WO2022104723A1 - 一种反射系数测量方法及装置 - Google Patents

一种反射系数测量方法及装置 Download PDF

Info

Publication number
WO2022104723A1
WO2022104723A1 PCT/CN2020/130531 CN2020130531W WO2022104723A1 WO 2022104723 A1 WO2022104723 A1 WO 2022104723A1 CN 2020130531 W CN2020130531 W CN 2020130531W WO 2022104723 A1 WO2022104723 A1 WO 2022104723A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
signal
frequency
reflection coefficient
domain component
Prior art date
Application number
PCT/CN2020/130531
Other languages
English (en)
French (fr)
Inventor
胡文权
李峰
张金华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/130531 priority Critical patent/WO2022104723A1/zh
Priority to CN202080015292.XA priority patent/CN114829954A/zh
Publication of WO2022104723A1 publication Critical patent/WO2022104723A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and device for measuring reflection coefficients.
  • the terminal antenna is used as an electric energy and electromagnetic energy conversion device, and its impedance will also occur in different operating frequencies and different usage scenarios (for example, the antenna is located in any position, held in a hand position, or close to the head during a call, etc.). Variety.
  • the terminal transmits high-frequency signals through the antenna, in order to efficiently transmit the RF signal to the antenna or to the low-noise amplifier of the RF front-end, it is necessary to ensure that the source impedance and load impedance meet the power matching conditions. That is, the source impedance and the load impedance are conjugate and equal.
  • Antenna tuning technology can be used to solve the impedance mismatch problem in high-frequency transmission.
  • the key point of using antenna tuning technology for impedance matching is to monitor the reflection coefficient on the transmission line, and adjust the parameter-adjustable RF system based on the reflection coefficient to achieve impedance. match.
  • the measurement of the reflection coefficient in the transmission frequency band is mainly realized by measuring the signal power in different transmission directions. Specifically, the first power of the first signal transmitted in the forward direction is detected by the first power detector, the second power of the second signal transmitted in the reverse direction is detected by the second power detector, and the first power of the second signal transmitted in the reverse direction is detected by the second power detector, and the first power is detected by the third power detector. The third power of the signal after the signal and the second signal are added, and the reflection coefficient in the transmission frequency band is determined based on the detected multiple powers.
  • the above method of determining the reflection coefficient based on the signal power measured in different transmission directions is only applicable to a transmission system with a small transmission frequency band, but cannot be applied to a broadband transmission system.
  • the present application provides a reflection coefficient measurement method and device, which are used to measure the reflection coefficient in a broadband transmission system, thereby improving the antenna transmission performance of the system.
  • a reflection coefficient measurement method comprising: acquiring a transmission signal in a transmission frequency band, the transmission frequency band may be broadband, for example, the bandwidth of the transmission frequency band is greater than a preset bandwidth; determining that the transmission signal is in at least one The frequency domain component signal in the frequency band, at least one frequency band is a frequency band in the transmission frequency band whose bandwidth is smaller than the bandwidth of the transmission frequency band, and at least one frequency band includes the first frequency band, for example, the frequency range of the transmission frequency band includes the frequency range of the first frequency band; The first reflection coefficient of the first frequency band is determined according to the frequency domain component signal corresponding to the transmission signal in the first frequency band.
  • the transmission signal in the transmission frequency band is divided into frequency domain component signals in at least one frequency band whose bandwidth is smaller than the bandwidth of the transmission frequency band, and according to the frequency domain corresponding to the transmission signal in the first frequency band in the at least one frequency band component signal to determine the first reflection coefficient of the first frequency band, so that the reflection coefficient of the first frequency band with a smaller bandwidth can be accurately measured, that is, the transmission signal in the transmission frequency band is divided into one or more frequency domain component signals in a narrow band , so as to accurately measure the reflection coefficient on the narrowband based on the frequency domain component signal in the narrowband, thereby improving the antenna transmission performance of the system.
  • determining a frequency domain component signal of the transmission signal in at least one frequency band includes: converting the transmission signal into a frequency domain signal, for example, the transmission signal is a time domain signal, The transmission signal can be converted into a corresponding frequency domain signal through Fourier transform; the frequency domain signal can be divided into frequency domain component signals in at least one frequency band by means of frequency domain division, for example, according to the coefficient of the frequency domain signal The frequency domain signal may be divided into frequency domain component signals in at least one frequency band.
  • determining a frequency domain component signal of the transmission signal in at least one frequency band includes: determining a time domain component signal of the transmission signal in at least one frequency band, for example, for the transmission signal The signal is subjected to filtering processing of at least one frequency band, corresponding to the time domain component signal in the at least one frequency band, or the transmission signal is subjected to frequency shift processing of at least one frequency band respectively, and the signal after the frequency domain is filtered in the same frequency band.
  • processing correspondingly obtain a time domain component signal in the at least one frequency band; convert the time domain component signal in each frequency band in the at least one frequency band into a frequency domain component signal in the frequency band, for example, transform each frequency domain through Fourier transform The time domain component signal in each frequency band is converted into the frequency domain component signal in this frequency band.
  • a time domain component signal in the at least one frequency band converts the time domain component signal in each frequency band in the at least one frequency band into a frequency domain component signal in the frequency band, for example, transform each frequency domain through Fourier transform
  • the time domain component signal in each frequency band is converted into the frequency domain component signal in this frequency band.
  • the transmission signal includes a forward coupled signal and a reverse coupled signal
  • the first reflection of the first frequency band is determined according to a frequency domain component signal corresponding to the transmission signal in the first frequency band coefficient, including: determining the first reflection coefficient of the first frequency band according to the two frequency domain component signals corresponding to the forward coupled signal and the reverse coupled signal in the first frequency band; this method can be applied to the directional coupler to obtain the forward In the case of coupled signals and reverse coupled signals.
  • the transmission signal includes a forward transmission signal in forward coupling, a forward coupling signal, a forward transmission signal in reverse coupling, and a reverse coupling signal, according to the frequency domain component signal corresponding to the transmission signal in the first frequency band , determining the first reflection coefficient of the first frequency band, including: determining the first forward coupling coefficient according to the forward transmission signal during forward coupling in the first frequency band and the two frequency domain component signals corresponding to the forward coupling signal; The forward transmission signal during reverse coupling in the first frequency band and the two frequency domain component signals corresponding to the reverse coupling signal are used to determine the first reverse coupling coefficient; according to the first forward coupling coefficient and the first reverse coupling coefficient, The first reflection coefficient of the first frequency band is determined; this method is applicable to the case where the directional coupler obtains the forward coupled signal and the reverse coupled signal respectively.
  • the coupler can obtain the forward transmission signal and the reverse coupling signal simultaneously, or obtain the forward transmission signal separately.
  • An appropriate determination method is selected according to the inverse coupling signal, thereby improving the accuracy and flexibility of determining the first reflection coefficient of the first frequency band.
  • At least one frequency band further includes a second frequency band, and the frequency range of the first frequency band is different from that of the second frequency band; optionally, the frequency band range of the first frequency band is different from the frequency band of the second frequency band.
  • the ranges may partially overlap or not overlap, and/or, the bandwidth of the first frequency band and the bandwidth of the second frequency band may be equal or unequal; the method further includes: determining a second reflection coefficient of the second frequency band; according to the first reflection coefficient and the second reflection coefficient, determine the reflection coefficient of each frequency point in the first frequency band to the second frequency band, for example, perform interpolation fitting processing on the first reflection coefficient and the second reflection coefficient to obtain a reflection coefficient model, and according to the The reflection coefficient model determines the reflection coefficient of each frequency point in the first frequency band to the second frequency band.
  • the continuous frequency band from the first frequency band to the second frequency band can be obtained.
  • the reflection coefficient function so that the reflection coefficient of any frequency point in the first frequency band to the second frequency band can be determined according to the continuous reflection coefficient function.
  • the reflection coefficient of any frequency point is determined, so that the transmission state of the device can be known more accurately, so as to support the device to obtain better antenna transmission performance.
  • the method further includes: filtering out at least one of the following signals in the frequency domain component signal in the at least one frequency band: a direct current signal, a component signal with image interference , the component signal whose signal strength is less than the preset strength.
  • the signal-to-noise ratio of the frequency domain component signal in at least one frequency band can be improved, so that the following steps are used to determine the signal-to-noise ratio of each frequency band based on the filtered frequency domain component signal:
  • the reflection coefficient is used, the accuracy of the reflection coefficient can be improved.
  • a reflection coefficient measurement device comprising: a directional coupler for acquiring a transmission signal in a transmission frequency band; a processor for determining a frequency domain component signal of the transmission signal in at least one frequency band, The at least one frequency band is a frequency band whose bandwidth is smaller than the bandwidth of the transmission frequency band in the transmission frequency band, and the at least one frequency band includes a first frequency band; the processor is further configured to, according to the frequency domain component signal corresponding to the transmission signal in the first frequency band, A first reflection coefficient for the first frequency band is determined.
  • the processor is further configured to: convert the transmission signal into a frequency domain signal; and divide the digital signal corresponding to the transmission signal into frequency domain component signals in at least one frequency band.
  • the apparatus further includes a time domain dividing circuit; the time domain dividing circuit is configured to determine a time domain component signal of the transmission signal in at least one frequency band; the processor, further It is used for converting the time domain component signal in each frequency band of the at least one frequency band into the frequency domain component signal in the frequency band.
  • the time-domain division circuit includes: at least one band-pass filter, which is used to filter the transmission signal in at least one frequency band respectively, and correspondingly obtain a frequency band in the at least one frequency band. time-domain component signal; or, at least one frequency shifter, for performing frequency shift processing on at least one frequency band respectively on the transmission signal; band-pass filter, for performing filtering processing on the same frequency band on the frequency-shifted signal, corresponding to A time domain component signal in the at least one frequency band is obtained.
  • the transmission signal includes a forward coupled signal and a reverse coupled signal
  • the processor is further configured to: according to the forward coupled signal and the reverse coupled signal in the first frequency band The corresponding two frequency domain component signals are used to determine the first reflection coefficient of the first frequency band.
  • the transmission signal includes a forward transmission signal in forward coupling, a forward coupling signal, a forward transmission signal in reverse coupling, and a reverse coupling signal
  • the processor is also used for: determining the first forward coupling coefficient according to the forward transmission signal in the forward coupling in the first frequency band and the two frequency domain component signals corresponding to the forward coupling signal; according to the reverse coupling in the first frequency band When the forward transmission signal and the two frequency domain component signals corresponding to the reverse coupling signal are obtained, the first reverse coupling coefficient is determined; according to the first forward coupling coefficient and the first reverse coupling coefficient, the first frequency band is determined.
  • first reflection coefficient is also used for: determining the first forward coupling coefficient according to the forward transmission signal in the forward coupling in the first frequency band and the two frequency domain component signals corresponding to the forward coupling signal; according to the reverse coupling in the first frequency band When the forward transmission signal and the two frequency domain component signals corresponding to the reverse coupling signal are obtained, the first reverse coupling coefficient is determined; according to the first forward coupling coefficient
  • the at least one frequency band further includes a second frequency band, the first frequency band and the second frequency band have different frequency ranges, and the processor is further configured to: determine a second reflection of the second frequency band coefficient; according to the first reflection coefficient and the second reflection coefficient, determine the reflection coefficient of each frequency point in the first frequency band to the second frequency band.
  • the processor is further configured to: perform interpolation fitting processing on the first reflection coefficient and the second reflection coefficient to obtain a reflection coefficient model; and determine the first reflection coefficient according to the reflection coefficient model The reflection coefficient from the frequency band to each frequency point in the second frequency band.
  • the processor is further configured to: filter out at least one of the following signals in the frequency domain component signal in the at least one frequency band: an interference DC signal exists, an image exists Interfering component signal, the signal strength of which is less than the preset strength.
  • a reflection coefficient measurement device comprising: an acquisition unit for acquiring a transmission signal in a transmission frequency band; a determination unit for determining a frequency domain component signal of the transmission signal in at least one frequency band, at least A frequency band is a frequency band whose bandwidth is smaller than the bandwidth of the transmission frequency band in the transmission frequency band, and at least one frequency band includes the first frequency band; the determining unit is further configured to determine the first frequency band according to the frequency domain component signal corresponding to the transmission signal in the first frequency band The first reflection coefficient of .
  • the determining unit is further configured to: convert the transmission signal into a frequency domain signal; and divide the frequency domain signal into frequency domain component signals in at least one frequency band.
  • the apparatus further includes: a dividing unit, configured to determine a time domain component signal of the transmission signal in at least one frequency band; a converting unit, configured to convert each of the at least one frequency band The time domain component signal in the frequency band is converted into the frequency domain component signal in the frequency band.
  • the dividing unit is further configured to: perform filtering processing on at least one frequency band respectively on the transmission signal, so as to obtain a time domain component signal in at least one frequency band; or, on the transmission signal
