡金属元素Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Ag、Au、Zn、Al、Sn中的至少一种,总含量b在0~10at%之间;Z为非晶形成元素Si、B、P、C等的至少一种,总含量c在15~30at%之间。此外,合金中还可含有总量不超过0.5at%的杂质元素,其中at%为原子数百分含量。
为更好地说明本发明的制备方法及参数控制,设置了如下的实施例:
以工业纯的原料冶炼不同成分的母合金液,按照本发明的制造方法,制造不同宽度和厚度的铁基、钴基、铁镍基非晶合金或纳米晶合金带材,在制造过程中对喷嘴包中合金液温度、喷嘴缝的宽度、辊嘴间距、喷嘴处 的合金液压力、冷却辊表面线速度、辊面表面粗糙度等参数进行设置。还设置了不在本发明范围内的工艺参数作为比较例。
表1
Figure PCTCN2021080904-appb-000001
Figure PCTCN2021080904-appb-000002
采用国际电工委员会标准IEC 60404-8-11的方法测量上述实施例和比较例中带材沿宽度方向的厚度分布和叠片系数、用中国国家标准GB/T3505-2009(ISO 4287:1997)的方法测量带材贴辊面和自由面的表面粗糙度Ra。表2为相应的测量结果。
表2
Figure PCTCN2021080904-appb-000003
Figure PCTCN2021080904-appb-000004
由表2可知,当采用本发明所规定的技术方案时,带材的板型和叠片系数均可达到本发明的目的。
尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (21)

