WO2022104743A1 - 一种双向耦合器的方向性校准装置及方法 - Google Patents

一种双向耦合器的方向性校准装置及方法 Download PDF

Info

Publication number
WO2022104743A1
WO2022104743A1 PCT/CN2020/130628 CN2020130628W WO2022104743A1 WO 2022104743 A1 WO2022104743 A1 WO 2022104743A1 CN 2020130628 W CN2020130628 W CN 2020130628W WO 2022104743 A1 WO2022104743 A1 WO 2022104743A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
impedance
bidirectional coupler
coupling
coupled
Prior art date
Application number
PCT/CN2020/130628
Other languages
English (en)
French (fr)
Inventor
程晨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/130628 priority Critical patent/WO2022104743A1/zh
Priority to CN202080015251.0A priority patent/CN114868344B/zh
Publication of WO2022104743A1 publication Critical patent/WO2022104743A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a directional calibration device and method for a bidirectional coupler.
  • a bidirectional coupler is a passive device used in an antenna tuning system, which can be used to couple a portion of the transmission power of the transmission signal from the transmission line.
  • a bidirectional coupler usually has two sampling ports, namely a forward coupling port and a reverse coupling port, the forward coupling port is used to sample the incident wave to obtain the forward coupled signal, and the reverse coupling port is used for sampling Reflect the wave to obtain the back-coupled signal.
  • the directivity of the two-way coupling is usually calibrated in the laboratory in the following manner.
  • the two-way coupler in the antenna tuning system is connected to the ESC meter, and the ESC meter is set to multiple different load values; for each load value in the multiple different load values, the ESC The meter measures the reflection coefficient of the input end of the ESC, and measures the reflection coefficient of the coupling port of the two-way coupling through the antenna tuning system of the mobile phone, and correspondingly obtains multiple sets of reflection coefficient pairs; after that, substitute the multiple sets of reflection coefficient pairs into the following formulas
  • the reflection coefficient mapping model is shown to determine the directivity coefficients of the bidirectional coupling.
  • a, b and c represent the directivity coefficient of the bidirectional coupling
  • ⁇ in represents the input reflection coefficient of the ESC
  • ⁇ cpl represents the coupling port reflection coefficient of the bidirectional coupling.
  • the present application provides a directional calibration device and method for a bidirectional coupler, which are used to reduce the equipment cost of the directional calibration of the bidirectional coupler, and at the same time improve the applicability of the directional calibration.
  • a first aspect provides a directional calibration device for a bidirectional coupler, the device comprising: a load for providing a fixed load impedance, that is, the impedance of the load is fixed during the directional calibration process, so that the load is The reflection coefficient is fixed; the adjustable impedance network is used to provide multiple impedance states, and the impedance values in the multiple impedance states can be different; the bidirectional coupler is used to obtain each of the multiple impedance states.
  • a coupled signal in each impedance state the coupled signal includes a forward coupled signal and a reverse coupled signal, that is, the forward coupled signal and the reverse coupled signal in each impedance state are obtained;
  • the coupled signal in the state calibrates the directivity coefficient of the bidirectional coupler.
  • the load provides a fixed load impedance
  • the adjustable impedance network provides multiple impedance states
  • the bidirectional coupler obtains the forward coupled signal and the reverse coupled signal in each impedance state of the multiple impedance states.
  • the processor calibrates the directivity coefficient of the bidirectional coupler based on the coupled signals according to the multiple impedance states, so that compared with the prior art, it is possible to achieve bidirectional
  • the directional calibration of the coupler reduces the equipment cost of the directional calibration and also improves the applicability of the directional calibration.
  • the load is a device or instrument with a fixed impedance
  • the load is an antenna
  • the impedance of the antenna is a fixed load impedance
  • the load is a comprehensive measurement of a fixed impedance instrument.
  • the load can be a device or instrument with a fixed impedance, so that the device can realize the directional calibration of the bidirectional coupler in the production line process, and can be realized before the antenna is installed or after the antenna is installed. , thereby improving the applicability of this directional calibration.
  • the load is a device or instrument with variable impedance, and the device with variable impedance is in a fixed state during the directional calibration process, so that the impedance in the fixed state is fixed
  • the load includes an antenna and an aperture tuner coupled between the adjustable impedance network and the antenna, and the aperture tuner is in a fixed aperture state.
  • the fixed impedance of the load is provided by the antenna and the aperture tuner, so that the device can still realize the directional calibration of the bidirectional coupler after leaving the factory, thereby improving the applicability of the directional calibration.
  • the processor is further coupled to an adjustable impedance network, for example, the processor is coupled to the adjustable impedance network through a mipi bus, and the processor is further configured to: set the adjustable impedance The impedance state of the network, eg, during the directional calibration process, the processor may sequentially traversely set the adjustable impedance network to the plurality of impedance states.
  • the apparatus further includes: an attenuator and/or an analog-to-digital converter coupled between the processor and the bidirectional coupler; the attenuator may be adjustable or non-adjustable The adjustable attenuator is used to adjust the amplitude of the coupled signal.
  • the attenuator is used to adjust the amplitude of the forward coupled signal or the amplitude of the reverse coupled signal in each impedance state, so as to ensure that the forward coupled signal and the The reverse-coupled signal has a better signal-to-noise ratio;
  • the analog-to-digital converter is used to convert the coupled signal into a digital signal, for example, to convert the forward-coupled signal obtained by the bidirectional coupler in each impedance state with the reverse-coupled signal.
  • the forward coupling signals are converted into digital signals, so that the processor can calibrate the directivity coefficient of the bidirectional coupling according to the digital signal corresponding to the forward coupling signal and the digital signal corresponding to the reverse coupling signal.
  • the accuracy of the directivity coefficient of the bidirectional coupler determined based on the coupled signal can be further improved.
  • the processor is further configured to: output a calibration signal, where the coupled signal is a coupled signal of the calibration signal, and the calibration signal may be a signal with a certain bandwidth.
  • the processor can output a calibration signal, thereby starting the calibration process.
  • the apparatus further includes: a digital-to-analog converter and/or a radio frequency circuit coupled between the processor and the bidirectional coupler; the digital-to-analog converter, for converting The calibration signal is converted into an analog signal; the radio frequency circuit is used for transmitting the calibration signal to the bidirectional coupler.
  • the calibration signal can be transmitted to the bidirectional coupler and the load through the digital-to-analog converter and the radio frequency circuit, so that the bidirectional coupler obtains the coupling signal corresponding to the calibration signal.
  • the processor is further configured to: for each impedance state in the plurality of impedance states, determine the coupling in the impedance state according to the coupling signal in the impedance state port reflection coefficient, for example, the coupling port reflection coefficient can be the ratio of the reverse coupling signal to the forward coupling signal; according to the coupling port reflection coefficients in the multiple impedance states, the directivity coefficient of the bidirectional coupler is calibrated For example, the directivity coefficient of the bidirectional coupler is calibrated according to the reflection coefficients of the multiple coupling ports and the network parameter matrix under the multiple impedance states.
  • a simple and effective manner for determining the directivity coefficient of the bidirectional coupler is provided.
  • a directional calibration device for a bidirectional coupler may be a baseband processor or a digital signal processor.
  • the device includes: a setting unit for respectively setting the adjustable impedance network into a plurality of Impedance state, the load impedance in the multiple impedance states is fixed, that is, the impedance of the load is fixed during the directional calibration process, so the reflection coefficient of the load is fixed; the acquisition unit is used for Acquiring a coupling signal in each impedance state in the plurality of impedance states, where the coupling signal includes a forward coupling signal and a reverse coupling signal, that is, acquiring the forward coupling signal and the reverse coupling signal in each impedance state; the calibration unit , for calibrating the directivity coefficient of the bidirectional coupler according to the coupled signals in the plurality of impedance states.
  • the apparatus further includes: an adjustment unit, configured to adjust the amplitude of the coupled signal, for example, adjust the amplitude of the forward coupled signal or the reverse coupled signal in each impedance state amplitude, to ensure that the forward coupled signal and the reverse coupled signal have a good signal-to-noise ratio; and/or, a conversion unit, used to convert the coupled signal into a digital signal, for example, convert each impedance state Both the forward coupling signal and the reverse coupling signal obtained by the bidirectional coupler are converted into digital signals, so as to calibrate the directivity coefficient of the bidirectional coupling according to the digital signal corresponding to the forward coupling signal and the digital signal corresponding to the reverse coupling signal.
  • an adjustment unit configured to adjust the amplitude of the coupled signal, for example, adjust the amplitude of the forward coupled signal or the reverse coupled signal in each impedance state amplitude, to ensure that the forward coupled signal and the reverse coupled signal have a good signal-to-noise ratio
  • a conversion unit used to convert the coupled signal into a
  • the apparatus further includes: an output unit configured to output a calibration signal, where the coupled signal is a coupled signal of the calibration signal, and the calibration signal may be a signal with a certain bandwidth.
  • the apparatus further includes: a conversion unit, configured to convert the calibration signal into an analog signal, so that the analog signal corresponding to the calibration signal is transmitted to the bidirectional coupler and the load.
  • the calibration unit is further configured to: for each impedance state in the plurality of impedance states, determine the coupling port in the impedance state according to the coupling signal in the impedance state reflection coefficient, for example, the reflection coefficient of the coupling port can be the ratio of the reverse coupling signal to the forward coupling signal; according to the reflection coefficients of the coupling port in the multiple impedance states, the directivity coefficient of the bidirectional coupler is calibrated, For example, the directivity coefficient of the bidirectional coupler is calibrated according to the reflection coefficients of the multiple coupling ports and the network parameter matrix in the multiple impedance states.
  • a third aspect provides a directional calibration method for a bidirectional coupler, the method comprising: respectively setting the adjustable impedance network to a plurality of impedance states, and the load impedance in the plurality of impedance states is fixed, that is, in the directional calibration During the process, the impedance of the load is fixed, so the reflection coefficient of the load is fixed; the coupled signal in each impedance state in the multiple impedance states is obtained, and the coupled signal includes a forward coupled signal and a reverse coupled signal. The forward coupling signal is obtained, that is, the forward coupling signal and the reverse coupling signal in each impedance state are obtained; the directivity coefficient of the bidirectional coupler is calibrated according to the coupling signals in the plurality of impedance states.
  • the method further includes: adjusting the amplitude of the coupling signal, for example, adjusting the amplitude of the forward coupling signal or the amplitude of the reverse coupling signal in each impedance state, to ensure that The forward coupled signal and the reverse coupled signal have a better signal-to-noise ratio; and/or, the coupled signal is converted into a digital signal, for example, the forward coupled signal obtained by the bidirectional coupler in each impedance state and The reverse coupling signals are all converted into digital signals, so as to calibrate the directivity coefficient of the bidirectional coupling according to the digital signal corresponding to the forward coupling signal and the digital signal corresponding to the reverse coupling signal.
  • the method further includes: outputting a calibration signal, where the coupled signal is a coupled signal of the calibration signal, and the calibration signal may be a signal with a certain bandwidth.
  • the method further includes: converting the calibration signal into an analog signal, so that the analog signal corresponding to the calibration signal is transmitted to the bidirectional coupler and the load.
  • calibrating the directivity coefficient of the bidirectional coupler according to the coupling signal in the plurality of impedance states includes: for each impedance state in the plurality of impedance states, According to the coupling signal in the impedance state, the reflection coefficient of the coupling port in the impedance state is determined.
  • the reflection coefficient of the coupling port may be the ratio of the reverse coupling signal and the forward coupling signal; according to the plurality of impedance states
  • the directivity coefficient of the bidirectional coupler is calibrated according to the reflection coefficient of the coupling port below, for example, the directivity coefficient of the bidirectional coupler is calibrated according to the reflection coefficients of multiple coupling ports and the network parameter matrix in the multiple impedance states.
  • a chipset in a fourth aspect, includes a load chip, and a processing chip coupled with the load chip, the load chip is used for providing a fixed load impedance, and the processing chip is used for performing the third aspect or the third aspect.
  • the directional calibration method of the bidirectional coupler provided by any one of the possible implementations of the three aspects; optionally, the processing chip may be a radio frequency chip or a baseband chip or the like.
  • a wireless communication device in another aspect of the present application, is provided, the device may be a terminal or a base station, and the device includes the direction of the bidirectional coupler provided by the first aspect or any possible implementation manner of the first aspect sex calibration device, or the device includes the chipset as provided in the fourth aspect.