  • the frequency shift processing of at least one frequency band is respectively performed, and the filtering processing of the same frequency band is performed on the signal after the frequency domain, and the time domain component signal in at least one frequency band is correspondingly obtained.
  • the transmission signal includes a forward coupled signal and a reverse coupled signal
  • the determining unit is further configured to: according to the forward coupled signal and the reverse coupled signal in the first frequency band The first reflection coefficient of the first frequency band is determined from the two frequency domain component signals corresponding to the coupled signal.
  • the transmission signal includes a forward transmission signal in forward coupling, a forward coupling signal, a forward transmission signal in reverse coupling, and a reverse coupling signal
  • the determining unit further Used to: determine the first forward coupling coefficient according to the forward transmission signal during forward coupling in the first frequency band and the two frequency domain component signals corresponding to the forward coupling signal;
  • the first reverse coupling coefficient is determined to the two frequency domain component signals corresponding to the transmission signal and the reverse coupling signal;
  • the first reflection coefficient of the first frequency band is determined according to the first forward coupling coefficient and the first reverse coupling coefficient.
  • the at least one frequency band further includes a second frequency band, the frequency range of the first frequency band is different from that of the second frequency band, and the determining unit is further configured to: determine a second reflection of the second frequency band coefficient; according to the first reflection coefficient and the second reflection coefficient, determine the reflection coefficient of each frequency point in the first frequency band to the second frequency band.
  • the determining unit is further configured to: perform interpolation fitting processing on the first reflection coefficient and the second reflection coefficient to obtain a reflection coefficient model; The reflection coefficient for each frequency point in the second frequency band.
  • the determining unit is further configured to: filter out at least one of the following signals in the frequency domain component signal in at least one frequency band: a DC signal, a component signal with image interference, A component signal whose signal strength is less than the preset strength.
  • the device is a wireless communication device or a chip system applied to the wireless communication device, the device includes a processor and a memory, the memory stores instructions, and the processor runs The instructions in the memory cause the apparatus to execute the reflection coefficient measurement method provided by the second aspect or any possible implementation manner of the second aspect.
  • a readable storage medium is provided, and instructions are stored in the readable storage medium, and when the readable storage medium runs on a device, the device causes the device to perform the second aspect or the second aspect.
  • the reflection coefficient measurement method provided by any possible implementation.
  • a computer program product which, when the computer program product runs on a computer, causes the computer to perform the reflection coefficient measurement provided by the second aspect or any possible implementation manner of the second aspect method.
  • the device, readable storage medium or computer program product of any reflection coefficient measurement method provided above are all used to execute the corresponding method provided above. Therefore, the beneficial effects that can be achieved can be referred to above. The beneficial effects in the corresponding method provided in this article will not be repeated here.
  • FIG. 1 is a schematic structural diagram of a wireless communication device according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a reflection coefficient measurement method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of determining frequency domain component signals of different frequency bands according to an embodiment of the present application.
  • FIG. 4 is another schematic diagram of determining frequency domain component signals of different frequency bands according to an embodiment of the present application.
  • FIG. 5 is another schematic diagram of determining frequency domain component signals of different frequency bands according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another reflection coefficient measurement method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a reflection coefficient measurement device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another reflection coefficient measuring apparatus provided by an embodiment of the present application.
  • At least one means one or more
  • plural means two or more.
  • And/or which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • At least one item(s) below or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b, or c may represent: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c can be single or multiple.
  • words such as “first” and “second” are used to distinguish objects with similar names or functions or functions. Those skilled in the art can understand that words such as “first” and “second” do not The quantity and execution order are not limited.
  • the term “coupled” is used to denote electrical connection, including direct connection through wires or terminals or indirect connection through other devices. Therefore “coupling” should be regarded as an electronic communication connection in a broad sense.
  • the technical solutions of the present application can be applied to various wireless communication devices using a reflection coefficient measurement device.
  • the wireless communication device can be deployed on land, including indoor or outdoor, hand-held or vehicle-mounted. It can also be deployed on water (such as ships, etc.). It can also be deployed in the air (eg on airplanes, balloons, satellites, etc.).
  • the wireless channel device may be a terminal or a base station.
  • the terminal includes but is not limited to: a mobile phone (mobile phone), a tablet computer, a notebook computer, a palmtop computer, a mobile internet device (MID), a wearable device (such as a smart watch, a smart bracelet, a pedometer) etc.), in-vehicle equipment (for example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed trains, etc.), virtual reality (VR) equipment, augmented reality (AR) equipment, industrial control (industrial control) ), wireless terminals in smart home equipment (for example, refrigerators, TVs, air conditioners, electricity meters, etc.), intelligent robots, workshop equipment, wireless terminals in self-driving, remote medical surgery Wireless terminal, wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, or wireless terminal in smart home, flying equipment (eg, smart robots, hot air balloons, drones, airplanes), etc.
  • in-vehicle equipment for example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed trains
  • FIG. 1 is a schematic structural diagram of a wireless communication device according to an embodiment of the present application, and the wireless communication device is described by taking a mobile phone as an example.
  • the wireless communication device includes a baseband processor (modem), a radio frequency integrated circuit (RFIC), a radio frequency front end module (RF FEM) and an antenna (antenna).
  • modem baseband processor
  • RFIC radio frequency integrated circuit
  • RF FEM radio frequency front end module
  • antenna antenna
  • the baseband processor has a baseband processing function and can be used to process baseband signals.
  • the radio frequency integrated circuit RFIC can be used to realize modulation or demodulation between baseband signals and radio frequency signals.
  • the radio frequency integrated circuit RFIC may include one or more transmit channels and one or more receive channels, and each transmit channel may include an analog to digital converter (analog to digital converter, DAC), a low pass filter (low pass filter) , LPF) and up converter (up converter), and driver amplifier (driver amplifier, DA), each receiving channel may include digital to analog converter (digital to analog converter, ADC), low pass filter (low pass filter) , LPF) and down converter.
  • the RF front-end module RF FEM can be used to provide functions such as power amplification or filtering.
  • the RF front-end module 3 may also include one or more transmit (transmit, Tx) channels and one or more receive (receive, Rx) channels, each transmit channel may include a power amplifier (power amplifier, PA), transmit filter A low noise amplifier (LNA) and a duplexer (duplexer) can be included in each receiving channel, and the duplexer can also be replaced by antenna switches (antenna switches) ).
  • Antennas can be used to receive or transmit signals, that is, to achieve energy conversion between radio frequency signals and electromagnetic waves.
  • the wireless communication device may also include a reflection coefficient measuring device, and the reflection coefficient measuring device can be used to measure the reflection coefficient of the RF front-end module RF FEM.
  • the reflection coefficient measurement device may include one or more devices, for example, the reflection coefficient measurement device may include a processor, a directional coupler, etc., and the processor may be a baseband processor, a microprocessor or Other circuits or processing chips that may be used to implement the functions of the processor.
  • all the devices or functions in the reflection coefficient measurement device may be set separately, or some or all of the devices or functions may be integrated in the baseband processor, the radio frequency integrated circuit RFIC, or the radio frequency front-end module RF FEM of the terminal.
  • the implementation of this application does not specifically limit this.
  • FIG. 2 is a schematic flowchart of a method for measuring a reflection coefficient according to an embodiment of the present application. The method can be applied to the wireless communication device shown in FIG. 1 , and the method includes the following steps.
  • S201 Acquire a transmission signal within a transmission frequency band.
  • the transmission frequency band may refer to a frequency band with a certain bandwidth, and the bandwidth of the transmission frequency band may be greater than the preset bandwidth, for example, the preset bandwidth may be 50MHz or 100MHz.
  • the transmission signal may be a time domain signal, which is used to characterize the change of the transmission signal with time.
  • the transmission signal may include a forward coupled signal and a reverse coupled signal.
  • the transmission signal may include a forward transmission signal, a forward coupling signal and a reverse coupling signal, and the forward transmission signal may be a transmission signal of the wireless communication device.
  • the transmission signal of the wireless communication device may be referred to as a forward transmission signal, and the frequency band of the forward transmission signal is referred to as a transmission frequency band.
  • the wireless communication device may The forward coupling signal and the reverse coupling signal corresponding to the forward transmission signal are acquired in the transmission frequency band.
  • the wireless communication device includes a directional coupler, and the directional coupler has a forward coupling port and a reverse coupling port. If the forward coupling port and the reverse coupling port can be opened simultaneously at the same time, the directional coupler has a forward coupling port and a reverse coupling port. The forward coupling signal and reverse coupling signal corresponding to the forward transmission signal can be obtained at the same time.
  • the directional coupler can be used in the forward direction.
  • the forward coupling signal corresponding to the forward transmission signal is acquired when the coupling port is opened, and the reverse coupling signal corresponding to the forward transmission signal is acquired when the reverse coupling port is opened. It is worth noting that the forward transmission signals only need to have the same bandwidth in the frequency domain when the forward coupling port and the reverse coupling port are opened, and the forward transmission signals in the two cases may not need to be exactly the same.
  • S202 Determine a frequency domain component signal of the transmission signal in at least one frequency band, at least one frequency band is a frequency band in the transmission frequency band whose bandwidth is smaller than that of the transmission frequency band, and at least one frequency band includes the first frequency band.
  • At least one frequency band may include one or more frequency bands, for example, at least one frequency band includes the first frequency band.
  • At least one frequency band is a frequency band in the transmission frequency band whose bandwidth is smaller than the bandwidth of the transmission frequency band. It may mean that the bandwidth of each frequency band in the one or more frequency bands is smaller than the bandwidth of the transmission frequency band, and the frequency range of the transmission frequency band includes this one or the frequency range of multiple frequency bands.
  • the frequency ranges of the at least two frequency bands may be different.
  • at least one frequency band includes a first frequency band and a second frequency band. The frequency range of the frequency band is different from the frequency range of the second frequency band.
  • the frequency band ranges of two adjacent frequency bands among the at least two frequency bands may partially overlap or not overlap, and the bandwidths of the at least two frequency bands may be equal or unequal, which is not specifically limited in this embodiment of the present application.
  • the bandwidth of the transmission frequency band is 120MHz
  • the corresponding frequency range is 700MHz ⁇ 820MHz
  • the number of at least one frequency band is 3, and the bandwidth of each frequency band is 40MHz
  • the at least one frequency band can be 700MHz ⁇ 740MHz, 740MHz ⁇ 780MHz, and 780MHz to 820MHz.
  • the determination of the frequency domain component signal of the transmission signal in at least one frequency band may include the following possible implementations, which are respectively described in detail below.
  • determining the frequency domain component signal of the transmission signal in at least one frequency band may include: converting the transmission signal into a frequency domain signal, for example, the transmission signal is in the time domain signal, the transmission signal can be converted into a corresponding frequency domain signal through Fourier transform; the frequency domain signal is divided into frequency domain component signals in at least one frequency band by means of frequency domain division, for example, according to the frequency domain signal The coefficients of can divide the frequency domain signal into frequency domain component signals in at least one frequency band.
  • the transmission signal includes a forward coupled signal and a reverse coupled signal, or the transmission signal includes a forward coupled signal when forward coupled, a forward coupled signal, and a forward coupled signal and reverse coupled signal when reverse coupled , in this way, each signal included in the transmission signal can be divided into frequency domain component signals in the at least one frequency band.
  • the transmission signal includes a forward transmission signal in forward coupling, a forward coupling signal, and a forward transmission signal and a reverse coupling signal in reverse coupling as an example for description.
  • the frequency domain signal corresponding to the forward coupled signal may be referred to as a first frequency domain signal, and a frequency domain component signal of the first frequency domain signal in the at least one frequency band may be referred to as a first frequency domain component signal;
  • the reverse The frequency domain signal corresponding to the coupled signal may be referred to as the second frequency domain signal, and the frequency domain component signal of the second frequency domain signal in the at least one frequency band may be referred to as the second frequency domain component signal;
  • forward transmission during forward coupling The frequency domain signal corresponding to the signal may be called the third frequency domain signal, and the frequency domain component signal of the third frequency domain signal in the at least one frequency band may be called the third frequency domain component signal;
  • the corresponding frequency domain signal may be referred to as a fourth frequency domain signal, and a frequency domain component signal of the fourth frequency domain signal in the at least one frequency band may be referred to as a fourth frequency domain component signal.
  • the frequency range of the transmission frequency band is 700MHz ⁇ 820MHz, and at least one frequency band is 700MHz ⁇ 740MHz, 740MHz ⁇ 780MHz, and 780MHz ⁇ 820MHz in sequence
  • the first frequency domain signal, the second frequency domain signal, the third frequency domain signal is 700MHz ⁇ 820MHz
  • the first frequency domain component signal, the second frequency domain component signal, the third frequency domain component signal and the fourth frequency domain component signal is 700MHz ⁇ 820MHz
  • the first frequency domain component signal, the second frequency domain component signal, the third frequency domain component signal and the fourth frequency domain component signal is 3, and the frequency ranges of the three frequency domain component signals corresponding to each frequency domain component signal are 700MHz-740MHz, 740MHz-780MHz, and 780MHz-820MHz in turn.
  • determining the frequency domain component signal of the transmission signal in at least one frequency band may include: determining the time domain component signal of the transmission signal in the at least one frequency band, for example, performing a separate operation on the transmission signal.
