WO2022102593A1 - センサ装置 - Google Patents

センサ装置 Download PDF

Info

Publication number
WO2022102593A1
WO2022102593A1 PCT/JP2021/041083 JP2021041083W WO2022102593A1 WO 2022102593 A1 WO2022102593 A1 WO 2022102593A1 JP 2021041083 W JP2021041083 W JP 2021041083W WO 2022102593 A1 WO2022102593 A1 WO 2022102593A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
layer
antenna
technique
substrate
Prior art date
Application number
PCT/JP2021/041083
Other languages
English (en)
French (fr)
Inventor
幸生 飯田
篤 山田
憲人 三保田
卓哉 市原
峻裕 大石
実 石田
Original Assignee
ソニーグループ株式会社
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社, ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーグループ株式会社
Priority to US18/251,901 priority Critical patent/US20230417686A1/en
Priority to AU2021380274A priority patent/AU2021380274A1/en
Priority to JP2022561922A priority patent/JPWO2022102593A1/ja
Priority to EP21891839.9A priority patent/EP4246134A1/en
Priority to CN202180067187.5A priority patent/CN116157673A/zh
Publication of WO2022102593A1 publication Critical patent/WO2022102593A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/04Investigating moisture content
    • G01N33/245
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/246Earth materials for water content

Definitions

  • This technology relates to sensor devices. More specifically, the present invention relates to a sensor device provided with a pair of probes.
  • the microwave type is used to speed up the measurement as compared with the electric resistance type and the capacitance type.
  • the measurement accuracy of the water content may decrease due to the influence of noise generated in the electromagnetic wave.
  • This technique was created in view of such a situation, and aims to improve the measurement accuracy of the water content in a device for measuring the water content in the medium.
  • the present technology has been made to solve the above-mentioned problems, and the first aspect thereof is a pair of antennas, a measuring circuit for measuring the amount of water in the medium between the pair of antennas, and a measuring circuit. It is a sensor device including a transmission line connecting the pair of antennas and the measurement circuit, and a radio wave absorbing unit formed around the transmission line. This has the effect of improving the measurement accuracy of the water content.
  • the radio wave absorbing unit may cover the entire transmission line. This has the effect of suppressing unnecessary radiation from the entire transmission line.
  • the radio wave absorbing unit may cover a part of the transmission line. This has the effect of suppressing unnecessary radiation from a part of the transmission line.
  • the radio wave absorbing unit may cover the transmission line between a predetermined position of the transmission line and one end of the antenna. This has the effect of suppressing unnecessary radiation from a part of the transmission line.
  • the radio wave absorbing unit may cover the transmission line between the predetermined position away from one end of the antenna and the measuring circuit. This has the effect of suppressing unnecessary radiation from a part of the transmission line.
  • the distance from the other end of the antenna to the predetermined position does not have to exceed half the wavelength of the center frequency of the electromagnetic waves transmitted and received by the pair of antennas. This has the effect of appropriately suppressing unnecessary radiation from a part of the transmission line.
  • the distance from the other end of the antenna to the predetermined position does not have to exceed the wavelength bandwidth of the electromagnetic waves transmitted and received by the pair of antennas. This has the effect of appropriately suppressing unnecessary radiation from a part of the transmission line.
  • an electronic substrate having a pair of protrusions may be further provided, and the pair of antennas and the transmission path may be formed in the pair of protrusions. This has the effect of suppressing unnecessary radiation in the sensor device in which the antenna is formed on one electronic substrate.
  • the radio wave absorbing portion may cover the tips of each of the pair of protruding portions. This has the effect of suppressing unwanted radiation from the tip of the probe.
  • the first probe inner substrate, the second probe inner substrate, and the measurement unit substrate orthogonal to the first and second probe inner substrates are further provided, and the pair is further provided.
  • the antenna and the transmission line may be formed on the first and second probe inner substrates. This has the effect of suppressing unnecessary radiation in the sensor device in which the substrates are orthogonal to each other.
  • the radio wave absorbing unit may cover the tips of the respective tips of the first and second probe inner substrates. This has the effect of suppressing unwanted radiation from the tip of the probe.
  • electromagnetic waves are transmitted and received between one of both sides of the first probe inner substrate and one of both sides of the second probe inner substrate, and the radio wave absorbing unit is the first.
  • the other of both sides of the probe inner substrate of 1 and the other of both sides of the second probe inner substrate may be covered. This has the effect of suppressing unnecessary radiation from surfaces other than the surface on which the electromagnetic field is transmitted and received.
  • the plurality of pairs of the antennas may be provided, and the radio wave absorbing unit may cover the transmission line connecting each of the plurality of pairs of antennas and the measuring unit. This has the effect of suppressing unnecessary radiation in the sensor device in which a plurality of pairs of antennas are formed.
  • the radio wave absorbing unit may be a layer of a radio wave absorbing material embedded in the sensor housing. This has the effect of eliminating the need to arrange a radio wave absorbing unit separately from the sensor housing.
  • a sensor housing may be further provided, and the radio wave absorbing unit may be arranged in the sensor housing. This has the effect of eliminating the need to embed a radio wave absorber in the sensor housing.
  • a groove may be formed in the sensor housing, and a protrusion that fits with the groove may be formed in the radio wave absorbing portion. This has the effect of fixing the radio wave absorbing unit.
  • a protrusion may be formed on the sensor housing, and a groove may be formed on the radio wave absorbing portion so as to be aligned with the protrusion. This has the effect of fixing the radio wave absorbing unit.
  • plan view from the first layer to the third layer in the substrate in the probe without the shield wiring in the 1st Embodiment of this technique It is an example of the plan view and the sectional view of the 4th layer and the 5th layer in the substrate in a probe without shield wiring in 1st Embodiment of this technique.
  • plan view from the first layer to the third layer in the substrate in the probe having three antennas in the first embodiment of the present technique It is an example of the plan view and the cross-sectional view of the 4th layer and the 5th layer in the substrate in the probe in which the number of antennas is 3 in the 1st Embodiment of this technique.
  • plan view from the first layer to the third layer in the substrate in the probe in which there is no shield wiring and the number of antennas is three in the first embodiment of the present technique.
  • plan view and the cross-sectional view of the fourth layer and the fifth layer in the substrate in the probe in which there is no shield wiring and the number of antennas is three in the first embodiment of the present technique.
  • plan view from the 4th layer to the 6th layer among the 7 layers in the substrate in the probe in the 1st embodiment of the present technique It is an example of the plan view of the 7th layer in the substrate in a probe and the cross-sectional view of a substrate in the 1st Embodiment of this technique. It is an example of the plan view from the first layer to the third layer among the nine layers in the substrate in the probe in the first embodiment of the present technique. It is an example of the plan view from the 4th layer to the 6th layer among the 9 layers in the substrate in the probe in the 1st embodiment of the present technique.
  • plan view from the 7th layer to the 9th layer among the 9 layers in the substrate in the probe in the 1st embodiment of the present technique It is an example of the cross-sectional view of the substrate in the probe of the 9-layer structure in the 1st Embodiment of this technique. It is a figure for demonstrating the influence which the width of the substrate in a probe and the cross-sectional area of a probe housing have on the measurement of water content in 1st Embodiment of this technique from two viewpoints. It is an example of the plan view from the first layer to the third layer in the substrate in the probe which formed the slot in the 1st Embodiment of this technique.
  • plan view and the sectional view of the 4th layer and the 5th layer in the substrate in the probe which formed the slot in the 1st Embodiment of this technique It is an example of the plan view from the first layer to the third layer in the substrate in the probe which formed the slot in the 1st Embodiment of this technique and eliminated the shield wiring. It is an example of the plan view and the cross-sectional view of the 4th layer and the 5th layer in the substrate in the probe which formed the slot in the 1st Embodiment of this technique and eliminated the shield wiring. It is an example of the plan view from the first layer to the third layer in the substrate in the probe which formed the slot and provided three antennas in the 1st Embodiment of this technique.
  • plan view and the sectional view of the 4th layer and the 5th layer in the substrate in the probe which formed the slot and provided 3 antennas in the 1st Embodiment of this technique It is an example of the plan view from the first layer to the third layer in the substrate in the probe which formed the slot, eliminated the shield wiring, and provided three antennas in the 1st Embodiment of this technique. It is an example of the plan view and the cross-sectional view of the fourth layer and the fifth layer in the substrate in the probe provided with three antennas by forming a slot and eliminating the shield wiring in the first embodiment of the present technique. ..
  • plan view from the 1st layer to the 3rd layer among the 7 layers in the substrate in the probe which formed the slot in the 1st Embodiment of this technique It is an example of the plan view from the 4th layer to the 6th layer among the 7 layers in the substrate in the probe which formed the slot in the 1st Embodiment of this technique. It is an example of the cross-sectional view of the 7th layer and the substrate in the substrate in the probe which formed the slot in the 1st Embodiment of this technique. It is an example of the plan view from the 1st layer to the 3rd layer among the 9 layers in the substrate in the probe which formed the slot in the 1st Embodiment of this technique.
  • plan view from the 4th layer to the 6th layer among the 9 layers in the substrate in the probe which formed the slot in the 1st Embodiment of this technique It is an example of the plan view from the 7th layer to the 9th layer among the 9 layers in the substrate in the probe which formed the slot in the 1st Embodiment of this technique.
  • the cross-sectional view of the probe housing 320 when viewed from above in the fourth modification and the comparative example of the first embodiment of the present technique. It is an example of the cross-sectional view of the probe housing when viewed from above in the fifth modification of the first embodiment of the present technique. It is an example of the cross-sectional view of the probe housing in which the wall thickness in the direction parallel to the substrate inside the probe is increased by bilateral radiation in the fifth modification of the first embodiment of the present technique. It is an example of the cross-sectional view of the probe housing in which the wall thickness in the direction perpendicular to the substrate inside the probe is increased by bilateral radiation in the fifth modification of the first embodiment of the present technique.
  • the transmitter in the 6th modification of 1st Embodiment of this technique is a plurality of sensor devices.
  • FIG. 5 is a diagram showing another example of a cross-sectional view of a sensor device in which the probe in the seventh embodiment of the present technique has three sensors.
  • Ninth embodiment (example of inserting a guide before inserting the sensor device) 10.
  • a tenth embodiment (an example including a spiral member or a shovel type housing) 11.
  • Eleventh embodiment (example of adjusting transmission power) 12.
  • Twelfth Embodiment (Example of arranging the measurement unit substrate at a position where the extending direction of the probe and the substrate plane are perpendicular to each other)
  • FIG. 1 is an example of an overall view of the moisture measurement system 100 according to the first embodiment of the present technology.
  • the water content measuring system 100 measures the amount of water contained in the medium M, and includes a central processing unit 150 and at least one sensor device such as a sensor device 200 or 201.
  • the medium M for example, soil for growing agricultural products is assumed.
  • the sensor device 200 acquires data necessary for measuring the amount of water as measurement data. The contents of the measurement data will be described later.
  • the sensor device 200 transmits measurement data to the central processing unit 150 via a communication path 110 (such as a wireless communication path).
  • the configuration of the sensor device 201 is the same as that of the sensor device 200.
  • the central processing unit 150 measures the water content using the measurement data.
  • the communication path 110 may be a wired communication path.
  • a plurality of central processing units 150 can be provided in the moisture measurement system 100.
  • the user applies a load to the sensor devices 200 and 201 from above the soil and inserts them into the soil for use.
  • the sensor device 200 or the like is used by exposing at least the antenna portion of the sensor device 200 or the like above the soil surface so as to be able to communicate with the central processing unit 150.
  • the gray part in the figure indicates the antenna. If the depth is such that communication with the central processing unit 150 is possible, the above antenna portion may be buried in soil for use.
  • the sensor devices 200 and 201 include a pair of probes.
  • the length of the probe is 5 to 200 centimeters (cm), and the probe is provided with 1 to 40 antennas, which will be described later. This allows moisture to be measured at multiple depths within the soil depth range of 5 to 200 centimeters (cm).
  • FIG. 2 is a block diagram showing a configuration example of the central processing unit 150 according to the first embodiment of the present technology.
  • the central processing unit 150 includes a central control unit 151, an antenna 152, a central communication unit 153, a signal processing unit 154, a storage unit 155, and an output unit 156.
  • the central control unit 151 controls the entire central processing unit 150.
  • the central communication unit 153 transmits information (for example, an instruction regarding measurement) to the sensor devices 200 and 201 via the antenna 152, and also receives measurement data from the sensor devices 200 and 201.
  • the signal processing unit 154 obtains the water content based on the measurement data.
  • the storage unit 155 stores the measurement result of the water content and the like.
  • the output unit 156 outputs the measurement result of the water content to a display device (not shown) or the like.
  • FIG. 3 is a block diagram showing a configuration example of the sensor device 200 according to the first embodiment of the present technology.
  • the sensor device 200 includes a measurement circuit 210, a transmission probe unit 220, and a reception probe unit 230.
  • a sensor control unit 211, a sensor communication unit 212, an antenna 213, a transmitter 214, a receiver 215, a transmission switch 216, and a reception switch 217 are arranged in the measurement circuit 210.
  • a predetermined number of transmitting antennas such as transmitting antennas 221 to 223 are provided in the transmitting probe unit 220.
  • a predetermined number of receiving antennas such as receiving antennas 231 to 233 are provided in the receiving probe unit 230.
  • the sensor control unit 211 controls each circuit in the measurement circuit 210.
  • the transmission switch 216 selects any of the transmission antennas 221 to 223 according to the control of the sensor control unit 211 and connects to the transmitter 214.
  • the reception switch 217 selects any of the reception antennas 231 to 233 according to the control of the sensor control unit 211 and connects to the receiver 215.
  • the transmission antennas 221 to 223 are connected to the transmission switch 216 via transmission lines 218-1 to 218-3. Further, the receiving antennas 231 to 233 are connected to the receiving switch 217 via the transmission lines 219-1 to 219-3.
  • the transmitter 214 transmits an electric signal having a predetermined frequency as a transmission signal via a selected transmission antenna.
  • a CW (Continuous Wave) wave is used as the incident wave in the transmission signal.
  • the transmitter 214 transmits a transmission signal in a frequency band of, for example, 1 to 9 gigahertz (GHz) by sequentially switching frequencies in steps of 50 megahertz (MHz).
  • the receiver 215 receives the transmitted wave via the selected receiving antenna.
  • the transmitted wave is an electromagnetic wave transmitted through the medium between the probes converted into an electric signal by the receiving antenna.
  • the sensor communication unit 212 receives the information (instruction regarding measurement) sent from the central processing unit 150, and centrally processes the data indicating the reception result of the receiver 215 as measurement data via the antenna 213. It is to be transmitted to the device 150.
  • the configuration of the sensor device 201 is the same as that of the sensor device 200.
  • FIG. 4 is an example of an overall view of the sensor device 200 according to the first embodiment of the present technology.
  • a is a transmission diagram viewed from above of the sensor device 200 with the side inserted into the soil facing downward (in other words, a diagram in which the features of each part of the sensor device 200 viewed from above are overlaid).
  • b is a front view of the sensor device 200.
  • c is a transmission diagram viewed from the side of the sensor device 200 (in other words, a diagram in which the features of each part of the sensor device 200 viewed from the side are overwritten). From this point onward, the three views in the present specification are transparent views (drawings in which the features of each part are overwritten) as in FIG. 4, unless otherwise specified.
  • the sensor device 200 includes a sensor housing 305 provided with a pair of protrusions at the bottom.
  • FIG. 5 is an example of an overall view of the sensor housing 305, as will be described later.
  • the portion provided with the pair of protrusions is conveniently referred to as a probe housing 320, and the other portion is conveniently referred to as a measuring portion housing 310.
  • the housing that houses the transmitting probe unit 220 is called the probe housing 320a
  • the housing that houses the receiving probe unit 230 is called the probe housing 320b.
  • the combination of the transmission probe unit 220 and the probe housing 320a containing the transmission probe unit 220 is referred to as a transmission probe
  • the combination of the reception probe unit 230 and the probe housing 320b containing the transmission probe unit 230 is referred to as a reception probe.
  • the measurement unit board 311 is arranged in the measurement unit housing 310.
  • the measuring unit board 311 is an electronic board (in other words, a wiring board) provided by laminating a plurality of wiring layers.
  • a measurement circuit 210 is formed on the measurement unit substrate 311.
  • the measuring unit 312 of FIG. 4 represents the measuring circuit 210 of FIG.
  • the antenna 213 is included in the measurement circuit 210.
  • the antenna 213 is arranged outside the measurement circuit 210, which represents a modification of the measurement circuit 210 shown in FIG. In FIG. 4, the antenna 213 may be included in the measurement circuit 210.
  • a battery 313, a connector 314, and a connector 315 are further connected to the measurement board 311.
  • the measuring unit 312, the connector 314, and the connector 315 are connected by a strip line provided with a signal line and a shield layer.
  • the three thick white lines indicate the signal lines
  • the thick black lines indicate the shield layer for convenience.
  • shield wiring between signal lines and arranging shield layers above and below the signal lines in the direction orthogonal to the board plane a strip line shielded between each signal line is formed.
  • FIG. 4 it is simplified and displayed.
  • the probe inner substrates 321 and 322, the radio wave absorbing units 341 to 346, and the positioning units 351 and 352 are arranged.
  • the substrate inside the probe 321 is an electronic board (in other words, a wiring board) provided by laminating a plurality of wiring layers.
  • a connector 323, a radiation element 330 to 332, a shield layer 325, and a plurality of signal lines (not shown) are formed on the probe inner substrate 321.
  • a plurality of shield layers are formed in the probe inner substrate 321.
  • the portion including the radiation element 330 and the portion of the shield layer 325 exposed from the radio wave absorbing portion 341 or the like functions as one transmitting antenna 221.
  • the radiating elements 331 and 332 also function as transmitting antennas 222 and 223. In the figure, three transmitting antennas are arranged.
  • each of the plurality of signal lines is a shield layer or a shield formed on the substrate 321 in the probe in both the substrate parallel direction (left and right of the signal line) and the substrate vertical direction (upper and lower of the signal line). It is made up of strip lines shielded by wiring or shield vias.
  • the measurement unit 312 and the connector 314 are connected by independent transmission lines for each transmission antenna, and these transmission lines are shielded from the signal line provided on the measurement unit board 311. It is formed of strip lines using layers.
  • a transmission line (particularly a strip line) independent of each transmitting antenna is connected from the measuring unit 312 to all the transmitting antennas (transmitting antennas 221 to 223 in the examples of FIGS. 3 and 4) provided in the sensor device 200. ) Is connected.
  • the board inside the probe 322 is also an electronic board (in other words, a wiring board) provided by stacking a plurality of wiring layers.
  • a connector 324, elements (reception elements) 333 to 335, a shield layer 326, and a plurality of signal lines (not shown) are formed on the probe inner substrate 322. Also in the probe inner substrate 322, a plurality of shield layers are formed.
  • the portion including the element (reception element) 333 and the portion of the shield layer 326 exposed from the radio wave absorbing portion 344 or the like functions as one receiving antenna 231.
  • the radiating elements 334 and 335 also function as receiving antennas 232 and 233. In the figure, three receiving antennas are arranged.
  • the connector 324 and the elements (reception elements) 333 to 335 provided in the reception antennas 231 to 233 are connected by transmission lines 219-1 to 219-3 independent for each reception antenna.
  • each of the plurality of signal lines is a shield layer or a shield formed on the substrate 322 in the probe in both the substrate parallel direction (left and right of the signal line) and the substrate vertical direction (upper and lower of the signal line). It is made up of strip lines shielded by wiring or shield vias.
  • the measurement unit 312 and the connector 315 are connected by independent transmission lines for each receiving antenna, and these transmission lines are shielded from the signal line provided on the measurement unit board 311. It is formed of strip lines using layers.
  • a transmission line (particularly a strip line) independent of each transmitting antenna is connected from the measuring unit 312 to all the receiving antennas (received antennas 231 to 233 in the example of FIGS. 3 and 4) provided in the sensor device 200. ) Is connected.
  • the portion including the probe housing 320a in FIG. 4 and the substrate inside the probe 321 corresponds to the transmission probe unit 220 in FIG.
  • a reinforcing portion 360 is provided between these probe units corresponding to the receiving probe unit 230 in FIG.
  • the axis parallel to the direction in which the sensor device 200 is inserted into the soil is defined as the Y axis.
  • the probe housings 320a and 320b extend in the Y-axis direction.
  • the substrates 321 and 322 in the probe also extend in the Y-axis direction.
  • the axis parallel to the Y-axis on the first plane including the center line in the Y-axis direction of the in-probe substrate 321 and the center line in the Y-axis direction in the in-probe substrate 322 is defined as the X-axis. .. In the sensor device 200 shown in FIG.
  • the measuring unit substrate 311 extends on a second plane including a line parallel to the X-axis direction and a line parallel to the Y-axis direction.
  • the axis perpendicular to the X-axis and the Y-axis is defined as the Z-axis.
  • the first and second planes are planes orthogonal to the Z axis.
  • the sensor device 200 is a device for measuring the amount of water in the medium based on the characteristics of the electromagnetic wave propagating in the medium between the transmission / reception antennas.
  • each of the transmitting antenna and the receiving antenna is planar, and these are formed on an electronic substrate such as a probe inner substrate 321 and 322.
  • This configuration is hereinafter referred to as "component (1)".
  • component (1) compared to the form in which the antenna is formed of a separate component and then attached to the electronic substrate (probe inner substrate 321, 322), the processing accuracy and mounting accuracy of the antenna are high, and the moisture content can be measured accurately.
  • the electronic board and the antenna can be compactly formed, and the cross section of the housing can be made small. As a result, the creation of unnecessary space in the housing has been reduced, which also enables accurate measurement of moisture. The details of this effect will be described later.
  • the transmitting antenna and the receiving antenna are fixedly arranged in the sensor housing 305 so as to face each other and the distance between the antennas is a predetermined distance.
  • a configuration in which these two antennas are opposed to each other and fixed at a predetermined distance is hereinafter referred to as a “component (2)”.
  • the gain of the antenna is improved and the sensitivity is increased as compared with the form in which the planar antennas are not opposed to each other or the two antennas are not fixedly arranged so as to be at a predetermined distance.
  • the water content can be measured accurately.
  • 219-1 to 219-3 are formed by using an electronic substrate (measurement unit substrate 311 and probe inner substrates 321 and 322). This configuration is hereinafter referred to as "component (3)".
  • component (3) This configuration is hereinafter referred to as "component (3)”.
  • the sensor device 200 includes the measurement unit substrate 311 and the probe inner substrates 321 and 322 as electronic substrates, and the measurement unit substrate 311 is arranged orthogonal to the probe inner substrates 321 and 322. More specifically, (1) the measuring unit substrate 311 is arranged in parallel with the first plane, and (2) the probe inner substrates 321 and 322 are arranged facing each other and with the first plane. (3) As a result, the measuring unit substrate 311 is arranged orthogonally to the probe inner substrates 321 and 322. This configuration is hereinafter referred to as "component (4)".
  • the sensor housing 305 includes the probe housings 320a and 320b, the transmitting antennas are arranged at a plurality of locations along the direction in which the probe housing 320a extends, and the receiving antenna also has the probe housing 320b extending. It is arranged in multiple places along the direction of the antenna. This configuration is hereinafter referred to as "component (5)".
  • the transmission lines include a plurality of transmission lines individually connecting the measurement unit 312 provided on the measurement unit board 311 and all the transmission antennas provided on the sensor device 200, and the measurement unit 312 and the sensor provided on the measurement unit board 311. It includes a plurality of transmission lines individually connected to each of all the receiving antennas provided in the device 200.
  • the measuring unit 312 provided on the measuring unit board 311 drives a plurality of transmitting antennas and a plurality of receiving antennas in a time-division manner. This configuration is hereinafter referred to as "component (6)".
  • a transmission line including a plurality of shielded signal lines, and is between two boards arranged orthogonally via a transmission line which is more flexible than the measurement unit board 311 and 312 (that is, measurement).
  • the transmission lines (between the unit substrate 311 and the probe inner substrate 321 and between the measurement unit substrate 311 and the probe inner substrate 322) are connected.
  • This configuration is hereinafter referred to as "component (7)".
  • This makes it possible to arrange a plurality of planar transmitting antennas and a plurality of planar receiving antennas so as to face each other.
  • a high-gain transmit / receive antenna can be used to accurately measure moisture over the entire soil located between a plurality of transmit / receive antennas.
  • the probe housings 320a and 320b are formed of an electromagnetic wave transmitting material, and the strength of the probe housings 320a and 320b is higher than the strength of the electronic substrate housed therein. This configuration is hereinafter referred to as "component (8)".
  • a transmitting antenna is formed on the probe inner substrate 321 and a receiving antenna is formed on the probe inner substrate 322.
  • the probe in a direction orthogonal to the extending direction (Y-axis direction) of the probe housing 320a and the probe inner substrate 321, (1) the probe from the center of the probe inner substrate 321 in the direction perpendicular to the probe inner substrate 321.
  • the distance to the housing end of the housing 320a is smaller than the distance (2) from the center of the probe inner substrate 321 to the housing end of the probe housing 320a in the direction parallel to the probe inner substrate 321.
  • the sensor device 200 shown in the figure is formed by using a material that absorbs electromagnetic waves, and covers at least a part of a “transmission transmission line connecting between a transmission element (transmission antenna) and a measurement unit”.
  • a receiving transmission line formed by using a credit transmission line covering portion and a material that absorbs electromagnetic waves and covers at least a part of a "reception transmission line connecting between a receiving element (reception antenna) and a measuring section”. It is provided with a covering portion.
  • the transmission probe unit is provided with the above-mentioned transmission line covering portion for transmission, and the receiving probe unit is also provided with the above-mentioned transmission line covering portion for reception.
  • the sensor housing 305 includes a measuring unit housing 310 and a probe housing 320.
  • the portion containing the transmitting antenna is the transmitting probe housing 320a
  • the portion containing the receiving antenna is the receiving probe housing 320b.
  • the transmitting probe housing 320a and the receiving probe housing 320b are fixed to the measuring unit housing 310 and integrated. It should be noted that these can also be in a separated state as described later.
  • the sensor housing 305 may be in a form in which the sensor housing 305 is divided into a plurality of parts in advance and then these parts are fixed and integrated. Further, the sensor housing 305 may be in a form in which the transmission probe housing, the reception probe housing, and the measurement unit housing 310 are integrally formed at the time of forming the transmission probe housing, the reception probe housing, and the measurement unit housing 310.
  • the sensor housing 305 is provided with a reinforcing portion 360 for improving the strength of the housing, but it is also possible to configure the sensor housing 305 without the reinforcing portion 360.
  • the reinforcing portion 360 has a structure in which at least two of the transmitting probe housing 320a, the receiving probe housing 320b, and the measuring unit housing 310 are connected. A structure connected to these three may be used.
  • all of the sensor housing 305 may be formed by using a material that transmits electromagnetic waves.