  1. 一种具有高叠片系数的非晶纳米晶合金带材,其特征在于,
    在所述带材的宽度方向,所述带材的中间部位厚度H 0大于带材两侧边缘厚度H L和H R,且其差值不大于2.5微米:
    H 0-H L≤2.5微米,且H 0-H R≤2.5微米。
  2. 根据权利要求1所述的具有高叠片系数的非晶纳米晶合金带材,其特征在于,所述带材中间部位厚度H 0与所述带材两侧边缘厚度H L和H R的厚度差为0.1~2.5微米:
    0.1≤H 0-H L≤2.5微米,且0.1≤H 0-H R≤2.5微米。
  3. 根据权利要求1所述的具有高叠片系数的非晶纳米晶合金带材,其特征在于,所述带材中间部位厚度H 0与所述带材两侧边缘厚度H L和H R的厚度差为0.5~1.5微米:
    0.5≤H 0-H L≤1.5微米,且0.5≤H 0-H R≤1.5微米。
  4. 根据权利要求1所述的具有高叠片系数的非晶纳米晶合金带材,其特征在于,在所述带材的宽度方向,所述带材一侧边缘厚度值与另一侧边缘厚度值之差的绝对值不大于2.0微米,即:
    |H L-H R|≤2.0微米。
  5. 根据权利要求1所述的具有高叠片系数的非晶纳米晶合金带材,其特征在于,在所述带材的宽度方向,所述带材一侧边缘厚度值与另一侧边缘厚度值之差的绝对值不大于1.0微米:
    |H L-H R|≤1.0微米。
  6. 根据权利要求1所述的具有高叠片系数的非晶纳米晶合金带材,其特征在于,在所述带材的宽度方向,除中间部位和两个边缘外,其它各个测量点的厚度值处于中间厚度值与相应边缘厚度值之间:
    H L≤H i≤H 0,且H R≤H j≤H 0
    式中,H L为带材左边缘厚度,H 0为带材中间部位厚度,H i为在带材的宽度方向,带材左边缘与带材中间部位之间测量点的厚度,H R为带材右边缘厚度,H j为在带材的宽度方向,带材中间部位与带材右边缘之间测量点 的厚度,i=1,2,...,m;j=1,2,...,m。
  7. 根据权利要求1所述的具有高叠片系数的非晶纳米晶合金带材,其特征在于,在所述带材的宽度方向,任意两个相邻厚度测量点之间的厚度差的绝对值不大于1.5微米。
  8. 根据权利要求1所述的具有高叠片系数的非晶纳米晶合金带材,其特征在于,所述带材的贴辊面粗糙度的十点平均值R a≤0.50微米;所述带材的自由面粗糙度的十点平均值R a≤0.40微米。
  9. 根据权利要求1所述的具有高叠片系数的非晶纳米晶合金带材,其特征在于,所述带材的叠片系数大于90%。
  10. 根据权利要求1所述的具有高叠片系数的非晶纳米晶合金带材,其特征在于,所述带材的叠片系数大于92%。
  11. 根据权利要求1所述的具有高叠片系数的非晶纳米晶合金带材,其特征在于,所述带材的主要成分具有如下的一般表达式:
    X aY bZ c
    其中,X为铁磁性金属元素Fe、Co、Ni中的至少一种,总含量a在65~85at%之间;
    Y为过渡金属元素Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Ag、Au、Zn、Al、Sn中的至少一种,总含量b在0~10at%之间;
    Z为非晶形成元素Si、B、P、C中的至少一种,总含量c在15~30at%之间。
  12. 根据权利要求1所述的具有高叠片系数的非晶纳米晶合金带材,其特征在于,所述带材的主要成分合金中还含有总量不超过0.5at%的杂质元素。
  13. 一种铁芯,其特征在于,所述铁芯包含上述权利要求1-12任意一项所述的带材。
  14. 一种磁性元器件,其特征在于,所述磁性元器件包含上述权利要求12所述的铁芯,所述磁性元器件为变压器、电感器、互感器和电机定子中的一种。
  15. 一种具有高叠片系数的非晶纳米晶合金带材的制造方法,其特征在于,包括:
    将原料熔化成合金液;
    将合金液浇入底部带有喷嘴的喷嘴包中;
    合金液从喷嘴中流出,铺展在喷嘴下方的高速旋转的冷却辊外圆周表面冷却形成非晶纳米晶合金带材;
    所述合金液从喷嘴中流出过程中,喷嘴两侧区域的合金液流量小于喷嘴中部的合金液流量,得到中间部位厚度大于两侧区域厚度的带材;
    喷嘴处合金液的静压力在20~60kPa。
  16. 根据权利要求15所述的具有高叠片系数的非晶纳米晶合金带材的制造方法,其特征在于,所述喷嘴包中合金液的温度在1250~1450℃之间。
  17. 根据权利要求15所述的具有高叠片系数的非晶纳米晶合金带材的制造方法,其特征在于,所述喷嘴的喷嘴缝中间宽度最大,由中间最大宽度向两侧边缘的喷嘴缝宽度连续减小。
  18. 根据权利要求15所述的具有高叠片系数的非晶纳米晶合金带材的制造方法,其特征在于,所述喷嘴中部与所述冷却辊表面的距离大于等于所述喷嘴两侧区域与所述冷却辊表面的距离。
  19. 根据权利要求15所述的具有高叠片系数的非晶纳米晶合金带材的制造方法,其特征在于,所述冷却辊表面粗糙度R a不大于0.40微米。
  20. 根据权利要求15所述的具有高叠片系数的非晶纳米晶合金带材的制造方法,其特征在于,所述原料所用的合金具有如下的一般表达式:
    X aY bZ c
    其中,X为铁磁性金属元素Fe、Co、Ni中的至少一种,总含量a在65~85at%之间;
    Y为过渡金属元素Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Ag、Au、Zn、Al、Sn中的至少一种,总含量b在0~10at%之间;
    Z为非晶形成元素Si、B、P、C中的至少一种,总含量c在15~30at%之间。
  21. 根据权利要求20所述的具有高叠片系数的非晶纳米晶合金带材的制造方法,其特征在于,所述原料所用的合金中还含有总量不超过0.5at%的杂质元素。
PCT/CN2021/080904 2020-11-17 2021-03-16 具有高叠片系数的非晶纳米晶合金带材、制造方法及应用 WO2022105079A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011288516.2 2020-11-17
CN202011288516.2A CN114512289A (zh) 2020-11-17 2020-11-17 具有高叠片系数的非晶纳米晶合金带材、制造方法及应用

Publications (1)

Publication Number Publication Date
WO2022105079A1 true WO2022105079A1 (zh) 2022-05-27