  • a readable storage medium is provided, and instructions are stored in the readable storage medium, and when the readable storage medium is run on a device, the device is caused to perform the third aspect or the third aspect
  • the directivity calibration method of the bidirectional coupler provided by any of the possible implementations.
  • a computer program product which, when the computer program product is run on a computer, causes the computer to execute the bidirectional coupler provided by the third aspect or any possible implementation manner of the third aspect directional calibration method.
  • any of the chipsets, wireless communication devices, directivity coefficient calibration methods for bidirectional couplers, readable storage media and computer program products provided above all include the bidirectional coupling calibration device provided above. Therefore, for the beneficial effects that can be achieved, reference may be made to the beneficial effects in the corresponding devices provided above, which will not be repeated here.
  • FIG. 1 is a schematic structural diagram of a bidirectional coupler according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a wireless communication device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a directional calibration device for a bidirectional coupler according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of another directional calibration device for a bidirectional coupler according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another device for directivity calibration of a bidirectional coupler according to an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of another device for directivity calibration of a bidirectional coupler according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for directivity calibration of a bidirectional coupler according to an embodiment of the present application.
  • At least one means one or more
  • plural means two or more.
  • And/or which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • At least one item(s) below or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b, or c may represent: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c can be single or multiple.
  • words such as “first” and “second” are used to distinguish objects with similar names or functions or functions. Those skilled in the art can understand that words such as “first” and “second” do not The quantity and execution order are not limited.
  • the term “coupled” is used to denote electrical connection, including direct connection through wires or terminals or indirect connection through other devices. Therefore “coupling” should be regarded as an electronic communication connection in a broad sense.
  • the technical solutions of the present application can be applied to various wireless communication devices including the directional calibration apparatus.
  • the wireless communication device can be deployed on land, including indoor or outdoor, hand-held or vehicle-mounted. It can also be deployed on water (such as ships, etc.). It can also be deployed in the air (eg on airplanes, balloons, satellites, etc.).
  • the wireless channel device may be a terminal or a base station, as well as a chip or chipset applied to the terminal or base station, and the like, and the chip or chipset may also be called a single board.
  • the terminal may include but is not limited to: a mobile phone (mobile phone), a tablet computer, a notebook computer, a palmtop computer, a mobile internet device (MID), a wearable device (such as a smart watch, a smart bracelet, a pedometer) devices, etc.), in-vehicle equipment (for example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed trains, etc.), virtual reality (VR) equipment, augmented reality (AR) equipment, industrial control (industrial control) wireless terminals in control), smart home devices (such as refrigerators, TVs, air conditioners, electricity meters, etc.), intelligent robots, workshop equipment, wireless terminals in self-driving, remote medical surgery wireless terminals, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, wireless terminals in flight Devices (eg, smart robots, hot air balloons, drones, airplanes), etc.
  • a mobile phone mobile phone
  • a tablet computer for example, cars, bicycle
  • FIG. 2 is a schematic structural diagram of a terminal according to an embodiment of the present application, and the terminal is described by taking a mobile phone as an example.
  • the terminal includes: a baseband processor (modem), a radio frequency integrated circuit (RFIC), a radio frequency front end module (radio frequency front end module, RF FEM) and an antenna (antenna).
  • modem baseband processor
  • RFIC radio frequency integrated circuit
  • RF FEM radio frequency front end module
  • antenna antenna
  • the baseband processor has a baseband processing function and can be used to process baseband signals.
  • the radio frequency integrated circuit RFIC can be used to realize modulation or demodulation between baseband signals and radio frequency signals.
  • the radio frequency integrated circuit RFIC may include one or more transmit channels and one or more receive channels, and each transmit channel may include an analog to digital converter (analog to digital converter, DAC), a low pass filter (low pass filter) , LPF) and up converter (up converter), etc.
  • each receiving channel can include digital to analog converter (digital to analog converter, ADC), low pass filter (low pass filter, LPF) and down converter (down converter) converter), etc.
  • the RF front-end module RF FEM can be used to provide functions such as power amplification or filtering.
  • the RF front-end module may also include one or more transmit (transmit, Tx) channels and one or more receive (receive, Rx) channels, and each transmit channel may include a power amplifier (power amplifier, PA), a transmit filter (Tx filter) and duplexer (duplexer), each receiving channel can include low noise amplifier (low noise amplifier, LNA) and duplexer (duplexer), duplexer can also be replaced by antenna switches (antenna switches) .
  • Antennas can be used to receive or transmit signals, that is, to achieve energy conversion between radio frequency signals and electromagnetic waves.
  • the terminal further includes a directivity calibration device, and the directivity calibration device can be used to calibrate the directivity coefficient of the bidirectional coupler.
  • the directional calibration device may include multiple devices such as bidirectional couplers and adjustable impedance networks, and some or all of the devices or functions of the multiple devices may be set individually, or some or all of the devices may be integrated
  • the baseband processor the radio frequency integrated circuit RFIC, the radio frequency front-end module RF FEM or the antenna of the terminal, the implementation of this application does not impose specific restrictions on this.
  • the bidirectional coupler and the adjustable impedance network are integrated in the RF front-end module RF FEM as an example for illustration.
  • FIG. 3 is a directional calibration device for a bidirectional coupler provided by an embodiment of the present application.
  • the device includes: a load 31 coupled in sequence, an adjustable impedance network 32 , a bidirectional coupler 33 and a processor 34 .
  • the load 31 is used to provide a fixed load impedance, that is, the impedance of the load 31 is fixed during the directional calibration process, so that the reflection coefficient of the load 31 is fixed.
  • the load 31 may be a device or instrument with a fixed impedance, for example, the load 31 is an antenna whose impedance is a fixed load impedance, or the load 31 is a comprehensive measuring instrument with a fixed impedance.
  • the load 31 may be a variable impedance device or a meter, and the variable impedance device is in a fixed state during the directional calibration process, so that the impedance in the fixed state is fixed
  • the load 31 includes an aperture tuner and an antenna
  • the impedance of the load is the sum of the impedance of the aperture tuner and the impedance of the antenna
  • the impedance of the antenna is a fixed impedance
  • the aperture tuner is in the same aperture state during the directional calibration process, so that The impedance of the aperture tuner is also fixed in the aperture state.
  • the adjustable impedance network 32 is used to provide multiple impedance states in which impedance values may be different.
  • the adjustable impedance network 32 may include one or more adjustable devices (eg, adjustable capacitors, adjustable inductors or switches, etc.), and/or one or more non-adjustable devices (eg, fixed capacitors or inductors, etc.) ).
  • the plurality of impedance states may consist of states of the one or more tunable devices, and/or combinations of states of the one or more non-tunable devices.
  • the adjustable impedance network 32 includes adjustable capacitors C1 and C2.
  • the state of the adjustable capacitor C1 and the state of the adjustable capacitor C2 can be obtained by combining the state Nine combined states, if the equivalent capacitances in these nine combined states are not equal, the multiple impedance states may be these nine combined states.
  • the adjustable impedance network 32 may include adjustable capacitors, fixed inductors and switches.
  • the bidirectional coupler 33 is used to obtain a coupled signal in each impedance state of the plurality of impedance states, where the coupled signal may include a forward coupled signal and a reverse coupled signal.
  • the coupling direction of the bidirectional coupler 33 includes forward coupling and reverse coupling; when the bidirectional coupler 33 is set to forward coupling, it can be used to acquire the forward coupled signal, that is, to acquire the incident wave transmitted in the bidirectional coupler 33
  • the bidirectional coupler 33 is set for reverse coupling, it can be used to obtain the reverse coupling signal, that is, to obtain the coupled signal of the reflected wave corresponding to the incident wave transmitted in the bidirectional coupler 33 .
  • the bidirectional coupler 33 may be set to forward coupling and reverse coupling, respectively, so as to obtain the forward coupling signal and the reverse coupling signal in the impedance state, respectively.
  • the forward coupled signal and the reverse coupled signal in the multiple impedance states can be obtained.
  • the processor 34 is configured to calibrate the directivity coefficient of the bidirectional coupler 33 according to the coupled signals in the plurality of impedance states.
  • the coupled signal may include a forward coupled signal and a reverse coupled signal, and for each impedance state in the plurality of impedance states, the processor 34 may be configured to: according to the forward coupled signal and the reverse coupled signal in the impedance state Coupling the signal, determine the reflection coefficient of the coupling port of the bidirectional coupler 33 in the impedance state (for example, the reflection coefficient of the coupling port can be the ratio of the reverse coupling signal and the forward coupling signal), so that according to the multiple impedance states
  • the forward-coupling signal and the reverse-coupling signal can be obtained correspondingly to multiple coupling port reflection coefficients; according to the multiple coupling port reflection coefficients, the directivity coefficient of the bidirectional coupler 33 is calibrated.
  • the processor 34 calibrates the directivity coefficient of the bidirectional coupler 33 according to the reflection coefficients of the multiple coupling ports, which may include: according to the reflection coefficients of the multiple coupling ports and the network in the multiple impedance states A parameter matrix that calibrates the directivity coefficients of the bidirectional coupler 33 .
  • the network parameter matrix refers to the network parameter matrix of the adjustable impedance network 32 , and the network parameter matrices in the multiple impedance states may be measured in advance and stored in the processor 34 .
  • the network parameter matrix for each impedance state may include four network parameters, which may be denoted as S 11 , S 12 , S 21 and S 22 .
  • S11 represents the reflection parameter of the first port
  • S22 represents the reflection parameter of the second port
  • the reflection parameter may be a voltage reflection coefficient
  • S 12 represents an inter-port transmission parameter from the first port to the second port
  • S 21 represents an inter-port transmission parameter from the second port to the first port
  • the inter-port transmission gain may be a voltage gain
  • the reflection coefficient of the coupling port of the bidirectional coupler 33 is expressed as ⁇ cpl
  • the reflection coefficient of the first port of the adjustable impedance network 32 is expressed as ⁇ in
  • the relationship between ⁇ in and ⁇ in satisfies the following formula (1) , where a, b and c represent the directivity coefficients of the bidirectional coupler 33 .
  • the reflection coefficient of the load 31 is expressed as ⁇ L
  • the following formula (2) is also satisfied between ⁇ in and ⁇ L. Based on the formula (1) and the formula (2), the following formula (3) can be obtained.
  • ⁇ L , a, b and c are unknown and fixed in each impedance state, ⁇ cpl , S 11 , S 12 , S 21 and S 22 is known , so that the directivity coefficients a, b and c.
  • the number of the multiple impedance states may be greater than or equal to 7.
  • the equation for multiplying the two matrices shown in the formula (3-4) can be constructed.
  • P The superscripts from 1 to P 7 (ie, 1 to n) represent the 1st to nth impedance states
  • the left matrix of the two multiplied matrices can be represented as matrix A
  • the right matrix can be represented as matrix X
  • the product matrix of can be expressed as matrix B
  • matrix X (A H A) -1 *A H *B, so that matrix X can be solved
  • matrix a, b and c in X are the directivity coefficients of the bidirectional coupler 33 .
  • the processor 34 is further coupled to the adjustable impedance network 32, for example, the processor 34 is coupled to the adjustable impedance network 32 through a mipi bus, and the processor 34 can also be used to set the adjustable impedance network 32. Impedance state. Illustratively, during the directional calibration process, the processor 34 may sequentially traverse and set the adjustable impedance network 32 to the plurality of impedance states.
  • the processor 34 may first set the adjustable impedance network 32 to the first impedance state, and determine the reflection coefficient of the coupling port in the first impedance state; The impedance adjustment network 32 is set to the second impedance state, and the reflection coefficient of the coupling port in the second impedance state is determined; and so on, until the adjustable impedance network 32 is set to the nth impedance state, and the nth impedance is determined Coupling port reflection coefficient in state. Then, the directivity coefficients a, b and c of the bidirectional coupler 33 are calibrated according to the reflection coefficients of the coupling ports in the n impedance states.
  • the device may further include: an attenuator 35 coupled between the processor 34 and the bidirectional coupler 33 , and/or an analog to digital converter (ADC) 36 .
  • the attenuator 35 may be an adjustable or non-adjustable attenuator, and is specifically used to adjust the amplitude of the coupled signal.
  • the attenuator 35 is used to adjust the amplitude or reverse coupling of the forward coupled signal in each impedance state. The amplitude of the signal to ensure that the forward coupled signal and the reverse coupled signal have a better signal-to-noise ratio.