  • the filtering processing of at least one frequency band corresponds to obtaining the time domain component signal in the at least one frequency band, or performing the frequency shifting processing of at least one frequency band respectively on the transmission signal, and performing the filtering processing of the same frequency band on the signal after the frequency domain, corresponding to Obtain a time domain component signal in the at least one frequency band; convert the time domain component signal in each frequency band of the at least one frequency band into a frequency domain component signal in the frequency band, for example, convert each frequency band by Fourier transform. The time domain component signal is converted into the frequency domain component signal in this frequency band.
  • the wireless communication device may include at least one band-pass filter, and the at least one band-pass filter is in one-to-one correspondence with the at least one frequency band, so that the at least one band-pass filter is used separately. After filtering the time domain signal of the transmission signal, the time domain component signal in the at least one frequency band can be obtained.
  • the wireless communication device may include at least one band-pass filter, and the at least one band-pass filter is in one-to-one correspondence with the at least one frequency band, so that the at least one band-pass filter is used separately. After filtering the time domain signal of the transmission signal, the time domain component signal in the at least one frequency band can be obtained.
  • FIG. 4 the wireless communication device may include at least one band-pass filter, and the at least one band-pass filter is in one-to-one correspondence with the at least one frequency band, so that the at least one band-pass filter is used separately. After filtering the time domain signal of the transmission signal, the time domain component signal in the at least one frequency band can be obtained.
  • the wireless communication device may include at least one frequency shifter and one band-pass filter, and the at least one frequency shifter is in one-to-one correspondence with the at least one frequency band, so that the at least one frequency shifter is used
  • the time domain signal of the transmission signal is respectively subjected to frequency shift processing
  • at least one frequency-shifted signal can be obtained, and the at least one frequency-shifted signal can be filtered by using the band-pass filter to obtain the at least one frequency-shifted signal.
  • a time domain component signal within a frequency band may be used
  • each signal included in the transmission signal can be divided into frequency domain component signals in the at least one frequency band according to the above method.
  • the transmission signal includes a forward transmission signal in forward coupling, a forward coupling signal, a forward transmission signal in reverse coupling, and a reverse coupling signal as an example for description.
  • the wireless communication device can also filter out at least one of the following signals in the frequency domain component signal in the at least one frequency band: DC signal, a component with image interference Signal, the component signal whose signal strength is less than the preset strength.
  • the wireless communication device is integrated with an interference noise processing circuit, and the interference and noise in the frequency domain component signal in at least one frequency band can be filtered out by the interference noise processing circuit.
  • the signal-to-noise ratio of the frequency domain component signal in at least one frequency band can be improved, so that when the reflection coefficient of each frequency band is determined through the following steps based on the filtered frequency domain component signal, the signal-to-noise ratio of the frequency domain component signal can be improved.
  • the accuracy of the reflection coefficient can be improved.
  • S203 Determine a first reflection coefficient of the first frequency band according to the frequency domain component signal corresponding to the transmission signal in the first frequency band.
  • the transmission signal includes a forward transmission signal in forward coupling, a forward coupling signal, a forward transmission signal in reverse coupling, and a reverse coupling signal, then according to the transmission signal in the first frequency band Determining the first reflection coefficient of the first frequency band for the frequency domain component signal corresponding to the signal includes: according to the forward transmission signal during forward coupling in the first frequency band and the two frequency domain component signals corresponding to the forward coupled signal, determining the first forward coupling coefficient; the first reverse coupling coefficient is determined according to the forward transmission signal during reverse coupling in the first frequency band and the two frequency domain component signals corresponding to the reverse coupling signal; according to the first forward coupling coefficient and the first reverse coupling coefficient to determine the first reflection coefficient of the first frequency band, for example, the ratio of the first reverse coupling coefficient to the first forward coupling coefficient may be determined as the first reflection coefficient of the first frequency band.
  • the frequency domain component signal corresponding to the forward coupling signal is the first frequency domain component signal
  • the frequency domain component signal corresponding to the reverse coupling signal is the second frequency domain component signal
  • the corresponding frequency domain component signal is the third frequency domain component.
  • the first frequency domain component signal in the first frequency band is Y(k)
  • the third frequency domain component is X(k)
  • the first forward coupling coefficient is ⁇
  • the signal angular frequency is w
  • the first The time delay of the frequency band is ⁇ m
  • the noise and interference component signals are N(k)
  • Y(k) and X(k) satisfy the following formula (1).
  • the phase information can be separated by Y(k)X * (k), and then the time delay ⁇ m can be obtained according to the slope estimation of the phase signal sequence, and X * (k) represents the conjugate of X(k).
  • the time-domain aligned first frequency domain component signal Y(k) is the signal after time delay compensation and X(k) satisfy the following formula (2); where, Indicates the signal after N(k) is time-delay compensated. Therefore, the estimated value ⁇ ' of the first forward coupling coefficient ⁇ can be determined by the following formula (3).
  • the first reverse coupling coefficient can also be determined, the only difference being that the first frequency domain component signal in the first frequency band is replaced with the The second frequency domain component signal and the third frequency domain component in the first frequency band can be replaced by the fourth frequency domain component signal in the first frequency band.
  • the specific process refer to the above-mentioned method for determining the first forward coupling coefficient. This embodiment of the present application will not be repeated here.
  • the transmission signal includes a forward coupled signal and a reverse coupled signal
  • determining the first reflection coefficient of the first frequency band may include: : Determine the first reflection coefficient of the first frequency band according to the two frequency domain component signals corresponding to the forward coupled signal and the reverse coupled signal in the first frequency band.
  • the frequency domain component signal corresponding to the forward coupling signal is the first frequency domain component signal
  • the frequency domain component signal corresponding to the reverse coupling signal is the second frequency domain component signal
  • the first reflection of the first frequency band The coefficient may be equal to the least square error estimation result between the second frequency domain component signal in the first frequency band and the first frequency domain component signal in the first frequency band, as shown in equation (3).
  • the above method of determining the first reflection coefficient of the first frequency band is only an example. In practical applications, the first reflection coefficient may also be determined based on the frequency domain component signal in the first frequency band.
  • the above example The embodiment of the present application does not constitute a limitation, and the embodiment of the present application does not specifically limit this.
  • the transmission signal in the transmission frequency band is divided into frequency domain component signals in at least one frequency band whose bandwidth is smaller than the bandwidth of the transmission frequency band, and according to the corresponding transmission signal in the first frequency band in the at least one frequency band
  • the frequency domain component signal determines the first reflection coefficient of the first frequency band, so that the reflection coefficient of the first frequency band with a smaller bandwidth can be accurately measured, thereby improving the antenna transmission performance of the wireless communication device.
  • At least one frequency band further includes a second frequency band, and the frequency range of the first frequency band is different from that of the second frequency band.
  • the method further includes: S204-S205.
  • S204 Determine the second reflection coefficient of the second frequency band.
  • the process of determining the second reflection coefficient of the second frequency band is similar to the process of determining the first reflection coefficient of the first frequency band provided above. For details, reference may be made to the above description, which is not repeated in this embodiment of the present application.
  • S205 Determine the reflection coefficient of each frequency point in the first frequency band to the second frequency band according to the first reflection coefficient and the second reflection coefficient.
  • the first reflection coefficient may be used as the reflection coefficient of the center frequency point of the first frequency band
  • the second reflection coefficient may be used as the reflection coefficient of the center frequency point of the second frequency band
  • the first frequency band and the second frequency band may be two adjacent frequency bands in at least one frequency band.
  • the at least one frequency band can be 700MHz ⁇ 740MHz, 740MHz ⁇ 780MHz, and 780MHz ⁇ 820MHz in sequence
  • the first frequency band can be 700MHz ⁇ 740MHz
  • the second frequency band can be 740MHz ⁇ 780MHz
  • the first reflection coefficient can be used as the reflection coefficient of 720MHz
  • the second reflection coefficient can be used as the reflection coefficient of 760MHz.
  • determining the reflection coefficient of each frequency point in the first frequency band to the second frequency band may include: performing interpolation fitting processing on the first reflection coefficient and the second reflection coefficient , to obtain a reflection coefficient model; the reflection coefficient of each frequency point in the first frequency band to the second frequency band is determined according to the reflection coefficient model.
  • an interpolation fitting process is performed on the reflection coefficients from the first frequency band to the second frequency band.
  • the interpolation fitting process may include first-order linear interpolation or fitting.
  • the continuous reflection coefficient function from the first frequency band to the second frequency band can be obtained, so that the continuous reflection coefficient function can be determined.
  • the reflection coefficient of any frequency point in the first frequency band to the second frequency band can be obtained after interpolation and fitting processing.
  • interpolation fitting processing methods are only exemplary, and do not limit the embodiments of the present application. In practical applications, other interpolation fitting processing methods may also be used.
  • the interpolation fitting processing method is not specifically limited.
  • a continuous frequency band from the first frequency band to the second frequency band can be obtained.
  • the reflection coefficient function so that the reflection coefficient of any frequency point in the first frequency band to the second frequency band can be determined according to the continuous reflection coefficient function, so that when the reflection coefficient changes sharply or gently with the bandwidth or frequency of the frequency band, it can be accurately
  • the reflection coefficient of any frequency point can be determined accurately, so that the transmission state of the wireless communication device can be more accurately known, so as to support the wireless communication device to obtain better antenna transmission performance.
  • the wireless communication device includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the wireless communication device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following is an example of dividing each function module corresponding to each function to illustrate:
  • FIG. 7 shows a possible schematic structural diagram of the reflection coefficient measuring device involved in the above embodiment.
  • the apparatus may be a wireless communication device or a built-in chip of the wireless communication device, and the apparatus includes: an acquisition unit 301 and a determination unit 302 .
  • the obtaining unit 301 is configured to support the apparatus to perform S201 in the foregoing embodiments;
  • the determining unit 302 is configured to support the apparatus to perform S202 and S203 in the foregoing embodiments, and/or other technical processes described herein.
  • the apparatus may further include: a dividing unit 303 and/or a converting unit 304 .
  • the converting unit 304 is configured to convert the transmission signal into a frequency domain signal; the dividing unit 303 is further configured to divide the frequency domain signal into frequency domain component signals in at least one frequency band.
  • the dividing unit 303 is configured to determine the time domain component signal of the transmission signal in at least one frequency band; the converting unit 304 is configured to convert the time domain component signal in each frequency band of the at least one frequency band is the frequency domain component signal in this frequency band.
  • the dividing unit 303 is further configured to perform filtering processing on at least one frequency band respectively on the transmission signal, and correspondingly obtain a time domain component signal in at least one frequency band;
  • the frequency shift processing of one frequency band is performed, and the filtering processing of the same frequency band is performed on the signal after the frequency domain, and the time domain component signal in at least one frequency band is correspondingly obtained.
  • the device further includes a filtering unit 305 for filtering out at least one of the following signals in the frequency domain component signal in at least one frequency band: a direct current signal, a component signal with image interference, and the signal strength is less than a preset Intensity of the component signal.
  • a filtering unit 305 for filtering out at least one of the following signals in the frequency domain component signal in at least one frequency band: a direct current signal, a component signal with image interference, and the signal strength is less than a preset Intensity of the component signal.
  • the obtaining unit 301 in this application may be a directional coupler of the device
  • the determining unit 302 the converting unit 304 and the filtering unit 305 may be the processor of the device
  • the dividing unit 303 may be a Domain segmentation circuit.
  • FIG. 8 is a schematic structural diagram of a possible structure of a reflection coefficient measuring apparatus provided by an embodiment of the present application.
  • the apparatus may be a wireless communication device or a built-in chip of the wireless communication device, and the apparatus includes: a directional coupler 401 , a time domain dividing circuit 402 and a processor 403 .
  • the directional coupler 401 is used to support the device to perform S201 in the above embodiment;
  • the time domain division circuit 402 is used to support the device to perform S202 in the above embodiment;
  • the processor 403 is used to support the device to perform the above embodiment. of S203, and/or other processes for the techniques described herein.
  • the time domain dividing circuit 402 includes at least one bandpass filter; or, the time domain dividing circuit 402 includes at least one frequency shifter and one bandpass filter.
  • the processor 403 is further configured to: filter out interference and noise in the frequency domain component signal in at least one frequency band.
  • the processor 403 may be a baseband processor, a central processing unit, a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, hardware components, or any of them. combination. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processor may also be a combination that implements computing functions, for example, including a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like, which is not specifically limited in this embodiment of the present application.
  • a readable storage medium is also provided, where computer execution instructions are stored in the readable storage medium. Provides the steps in the reflection coefficient measurement method.
  • the aforementioned readable storage medium may include: U disk, removable hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • a computer program product in another embodiment, includes computer-executable instructions, and the computer-executable instructions are stored in a computer-readable storage medium; at least one processor of the device can be obtained from a computer-readable storage medium.
  • the computer-executable instruction is read by reading the storage medium, and at least one processor executes the computer-executable instruction to cause the device to perform the steps in the signal reflection coefficient measurement method provided by the above method embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmitters (AREA)