  • at least the part closest to the transmitting element (transmitting antenna) and the receiving element (receiving antenna) is formed by using a material that transmits electromagnetic waves, and at least a part of the other parts is made of a material different from the above-mentioned material. May be formed using.
  • FIG. 5 is an example of an overall view of the sensor housing 305 according to the first embodiment of the present technology.
  • a is a transmission view seen from above the sensor housing 305.
  • b is a front view of the sensor housing 305.
  • c is a cross-sectional view of the sensor housing 305.
  • the housing that houses the transmitting probe unit 220 is called the probe housing 320a
  • the housing that houses the receiving probe unit 230 is called the probe housing 320b.
  • the reinforcing structure for improving the strength of the housings 320a and 320b is called a reinforcing portion 360.
  • the housing part containing the transmitting antenna and the transmitting transmission line and the housing part containing the receiving antenna and the receiving transmission line are these.
  • the entire part is made of an electromagnetic wave transmitting material.
  • the thickness (magnitude in the Z-axis direction) of the measuring unit housing 310 is the width (magnitude in the X-axis direction) and height (magnitude in the Y-axis direction) of the measuring unit housing 310. ) Is smaller than either.
  • the sensor housing 305 including the reinforcing portion 360 is formed of an electromagnetic wave transmitting material.
  • the electromagnetic wave transmitting material include polymer materials, glass, and inorganic materials such as PTEF (PolyTEtraFluoroethylene).
  • PTEF PolyTEtraFluoroethylene
  • PC PolyCarbonate
  • PES PolyEtherSulfone
  • PEEK PolyEtherEtherKetone
  • PSS PolyStyrene Sulfonic acid
  • PMMA PolyMethylMethAcrylate
  • PET PolyEthylene Terephthalate
  • FIG. 6 is another example of the first embodiment of the present technology, in which the lengths of the transmit probe and the receive probe provided in the sensor devices 200 and 201 are compared with the moisture measurement system 100 shown in FIG.
  • This is an example of an overall view of the moisture measurement system 100 in which the number of antennas arranged in the transmitting probe and the receiving probe is increased.
  • the moisture measurement system 100 shown in FIG. 6 has a larger length of the transmitting probe and the receiving probe as compared with the moisture measuring system 100 shown in FIG. 1, and the number of antennas arranged in the transmitting probe and the receiving probe. From the moisture measurement system 100 described in FIG. 1, by adding a reinforcing portion 361 that improves the strength of the transmitting probe and the receiving probe, as will be described later with reference to FIGS. 7 and 8. Also, the moisture content of the soil can be measured more accurately in a wider area of the soil (especially in the deep part of the soil).
  • FIG. 7 is an example of an overall view of the sensor device 200 provided in the moisture measurement system 100 shown in FIG.
  • the sensor device 200 shown in FIG. 7 has a larger length of the transmitting probe and the receiving probe and a larger number of antennas arranged in the transmitting probe and the receiving probe as compared with the sensor device 200 shown in FIG.
  • it has a structure in which a reinforcing portion 361 for improving the strength of the transmitting probe and the receiving probe is added.
  • elements 330 to 339 are provided, and five transmitting antennas and five receiving antennas are formed.
  • elements 330 to 334 represent a radiating element, and 335 to 339 represent a receiving element.
  • FIG. 8 is an example of an overall view of the sensor housing 305 provided in the sensor device 200 shown in FIG. 7.
  • a reinforcing portion 361 is added to the lower part of the probe housing 320.
  • the probe housing 320 If the probe housing 320 is long and the soil is hard, the probe housing 320 will be deformed when the sensor device 200 is stressed and inserted into the soil, and the transmitting antenna and the receiving antenna will be received. The distance to the antenna may be different from the design distance.
  • the addition of the reinforcing portion 361 reduces the possibility of its deformation. Further, when the soil is hard, when stress is applied to the sensor device 200 and the sensor device 200 is inserted into the soil, there is a possibility that the space between the measuring unit housing 310 and the probe housing 320 breaks. The addition of the reinforcing portion 361 reduces the possibility of its breakage.
  • FIG. 9 is still another example of the first embodiment of the present technology, and is an example of an overall view of the moisture measurement system 100 in which the number of antennas is reduced as compared with the moisture measurement system 100 shown in FIG. Is.
  • the number of antennas of the sensor device 200 and the like can be reduced to one on each of the transmitting side and the receiving side.
  • the means for driving a plurality of antennas becomes unnecessary. In this case, the components (5) and (6) are unnecessary.
  • connection of the transmission line can also be formed by using a metal connector such as an SMA connector. In this case, the component (7) is also unnecessary.
  • FIG. 10 is an example of an overall view of the sensor device 200 provided in the moisture measurement system 100 shown in FIG.
  • FIG. 11 is an example of an overall view of the sensor housing 305 provided in the sensor device 200 shown in FIG.
  • FIG. 12 is still another example of the first embodiment of the present technology, and is an example of an overall view of the moisture measurement system 100 in which the housings provided in the sensor device 200 and 201 are separated into two, respectively. ..
  • the measuring unit housing 310 and the probe housing 320 can be separated.
  • Each connection between the transmission line formed on the measuring unit board 311 and the transmission line formed on the probe inner boards 321 and 322 is connected by a cable (for example, a coaxial cable).
  • the number of antennas in the probe housing 320 is one on the transmitting side and one on the receiving side. In this case, the components (5) to (7) are unnecessary.
  • the measuring unit housing 310 and the probe housing 320 are arranged at separate positions, and the directions in which the measuring unit housing 310 is arranged with respect to the soil surface are the probe housings 320a and 320b for which the soil moisture is measured. If it does not affect the rainfall or watering of the soil during the period, the component (4) is also unnecessary.
  • FIG. 13 is an example of an overall view of the sensor device 200 provided in the moisture measurement system 100 shown in FIG.
  • the number of antennas is one on the transmitting side and one on the receiving side.
  • the measuring unit housing 310 containing the measuring unit substrate 311 forms one independent housing.
  • the probe housing 320a containing the probe inner substrate forming the transmitting antenna 330 and the probe housing 320b containing the probe inner substrate 322 forming the receiving antenna 331 are connected to each other to provide one independent probe housing. It forms a body 320.
  • the probe housing 320 further includes a reinforcing portion 360.
  • FIG. 14 is an example of an overall view of the sensor housing 305 provided in the sensor device 200 shown in FIG.
  • FIG. 15 is still another example of the first embodiment of the present technology, and is a moisture measurement system in which the housings provided in the sensor devices 200 and 201 are separated and a plurality of probe housings are provided for each sensor device. It is an example of the whole view of 100.
  • each of the sensor devices 200 and 201 includes a plurality of transmitting antennas and a plurality of receiving antennas. Then, in each of the sensor devices 200 and 201, one transmitting antenna and one receiving antenna are paired, and a probe housing is provided for each pair of antennas.
  • each sensor device 200 is provided with a measurement unit housing 310 and a plurality of probe housings such as probe housings 320, 320-1, and 320-2. ..
  • the number of antennas in each probe housing is one on the transmitting side and one on the receiving side. In this case, the components (4) and (7) are unnecessary.
  • FIG. 16 is an example of an overall view of the sensor device 200 provided in the moisture measurement system 100 shown in FIG.
  • the number of antennas is one on the transmitting side and one on the receiving side.
  • FIG. 17 is a block diagram showing a configuration example of the sensor device 200 of FIG.
  • the transmitting probe units 220-1 to 220-3 and the receiving probe units 230-1 to 230-3 are arranged in the three separated probe housings.
  • One antenna is placed in each of these three pairs of units.
  • the transmitting antennas 221 to 223 are arranged in the transmitting probe units 220-1 to 220-3
  • the receiving antennas 231 to 233 are arranged in the receiving probe units 230-1 to 230-3.
  • These antennas are connected to the measurement circuit 210 via transmission lines independent of each other.
  • FIG. 18 is still another example of the first embodiment of the present technology, which includes a plurality of transmitting antennas 330 to 332 and a plurality of receiving antennas (333 to 335), and a probe housing containing these.
  • This is another example of the overall view of the sensor device 200 in which the body 320 and the measurement unit housing 310 containing the measurement unit substrate 311 are separated.
  • the number of antennas can be set to 3 on the transmitting side and 3 on the receiving side. In this case, the components (4) and (7) are unnecessary.
  • FIG. 19 shows a front view of the sensor device 200 according to the first embodiment of the present technology (left view of FIG. 19), a transmission antenna 223 provided on the probe inner substrate 321 when the sensor device 200 is viewed from the front, and a transmission antenna 223 thereof.
  • This is an example of a sectional view (right figure of FIG. 19) in the vicinity.
  • the figure is an example of a cross-sectional view of the transmitting antenna 223 and its vicinity when viewed from the Z-axis direction.
  • FIG. 19 shows a front view of the sensor device 200 according to the first embodiment of the present technology (left view of FIG. 19), a transmission antenna 223 provided on the probe inner substrate 321 when the sensor device 200 is viewed from the front, and a transmission antenna 223 thereof.
  • This is an example of a sectional view (right figure of FIG. 19) in the vicinity.
  • the figure is an example of a cross-sectional view of the transmitting antenna 223 and its vicinity when viewed from the Z-axis direction.
  • the colored parts of each layer are, in order from the left side, a radio wave absorber 251, a general solder resist 252, a conductor shield layer 254, a conductor signal line 255, and a conductor shield. It represents a layer 256, a solder resist 253, and a radio wave absorber 251.
  • the uncolored layer between the shield layer 254 and the signal line 255 and the uncolored layer between the shield layer 254 and the signal line 255 represent an insulator.
  • the solder resist and the insulator transmit electromagnetic waves.
  • the number of layers of an electronic board is referred to as the number of layers of a conductor contained in the board. Therefore, the substrate shown on the right side of FIG. 19 is called a three-layer substrate.
  • the radio wave absorber 251 and the shield layer 254, the signal line 255, the shield layer 256, and the radio wave absorber 251 are respectively used for convenience. It may be referred to as a first layer, a second layer, a third layer, a fourth layer, and a fifth layer.
  • the cross-sectional views of the transmitting antennas 221 and 222 are the same as those of the transmitting antenna 223. When the direction from the transmitting side to the receiving side is to the right in the X-axis direction, the cross-sectional view of the receiving antennas 231 to 233 is symmetrical with the transmitting antenna 223.
  • FIG. 20 is an example of a plan view for each layer of the transmitting antenna 223 and its vicinity, the cross section of which is shown in the right figure of FIG.
  • the figure shows a plan view of the transmission antenna 223 shown on the right side of FIG. 19 and its vicinity for each layer when viewed from the X-axis direction of the sensor device 200.
  • a is a plan view of the first layer: the radio wave absorber 251 in the right figure of FIG.
  • b is a plan view of the second layer: the shield layer 254.
  • c is a plan view of the third layer: signal line 255.
  • d is a plan view of the fourth layer: the shield layer 256.
  • e is a plan view of the fifth layer: the radio wave absorber 251.
  • the cross-sectional view when cut along the AA'line corresponds to the cross-sectional view of FIG.
  • the second layer shown in FIG. 20b is the first wiring layer to which the shield layer 254 is wired.
  • the third layer shown in FIG. 20c is a second wiring layer to which the linear signal line 255 is wired.
  • the fourth layer shown in FIG. 20d is a third wiring layer to which the shield layer 256 is wired.
  • Dz be the width of the signal line 255 in the Z-axis direction.
  • the symbol connecting the square and its diagonal line by a line segment described in FIGS. 20b, c, and d is a via (reference numeral 257 in FIG. 21a) connecting the shield layer 254 shown in FIG. 20b and the shield layer 256 shown in FIG. 20d. show.
  • FIGS. 21a reference numeral 257 in FIG. 21a
  • the symbol represents the position of the via 257 connecting the shield layer 254 and the shield layer 256.
  • the symbol represents a state in which the via 257 passes by the side of the signal line 255. Due to this via 257, the shield layer 254 and the shield layer 256 have the same potential.
  • the dotted line on the side closer to "A" shown in FIG. 20c is the outline of the radio wave absorber 251 shown in FIG. 20e projected onto FIG. 20c for convenience. Is.
  • the dotted line on the side close to "A'" shown in FIG. 20c is the outline of the shield layer 256 shown in FIG. 20d projected onto FIG. 20c for convenience.
  • the dotted lines shown in FIGS. 20d and e are the outlines of the signal lines 255 shown in FIG. 20c projected onto FIGS. 20d and e for convenience.
  • FIG. 21 is an example of a cross-sectional view of the transmitting antenna 223 and its vicinity, which is shown in the cross-sectional view on the right side of FIG. 19, when viewed from above.
  • 21 is a cross-sectional view taken along the line BB'of FIG. 20, and b in FIG. 21 is a cross-sectional view taken along the line CC'of FIG. 20. be.
  • the cross section of the receiving probe is the same as that of the transmitting probe.
  • the transmission probe is covered with a radio wave absorber 251.
  • the radio wave absorbing material 251 forms a radio wave absorbing unit 341 and the like.
  • solder resists 252 and 253 are formed between both sides of the probe inner substrate 321 and the radio wave absorber 251.
  • the probe inner substrate 321 is formed with a wiring layer in which the shield layer 254 is wired, a wiring layer in which the signal line 255 is wired, and a wiring layer in which the shield layer 256 is wired.
  • the signal line 255 functions as a radiation element in the transmitting antenna, as described below. Let Dx be the thickness of the wiring layer to which the signal line 255 serving as the radiation element is wired.
  • a ground potential is supplied to the shield layers 254 and 256, and the signal line 255 transmits and radiates an AC signal (transmission signal) which is a transmission wave transmitted from the transmission antenna.
  • the signal line 255 that transmits and radiates a transmission wave may be referred to as a signal line layer.
  • a portion particularly related to the radiation of the transmitted wave may be referred to as a radiation element.
  • the signal line 255 that receives and transmits the received wave may be called a signal line or a signal line layer, and the electromagnetic wave received by the receiving antenna among the conductors 255.
  • the part related to the reception of (received wave or received signal) may be called a receiving element.
  • the back surface side (the side in which the shield layer 254 is arranged) of the substrate with respect to the signal line layer.
  • the shield layer 254 and the shield layer 256 are arranged on both the surface side and the surface side (the side on which the shield layer 256 is arranged) via an insulator between the shield layer 254 and the signal line layer.
  • This transmission line (transmission line for transmission) is independently wired for each antenna in the probe inner substrate 321 from all the transmission antennas provided in the probe inner substrate to the connector 323.
  • a similar transmission line (reception transmission line) is independently wired for each antenna on the probe inner substrate 322 from all the receiving antennas provided on the probe inner substrate to the connector 324.
  • the first layer the back side radio wave absorber 251 and the second layer: the shield layer 254 and the third layer related to the transmission and radiation (or reception) of the electromagnetic wave and the shield and the absorption of the electromagnetic wave.
  • the signal line layer (signal line 255), the fourth layer: the shield layer 256, and the fifth layer: the surface side electromagnetic wave absorber 251 will be further described.
  • the direction toward the transmitter (transmitter provided in the measuring unit) of the transmitted wave is referred to as the transmitter direction, and the direction away from the transmitter is conveniently referred to as the tip direction or simply the destination direction.
  • the receiving destination direction the direction in which the signal (received wave) received by the receiving antenna approaches the receiving destination (receiver provided in the measuring unit)
  • the direction away from the receiving destination is the tip direction or simply the destination direction.
  • the conductor is exposed in space
  • the conductor is exposed in space
  • a part of the shield layer 256 is exposed from the surface side electromagnetic wave absorber 251 even before the tip of the surface side electromagnetic wave absorber 251.
  • a part of the shield layer 256 is exposed in the space.
  • a part of the signal line layer (signal line 255) is exposed from the shield layer 256 even before the tip of the shield layer 256. In other words, a part of the signal line layer is exposed in the space.
  • the portion exposed from the shield layer 256 functions as a radiating element that transmits a transmitted wave.
  • the part of the signal line layer exposed from the shield layer 256 is an electromagnetic wave (transmitted wave propagating in the medium from the transmitting antenna, in other words, received wave).
  • the radiating element 332 corresponds to this.
  • the receiving element 335 corresponds to this.
  • the transmitted wave is perpendicular to this surface. It is most radiated in the direction.
  • the direction in which this transmitted wave is radiated most is called the "direction of main radiation” or simply the “direction of radiating electromagnetic waves”.
  • a portion of the shield layer that is exposed from the electromagnetic wave absorber 251 (in other words, exposed to the space) and is arranged in the direction of radiating the electromagnetic wave from the radiating element is “shielded”. It is referred to as “exposed part” or simply “shield part”.
  • These shield exposed parts and radiating elements function as a transmitting antenna 223.
  • the length of the radiating element in the Y-axis direction be Dy.
  • the length equal to or less than the length Dy of the radiation element, especially from the line end of the shield exposed part in the transmission source direction (negative direction of the Y axis in FIGS. 19 and 20).
  • the portion arranged in the region functions particularly effectively as a part of the transmitting antenna 223. Therefore, in the present specification, of the (1) radiation element (signal line layer exposed from the shield layer and exposed to the space) and (2) the shield exposed portion exposed from the electromagnetic wave absorber and exposed to the space.
  • a structure consisting of a portion arranged in a region having the same length as or within the radiation element in the transmission source direction (negative direction of the Y axis in FIGS. 19 and 20) from the tip of the shield exposed portion.
  • the shield is exposed.
  • a portion consisting of a structure arranged in a region having the same length as or within the receiving element in the receiving destination direction (negative direction of the Y axis in FIGS. 18 and 19) from the tip of the portion and a portion consisting of the receiving antenna. May be called.
  • the planar transmitting antenna 223 includes a shield portion and a radiating element.
  • the transmitting antenna 223 is formed by using an electronic substrate (such as a probe inner substrate 321) having a plurality of wiring layers.
  • the second direction width direction of the electronic substrate, in the figure
  • the size Dx in the first direction thickness direction of the electronic substrate, X-axis direction in the figure.
  • the size Dz in the Z-axis direction is large.
  • the size Dy in the third direction (the length direction in which the electronic substrate extends, the Y-axis direction in the figure) orthogonal to both the first direction and the second direction is larger than the Dx.
  • the transmitting antenna when both Dz and Dy of the radiating element provided in the transmitting antenna are larger than Dx, the transmitting antenna is referred to as a “planar antenna” and a “planar transmitting antenna”. Is defined as. A part of the radiating element that extends on a plane determined by the second and third directions is defined as a "plane of the radiating element". Regarding the transmitting antenna, preferably, Dy may be larger than both Dx and Dz. The same applies to the receiving antenna. Explaining the structure of the receiving antenna with reference to FIGS. 19 to 21, the receiving element provided in the receiving antenna has a size Dx in the first direction (thickness direction of the electronic substrate, X-axis direction in the figure) rather than the size Dx.
  • the size Dz in the second direction (width direction of the electronic substrate, Z-axis direction in the figure) orthogonal to the first direction is large.
  • the size Dy in the third direction (the length direction in which the electronic substrate extends, the Y-axis direction in the figure) orthogonal to both the first direction and the second direction is larger than the Dx.
  • the receiving antenna is referred to as a "planar receiving antenna” and a "planar receiving antenna”. Is defined as.
  • a part of the receiving element that extends on a plane determined by the second direction and the third direction is defined as a "plane of the receiving element".
  • Dy may be larger than both Dx and Dz.
  • the periphery of the transmission line including the signal line 255 to which the signal is given and the shield layer 256 to which the ground potential is given is a radio wave. Covered, surrounded or wrapped with absorbent material 251.
  • the radio wave absorbing material 251 extends along the extending direction (Y-axis direction) of the transmission line, and an antenna (transmitting antenna or receiving antenna) extends beyond the outer edge of the transmission line covered with the radio wave absorbing material 251. Be connected.
  • the antenna is an electronic substrate (such as a substrate in a probe 321) having at least three laminated wiring layers (first, second, and third wiring layers in order from the back surface side to the front surface). Is formed in.
  • the antenna comprises a signal line 255 to which a signal is given and shield layers 254 and 256 to which a ground potential is given.
  • the signal line 255 to which the signal is given in the antenna is formed in the second wiring layer.
  • the shield layer 254 is formed on the first wiring layer, and the shield layer 256 is formed on the third wiring layer.
  • the shield layer 254 of the first wiring layer is arranged at the position where the projection of the signal line 255 is arranged.
  • electromagnetic waves are radiated from the planar transmitting antenna 223 in the surface direction (to the right of the paper, in the positive direction of the X-axis).
  • An antenna in which electromagnetic waves are radiated from one side of the plane of a planar radiating element in this way is called a “one-sided radiating antenna", and in the present specification, this is referred to as a "first structure" of the antenna. ..
  • a receiving antenna an antenna in which electromagnetic waves are received from one side of the plane of a planar receiving element is called a "one-sided receiving antenna", and such a receiving antenna corresponds to the first structure.
  • FIG. 22 is a cross-sectional view showing another example of the first structure when the sensor device 200 according to the first embodiment of the present technology is viewed from the front as in FIG. 4b.
  • the figure is an example of a cross-sectional view of the transmitting antenna 223 and its vicinity when viewed from the Z-axis direction.
  • FIG. 23 is a plan view of each layer for another example of the first structure, the cross section of which is shown in FIG. 22.
  • FIG. 24 is a cross-sectional view of another example of the first structure, the cross section of which is shown in FIG. 22, when viewed from above.
  • the first wiring layer (shield layer 254) to which the ground potential is applied is further ahead of the radiation element (signal line 255).
  • the extending point is the same as that of the first structure, but (2) radiation is performed by using a second wiring layer that is a part of the second wiring layer and is different from the radiation element and the signal line.
  • the point where the conductor 257 to which the ground potential is applied is formed in the region ahead of the element, and (3) the radiation element so that the third wiring layer (shield layer 256) does not overlap with the radiation element. It differs from the first structure in that it extends beyond the radiation element through the side of this projection, avoiding the projection onto the third wiring layer (dotted line in FIG.
  • This shape has an effect that when a transmission antenna different from the transmission antenna 223 shown in FIGS. 22 to 24 is arranged, at least the shield layer 256 that gives a ground potential to the transmission antenna can be easily wired. Bring. The same applies to the receiving antenna.
  • the first wiring layer (shield layer 254) to which the ground potential is applied extends further beyond the receiving element (signal line 255), which is the same as the first structure.
  • a conductor 257 that is a part of the second wiring layer and has a ground potential applied to a region ahead of the receiving element by using a second wiring layer different from the receiving element and the signal line. And (3) avoid projection of the receiving element onto the third wiring layer (dotted line in FIG.
  • the third wiring layer shield layer 256
  • the third wiring layer shield layer 256
  • This shape has an effect that when a receiving antenna different from the receiving antenna 233 shown in FIGS. 22 to 24 is arranged, at least the shield layer 256 that gives a ground potential to the receiving antenna can be easily wired. Bring.
  • FIG. 25 is a cross section of a second structure relating to the transmitting antenna 223 provided on the probe inner substrate 321 and its vicinity when the sensor device 200 according to the first embodiment of the present technology is viewed from the front as in FIG. 4b. This is an example of the figure.
  • FIG. 24 is an example of a plan view for each layer of the second structure whose cross section is shown in FIG. 25.
  • FIG. 27 is an example of a cross-sectional view of the second structure whose cross section is shown in FIG. 25 when viewed from above.
  • the shape of the signal line 255 to which the signal is given, which is formed in the second wiring layer, is changed to the back surface side (left direction of the paper surface, negative direction of the X-axis).
  • the area where the conductor 254 is not arranged is similar to the third wiring layer arranged on the surface side (right direction of the paper surface, positive direction of the X-axis). At least a portion of the projection of the signal line 255 is extended. Due to this shape, in the transmitting antenna 223 shown in FIG.
  • Electromagnetic waves are emitted in both directions.
  • An antenna in which electromagnetic waves are radiated from both sides of a plane of a planar radiating element is referred to as a "bilateral radiating antenna", and in the present specification, this is referred to as a "second structure" of the antenna.
  • the transmitting antenna having this structure has the effect of being able to radiate electromagnetic waves (transmitted waves) more efficiently than the transmitting antenna having the first structure.
  • an antenna in which electromagnetic waves are received from both sides of the plane of the planar receiving element is called an "antenna for receiving on both sides", and such a receiving antenna corresponds to the second structure.
  • the receiving antenna having this structure has the effect of being able to receive electromagnetic waves (transmitted waves propagating in the medium from the transmitting antenna, in other words, received waves) more efficiently than the receiving antenna of the first structure. Bring.
  • FIG. 28 is a cross-sectional view showing another example of the second structure when the sensor device 200 according to the first embodiment of the present technology is viewed from the front as in FIG. 4b.
  • the figure is an example of a cross-sectional view of the transmitting antenna 223 and its vicinity when viewed from the Z-axis direction.
  • FIG. 29 is a plan view of each layer for another example of the second structure, the cross section of which is shown in FIG. 28.
  • FIG. 230 is a cross-sectional view of another example of the second structure, the cross section of which is shown in FIG. 28, when viewed from above.
  • the first wiring layer (shield layer 254) is connected to the first wiring layer of the radiation element so as not to overlap with the radiation element. A point that extends beyond the radiating element through the side of this projection, avoiding the projection (dotted line in FIG. 29b), and (2) part of the second wiring layer.
  • a conductor 257 to which a ground potential is applied is formed in the region ahead of the radiating element, and (3) the third wiring.
  • FIG. 31 is a cross section of a third structure relating to the transmitting antenna 223 provided on the probe inner substrate 321 and its vicinity when the sensor device 200 according to the first embodiment of the present technology is viewed from the front as in FIG. 4b. This is an example of the figure.
  • FIG. 32 is an example of a plan view for each layer of the third structure whose cross section is shown in FIG. 31.
  • FIG. 33 is an example of a cross-sectional view of the third structure whose cross section is shown in FIG. 31 when viewed from above.
  • the third wiring layer which is the wiring layer on the most surface side (the rightmost side of the paper surface in FIG. 30 and the most positive direction of the X-axis).
  • the shield layer 256 is formed by using a part of the third wiring layer.
  • the radiation element (conductor 258) is placed in the region ahead of the shield layer 256. It is formed. Then, by providing a via connecting between the radiation element formed by using the third wiring layer and the signal line 255 formed by using the second wiring layer, the radiation element and the signal line 255 are electrically connected. Is connected.
  • a colored portion (hatched portion) between the radiating element and the signal line 255 represents this via.
  • the symbol connecting the square and its diagonal line by a line segment arranged in the radiation element of FIG. 32d and the same symbol as above arranged in the signal line 255 of FIG. 32c indicate the position of this via.
  • the first wiring layer shield layer 254
  • the first wiring layer is the wiring layer on the backmost side (the rightmost side of the paper in FIG. 31, the most negative direction of the X-axis) and is given a ground potential, is larger than the radiation element. It is the same as the first structure in that it extends further.