  • the ADC 36 is used to convert the coupled signal into a digital signal, for example, the ADC 36 is used to convert both the forward coupled signal and the reverse coupled signal acquired by the bidirectional coupler 33 in each impedance state into a digital signal, so that the processor can 34. Determine the reflection coefficient of the coupling port according to the digital signal corresponding to the forward coupling signal and the digital signal corresponding to the reverse coupling signal.
  • the apparatus may further include: a digital to analog converter (DAC) 37 coupled between the processor 34 and the bidirectional coupler 33 , and/or a radio frequency circuit 38 .
  • the processor 34 can also be used to output a calibration signal, and the calibration signal can be transmitted to the load 31 through the DAC 37, the radio frequency circuit 38, the bidirectional coupler 33 and the adjustable impedance network 32 in sequence.
  • the calibration signal may be a signal with a certain bandwidth.
  • the calibration signal output by the processor 34 can be a digital signal.
  • the DAC 37 can be used to convert the calibration signal into an analog signal
  • the radio frequency circuit 38 can be used to power-amplify and filter the calibration signal.
  • the bidirectional coupler 33 can be used to obtain the coupled signal of the calibration signal in each impedance state, i.e. the forward coupled signal and the reverse coupled signal of the calibration signal in each impedance state.
  • the radio frequency circuit 38 may include at least one of a radio frequency integrated circuit or a radio frequency front-end module, and one or more of the bidirectional coupler 33, the adjustable impedance network 32, the attenuator 35, the ADC 36 or the DAC 37 may be It is integrated in the radio frequency circuit 38, which is not specifically limited in this embodiment of the present application.
  • the processor 34 can be a baseband processor, a microprocessor, or other circuits or processors that can be used to implement the functions of the processor 34; in addition, the processor 34 can also be a radio frequency integrated circuit integrated in the radio frequency circuit 38 or In the radio frequency front-end module, this embodiment of the present application also does not specifically limit this.
  • the directional calibration solutions provided in the embodiments of the present application can be applied to the production line calibration of wireless communication equipment such as terminals or base stations, or of single boards applied to the wireless communication equipment, and can also be applied to wireless communication equipment or single-board wireless communication equipment after leaving the factory or offline. Calibration of the board.
  • the solution can perform directional calibration on the wireless communication device single board before installing the antenna, and can also perform directional calibration on the wireless communication device or single board after installing the antenna.
  • the calibration scheme based on this application can realize the directional calibration of the two-way coupler within ten milliseconds.
  • the wireless communication equipment is stationary or A small moving speed can be considered as being in a relatively fixed environment.
  • a personal computer can be connected to the processor 34 of the device through a serial port, and the load 31 can be a comprehensive measuring instrument.
  • the equipment PC can also be connected to the comprehensive tester through a network interface or general purpose input output (GPIO) and other interfaces, and the impedance of the comprehensive tester can be set to a fixed impedance.
  • GPIO general purpose input output
  • the equipment station PC can send a directional calibration command to the processor 34 to activate the bidirectional coupler 33, so that the processor 34 can set the adjustable impedance circuits to multiple impedance states, respectively.
  • the forward coupling signal and the reverse coupling signal in each impedance state of the plurality of impedance states are acquired, so that the processor 34 can calibrate the directivity coefficient of the bidirectional coupler 33 based on the coupling signals in the plurality of impedance states.
  • the equipment PC and the comprehensive tester can also be used to calibrate other components or functions of the wireless communication device, such as parameters such as transmit power, receive sensitivity, and distortion.
  • the load 31 may include an aperture tuner and an antenna, and the processor 34 may also be coupled with the aperture tuner for setting the aperture tuner during the directional calibration process. are the same aperture state, so that the impedance of the aperture tuner is fixed in this aperture state.
  • the wireless communication device can be enabled to activate the directional calibration solution provided by the present application, that is, the processor 34 can respectively set the adjustable impedance circuit to multiple impedance states, and the bidirectional coupler obtains the multiple impedance states.
  • the load 31 provides a fixed load impedance
  • the adjustable impedance network 32 provides multiple impedance states
  • the bidirectional coupler 33 is used to obtain each impedance in the multiple impedance states
  • the forward coupling signal and the reverse coupling signal in the state so that the processor 34 can calibrate the directivity coefficient of the bidirectional coupler 33 based on the coupling signal according to the plurality of impedance states, so that compared with the prior art, there is no need to use
  • the directional calibration of the bidirectional coupler 33 can be realized by adding an additional ESC instrument and providing a laboratory environment, thereby reducing the equipment cost of directional calibration and improving the applicability of the directional calibration.
  • FIG. 7 is a schematic flowchart of a method for directivity calibration of a bidirectional coupler provided by an embodiment of the present application.
  • the method can be applied to the device for directivity calibration of a bidirectional coupler provided above, and the method includes the following steps .
  • S401 Set the adjustable impedance network to multiple impedance states respectively, and the load impedance in the multiple impedance states is fixed.
  • the fixed load impedance may be provided by a device or instrument having a fixed impedance, for example, the load is an antenna, the impedance of the antenna is a fixed load impedance, or the load is a comprehensive measuring instrument with a fixed impedance.
  • the fixed load impedance is provided by a variable impedance device or meter, and the variable impedance device is in a fixed state during the directional calibration process, so that the impedance in the fixed state is fixed
  • the negative includes the aperture tuner and the antenna
  • the impedance of the load is the sum of the impedance of the aperture tuner and the impedance of the antenna
  • the impedance of the antenna is a fixed impedance
  • the aperture tuner is in the same aperture state during the directional calibration process. , so that the impedance of the aperture tuner is also fixed in this aperture state.
  • the adjustable impedance network may include one or more adjustable devices (eg, adjustable capacitors, adjustable inductors or switches, etc.), and/or one or more non-adjustable devices (eg, fixed capacitors or inductors, etc.) .
  • the plurality of impedance states may consist of a combination of states of the one or more tunable devices, and/or states of the one or more non-tunable devices.
  • the processor can be coupled with the adjustable impedance network through the mipi bus, and the processor can be used to set the impedance state of the adjustable impedance network.
  • the processor may sequentially traverse and set the adjustable impedance network to the plurality of impedance states.
  • S402 Acquire a coupled signal in each impedance state of the plurality of impedance states, where the coupled signal includes a forward coupled signal and a reverse coupled signal.
  • the coupled signal can be obtained by a bidirectional coupler.
  • the coupling direction of the bidirectional coupler includes forward coupling and reverse coupling; when the bidirectional coupler is set to forward coupling, it can be used to obtain the forward coupling signal, that is, to obtain the coupled signal of the incident wave transmitted in the bidirectional coupler; When the bidirectional coupler is set for reverse coupling, it can be used to obtain the reverse coupling signal, that is, to obtain the coupled signal of the reflected wave corresponding to the incident wave transmitted in the coupler.
  • the bidirectional coupler may be set to forward coupling and reverse coupling, respectively, so as to obtain the forward coupling signal and the reverse coupling signal in the impedance state, respectively.
  • the forward coupled signal and the reverse coupled signal in the multiple impedance states can be obtained.
  • the processor may first set the adjustable impedance network to the first impedance state, and the bidirectional coupler obtains the coupled signal in the first impedance state and transmits it to the processor; The processor then sets the adjustable impedance network to the second impedance state, and the bidirectional coupler obtains the coupled signal in the second impedance state and transmits it to the processor; and so on, until the processor sets the adjustable impedance network to the nth impedance state, the bidirectional coupler obtains the coupled signal in the nth impedance state and transmits it to the processor.
  • the method may further include: adjusting the amplitude of the forward coupled signal or the amplitude of the reverse coupled signal in each impedance state to ensure that the forward coupled signal and the reverse coupled signal have better signal-to-noise ratios. and/or, converting the forward coupling signal and the reverse coupling signal obtained by the bidirectional coupler in each impedance state into digital signals, so that the digital signal and the corresponding digital signal according to the forward coupling signal in the following step S403 and The digital signal corresponding to the inversely coupled signal calibrates the directivity coefficient of the bidirectional coupler.
  • S403 Calibrate the directivity coefficient of the bidirectional coupler according to the coupled signals in the plurality of impedance states.
  • the reflection coefficient of the coupling port of the bidirectional coupler in the impedance state (for example, the coupling The port reflection coefficient can be the ratio of the reverse coupling signal and the forward coupling signal), so that a plurality of coupling port reflection coefficients can be correspondingly obtained according to the forward coupling signal and the reverse coupling signal in the multiple impedance states; according to the The reflection coefficients of the multiple coupling ports are used to calibrate the directivity coefficients of the bidirectional couplers.
  • the directivity coefficients of the bidirectional couplers are calibrated according to the reflection coefficients of the multiple coupling ports and the network parameter matrix in the multiple impedance states. It should be noted that, regarding the network parameter matrix and the specific process of calibrating the directivity coefficients of the bidirectional coupler according to the reflection coefficients of the multiple coupling ports and the network parameter matrices under the multiple impedance states, reference may be made to the above device embodiments. Related descriptions are not repeated in this embodiment of the present application.
  • the method further includes: outputting a calibration signal, the calibration signal can be transmitted to the load through the DAC, the radio frequency circuit, the bidirectional coupler and the adjustable impedance network in sequence, and the calibration signal can be a certain bandwidth of the signal.
  • the output calibration signal can be a digital signal.
  • the DAC can be used to convert the calibration signal into an analog signal
  • the radio frequency circuit can be used to process the calibration signal through power amplification and filtering. , and then transmitted to the load through the bidirectional coupler and the adjustable impedance network in turn.
  • the bidirectional coupler can be used to obtain the coupled signal of the calibration signal in each impedance state, that is, to obtain the forward coupled signal and the reverse coupled signal of the calibration signal in each impedance state.
  • the directional calibration solutions provided in the embodiments of the present application can be applied to the production line calibration of wireless communication equipment such as terminals or base stations, or of single boards applied to the wireless communication equipment, and can also be applied to wireless communication equipment or single-board wireless communication equipment after leaving the factory or offline. Calibration of the board.
  • the solution can perform directional calibration on the wireless communication device single board before installing the antenna, and can also perform directional calibration on the wireless communication device or single board after installing the antenna.
  • the calibration scheme based on this application can realize the directional calibration of the two-way coupler within ten milliseconds.
  • the wireless communication equipment is stationary or A small moving speed can be considered as being in a relatively fixed environment.
  • the processor can calibrate the directivity coefficient of the bidirectional coupler based on the coupled signals according to the multiple impedance states, so that compared with the prior art, the bidirectional coupling can be realized without using an additional ESC and providing a laboratory environment.
  • the directional calibration of the coupler reduces the equipment cost of the directional calibration and also improves the applicability of the directional calibration.
  • an embodiment of the present application further provides a chipset, where the chipset may include multiple chips in a terminal or a base station.
  • the chip set includes a load chip, and a processing chip coupled with the load chip, the load chip is used for providing a fixed load impedance, and the processing chip is used for performing any one of the above-mentioned functions.
  • the processing chip may be a radio frequency chip or a baseband chip or the like.
  • a wireless communication device is also provided.
  • the wireless communication device may be a terminal or a base station, and the wireless communication device includes any one of the calibration apparatuses of the bidirectional couplers provided above.
  • the wireless communication device can be used to perform any one of the methods for directivity calibration of the bidirectional coupler provided above.
  • a readable storage medium is also provided, where computer-executable instructions are stored in the readable storage medium.
  • a device which may be a terminal, a base station, a chip, etc.
  • a processor runs the computer to execute
  • the device is made to execute the directivity calibration method of the bidirectional coupler provided by the above method embodiments.
  • the aforementioned readable storage medium may include: U disk, removable hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • a computer program product includes computer-executable instructions, and the computer-executable instructions are stored in a computer-readable storage medium; at least one processor of the device can be obtained from the computer The computer-executable instruction is read by reading the storage medium, and at least one processor executes the computer-executable instruction to make the method for calibrating the directionality of the bidirectional coupler provided by the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供一种双向耦合器的方向性校准装置及方法,涉及通信技术领域,用于降低校准的设备成本,同时提高适用性。所述装置包括:负载,用于提供固定的负载阻抗;可调阻抗网络,用于提供多个阻抗状态;双向耦合器,用于获取所述多个阻抗状态中每个阻抗状态下的耦合信号,所述耦合信号包括前向耦合信号和反向耦合信号;处理器,用于根据所述多个阻抗状态下的所述耦合信号,校准所述双向耦合器的方向性系数。