Abstract

本申请提供一种反射系数测量方法及装置,涉及通信技术领域,用于测量宽带传输系统中的反射系数,进而提高系统的天线传输性能。所述方法包括:获取传输频段内的传输信号;确定所述传输信号在至少一个频段内的频域分量信号,所述至少一个频段是所述传输频段中带宽小于所述传输频段的带宽的频段,所述至少一个频段包括第一频段;根据所述第一频段内所述传输信号对应的频域分量信号,确定所述第一频段的第一反射系数。

Description

一种反射系数测量方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种反射系数测量方法及装置。
背景技术
其中,终端天线作为电能与电磁能转换装置,在不同的工作频率和不同的使用场景(比如,天线位于任意位置、手握位置或通话时靠近头部等)中,其阻抗也会随之发生变化。另外,终端在通过天线传输高频信号时,为了将射频信号高效地传输到天线上或者将射频信号高效地传输到射频前端的低噪声放大器上,需要保证源阻抗和负载阻抗满足功率匹配条件,即源阻抗与负载阻抗是共轭相等的。如果源阻抗与负载阻抗失配,则会导致终端的功耗增加、电池续航时间降低以及通信掉话等问题,从而导致用户体验降低。天线调谐技术可用于解决高频传输过程中的阻抗失配问题,利用天线调谐技术进行阻抗匹配的关键点在于监测传输线上的反射系数,基于该反射系数来调整参数可调的射频系统从而实现阻抗匹配。
现有技术中,对于传输频段内的反射系数测量,主要是通过测量不同传输方向上的信号功率来实现的。具体的,通过第一功率检测器检测前向传输的第一信号的第一功率,通过第二功率检测器检反向传输的第二信号的第二功率,通过第三功率检测器检测第一信号与第二信号相加之后的信号的第三功率,基于检测到的多个功率确定该传输频段内的反射系数。
由于传输线上的反射系数会随着传输信号带宽的增加,在不同频率上的反射系数的差异变大。因此,上述基于不同传输方向上测量的信号功率来确定反射系数的方式,仅适用于传输频段较小的传输系统中,而无法应用在宽带传输系统中。
发明内容
本申请提供了一种反射系数测量方法及装置,用于测量宽带传输系统中的反射系数,进而提高系统的天线传输性能。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种反射系数测量方法,该方法包括:获取传输频段内的传输信号,该传输频段可以是宽带,比如,该传输频段的带宽大于预设带宽;确定该传输信号在至少一个频段内的频域分量信号,至少一个频段是该传输频段中带宽小于该传输频段的带宽的频段,至少一个频段包括第一频段,比如,该传输频段的频率范围包含第一频段的频率范围;根据第一频段内该传输信号对应的频域分量信号,确定第一频段的第一反射系数。
上述技术方案中,通过将该传输频段内的传输信号划分为带宽小于该传输频段带宽的至少一个频段内的频域分量信号,并根据至少一个频段中第一频段内该传输信号对应的频域分量信号,确定第一频段的第一反射系数,从而可以准确地测量带宽较小的第一频段的反射系数,即将该传输频段内的传输信号划分为一个或者多个窄带内的频域分量信号,从而基于窄带内的频域分量信号准确测量该窄带上的反射系数,进而 提高系统的天线传输性能。
在第一方面的一种可能的实现方式中,确定该传输信号在至少一个频段内的频域分量信号,包括:将该传输信号转换为频域信号,比如,该传输信号为时域信号,通过傅里叶变换可以将该传输信号转换为对应的频域信号;通过频域分割的方式将该频域信号划分为至少一个频段内的频域分量信号,比如,根据该频域信号的系数可以将该频域信号划分为至少一个频段内的频域分量信号。上述可能的实现方式中,提供了一种简单有效地确定至少一个频段内的频域分量信号的方式。
在第一方面的一种可能的实现方式中,确定该传输信号在至少一个频段内的频域分量信号,包括:确定该传输信号在至少一个频段内的时域分量信号,比如,对该传输信号分别进行至少一个频段的滤波处理,对应得到该至少一个频段内的时域分量信号,或者对该传输信号分别进行至少一个频段的频移处理,并对频域后的信号进行同一频段的滤波处理,对应得到该至少一个频段内的时域分量信号;将该至少一个频段中每个频段内的时域分量信号转换为该频段内的频域分量信号,比如,通过傅里叶变换将每个频段内的时域分量信号转换为该频段内的频域分量信号。上述可能的实现方式中,提供了另一种简单有效地确定至少一个频段内的频域分量信号的方式。
在第一方面的一种可能的实现方式中,该传输信号包括前向耦合信号和反向耦合信号,根据第一频段内该传输信号对应的频域分量信号,确定第一频段的第一反射系数,包括:根据第一频段内的前向耦合信号和反向耦合信号对应的两个频域分量信号,确定第一频段的第一反射系数;该方式可适用于方向耦合器同时获取前向耦合信号和反向耦合信号的情况下。或者,该传输信号包括前向耦合时的前向传输信号、前向耦合信号、反向耦合时的前向传输信号和反向耦合信号,根据第一频段内该传输信号对应的频域分量信号,确定第一频段的第一反射系数,包括:根据第一频段内前向耦合时的前向传输信号和前向耦合信号对应的两个频域分量信号,确定第一前向耦合系数;根据第一频段内反向耦合时的前向传输信号和反向耦合信号对应的两个频域分量信号,确定第一反向耦合系数;根据第一前向耦合系数和第一反向耦合系数,确定第一频段的第一反射系数;该方式可适用于方向耦合器分别获取前向耦合信号和反向耦合信号的情况下。上述可能的实现方式中,提供了两种不同的确定第一反射系数的方式,在实际应用中,可根据耦合器是同时获取前向传输信号和反向耦合信号,还是分别获取前向传输信号和反向耦合信号而选择合适的确定方式,从而提高确定第一频段的第一反射系数的准确性和灵活性。
在第一方面的一种可能的实现方式中,至少一个频段还包括第二频段,第一频段与第二频段的频率范围不同;可选的,第一频段的频段范围与第二频段的频段范围可以存在部分重叠或者不重叠,和/或,第一频段的带宽与第二频段的带宽可以相等或者不相等;该方法还包括:确定第二频段的第二反射系数;根据第一反射系数和第二反射系数,确定第一频段至第二频段中每个频点的反射系数,比如,对第一反射系数和第二反射系数进行插值拟合处理,以得到反射系数模型,并根据该反射系数模型确定第一频段至第二频段中每个频点的反射系数。上述可能的实现方式中,通过基于第一反射系数和所述第二反射系数,对第一频段至第二频段的反射系数做插值拟合处理,即可得到第一频段至第二频段连续的反射系数函数,从而根据该连续的反射系数函数 可以确定第一频段至第二频段中任意一个频点的反射系数,在反射系数随着频段带宽或频率变化剧烈或者变化平缓时,均可以准确地确定出任意一个频点的反射系数,从而能够更准确地获知设备的传输状态,以支持该设备获得更好的天线传输性能。
在第一方面的一种可能的实现方式中,该方法还包括:滤除该至少一个频段内的该频域分量信号中的以下信号中的至少一项:直流信号,存在镜像干扰的分量信号,信号强度小于预设强度的分量信号。上述可能的实现方式中,通过滤除这些干扰和噪声,可以提高至少一个频段内的频域分量信号的信噪比,从而在基于滤波后的频域分量信号通过下述步骤确定每个频段的反射系数时,可以提高该反射系数的准确度。
第二方面,提供一种反射系数测量装置,该装置包括:方向耦合器,用于获取传输频段内的传输信号;处理器,用于确定该传输信号在至少一个频段内的频域分量信号,该至少一个频段是该传输频段中带宽小于该传输频段的带宽的频段,该至少一个频段包括第一频段;该处理器,还用于根据第一频段内该传输信号对应的频域分量信号,确定第一频段的第一反射系数。
在第二方面的一种可能的实现方式中,该处理器还用于:将该传输信号转换为频域信号;将该传输信号对应的数字信号划分为至少一个频段内的频域分量信号。
在第二方面的一种可能的实现方式中,该装置还包括时域分割电路;该时域分割电路,用于确定该传输信号在至少一个频段内的时域分量信号;该处理器,还用于将该至少一个频段中每个频段内的时域分量信号转换为该频段内的频域分量信号。
在第二方面的一种可能的实现方式中,该时域分割电路包括:至少一个带通滤波器,用于对该传输信号分别进行至少一个频段的滤波处理,对应得到该至少一个频段内的时域分量信号;或者,至少一个移频器,用于对该传输信号分别进行至少一个频段的频移处理;带通滤波器,用于对频移后的信号进行同一频段的滤波处理,对应得到该至少一个频段内的时域分量信号。
在第二方面的一种可能的实现方式中,该传输信号包括前向耦合信号和反向耦合信号,该处理器还用于:根据第一频段内该前向耦合信号和该反向耦合信号对应的两个频域分量信号,确定第一频段的第一反射系数。
在第二方面的一种可能的实现方式中,该传输信号包括前向耦合时的前向传输信号、前向耦合信号、反向耦合时的前向传输信号和反向耦合信号,该处理器还用于:根据第一频段内前向耦合时的该前向传输信号和该前向耦合信号对应的两个频域分量信号,确定第一前向耦合系数;根据第一频段内反向耦合时的该前向传输信号和该反向耦合信号对应的两个频域分量信号,确定第一反向耦合系数;根据第一前向耦合系数和第一反向耦合系数,确定第一频段的第一反射系数。
在第二方面的一种可能的实现方式中,该至少一个频段还包括第二频段,第一频段与第二频段的频率范围不同,该处理器还用于:确定第二频段的第二反射系数;根据第一反射系数和第二反射系数,确定第一频段至第二频段中每个频点的反射系数。
在第二方面的一种可能的实现方式中,该处理器还用于:对第一反射系数和第二反射系数进行插值拟合处理,以得到反射系数模型;根据该反射系数模型确定第一频段至第二频段中每个频点的反射系数。
在第二方面的一种可能的实现方式中,处理器还用于:滤除该至少一个频段内的 该频域分量信号中的以下信号中的至少一项:存在干扰的直流信号,存在镜像干扰的分量信号,信号强度小于预设强度的分量信号。
第三方面,提供一种反射系数测量装置,该装置包括:获取单元,用于获取传输频段内的传输信号;确定单元,用于确定该传输信号在至少一个频段内的频域分量信号,至少一个频段是该传输频段中带宽小于该传输频段的带宽的频段,至少一个频段包括第一频段;确定单元,还用于根据第一频段内该传输信号对应的频域分量信号,确定第一频段的第一反射系数。
在第三方面的一种可能的实现方式中,确定单元还用于:将该传输信号转换为频域信号;将该频域信号划分为至少一个频段内的频域分量信号。
在第三方面的一种可能的实现方式中,该装置还包括:划分单元,用于确定该传输信号在至少一个频段内的时域分量信号;转换单元,用于将至少一个频段中每个频段内的时域分量信号转换为该频段内的频域分量信号。