  • a radiation element is formed by using the outermost wiring layer (surface wiring layer) on one side of the probe inner substrate 321 forming the transmitting antenna, and this is exposed to the space on one side. It is a radiation antenna.
  • the transmitting antenna having this structure has the effect of being able to radiate electromagnetic waves (transmitted waves) more efficiently than the transmitting antenna having the first structure.
  • a receiving antenna a receiving element is formed by using the outermost wiring layer (surface wiring layer) on one side of the probe inner substrate 322 forming the receiving antenna, and this is exposed in space, and one-sided reception is performed.
  • the antenna corresponds to the third structure.
  • the receiving antenna having this structure has the effect of being able to receive electromagnetic waves (transmitted waves propagating in the medium from the transmitting antenna, in other words, received waves) more efficiently than the receiving antenna of the first structure. Bring.
  • FIG. 34 is a cross-sectional view showing another example of the third structure when the sensor device 200 according to the first embodiment of the present technology is viewed from the front as in FIG. 4b.
  • the figure is an example of a cross-sectional view of the transmitting antenna 223 and its vicinity when viewed from the Z-axis direction.
  • FIG. 35 is an example of a plan view for each layer of another example of the third structure whose cross section is shown in FIG. 34.
  • FIG. 36 is an example of a cross-sectional view of another example of the third structure, the cross section of which is shown in FIG. 34, when viewed from above.
  • the first wiring layer (shield layer 254) to which the ground potential is applied extends further beyond the radiation element.
  • the points are the same as those of the third structure, but (2) a second wiring layer that is a part of the second wiring layer and is different from the signal line is used in the region ahead of the signal line.
  • the shield layer 256 is lateral to the radiation element. It differs from the third structure in that it extends through and beyond the radiating element.
  • This shape has an effect that when a different transmitting antenna is arranged ahead of the transmitting antenna 223 shown in FIGS. 34 to 36, at least the conductor 256 that gives a ground potential to the transmitting antenna can be easily wired. Bring. The same applies to the receiving antenna.
  • the first wiring layer (shield layer 254) to which the ground potential is applied extends further beyond the radiation element, which is the same as the third structure, while (2) the second.
  • a second wiring layer which is a part of the wiring layer of the above and is different from the signal line, is used to form a conductor 257 to which a ground potential is applied in a region ahead of the signal line.
  • the shield layer 256 extends to the front of the radiation element through the side of the receiving element. It differs from the third structure in that it exists. This shape has an effect that when a receiving antenna different from the receiving antenna 223 shown in FIGS. 34 to 36 is arranged, at least the shield layer 256 that gives a ground potential to the receiving antenna can be easily wired. Bring.
  • FIG. 37 is a cross section of a fourth structure relating to the transmitting antenna 223 provided on the probe inner substrate 321 and its vicinity when the sensor device 200 according to the first embodiment of the present technology is viewed from the front as in FIG. 4b. This is an example of the figure.
  • FIG. 38 is an example of a plan view for each layer of the fourth structure whose cross section is shown in FIG. 37.
  • FIG. 39 is an example of a cross-sectional view of the fourth structure whose cross section is shown in FIG. 37 when viewed from above.
  • the shield layer 256 is formed by using a part of the third wiring layer.
  • a third wiring layer that is a part of the third wiring layer and is different from the shield layer 256 is used to radiate to the region ahead of the shield layer 256. The element is formed. Then, by providing a via connecting between the radiation element formed by using the third wiring layer and the signal line 255 formed by using the second wiring layer, the radiation element and the signal line 255 are electrically connected.
  • this first wiring layer which is the wiring layer on the backmost side (the leftmost side of the paper surface in FIG. 37, the most negative direction of the X-axis), this first wiring layer.
  • the shield layer 254 is formed by using a part of the above.
  • a region prior to the shield layer 254 is used by using the first wiring layer that is a part of the first wiring layer and is different from the shield layer 254.
  • a radiating element is formed on the surface. Then, by providing a via connecting between the radiation element formed by using the first wiring layer and the signal line 255 formed by using the second wiring layer, the radiation element and the signal line 255 are electrically connected.
  • a radiation element is formed using the outermost wiring layer (surface wiring layer) on both sides of the probe inner substrate 321 forming the transmitting antenna, which is exposed to space on both sides. It is a radiation antenna.
  • the transmitting antenna having this structure has the effect of being able to radiate electromagnetic waves (transmitted waves) more efficiently than any transmitting antenna having the first to third structures.
  • a receiving antenna a receiving element is formed by using the outermost wiring layer (surface wiring layer) on both sides of the probe inner substrate 322 forming the receiving antenna, and this is exposed in space and is received on both sides.
  • the antenna corresponds to the fourth structure.
  • the receiving antenna having this structure has the effect of being able to receive electromagnetic waves (transmitted waves propagating in the medium from the transmitting antenna, in other words, received waves) more efficiently than the receiving antenna of the first structure. Bring.
  • FIG. 40 is a cross-sectional view showing another example of the fourth structure when the sensor device 200 according to the first embodiment of the present technology is viewed from the front as in FIG. 4b.
  • the figure is an example of a cross-sectional view of the transmitting antenna 223 and its vicinity when viewed from the Z-axis direction.
  • FIG. 41 is an example of a plan view for each layer of another example of the fourth structure whose cross section is shown in FIG. 40.
  • FIG. 42 is an example of a cross-sectional view of another example of the fourth structure, the cross section of which is shown in FIG. 40, when viewed from above.
  • the shield layer 254 is lateral to the radiation element.
  • the point where the conductor 257 to which the ground potential is given is formed in the region ahead of the above, and (3) the shield layer 256 formed by using the third wiring layer and the shield layer 256 among the radiation elements.
  • the shield layers 254 and 256 that give a ground potential to the transmission antenna can be easily wired. Brings the effect. The same applies to the receiving antenna.
  • the shield layer 254 extends to the front of the receiving element through the side of the receiving element.
  • the conductor 257 to which the ground potential is applied is applied to the region ahead of the signal line.
  • the shield layer 256 passes by the side of the receiving element and is ahead of the radiating element.
  • FIG. 43 is a diagram showing an example of the shape of the transmitting antenna 223 applied to the first structure in the first embodiment of the present technique.
  • the tip of the electromagnetic wave absorber 251 and the tip of the shield layer are at the same position, and the signal line 255 (shown by a solid line) that gives a transmission wave (transmission signal) further from these tips. Radiant element) is exposed.
  • the transmission antenna 223 may be configured so that the shield layer 256 (shield portion) is not exposed from the tip of the electromagnetic wave absorber 251.
  • the signal line 255 (in other words, the radiation element shown by the solid line) exposed from the tip of the electromagnetic wave absorber 251 is shown by a dotted line below the paper surface of the electromagnetic wave absorber 251. It can also be the same width as the strip line (signal line 255).
  • the vertical direction of the paper surface is the main radiation direction (X-axis direction) of the radio wave.
  • the shape of the receiving antenna 233 may be the shape shown in FIG. 43a. In this case, the radiating element in the transmitting antenna 223 becomes the receiving element in the receiving antenna 233. By using this antenna facing the transmitting antenna and the receiving antenna, the gain of the antenna is improved.
  • the width of the radiating element shown by the solid line can be made wider than the width of the strip line (signal line 255) shown by the dotted line.
  • a radial element having a meander structure can also be formed.
  • a spiral radiating element can also be formed.
  • the shape of b to e in the figure can improve the gain in the main radiation direction as compared with a in the figure. Due to the shape of f in the figure, impedance matching can be achieved more than b in the figure, and radio waves can be radiated more efficiently.
  • the shape of the receiving antenna 233 may be the shape shown in FIGS. 43a to 43f. In this case, the radiating element in the transmitting antenna 223 becomes the receiving element in the receiving antenna 233.
  • FIG. 44 is a diagram showing another example of the shape of the transmitting antenna 223 applied to the first structure in the first embodiment of the present technique.
  • a to f in FIG. 44 correspond to those in which the shield layer 256 (shield portion) is exposed from the tip of the electromagnetic wave absorber 251 in a to f in FIG. 43.
  • a high frequency current also flows in the shield layer in the main radiation direction and becomes a part of the antenna, so that the gain is improved as compared with a in FIG. 43.
  • the shapes b to e in FIG. 44 can improve the gain in the main radiation direction as compared with a in the figure. Due to the shape of f in the figure, impedance matching can be achieved more than b in the figure, and radio waves can be radiated more efficiently.
  • the shape of the receiving antenna 233 may be the shape shown in FIGS. 44a to 44f. In this case, the radiating element in the transmitting antenna 223 becomes the receiving element in the receiving antenna 233.
  • each of the shapes of FIGS. 43 and 44 can be applied to the second structure.
  • FIG. 45 is a diagram showing an example of the shape of the transmitting antenna 223 applied to the third structure in the first embodiment of the present technique.
  • the tip of the electromagnetic wave absorber 251 and the tip of the shield layer are at the same position, and the signal line 255 (radiation element) that gives a transmission wave (transmission signal) further from these tips is. It is exposed.
  • the transmission antenna 223 may be configured so that the shield layer 256 (shield portion) is not exposed from the tip of the electromagnetic wave absorber 251.
  • the width of the radiating element can be made wider than the width of the strip line shown by the dotted line.
  • a radial element having a meander structure can also be formed.
  • a spiral radiating element can also be formed.
  • the shapes b to d in FIG. 45 can improve the gain in the main radiation direction as compared with a in the figure. Due to the shape of e in the figure, impedance matching can be achieved more than a in the figure, and radio waves can be radiated more efficiently.
  • the shape of the receiving antenna 233 may be the shape shown in FIGS. 45a to 45e. In this case, the radiating element in the transmitting antenna 223 becomes the receiving element in the receiving antenna 233.
  • FIG. 46 is a diagram showing another example of the shape of the transmitting antenna 223 applied to the third structure in the first embodiment of the present technique.
  • a to e in FIG. 46 correspond to those in which the shield layer 256 (shield portion) is exposed from the tip of the electromagnetic wave absorber 251 in a to e in FIG. 45.
  • a high frequency current also flows in the shield layer in the main radiation direction and becomes a part of the antenna, so that the gain is improved as compared with a in FIG. 45.
  • the shapes b to d in FIG. 46 can improve the gain in the main radiation direction as compared with a in the figure. Due to the shape of e in the figure, impedance matching can be achieved more than a in the figure, and radio waves can be radiated more efficiently.
  • the shape of the receiving antenna 233 may be the shape shown in FIGS. 46a to 46e. In this case, the radiating element in the transmitting antenna 223 becomes the receiving element in the receiving antenna 233.
  • each of the shapes of FIGS. 45 and 46 can be applied to the fourth structure.
  • FIG. 47 is a cross-sectional view of the transmitting antenna 233 applied to the third structure in the first embodiment of the present technology as seen from the front as in FIG. 4b.
  • a in FIG. 47 corresponds to a cross-sectional view of a in FIG. 46 when viewed from the front (Z-axis direction).
  • the radiating element (conductor 258) is formed by using the surface layer of the substrate 321 in the probe.
  • the radiation element 258 may be formed by using the inner layer of the probe inner substrate 321 without using the surface layer.
  • both conductors 258 and 259 can also be formed using an inner layer, as illustrated in c in the figure.
  • FIG. 48 shows a transmission antenna 223 provided on the probe inner substrate 321 and a transmission antenna 223 thereof when the sensor device 200 according to the first embodiment of the present technology is viewed from the front (viewed from the Z-axis direction) as in FIG. 4b. It is an example of the cross-sectional view of the fifth structure about the neighborhood.
  • FIG. 49 is an example of a plan view for each layer of the fifth structure whose cross section is shown in FIG. 48.
  • FIG. 50 is an example of a cross-sectional view of the fifth structure whose cross section is shown in FIG. 48 when viewed from above.
  • the transmitting antenna 223 having the fifth structure shown in FIGS. 48 to 50 is obtained by changing the transmitting antenna 232 having the first structure shown in FIGS. 19 to 21 to a flat and slot-shaped antenna.
  • the “planar and slot-shaped antenna” is a shield layer exposed from the electromagnetic wave absorber 251 and exposed to the space, and is a shield layer provided with a slot (in the example of FIGS. 48 to 50, the shield layer is exposed.
  • the shield layer 256 serves as a radiating element.
  • the "planar and slot-shaped antenna” has a slot sandwiching the radiating element 256, a dielectric (or an insulator), and the dielectric (or an insulator).
  • a receiving antenna it is a shield layer exposed from the electromagnetic wave absorber 251 and exposed to the space.
  • the shield layer provided with the slot serves as the receiving element 256.
  • the “planar and slot-shaped antenna” is a dielectric (or insulation) with this receiving element.
  • the uncolored layer arranged between the signal line 255 and the shield layer 256 (radiating element 256) corresponds to the dielectric (or insulator).
  • the planar and slot-shaped antenna is formed on an electronic board (such as a probe inner board 321) having a plurality of wiring layers. Then, the size of the radiation element (shield layer 256 having a slot) in the first direction (thickness direction of the electronic substrate, the X-axis direction in FIG. 50) (in other words, the size of the slot provided in the radiation element in the above direction). ) Slot size Dz in the second direction (width direction of the electronic substrate, Z-axis direction in FIG. 49) orthogonal to the first direction and the third direction (electrons) orthogonal to the first and second directions than Dx.
  • an electronic board such as a probe inner board 3211 having a plurality of wiring layers.
  • both the size Dy of the slot in the length direction in which the substrate extends and the y-axis direction in FIG. 50 are large.
  • this transmitting antenna is used for the radiation element (shield layer 256 in the example of FIGS. 48 to 50) provided in the transmitting antenna having a slot. It is defined as “planar and slotted antenna” and “planar and slotted transmitting antenna”. A part of the radiating element that extends on a plane determined by the second and third directions is defined as a "plane of the radiating element”. Further, the quadrangular region determined by the slot width Dz and the slot length Dy shown in FIG. 49d is defined as the region of the transmitting antenna for convenience.
  • the receiving antenna when both Dz and Dy are larger than Dx, this receiving antenna is referred to. It is defined as “planar and slot antenna” and “planar and slot receiving antenna”. A part of the receiving element that extends on a plane determined by the second direction and the third direction is defined as a "plane of the receiving element”. Further, the rectangular area defined by the slot width Dz and the slot length Dy shown in FIG. 49d is defined as the receiving antenna area for convenience. With respect to the transmitting antenna and the receiving antenna, Dy may be larger than both Dx and Dz.
  • the first wiring layer (shield layer) on the backmost side (negative direction of the X-axis) is formed in the probe inner substrate on which the "planar and slot-shaped antenna" is formed.
  • No slot is formed in 254), and a slot is formed in the third wiring layer on the outermost surface side (positive direction of the X-axis). Due to such a shape, the flat and slot-shaped antenna of the fifth structure becomes a one-sided radiation antenna.
  • FIG. 51 is a cross-sectional view showing another example of the fifth structure when the sensor device 200 according to the first embodiment of the present technology is viewed from the front (viewed from the Z-axis direction) as in FIG. 4b. Is.
  • FIG. 52 is an example of a plan view for each layer of another example of the fifth structure whose cross section is shown in FIG. 51.
  • FIG. 53 is an example of a cross-sectional view of another example of the fifth structure, the cross section of which is shown in FIG. 51, when viewed from above.
  • FIG. 54 is a cross section showing still another example of the fifth structure when the sensor device 200 according to the first embodiment of the present technology is viewed from the front (viewed from the Z-axis direction) as in FIG. 4b. It is a figure.
  • FIG. 55 is an example of a plan view of each layer for yet another example of the fifth structure, the cross section of which is shown in FIG. 54.
  • FIG. 56 is an example of a cross-sectional view of the fifth structure, the cross-sectional view of which is shown in FIG. 54, when viewed from above.
  • the signal line 255 provided in the “planar and slotted antenna” is 50 in a region further ahead of the slot provided in this antenna. It can also be terminated by connecting to ground via a resistor 260 such as ohm ( ⁇ ). Further, as illustrated in FIGS. 54 to 56, as still another example of the fifth structure, the signal line 255 provided in the "planar and slot-shaped antenna” is further further beyond the slot provided in this antenna. Can also be terminated by connecting to another antenna 261.
  • FIG. 57 shows a transmission antenna 223 provided on the probe inner substrate 321 and a transmission antenna 223 thereof when the sensor device 200 according to the first embodiment of the present technology is viewed from the front (viewed from the Z-axis direction) as in FIG. 4b.
  • FIG. 58 is an example of a plan view for each layer of the sixth structure whose cross section is shown in FIG. 57.
  • FIG. 59 is an example of a cross-sectional view of the sixth structure whose cross section is shown in FIG. 57 when viewed from above.
  • the transmitting antenna 223 of the sixth structure shown in FIGS. 57 to 59 is obtained by changing the planar and slot-shaped antenna of the fifth structure shown in FIGS. 48 to 50 to a bilateral radiating antenna.
  • the "planar and slot-shaped antenna" of the sixth structure is a shield layer exposed from the electromagnetic wave absorber 251 and exposed to the space, and is a shield layer having a slot (shield layers 256 and 254). ) Is the radiation element. Due to such a shape, the planar and slot-shaped antenna of the sixth structure becomes a bilateral radiation antenna. The same applies to the receiving antenna.
  • the "planar and slot-shaped antenna” of the sixth structure shown in FIGS. 57 to 59 is a shield layer exposed from the electromagnetic wave absorber 251 and exposed to the space, and is provided with a slot.
  • the shield layer (shield layers 256 and 254) serves as a receiving element.
  • FIG. 60 is a cross-sectional view showing another example of the sixth structure when the sensor device 200 according to the first embodiment of the present technology is viewed from the front (viewed from the Z-axis direction) as in FIG. 4b. Is.
  • FIG. 61 is an example of a plan view for each layer of another example of the sixth structure, the cross section of which is shown in FIG. 60.
  • FIG. 62 is an example of a cross-sectional view of another example of the sixth structure, the cross section of which is shown in FIG. 60, when viewed from above.
  • FIG. 63 is a cross section showing still another example of the sixth structure when the sensor device 200 according to the first embodiment of the present technology is viewed from the front (viewed from the Z-axis direction) as in FIG. 4b. It is a figure.
  • FIG. 64 is an example of a plan view for each layer of yet another example of the sixth structure, the cross section of which is shown in FIG. 63.
  • FIG. 65 is an example of a cross-sectional view of the sixth structure, the cross-sectional view of which is shown in FIG. 63, when viewed from above.
  • the signal line 255 provided in the “planar and slotted antenna” is 50 in a region further ahead of the slot provided in this antenna. It can also be terminated by connecting to ground via a resistor 260 such as ohm ( ⁇ ). Further, as illustrated in FIGS. 63 to 65, as still another example of the sixth structure, the signal line 255 provided in the "planar and slot-shaped antenna” is further further beyond the slot provided in this antenna. Can also be terminated by connecting to another antenna 261.
  • FIG. 66 shows a flat surface and a slot provided on the probe inner substrate 321 when the sensor device 200 according to the first embodiment of the present technology is viewed from the front (viewed from the Z-axis direction) as in FIG. 4b.
  • FIG. 67 is an example of a plan view for each layer of the seventh structure whose cross section is shown in FIG. 66.
  • FIG. 68 is an example of a cross-sectional view of the seventh structure whose cross section is shown in FIG. 66 when viewed from above.
  • the planar and slot-shaped transmitting antenna 223 having the seventh structure shown in FIGS. 66 to 68 differs from the transmitting antenna 223 having the fifth structure in the following points. That is, in the planar and slot-shaped transmitting antenna 223 having the seventh structure, the region beyond the point where the signal line 255 extending from the source direction crosses a part of the slot (in other words, the source direction). The area beyond the point where the signal line 255 extending from the slot is superimposed on a part of the slot, and within the area near the slot (more preferably, the width Dz of the slot and the length Dy of the slot).
  • the signal line 255 is provided with a slotted radiating element (shield layer 256) via the vias shown in the shaded area in FIG. ) Is connected and terminated.
  • the flat and slot-shaped antenna having the seventh structure increases the current flowing from the signal line 255 to the radiating element 256 across the slot as compared with the antenna of the fifth structure, resulting in an electromagnetic wave. Can be radiated efficiently.
  • the "planar and slot-shaped antenna" of the seventh structure shown in FIGS. 66 to 68 is a shield layer exposed from the electromagnetic wave absorber 251 and exposed to the space, and is provided with a slot.
  • the shield layer 256 serves as a receiving element.
  • FIG. 69 shows a transmission antenna 223 provided on the probe inner substrate 321 and a transmission antenna 223 thereof when the sensor device 200 according to the first embodiment of the present technology is viewed from the front (viewed from the Z-axis direction) as in FIG. 4b.
  • FIG. 70 is an example of a plan view for each layer of the eighth structure whose cross section is shown in FIG. 69.
  • FIG. 71 is an example of a cross-sectional view of the eighth structure whose cross section is shown in FIG. 69 when viewed from above.
  • the transmitting antenna 223 of the eighth structure shown in FIGS. 69 to 71 is obtained by changing the planar and slot-shaped antenna of the seventh structure shown in FIGS. 66 to 68 to a bilateral radiating antenna.
  • the "planar and slot-shaped antenna" of the eighth structure is a shield layer exposed from the electromagnetic wave absorber 251 and exposed to the space, and is a shield layer having a slot (shield layers 256 and 254). ) Is the radiation element. Further, the area beyond the point where the signal line 255 extending from the source direction crosses a part of the slot (in other words, the point where the signal line 255 extending from the source direction is superimposed on the part of the slot).
  • the transmitting antenna which is conveniently defined by a rectangular region that is in the region ahead of the slot and is in the vicinity of the slot (more preferably, the width Dz of the slot and the length Dy of the slot).
  • the signal line 255 is connected and terminated to both the radiating elements (shield layers 256 and 254) with slots via vias shown by diagonal lines in FIG. Due to such a shape, the planar and slot-shaped antenna of the eighth structure becomes a bilateral radiation antenna.
  • the "planar and slot-shaped antenna" of the eighth structure shown in FIGS. 69 to 71 is a shield layer exposed from the electromagnetic wave absorber 251 and exposed to the space, and is provided with a slot.
  • the shield layer (shield layers 256 and 254) serves as a receiving element.
  • FIG. 72 is a diagram showing an example of the shape of the transmitting antenna applied to the fifth structure of the planar and slot-shaped antenna in the first embodiment of the present technique.
  • the shield layer 256 exposed from the electromagnetic wave absorber 251 the entire region overlapping with the signal line 255 can be made into a slot.
  • the line width of the signal line 255 exposed from the electromagnetic wave absorber 251 is made larger than the width of the signal line 255 extending to the region where the electromagnetic wave absorber 251 is arranged, and In the shield layer 256, the entire region overlapping with the signal line 255 having an increased width can be made into a slot.
  • the signal line 255 exposed from the electromagnetic wave absorber 251 is used as a meander structure, and the entire region of the shield layer 256 that overlaps with the signal line 255 having this meander structure is used as a slot. You can also do it.
  • the slot provided in the shield layer 256 exposed from the electromagnetic wave absorber 251 may cross the signal line 255 exposed from the electromagnetic wave absorber 251.
  • the slot provided in the shield layer 256 exposed from the electromagnetic wave absorber 251 crosses the signal line 255 exposed from the electromagnetic wave absorber 251 and the slot is the signal line 255. It is also possible to branch the slot (for example, to branch in a T shape) in the area beyond the cross.
  • the vertical direction of the paper surface becomes the main radiation direction of the radio wave, and the gain of the antenna is improved. Due to the shapes of b and c in the figure, the radiation resistance is larger than that in a in the figure, so that radio waves can be efficiently emitted. Due to the shape of e in the figure, the radiation resistance is larger than that of d in the figure, so that radio waves can be efficiently emitted.
  • the shape a in the figure can be applied to the sixth structure of the flat and slot-shaped antenna.
  • impedance matching is easier to obtain and efficient radiation can be achieved as compared with the case where a in the figure is applied to the fifth structure.
  • FIG. 73 is a diagram showing an example of the shape of the transmitting antenna applied to the seventh structure of the planar and slotted antenna in the first embodiment of the present technique.
  • 73 a to e are terminated by connecting the tip of the signal line 255 of a to e in FIG. 72 to a radiating element (in other words, a slot to be shielded layer 256) via a via.
  • a circle indicates a via.
  • FIG. 74 is a diagram showing an example of the shape of the transmitting antenna applied to the eighth structure of the planar and slotted antenna in the first embodiment of the present technique.
  • FIG. 75 is a diagram for explaining the operating principle of the sensor device 200 in the first embodiment of the present technology and the effect brought about by the structure of the sensor device 200.
  • the sensor device 200 of the present technology fixes the distance between the transmitting antenna 221 and the receiving antenna 231 at a predetermined distance d0. Focusing on the fact that the propagation time required for an electromagnetic wave to propagate this predetermined distance d0 increases in proportion to the amount of water in the medium between the transmitting antenna 221 and the receiving antenna 231, the propagation delay time of the electromagnetic wave ⁇ t is measured to determine the water content.
  • the sensor device 200 includes a flat or flat and slit-shaped transmitting antenna 221 and receiving antenna 231 having high gain.
  • the processing accuracy and positioning accuracy of these antennas are improved, and the environment around the antenna and the transmission line (for example, the size of the space around the antenna and the transmission line, the distance from the antenna and the transmission line to the housing, and the like.
  • the transmitting antenna and the transmission path connected to the transmitting antenna are formed by using the same first electronic board (board 321 in the probe), and the receiving antenna and the receiving antenna are formed.
  • the transmission path connected to the receiving antenna is formed by using the same second electronic board (board in probe 322).
  • the sensor device 200 has a novel structure so that the time for the electromagnetic wave to propagate from the transmitting antenna to the receiving antenna and the magnitude of the propagating signal are always constant). That is, as illustrated in b in the figure, the sensor device 200 includes a transmitting antenna and a receiving antenna that are planar, planar, and slot-shaped, and the planes of these antennas face each other to fix their orientations. Moreover, the structure is provided in which the positions of these antennas are fixed so that the distance between the transmitting antenna and the receiving antenna is always a predetermined distance.
  • the transmission transmission line connected to the transmission antenna and the reception transmission line connected to the reception antenna are connected to the measurement unit 312.
  • the measuring unit 312 transmits the transmitted wave to the transmitting antenna and receives the received wave from the receiving antenna.
  • the measurement unit substrate 311 provided with the measurement unit 312 is orthogonal to the first electronic substrate and the second electronic substrate.
  • a transmission line including a plurality of shielded signal lines between these orthogonal boards is provided via a transmission line cable that is more flexible than the measuring unit board 311 and the probe inner boards 321 and 322. It is electrically extended.
  • Patent Document 1 does not describe a form in which the planes of the transmitting antenna and the receiving antenna are opposed to each other and their directions are fixed.
  • a flat or flat and slot-shaped antenna may be used.
  • the transmitter and the receiver are housed in different housings, so that the distance between the transmitting antenna and the receiving antenna is not fixed, and also. The orientations of the transmitting and receiving antennas are also not fixed.