Description

一种双向耦合器的方向性校准装置及方法 技术领域
本申请涉及通信技术领域,尤其涉及一种双向耦合器的方向性校准装置及方法。
背景技术
双向耦合器(coupler)是一种应用于天线调谐系统的无源器件,可用于从传输线中耦合传输信号的一部分传输功率。如图1所示,双向耦合器通常具有两个采样端口,即前向耦合端口和反向耦合端口,前向耦合端口用于采样入射波以获取前向耦合信号,反向耦合端口用于采样反射波以获取反向耦合信号。在天线调谐系统中,通常需要基于双向耦合器耦合的前向耦合信号和反向耦合信号来确定该系统的反射系数,从而基于该反射系数对天线做匹配调谐,以提高天线传输效率。因此,该反射系数测量的准确性与该双向耦合性的方向性(即前向和反向的准确性)密切相关。
现有技术中,对于应用于手机的天线调谐系统中的双向耦合器,通常是在实验室中通过以下方式来校准双向耦合性的方向性。具体的,将天线调谐系统中的双向耦合器与电调仪表连接,并设置该电调仪表为多个不同的负载值;对于这多个不同负载值中的每个负载值,通过该电调仪表测量该电调仪表的输入端反射系数,并通过该手机的天线调谐系统测量双向耦合性的耦合口反射系数,对应得到多组反射系数对;之后,将该多组反射系数对代入如下公式所示的反射系数映射模型中,以确定双向耦合性的方向性系数。式中,a、b和c表示双向耦合性的方向性系数,Γ in表示该电调仪表的输入端反射系数,Γ cpl表示双向耦合性的耦合口反射系数。
Figure PCTCN2020130628-appb-000001
上述双向耦合性的方向性校准方案中,需要利用额外的电调仪表,从而会带来较高的设备成本;此外,该方案仅适用于在实验室中对某个天线调谐系统中的双向耦合性做校准,而不同天线调谐系统中双向耦合性的方向性的差异性较大,因此该方案的适用性较差。
发明内容
本申请提供了一种双向耦合器的方向性校准装置及方法,用于降低双向耦合器的方向性校准的设备成本,同时提高该方向性校准的适用性。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种双向耦合器的方向性校准装置,该装置包括:负载,用于提供固定的负载阻抗,即在方向性校准过程中该负载的阻抗是固定不变的,从而该负载的反射系数是固定不变的;可调阻抗网络,用于提供多个阻抗状态,该多个阻抗状态下的阻抗值可以是不同的;双向耦合器,用于获取该多个阻抗状态中每个阻抗状态下的耦合信号,该耦合信号包括前向耦合信号和反向耦合信号,即获取每个阻抗状态下的前向耦合信号和反向耦合信号;处理器,用于根据该多个阻抗状态下的该耦合信号,校准该双向耦合器的方向性系数。
上述技术方案中,通过该负载提供固定的负载阻抗,可调阻抗网络提供多个阻抗状态,以及双向耦合器获取该多个阻抗状态中每个阻抗状态下的前向耦合信号和反向耦合信号,使得处理器基于根据该多个阻抗状态下的耦合信号,校准双向耦合器的方向性系数,从而与现有技术相比,无需利用额外的电调仪表和提供实验室环境,即可实现双向耦合器的方向性校准,从而降低了方向性校准的设备成本,同时也提高了该方向性校准的适用性。
在第一方面的一种可能的实现方式中,该负载为具有固定阻抗的器件或仪表,比如,该负载为天线,该天线的阻抗为固定的负载阻抗,或者该负载为固定阻抗的综测仪。上述可能的实现方式中,该负载可以为固定阻抗的器件或仪表,从而使得该装置可以在产线过程中实现双向耦合器的方向性校准,并且在天线安装之前或者在天线安装之后均可实现,从而提高了该方向性校准的适用性。
在第一方面的一种可能的实现方式中,该负载为阻抗可变的器件或仪表,在方向性校准过程中该阻抗可变的器件处于固定状态,从而该固定状态下的阻抗是固定的,可选的,该负载包括天线、以及耦合在该可调阻抗网络与该天线之间的孔径调谐器,该孔径调谐器处于固定的孔径状态。上述可能的实现方式中,该负载的固定阻抗由天线和孔径调谐器提供,从而使得该装置在出厂后仍可以实现双向耦合器的方向性校准,从而提高了该方向性校准的适用性。
在第一方面的一种可能的实现方式中,该处理器还与可调阻抗网络耦合,比如,处理器通过mipi总线与可调阻抗网络耦合,该处理器还用于:设置该可调阻抗网络的阻抗状态,比如,在该方向性校准过程中,处理器可以依次遍历地将可调阻抗网络设置为该多个阻抗状态。
在第一方面的一种可能的实现方式中,该装置还包括:耦合在该处理器与该双向耦合器之间的衰减器和/或模数转换器;该衰减器可以为可调或者不可调的衰减器,用于调节该耦合信号的幅度,比如,该衰减器用于调节每个阻抗状态下的前向耦合信号的幅度或者反向耦合信号的幅度,以保证该前向耦合信号和该反向耦合信号具有较好的信噪比;该模数转换器,用于将该耦合信号转换为数字信号,比如,用于将每个阻抗状态下双向耦合器获取的前向耦合信号和反向耦合信号均转换为数字信号,以使处理器根据该前向耦合信号对应的数字信号和该反向耦合信号对应的数字信号校准双向耦合的方向性系数。上述可能的实现方式中,通过提高该耦合信号的信噪比,可以进一步提高基于该耦合信号确定的双向耦合器的方向性系数的准确度。
在第一方面的一种可能的实现方式中,该处理器还用于:输出校准信号,该耦合信号为该校准信号的耦合信号,该校准信号可以为具有一定带宽的信号。上述可能的实现方式中,当需要校准双向耦合器的方向性系数时,可以通过该处理器输出校准信号,从而启动校准流程。
在第一方面的一种可能的实现方式中,该装置还包括:耦合在该处理器与该双向耦合器之间的数模转换器和/或射频电路;该数模转换器,用于将该校准信号转换为模拟信号;该射频电路,用于将该校准信号传输至该双向耦合器。上述可能的实现方式中,通过该数模转换器和射频电路可以将该校准信号传输至双向耦合器及负载,以使得双向耦合器获取到该校准信号对应的耦合信号。
在第一方面的一种可能的实现方式中,该处理器还用于:对于该多个阻抗状态中的每个阻抗状态,根据该阻抗状态下的该耦合信号,确定该阻抗状态下的耦合口反射系数,比如,该耦合口反射系数可以为该反向耦合信号与该前向耦合信号的比值;根据该多个阻抗状态下的该耦合口反射系数,校准该双向耦合器的方向性系数,比如,根据多个耦合口反射系数和该多个阻抗状态下的网络参数矩阵,校准双向耦合器的方向性系数。上述可能的实现方式中,提供了一种简单有效地确定双向耦合器的方向性系数的方式。
第二方面,提供一种双向耦合器的方向性校准装置,比如,该装置可以为基带处理器或者数字信号处理器等,该装置包括:设置单元,用于分别设置可调阻抗网络为多个阻抗状态,该多个阻抗状态下的负载阻抗是固定的,即在方向性校准过程中该负载的阻抗是固定不变的,从而该负载的反射系数是固定不变的;获取单元,用于获取该多个阻抗状态中每个阻抗状态下的耦合信号,该耦合信号包括前向耦合信号和反向耦合信号,即获取每个阻抗状态下的前向耦合信号和反向耦合信号;校准单元,用于根据该多个阻抗状态下的该耦合信号,校准该双向耦合器的方向性系数。
在第二方面的一种可能的实现方式中,该装置还包括:调节单元,用于调节该耦合信号的幅度,比如,调节每个阻抗状态下的前向耦合信号的幅度或者反向耦合信号的幅度,以保证该前向耦合信号和该反向耦合信号具有较好的信噪比;和/或,转换单元,用于将该耦合信号转换为数字信号,比如,将每个阻抗状态下双向耦合器获取的前向耦合信号和反向耦合信号均转换为数字信号,以根据该前向耦合信号对应的数字信号和该反向耦合信号对应的数字信号校准双向耦合的方向性系数。
在第二方面的一种可能的实现方式中,该装置还包括:输出单元,用于输出校准信号,该耦合信号为该校准信号的耦合信号,该校准信号可以为具有一定带宽的信号。
在第二方面的一种可能的实现方式中,该装置还包括:转换单元,用于将该校准信号转换为模拟信号,以使得该校准信号对应的模拟信号传输至双向耦合器及负载。
在第二方面的一种可能的实现方式中,校准单元还用于:对于该多个阻抗状态中的每个阻抗状态,根据该阻抗状态下的该耦合信号,确定该阻抗状态下的耦合口反射系数,比如,该耦合口反射系数可以为该反向耦合信号与该前向耦合信号的比值;根据该多个阻抗状态下的该耦合口反射系数,校准该双向耦合器的方向性系数,比如,根据多个耦合口反射系数和该多个阻抗状态下的网络参数矩阵,校准双向耦合器的方向性系数。
第三方面,提供一种双向耦合器的方向性校准方法,该方法包括:分别设置可调阻抗网络为多个阻抗状态,该多个阻抗状态下的负载阻抗是固定的,即在方向性校准过程中该负载的阻抗是固定不变的,从而该负载的反射系数是固定不变的;获取该多个阻抗状态中每个阻抗状态下的耦合信号,该耦合信号包括前向耦合信号和反向耦合信号,即获取每个阻抗状态下的前向耦合信号和反向耦合信号;根据该多个阻抗状态下的该耦合信号,校准该双向耦合器的方向性系数。
在第三方面的一种可能的实现方式中,该方法还包括:调节该耦合信号的幅度,比如,调节每个阻抗状态下的前向耦合信号的幅度或者反向耦合信号的幅度,以保证该前向耦合信号和该反向耦合信号具有较好的信噪比;和/或,将该耦合信号转换为数 字信号,比如,将每个阻抗状态下双向耦合器获取的前向耦合信号和反向耦合信号均转换为数字信号,以根据该前向耦合信号对应的数字信号和该反向耦合信号对应的数字信号校准双向耦合的方向性系数。
在第三方面的一种可能的实现方式中,该方法还包括:输出校准信号,该耦合信号为该校准信号的耦合信号,该校准信号可以为具有一定带宽的信号。
在第三方面的一种可能的实现方式中,该方法还包括:将该校准信号转换为模拟信号,以使得该校准信号对应的模拟信号传输至双向耦合器及负载。
在第三方面的一种可能的实现方式中,根据该多个阻抗状态下的该耦合信号,校准该双向耦合器的方向性系数,包括:对于该多个阻抗状态中的每个阻抗状态,根据该阻抗状态下的该耦合信号,确定该阻抗状态下的耦合口反射系数,比如,该耦合口反射系数可以为该反向耦合信号与该前向耦合信号的比值;根据该多个阻抗状态下的该耦合口反射系数,校准该双向耦合器的方向性系数,比如,根据多个耦合口反射系数和该多个阻抗状态下的网络参数矩阵,校准双向耦合器的方向性系数。