Family

ID=81546576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080904 WO2022105079A1 (zh) 2020-11-17 2021-03-16 具有高叠片系数的非晶纳米晶合金带材、制造方法及应用

Country Status (2)

Country Link
CN (1) CN114512289A (zh)
WO (1) WO2022105079A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065156A (zh) * 1988-08-29 1992-10-07 通用电气公司 变压器非晶钢铁芯
CN1270861A (zh) * 1999-04-15 2000-10-25 日立金属株式会社 软磁性合金薄带、用其所制的磁性部件及其制法
CN104060199A (zh) * 2014-06-19 2014-09-24 中国科学院宁波材料技术与工程研究所 塞尺带用非晶合金带材及制备方法
WO2019138730A1 (ja) * 2018-01-12 2019-07-18 Tdk株式会社 軟磁性合金薄帯および磁性部品
CN111739706A (zh) * 2020-07-06 2020-10-02 青岛云路先进材料技术股份有限公司 一种纳米晶磁粉芯、纳米晶合金带材及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065156A (zh) * 1988-08-29 1992-10-07 通用电气公司 变压器非晶钢铁芯
CN1270861A (zh) * 1999-04-15 2000-10-25 日立金属株式会社 软磁性合金薄带、用其所制的磁性部件及其制法
CN104060199A (zh) * 2014-06-19 2014-09-24 中国科学院宁波材料技术与工程研究所 塞尺带用非晶合金带材及制备方法
WO2019138730A1 (ja) * 2018-01-12 2019-07-18 Tdk株式会社 軟磁性合金薄帯および磁性部品
CN111739706A (zh) * 2020-07-06 2020-10-02 青岛云路先进材料技术股份有限公司 一种纳米晶磁粉芯、纳米晶合金带材及其制备方法

Also Published As

Publication number Publication date
CN114512289A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
US7175717B2 (en) Method for making nano-scale grain metal powders having excellent high-frequency characteristic and method for making high-frequency soft magnetic core using the same
JP5720674B2 (ja) 初期超微結晶合金、ナノ結晶軟磁性合金及びその製造方法、並びにナノ結晶軟磁性合金からなる磁性部品
CN114411069A (zh) 纳米晶合金的前体的宽的铁基非晶态合金
WO2021056601A1 (zh) 一种含亚纳米尺度有序团簇的铁基非晶合金、制备方法及其纳米晶合金衍生物
JP6709839B2 (ja) ナノ結晶合金リボンの製造方法
KR20170097041A (ko) Fe기 연자성 합금 박대 및 그것을 이용한 자심
CN109504924B (zh) 一种铁基非晶合金带材及其制备方法
KR20150054912A (ko) 초미결정 합금 박대, 미결정 연자성 합금 박대 및 이것을 사용한 자성 부품
TWI701350B (zh) 軟磁性合金和磁性部件
CN116479321B (zh) 一种纳米晶软磁合金带材及其制备方法和应用
JP2013065827A (ja) 巻磁心およびこれを用いた磁性部品
WO2022105079A1 (zh) 具有高叠片系数的非晶纳米晶合金带材、制造方法及应用
JP4257629B2 (ja) ナノ結晶軟磁性合金用Fe基アモルファス合金薄帯及び磁性部品
CN113151750A (zh) 一种纳米晶合金带材及其制备方法
CN108701530B (zh) 层叠块芯、层叠块和层叠块的制造方法
JPH05222493A (ja) Fe系高透磁率非晶質合金
CN114472822A (zh) 一种非晶纳米晶合金带材及其制造方法
CN114515822A (zh) 一种非晶纳米晶合金带材及其制备方法
CN106653344A (zh) 一种中高频用高硅钢软磁铁芯的制备方法
JPH08153614A (ja) 磁 心
JP3266564B2 (ja) 極薄型Fe−Al系軟磁性合金
KR0134508B1 (ko) 자심
CN114574783B (zh) 一种非晶纳米晶合金带材及其制备方法
JP3638291B2 (ja) 低損失磁心
KR0140788B1 (ko) 극박형 철계 초미세 결정 합금 및 극박형 박대의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893237

Country of ref document: EP

Kind code of ref document: A1