  • Patent Document 1 there is no recognition of the problem of accurately measuring moisture by facing a planar transmitting antenna and a receiving antenna and fixing their orientations, and the planar transmitting antenna and the receiving antenna are opposed to each other and their orientations are not recognized. There is no motive to combine the structures to fix the antenna.
  • the function of the present invention that can accurately measure the propagation delay time of an electromagnetic wave propagating a predetermined distance and the amount of water in the propagating medium is a planar or flat and slit-shaped transmitting antenna. It is obtained for the first time by a configuration in which the receiving antennas are fixed in a predetermined direction, that is, in opposite directions, and these antennas are fixed at a position provided with a predetermined distance.
  • the transmitting antenna and the receiving antenna having a flat surface or a flat surface and a slit shape are fixed in a predetermined direction, that is, in opposite directions, and these antennas are fixed at a position provided with a predetermined distance.
  • the effect of accurately measuring the water content is not limited to the form shown in FIGS. 4 and 74, in which the measuring unit substrate extends parallel to one plane defined by the X-axis and the Y-axis, as well as the measuring unit substrate. Is also obtained in the form of FIG. 351 which extends parallel to one plane defined by the X-axis and the Z-axis.
  • the directions in which the measurement unit substrate in the first embodiment of the present technique shown in FIG. 4 extends are the X-axis and the Z-axis as shown in FIG. 351. It is also possible to change the measurement unit substrate, the transmission probe substrate, and the reception probe substrate so as to extend in parallel with one surface determined by the above, and to accommodate the measurement unit substrate, the transmission probe substrate, and the reception probe substrate in one sensor housing as in FIG.
  • the antenna is not formed in an electronic board (such as the board 321 in the probe), for example, an example in which the antenna is assembled using a plurality of parts.
  • the processing accuracy of the antenna can be improved and the moisture content can be measured accurately.
  • the volume of the probe housing 320 provided in the antenna and the sensor device 200 can be reduced.
  • the amount of soil that the probe housing 320 pushes toward the soil to be measured can be reduced.
  • the angle formed by the transmitting antenna plane with respect to the measuring unit board and the angle formed by the receiving antenna plane with respect to the measuring unit board can be any angle between 0 ° and 90 °.
  • FIG. 76 is a diagram showing an example of the angle formed by the antenna plane and the measurement unit substrate in the first embodiment of the present technology. As illustrated in a in the figure, the angle between the antenna plane and the measurement unit substrate can be set to 90 degrees on both the transmitting side and the receiving side. As illustrated in b in the figure, the angle between the antenna plane and the measurement unit substrate on both the transmitting side and the receiving side can be set to 0 degrees.
  • the angle between the antenna plane and the measuring unit board on both the transmitting side and the receiving side can be set to an angle other than 0 degrees and 90 degrees.
  • the angle between the antenna plane and the measuring unit substrate on both the transmitting side and the receiving side is set to an angle other than 0 degrees and 90 degrees, one angle is + ⁇ , and the other angle is set. It can also be - ⁇ .
  • one of the transmitting side and the receiving side may be set to 90 degrees and the other may be set to 0 degrees.
  • FIG. 77 is a diagram for explaining a method of connecting the measuring unit substrate 311 and the probe inner substrates 321 and 322 provided in the sensor device 200 in the first embodiment of the present technique.
  • a is a view of the connection points between these substrates as viewed from above of the sensor device 200.
  • b is a view of these boards as viewed from the front of the sensor device 200.
  • c is a detailed view of the connector portion of the measurement unit substrate 311 when viewed from the Y-axis direction.
  • the configuration in the figure corresponds to the component (7).
  • the transmission line connection portion shown in FIG. 77c electrically connects the transmission line in the measurement unit board 311 and the transmission line in the probe inner substrate 321 or 322.
  • This transmission line connection portion includes the same number of signal lines as the number of antennas, and each of these signal lines is shielded.
  • a parallel cable is used as a transmission line connection portion.
  • shielded wires are further wired on both sides of each signal line, and these are arranged side by side. For example, assuming that there are three signal lines, four shielded wires are wired and these are arranged side by side. Shielded layers are arranged above and below the signal lines and shielded lines arranged side by side, respectively.
  • the circumference of the signal line is shielded by the shield wiring between the signal lines and the shield layers above and below the signal line.
  • the outer periphery of the integrated structure including the signal line, the shielded wire, and the shield layer is covered with an insulating protective material.
  • the transmission line connection portion the same number of coaxial cables as the number of antennas can be used.
  • FIG. 78 is an example of a detailed view of the measurement unit substrate 311, the probe inner substrate 321 or 322, and the transmission line connection portion provided in the sensor device 200 according to the first embodiment of the present technology.
  • the substrate inside the probe shown in a in the figure shows a state in which it is viewed from the outside.
  • the probe inner substrate shown in b in the figure shows the shape of the wiring layer on the surface layer in a colored pattern, and the vias connected to the wiring layer on the surface layer and the shape of the wiring layer on the inner layer are shown by dotted lines. ..
  • FIG. 79 is an example of a detailed view and a cross-sectional view of the measurement unit substrate 311, the probe inner substrate 321 and the transmission line connection portion provided in the sensor device 200 according to the first embodiment of the present technology.
  • a is a cross-sectional view of the probe inner substrate 321 when viewed from above (Y-axis direction) of the sensor device 200.
  • b shows a cross-sectional view of the probe inner substrate 321 when viewed from the front surface (Z-axis direction) of the sensor device 200.
  • c represents the shape of the wiring of the substrate in the probe 321 when viewed from the side (X-axis direction) of the sensor device 200.
  • c shows the shape of the wiring layer on the surface of the probe inner substrate in a colored pattern, and the vias connected to the wiring layer on the surface and the shape of the wiring layer on the inner layer are shown by dotted lines. ing.
  • the number of antennas is three.
  • FIG. 80 is an example of a detailed view of a transmission line connection portion provided in the sensor device 200 according to the first embodiment of the present technology.
  • a is a diagram of a transmission line connection portion when the sensor device 200 is viewed from above in the positive direction of the Y axis.
  • a cross-sectional view of the connector 323 connecting the transmission line connection portion and the probe inner substrate 321 when viewed from above and a sectional view of the probe inner substrate 321 when viewed from above are described.
  • a cross-sectional view of the connector 314 connecting the transmission line connection portion and the measurement unit board 311 as viewed from above is described.
  • b is a diagram of a transmission line connection portion when the sensor device 200 is viewed from below in the negative direction of the Y axis.
  • a cross-sectional view of the connector 323 connecting the transmission line connection portion and the probe inner substrate 321 when viewed from below and a sectional view of the probe inner substrate 321 when viewed from below are described.
  • a cross-sectional view of the connector 314 connecting the transmission line connection portion and the measurement unit board 311 as viewed from below is described.
  • c is a diagram of a transmission line connection portion when the sensor device 200 is viewed from the side in the positive direction of the X-axis.
  • the lower side of the figure shows a plan view of the connector 323 connecting the transmission line connection portion and the probe inner substrate 321 when viewed from the side in the positive direction of the X-axis.
  • a cross-sectional view of the connector 314 connecting the transmission line connection portion and the measurement unit board 311 as viewed from the side is described.
  • d is a diagram of a connector 314 connecting a transmission line connection portion, a transmission line connection portion, and a measurement section board 311 when the sensor device 200 is viewed from the front back side in the negative direction of the Z axis. ..
  • the lower side of the figure shows a cross-sectional view of the connector 323 connecting the transmission path connection portion and the probe inner board 321 when viewed from the front back side in the negative direction of the Z axis, and the probe inner board 321 from the front back side.
  • a cross-sectional view of a portion connected to the connector 323 when viewed in the negative direction of the Z axis is shown.
  • the transmission lines provided in each of the two orthogonally arranged substrates are between the measurement unit substrate 311 and the probe inner substrate. It is more flexible than 321 and is connected by a transmission line connection portion provided with a plurality of transmission lines.
  • FIGS. 81 and 82 show an example of the planar shape of the probe inner substrate 321 according to the first embodiment of the present technique.
  • a total of three layers are provided, and the transmission path to the antenna is composed of a signal line layer having one layer and a shield layer having two layers sandwiching the signal line layer.
  • the planar shape of the probe inner substrate 321 provided with the wiring layer is shown.
  • the example shown in FIGS. 81 and 82 shows an example in which the shield wiring is arranged on the side of the signal line 255 by using a part of the same wiring layer as the signal line 255.
  • FIG. 81 a shows the planar shape of the solder resist 252 and the electromagnetic wave absorber 251 arranged outside the first wiring layer.
  • the solder resist 252 is a colored pattern, and the outer shape of the electromagnetic wave absorber 251 is shown by a dotted line.
  • Reference numeral b (b) in FIG. 81 shows the planar shape of the first wiring layer (shield layer 254 and radiation element).
  • Reference numeral c in FIG. 81 shows a second wiring layer (signal line) and shielded wiring (conductor 257) arranged on both sides of the signal line 255 using a part of the second wiring layer.
  • the symbol arranged on the shield wiring 257 connecting the quadrangle and its diagonal line with a line segment represents a via, and particularly in c in FIG.
  • Wa in the figure indicates the width of the substrate 321 in the probe. Further, Wb indicates the width of the shielded wiring, and Wc indicates the distance between the shielded wiring ends.
  • FIG. 82 shows the planar shape of the third wiring layer (shield layer 256 and the radiation element).
  • FIG. 82 b shows the planar shape of the solder resist 253 and the electromagnetic wave absorber 251 arranged outside the third wiring layer.
  • the solder resist 253 is a colored pattern, and the outer shape of the electromagnetic wave absorber 251 is shown by a dotted line.
  • FIG. 82 is a cross-sectional view of the probe inner substrate 321 when cut along the AA'line of c in FIG. 81.
  • a solder resist 252 and a first wiring layer are arranged in order from the lower side of the paper surface, and a signal line is used on the second wiring layer.
  • 255 and shield wiring 257 on both sides thereof are arranged.
  • a shield layer 256 and a solder resist 253 are arranged on these.
  • the electromagnetic wave absorber 251 (not shown) is arranged around this cross section.
  • FIGS. 83 and 84 show another example of the planar shape of the probe inner substrate 321 in the first embodiment of the present technique.
  • a total of three layers are provided, and the transmission path to the antenna is composed of a signal line layer having one layer and a shield layer having two layers sandwiching the signal line layer.
  • the in-probe substrate 321 provided with a wiring layer is shown.
  • the shield layer 256 arranged above the signal line 255 passes by the side of the signal line 255 to reach the shield layer 254 arranged below the signal line 255.
  • FIG. 83 shows a row of vias for this shield.
  • the symbols arranged on both sides of the signal line 255 and connecting the quadrangle and its diagonal line with a line segment represent a via.
  • These vias, which are not colored in the figure, are not formed by the second wiring layer which is the same layer as the signal line 255, but are sideways from the layer above the signal line 255 to the side of the signal line 255. It indicates that the via passes through and extends to the layer below the signal line 255. Since the planar shapes shown in FIGS. 83 and 84 are similar to those shown in FIGS.
  • c in FIG. 84 is a cross-sectional view of the substrate inside the probe 321 when cut along the AA'line of c in FIG. 83.
  • Wa in FIG. 83 indicates the width of the probe inner substrate 321.
  • Wb indicates the width of the shield via row, and Wc indicates the distance between the ends of the via row.
  • the effect of the structure shown in c in FIG. 83 will be described.
  • the signal line 255 and the shield wiring are formed by using the same wiring layer (second wiring layer). .. Therefore, when the second wiring layer is processed to form the pattern of the signal line 255 and the pattern of the shielded wiring 257, the distance between the signal line 255 and the shielded wiring is the minimum processing dimension provided in the pattern forming apparatus. It cannot be processed below. It is necessary to provide at least a distance corresponding to the minimum machining dimension of the pattern forming apparatus between the two.
  • the signal is signaled from the signal line 255 and the layer above the signal line 255.
  • Shielding vias that pass laterally to the wire 255 and extend below the signal line 255 are formed using different wiring layers. That is, the pattern of the signal line 255 is formed by itself using the pattern forming apparatus. Shielding vias are also formed alone in the layer above the signal line 255 using the pattern forming apparatus. Therefore, the distance between the signal line 255 and the via passing by the side of the signal line 255 can be set to an arbitrary value when designing the layout of these patterns.
  • the distance between the signal line 255 and the row of shield vias (shield wiring in the case of FIG. 81) is larger than that in the structure shown in c in FIG. It can be made smaller.
  • the width of the probe inner substrate 321 shown in FIGS. 83 and 84 can be made smaller than the width of the probe inner substrate 321 shown in FIGS. 81 and 82.
  • the cross-sectional area of the probe housing for accommodating the substrate can be reduced, which further has the effect of accurately measuring the water content. This will be described in detail later.
  • FIGS. 85 and 86 show still another example of the planar shape of the probe inner substrate 321 in the first embodiment of the present technique.
  • the in-probe substrate 321 comprising a total of three wiring layers is shown.
  • the example shown in FIGS. 85 and 86 shows an example in which the side of the signal line 255 is shielded by using a part of the same wiring layer as the signal line 255. Since the role of each layer shown in each of FIGS. 85 and 86 is the same as that of FIGS. 81 and 82, the description thereof will be omitted.
  • a shield layer 254 is formed by using a part of the first wiring layer, and a part of the first wiring layer other than the shield layer 254 is used to be provided in the three antennas 3.
  • a number of radiating elements are formed. Similar to c in FIG. 81, c in FIG. 85 shows an example in which shielded wiring is arranged on the side of the signal line 255 by using a part of the same wiring layer as the signal line 255.
  • three signal lines 255 for connecting to the three radiating elements shown in b in FIG. 85 are formed by using a part of the second wiring layer.
  • a total of four shielded wirings 257 between the three signal lines and the outside are the same as the three signal lines 255. It is formed using a second wiring layer.
  • c in FIG. 86 is a cross-sectional view of the substrate inside the probe 321 when cut along the AA'line of c in FIG. 85.
  • Wa in FIG. 85 indicates the width of the probe inner substrate 321.
  • Wb indicates the width of the shield layer
  • Wc indicates the distance between the ends of the shield layer.
  • Wd indicates the width of two transmission lines and three shielded wires.
  • the in-probe substrate 321 comprising a total of three wiring layers is shown.
  • the shield layer 256 arranged above the signal line 255 passes by the side of the signal line 255 to reach the shield layer 254 arranged below the signal line 255.
  • FIG. 87 An example is shown in which vias are used to shield the sides of the signal line 255 by arranging the vias in a row along the signal line 255.
  • a shield layer 254 is formed by using a part of the first wiring layer, and a part of the first wiring layer other than the shield layer 254 is used to be provided in the three antennas 3.
  • a number of radiating elements are formed.
  • C in FIG. 87 shows an example in which the side of the signal line 255 is shielded by using a row of vias for shielding as in c in FIG.
  • three signal lines 255 for connecting to the three radiating elements shown in b in FIG. 87 are formed by using a part of the second wiring layer.
  • FIG. 88 is a cross-sectional view of the substrate inside the probe 321 when cut along the AA'line of c in FIG. 87.
  • Wa in FIG. 87 indicates the width of the probe inner substrate 321.
  • Wb indicates the width of the shield layer
  • Wc indicates the distance between the ends of the shield layer.
  • Wd indicates the width of two transmission lines and three shield via rows.
  • the effect of the structure described in c in FIG. 87 will be described. Similar to c in FIG. 83, the three signal lines 255 shown in c in FIG. 87 and the row of four vias are patterned separately (in other words, independently). As a result, the distance between the three signal lines 255 shown in c in FIG. 87 and the row of four vias is the three signal lines 255 shown in c in FIG. 85 and the four shields. It can be smaller than the distance to the wiring. As a result, the width of the probe inner substrate 321 shown in FIGS. 87 and 88 can be made smaller than the width of the probe inner substrate 321 shown in FIGS. 85 and 86. Moreover, if the width of the substrate inside the probe can be reduced, the cross-sectional area of the probe housing for accommodating the substrate can be reduced, which further has the effect of accurately measuring the water content. This will be described in detail later.
  • FIG. 89 is a diagram for explaining the shield by the via row in the first embodiment of the present technique.
  • a indicates a first wiring layer
  • b in the figure indicates a second wiring layer.
  • c indicates a third wiring layer.
  • the via row may be arranged around the signal line 255 and shielded without providing the shield wiring.
  • a circle indicates a via. Since these vias reduce the electrical coupling between the transmission lines, it is possible to suppress radiation from an unintended antenna opening (radiation element), and it is possible to measure moisture with high accuracy.
  • the distance between adjacent vias is preferably 1/10 or less of the wavelength of the center frequency of the electromagnetic wave, and more preferably 1/10 or less of the wavelength of the maximum frequency.
  • the center frequency is 5 GHz
  • the via spacing is preferably 6 mm or less
  • the maximum frequency is 9 GHz, so it is even more preferably 3.3 mm or less. desirable.
  • FIG. 90 is a diagram showing an example of a strip line in the first embodiment of the present technology.
  • the figure shows a cross-sectional view of a strip line formed on a wiring board in a probe, for example.
  • a strip line that is vertically symmetrical may be used with the shield layers 254 and 256 as upper and lower surfaces.
  • a shield layer 254 is formed from a layer on which the signal line 255 is formed by using a strip line that is asymmetrical in the vertical direction, that is, an electronic substrate having more than three wiring layers.
  • It may be a strip line using a wiring layer in which the distance to the formed layer and the distance from the layer forming the signal line 255 to the layer forming the shield layer 254 are different. As illustrated in c in the figure, it may be a vertically symmetrical strip line in which shielded wiring is arranged on the side and both sides of the signal line 255. As illustrated in d in the figure, a strip line that is asymmetrical in the vertical direction may be used, in which shielded wiring is arranged on the side of the signal line 255.
  • it may be a vertically symmetrical strip line with a post wall.
  • the post wall refers to a row of vias arranged substantially in parallel with the transmission line. The placement of the post wall reduces radiation from the edge of the board to the outside of the board and electrical coupling between adjacent lines.
  • it may be a vertically asymmetric strip line with a post wall.
  • it may be a vertically symmetrical strip line having both a post wall and a shielded wiring.
  • it may be a vertically asymmetric strip line having both a post wall and a shielded wiring.
  • the substrate in the probe 321 is typically a glass epoxy substrate based on FR-4, but has excellent high-frequency characteristics such as modified-PolyPhenyleneEther (m-PPE) and polytetrafluoroethylene (m-PPE: modified-PolyPhenyleneEther).
  • m-PPE modified-PolyPhenyleneEther
  • a substrate using PTFE: PolyteTraFluoroEthylene) or the like may be used.
  • the substrate in the probe 321 may be a substrate using ceramics having a high dielectric constant, or may be a build-up substrate in which a plurality of types of the above substrates are combined.
  • it may be a flexible substrate using flexible polyimide, polyester, polyethylene terephthalate, or the like, or it may be a rigid flexible substrate in which a rigid substrate and a flexible substrate are combined.
  • FIGS. 91 to 93 show still another example of the planar shape of the probe inner substrate 321 according to the first embodiment of the present technique.
  • An example is shown which is formed on a probe inner substrate 321 provided with a total of 2n-1 layers of wiring layers, which are composed of n layers of shield layers sandwiched between the two.
  • the shield layer arranged above the signal line 255 passes by the side of the signal line 255 and reaches the shield layer arranged below the signal line 255.
  • vias are used to shield the sides of the signal line 255 by arranging the vias in a row along the signal line 255.
  • a shield layer 254 is formed by using a part of the first wiring layer, and a part of the first wiring layer other than the shield layer 254 is used to be provided in the three antennas 3.
  • a number of radiating elements 259 are formed.
  • Wa in FIG. 91 indicates the width of the probe inner substrate 321. Further, Wb indicates the width of the shield layer, and Wc indicates the distance between the ends of the shield layer. Wd indicates the width of one transmission line and two shield via rows.
  • the three signal lines connected to each of the three antennas have two signal line layers (second and fourth) provided in the substrate having the five wiring layers. Wiring layer) is used.
  • the fourth wiring layer shown in b in FIG. 92 (1) Of the three radiating elements shown in b in FIG. 91, two for connecting the second and third radiating elements to which the signal line 255 is not connected in the second wiring layer. Signal line 255 is formed. (2) Three radiation elements 259 arranged on one surface layer (first wiring layer) of the probe inner substrate 321 are sandwiched between signal lines 255 for connecting to each of the three radiation elements 259, and the other surface layer (1st wiring layer). In order to connect to the three radiating elements arranged in the fifth wiring layer), the signal line 255 is not connected in the fourth wiring layer, and the radiating element is located directly below the first radiating element. Vias are formed to connect to the element.
  • FIG. 93 is a cross-sectional view of the substrate inside the probe 321 when cut along the AA'line of c in FIG. 91.
  • the width of the probe inner substrate 321 can be reduced by shielding the side of the signal line 255 by using the shielding via row shown in c in FIG. 87. It has been dropped.
  • the structure shown in c in FIG. 91 and b in FIG. 92 is a signal line arranged in one signal line layer by using a larger number of signal line layers as compared with the structure shown in c in FIG. The number is reduced. This structure has the effect of reducing the width of the probe inner substrate 321 as compared with the structure shown in c in FIG. 87.
  • An example is shown which is formed on a probe inner substrate 321 provided with a total of 2n + 1 layers of wiring layers, which are composed of n + 1 layers of shield layers sandwiched between the two.
  • the shield layer arranged above the signal line 255 passes by the side of the signal line 255 and reaches the shield layer arranged below the signal line 255.
  • vias are used to shield the sides of the signal line 255 by arranging the vias in a row along the signal line 255.
  • a shield layer 254 is formed by using a part of the first wiring layer, and a part of the first wiring layer other than the shield layer 254 is used to be provided in the three antennas 3.
  • a number of radiating elements 259 are formed.
  • the three signal lines connected to each of the three antennas are the three-layer signal line layer (second and fourth) provided in the substrate having the seven wiring layers. And a sixth wiring layer).
  • Wa in FIG. 91 indicates the width of the probe inner substrate 321.
  • Wb indicates the width of the shield layer
  • Wc indicates the distance between the ends of the shield layer.
  • Wd indicates the width of one transmission line and two shield via rows.
  • the fourth wiring layer shown in b in FIG. 95 (1) Of the three radiating elements shown in b in FIG. 94, one signal line 255 for connecting to the second radiating element is formed. (2) Three radiation elements arranged on one surface layer (first wiring layer) of the substrate in the probe 321 are sandwiched between signal lines 255 for connecting to each of the three radiation elements, and the other surface layer (first wiring layer) is sandwiched between them.
  • the signal line 255 is not connected in the fourth wiring layer, and the first and third radiating elements are located directly below the radiating elements. , Vias are formed to connect with these radiating elements.
  • the sixth wiring layer shown by a in FIG. 96 (1) Of the three radiating elements shown in b in FIG. 94, one signal line 255 for connecting to the third radiating element is formed. (2) Three radiation elements arranged on one surface layer (first wiring layer) of the substrate in the probe 321 are sandwiched between signal lines 255 for connecting to each of the three radiation elements, and the other surface layer (first wiring layer) is sandwiched between them.
  • the signal line 255 is not connected in the sixth wiring layer, and the first and second radiating elements are located directly below the radiating elements. , Vias are formed to connect with these radiating elements.
  • FIG. 97 is a cross-sectional view of the substrate inside the probe 321 when cut along the AA'line of c in FIG. 94.
  • the width of the probe inner substrate 321 can be reduced by shielding the side of the signal line 255 by using the shielding via row shown in c in FIG. 87. It has been dropped.
  • the structure described in c in FIG. 94, b in FIG. 95, and a in FIG. 96 can be combined into one signal line layer by using more signal line layers as compared with the structure shown in c in FIG. The number of signal lines to be arranged is reduced.
  • This structure has the effect of reducing the width of the probe inner substrate 321 as compared with the structure shown in c in FIG. 87.
  • the width of the probe inner substrate 321 shown in FIGS. 94 to 96 is the same as the width of the probe inner substrate 321 shown in FIGS. 91 to 93.
  • FIG. 98 is a diagram for explaining the influence of the width of the substrate inside the probe and the cross-sectional area of the probe housing on the measurement of the water content in the first embodiment of the present technique from two viewpoints. ..
  • a, b, and c are a transmission probe housing 320a and a reception probe when the sensor device 200 according to the first embodiment of the present technology is viewed from above in the positive direction of the Y axis. It is sectional drawing of the housing 320b.
  • the rectangle on the left side represents the transmission probe substrate 321 and the ellipse arranged on the outer circumference thereof represents the transmission probe housing 320a.
  • the rectangle on the right side represents the receiving probe substrate 322, and the ellipse arranged on the outer circumference thereof represents the receiving probe housing 320b.
  • the white part inside the probe housing represents the space inside the probe housing.
  • the colored area on the outside of the probe housing represents the soil.
  • a, b, and c are elliptical shapes in which (1) three types of transmission probe boards 321 and reception probe boards 322 having different widths have a ratio of the length of the major axis to the minor axis of 2: 1. (2) In these three types, when the transmission probe substrate 321 and the reception probe substrate 322 are arranged so as to be the same distance, they are housed in the transmission probe housing 320a and the reception probe housing 320b. (3) To explain how the ratio of the soil region in the region between the transmitting probe substrate 321 and the receiving probe substrate 322 changes according to the width of the three types of probe substrates. It is a figure.
  • the moisture measurement system 100 of the present invention measures the propagation delay time of this electromagnetic wave, paying attention to the fact that the time required for the electromagnetic wave to propagate from the transmitting antenna to the receiving antenna is linearly related to the water content of the soil. So, we are looking for the water content of the soil. Therefore, as the ratio of the soil region in the region between the transmitting probe substrate 321 and the receiving probe substrate 322 decreases, the relationship between the propagation delay time of the electromagnetic wave and the soil water content deviates from the linear relationship. It ends up.
  • the error included in the measurement result becomes large.
  • the smaller the width of the probe inner substrate the larger the proportion of the soil region in the region between the transmitting probe substrate 321 and the receiving probe substrate 322.
  • the relationship between the propagation delay time of the electromagnetic wave and the soil water content becomes close to a linear relationship, the error included in the measurement result becomes small, and the soil water content can be accurately measured.
  • d, e, and f indicate that when the transmitting probe housing 320a and the receiving probe housing 320b described in a, b, and c in the figure are inserted into the soil, these probe housings are inserted.
  • the soil pushed away by is a figure with the destination added.
  • the darkly colored areas (reference numeral 391) added to the outer circumference of the probe housing in d, e, and f in the figure as a result of inserting the probe housing, the displaced soil moves.
  • the area where the density of the soil has become higher than the original density of the soil to be measured is represented.
  • the smaller the width of the substrate in the probe the smaller the width of the above-mentioned region where the soil density is high.