第四方面,提供一种芯片组,该芯片组包括负载芯片、以及与该负载芯片耦合的处理芯片,该负载芯片用于提供固定的负载阻抗,该处理芯片用于执行如第三方面或第三方面的任一种可能的实现方式所提供的双向耦合器的方向性校准方法;可选的,该处理芯片可以为射频芯片或者基带芯片等。
在本申请的另一方面,提供一种无线通信设备,该设备可以为终端或基站,该设备包括如第一方面或第一方面的任一种可能的实现方式所提供的双向耦合器的方向性校准装置,或者该设备包括如第四方面所提供的芯片组。
在本申请的另一方面,提供一种可读存储介质,该可读存储介质中存储有指令,当该可读存储介质在设备上运行时,使得该设备执行如第三方面或者第三方面的任一种可能的实现方式所提供的双向耦合器的方向性校准方法。
本申请的又一方面,提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行第三方面或者第三方面的任一项可能的实现方式所提供的双向耦合器的方向性校准方法。
可以理解地,上文提供的任一种芯片组、无线通信设备、双向耦合器的方向性系数校准方法、可读存储介质和计算机程序产品均包含了上述所提供的双向性耦合性的校准装置的技术特征,因此,其所能达到的有益效果可参考上文所提供的对应装置中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种双向耦合器的结构示意图;
图2为本申请实施例提供的一种无线通信设备的结构示意图;
图3为本申请实施例提供的一种双向耦合器的方向性校准装置的结构示意图;
图4为本申请实施例提供的另一种双向耦合器的方向性校准装置的结构示意图;
图5为本申请实施例提供的又一种双向耦合器的方向性校准装置的结构示意图;
图6为本申请实施例提供的另一种双向耦合器的方向性校准装置的结构示意图;
图7为本申请实施例提供的一种双向耦合器的方向性校准方法的流程示意图。
具体实施方式
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a,b,c可以是单个,也可以是多个。另外,本申请的实施例采用了“第一”、“第二”等字样对名称或功能或作用类似的对象进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。“耦合”一词用于表示电性连接,包括通过导线或连接端直接相连或通过其他器件间接相连。因此“耦合”应被视为是一种广义上的电子通信连接。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请的技术方案可以应用于包括方向性校准装置的各种无线通信设备中。该无线通信设备可以部署在陆地上,包括室内或室外、手持或车载。也可以部署在水面上(如轮船等)。还可以部署在空中(例如飞机、气球和卫星上等)。该无线通道设备可以为终端或基站,以及应用于终端或基站的芯片或芯片组等,该芯片或芯片组也可以称为单板。其中,该终端可以包括但不限于:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等)、车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。
图2为本申请实施例提供的一种终端的结构示意图,该终端以手机为例进行说明。该终端包括:基带处理器(modem)、射频集成电路(radio frequency integrated circuit,RFIC)、射频前端模块(radio frequency front end module,RF FEM)和天线(antenna)。
其中,基带处理器具有基带处理功能,可用于处理基带信号。射频集成电路RFIC可用于实现基带信号与射频信号之间的调制或解调。射频集成电路RFIC中可以包括一个或者多个发射通道、以及一个或者多个接收通道,每个发射通道中可以包括模数转换器(analog to digital converter,DAC)、低通滤波器(low pass filter,LPF)和上转换器(up converter)等,每个接收通道中可以包括数模转换器(digital to analog converter,ADC)、低通滤波器(low pass filter,LPF)和下转换器(down converter)等。射频前端模块RF FEM可用于提供功率放大或滤波等功能。射频前端模块中也可 以包括一个或者多个发射(transmit,Tx)通道、以及一个或者多个接收(receive,Rx)通道,每个发射通道可以包括功率放大器(power amplifier,PA)、发射滤波器(Tx filter)和双工器(duplexer),每个接收通道中可以包括低噪声放大器(low noise amplifier,LNA)和双工器(duplexer),双工器也可以替换为天线开关(antenna switches)。天线可用于实现信号的接收或发送,即实现射频信号与电磁波之间的能量转换。
进一步的,如图2所示,该终端中还包括方向性校准装置,该方向性校准装置可用于校准双向耦合器(coupler)的方向性系数。其中,该方向性校准装置中可以包括诸如双向耦合器和可调阻抗网络等多个器件,这多个器件中的部分或全部器件或功能可以是单独设置的,也可以是部分或全部器件集成在该终端的基带处理器、射频集成电路RFIC、射频前端模块RF FEM或者天线中的,本申请实施对此不作具体限制。图2中以双向耦合器和可调阻抗网络集成在射频前端模块RF FEM中为例进行说明。
图3为本申请实施例提供的一种双向耦合器的方向性校准装置,该装置包括:依次耦合的负载31、可调阻抗网络32、双向耦合器33和处理器34。
其中,负载31用于提供固定的负载阻抗,即在方向性校准过程中负载31的阻抗是固定不变的,从而负载31的反射系数是固定不变的。在一种示例性中,负载31可以为具有固定阻抗的器件或仪表,比如,负载31为天线,该天线的阻抗为固定的负载阻抗,或者负载31为固定阻抗的综测仪。在另一种示例性中,负载31可以为阻抗可变的器件或仪表,在方向性校准过程中该阻抗可变的器件处于固定状态,从而该固定状态下的阻抗是固定的,比如,负载31包括孔径调谐器和天线,该负载的阻抗为孔径调谐器的阻抗与天线的阻抗之和,该天线的阻抗为固定阻抗,在方向性校准过程中该孔径调谐器处于同一个孔径状态,从而在该孔径状态下该孔径调谐器的阻抗也是固定的。
可调阻抗网络32用于提供多个阻抗状态,该多个阻抗状态下的阻抗值可以是不同的。其中,可调阻抗网络32可以包括一个或者多个可调器件(比如,可调电容、可调电感或开关等),和/或,一个或者多个不可调器件(比如,固定电容或电感等)。该多个阻抗状态可以由这一个或者多个可调谐器件的状态,和/或,这一个或者多个不可调谐器件的状态的组合构成。比如,可调阻抗网络32包括可调电容C1和C2,假设可调电容C1和C2均包括3个不同电容值的调节,则可调电容C1的状态和可调电容C2的状态组合后可以得到9个组合状态,若这9个组合状态下的等效电容均不相等,则该多个阻抗状态可以为这9个组合状态。在一种可能的实施例中,可调阻抗网络32中可以包括可调电容、固定电感和开关。
双向耦合器33用于获取该多个阻抗状态中每个阻抗状态下的耦合信号,其中,该耦合信号可以包括前向耦合信号和反向耦合信号。比如,双向耦合器33的耦合方向包括前向耦合和反向耦合;当双向耦合器33被设置为前向耦合时,可用于获取前向耦合信号,即获取双向耦合器33中传输的入射波的耦合信号;当双向耦合器33被设置为反向耦合时,可用于获取反向耦合信号,即获取双向耦合器33中传输的入射波对应的反射波的耦合信号。对于该多个阻抗状态中每个阻抗状态,双向耦合器33可以分别被设置为前向耦合和反向耦合,从而分别获取该阻抗状态下的前向耦合信号和反向耦合信号。通过获取每个阻抗状态下的前向耦合信号和反向耦合信号,即可得到该多个阻 抗状态下的前向耦合信号和反向耦合信号。
处理器34用于根据该多个阻抗状态下的耦合信号,校准双向耦合器33的方向性系数。其中,该耦合信号可以包括前向耦合信号和反向耦合信号,对于该多个阻抗状态中的每个阻抗状态,处理器34可以用于:根据该阻抗状态下的前向耦合信号和反向耦合信号,确定该阻抗状态下双向耦合器33的耦合口反射系数(比如,该耦合口反射系数可以为该反向耦合信号与该前向耦合信号的比值),从而根据该多个阻抗状态下的前向耦合信号和反向耦合信号可以对应得到多个耦合口反射系数;根据该多个耦合口反射系数,校准双向耦合器33的方向性系数。
在一种可能的示例中,处理器34根据该多个耦合口反射系数,校准双向耦合器33的方向性系数,可以包括:根据该多个耦合口反射系数和该多个阻抗状态下的网络参数矩阵,校准双向耦合器33的方向性系数。
其中,该网络参数矩阵是指可调阻抗网络32的网络参数矩阵,该多个阻抗状态下的网络参数矩阵可以是事先测量得到并存储在处理器34中的。每个阻抗状态下的网络参数矩阵可以包括四个网络参数,该四个网络参数可以表示为S 11、S 12、S 21和S 22。假设可调阻抗网络32两端的端口为第一端口(或输入端口)和第二端口(或输出端口),则S 11表示第一端口的反射参数,S 22表示第二端口的反射参数,该反射参数可以为电压反射系数,S 12表示第一端口至第二端口的端口间传输参数,S 21表示第二端口至第一端口的端口间传输参数,该端口间传输增益可以是电压增益。
示例性的,若双向耦合器33的耦合口反射系数表示为Γ cpl,可调阻抗网络32的第一端口的反射系数表示为Γ in,则Γ in与Γ in之间满足如下公式(1),式中的a、b和c表示双向耦合器33的方向性系数。若负载31的反射系数表示为Γ L,则Γ in与Γ L之间还满足如下公式(2)。基于公式(1)和公式(2),可以得到如下公式(3)。