在第三方面的一种可能的实现方式中,划分单元还用于:对该传输信号分别进行至少一个频段的滤波处理,对应得到至少一个频段内的时域分量信号;或者,对该传输信号分别进行至少一个频段的频移处理,并对频域后的信号进行同一频段的滤波处理,对应得到至少一个频段内的时域分量信号。
在第三方面的一种可能的实现方式中,该传输信号包括前向耦合信号和反向耦合信号,确定单元还用于:根据所述第一频段内所述前向耦合信号和所述反向耦合信号对应的两个频域分量信号,确定所述第一频段的第一反射系数。
在第三方面的一种可能的实现方式中,该传输信号包括前向耦合时的前向传输信号、前向耦合信号、反向耦合时的前向传输信号和反向耦合信号,确定单元还用于:根据第一频段内前向耦合时的前向传输信号和前向耦合信号对应的两个频域分量信号,确定第一前向耦合系数;根据第一频段内反向耦合时的前向传输信号和反向耦合信号对应的两个频域分量信号,确定第一反向耦合系数;根据第一前向耦合系数和第一反向耦合系数,确定第一频段的第一反射系数。
在第三方面的一种可能的实现方式中,至少一个频段还包括第二频段,第一频段与所述第二频段的频率范围不同,确定单元还用于:确定第二频段的第二反射系数;根据第一反射系数和第二反射系数,确定第一频段至第二频段中每个频点的反射系数。
在第三方面的一种可能的实现方式中,确定单元还用于:对第一反射系数和第二反射系数进行插值拟合处理,以得到反射系数模型;根据反射系数模型确定第一频段至第二频段中每个频点的反射系数。
在第三方面的一种可能的实现方式中,确定单元还用于:滤除至少一个频段内的频域分量信号中的以下信号中的至少一项:直流信号,存在镜像干扰的分量信号,信号强度小于预设强度的分量信号。
本申请的又一方面,提供一种反射系数测量装置,该装置为无线通信设备或者应用于无线通信设备的芯片系统,该装置包括处理器和存储器,该存储器中存储有指令,该处理器运行该存储器中的指令,以使该装置执行如第二方面或者第二方面的任一种可能的实现方式所提供的反射系数测量方法。
本申请的又一方面,提供一种可读存储介质,该可读存储介质中存储有指令,当 该可读存储介质在设备上运行时,使得该设备执行如第二方面或者第二方面的任一种可能的实现方式所提供的反射系数测量方法。
本申请的又一方面,提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行第二方面或者第二方面的任一项可能的实现方式所提供的反射系数测量方法。
可以理解地,上述提供的任一种反射系数测量方法的装置、可读存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种无线通信设备的结构示意图;
图2为本申请实施例提供的一种反射系数测量方法的流程示意图;
图3为本申请实施例提供的一种确定不同频段的频域分量信号的示意图;
图4为本申请实施例提供的另一种确定不同频段的频域分量信号的示意图;
图5为本申请实施例提供的又一种确定不同频段的频域分量信号的示意图;
图6为本申请实施例提供的另一种反射系数测量方法的流程示意图;
图7为本申请实施例提供的一种反射系数测量装置的结构示意图;
图8为本申请实施例提供的另一种反射系数测量装置的结构示意图。
具体实施方式
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a,b,c可以是单个,也可以是多个。另外,本申请的实施例采用了“第一”、“第二”等字样对名称或功能或作用类似的对象进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。“耦合”一词用于表示电性连接,包括通过导线或连接端直接相连或通过其他器件间接相连。因此“耦合”应被视为是一种广义上的电子通信连接。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请的技术方案可以应用于采用反射系数测量装置的各种无线通信设备中。该无线通信设备可以部署在陆地上,包括室内或室外、手持或车载。也可以部署在水面上(如轮船等)。还可以部署在空中(例如飞机、气球和卫星上等)。比如,该无线通道设备可以为终端或者基站。比如,该终端包括但不限于:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等)、车载设备(例如,汽车、自行 车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。
图1为本申请实施例提供的一种无线通信设备的结构示意图,该无线通信设备以手机为例进行说明。该无线通信设备包括:基带处理器(modem)、射频集成电路(radio frequency integrated circuit,RFIC)、射频前端模块(radio frequency front end module,RF FEM)和天线(antenna)。
其中,基带处理器具有基带处理功能,可用于处理基带信号。射频集成电路RFIC可用于实现基带信号与射频信号之间的调制或解调。射频集成电路RFIC中可以包括一个或者多个发射通道、以及一个或者多个接收通道,每个发射通道中可以包括模数转换器(analog to digital converter,DAC)、低通滤波器(low pass filter,LPF)和上转换器(up converter)、以及驱动放大器(driver amplifier,DA),每个接收通道中可以包括数模转换器(digital to analog converter,ADC)、低通滤波器(low pass filter,LPF)和下转换器(down converter)。射频前端模块RF FEM可用于提供功率放大或滤波等功能。射频前端模块3中也可以包括一个或者多个发射(transmit,Tx)通道、以及一个或者多个接收(receive,Rx)通道,每个发射通道可以包括功率放大器(power amplifier,PA)、发射滤波器(Tx filter)和双工器(duplexer),每个接收通道中可以包括低噪声放大器(low noise amplifier,LNA)和双工器(duplexer),双工器也可以替换为天线开关(antenna switches)。天线可用于实现信号的接收或发送,即实现射频信号与电磁波之间的能量转换。
进一步的,该无线通信设备中还可以包括反射系数测量装置,该反射系数测量装置可用于测量射频前端模块RF FEM的反射系数。其中,该反射系数测量装置中可以包括一个或者多个器件,比如,该反射系数测量装置可以包括处理器和方向耦合器(directional coupler)等,该处理器可以为基带处理器、微处理器或者其他可用于实现该处理器的功能的电路或处理芯片。可选的,该反射系数测量装置中的全部器件或功能可以是单独设置的,也可以是部分或全部器件或功能集成在该终端的基带处理器、射频集成电路RFIC或者射频前端模块RF FEM中的,本申请实施对此不作具体限制。
图2为本申请实施例提供的一种反射系数测量方法的流程示意图,该方法可应用于图1所示的无线通信设备中,该方法包括以下几个步骤。
S201:获取传输频段内的传输信号。
其中,该传输频段可以是指具有一定带宽的频段,该传输频段的带宽可以大于预设带宽,比如,该预设带宽可以是50MHz或者100MHz。该传输信号可以为时域信号,用于表征该传输信号随时间的变化。在一种可能的示例中,该传输信号可以包括前向耦合信号和反向耦合信号。在另一种可能的示例中,该传输信号可以包括前向传输信号、前向耦合信号和反向耦合信号,该前向传输信号可以是该无线通信设备的发 射信号。
具体的,该无线通信设备的发射信号可以称为前向传输信号,该前向传输信号的频段称为传输频段,在该无线通信设备向其他设备发送前向传输信号时,该无线通信设备可以在该传输频段内获取该前向传输信号对应的前向耦合信号和反向耦合信号。比如,该无线通信设备中包括方向耦合器,该方向耦合器具有前向耦合端口和反向耦合端口,若前向耦合端口和反向耦合端口在同一时间可同时被打开,则该方向耦合器可同时获取该前向传输信号对应的前向耦合信号和反向耦合信号,若该前向耦合端口和反向耦合端口在同一时间只有一个端口可被打开,则该方向耦合器可在前向耦合端口被打开时获取该前向传输信号对应的前向耦合信号,在反向耦合端口被打开时获取该前向传输信号对应的反向耦合信号。值得注意的是,前向耦合端口和反向耦合端口被打开时的前向传输信号只需要在频域上具有相同带宽即可,两种情况下的前向传输信号可以不需要完全一样。
S202:确定该传输信号在至少一个频段内的频域分量信号,至少一个频段是该传输频段中带宽小于该传输频段的带宽的频段,至少一个频段包括第一频段。
其中,至少一个频段可以包括一个或者多个频段,比如,至少一个频段包括第一频段。至少一个频段是该传输频段中带宽小于该传输频段的带宽的频段可以是指这一个或者多个频段中每个频段的带宽均小于该传输频段的带宽,且该传输频段的频率范围包含这一个或者多个频段的频率范围。另外,当至少一个频段包括至少两个频段(即两个或者两个以上的频段)时,至少两个频段的频率范围可以不同,比如,至少一个频段包括第一频段和第二频段,第一频段的频率范围和第二频段的频率范围不同。可选的,至少两个频段中相邻的两个频段的频段范围可以存在部分重叠或者不重叠,至少两个频段的带宽可以相等或者不相等,本申请实施例对此不作具体限制。比如,假设该传输频段的带宽为120MHz、对应的频率范围为700MHz~820MHz,至少一个频段的数量为3且每个频段的带宽为40MHz,则这至少一个频段依次可以为700MHz~740MHz、740MHz~780MHz、以及780MHz~820MHz。
具体的,确定该传输信号在至少一个频段内的频域分量信号,可以包括以下几种可能的实现方式,下面分别对这几种可能的实现方式进行详细描述。
在一种可能的实现方式中,如图3所示,确定该传输信号在至少一个频段内的频域分量信号可以包括:将该传输信号转换为频域信号,比如,该传输信号为时域信号,通过傅里叶变换可以将该传输信号转换为对应的频域信号;通过频域分割的方式将该频域信号划分为至少一个频段内的频域分量信号,比如,根据该频域信号的系数可以将该频域信号划分为至少一个频段内的频域分量信号。当该传输信号包括前向耦合信号和反向耦合信号,或者该传输信号包括前向耦合时的前向传输信号、前向耦合信号、反向耦合时的前向传输信号和反向耦合信号时,按照该方式可以将该传输信号包括的每个信号均划分为该至少一个频段内的频域分量信号。图3中以该传输信号包括前向耦合时的前向传输信号、前向耦合信号、反向耦合时的前向传输信号和反向耦合信号为例进行说明。