  • the smaller the width of the substrate in the probe the smaller the proportion of the region between the transmitting probe substrate 321 and the receiving probe substrate 322 where the soil density has increased.
  • the measurement result of the water content of the soil becomes closer to the original water content of the soil to be measured. That is, the water content of the soil can be accurately measured.
  • the sensor device 200 according to the first embodiment of the present technology (1)
  • the width of the probe inner substrate can be reduced by using a row of shielding vias as a structure for shielding the side of the signal line.
  • the effect of accurately measuring the water content of the soil can be obtained.
  • a plurality of antennas are provided on the board in the probe and a plurality of signal lines are provided for connecting to the plurality of antennas, at least one of the plurality of signal lines is used by using a plurality of wiring layers. By forming the above in different wiring layers, the width of the substrate inside the probe can be reduced. As a result, the effect of accurately measuring the water content of the soil can be obtained.
  • FIGS. 99 and 100 show another example of the planar shape of the probe inner substrate 321 according to the first embodiment of the present technique.
  • the example shown in FIGS. 99 and 92 includes one planar and slot-shaped antenna, and the transmission path to the antenna consists of a single signal line layer and two shield layers sandwiching the signal line layer.
  • the planar shape of the probe inner substrate 321 provided with a total of three wiring layers is shown.
  • the example shown in FIGS. 99 and 100 shows an example in which the shield wiring is arranged on the side of the signal line 255 by using a part of the same wiring layer as the signal line 255.
  • a in FIG. 99 shows the planar shape of the solder resist 252 and the electromagnetic wave absorber 251 arranged outside the first wiring layer.
  • the solder resist 252 is a colored pattern, and the outer shape of the electromagnetic wave absorber 251 is shown by a dotted line.
  • B in FIG. 99 shows the planar shape of the first wiring layer (shield layer 254 having slots, that is, the radiation element 254).
  • C in FIG. 99 shows a second wiring layer (a signal line 255 and shielded wiring 257 arranged on both sides of the signal line 255 using a part of the second wiring layer).
  • the symbol arranged on the shield wiring 257 connecting the quadrangle and its diagonal line with a line segment represents a via, and particularly in c in FIG.
  • Wa in FIG. 99 indicates the width of the probe inner substrate 321. Further, Wb indicates the width of the shield wiring. We indicates the length from the slot to the shielded wiring, and Wf indicates the length from the signal line end to the shielded wiring.
  • Reference numeral 100 in FIG. 100 shows the planar shape of the third wiring layer (shield layer 256 having slots, that is, the radiation element 256).
  • FIG. 100B shows the planar shape of the solder resist 253 and the electromagnetic wave absorber 251 arranged outside the third wiring layer.
  • the solder resist 253 is a colored pattern, and the outer shape of the electromagnetic wave absorber 251 is shown by a dotted line.
  • C in FIG. 100 is a cross-sectional view of the substrate inside the probe 321 when cut along the AA'line of c in FIG. 99.
  • a first wiring layer (shield layer 254) is arranged on the lowermost side of the paper surface, and a second wiring layer is used on the first wiring layer and the signal line and both sides thereof. Shield wiring is arranged. A shield layer 256 is placed on top of these. In the region where the transmission path of the substrate 321 in the probe is formed, solder resists are arranged above and below this cross section, and the electromagnetic wave absorber 251 is arranged around the cross section.
  • FIGS. 101 and 102 show another example of the planar shape of the probe inner substrate 321 according to the first embodiment of the present technique.
  • the example shown in FIGS. 101 and 102 includes one flat and slot-shaped antenna, and the transmission path to the antenna consists of a single signal line layer and two shield layers sandwiching the signal line layer.
  • the in-probe substrate 321 with a total of three wiring layers is shown.
  • the shield layer 256 arranged above the signal line 255 passes by the side of the signal line 255 to reach the shield layer 254 arranged below the signal line 255.
  • An example is shown in which vias are used to shield the sides of the signal line 255 by arranging the vias in a row along the signal line 255.
  • C in FIG. 101 shows a row of vias for this shield.
  • the symbols arranged on both sides of the signal line 255 and connecting the quadrangle and its diagonal line with a line segment represent a via.
  • These vias which are not colored in the figure, are not formed by the second wiring layer which is the same layer as the signal line 255, but are sideways from the layer above the signal line 255 to the side of the signal line 255. It indicates that the via passes through and extends to the layer below the signal line 255. Since the planar shapes shown in FIGS. 101 and 102 are similar to those shown in FIGS. 99 and 100 in addition to c in FIG. 101, the description thereof will be omitted. Note that c in FIG. 102 is a cross-sectional view of the probe inner substrate 321 when the slot antenna portion is cut in the structures shown in FIGS. 102 and 103.
  • the planar shape shown in c in FIG. 101 has a structure for shielding the side of the signal line 255 by using a row of vias for shielding.
  • the distance between the signal line 255 and the row of shield vias can be made smaller than the structure shown in c in FIG.
  • the width of the probe inner substrate 321 shown in FIGS. 101 and 102 can be made smaller than the width of the probe inner substrate 321 shown in FIGS. 99 and 100.
  • the width of the substrate inside the probe can be reduced, the cross-sectional area of the probe housing for accommodating the substrate can be reduced, which further has the effect of accurately measuring the water content.
  • Wa in FIG. 101 indicates the width of the probe inner substrate 321.
  • Wb indicates the width of the shield via row.
  • We indicates the length from the slot to the shield via row, and Wf indicates the length from the signal line end to the shield via row.
  • FIGS. 103 and 104 show still another example of the planar shape of the probe inner substrate 321 in the first embodiment of the present technique.
  • the example shown in FIGS. 103 and 104 shows an example in which the side of the signal line 255 is shielded by using a part of the same wiring layer as the signal line 255. Since the role of each layer shown in each of FIGS. 103 and 104 is the same as that of FIGS. 99 and 100, the description thereof will be omitted.
  • FIG. 103 shows a planar shape in which three slots of a planar and slot-shaped antenna are arranged by using a first wiring layer (shield layer 254 having slots, that is, a radiation element 254).
  • c in FIG. 103 shows an example in which shielded wiring is arranged on the side of the signal line 255 by using a part of the same wiring layer as the signal line 255.
  • three signal lines 255 for intersecting with the three slots shown in b in FIG. 101 are formed by using a part of the second wiring layer.
  • a total of four shield wires are provided between the three signal lines and the outside, which is the same as the three signal lines 255. It is formed by using two wiring layers.
  • c in FIG. 104 is a cross-sectional view of the substrate inside the probe 321 when cut along the AA'line of c in FIG.
  • Wa in FIG. 103 indicates the width of the probe inner substrate 321. Further, We indicates the length from the slot to the signal line, and Wf indicates the length from the signal line end to the shield wiring. Wg indicates the width of two signal lines and three shielded wires.
  • 105 and 106 show still another example of the planar shape of the probe inner substrate 321 in the first embodiment of the present technique.
  • the shield layer 256 arranged above the signal line 255 passes by the side of the signal line 255 to reach the shield layer 254 arranged below the signal line 255.
  • An example is shown in which vias are used to shield the sides of the signal line 255 by arranging the vias in a row along the signal line 255.
  • Reference numeral 105 in FIG. 105 shows a planar shape in which three slots of a planar and slot-shaped antenna are arranged by using a first wiring layer (shield layer 254 having slots, that is, a radiating element).
  • Wa in FIG. 105 indicates the width of the probe inner substrate 321. Further, We indicates the length from the slot to the shield via row, and Wf indicates the length from the signal line end to the shield wiring. Wg indicates the width of two signal lines and three shield via rows.
  • C in FIG. 105 shows an example in which the side of the signal line 255 is shielded by using a row of vias for shielding as in c in FIG. 101.
  • three signal lines 255 for intersecting with the three radiating elements shown in b in FIG. 105 are formed by using a part of the second wiring layer.
  • a total of four rows of shielding vias are arranged between the three signal lines and the outside.
  • c in FIG. 106 is a cross-sectional view of the substrate inside the probe 321 when cut along the AA'line of c in FIG. 105.
  • the effect of the structure shown in c in FIG. 105 will be described. Similar to c in FIG. 101, the three signal lines 255 shown in c in FIG. 105 and the row of four vias are patterned separately (in other words, independently). As a result, the distance between the three signal lines 255 shown in c in FIG. 105 and the row of four vias is the three signal lines 255 shown in c in FIG. 103 and the four shields. It can be smaller than the distance to the wiring. As a result, the width of the probe inner substrate 321 shown in FIGS. 105 and 106 can be made smaller than the width of the probe inner substrate 321 shown in FIGS. 103 and 104. Moreover, if the width of the substrate inside the probe can be reduced, the cross-sectional area of the probe housing for accommodating the substrate can be reduced, which further has the effect of accurately measuring the water content. The details of this are as described with reference to FIG. 98.
  • FIGS. 107 to 109 show still another example of the planar shape of the probe inner substrate 321 according to the first embodiment of the present technique.
  • An example is shown which is formed on a probe inner substrate 321 having a total of 2n-1 layers of wiring layers, which are composed of a -1 layer of a signal line layer and an n-layer of a shield layer sandwiching the signal line layer. Further, in the example shown in FIGS.
  • the shield layer arranged above the signal line 255 passes by the side of the signal line 255 and reaches the shield layer arranged below the signal line 255.
  • An example is shown in which vias are used to shield the sides of the signal line 255 by arranging the vias in a row along the signal line 255.
  • FIG. 107 shows a planar shape in which three slots of a planar and slot-shaped antenna are arranged by using a first wiring layer (shield layer 254 having slots, that is, a radiating element).
  • a is a planar shape in which three slots of a planar and slot-shaped antenna are arranged by using a third wiring layer (shield layer 256-1 having slots, that is, radiation element 256-1). Is shown.
  • c is a planar shape in which three slots of a planar and slot-shaped antenna are arranged by using a fifth wiring layer (shield layer 256-2 having slots, that is, a radiating element 256-2). Is shown.
  • Wa in FIG. 107 indicates the width of the probe inner substrate 321. Further, We indicates the length from the slot to the shield via row, and Wf indicates the length from the signal line end to the shield wiring. Wg indicates the width of one signal line and two shield via rows.
  • the three signal lines intersecting with each of the three antennas have two signal line layers (second and fourth) provided in the substrate having the five wiring layers. Wiring layer) is used.
  • the signal lines 255 for intersecting the slots are not arranged in the second wiring layer, and the second and third slots intersect with these. Two signal lines 255 are formed.
  • rows of shielding vias are arranged on both sides of these signal lines.
  • (3) In order to closely connect the shield layer formed by using the wiring layer of the first layer to the shield layer formed by using the wiring layers of the third layer and the fifth layer, in the vicinity of the outer edge of these shield layers. Also has a row of vias.
  • FIG. 109 is a cross-sectional view of the substrate inside the probe 321 when cut along the AA'line of c in FIG. 107.
  • the width of the probe inner substrate 321 can be reduced by shielding the side of the signal line 255 by using the shielding via row shown in c in FIG. 101. It has been dropped.
  • the structure shown in c in FIG. 107 and b in FIG. 108 is a signal line arranged in one signal line layer by using more signal line layers as compared with the structure shown in c in FIG. 105. The number is reduced. This structure has the effect of reducing the width of the probe inner substrate 321 as compared with the structure shown in c in FIG. 105.
  • An example is shown which is formed on a probe inner substrate 321 having a total of 2n + 1 layers of wiring layers, which are composed of a layer and an n + 1 layer of a shield layer sandwiching the layer.
  • the shield layer arranged above the signal line 255 passes by the side of the signal line 255 and reaches the shield layer arranged below the signal line 255.
  • vias are used to shield the sides of the signal line 255 by arranging the vias in a row along the signal line 255.
  • Reference numeral 110 in FIG. 110 shows a planar shape in which three slots of a planar and slot-shaped antenna are arranged by using a first wiring layer (shield layer 254-1 having slots, that is, a radiating element).
  • Reference numeral (a) in FIG. 111 shows a planar shape in which three slots of a planar and slot-shaped antenna are arranged by using a third wiring layer (shield layer 254-2 having slots, that is, a radiating element).
  • C in FIG. 111 shows a planar shape in which three slots of a planar and slot-shaped antenna are arranged by using a fifth wiring layer (shield layer 256-1 having slots, that is, a radiating element).
  • Reference numeral 112 denotes a planar shape in which three slots of a planar and slot-shaped antenna are arranged by using a seventh wiring layer (shield layer 256-2 having slots, that is, a radiating element).
  • Wa in FIG. 110 indicates the width of the probe inner substrate 321. Further, We indicates the length from the slot to the shield via row, and Wf indicates the length from the signal line end to the shield wiring. Wg indicates the width of one signal line and two shield via rows.
  • the three signal lines intersecting each of the three antennas have three signal line layers (second and fourth) provided in the substrate having the seven wiring layers. And a sixth wiring layer).
  • the fourth wiring layer shown in b in FIG. 111 (1) Of the three slots shown in b in FIG. 111, the second of the second and third slots in which the signal line 255 for crossing the slot is not arranged in the second wiring layer. For the slot, two signal lines 255 for intersecting the slot are formed. (2) In order to shield the side of the signal line 255 of the above (1), rows of shielding vias are arranged on both sides of these signal lines. (3) In order to closely connect the shield layer formed by using the wiring layer of the first layer to the shield layer formed by using the wiring layers of the third layer, the fifth layer and the seventh layer, these shield layers are used. A row of vias is also arranged near the outer edge of.
  • the signal line 255 for intersecting the slots is not arranged, and this is the third slot.
  • Two signal lines 255 for intersecting with are formed.
  • rows of shielding vias are arranged on both sides of these signal lines.
  • these shield layers are used.
  • a row of vias is also arranged near the outer edge of.
  • FIG. 113 is a cross-sectional view of the substrate inside the probe 321 when cut along the AA'line of c in FIG. 110.
  • the width of the probe inner substrate 321 can be reduced by shielding the side of the signal line 255 by using the shielding via row shown in c in FIG. 101. It has been dropped.
  • the structure described in c in FIG. 110, b in FIG. 111, and a in FIG. 112 can be combined into one signal line layer by using more signal line layers than the structure described in c in FIG. 105. The number of signal lines to be arranged is reduced. This structure has the effect of reducing the width of the probe inner substrate 321 as compared with the structure shown in c in FIG. 105.
  • the width of the probe inner substrate 321 shown in FIGS. 110 to 113 is the same as the width of the probe inner substrate 321 shown in FIGS. 107 to 109.
  • FIG. 114 shows a region in which the connector 323 (and 324) used for connecting the probe inner substrate 321 and the transmission line connection portion is arranged in the probe inner substrate 321 (and 322) provided in the first embodiment of the present technology. It is a figure for demonstrating the cross-sectional structure of a substrate, and the structure of a transmission line used in the area.
  • the transmission path for connecting the transmission antenna 223 and the like provided on the substrate and the connector 323 is formed by using a strip line as described above.
  • the connector 323 in order to electrically connect the signal line 255 arranged in the inner layer of the probe inner substrate 321 using the strip line and the transmission line connection portion via the connector 323, It is necessary to draw out the signal line 255 arranged in the inner layer of the probe inner substrate 321 to the surface layer of the substrate.
  • the transmission line having the structure shown in a, b or c in the figure can be used as the structure of the transmission line. More specifically, as illustrated in a in the figure, the signal line 255 for transmitting a signal may be arranged on the surface layer, and the shield layer 256 may be arranged on the inner layer to form a microstrip line.
  • a coplanar line in which the signal line 255 and the shield wiring are arranged on the surface layer can also be used.
  • the signal line 255 may be arranged on the surface layer, and the shield wiring 257 and the shield layer 256 may be arranged on the surface layer and the inner layer to form a coplanar line.
  • d and e in the figure are diagrams for explaining the cross-sectional structure of the substrate in the region where the connector 323 (and 324) used for connecting the substrate 321 in the probe and the transmission line connection portion is arranged.
  • the area described as a transmission line represents a strip line extending to the transmitting antenna.
  • the structure described on the left side of the strip line represents a structure in which the signal line 255 formed in the inner layer of the substrate is pulled out to the surface layer of the substrate through vias extending in the vertical direction of the paper surface.
  • a shield via connecting between the shield layers 254 and 256 is arranged around the via connected to the signal line 255. This shields the periphery of the via connected to the signal line 255.
  • Reference numeral 311 in the figure represents a transmission line connection portion that is electrically contacted with the signal line 255 arranged on the surface layer.
  • a structure in which a shield layer 254 or a shield wiring is further arranged on the surface layer of the substrate and a can shield (or a shield case) is further arranged so as to cover the periphery of a transmission line drawn out to the surface layer is provided.
  • By arranging the can shield it is possible to reduce the radiation of electromagnetic waves from the transmission line on the surface layer to the outside or the reception of electromagnetic waves (noise) from the outside to the transmission line on the surface layer.
  • the plurality of signal lines 255 drawn out to the surface layer may be parallel shielded between each of the plurality of signal lines 255 by using a plurality of shield wirings 257 arranged on the surface layer.
  • the length of the surface microstrip line should be as short as possible.
  • FIG. 115 is a diagram for explaining that a plurality of antennas provided in the sensor device 200 according to the first embodiment of the present technique are operated by scanning in a time-division manner to measure the water content of the soil.
  • the sensor device 200 shown in FIG. 115 is a view seen from the front (viewed from the Z-axis direction) as in FIG. 4b.
  • the sensor device 200 shown in FIG. 115 includes three transmitting antennas and three receiving antennas. Of these three transmitting antennas and three receiving antennas, one transmitting antenna and the one receiving antenna located closest to the transmitting antenna are the transmitting antennas suitable for measuring the amount of water. And the receiving antenna.
  • a combination of a transmitting antenna and a receiving antenna suitable for measuring the amount of water may be referred to as a “transmission / reception antenna pair”.
  • the sensor device 200 exemplified in FIGS. 115a to 115 includes three sets of transmission / reception antenna pairs. More specifically, (1) a first transmit / receive antenna pair consisting of a transmit antenna 221 and a receive antenna 231, (2) a second transmit / receive antenna pair consisting of a transmit antenna 222 and a receive antenna 232, and (3) transmit. It includes a third transmit / receive antenna pair, which comprises an antenna 223 and a receive antenna 233.
  • the distance between one transmit / receive antenna pair included therein and the adjacent transmit / receive antenna pair (in other words, the distance between two adjacent transmit / receive antenna pairs).
  • all the transmission antennas provided therein simultaneously radiate electromagnetic waves and are provided in them. It is assumed that all receiving antennas operate to receive electromagnetic waves at the same time.
  • the receiving antenna provided in the first transmitting / receiving antenna pair includes the electromagnetic wave radiated by the transmitting antenna (desired transmitting antenna) provided in the first transmitting / receiving antenna pair and the transmitting antenna provided in the second transmitting / receiving antenna pair (unwanted).
  • a part of the electromagnetic wave radiated by the transmitting antenna will be mixed and received. In other words, interference has occurred. In the state where such interference occurs, it becomes a problem that an error occurs in the measurement result of the water content of the soil.
  • the first problem is a sensor device provided with a transmitting antenna and a receiving antenna, and by transmitting and receiving electromagnetic waves between these antennas, the amount of water in the medium arranged between these antennas is measured. It is a unique problem.
  • the sensor device 200 of the present invention scans a plurality of antennas provided therein in a time-divided manner. , Measure the water content of the soil. Therefore, the sensor device 200 is provided with a configuration for scanning a plurality of antennas provided therein in a time-division manner, and the measuring unit 312 provided in the sensor device 200 scans the plurality of antennas in a time-division manner.
  • Control to measure the amount of water in between To briefly explain the outline of the operation of scanning and measuring the sensor device 200 in a time division (time division scan measurement operation), (1) a predetermined order from a plurality of transmission / reception antenna pairs provided in the sensor device 200.
  • the operation for measuring the moisture content of the soil by selecting the transmission / reception antenna pair one by one according to the above (measurement operation, for example, the operation of transmitting an electromagnetic wave from the transmitting antenna for measurement, or the operation of transmitting the transmitted electromagnetic wave with the receiving antenna).
  • the operation of receiving and detecting with the receiver of the measuring unit, or the operation of performing the transmission operation and the detection operation and obtaining the water content of the soil from the detection result, etc.) is performed.
  • the sensor device 200 wakes up. As illustrated in b in the figure, at timing 2, the sensor device 200 performs moisture measurement using the first transmission / reception antenna pair.
  • the sensor device 200 performs moisture measurement using the second transmission / reception antenna pair.
  • the sensor device 200 performs moisture measurement using the third transmission / reception antenna pair.
  • the sensor device 200 transmits the measurement results of all the antennas at the timing 5. After that, the sensor device 200 shifts to the sleep mode. As illustrated in the figure, the sensor device 200 uses one set of a transmitting antenna and one set of a receiving antenna, and performs measurement of moisture for each of the plurality of sets of antennas in order while dividing the time zone for measurement. Eventually, moisture measurements can be obtained over the entire area of soil where multiple antennas are located. This control corresponds to the time-division scan measurement drive of the component (6). [Hardware configuration for time-division scan measurement]
  • a hardware configuration for performing time-division scan measurement a configuration including a plurality of transmission lines individually connecting the measurement unit board 311 in the component (6) and each of the plurality of transmission antennas (FIG. 6). It is assumed that the first comparative example (FIG. 116) does not have a plurality of transmission lines for individually connecting 3), the measurement unit board 311 and each of the plurality of receiving antennas.
  • FIG. 116 is a block diagram showing a configuration example of the sensor device in the first comparative example.
  • the first comparative example it is assumed that one transmission line is branched into a plurality of transmission lines on each of the transmitting side and the receiving side and is connected to a plurality of antennas.
  • the volume of the probe housing for accommodating them becomes larger than the volume of the probe housing 320 of the present invention.
  • the probe housing pushes more soil away, and the pushed soil is added to the soil of the measurement target part, and the density of the soil in the measurement target part increases. , It will be larger than the original soil density. This also reduces the accuracy of soil moisture measurement.
  • FIG. 117 is a block diagram showing a configuration example of the sensor device in the second comparative example.
  • a transmitter or a receiver is provided on the measurement unit board 311 for each antenna on the transmitting side and the receiving side.
  • the second comparative example it is necessary to provide a plurality of transmitters and receivers so that the number of antennas is the same as the number of antennas provided in the sensor device. Therefore, the area of the measuring unit board 311 is larger than that in the case of only one set of transmitter and receiver, and the length of the transmission line on the measuring unit board 311 connecting them to the antenna must be long. not. As a result, when operating a set of transmitters and receivers on the substrate, the second comparative example having a long transmission path length has no choice but to consume more power.
  • the measuring unit housing 310 containing the measuring unit substrate 311 has to become larger.
  • the sensor housing 305 may break at the boundary between the measuring unit housing 310 receiving the crosswind and the probe housing 320 buried in the soil. Will increase.
  • the area of the measuring unit substrate 311 becomes large, so that, for example, watering from the lateral direction by the sprinkler is blocked by the measuring unit housing 310, for example, a plant.
  • the measuring unit housing 310 for example, a plant.
  • the sensor device 200 of the present invention is illustrated in FIG. 3 as hardware for performing time-division scan measurement and as hardware that does not cause the above-mentioned problems that occur in the first and second comparative examples. It has a configuration. That is, (1) a transmission transmission line connecting each transmission antenna and the measurement circuit 210 so that only one transmission antenna to be operated can be selected for all the transmission antennas 221 to 223 provided in the sensor device 200. 218-1 to 218-3 are provided independently for each transmitting antenna. As a result, a plurality of transmission lines for transmission are provided.
  • a reception switch 217 is provided between the receiver 215 and a plurality of reception transmission lines 219-1 to 219-3.
  • FIG. 118 is a block diagram showing a configuration example in which the sensor device 200 according to the first embodiment of the present technique illustrated in FIG. 3 is simplified and described by focusing on the time division drive of the antenna.
  • the sensor device 200 includes a transmission switch 216 and a reception switch 217, and the sensor control unit 211 controls them in a time-division manner and selects one transmission line for both transmission and reception. This makes it possible to select an antenna in a desired depth direction.
  • FIG. 119 is a block diagram showing a configuration example in which a transmitter switch 216 and a receiver switch 217 are built in a transmitter 214 and a receiver 215 as another configuration example of the sensor device 200 according to the first embodiment of the present technology.
  • the transmission switch 216 may be provided in the transmitter 214
  • the reception switch 217 may be provided in the receiver 215.
  • the transmitter 214 and the receiver 215 refer to, for example, a transmitter IC (Integrated Circuit), a receiver IC, a transmitter module, and a receiver module.
  • a transmitter / receiver 214-4 having these functions may be provided instead of the transmitter 214 and the receiver 215.
  • a switch 216-1 having these functions may be provided, and the switch 216-1 may be built in the transceiver 214-4.
  • FIG. 120 is a block diagram showing a configuration example of the sensor device 200 in which a switch is provided only on the receiving side as yet another configuration example of the sensor device 200 according to the first embodiment of the present technology.
  • the transmission switch 216 may not be provided.
  • the receiving switch 217 may be provided in the receiver 215 without providing the transmitting switch 216.
  • FIGS. 119 and 120 by incorporating a switch, space can be saved as compared with FIG. 118.
  • the switch is provided only on the receiving side, the configuration is simpler than that in FIG. 119, and space can be further saved.
  • the sensor device 200 illustrated in FIGS. 119 and 120 cannot avoid the interference during measurement described above, but can obtain the effect of reducing the size of the device.
  • FIG. 121 is an example of a time-division drive timing chart according to the first embodiment of the present technology.
  • FIG. 122 is an example of a timing chart showing the operation of each part in the sensor device 200.
  • the sensor device 200 wakes up after sleeping for a pre-scheduled period.
  • the transmit switch 216 and the receive switch 217 select one antenna from a plurality of antennas in a time division manner.
  • the transmitter 214 and the receiver 215 perform transmission / reception detection operation for measurement for each of all frequencies used for measurement while changing the frequency used for measurement in a stepwise manner with respect to time in one selected antenna. conduct.
  • signal transmission, reception, detection, AD conversion of the complex amplitude which is the detection result, and holding of the conversion result in the memory are performed.
  • the memory is provided in, for example, the measuring unit board 311.
  • the moisture measurement system 100 performs the above-mentioned transmission / reception detection operation (in other words, signal transmission / reception, detection, AD conversion of complex amplitude which is the detection result, and conversion result. After performing (holding in memory), the reflectance coefficient and transmission coefficient, which will be described later, are calculated from the detection result (complex amplitude), and the impulse response is obtained by inverse Fourier transforming these, and the delay time is obtained based on this. Furthermore, the water content is calculated based on this. In order to obtain one impulse response, the moisture measurement system 100 performs a transmission / reception detection operation at a plurality of frequencies. This is the intention of changing the frequency and performing the measurement described with reference to FIG. 121.
  • the sensor device 200 uses one transmission / reception antenna pair to perform the above operation for all frequencies to be measured, and then performs the above operation in time division for each of the remaining transmission / reception antenna pairs.