Figure PCTCN2020130628-appb-000002
Figure PCTCN2020130628-appb-000003
Figure PCTCN2020130628-appb-000004
在上述公式(3)中,Γ L、a、b和c是未知的且在每个阻抗状态下是固定不变的,每个阻抗状态下的Γ cpl、S 11、S 12、S 21和S 22是已知的,从而基于该多个阻抗状态下的Γ cpl、S 11、S 12、S 21和S 22和公式(3)即可确定双向耦合器33的方向性系数a、b和c。具体的,去除上述公式(3)中的分母可得到公式(3-1);假定公式(3-1)中的P 1=S 11、P 2=1、P 3=-S 11Γ cpl、P 4=(S 12S 21-S 11S 22)、P 5=S 22、P 6=(-S 12S 21+S 11S 22)、P 7=S 22Γ cpl、L=Γ L、M=-Γ cpl,则公式(3-1)可以被转换为公式(3-2);假定公式(3-2)中的a*L=d、b*L=e、c*L=f、L=g、M=-m,则公式(3-2)可以被转换为公式(3-3),*表示乘号。
Figure PCTCN2020130628-appb-000005
P 1*a+P 2*b+P 3*c+P 4*a*L+P 5*b*L+P 6*c*L+P 7*L+M=0    (3-2)
P 1*a+P 2*b+P 3*c+P 4*d+P 5*e+P 6*f+P 7*g=m         (3-3)
Figure PCTCN2020130628-appb-000006
其中,该多个阻抗状态的数量可以大于或等于7,基于上述公式(3-3)可以构建公式(3-4)所示的两个矩阵相乘的方程,公式(3-4)中P 1至P 7的上标(即1至n)表示第1个至第n个阻抗状态,相乘的两个矩阵中的左矩阵可以表示为矩阵A、右矩阵可以表示为矩阵X、二者的乘积矩阵可以表示为矩阵B,则公式(3-4)可以表示为A*X=B,则矩阵X=(A HA) -1*A H*B,从而可以解出矩阵X,矩阵X中的a、b和c即为双向耦合器33的方向性系数。
在一种可能的实施例中,处理器34还与可调阻抗网络32耦合,比如,处理器34通过mipi总线与可调阻抗网络32耦合,处理器34还可用于设置可调阻抗网络32的阻抗状态。示例性的,在该方向性校准过程中,处理器34可以依次遍历地将可调阻抗网络32设置为该多个阻抗状态。比如,该多个阻抗状态包括n个阻抗状态,则处理器34可以先将可调阻抗网络32设置为第1个阻抗状态,并确定第1个阻抗状态下的耦合口反射系数;再将可调阻抗网络32设置为第2个阻抗状态,并确定第2个阻抗状态下的耦合口反射系数;如此类推,直至将可调阻抗网络32设置为第n个阻抗状态,并确定第n个阻抗状态下的耦合口反射系数。之后,根据n个阻抗状态下的耦合口反射系数,校准双向耦合器33的方向性系数a、b和c。
进一步的,如图4所示,该装置还可以包括:耦合在处理器34与双向耦合器33之间的衰减器35,和/或,模数转换器(analog to digital converter,ADC)36。其中,衰减器35可以为可调或者不可调的衰减器,具体用于调节该耦合信号的幅度,比如,衰减器35用于调节每个阻抗状态下的前向耦合信号的幅度或者反向耦合信号的幅度,以保证该前向耦合信号和该反向耦合信号具有较好的信噪比。ADC 36用于将该耦合信号转换为数字信号,比如,ADC 36用于将每个阻抗状态下双向耦合器33获取的前向耦合信号和反向耦合信号均转换为数字信号,以使处理器34根据该前向耦合信号对应的数字信号和该反向耦合信号对应的数字信号确定耦合口反射系数。
可选的,如图4所示,该装置还可以包括:耦合在处理器34与双向耦合器33之间的数模转换器(digital to analog converter,DAC)37,和/或射频电路38。在一种可能的示例中,处理器34还可以用于输出校准信号,该校准信号可以依次通过DAC 37、射频电路38、双向耦合器33和可调阻抗网络32后传输至负载31上,该校准信号可以为具有一定带宽的信号。具体的,处理器34输出的校准信号可以为数字信号,在该校准信号传输过程中,DAC 37可用于将该校准信号转换为模拟信号,射频电路38可用于将该校准信号经过功率放大和滤波等一系列处理后,依次通过双向耦合器33和可调阻抗网络32后传输至负载31上。双向耦合器33可用于在每个阻抗状态下获取该校准信号的耦合信号,即在每个阻抗状态下获取该校准信号的前向耦合信号和反向耦合 信号。
在实际应用中,射频电路38中可以包括射频集成电路或射频前端模块中的至少一个,双向耦合器33、可调阻抗网络32、衰减器35、ADC 36或DAC 37中的一个或者多个可以集成在射频电路38中,本申请实施例对此不作具体限制。此外,处理器34可以是基带处理器、微处理器或者为其他可用于实现处理器34的功能的电路或处理器等;另外,处理器34也可以集成在射频电路38中的射频集成电路或射频前端模块中,本申请实施例对此同样不作具体限制。
本申请实施例提供的方向性校准方案可以应用在终端或基站等无线通信设备或应用于该无线通信设备的单板的产线校准中,也可以应用于出厂后或离线的无线通信设备或单板的校准。对于产线校准,该方案可以在安装天线之前对该无线通信设备单板进行方向性校准,也可以在安装天线之后对该无线通信设备或者单板进行方向性校准。对于出厂后的无线通信设备或单板的校准,在一个相对固定环境中基于本申请的校准方案可在十几毫秒的时长内实现双向耦合器的方向性校准,比如,该无线通信设备静止或者移动速度较小可认为其处于相对固定的环境中。
示例性的,如图5所示,对于产线校准过程,装备台个人计算机(personal computer,PC)与该装置的处理器34之间可以通过串口连接,负载31可以为一个综测仪,该装备台PC还可以通过网络接口或者通用输入输出(general purpose input Output,GPIO)等接口与综测仪连接并将综测仪的阻抗设置为固定阻抗。在做方向性校准时,通过该装备台PC可以向处理器34发送启动双向耦合器33的方向性校准命令,从而使得处理器34分别将可调阻抗电路设置为多个阻抗状态,双向耦合器获取该多个阻抗状态中每个阻抗状态下的前向耦合信号和反向耦合信号,使得处理器34可以基于根据该多个阻抗状态下的耦合信号,校准双向耦合器33的方向性系数。此外,在产线校准过程中,通过该装备台PC和综测仪还可以用于校准该无线通信设备的其他器件或功能,比如,发射功率、接收灵敏度、失真度等参数。
示例性的,如图6所示,对于离线校准过程,负载31可以包括孔径调谐器和天线,处理器34还可以与孔径调谐器耦合,用于在方向性校准过程中将该孔径调谐器设置为同一个孔径状态,从而使得在该孔径状态下孔径调谐器的阻抗是固定的。具体的,通过预先配置,可以使得该无线通信设备启动本申请提供的方向性校准方案,即使得处理器34分别将可调阻抗电路设置为多个阻抗状态,双向耦合器获取该多个阻抗状态中每个阻抗状态下的前向耦合信号和反向耦合信号,使得处理器34可以基于根据该多个阻抗状态下的耦合信号,校准双向耦合器33的方向性系数。
在本申请实施例提供的方向性校准装置中,通过负载31提供固定的负载阻抗,可调阻抗网络32提供多个阻抗状态,以及双向耦合器33用于获取该多个阻抗状态中每个阻抗状态下的前向耦合信号和反向耦合信号,使得处理器34可以基于根据该多个阻抗状态下的耦合信号,校准双向耦合器33的方向性系数,从而与现有技术相比,无需利用额外的电调仪表和提供实验室环境,即可实现双向耦合器33的方向性校准,从而降低了方向性校准的设备成本,同时也提高了该方向性校准的适用性。
图7为本申请实施例提供的一种双向耦合器的方向性校准方法的流程示意图,该方法可应用于上文所提供的双向耦合器的方向性校准装置中,该方法包括以下几个步 骤。
S401:分别设置可调阻抗网络为多个阻抗状态,该多个阻抗状态下的负载阻抗是固定的。
其中,当负载的负载阻抗固定时,负载的反射系数是固定不变的。在一种示例性中,该固定的负载阻抗可以由具有固定阻抗的器件或仪表提供,比如,负载为天线,该天线的阻抗为固定的负载阻抗,或者负载为固定阻抗的综测仪。在另一种示例性中,该固定的负载阻抗由阻抗可变的器件或仪表提供,在方向性校准过程中该阻抗可变的器件处于固定状态,从而该固定状态下的阻抗是固定的,比如,负包括孔径调谐器和天线,该负载的阻抗为孔径调谐器的阻抗与天线的阻抗之和,该天线的阻抗为固定阻抗,在方向性校准过程中该孔径调谐器处于同一个孔径状态,从而在该孔径状态下该孔径调谐器的阻抗也是固定的。
另外,该多个阻抗状态下的阻抗值可以是不同的。其中,可调阻抗网络可以包括一个或者多个可调器件(比如,可调电容、可调电感或开关等),和/或,一个或者多个不可调器件(比如,固定电容或电感等)。该多个阻抗状态可以由这一个或者多个可调谐器件的状态,和/或,这一个或者多个不可调谐器件的状态的组合构成。
具体的,处理器可以通过mipi总线与可调阻抗网络耦合,处理器可用于设置可调阻抗网络的阻抗状态。示例性的,在该方向性校准过程中,处理器可以依次遍历地将可调阻抗网络设置为该多个阻抗状态。
S402:获取该多个阻抗状态中每个阻抗状态下的耦合信号,该耦合信号包括前向耦合信号和反向耦合信号。
其中,该耦合信号可以由双向耦合器获取。比如,双向耦合器耦合方向包括前向耦合和反向耦合;当双向耦合器被设置为前向耦合时,可用于获取前向耦合信号,即获取双向耦合器中传输的入射波的耦合信号;当双向耦合器被设置为反向耦合时,可用于获取反向耦合信号,即获取耦合器中传输的入射波对应的反射波的耦合信号。对于该多个阻抗状态中每个阻抗状态,双向耦合器可以分别被设置为前向耦合和反向耦合,从而分别获取该阻抗状态下的前向耦合信号和反向耦合信号。通过获取每个阻抗状态下的前向耦合信号和反向耦合信号,即可得到该多个阻抗状态下的前向耦合信号和反向耦合信号。