其中,该前向耦合信号对应的频域信号可以称为第一频域信号,第一频域信号在该至少一个频段内的频域分量信号可以称为第一频域分量信号;该反向耦合信号对应 的频域信号可以称为第二频域信号,第二频域信号在该至少一个频段内的频域分量信号可以称为第二频域分量信号;前向耦合时的前向传输信号对应的频域信号可以称为第三频域信号,第三频域信号在该至少一个频段内的频域分量信号可以称为第三频域分量信号;反向耦合时的前向传输信号对应的频域信号可以称为第四频域信号,第四频域信号在该至少一个频段内的频域分量信号可以称为第四频域分量信号。
示例性的,假设该传输频段的频率范围为700MHz~820MHz,至少一个频段依次为700MHz~740MHz、740MHz~780MHz、以及780MHz~820MHz,则第一频域信号、第二频域信号、第三频域信号和第四频域信号中每个频域信号的频率范围均为700MHz~820MHz,第一频域分量信号、第二频域分量信号、第三频域分量信号和第四频域分量信号中每种频域分量信号的数量均为3,每种频域分量信号对应的3个频域分量信号的频率范围依次为700MHz~740MHz、740MHz~780MHz、以及780MHz~820MHz。
在另一种可能的实现方式中,确定该传输信号在至少一个频段内的频域分量信号可以包括:确定该传输信号在至少一个频段内的时域分量信号,比如,对该传输信号分别进行至少一个频段的滤波处理,对应得到该至少一个频段内的时域分量信号,或者对该传输信号分别进行至少一个频段的频移处理,并对频域后的信号进行同一频段的滤波处理,对应得到该至少一个频段内的时域分量信号;将该至少一个频段中每个频段内的时域分量信号转换为该频段内的频域分量信号,比如,通过傅里叶变换将每个频段内的时域分量信号转换为该频段内的频域分量信号。
可选的,如图4所示,该无线通信设备中可以包括至少一个带通滤波器,这至少一个带通滤波器与该至少一个频段一一对应,从而使用这至少一个带通滤波器分别对该传输信号的时域信号进行滤波处理后,即可得到该至少一个频段内的时域分量信号。或者,如图5所示,该无线通信设备中可以包括至少一个移频器和一个带通滤波器,这至少一个移频器与该至少一个频段一一对应,从而使用这至少一个移频器分别对该传输信号的时域信号进行移频处理后,即可得到至少一个移频后的信号,使用该带通滤波器对这至少一个移频后的信号进行滤波处理,即可得到该至少一个频段内的时域分量信号。当该传输信号包括前向耦合信号和反向耦合信号,或者该传输信号包括前向耦合时的前向传输信号、前向耦合信号、反向耦合时的前向传输信号和反向耦合信号时,按照上述方式可以将该传输信号包括的每个信号均划分为该至少一个频段内的频域分量信号。图4和图5中以该传输信号包括前向耦合时的前向传输信号、前向耦合信号、反向耦合时的前向传输信号和反向耦合信号为例进行说明。
需要说明的是,图3-图5中所涉及的前向耦合系数确定、反向耦合系数确定、各频段反向系数确定以及反射系数插值的详细描述,可以参见下文的S203-S205中的相关描述,本申请实施例在此不再赘述。
进一步的,对于至少一个频段内的频域分量信号,该无线通信设备还可以滤除该至少一个频段内的频域分量信号中的以下信号中的至少一项:直流信号,存在镜像干扰的分量信号,信号强度小于预设强度的分量信号。比如,该无线通信设备集成有干扰噪声处理电路,通过该干扰噪声处理电路可以滤除至少一个频段内的频域分量信号中的干扰和噪声。通过滤除这些干扰和噪声,可以提高至少一个频段内的频域分量信 号的信噪比,从而在基于滤波后的频域分量信号通过下述步骤确定每个频段的反射系数时,可以提高该反射系数的准确度。
S203:根据第一频段内该传输信号对应的频域分量信号,确定第一频段的第一反射系数。
在一种可能的示例中,该传输信号包括前向耦合时的前向传输信号、前向耦合信号、反向耦合时的前向传输信号和反向耦合信号,则根据第一频段内该传输信号对应的频域分量信号,确定第一频段的第一反射系数,包括:根据第一频段内前向耦合时的前向传输信号和该前向耦合信号对应的两个频域分量信号,确定第一前向耦合系数;根据第一频段内反向耦合时的前向传输信号和反向耦合信号对应的两个频域分量信号,确定第一反向耦合系数;根据第一前向耦合系数和第一反向耦合系数,确定第一频段的第一反射系数,比如,将第一反向耦合系数与第一前向耦合系数的比值可以确定为第一频段的第一反射系数。
其中,该前向耦合信号对应的频域分量信号为第一频域分量信号,该反向耦合信号对应的频域分量信号为第二频域分量信号,该前向耦合时的前向传输信号对应的频域分量信号为第三频域分量。示例性的,假设第一频段内的第一频域分量信号为Y(k)、第三频域分量为X(k),第一前向耦合系数为α,信号角频率为w,第一频段的时延为τ m,噪声和干扰分量信号为N(k),则Y(k)与X(k)满足如下公式(1)。
Figure PCTCN2020130531-appb-000001
通过Y(k)X *(k)可以分离出相位信息,然后根据相位信号序列的斜率估计可以得到时延τ m,X *(k)表示X(k)的共轭。进行时延补偿后,时域对齐的第一频域分量信号Y(k)进行时延补偿后的信号
Figure PCTCN2020130531-appb-000002
与X(k)满足如下公式(2);式中,
Figure PCTCN2020130531-appb-000003
表示N(k)进行时延补偿后的信号。因此,第一前向耦合系数α的估计值α'可通过如下公式(3)确定。
Figure PCTCN2020130531-appb-000004
Figure PCTCN2020130531-appb-000005
需要说明的是,根据上述确定第一前向耦合系数的方式,同样可以确定第一反向耦合系数,区别仅在于,将第一频段内的第一频域分量信号替换为第一频段内的第二频域分量信号、以及将第一频段内的第三频域分量替换为第一频段内的第四频域分量信号即可,具体过程可以参考上述确定第一前向耦合系数的方式,本申请实施例在此不再赘述。
在另一种可能的示例中,该传输信号包括前向耦合信号和反向耦合信号,则根据第一频段内该传输信号对应的频域分量信号,确定第一频段的第一反射系数可以包括:根据第一频段内该前向耦合信号和该反向耦合信号对应的两个频域分量信号,确定第一频段的第一反射系数。可选的,该前向耦合信号对应的频域分量信号为第一频域分量信号,该反向耦合信号对应的频域分量信号为第二频域分量信号,则第一频段的第一反射系数可以等于第一频段内的第二频域分量信号与第一频段内的第一频域分量信号的最小平方误差估计结果,如式(3)所示。
需要说明的是,上述确定第一频段的第一反射系数的方式仅为示例性的,在实际应用中,也可以基于第一频段内的频域分量信号的方式确定第一反射系数,上述示例并不对本申请实施例构成限制,本申请实施例对此也不做具体限制。
在本申请实施例中,通过将该传输频段内的传输信号划分为带宽小于该传输频段带宽的至少一个频段内的频域分量信号,并根据至少一个频段中第一频段内该传输信号对应的频域分量信号,确定第一频段的第一反射系数,从而可以准确地测量带宽较小的第一频段的反射系数,进而提高无线通信设备的天线传输性能。
进一步的,至少一个频段还包括第二频段,第一频段的频率范围与第二频段的频率范围不同,如图6所示,该方法还包括:S204-S205。
S204:确定第二频段的第二反射系数。其中,确定第二频段的第二反射系数的过程与上文中提供的确定第一频段的第一反射系数的过程类似,具体可以参见上文中的描述,本申请实施例在此不再赘述。
S205:根据第一反射系数和第二反射系数,确定第一频段至第二频段中每个频点的反射系数。
其中,第一反射系数可以作为第一频段的中心频点的反射系数,第二反射系数可以作为第二频段的中心频点的反射系数。可选的,第一频段与第二频段可以是至少一个频段中相邻的两个频段。比如,该至少一个频段依次可以为700MHz~740MHz、740MHz~780MHz、以及780MHz~820MHz,第一频段可以是700MHz~740MHz,第二频段可以是740MHz~780MHz,第一反射系数可以作为720MHz的反射系数,第二反射系数可以作为760MHz的反射系数。
具体的,根据第一反射系数和所述第二反射系数,确定第一频段至第二频段中每个频点的反射系数可以包括:对第一反射系数和第二反射系数进行插值拟合处理,以得到反射系数模型;根据该反射系数模型确定第一频段至第二频段中每个频点的反射系数。示例性的,基于第一反射系数和所述第二反射系数,对第一频段至第二频段的反射系数做插值拟合处理,比如,该插值拟合处理可以包括一阶线性插值或拟合、多项式插值或拟合、或者正弦sinc函数插值或拟合等处理方式,通过插值拟合处理后可得到第一频段至第二频段连续的反射系数函数,从而根据该连续的反射系数函数可以确定第一频段至第二频段中任意一个频点的反射系数。进一步的,当至少一个频段包括三个或者三个以上的频段时,基于每个频段上确定的反射系数,通过插值拟合处理后即可得到该传输频段中任一频点的反射系数。
需要说明的是,上述所列举的插值拟合处理方式仅为示例性的,并不对本申请实施例构成限制,在实际应用中,还可以使用其他的插值拟合处理方式,本申请实施例对插值拟合处理方式不作具体限定。
在本申请实施例中,通过基于第一反射系数和所述第二反射系数,对第一频段至第二频段的反射系数做插值拟合处理,即可得到第一频段至第二频段连续的反射系数函数,从而根据该连续的反射系数函数可以确定第一频段至第二频段中任意一个频点的反射系数,从而在反射系数随着频段带宽或频率变化剧烈或者变化平缓时,均可以准确地确定出任意一个频点的反射系数,从而能够更准确地获知该无线通信设备的传输状态,以支持该无线通信设备获得更好的天线传输性能。
上述主要从无线通信设备的角度对本申请实施例提供的方案进行了介绍。可以理解的是,该无线通信设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对无线通信设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明:
在采用集成的单元的情况下,图7示出了上述实施例中所涉及的反射系数测量装置的一种可能的结构示意图。该装置可以为无线通信设备或者无线通信设备内置的芯片,该装置包括:获取单元301和确定单元302。其中,获取单元301用于支持该装置执行上述实施例中的S201;确定单元302用于支持该装置执行上述实施例中的S202、S203,和/或本文所描述的其他技术过程。进一步的,该装置还可以包括:划分单元303,和/或转换单元304。