  • the selection of the transmitting and receiving antenna pairs is performed according to a predetermined order. This order may be selected according to the order of the positions of the arranged antennas, or an arbitrary order different from this may be predetermined.
  • the sensor control unit 211 After executing the above operation for all the transmission / reception antenna pairs, the sensor control unit 211 performs signal processing for each transmission / reception antenna pair.
  • the reflection coefficient and the transmission coefficient are calculated from the detection result (complex amplitude) at each frequency, and the impulse response is obtained by inverse Fourier transforming the reflection coefficient, and the delay time is obtained based on this. ..
  • the sensor communication unit 212 wirelessly transmits the signal processing result data of all the transmission / reception antenna pairs to the central processing unit.
  • the central processing unit 150 calculates the water content of the soil for each pair of transmitting and receiving antennas based on the received result. After completing the wireless transmission, the sensor device 200 sleeps again for a pre-scheduled period.
  • the sensor device 200 may calculate the water content of the soil for each transmission / reception antenna pair and transmit the calculation result to the central processing unit 150.
  • the order of the switch switching on the transmitting side and the switch switching on the receiving side may be the same, the switch switching on the transmitting side may be the first, or the switch switching on the receiving side may be the first.
  • the method of changing the frequency stepwise may be in the direction of going up the stairs or in the direction of going down the stairs, or the order of the frequencies may be changed to be discontinuous or changed in any predetermined order.
  • the transmission / reception detection operation for the above measurement which is executed at one measurement frequency of one transmission / reception antenna pair, is performed a plurality of times (for example, 100 times). ) You may repeat it.
  • the sensor device 200 When the operation is repeated 100 times at each measurement frequency of each antenna, for example, the sensor device 200 performs the transmission / reception detection operation 100 times at the first frequency of the first transmission / reception antenna pair, and then performs the first transmission / reception.
  • the transmission / reception detection operation is performed 100 times at the second frequency of the antenna pair.
  • the above-mentioned repetitive operation may be performed for each of the remaining transmission / reception antenna pairs.
  • the order in which the operations are executed may not be limited to the above as long as the operation results of a predetermined number of repetitions can be obtained at each measurement frequency of each transmission / reception antenna pair.
  • control example a The control example of FIGS. 121 and 122 is referred to as control example a.
  • FIG. 123 is an example of a time-division drive timing chart when the timing of signal processing in the first embodiment of the present technology is changed.
  • FIG. 124 is an example of a timing chart showing the operation of each part in the sensor device when the timing of signal processing in the first embodiment of the present technique is changed.
  • the timing of signal processing can be changed.
  • the sensor control unit 211 performs signal processing each time a series of transmission / reception detection operations at a plurality of frequencies are completed.
  • the amount of detection result data to be retained in order to perform the signal processing can be reduced as compared with the control example a.
  • the scale of the memory can be reduced to 1 / n.
  • the number of times of wireless transmission of the data described later may be 1 / n in the control example c.
  • the number of times the processing performed before and after transmitting the payload data is executed becomes 1 / n, and the power consumption required for this processing also becomes 1 / n of the control example c described later.
  • FIG. 125 is an example of a time-division drive timing chart when the timing of signal processing and data transmission is changed in the first embodiment of the present technology.
  • FIG. 126 is an example of a timing chart showing the operation of each part in the sensor device when the timing of signal processing and data transmission is changed in the first embodiment of the present technique.
  • the timing of signal processing and data transmission can be changed.
  • the sensor communication unit 212 wirelessly transmits the obtained data each time the transmission / reception detection operation at a series of frequencies and the subsequent signal processing are completed for each transmission / reception antenna pair.
  • the amount of signal processing result data that should be retained for wireless transmission is smaller than that in the control example b.
  • the scale of the memory may be 1 / n of the control example b in order to hold the data of the signal processing result.
  • FIG. 127 is an example of a time-division drive timing chart when the order of transmission / reception detection operations in the first embodiment of the present technology is changed.
  • FIG. 128 is an example of a timing chart showing the operation of each part in the sensor device when the order of transmission / reception detection operations in the first embodiment of the present technology is changed.
  • the order of transmission / reception detection operations can be changed.
  • the transmitter 214 and the receiver 215 change the frequencies step by step, and the transmit switch 216 and the receive switch 217 select all the transmit / receive antenna pairs in order for each frequency.
  • the amount of signal processing result data that should be retained for wireless transmission is smaller than that in the control example b.
  • the scale of the memory may be 1 / n of the control example b in order to hold the data of the signal processing result.
  • the control example d when comparing the number of times the transmitter switches the frequency of the transmission signal between the activation of the sensor device 200 and the sleep, the control example d has the smallest number of times of switching the frequency among the control examples a to d.
  • the total time for switching the frequency of the PLL (Phase Locked Loop) in the transmitter 214 from the activation of the sensor device 200 to the sleep is the largest. Since it can be shortened, the measurement time can be shortened and the power consumption can be reduced.
  • the frequency switching time of the PLL is about 100 microseconds ( ⁇ s)
  • the switching time of the transmission switch 216 is about 100 nanoseconds (ns).
  • FIG. 129 is a diagram showing an example of a transmission signal for each antenna (each transmission / reception antenna pair) of control examples a, b, and c in the first embodiment of the present technology.
  • the first antenna transmitting antenna 221 outputs transmission signals having frequencies f 1 to f N in order
  • the second antenna transmitting antenna 222 outputs frequencies f 1 to f.
  • the transmission signals of N are output in order.
  • the third antenna (transmitting antenna 223) outputs transmission signals having frequencies f1 to fN in order.
  • FIG. 130 is a diagram showing an example of a transmission signal for each antenna (each transmission / reception antenna pair) of the control example d in the first embodiment of the present technology.
  • the first to third antennas sequentially output a transmission signal having a frequency f1
  • the first to third antennas sequentially output a transmission signal having a frequency f2.
  • the same control is executed up to the frequency f N.
  • FIG. 131 is a diagram showing another example of the sensor device 200 according to the first embodiment of the present technology. Comparing the sensor device 200 shown in FIG. 4 with the sensor device 200 shown in FIG. 131, the former (FIG. 4) has a battery inside the measuring unit housing 310, while the latter (FIG. 131) measuring unit.
  • the housing 310 is not provided with a battery, and the form is such that power is supplied from the outside of the sensor device 200 or the sensor device 200 itself produces power by using a solar cell or the like.
  • the measurement unit substrate 311 is arranged so that the size in the X-axis direction and the size in the Y-axis direction are larger than the size in the Z-axis direction. In other words, the largest surface of the measuring unit substrate 311 is arranged so as to extend in the direction perpendicular to the ground surface.
  • the center line of the transmitting probe housing 320a indicating the extending direction of the transmitting probe housing 320a and the extending direction of the receiving probe housing 320b.
  • the measurement unit substrate 311 is arranged so that the center line of the receiving probe housing 320b, one plane including the two line segments, and the maximum surface provided on the measurement unit substrate 311 are parallel to each other. ing.
  • the measurement unit housing 310 that houses the measurement unit substrate 311 also has a larger size in the X-axis direction and a larger size in the Y-axis direction than the size in the Z-axis direction. , Are placed.
  • the largest surface of the measuring unit housing 310 is arranged so as to extend in the direction perpendicular to the ground surface.
  • the center line of the transmitting probe housing 320a indicating the extending direction of the transmitting probe housing 320a and the extending direction of the receiving probe housing 320b.
  • the measuring unit housing 310 is provided so that the center line of the receiving probe housing 320b, one plane including the two line segments, and the maximum surface provided in the measuring unit housing 310 are parallel to each other. It is arranged.
  • the sensor device 200 shown in FIG. 131 is located between the two probe housings 320 as compared with the form not provided with this arrangement structure, and is the soil for which the water content is to be measured.
  • the sensor device 200 shown in FIG. 131 is located between the two probe housings 320 as compared with the form not provided with this arrangement structure, and is the soil for which the water content is to be measured.
  • there is an effect that rainfall or watering from above the sensor device 200 is likely to enter in other words, it is likely to be the same as soil in which the sensor device is not arranged).
  • FIG. 132 is a simplified diagram showing an example of the sensor device 200 shown in FIG. 4 according to the first embodiment of the present technology.
  • the sensor device 200 shown in FIG. 132 represents a form in which a battery is provided inside the measuring unit housing 310. Therefore, the sensor device 200 shown in FIG. 132 has a larger size in the Z-axis direction of the measuring unit housing 310 than the sensor device 200 shown in FIG. 131.
  • the measurement unit substrate 311 is arranged so that the size in the X-axis direction and the size in the Y-axis direction are larger than the size in the Z-axis direction.
  • the largest surface of the measuring unit substrate 311 is arranged so as to extend in the direction perpendicular to the ground surface.
  • the center line of the transmitting probe housing 320a indicating the extending direction of the transmitting probe housing 320a and the extending direction of the receiving probe housing 320b.
  • the measurement unit substrate 311 is arranged so that the center line of the receiving probe housing 320b, one plane including the two line segments, and the maximum surface provided on the measurement unit substrate 311 are parallel to each other. ing.
  • the measuring unit housing 310 is arranged so that the size in the X-axis direction and the size in the Y-axis direction are larger than the size in the Z-axis direction.
  • the largest surface of the measuring unit housing 310 is arranged so as to extend in the direction perpendicular to the ground surface.
  • the center line of the transmitting probe housing 320a indicating the extending direction of the transmitting probe housing 320a and the extending direction of the receiving probe housing 320b.
  • the measuring unit housing 310 is provided so that the center line of the receiving probe housing 320b, one plane including the two line segments, and the maximum surface provided in the measuring unit housing 310 are parallel to each other. It is arranged.
  • the sensor device 200 shown in FIG. 132 is located between the two probe housings 320 and is the soil for which the water content is to be measured, as compared with the form not provided with this arrangement structure.
  • there is an effect that rainfall or watering from above the sensor device 200 is likely to enter in other words, it is likely to be the same as soil in which the sensor device is not arranged).
  • FIGS. 133 and 134 are diagrams showing an example of a sensor device 200 in which a rain gutter is added to the sensor device 200 shown in FIGS. 131 and 132.
  • gutters 362 to 364 that drain rainfall and sprinkling water to the outside can also be added.
  • the gutter 362 is provided at the bottom of the measuring unit housing 310, and the gutters 363 and 364 are provided at the top of the probe housing 320. As a result, it is possible to reduce the case where the measuring unit housing 310 collects rain and water sprinkled from the lateral direction and flows them into the interface between the probe and the soil.
  • FIG. 135 is a diagram for explaining the strength of the probe housing 320 provided in the sensor device 200 according to the first embodiment of the present technology.
  • a in the figure shows the state before deformation when one end of the probe housing 320 is fixed and a constant load is applied to the other end.
  • Reference numeral b in the figure shows the state of the probe housing 320 after deformation.
  • c shows a state before deformation when one end of the probe inner substrate 321 is fixed and a constant load is applied to the other end.
  • d indicates the state of the substrate inside the probe 321 after deformation.
  • the strength of the probe inner substrate 322 is the same as that of the probe inner substrate 321.
  • the strength of the probe housing 320 is higher than that of the probe inner substrates 321 and 322.
  • “high strength” means that, as illustrated in the figure, the amount of deformation of the housing when one end of the probe housing 320 is fixed and a constant load is applied to the other end is the probe. It means that it is smaller than the amount of deformation of the substrate when one end of the inner substrate 321 is fixed and a constant load is applied to the other end.
  • the sensor device 200 of the present invention is (1) A transmitting probe housing 320a containing a transmitting antenna (for example, 223) for transmitting electromagnetic waves and a receiving probe housing 320b containing a receiving antenna (for example, 233) for receiving electromagnetic waves are provided. It is a sensor device that measures the propagation characteristics of electromagnetic waves transmitted from and received by the receiving antenna, thereby measuring the amount of water in the medium.
  • Both the transmitting probe housing 320a and the receiving probe housing 320b are formed of a material (electromagnetic wave transmitting material) that transmits an electromagnetic wave transmitted from the transmitting antenna and an electromagnetic wave received by the receiving antenna.
  • the strength of the transmitting probe housing 320a and the receiving probe housing 320b formed of the electromagnetic wave transmitting material is higher than the strength of the electronic board (wiring board) housed inside these housings. Structure, To prepare for.
  • the sensor device 200 of the present invention “deforms the probe housing when the probe housing is inserted into the soil, and as a result, the electronic substrate housed in the housing is deformed. As a result, the distance between the transmitting antenna and the receiving antenna formed on this electronic board changes from a predetermined value, which causes an error in the measurement result of the water content. ” It has the effect of enabling accurate measurement of water content.
  • FIG. 136 is a block diagram showing a configuration example of the measurement circuit 210 according to the first embodiment of the present technology.
  • the measuring circuit 210 includes a directional coupler 410, a transmitter 420, an incident wave receiver 430, a reflected wave receiver 440, a transmitted wave receiver 450, a sensor control unit 470, a sensor communication unit 212, and an antenna 213.
  • a vector network analyzer is used as the measurement circuit 210.
  • the transmitter 420 of FIG. 136 corresponds to the transmitter 214 of FIG. Further, the incident wave receiver 430, the reflected wave receiver 440, and the transmitted wave receiver 450 correspond to the receiver 215 of FIG.
  • the sensor control unit 470 corresponds to the sensor control unit 211 in FIG. In FIG. 3, the directional coupler 410 is omitted.
  • the directional coupler 410 separates the electric signal transmitted through the transmission lines 229-1 to 229-3 into an incident wave and a reflected wave.
  • the incident wave is a wave of an electric signal transmitted by the transmitter 420
  • the reflected wave is a wave reflected by the incident wave at the end of the transmitting probe.
  • the directional coupler 410 supplies the incident wave to the incident wave receiver 430 and supplies the reflected wave to the reflected wave receiver 440.
  • the transmitter 420 transmits an electric signal having a predetermined frequency as a transmission signal to the transmission probe via the directional coupler 410 and the transmission lines 229-1 to 229-3.
  • a CW (Continuous Wave) wave is used as the incident wave in the transmission signal.
  • the transmitter 420 transmits a transmission signal, for example, in a frequency band of 1 to 9 gigahertz (GHz) by sequentially switching frequencies in steps of 50 megahertz (MHz).
  • the incident wave receiver 430 receives the incident wave from the directional coupler 410.
  • the reflected wave receiver 440 receives the reflected wave from the directional coupler 410.
  • the transmitted wave receiver 450 receives the transmitted wave from the receiving probe.
  • the transmitted wave is an electromagnetic wave transmitted through a medium between the transmitting probe and the receiving probe, which is converted into an electric signal by the receiving probe.
  • the incident wave receiver 430, the reflected wave receiver 440, and the transmitted wave receiver 450 perform orthogonal detection and AD (Analog to Digital) conversion on the received incident wave, reflected wave, and transmitted wave as received data. It is supplied to the sensor control unit 470.
  • AD Analog to Digital
  • the sensor control unit 470 controls the transmitter 420 to transmit a transmission signal including an incident wave, and performs a process of obtaining a reflection coefficient and a transmission coefficient.
  • the reflection coefficient is the ratio of the complex amplitudes of the incident wave and the reflected wave as described above.
  • the transmission coefficient is the ratio of the complex amplitudes of the incident wave and the transmitted wave.
  • the sensor control unit 470 supplies the obtained reflection coefficient and transmission coefficient to the sensor communication unit 212.
  • the sensor communication unit 212 transmits data indicating the reflection coefficient and the transmission coefficient as measurement data to the central processing unit 150 via the communication path 110.
  • the frequency characteristics of the directional coupler 410, the transmitter 420 and the receiver are calibrated before the measurement. Is being executed.
  • FIG. 137 is a diagram showing a configuration example of the directional coupler 410 according to the first embodiment of the present technique.
  • the directional coupler 410 includes transmission lines 411, 421 and 413 and termination resistors 414 and 415.
  • the directional coupler 410 can be mounted, for example, by a bridge coupler suitable for miniaturization.
  • the transmission line 411 is connected to the transmitter 420, and the other end is connected to the transmission probe via the transmission switch 216.
  • the transmission line 412 is shorter than the transmission line 411 and is a line that is electromagnetically coupled to the transmission line 411.
  • a terminating resistor 414 is connected to one end of the transmission line 412, and the other end is connected to the reflected wave receiver 440.
  • the transmission line 413 is shorter than the transmission line 411 and is a line that is electromagnetically coupled to the transmission line 411.
  • a terminating resistor 415 is connected to one end of the transmission line 413, and the other end is connected to the incident wave receiver 430.
  • the directional coupler 410 separates the electrical signal into the incident wave and the reflected wave and supplies them to the incident wave receiver 430 and the reflected wave receiver 440.
  • FIG. 138 is a circuit diagram showing a configuration example of a transmitter 420 and a receiver according to the first embodiment of the present technology.
  • a is a circuit diagram showing a configuration example of the transmitter 420
  • b in the figure is a circuit diagram showing a configuration example of the incident wave receiver 430.
  • c is a circuit diagram showing a configuration example of the reflected wave receiver 440
  • d in the figure is a circuit diagram showing a configuration example of the transmitted wave receiver 450.
  • the transmitter 420 includes a transmission signal oscillator 422 and a driver 421.
  • the transmission signal oscillator 422 generates an electric signal as a transmission signal under the control of the sensor control unit 470.
  • the driver 421 outputs a transmission signal to the directional coupler 410.
  • This transmission signal S (t) is expressed by, for example, the following equation.
  • S (t)
  • t represents time, and the unit is, for example, nanoseconds (ns).
  • cos () indicates a cosine function.
  • f indicates a frequency, and the unit is, for example, hertz (Hz).
  • represents a phase, and the unit is, for example, a radian.
  • the incident wave receiver 430 includes a mixer 431, a bandpass filter 432, and an ADC 433.
  • the mixer 431 performs orthogonal detection by mixing two local signals having a phase difference of 90 degrees and a transmission signal. By this orthogonal detection, a complex amplitude composed of the common mode component I I and the orthogonal component Q I is obtained. These common mode components I I and orthogonal component Q I are expressed by, for example, the following equations.
  • the mixer 431 supplies the complex amplitude to the ADC 433 via the bandpass filter 432.
  • I I
  • Q I
  • sin ( ⁇ ) represents a sine function.
  • the bandpass filter 432 passes components in a predetermined frequency band.
  • the ADC 433 performs AD conversion.
  • the ADC 433 generates data indicating complex amplitude by AD conversion and supplies it to the sensor control unit 470 as received data.
  • the reflected wave receiver 440 includes a mixer 441, a bandpass filter 442, and an ADC 443.
  • the configuration of the mixer 441, the bandpass filter 442 and the ADC 443 is the same as that of the mixer 431, the bandpass filter 432 and the ADC 433.
  • the reflected wave receiver 440 performs orthogonal detection of the reflected wave, acquires a complex amplitude composed of the in-phase component IR and the orthogonal component QR , and supplies received data indicating the complex amplitude to the sensor control unit 470.
  • the transmitted wave receiver 450 includes a receiver 451, a local signal oscillator 452, a mixer 453, a bandpass filter 454, and an ADC 455.
  • the configuration of the mixer 453, the bandpass filter 454 and the ADC 455 is the same as that of the mixer 431, the bandpass filter 432 and the ADC 433.
  • the receiver 451 receives an electric signal including a transmitted wave via the reception switch 217 and outputs it to the mixer 453.
  • the local signal oscillator 452 generates two local signals that are 90 degrees out of phase.
  • the transmitted wave receiver 450 acquires a complex amplitude composed of an in-phase component IT and an orthogonal component QT by orthogonally detecting the transmitted wave, and supplies data indicating the complex amplitude to the sensor control unit 470 as received data.
  • the circuits of the transmitter 420 and the receiver are not limited to the circuits illustrated in the figure as long as they can transmit and receive incident waves and the like.
  • FIG. 139 is a block diagram showing a configuration example of the sensor control unit 470 according to the first embodiment of the present technology.
  • the sensor control unit 470 includes a transmission control unit 471, a reflection coefficient calculation unit 472, and a transmission coefficient calculation unit 473.
  • the transmission control unit 471 controls the transmitter 420 to transmit a transmission signal.
  • the reflection coefficient calculation unit 472 calculates the reflection coefficient ⁇ for each frequency.
  • j is an imaginary unit.
  • IR and QR are common mode components and orthogonal components generated by the reflected wave receiver 440.
  • the reflectance coefficient calculation unit 472 calculates the reflectance coefficient by the equation 3 for each of N (N is an integer) frequencies f 1 to f N. Let these N reflection coefficients be ⁇ 1 to ⁇ N. The reflection coefficient calculation unit 472 supplies those reflection coefficients to the sensor communication unit 212.
  • the transmission coefficient calculation unit 473 calculates the transmission coefficient T for each frequency.
  • IT and QT are common mode components and orthogonal components generated by the transmitted wave receiver 450.
  • the transmission coefficient calculation unit 473 calculates the transmission coefficient by the equation 4 for each of the N frequencies f 1 to f N. Let these N reflection coefficients be T 1 to TN. The transmission coefficient calculation unit 473 supplies those transmission coefficients to the central processing unit 150 via the sensor communication unit 212.
  • FIG. 140 is a block diagram showing a configuration example of a signal processing unit 154 in the central processing unit 150 according to the first embodiment of the present technology.
  • the central processing unit 150 includes a round-trip delay time calculation unit 162, a propagation transmission time calculation unit 163, a water content measurement unit 164, and a coefficient holding unit 165 in the signal processing unit 154.
  • the antenna 152, the central control unit 151, the storage unit 155, and the output unit 156 of FIG. 2 are omitted.
  • the central communication unit 153 supplies the reflection coefficients ⁇ 1 to ⁇ N in the measurement data to the reciprocating delay time calculation unit 162, and supplies the transmission coefficients T 1 to TN in the measurement data to the propagation transmission time calculation unit 163.
  • the reciprocating delay time calculation unit 162 calculates the time for the electric signal to reciprocate between the transmission lines 229-1 to 229-3 as the reciprocating delay time based on the reflection coefficient.
  • the reciprocating delay time calculation unit 162 obtains the impulse response h ⁇ (t) by performing an inverse Fourier transform on the reflection coefficients ⁇ 1 to ⁇ N .
  • the round-trip delay time calculation unit 162 obtains the time difference between the timing of the peak value of the impulse response h ⁇ (t) and the transmission timing of the CW wave as the round-trip delay time ⁇ 11 , and supplies the time difference to the water content measuring unit 164.
  • the propagation transmission time calculation unit 163 propagates and transmits the medium and the transmission transmission lines 229-1 to 229-3 and the reception transmission lines 239-1 to 239-3 by the electromagnetic wave and the electric signal based on the transmission coefficient. The time is calculated as the propagation transmission time.
  • the propagation transmission time calculation unit 163 obtains an impulse response hT (t) by performing an inverse Fourier transform on the transmission coefficients T1 to TN . Then, the propagation transmission time calculation unit 163 obtains the time difference between the timing of the peak value of the impulse response hT (t) and the transmission timing of the CW wave as the propagation transmission time ⁇ 21 , and supplies the time difference to the water content measurement unit 164.
  • the water content measuring unit 164 measures the water content based on the round-trip delay time ⁇ 11 and the propagation transmission time ⁇ 21 .
  • the water content measuring unit 164 first calculates the propagation delay time ⁇ d from the round-trip delay time ⁇ 11 and the propagation transmission time ⁇ 21 .
  • the propagation delay time is the time for the electromagnetic wave to propagate through the medium between the transmitting probe and the receiving probe.
  • the respective units of the round-trip delay time ⁇ 11 and the propagation transmission time ⁇ 21 and the propagation delay time ⁇ d are, for example, nanoseconds (ns).
  • the water content measuring unit 164 reads out the coefficients a and b indicating the relationship between the water content and the propagation delay time ⁇ d from the coefficient holding unit 165, and the propagation delay time ⁇ d calculated by the equation 5 is calculated by the following equation. Substitute in to measure the water content x. Then, the water content measuring unit 164 outputs the measured water content to an external device or device as needed.
  • ⁇ d a ⁇ x + b ⁇ ⁇ ⁇ Equation 6
  • the unit of the water content x is, for example, a volume percent (%).
  • the coefficient holding unit 165 holds the coefficients a and b.
  • a non-volatile memory or the like is used as the coefficient holding unit 165.
  • FIG. 141 is a diagram for explaining a propagation path and a transmission path of electromagnetic waves and electric signals in the first embodiment of the present technology.
  • the transmitter 420 transmits an electric signal including an incident wave to the transmission probe as a transmission signal via a transmission transmission line 229-1 to 229-3 having a tip embedded in the transmission probe.
  • a transmission transmission line 229-1 to 229-3 having a tip embedded in the transmission probe.
  • only one of the receiving transmission lines 239-1 to 239-3 is shown. Further, only one of the transmission lines 229-1 to 229-3 for transmission is described.
  • the incident wave is reflected at the end of the transmitting probe, and the reflected wave is received by the reflected wave receiver 440.
  • the electric signal including the incident wave and the reflected wave reciprocates in the transmission lines 229-1 to 229-3 for transmission.
  • the thick solid arrow in the figure indicates a path in which an electric signal reciprocates through a transmission transmission line 229-1 to 229-3.
  • the time for the electric signal to reciprocate on this path corresponds to the reciprocating delay time ⁇ 11 .
  • the electric signal including the incident wave is converted into an electromagnetic wave EW by the transmitting probe and transmitted (in other words, propagated) through the medium between the transmitting probe and the receiving probe.
  • the receiving probe converts the electromagnetic wave EW into an electric signal.
  • the transmitted wave receiver 450 receives the transmitted wave in the electric signal via the receiving transmission lines 239-1 to 239-3. That is, an electric signal including an incident wave is transmitted through a transmission line 229-1 to 229-3, is converted into an electromagnetic wave EW and propagates through a medium, is converted into an electric signal including a transmitted wave, and is converted into a receiving transmission line 239. -1 to 239-3 are transmitted.
  • the thick dotted arrow in the figure indicates that the electromagnetic wave and the electric signal (incident wave and transmitted wave) are the medium and the transmission lines 229-1 to 229-3 and the reception lines 239-1 to 239-3. Shows the route propagated and transmitted.
  • the time for electromagnetic waves and electrical signals to propagate and transmit along this path corresponds to the propagation transmission time ⁇ 21 .
  • the sensor control unit 470 obtains the reflection coefficient ⁇ and the transmission coefficient T by the equations 3 and 4. Then, the central processing apparatus 150 obtains the round-trip delay time ⁇ 11 and the propagation transmission time ⁇ 21 from the reflection coefficient ⁇ and the transmission coefficient T.