比如,该多个阻抗状态包括n个阻抗状态,则处理器可以先将可调阻抗网络设置为第1个阻抗状态,双向耦合器获取第1个阻抗状态下的耦合信号并传输至处理器;处理器再将可调阻抗网络设置为第2个阻抗状态,双向耦合器获取第2个阻抗状态下的耦合信号并传输至处理器;如此类推,直至处理器将可调阻抗网络设置为第n个阻抗状态,双向耦合器获取第n个阻抗状态下的耦合信号并传输至处理器。
可选的,该方法还可以包括:调节每个阻抗状态下的前向耦合信号的幅度或者反向耦合信号的幅度,以保证该前向耦合信号和该反向耦合信号具有较好的信噪比;和/或,将每个阻抗状态下双向耦合器获取的前向耦合信号和反向耦合信号均转换为数字信号,以使下述步骤S403中根据该前向耦合信号对应的数字信号和该反向耦合信号对应的数字信号,校准双向耦合器的方向性系数。
S403:根据该多个阻抗状态下的该耦合信号,校准双向耦合器的方向性系数。
具体的,对于该多个阻抗状态中的每个阻抗状态,根据该阻抗状态下的前向耦合信号和反向耦合信号,确定该阻抗状态下双向耦合器的耦合口反射系数(比如,该耦合口反射系数可以为该反向耦合信号与该前向耦合信号的比值),从而根据该多个阻抗状态下的前向耦合信号和反向耦合信号可以对应得到多个耦合口反射系数;根据该多个耦合口反射系数,校准双向耦合器的方向性系数,比如,根据该多个耦合口反射系数和该多个阻抗状态下的网络参数矩阵,校准双向耦合器的方向性系数。需要说明的是,关于网络参数矩阵、以及根据该多个耦合口反射系数和该多个阻抗状态下的网络参数矩阵校准双向耦合器的方向性系数的具体过程可以参见上文装置实施例中的相关描述,本申请实施例在此不再赘述。
在一种可能的实现方式中,该方法还包括:输出校准信号,该校准信号可以依次通过DAC、射频电路、双向耦合器和可调阻抗网络后传输至负载上,该校准信号可以为具有一定带宽的信号。具体的,输出的校准信号可以为数字信号,在该校准信号传输过程中,DAC可用于将该校准信号转换为模拟信号,射频电路可用于将该校准信号经过功率放大和滤波等一系列处理后,依次通过双向耦合器和可调阻抗网络后传输至负载上。双向耦合器可用于在每个阻抗状态下获取该校准信号的耦合信号,即在每个阻抗状态下获取该校准信号的前向耦合信号和反向耦合信号。
本申请实施例提供的方向性校准方案可以应用在终端或基站等无线通信设备或应用于该无线通信设备的单板的产线校准中,也可以应用于出厂后或离线的无线通信设备或单板的校准。对于产线校准,该方案可以在安装天线之前对该无线通信设备单板进行方向性校准,也可以在安装天线之后对该无线通信设备或者单板进行方向性校准。对于出厂后的无线通信设备或单板的校准,在一个相对固定环境中基于本申请的校准方案可在十几毫秒的时长内实现双向耦合器的方向性校准,比如,该无线通信设备静止或者移动速度较小可认为其处于相对固定的环境中。
在本申请实施例中,通过提供固定的负载阻抗,设置可调阻抗网络分别为多个阻抗状态,以及获取该多个阻抗状态中每个阻抗状态下的前向耦合信号和反向耦合信号,使得处理器可以基于根据该多个阻抗状态下的耦合信号,校准双向耦合器的方向性系数,从而与现有技术相比,无需利用额外的电调仪表和提供实验室环境,即可实现双向耦合器的方向性校准,从而降低了方向性校准的设备成本,同时也提高了该方向性校准的适用性。
需要说明的是,上述装置实施例涉及的各模块或电路的所有相关内容均可以援引到该方法实施例的各相关步骤中,本申请实施例在此不再赘述。
基于此,本申请实施例还提供一种芯片组,该芯片组可以包括终端或者基站中的多个芯片。在一种可能的实施例中,该芯片组包括负载芯片、以及与该负载芯片耦合的处理芯片,该负载芯片用于提供固定的负载阻抗,该处理芯片用于执行上文所提供的任一种双向耦合器的方向性校准方法。可选的,该处理芯片可以为射频芯片或者基带芯片等。
在本申请的另一方面,还提供一种无线通信设备,该无线通信设备可以是终端或者基站,该无线通信设备包括上文所提供的任一种双向耦合器的校准装置。其中,该无线通信设备可用于执行上文所提供的任一种双向耦合器的方向性校准方法。
在本申请的另一实施例中,还提供一种可读存储介质,可读存储介质中存储有计算机执行指令,当一个设备(可以是终端、基站或芯片等)或者处理器运行该计算机执行指令时,使得该设备执行上述方法实施例所提供的双向耦合器的方向性校准方法。前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备上述方法实施例所提供的双向耦合器的方向性校准方法。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种双向耦合器的方向性校准装置,其特征在于,所述装置包括:
    负载,用于提供固定的负载阻抗;
    可调阻抗网络,用于提供多个阻抗状态;
    双向耦合器,用于获取所述多个阻抗状态中每个阻抗状态下的耦合信号,所述耦合信号包括前向耦合信号和反向耦合信号;
    处理器,用于根据所述多个阻抗状态下的所述耦合信号,校准所述双向耦合器的方向性系数。
  2. 根据权利要求1所述的装置,其特征在于,所述负载包括天线。
  3. 根据权利要求2所述的装置,其特征在于,所述负载还包括耦合在所述可调阻抗网络与所述天线之间的孔径调谐器,所述孔径调谐器处于固定的孔径状态。
  4. 根据权利要求1-3任一项所述的装置,其特征在于,所述处理器还用于:
    设置所述可调阻抗网络的阻抗状态。
  5. 根据权利要求1-4任一项所述的装置,其特征在于,所述装置还包括:耦合在所述处理器与所述双向耦合器之间的衰减器和/或模数转换器;
    所述衰减器,用于调节所述耦合信号的幅度;
    所述模数转换器,用于将所述耦合信号转换为数字信号。
  6. 根据权利要求1-5任一项所述的装置,其特征在于,所述处理器还用于:
    输出校准信号,所述耦合信号为所述校准信号的耦合信号。
  7. 根据权利要求6所述的装置,其特征在于,所述装置还包括:耦合在所述处理器与所述双向耦合器之间的数模转换器和/或射频电路;
    所述数模转换器,用于将所述校准信号转换为模拟信号;
    所述射频电路,用于将所述校准信号传输至所述双向耦合器。
  8. 根据权利要求1-7任一项所述的装置,其特征在于,所述处理器还用于:
    对于所述多个阻抗状态中的每个阻抗状态,根据所述阻抗状态下的所述耦合信号,确定所述阻抗状态下的耦合口反射系数;
    根据所述多个阻抗状态下的所述耦合口反射系数,校准所述双向耦合器的方向性系数。
  9. 一种双向耦合器的方向性校准方法,其特征在于,所述方法包括:
    分别设置可调阻抗网络为多个阻抗状态,所述多个阻抗状态下的负载阻抗是固定的;
    获取所述多个阻抗状态中每个阻抗状态下的耦合信号,所述耦合信号包括前向耦合信号和反向耦合信号;
    根据所述多个阻抗状态下的所述耦合信号,校准所述双向耦合器的方向性系数。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    调节所述耦合信号的幅度;和/或,
    将所述耦合信号转换为数字信号。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    输出校准信号,所述耦合信号为所述校准信号的耦合信号。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    将所述校准信号转换为模拟信号。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,所述根据所述多个阻抗状态下的所述耦合信号,校准所述双向耦合器的方向性系数,包括:
    对于所述多个阻抗状态中的每个阻抗状态,根据所述阻抗状态下的所述耦合信号,确定所述阻抗状态下的耦合口反射系数;
    根据所述多个阻抗状态下的所述耦合口反射系数,校准所述双向耦合器的方向性系数。
  14. 一种芯片组,其特征在于,所述芯片组包括负载芯片、以及与所述负载芯片耦合的处理芯片,所述负载芯片用于提供固定的负载阻抗,所述处理芯片用于执行如权利要求9-13任一项所述的双向耦合器的方向性校准方法。
  15. 一种无线通信设备,其特征在于,所述设备包括如权利要求1-8任一项所述的双向耦合器的方向性校准装置;或者,所述设备包括如权利要求14所述的芯片组。
  16. 一种可读存储介质,其特征在于,所述可读存储介质中存储有指令,当所述可读存储介质在设备上运行时,使得所述设备执行权利要求9-13任一项所述的双向耦合器的方向性校准方法。
PCT/CN2020/130628 2020-11-20 2020-11-20 一种双向耦合器的方向性校准装置及方法 WO2022104743A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/130628 WO2022104743A1 (zh) 2020-11-20 2020-11-20 一种双向耦合器的方向性校准装置及方法
CN202080015251.0A CN114868344B (zh) 2020-11-20 2020-11-20 一种双向耦合器的方向性校准装置、方法、芯片组、设备及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130628 WO2022104743A1 (zh) 2020-11-20 2020-11-20 一种双向耦合器的方向性校准装置及方法