在一种可能的实施例中,转换单元304用于将该传输信号转换为频域信号;划分单元303还用于将该频域信号划分为至少一个频段内的频域分量信号。在另一种可能的实施例中,划分单元303用于确定该传输信号在至少一个频段内的时域分量信号;转换单元304用于将至少一个频段中每个频段内的时域分量信号转换为该频段内的频域分量信号。可选的,划分单元303还用于对该传输信号分别进行至少一个频段的滤波处理,对应得到至少一个频段内的时域分量信号;或者,划分单元303还用于对该传输信号分别进行至少一个频段的频移处理,并对频域后的信号进行同一频段的滤波处理,对应得到至少一个频段内的时域分量信号。
进一步的,该装置还包括滤除单元305,用于滤除至少一个频段内的频域分量信号中的以下信号中的至少一项:直流信号,存在镜像干扰的分量信号,信号强度小于预设强度的分量信号。
在采用硬件实现的基础上,本申请中的获取单元301可以为该装置的方向耦合器,确定单元302、转换单元304和滤除单元305可以为该装置的处理器,划分单元303可以为时域分割电路。
图8为本申请实施例提供的一种反射系数测量装置的一种可能的结构示意图。该装置可以为无线通信设备或者无线通信设备内置的芯片,该装置包括:方向耦合器401、时域分割电路402和处理器403。其中,方向耦合器401用于支持该装置执行上述实施例中的S201;时域分割电路402用于支持该装置执行上述实施例中的S202;处理器403用于支持该装置执行上述实施例中的S203,和/或用于本文所描述的技术的其他过程。可选的,时域分割电路402包括至少一个带通滤波器;或者,时域分割电路 402包括至少一个移频器和一个带通滤波器。进一步的,处理器403还用于:滤除至少一个频段内的频域分量信号中的干扰和噪声。
其中,处理器403可以是基带处理器、中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等,本申请实施例对此不作具体限制。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请的另一实施例中,还提供一种可读存储介质,可读存储介质中存储有计算机执行指令,当一个设备(可以是单片机,芯片等)或者处理器执行上述方法实施例所提供的反射系数测量方法中的步骤。前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备上述方法实施例所提供的信反射系数测量方法中的步骤。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种反射系数测量方法,其特征在于,所述方法包括:
    获取传输频段内的传输信号;
    确定所述传输信号在至少一个频段内的频域分量信号,所述至少一个频段是所述传输频段中带宽小于所述传输频段的带宽的频段,所述至少一个频段包括第一频段;
    根据所述第一频段内所述传输信号对应的频域分量信号,确定所述第一频段的第一反射系数。
  2. 根据权利要求1所述的方法,其特征在于,所述确定所述传输信号在至少一个频段内的频域分量信号,包括:
    将所述传输信号转换为频域信号;
    将所述频域信号划分为至少一个频段内的频域分量信号。
  3. 根据权利要求1所述的方法,其特征在于,所述确定所述传输信号在至少一个频段内的频域分量信号,包括:
    确定所述传输信号在至少一个频段内的时域分量信号;
    将所述至少一个频段中每个频段内的时域分量信号转换为所述频段内的频域分量信号。
  4. 根据权利要求3所述的方法,其特征在于,所述确定所述传输信号在至少一个频段内的时域分量信号,包括:
    对所述传输信号分别进行至少一个频段的滤波处理,对应得到所述至少一个频段内的时域分量信号;或者,
    对所述传输信号分别进行至少一个频段的频移处理,并对频域后的信号进行同一频段的滤波处理,对应得到所述至少一个频段内的时域分量信号。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述传输信号包括前向耦合信号和反向耦合信号,所述根据所述第一频段内所述传输信号对应的频域分量信号,确定所述第一频段的第一反射系数,包括:
    根据所述第一频段内所述前向耦合信号和所述反向耦合信号对应的两个频域分量信号,确定所述第一频段的第一反射系数。
  6. 根据权利要求1-4任一项所述的方法,其特征在于,所述传输信号包括前向耦合时的前向传输信号、前向耦合信号、反向耦合时的前向传输信号和反向耦合信号,所述根据所述第一频段内所述传输信号对应的频域分量信号,确定所述第一频段的第一反射系数,包括:
    根据所述第一频段内所述前向耦合时的前向传输信号和所述前向耦合信号对应的两个频域分量信号,确定第一前向耦合系数;
    根据所述第一频段内所述反向耦合时的前向传输信号和所述反向耦合信号对应的两个频域分量信号,确定第一反向耦合系数;
    根据所述第一前向耦合系数和所述第一反向耦合系数,确定所述第一频段的第一反射系数。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述至少一个频段还包括 第二频段,所述第一频段与所述第二频段的频率范围不同,所述方法还包括:
    确定所述第二频段的第二反射系数;
    根据所述第一反射系数和所述第二反射系数,确定所述第一频段至所述第二频段中每个频点的反射系数。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述第一反射系数和所述第二反射系数,确定所述第一频段至所述第二频段中每个频点的反射系数,包括:
    对所述第一反射系数和所述第二反射系数进行插值拟合处理,以得到反射系数模型;
    根据所述反射系数模型确定所述第一频段至所述第二频段中每个频点的反射系数。
  9. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    滤除所述至少一个频段内的所述频域分量信号中的以下信号中的至少一项:直流信号,存在镜像干扰的分量信号,信号强度小于预设强度的分量信号。
  10. 一种反射系数测量装置,其特征在于,所述装置包括:
    方向耦合器,用于获取传输频段内的传输信号;
    处理器,用于确定所述传输信号在至少一个频段内的频域分量信号,所述至少一个频段是所述传输频段中带宽小于所述传输频段的带宽的频段,所述至少一个频段包括第一频段;
    所述处理器,还用于根据所述第一频段内所述传输信号对应的频域分量信号,确定所述第一频段的第一反射系数。
  11. 根据权利要求10所述的装置,其特征在于,所述处理器,还用于:
    将所述传输信号转换为频域信号;
    将所述传输信号对应的数字信号划分为至少一个频段内的频域分量信号。
  12. 根据权利要求10所述的装置,其特征在于,所述装置还包括时域分割电路;
    所述时域分割电路,用于确定所述传输信号在至少一个频段内的时域分量信号;
    所述处理器,还用于将所述至少一个频段中每个频段内的时域分量信号转换为所述频段内的频域分量信号。
  13. 根据权利要求12所述的装置,其特征在于,所述时域分割电路包括:
    至少一个带通滤波器,用于对所述传输信号分别进行至少一个频段的滤波处理,对应得到所述至少一个频段内的时域分量信号;或者,
    至少一个移频器,用于对所述传输信号分别进行至少一个频段的频移处理;带通滤波器,用于对频移后的信号进行同一频段的滤波处理,对应得到所述至少一个频段内的时域分量信号。
  14. 根据权利要求10-13任一项所述的装置,其特征在于,所述传输信号包括前向耦合信号和反向耦合信号,所述处理器还用于:
    根据所述第一频段内所述前向耦合信号和所述反向耦合信号对应的两个频域分量信号,确定所述第一频段的第一反射系数。
  15. 根据权利要求10-13任一项所述的装置,其特征在于,所述传输信号包括前向耦合时的前向传输信号、前向耦合信号、反向耦合时的前向传输信号和反向耦合信 号,所述处理器还用于:
    根据所述第一频段内所述前向耦合时的前向传输信号和所述前向耦合信号对应的两个频域分量信号,确定第一前向耦合系数;
    根据所述第一频段内所述反向耦合时的前向传输信号和所述反向耦合信号对应的两个频域分量信号,确定第一反向耦合系数;
    根据所述第一前向耦合系数和所述第一反向耦合系数,确定所述第一频段的第一反射系数。
  16. 根据权利要求10-15任一项所述的装置,其特征在于,所述至少一个频段还包括第二频段,所述第一频段与所述第二频段的频率范围不同,所述处理器还用于:
    确定所述第二频段的第二反射系数;
    根据所述第一反射系数和所述第二反射系数,确定所述第一频段至所述第二频段中每个频点的反射系数。
  17. 根据权利要求16所述的装置,其特征在于,所述处理器还用于:
    对所述第一反射系数和所述第二反射系数进行插值拟合处理,以得到反射系数模型;
    根据所述反射系数模型确定所述第一频段至所述第二频段中每个频点的反射系数。
  18. 根据权利要求10-17任一项所述的装置,其特征在于,所述处理器还用于:
    滤除所述至少一个频段内的所述频域分量信号中的以下信号中的至少一项:存在干扰的直流信号,存在镜像干扰的分量信号,信号强度小于预设强度的分量信号。
  19. 一种反射系数测量装置,其特征在于,所述装置为无线通信设备或者应用于无线通信设备的芯片系统,所述装置包括处理器和存储器,所述存储器中存储有指令,所述处理器运行所述存储器中的指令,以使所述装置执行如权利要求1-9任一项所述的反射系数测量方法。
  20. 一种可读存储介质,其特征在于,所述可读存储介质中存储有指令,当所述可读存储介质在设备上运行时,使得所述设备执行如权利要求1-9任一项所述的反射系数测量方法。
PCT/CN2020/130531 2020-11-20 2020-11-20 一种反射系数测量方法及装置 WO2022104723A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/130531 WO2022104723A1 (zh) 2020-11-20 2020-11-20 一种反射系数测量方法及装置
CN202080015292.XA CN114829954A (zh) 2020-11-20 2020-11-20 一种反射系数测量方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130531 WO2022104723A1 (zh) 2020-11-20 2020-11-20 一种反射系数测量方法及装置