  • the path from the transmission of the incident wave to the reception of the transmitted wave includes the medium and the transmission transmission lines 229-1 to 229-3 and the reception transmission lines 239-1 to 239-3. Therefore, the propagation delay time ⁇ d at which the electromagnetic wave propagates through the medium is the propagation transmission time ⁇ 21 , and the electric signal passes through the transmission transmission lines 229-1 to 229-3 and the reception transmission lines 239-1 to 239-3. It is obtained by the difference from the delay time for transmission. Assuming that the transmission lines 229-1 to 229-3 and the reception lines 239-1 to 239-3 have the same length, the delay time for transmitting the transmission lines 229-1 to 229-3. And the delay time for transmitting the reception transmission lines 239-1 to 239-3 are the same.
  • the total delay time for the electric signal to transmit the transmission lines 229-1 to 229-3 and the reception transmission lines 239-1 to 239-3 is the transmission transmission lines 229-1 to 229-3. It is equal to the round-trip delay time ⁇ 11 . Therefore, the equation 5 holds, and the central processing unit 150 can calculate the propagation delay time ⁇ d by the equation 5.
  • the central processing apparatus 150 calculates the propagation delay time from the obtained round-trip delay time ⁇ 11 and the propagation transmission time ⁇ 21 , and measures the amount of water contained in the medium from the propagation delay time and the coefficients a and b. I do.
  • FIG. 142 is a graph showing an example of the relationship between the round-trip delay time and the propagation transmission time and the water content in the first embodiment of the present technology.
  • the vertical axis shows the round-trip delay time or the propagation transmission time
  • the horizontal axis shows the water content.
  • the dotted line in the figure shows the relationship between the round-trip delay time and the water content.
  • the solid line shows the relationship between the propagation transmission time and the water content.
  • the round-trip delay time is constant regardless of the amount of water. On the other hand, as the amount of water increases, the propagation transmission delay time becomes longer.
  • FIG. 143 is a graph showing an example of the relationship between the propagation delay time and the water content in the first embodiment of the present technique.
  • the vertical axis shows the propagation delay time
  • the horizontal axis shows the water content.
  • the straight line in the figure is obtained by obtaining the difference between the propagation transmission time and the round-trip delay time for each water content in FIG. 142.
  • Equation 6 is the slope of a straight line in the figure, and the coefficient b is an intercept.
  • FIG. 144 is a block diagram showing another configuration example of the measurement circuit 210 according to the first embodiment of the present technology.
  • the measurement circuit 210 of FIG. 136 includes two receivers for receiving the reflected wave and the transmitted wave, that is, a reflected wave receiver 440 and a transmitted wave receiver 450.
  • the measurement circuit 210 of FIG. 144 is configured to share one second receiver 455 as a receiver for receiving the reflected wave and the transmitted wave. More specifically, in the measurement circuit 210, the reflected wave and the transmitted wave are switched by the switch 445 controlled by the sensor control unit 470 and received in time division by one second receiver 455. The reception result of the second receiver 455 is output to the sensor control unit 470.
  • the size of the measuring circuit 210 is reduced as compared with the case of FIG. 136, and as a result, the size of the moisture measuring system 100 is reduced and the manufacturing cost thereof is also reduced.
  • FIG. 145 is a block diagram showing another configuration example of the sensor device 200 according to the first embodiment of the present technology.
  • the measurement circuit 210 in the figure is different from the circuit in FIG. 136 in that the sensor signal processing unit 460 is provided instead of the sensor communication unit 212.
  • the configuration of the sensor signal processing unit 460 is the same as that of the signal processing unit 154 in the central processing unit 150 of the first embodiment.
  • the function of the sensor control unit 470 is realized by, for example, a DSP (Digital Signal Processing) circuit.
  • DSP Digital Signal Processing
  • the measurement circuit 210 may be mounted on a single semiconductor chip. As a result, the functions of the measurement circuit 210 and the signal processing unit 154 can be realized by a single semiconductor chip.
  • FIG. 146 is a flowchart showing an example of the operation of the moisture measurement system 100 according to the first embodiment of the present technology. The operation in the figure is started, for example, when a predetermined application for measuring water content is executed.
  • the pair of transmission probe and reception probe transmit and receive electromagnetic waves (step S901).
  • the measuring circuit 210 calculates the reflection coefficient from the incident wave and the reflected wave (step S902), and calculates the transmission coefficient from the incident wave and the transmitted wave (step S903).
  • the central processing unit 150 calculates the round-trip delay time from the reflection coefficient (step S904), and calculates the propagation transmission time from the transmission coefficient (step S905).
  • the central processing apparatus 150 calculates the propagation delay time from the round-trip delay time and the propagation transmission time (step S906), and calculates the water content from the propagation delay time and the coefficients a and b (step S907).
  • the moisture measurement system 100 ends the operation for measurement.
  • the radio wave absorbing unit will be described.
  • the transmissive moisture sensor of the present invention transmits a wide band radio wave, and the transmitted radio wave needs to be received by the receiver.
  • the radio wave is reflected and becomes noise to calculate the peak of the impulse response, the peak position may shift and the delay time may shift. Therefore, there is a demand for measures that do not generate a noise source in a wide band and noise removal when it occurs.
  • unnecessary radiation increases significantly and it is difficult to suppress radio waves.
  • a radio wave absorbing unit 341 or the like is installed around the probe excluding the antenna.
  • the first is a method of installing a radio wave absorber on a substrate or a coaxial cable. For example, a method of fitting on a substrate, a method of placing on a substrate, a method of attaching to a substrate, and a method of wrapping around a substrate are used. When installing on the board only up and down or left and right, it may be larger than the board width.
  • the second method is to install it in advance in the external housing or at the same time as installing the board layer.
  • a method of burying in a resin at the time of molding the housing and a method of mixing a radio wave absorber with the resin and molding are used. If the radio wave absorber has hygroscopicity, the outside may be separately covered with another resin or coated with paint or the like.
  • a method of fitting a radio wave absorber after molding the housing, a method of attaching the radio wave absorber, and a method of putting a solution mixed with the radio wave absorber and a substrate at the time of molding the housing and hardening the substrate are used. At that time, it is desirable to cover the radio wave transmitting / receiving portion with another resin or an O-ring so that the radio wave absorber does not adhere.
  • a method of applying a radio wave absorber to the inside of the housing is also conceivable.
  • the third method is to combine the radio wave absorber with a ferrite, a sheet, a radio wave absorber film or a coating material. In this case, it may be applied to a gap such as ferrite.
  • the radio wave absorber As the installation position and installation method of the radio wave absorber with respect to the board, it is installed on the upper and lower surfaces equal to or more than the board width, but the wider the board width, the higher the installation effect of the radio wave absorber, and the entire surface. It is desirable to cover it.
  • the lower end of the radio wave absorption unit is the upper end of the antenna.
  • the distance from the lower end of the antenna to the lower end of the radio wave absorbing part is preferably less than half the wavelength of the center frequency or within the wavelength bandwidth including the length of the antenna itself.
  • the center frequency is 5 gigahertz (GHz) and its wavelength is 60 millimeters (mm).
  • the distance from the lower end of the antenna to the lower end of the radio wave absorbing portion is preferably 30 mm or less. Since the bandwidth is 8 GHz, the resolution is 37.5 mm (mm), and the distance to the lower end of the radio wave absorbing unit can be made less than the resolution.
  • the radio wave absorber may be installed in the probe or in the outer case.
  • the exterior it may be applied or installed when the exterior is molded, cut or kneaded, or after the exterior is completed.
  • Magnetic material As a component of the material of the radio wave absorber (1) Magnetic material (2) Conductive polymer (3) Dielectric polymer (4) Metamaterial can be used.
  • (E) Fluid material that solidifies after application, etc.) Can be mentioned.
  • any of the components (1), (2), (3), and (4) may be used in the state (a). The same applies to the states (b), (c) and (d). In the state (e), the components (1), (2) and (3) are used.
  • the method of adhering it is possible to use the method of adhering, the method of fitting using a fixing material such as an O-ring, the method of embedding, the method of inserting, the method of winding, and the method of applying.
  • FIG. 147 is a diagram showing an example of a covered portion of the radio wave absorbing units 341 and 344 in the first embodiment of the present technology.
  • the number of antennas on the transmitting side and the receiving side is one.
  • the transmitting antenna 221 including the radiating element 330 is arranged on the transmitting side, and the receiving antenna 231 including the radiating element 333 is arranged on the receiving side.
  • Radio wave absorbing units 341 and 344 are formed at locations other than these antennas.
  • the radio wave absorbing part covers the entire probe other than the antenna.
  • the lower end of the radio wave absorbing portion is the upper end of the antenna, as illustrated in b in the figure.
  • the lower end of the radio wave absorbing unit can be separated from the upper end of the antenna.
  • the distance from the lower end of the antenna to the lower end of the radio wave absorbing portion is less than half the wavelength of the center frequency including the length of the antenna itself, or within the wavelength bandwidth.
  • FIG. 148 is a diagram showing a comparative example not covered by the radio wave absorbing portion.
  • FIG. 149 is a diagram showing an example in which one side of the probe inner substrates 321 and 322 is covered in the first embodiment of the present technique. As illustrated in a in the figure, the side of both sides of the probe inner substrate 321 on which the transmitting antenna 221 is not formed can be further covered by the radio wave absorbing unit 347. Of both sides of the probe inner substrate 322, the side on which the receiving antenna 231 is not formed is also covered with the radio wave absorbing unit 348.
  • the lower end of the radio wave absorbing portion is the upper end of the antenna.
  • the lower end of the radio wave absorbing unit can be separated from the upper end of the antenna.
  • FIG. 150 is a diagram showing an example in which the tip of the probe is further covered in the first embodiment of the present technique. As illustrated in a in the figure, the tip of the probe provided with the positioning portions 351 and 352 can be further covered by the radio wave absorbing portions 349 and 350.
  • the lower end of the radio wave absorbing portion is the upper end of the antenna.
  • the lower end of the radio wave absorbing unit can be separated from the upper end of the antenna.
  • FIG. 151 is a diagram showing an example in which only the tip is covered in the first embodiment of the present technique. As illustrated in the figure, it is also possible to cover only the tip with the radio wave absorbing portions 349 and 350.
  • FIG. 152 is a diagram showing an example in which one side and the tip of the probe inner substrates 321 and 322 are covered with the first embodiment of the present technique. As illustrated in a in the figure, both one side of the probe inner substrates 321 and 322 and the tip of the probe can be further covered.
  • the lower end of the radio wave absorbing portion is the upper end of the antenna.
  • the lower end of the radio wave absorbing unit can be separated from the upper end of the antenna.
  • FIG. 153 is a diagram showing an example of the shape of the radio wave absorbing unit 341 in the first embodiment of the present technology.
  • the radio wave absorbing unit 341 is composed of one or more parts.
  • the outer and inner shapes of the radio wave absorbing unit 341 may be circular or polygonal.
  • a shows a top view and a side view of the radio wave absorbing unit 341 whose outside and inside are circular.
  • b shows a top view and a side view of the radio wave absorbing unit 341 having a circular outside and a rectangular inside.
  • c shows a top view and a side view of the radio wave absorbing unit 341 having a rectangular shape on the outside and a circular shape on the inside.
  • d shows a top view and a side view of the radio wave absorbing unit 341 whose outside and inside are rectangular.
  • e shows a side view of the radio wave absorbing unit 341 in which the spiral groove is formed.
  • the structure When forming the spiral groove, the structure may be easy to install in advance in the housing into which the substrate or the semi-rigid cable is inserted.
  • the radio wave absorbing unit 341 When the falite material is used, the radio wave absorbing unit 341 has a thickness of 5 mm or more. In the case of a film or coating film, it should be 100 um or more.
  • the structure of the radio wave absorbing unit other than the radio wave absorbing unit 341 is the same as that of the radio wave absorbing unit 341.
  • the planar transmitting antenna 221 is fixedly arranged so as to face the receiving antenna 231 so that the distance between the antennas is a predetermined distance, and thus transmission is performed.
  • the loss can be reduced and the moisture in the soil can be measured accurately.
  • the probe inner substrates 321 and 322 are connected in the orthogonal direction to the measuring unit substrate 311 to face the antenna, but in this configuration, in addition to the three substrates, for connection. Connector and cable are required, which complicates the structure.
  • the sensor device 200 of the first modification of the first embodiment is different from the first embodiment in that the antennas are opposed to each other by twisting a part of the flexible substrate.
  • FIG. 154 is a diagram showing an example of a sensor device 200 using the flexible substrate 271 in the first modification of the first embodiment of the present technology.
  • one flexible substrate 271 is used instead of the three measuring unit substrates 311 and the probe inner substrate 321 and the probe inner substrate 322. Is provided.
  • a indicates a flexible substrate 271 before twisting the tip
  • b in the figure shows a flexible substrate 271 after twisting the tip.
  • the sensor housing 305 is omitted.
  • the flexible substrate 271 has a pair of protrusions, and a transmitting antenna 221 and a receiving antenna 231 are arranged at the tips thereof. Further, a measurement circuit 210 is arranged on the flexible substrate 271.
  • the transmitting antenna 221 and the receiving antenna 231 can be made to face each other.
  • the number of parts can be reduced and the structure can be simplified as compared with the first embodiment in which three boards are connected.
  • FIG. 155 is a diagram showing an example of a sensor device 200 using a flexible substrate and a rigid substrate in the first modification of the first embodiment of the present technology.
  • a is an example of using one rigid substrate
  • b in the figure is an example of using three rigid substrates.
  • the rigid substrate 275 and the elongated flexible substrates 271 and 272 can be connected and arranged in the sensor device 200.
  • a measurement circuit 210 is arranged on the rigid substrate 275.
  • a transmitting antenna 221 is arranged on the flexible board 271, and a receiving antenna 231 is arranged on the flexible board 272.
  • the rigid substrates 275, 276 and 277 can be connected to the elongated flexible substrates 271 and 272 and arranged in the sensor device 200.
  • a rigid substrate 276 is connected to the tip of the flexible substrate 271, and a transmitting antenna 221 is provided on the rigid substrate 276.
  • a rigid substrate 277 is connected to the tip of the flexible substrate 272, and a receiving antenna 231 is provided on the rigid substrate 277.
  • FIG. 156 is a diagram showing an example of the sensor device 200 when the number of antennas in the first modification of the first embodiment of the present technology is increased.
  • a indicates a flexible substrate 271 before twisting the tip
  • b in the figure shows a flexible substrate 271 after twisting the tip.
  • multiple pairs of antennas can be arranged.
  • FIG. 157 is a diagram showing an example of a sensor device 200 using a flexible substrate and a rigid substrate when the number of antennas is increased in the first modification of the first embodiment of the present technique.
  • a is an example in which a plurality of pairs of antennas are provided and one rigid substrate is used
  • b in the figure is an example in which a plurality of pairs of antennas are provided and five rigid substrates are used.
  • the rigid substrate 276 is connected to the tip of the flexible substrate 271, and the transmitting antenna 221 is provided on the rigid substrate 276.
  • a rigid substrate 277 is connected to the tip of the flexible substrate 272, and a receiving antenna 231 is provided on the rigid substrate 277.
  • a flexible substrate 273 is provided between the rigid substrate 276 and the rigid substrate 278, and a transmission antenna 222 is provided on the rigid substrate 278.
  • a flexible substrate 274 is provided between the rigid substrate 277 and the rigid substrate 279, and a receiving antenna 232 is provided on the rigid substrate 278.
  • FIG. 158 is a diagram showing an example of a sensor device 200 in which a transmission line is wired for each antenna in the first modification of the first embodiment of the present technology.
  • a indicates a flexible substrate 271 before twisting the tip
  • b in the figure shows a flexible substrate 271 after twisting the tip.
  • the transmission line can be wired for each antenna as illustrated in the figure.
  • FIG. 159 is a diagram showing an example of a sensor device 200 in which a transmission line is wired for each antenna in the first modification of the first embodiment of the present technology, and a flexible substrate and a rigid substrate are used.
  • a is an example in which a plurality of pairs of antennas are provided and one rigid substrate is used
  • b in the figure is an example in which a plurality of pairs of antennas are provided and five rigid substrates are used.
  • FIG. 160 is a diagram showing an example of a sensor device 200 in which a substrate is arranged in a hard shell sensor housing 305 in a first modification of the first embodiment of the present technology.
  • a is an example in which one rigid substrate 275 and the flexible substrates 271 and 272 are connected and arranged, and in FIG. This is an example.
  • the flexible substrate 271 and the like are soft and easily deformed, they may be installed in the sensor housing 305 of the hard shell as illustrated in a in the figure for the purpose of maintaining the shape. As illustrated in b in the figure, it can also be covered with radio wave absorbing units 341 and 344.
  • the shape can be maintained by using a hard shell.
  • the distance between the antennas affects the characteristics, so maintaining the distance between the antennas is a great advantage.
  • the radio wave absorbing unit 341 or the like together, unnecessary reflected waves can be absorbed and the characteristics can be improved.
  • FIG. 161 is a diagram showing an example of a sensor device in which the number of antennas is increased and a substrate is arranged in a hard shell sensor housing 305 in the first modification of the first embodiment of the present technology.
  • a is an example in which a plurality of pairs of antennas are provided and one rigid substrate is used
  • b in the figure is an example in which a plurality of pairs of antennas are provided and five rigid substrates are used.
  • the sensor device 200 is more than the first embodiment.
  • the configuration can be simplified.
  • the probe inner substrates 321 and 322 are connected in the orthogonal direction to the measuring unit substrate 311 to face the antenna, but in this configuration, in addition to the three substrates, for connection. Connector and cable are required, which complicates the structure.
  • the sensor device 200 of the second modification of the first embodiment is different from the first embodiment in that a part of the flexible rigid substrate is bent so that the antennas face each other.
  • FIG. 162 is a diagram showing an example of a sensor device 200 and a comparative example in a second modification of the first embodiment of the present technology.
  • a shows an example of the sensor device 200 in the second modification of the first embodiment
  • b in the figure shows an example of the sensor device 200 in the comparative example in which three boards are connected. ..
  • a flexible rigid substrate in which flexible substrates 271 and 272 are joined to rigid substrates 275 to 276 is arranged in the sensor device 200 in the second modification of the first embodiment.
  • a measurement circuit 210 is arranged on the rigid board 275.
  • a transmitting antenna 221 (not shown) is arranged on the rigid board 276, and a receiving antenna 231 (not shown) is arranged on the rigid board 277.
  • the rigid substrate 275 and the rigid substrate 276 are connected by the flexible substrate 271, and the rigid substrate 275 and the rigid substrate 277 are connected by the flexible substrate 272.
  • the flexible boards 271 and 272 are bent so that the antenna on the rigid board 276 and the antenna on the rigid board 277 face each other.
  • a comparative example in which the rigid substrate 275 and the rigid substrates 276 and 277 are connected by the connectors 314 and 315 can be considered.
  • the cost of the connector and the assembly cost can be reduced.
  • the cost of the substrate can be reduced.
  • the directivity of the conventional antenna can be used as it is, and the transmission loss can be reduced.
  • a flat antenna or a flat and slit-shaped antenna is connected to the measuring unit board 311 by a transmission line (strip line or the like) in the substrate inside the probe. It can also be connected by a coaxial cable.
  • the sensor device 200 of the third modification of the first embodiment is the first in that a planar antenna or a planar and slit-shaped antenna is connected to the measuring unit substrate 311 by a coaxial cable. It is different from the embodiment.
  • FIG. 163 is a diagram showing an example of the sensor device 200 in the third modification of the first embodiment of the present technology.
  • the sensor device 200 of the third modification of the first embodiment is different from the first embodiment in that the three pairs of antennas and the measurement unit substrate 311 are connected by the coaxial cables 281 to 286.
  • the transmitting antennas 221 to 223 and the measuring unit board 311 are connected by coaxial cables 281 to 283, and the receiving antennas 231 to 233 and the measuring unit board 311 are connected by coaxial cables 284 to 286.
  • frames 291 to 294 formed so that the coefficient of thermal expansion is constant may be used. ..
  • the transmission antenna and the corresponding coaxial cable may be sandwiched between the frames 291 and 292, and the receiving antenna and the corresponding coaxial cable may be sandwiched between the frames 293 and 294 and inserted into the sensor housing 305.
  • the frames 291 and 292 sandwiching the transmitting antenna and the corresponding coaxial cable are made of materials having different coefficients of thermal expansion, these two will be caused by the change in the environmental temperature in which the sensor device 200 is arranged.
  • the frame may bend.
  • all the parts constituting the frame are made of a material having the same coefficient of thermal expansion. Moreover, it is preferable that these parts are made of an electromagnetic wave transmitting material so as not to interfere with the radiation and reception of electromagnetic waves.
  • FIG. 164 is a diagram showing an example of a top view and a cross-sectional view of the sensor device 200 in the third modification of the first embodiment of the present technology.
  • a shows an example of a top view of the measuring unit housing 310.
  • b shows a cross-sectional view of a probe housing 320 in a portion without an antenna
  • c in the figure shows a cross-sectional view of a probe housing 320 in a portion with an antenna.
  • the measuring unit housing 310 is provided with positioning units 353 and 354 for defining the position of the measuring unit substrate 311. Further, as illustrated in b and c in the figure, a coaxial cable 281 or the like is connected to the transmitting antenna 221 or the like.
  • FIG. 165 is a diagram for explaining a method of accommodating a substrate in a third modification of the first embodiment of the present technique.
  • the transmitting side antenna connected to the coaxial cable is sandwiched between the frames 291 and 292, and the receiving side antenna is sandwiched between the frames 293 and 294.
  • the positioning portions 353 and 354 are attached to the lower part of the measuring portion substrate 311 and the positioning portions 351 and 352 are attached to the tips of the probe inner substrates 321 and 322.
  • a structure to which those positioning portions are attached is inserted into the sensor housing 305.
  • FIG. 166 is a diagram for explaining another example of the method of accommodating the substrate in the third modification of the first embodiment of the present technique.
  • the positioning portions 351 to 354 and the frames 291 to 294 can be previously mounted in the sensor housing 305.
  • the measuring unit substrate 311 and the like are inserted into the sensor housing 305, and the sensor housing 305 is sealed as illustrated in d in the figure.
  • FIG. 167 is a diagram for explaining another example of the method of accommodating the substrate in the third modification of the first embodiment of the present technique.
  • a sensor housing 305 that can be separated into a front housing 305-1 and a rear housing 305-2 can also be used.
  • the rear housing 305-2 is placed, and the measuring unit substrate 311 and the like are inserted as illustrated in b and c in the figure, and d and e in the figure.
  • the front housing 305-1 may be attached.
  • the transmitting antenna and the receiving antenna can be used even when the transmission path is long. It is possible to realize a predetermined distance between antennas by arranging them at a predetermined position. This makes it possible to accurately measure the water content.
  • positioning portions 351 and 352 are provided in the probe housing 320 as a structure for fixing the directions and positions of the transmitting antenna and the receiving antenna housed in the probe housing.
  • the structure for fixing the orientation and position of the transmitting antenna and the receiving antenna housed in the probe housing is not limited to the structure shown in FIG. 4 of the first embodiment, and various modifications can be considered.
  • a modified example of the structure for fixing the orientation and position of the transmitting antenna and the receiving antenna will be summarized and described as a fourth modified example.
  • the structure for fixing the orientation and position of the transmitting antenna and the receiving antenna (for example, the positioning portion and the positioning groove) is the housing unless otherwise specified.
  • a structure formed separately from the housing may be attached to the housing, or the housing itself has a structure for fixing the position of the antenna from the time of its formation. It may be in the form of an antenna.
  • FIG. 168 is a diagram showing an example of a sensor device 200 as a fourth modification example of the first embodiment of the present technology.
  • the sensor device 200 of the first modification of the fourth modification of the first embodiment is different from the first embodiment in that the positioning portions 353 and 354 are further arranged in the measurement unit housing 310.
  • the positioning portions 351 and 352 are arranged at the tip of the probe housing 320. These positioning portions 351 and 352 fix the orientations of the substrates 321 and 322 in the probe to a predetermined orientation, and fix these positions at a predetermined position (a position where a predetermined distance is provided between the two substrates). It is a part used to do this. These positioning portions may be integrated with the sensor housing 305.
  • the positioning units 353 and 354 are parts used to fix the position of the measuring unit substrate 311 to a predetermined position.
  • These positioning portions have a shape that facilitates arranging the transmitting antenna and the receiving antenna in a predetermined position in a predetermined direction (Y-axis direction, etc.) while moving the transmitting antenna in the probe housing 320. May be prepared at the same time.
  • the positioning portion may be provided with a slope in a predetermined direction.
  • the positioning portion may be provided with a slope toward that position.
  • an electromagnetically permeable material is used as each material of the positioning portion.
  • FIG. 169 is a diagram showing an example of a top view and a cross-sectional view of the sensor device 200 in the fourth modification of the first embodiment of the present technology.
  • a shows an example of a top view of the measuring unit housing 310.
  • b shows a cross-sectional view of a probe housing at a position where the positioning portions 351 and 352 are arranged.
  • Each of the measuring unit housing 310 and the probe housing 320 is provided with a groove for mounting the positioning unit 351 and the like.
  • FIG. 170 is a diagram for explaining a method of accommodating a substrate in the fourth modification of the first embodiment of the present technique.
  • positioning portions 351 to 354 are mounted in the sensor housing 305.
  • the measuring unit substrate 311 and the like are inserted into the sensor housing 305, and the sensor housing 305 is sealed as illustrated in d in the figure.
  • FIG. 171 is a diagram for explaining another example of the method of accommodating the substrate in the fourth modification of the first embodiment of the present technique. As illustrated in the figure, a sensor housing 305 that can be separated into a front housing 305-1 and a rear housing 305-2 can also be used.
  • FIG. 172 is a diagram showing an example of a sensor device 200 in which the position of the positioning portion is changed as the second modification of the first embodiment of the present technology.
  • the positioning portions 351 and 352 can be arranged near the upper end of the probe housing 320.
  • the positioning portions 351 and 352 can also be arranged in the central portion of the probe housing 320.
  • FIG. 173 is a diagram showing an example of a top view and a cross-sectional view of the sensor device 200 in which the position of the positioning portion is changed as the second modification of the first embodiment of the present technology.
  • FIG. 174 is a diagram showing an example of a sensor device 200 to which a positioning unit is added as a third modification of the first embodiment of the present technology.
  • positioning portions 355 and 356 can be added near the upper end of the probe housing 320.
  • the positioning portions 355 and 356 can also be arranged in the central portion of the probe housing 320.
  • the positioning unit can be arranged at a plurality of locations in the probe housing 320.
  • FIG. 175 is a diagram showing an example of a top view and a cross-sectional view of the sensor device 200 to which a positioning portion is added as a fourth modification example 3 of the first embodiment of the present technology.
  • FIG. 176 is a diagram showing an example of a sensor device 200 having a different shape of a positioning portion as a fourth modification of the first embodiment of the present technology.
  • FIG. 177 is a diagram showing an example of a top view and a cross-sectional view of sensor devices having different shapes of positioning portions as the fourth modification of the first embodiment of the present technology.