Publications (1)

Publication Number Publication Date
WO2022104743A1 true WO2022104743A1 (zh) 2022-05-27

Family

ID=81708276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130628 WO2022104743A1 (zh) 2020-11-20 2020-11-20 一种双向耦合器的方向性校准装置及方法

Country Status (2)

Country Link
CN (1) CN114868344B (zh)
WO (1) WO2022104743A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6728224B1 (en) * 1999-02-05 2004-04-27 Fujitsu Limited Portable mobile terminal and transmission unit
CN104779429A (zh) * 2014-01-14 2015-07-15 英飞凌科技股份有限公司 用于定向耦合器的系统和方法
CN105428773A (zh) * 2014-09-15 2016-03-23 英飞凌科技股份有限公司 用于定向耦合器的系统和方法
CN106374942A (zh) * 2015-07-20 2017-02-01 英飞凌科技股份有限公司 用于定向耦合器的系统和方法
CN110971313A (zh) * 2018-09-12 2020-04-07 中兴通讯股份有限公司 一种车载tbox及其天线实时切换方法、设备及可读存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812757B2 (en) * 2014-12-10 2017-11-07 Skyworks Solutions, Inc. RF coupler having coupled line with adjustable length
WO2016094376A2 (en) * 2014-12-10 2016-06-16 Skyworks Solutions, Inc. Adjustable rf coupler
CN105743519B (zh) * 2016-04-07 2019-01-29 锐迪科微电子(上海)有限公司 一种射频发射电路、双向耦合器及定向耦合器
WO2020217088A1 (en) * 2019-04-24 2020-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for over the air calibration for integrated antenna vswr monitoring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6728224B1 (en) * 1999-02-05 2004-04-27 Fujitsu Limited Portable mobile terminal and transmission unit
CN104779429A (zh) * 2014-01-14 2015-07-15 英飞凌科技股份有限公司 用于定向耦合器的系统和方法
CN105428773A (zh) * 2014-09-15 2016-03-23 英飞凌科技股份有限公司 用于定向耦合器的系统和方法
CN106374942A (zh) * 2015-07-20 2017-02-01 英飞凌科技股份有限公司 用于定向耦合器的系统和方法
CN110971313A (zh) * 2018-09-12 2020-04-07 中兴通讯股份有限公司 一种车载tbox及其天线实时切换方法、设备及可读存储介质

Also Published As

Publication number Publication date
CN114868344A (zh) 2022-08-05
CN114868344B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
KR101164243B1 (ko) 분배기 및 통신 방법
Rouphael Wireless Receiver Architectures and Design: Antennas, RF, synthesizers, mixed signal, and digital signal processing
CN102273010B (zh) 用于导航和通信的钩形绕杆式天线
CN107959515B (zh) 多天线噪声功率的测量方法和装置
WO2016061138A1 (en) Systems and methods for leak suppression in a full duplex system
CN103596637B (zh) 天线故障的检测方法与装置
CN213069007U (zh) 一种新型结构的分频式测频机
CN112733476A (zh) 基于ADCs的大规模MIMO接收阵列DOA估计方法
WO2022104743A1 (zh) 一种双向耦合器的方向性校准装置及方法
WO2022087927A1 (zh) 一种天线调谐装置及方法
CN109845145A (zh) 一种射频通道校准装置及方法
CN111443336A (zh) 一种降低fmcw雷达系统数据传输吞吐量的方法
CN103675765B (zh) 高频软件无线电接收系统
CN110764061A (zh) 一种正交变频接收机
CN113381779B (zh) 超宽带接收机
CN112636844B (zh) 一种收发子系统高精度微波内定标器
CN210243826U (zh) 一种雷达多通道信号预处理装置及其脉冲压缩单元
WO2022104723A1 (zh) 一种反射系数测量方法及装置
CN107369879B (zh) 一种天线
CN212410850U (zh) 一种超宽带调频连续波雷达射频系统
CN104779969A (zh) 一种具有高动态接收机的全双工系统及其使用方法
CN113363693B (zh) 一种耦合器及其耦合电路、通信装置
CN216488454U (zh) 一种耦合器及其耦合电路、通信设备
CN209283249U (zh) 低频低噪声光接收模块、光发射模块和光收发模块
Razavi-Ghods et al. HERA RF and calibration system design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962034

Country of ref document: EP

Kind code of ref document: A1