Publications (1)

Publication Number Publication Date
WO2022104723A1 true WO2022104723A1 (zh) 2022-05-27

Family

ID=81708228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130531 WO2022104723A1 (zh) 2020-11-20 2020-11-20 一种反射系数测量方法及装置

Country Status (2)

Country Link
CN (1) CN114829954A (zh)
WO (1) WO2022104723A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029862A1 (de) * 1998-11-16 2000-05-25 Detemobil Deutsche Telekom Mobilnet Gmbh Verfahren zur korrektur der frequenz- und längenabhängigen leitungsdämpfung bei fdr-messungen an hochfrequenzkabeln
JP2006266833A (ja) * 2005-03-23 2006-10-05 Shinko Electric Ind Co Ltd 特性インピーダンス測定方法、特性インピーダンス測定装置及び特性インピーダンス算出プログラム
CN102638280A (zh) * 2012-04-19 2012-08-15 汤姆逊广播电视技术(北京)有限公司 中波广播发射天线自适应调谐系统
CN103439580A (zh) * 2013-09-11 2013-12-11 华北电力大学 大尺度电气设备阻抗宽频特性的时域测量方法
CN103858341A (zh) * 2011-08-08 2014-06-11 Lg伊诺特有限公司 阻抗匹配装置
CN104181400A (zh) * 2014-08-22 2014-12-03 中国电子科技集团公司第四十一研究所 一种宽带电磁特性时域同轴传输线测量方法
CN111406366A (zh) * 2017-09-20 2020-07-10 克里公司 宽带谐波匹配网络

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029862A1 (de) * 1998-11-16 2000-05-25 Detemobil Deutsche Telekom Mobilnet Gmbh Verfahren zur korrektur der frequenz- und längenabhängigen leitungsdämpfung bei fdr-messungen an hochfrequenzkabeln
JP2006266833A (ja) * 2005-03-23 2006-10-05 Shinko Electric Ind Co Ltd 特性インピーダンス測定方法、特性インピーダンス測定装置及び特性インピーダンス算出プログラム
CN103858341A (zh) * 2011-08-08 2014-06-11 Lg伊诺特有限公司 阻抗匹配装置
CN102638280A (zh) * 2012-04-19 2012-08-15 汤姆逊广播电视技术(北京)有限公司 中波广播发射天线自适应调谐系统
CN103439580A (zh) * 2013-09-11 2013-12-11 华北电力大学 大尺度电气设备阻抗宽频特性的时域测量方法
CN104181400A (zh) * 2014-08-22 2014-12-03 中国电子科技集团公司第四十一研究所 一种宽带电磁特性时域同轴传输线测量方法
CN111406366A (zh) * 2017-09-20 2020-07-10 克里公司 宽带谐波匹配网络

Also Published As

Publication number Publication date
CN114829954A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
EP1821421B1 (en) Wireless communication device
JP5528358B2 (ja) 広帯域信号処理の方法、システムおよび装置
US8452245B2 (en) Impedance measurement in an active radio frequency transmitter
CN110138703B (zh) 基于ieee1901.1通信标准的电力双模通信方法
US8170521B2 (en) Method and apparatus for sampling RF signals
KR20200109243A (ko) 샘플링 레이트 미스매치에 대한 비선형 자기-간섭 제거 방법 및 무선 통신 장치
US11258521B2 (en) Front-end circuit
CN106301631B (zh) 一种基于子空间分解的互素欠采样频谱感知方法及其装置
WO2022104723A1 (zh) 一种反射系数测量方法及装置
CN110311713B (zh) 一种基于ieee1901.1通信标准的电力双模通信方法
CN104467915B (zh) 一种非相干超宽带通信系统的相位噪声分析方法
WO2022087927A1 (zh) 一种天线调谐装置及方法
Hannachi et al. V-band six-port quadrature demodulator: Error Vector Magnitude analysis
US9065538B2 (en) Transmission-reception device
US11133814B1 (en) Continuous-time residue generation analog-to-digital converter arrangements with programmable analog delay
WO2022104743A1 (zh) 一种双向耦合器的方向性校准装置及方法
Arab et al. Performance analysis for two different structures of 77 GHz six-port correlator
JP6029065B2 (ja) 受信装置
US20160020860A1 (en) VSWR Estimation Using Spectral Analysis to Suppress External Interference
US20230208380A1 (en) Interstage matching network attenuator
US10887138B2 (en) Low digital intermediate frequency (IF) image cancelling transceiver
CN105049131A (zh) 一种基于空间采样的新型射频信号直接采样方法和系统
CN115392271A (zh) 射频收发结构和读写器
KR20130065458A (ko) 데이터 수신기를 공유한 센싱 방법 및 장치
CN111865851A (zh) 一种中频数字处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962014

Country of ref document: EP

Kind code of ref document: A1