  • the positioning portions 351 and 352, 355 and 356 may be in a form of pressing the cross-sectional ends of the probe inner substrate 321 and 322 in the cross-section of the probe.
  • the probe inner substrate 321 is sandwiched between the frames 291 and 292, and the probe inner substrate 322 is sandwiched between the frames 293 and 294.
  • the positioning portions 355 and 356 may extend in the length direction (Y-axis direction) of the substrate in the probe housing so that the position of the substrate inserted in the probe housing 320 becomes constant.
  • the length may be greater than or equal to the length (that is, width) of the probe inner substrate 321 or the like in the Z-axis direction, or 1 ⁇ 2 or more of the length of the probe inner substrate 321 or the like in the Y-axis direction.
  • FIG. 178 is a diagram for explaining a method of accommodating a substrate when the shape of the positioning portion is different, as the fourth modification of the first embodiment of the present technique.
  • the positioning portions 351 to 354 and the frames 291 to 294 are mounted in the sensor housing 305.
  • the measuring unit substrate 311 and the like are inserted into the sensor housing 305, and the sensor housing 305 is sealed as illustrated in d in the figure.
  • the shapes of the frames 291 to 294 various shapes can be selected as long as the structure makes it easy to insert the substrate and the position of the substrate can be fixed. As an example, it may have a groove shape or a rail shape.
  • FIG. 179 is a diagram for explaining another example of a method of accommodating a substrate when the shape of the positioning portion is different as the fourth modification of the first embodiment of the present technique.
  • the in-probe substrate 321 can be sandwiched between the frames 291 and 292 and the in-probe substrate 322 can be sandwiched by the frames 293 and 294 before being inserted into the sensor housing 305.
  • the positioning portions 351 to 354 are attached.
  • a structure to which those positioning portions are attached is inserted into the sensor housing 305.
  • FIG. 180 is a diagram showing an example of a sensor device 200 with an extended frame as a fourth modification 5 of the first embodiment of the present technology. As illustrated in the figure, the frames 291 to 294 can be extended to the upper end of the sensor housing 305.
  • FIG. 181 is a diagram showing an example of a top view and a cross-sectional view of a sensor device with an extended frame as a fourth modification of the first embodiment of the present technology.
  • a shows an example of a top view of the measuring unit housing 310.
  • b shows a cross-sectional view of a probe housing 320 in a portion without an antenna
  • c in the figure shows a cross-sectional view of a probe housing 320 in a portion with an antenna.
  • FIG. 182 is a diagram showing an example of a sensor device 200 further provided with another structure for fixing the position of the measurement unit substrate as the fourth modification 6 of the first embodiment of the present technology.
  • a structure for fitting the measurement unit substrate and the probe inner substrate may be provided. More specifically, there may be a notch in either the measurement unit substrate or the probe inner substrate, which may be used to provide a structure for fitting the two substrates.
  • FIG. 183 is a diagram showing an example of a cross-sectional view of a sensor device 200 further provided with another structure for fixing the position of the measurement unit substrate as the fourth modification 6 of the first embodiment of the present technology. be.
  • a is a cross-sectional view of the probe housing at the position where the positioning portions 351 and 352 are arranged.
  • FIG. 184 is a diagram showing an example of a sensor device 200 to which a jig is added as a fourth modification example 7 of the first embodiment of the present technology.
  • jigs 359-1 and 359-2 for fixing the measuring unit substrate 311 and the probe inner substrates 321 and 322 can also be added.
  • These jigs include both a portion for fitting or fixing the measuring unit substrate 311 and a portion for fitting or fixing the probe inner substrate 321 or the like.
  • the positions of the measurement unit substrate 311 and the probe inner substrate 321 integrated by the above fitting or fixing are fixed to the sensor housing 305 by fixing some part of them to the sensor housing 305. can do.
  • FIG. 185 is a diagram showing an example of a top view and a cross-sectional view of the sensor device 200 to which a jig is added as a fourth modification example 7 of the first embodiment of the present technology.
  • a shows an example of a top view of the measuring unit housing 310.
  • b shows a cross-sectional view of a probe housing at a position where the positioning portions 351 and 352 are arranged.
  • FIG. 186 is a diagram showing an example of a sensor device 200 having a structure in which the in-probe substrates 321 and 322 are abutted against the sensor housing 305 as a fourth modification of the first embodiment of the present technology. be.
  • the positions of those substrates can be fixed. ..
  • FIG. 187 shows the sensor housing and the probe of the sensor device 200 having a structure in which the substrates 321 and 322 in the probe are abutted against the sensor housing 305 as the fourth modification 8 of the first embodiment of the present technology.
  • This is an example of a cross-sectional view of the inner substrate.
  • a shows a cross-sectional view of the sensor housing 305 when cut along the AA'line of FIG. 186.
  • Reference numeral b in FIG. 187 is a cross-sectional view of the sensor housing 305 when cut along the line 181B-B'.
  • C in FIG. 187 shows a cross-sectional view of the sensor housing 305 when cut along the CC'line of FIG. 186.
  • the in-probe substrate has two points in the width direction (Z-axis direction) of the substrate ⁇ the thickness direction of the substrate.
  • the positions of the probe inner substrates 321 and 322 in the probe housing 300 are fixed by contacting the probe housing 300 housing at at least two points out of a total of four points (two points in the Z-axis direction).
  • FIG. 188 is a diagram illustrating a fourth modification (a modification of a structure for fixing the orientation and position of the transmitting antenna and the receiving antenna) 9 regarding the first embodiment of the present technique.
  • the sensor device 200 shown in FIG. 188 as the fourth modification 9 does not include the sensor housing 305 of the first embodiment of the present technology (FIG. 4).
  • the sensor device 200 shown in FIG. 188 does not include the sensor housing 305, but at least, (1) Formed by a structure in which the periphery of a transmission board (same as the transmission probe board 321 in the sensor device 200 shown in FIG. 4) provided with a transmission antenna and a transmission transmission path connected to the transmission antenna is hardened with resin.
  • the probe for transmission (2) Formed by a structure in which the periphery of the receiving board (the same as the receiving probe board 322 in the sensor device 200 shown in FIG. 4) provided with the receiving antenna and the receiving transmission line connected to the receiving antenna is hardened with resin.
  • the sensor device 200 included in the fourth modification example 9 is The transmission probe of (1) above and The receiving probe of (2) above is provided. (3) By further providing a third structural portion different from the above (1) and (2), It may have a structure in which the transmission probe (1) and the reception probe (2) are fixed.
  • an example of the third structural portion (3) is a reinforcing member such as the reinforcing portion 260 in FIG.
  • the sensor device 200 shown in FIG. 188 is The transmission probe of (1) above and With the receiving probe of (2) above As the above (3) third structural portion, a structural portion in which the periphery of the measurement unit substrate 311 is hardened with resin is provided. It has a structure in which the above structures (1) to (3) are integrally fixed.
  • the transmission probe of (1) above and The receiving probe of (2) above is "When these probes are inserted into the soil, these probes are deformed, and the electronic board placed inside the probe is deformed, and as a result, the transmitting antenna and the receiving antenna formed on this electronic board are deformed.
  • (1) for transmission formed by a structure in which the periphery of the transmission board is hardened with resin It is desirable that the strength of the resin portion contained in the probe is higher than the strength of the transmission substrate alone contained in the probe.
  • the strength of the transmission probe in which the periphery of the transmission board is hardened with resin is at least twice the strength of the transmission substrate alone contained in this probe.
  • the deformation amount of the transmission probe whose periphery of the transmission substrate is hardened with resin and the deformation amount of the transmission substrate alone contained in this probe are compared by using the method shown in FIG. 135. It is desirable that the deformation amount of the transmission probe whose circumference is hardened with resin is 1 ⁇ 2 or less of the deformation amount of the transmission substrate alone contained in this probe.
  • the strength of the resin portion contained in this probe is higher than the strength of the receiving substrate alone contained in this probe.
  • High is desirable.
  • the strength of the receiving probe in which the periphery of the receiving substrate is hardened with resin is at least twice the strength of the receiving substrate alone contained in this probe.
  • the amount of deformation of the receiving probe whose circumference of the receiving substrate is hardened with resin is compared with the amount of deformation of the receiving substrate alone contained in this probe by using the method shown in FIG. 135. It is desirable that the amount of deformation of the receiving probe in which the periphery of the receiving substrate is hardened with resin is 1 ⁇ 2 or less of the amount of deformation of the receiving substrate alone contained in this probe.
  • the probe housing in order to prevent the probe housing 320 provided in the sensor device 200 from being deformed when the probe housing 320 is inserted into the soil, the probe housing is used. It had a structure in which the strength of the body 320 was higher than that of the probe inner substrates 321 and 322 housed inside the probe housing 320.
  • the thickness (thickness) of the probe housing 320 was a predetermined thickness so that the strength of the housing exceeds the strength of the substrate.
  • the probe housing 320 is further higher in order to prevent deformation when the probe housing 320 is inserted into the soil. It may be required to have strength.
  • the strength of the probe housing 320 is improved as compared with the first embodiment without fear of deteriorating the measurement accuracy of the water content.
  • the structure will be described with reference to FIGS. 191 to 199.
  • the first embodiment of the present technique will be referred to with reference to FIGS. 189 and 190.
  • the cross-sectional shape of the probe housing 320 provided in the sensor device 200 of the above embodiment will be described.
  • the first embodiment of the present technique is described as a component (9) thereof.
  • (1) The distance from the center of the probe inner substrate 321 to the housing end of the probe housing 320a in the direction perpendicular to the probe inner substrate 321 and in the direction toward the receiving antenna is (2) It has been explained that the distance is smaller than the distance from the center of the probe inner substrate 321 to the housing end of the probe housing 320a in the direction parallel to the probe inner substrate 321.
  • FIG. 189 is a diagram for more specifically explaining the structure of the component (9) and the structure of the comparative example.
  • FIG. 189a is a diagram in which the characteristic structure of the sensor device 200 when the sensor device 200 of the first embodiment of the present technology is viewed from above in the positive direction of the Y axis is overlaid. ..
  • the measurement unit housing 310, the measurement unit substrate 311 and the probe housing 320, and the probe inner substrates 321 and 322 are shown.
  • the distance from the center of the probe inner substrate 321 to the housing end of the probe housing 320a in the direction perpendicular to the probe inner substrate 321 and in the direction of the receiving antenna is indicated by the reference numeral dx. There is.
  • the sensor device 200 has a cross section in which the probe housing 320 provided in the sensor device 200 is orthogonal to the extending direction as its component (9). The structure is such that the dx is smaller than the dz.
  • b in FIG. 189 is a comparative example without the structure of the component (9), that is, from the center of the probe inner substrate 321 in the direction perpendicular to the probe inner substrate 321 and in the direction of the receiving antenna.
  • the structure is such that the distance to the housing end of the probe housing 320a and the distance from the center of the probe inner substrate 321 to the housing end of the probe housing 320a in the direction parallel to the probe inner substrate 321 are equal. There is.
  • FIG. 190 various examples of the component (9) of the sensor device 200 according to the first embodiment of the present technique will be described.
  • the figure shows the cross-sectional shape of the probe housing 320 in the direction orthogonal to the extending direction of the probe housing 320.
  • the cross-sectional shape of the probe housing 320 is (1)
  • the distance dx from the center of the probe inner substrate 321 to the housing end of the probe housing 320a in the direction perpendicular to the probe inner substrate 321 and in the direction of the receiving antenna is (2)
  • the distance dy from the center of the probe inner substrate 321 to the housing end of the probe housing 320a in the direction parallel to the probe inner substrate 321 It has a smaller shape Moreover, as shown in a of the figure, it may be an elliptical shape having a short axis in the direction orthogonal to the substrate in the probe or a shape substantially identical to this, or as shown in b of the figure, the probe.
  • the width of the probe housing in the direction orthogonal to the inner substrate is smaller than the width of the probe housing in the direction parallel to the inner substrate of the probe, asymmetric in the left-right direction of the paper, and the back side of the inner substrate of the probe (opposing antenna).
  • the shape may be convex in the direction opposite to the direction in which the probe is present), or as shown in c in the figure, the width of the probe housing in the direction orthogonal to the probe inner substrate is the probe inner substrate.
  • the shape may be smaller than the width of the probe housing in the direction parallel to the probe housing, asymmetrical in the left-right direction of the paper surface, and convex toward the surface side (the side where the opposing antenna exists) of the inner substrate of the probe.
  • the shape may be a rectangle having a short side in the direction orthogonal to the substrate in the probe, or a shape substantially identical to this.
  • the shape of the probe housing equipped with the receiving antenna is line-symmetrical with the shape of the probe housing equipped with the transmitting antenna, so the description thereof will be omitted.
  • a rectangular figure is drawn in the center direction of the sensor device 200 rather than the substrate inside the probe. This highlights the positions of the radiating and receiving elements of the antenna. In practice, these elements are formed on the surface or inner layer of the probe inner substrate.
  • the distances between the transmission probe inner substrate 321 and the reception probe inner substrate 322 are equal in the two figures. Therefore, the distance between the transmitting antenna provided on the transmitting probe inner substrate 321 and the receiving antenna provided on the receiving probe inner substrate 322 is also the same. Comparing a and b in the figure, only the cross-sectional shape of the probe housing 320 is different.
  • the ratio of the region outside the housing (that is, the region to be the soil) in the region between the transmission probe substrate 321 and the reception probe substrate 322 is compared.
  • the ratio of the region outside the housing (that is, the region serving as soil) is smaller than that in a in the figure.
  • the moisture measurement system 100 of the present invention pays attention to the fact that the time required for the electromagnetic wave to propagate from the transmitting antenna to the receiving antenna has a linear relationship with the water content of the soil.
  • the water content of the soil is calculated. Therefore, as the ratio of the soil region in the region between the transmitting probe substrate 321 and the receiving probe substrate 322 decreases, the relationship between the propagation delay time and the soil water content deviates from the linear relationship. The error included in the measurement result becomes large. On the contrary, as the ratio of the soil region in the region between the two substrates increases, the relationship between the propagation delay time and the soil moisture content becomes closer to a linear relationship, and the soil moisture content becomes more accurate. It will be possible to measure.
  • the sensor device 200 according to the first embodiment of the present technique shown in FIG. 189a has a structure of the component (9), so that the sensor device 200 has a transmission probe substrate 321 and a transmission probe substrate 321 more than the comparative example shown in FIG.
  • the ratio of the soil area in the area between the receiving probe substrate 322 and the receiving probe substrate 322 is increased. This has the effect of accurately measuring the water content of the soil.
  • FIGS. 191 to 199 are views showing a fifth modification of the first embodiment of the present technique, that is, a structure for improving the strength of the probe housing 320 without fear of deteriorating the measurement accuracy of the water content.
  • the thickness of a part of the housing is increased.
  • the thickness of the housing is not increased in the region where the transmitted and received electromagnetic waves are transmitted.
  • the shape of the housing shown in FIG. 190 a is referred to as a comparative example in which the thick housing is not provided.
  • FIG. 191 is a diagram illustrating a fifth modification example 1 of the first embodiment of the present technique. It has a cross-sectional shape of the probe housing 320 shown in FIG. 190a and a shape in which antennas radiating on both sides are arranged so as to face each other. Since the probe housing 320 shown in FIG. 191 has antennas radiating on both sides facing each other, the probe housing 320 is arranged at two locations, one above the paper surface and one below the paper surface, mainly avoiding the inside direction of the paper surface through which electromagnetic waves pass through the housing. , The wall thickness is increased.
  • the shape has no discontinuity or inflection on both the outer circumference and the inner circumference of the housing.
  • the wall thickness of the housing may be increased.
  • the wall thickness may be increased in the inner direction of the housing.
  • discontinuity points or inflection points are increased on the inner circumference of the housing.
  • the wall thickness may be increased in the outer direction of the housing.
  • discontinuity points or inflection points are increased on the outer periphery of the housing.
  • the wall thickness may be increased in both the inner direction and the outer direction of the housing. In this case, as compared with the comparative example, discontinuity points or inflection points are increased on both the inner circumference and the outer circumference of the housing.
  • FIG. 192 is a diagram illustrating a fifth modification example No. 2 of the first embodiment of the present technology, in which the cross-sectional shape of the probe housing 320 shown in FIG. 190a and the planar and bilateral radiation are shown. It has a shape in which the antennas of the above are arranged facing each other. Since the probe housing 320 shown in FIG. 192 is arranged so that the antennas radiating on both sides face each other, the probe housing 320 has its flesh at one place in the outside direction of the paper surface, mainly avoiding the inside direction of the paper surface through which electromagnetic waves pass through the housing. The thickness is increased.
  • the shape is such that there are no discontinuities or inflection points on both the outer circumference and the inner circumference of the housing.
  • the wall thickness of the housing may be increased.
  • the wall thickness may be increased in the inner direction of the housing. In this case, as compared with the comparative example, discontinuity points or inflection points are increased on the inner circumference of the housing.
  • the wall thickness may be increased in the outer direction of the housing. In this case, as compared with the comparative example, discontinuity points or inflection points are increased on the outer periphery of the housing.
  • the wall thickness may be increased in both the inner direction and the outer direction of the housing. In this case, as compared with the comparative example, discontinuity points or inflection points are increased on both the inner circumference and the outer circumference of the housing.
  • FIG. 193 is a diagram illustrating an exceptional example of the fifth modification of the first embodiment of the present technology, in which the cross-sectional shape and the planar shape of the probe housing 320 shown in FIG. 190a are shown. Moreover, it has a shape in which antennas radiating on both sides are arranged so as to face each other. In the probe housing 320 shown in FIG. 193, antennas radiating on both sides are arranged so as to face each other. In, the wall thickness is increased. In this case, although there is a concern that the measurement accuracy of the water content may be deteriorated, the effect of improving the strength of the probe housing 320 can be obtained.
  • the shape has no discontinuity or inflection on both the outer circumference and the inner circumference of the housing.
  • the wall thickness of the housing may be increased.
  • the wall thickness may be increased in the inner direction of the housing.
  • discontinuity points or inflection points are increased on the inner circumference of the housing.
  • the wall thickness may be increased in the outer direction of the housing.
  • discontinuity points or inflection points are increased on the outer periphery of the housing.
  • the wall thickness may be increased in both the inner direction and the outer direction of the housing. In this case, as compared with the comparative example, discontinuity points or inflection points are increased on both the inner circumference and the outer circumference of the housing.
  • FIG. 194 is a diagram illustrating a third modification of the first embodiment of the present technique, in which the cross-sectional shape of the probe housing 320 shown in FIG. 190a and the planar and bilateral radiation are shown. It has a shape in which the antennas of the above are arranged facing each other. Since the probe housing 320 shown in FIG. 194 is arranged with the antennas radiating on one side facing each other, the probe housing 320 is arranged at three locations excluding the inside direction of the paper surface, mainly avoiding the inside direction of the paper surface through which electromagnetic waves pass through the housing. The wall thickness is increased.
  • the shape is such that there are no discontinuities or inflection points on both the outer circumference and the inner circumference of the housing.
  • the wall thickness of the housing may be increased.
  • the wall thickness may be increased in the inner direction of the housing. In this case, as compared with the comparative example, discontinuity points or inflection points are increased on the inner circumference of the housing.
  • the wall thickness may be increased in the outer direction of the housing. In this case, as compared with the comparative example, discontinuity points or inflection points are increased on the outer periphery of the housing.
  • the wall thickness may be increased in both the inner direction and the outer direction of the housing. In this case, as compared with the comparative example, discontinuity points or inflection points are increased on both the inner circumference and the outer circumference of the housing.
  • FIG. 195 is a diagram illustrating a fourth modification of the first embodiment of the present technique.
  • the structure shown in FIG. 195 has the same shape as the housing except that the antenna having the structure shown in FIG. 191 is changed to one-sided radiation.
  • FIG. 196 is a diagram illustrating a fifth modification example No. 5 of the first embodiment of the present technique.
  • the structure shown in FIG. 196 has the same shape as the housing except that the antenna having the structure shown in FIG. 192 is changed to one-sided radiation.
  • FIG. 197 is a diagram illustrating an exceptional case of a fifth modification of the first embodiment of the present technique.
  • the structure shown in FIG. 197 has the same shape as the housing except that the antenna having the structure shown in FIG. 193 is changed to one-sided radiation.
  • FIG. 198 is a diagram illustrating a fifth modification example No. 6 of the first embodiment of the present technique.
  • the structure shown in FIG. 198 has the same shape as the housing except that the antenna having the structure shown in FIG. 194 is changed to one-sided radiation.
  • FIGS. 191 to 198 can be applied to each of FIGS. 190.
  • FIG. 199 is a diagram for explaining an example of setting the wall thickness of the sensor housing 305 in the fifth modification of the first embodiment of the present technology.
  • the inner wall thickness of the probe housing 320 is d1
  • the outer wall thickness is d2.
  • the wall thickness of the probe housing 320 in the direction parallel to the probe inner substrate 321 and the like (Z-axis direction) is d3.
  • the thickness of the reinforcing portion 360 in the Z-axis direction is d6.
  • the wall thickness of the measuring unit housing 310 on the surface (in other words, the bottom surface) connected to the probe housing 320 among the surfaces of the measuring unit housing 310 is d4.
  • the wall thickness of the measuring unit housing 310 on a surface other than the bottom surface is d5.
  • the thickness of the measuring unit housing 310 in the Z-axis direction is d8.
  • the sensor housing 305 in the fifth modification of the first embodiment of the present technology satisfies the condition 1 of d2> d1 or d3> d1. This makes it possible to improve the mechanical strength of the housing as compared to the form without this structure (in other words, the form without the thick housing), and as a result, the housing is deformed and transmitted / received. Moisture can be measured accurately by reducing changes in the distance between antennas.
  • the form satisfying the above condition 1 is a form in which the thickness is increased on the entire circumference of the housing in order to improve the mechanical strength of the housing, or a form in which the thickness of the housing is increased in the portion corresponding to d1.
  • the strength of the housing can be improved without reducing the proportion of the soil area in the area between the transmitting and receiving antennas. This makes it possible to accurately measure the moisture content by reducing the deformation of the housing and the change in the distance between the transmitting and receiving antennas while maintaining the relationship between the propagation delay time of the electromagnetic wave and the soil moisture content in a linear relationship.
  • d6> d1 or d4> d1 This makes it possible to improve the strength of the housing without reducing the proportion of the soil area in the area between the transmitting and receiving antennas. This makes it possible to accurately measure the moisture content by reducing the deformation of the housing and the change in the distance between the transmitting and receiving antennas while maintaining the relationship between the propagation delay time of the electromagnetic wave and the soil moisture content in a linear relationship. Also, thickening the d6 prevents the transmit and receive probes from expanding or narrowing between the probes beyond a predetermined distance even when stress is applied to them when they are inserted into the soil. In other words, it has the effect of keeping the distance between the transmitting and receiving antennas at a predetermined distance, and this effect also enables accurate measurement of moisture.
  • thickening d4 means that when the transmitting probe and the receiving probe are inserted into the soil, a stress is applied to the bottom surface of the measuring unit housing 310, and the bottom surface is deformed by this stress, and the mounting angle of the probe to the bottom surface is increased. Brings the effect of suppressing the change. This has the effect of preventing the distance between the probes from expanding or narrowing beyond a predetermined distance, that is, the effect of keeping the distance between the transmitting and receiving antennas at a predetermined distance, and this effect also enables accurate measurement of moisture. ..
  • condition 2 When condition 2 is satisfied, it is even better to set d6> d5 or d4> d5 at the same time. In this case, it is necessary to unnecessarily increase the thickness of the housing portion in which the contribution to accurate measurement of water content is smaller than that in the form of d1 ⁇ d6 ⁇ d5 or d1 ⁇ d4 ⁇ d5. Can be prevented. As a result, it is possible to facilitate the manufacture of the housing, reduce the weight of the housing and the sensor device, and reduce the manufacturing cost of the housing.
  • d6> d4 may be set at the same time.
  • Increasing the thickness of d4 has the effect of preventing deformation of the bottom surface of the measuring unit housing 310 and keeping the distance between the antennas at a predetermined distance.
  • increasing the thickness of d6 may bring about the effect of keeping the distance between the antennas more effectively at a predetermined distance at a position closer to the antenna than the bottom surface thereof. As a result, moisture can be measured accurately.
  • condition 3 of d6 ⁇ d8 It is also desirable to satisfy condition 3 of d6 ⁇ d8. Even if the reinforcing portion 360 is formed of an electromagnetic wave transmitting material, the electromagnetic wave transmitting material currently on the market does not have zero reflectance of electromagnetic waves. Therefore, reflection of electromagnetic waves may occur at the reinforcing portion 360.
  • the noise caused by the electromagnetic wave radiated from the anntena being reflected by the reinforcing portion 360 and being received by the receiving antenna can be reduced as compared with the case where the condition 3 is not satisfied. can. As a result, moisture can be measured accurately.
  • condition 4 of d7> d6 It is also desirable to satisfy condition 4 of d7> d6.
  • d7> d6 it is possible to bring about the effect of more effectively keeping the distance between the antennas at a predetermined distance at a position closer to the antennas as compared with the case where this condition is not satisfied. As a result, moisture can be measured accurately.
  • the sensor device 200 can measure the water content more accurately.
  • the structure described in FIG. 194a is used as the structure of the housing described in the drawings, but the above description is any of those described in FIGS. 191 to 198. It also applies to the structure.
  • a plurality of pairs of antennas transmit and receive electromagnetic waves one by one in order, but in this configuration, it is difficult to shorten the measurement time.
  • the sensor device 200 of the sixth modification of the first embodiment is different from the first embodiment in that a plurality of pairs of antennas can simultaneously transmit and receive electromagnetic waves by frequency division.
  • FIG. 200 is a diagram showing a configuration example of a sensor device 200 provided with a transceiver for each antenna in the sixth modification of the first embodiment of the present technology.
  • the sensor device 200 of the sixth modification of the first embodiment is different from the first embodiment in that a transceiver is provided for each set of antennas.
  • transmitters 214-1, 214-2 and 214-3 and receivers 215-1, 215-2 and 215-3 are provided.
  • the number of antenna sets is not limited to three as long as it is two or more.
  • the transmitters 214-1 to 214-3 are connected to the transmitting antennas 221 to 223, and the receivers 215-1 to 215-3 are connected to the receiving antennas 231 to 232.
  • the transmit switch 216 and the receive switch 217 are unnecessary. As a result, the price can be reduced.
  • Transmitters 214-1, 214-2 and 214-3 transmit transmission signals having different frequencies from each other. Also, the receivers 215-1, 215-2 and 215-3 receive the received signal of the frequency of the corresponding transmitter. By controlling the frequency division in this way, the signals from the transmitting antennas 221 to 223 can be separated on the receiving side.
  • FIG. 201 is a diagram showing a configuration example of a sensor device 200 having one transmitter and one receiver in the sixth modification of the first embodiment of the present technology.
  • the transmitter 214 may be connected to the transmitting antennas 221 to 223, and the receiver 215 may be connected to the receiving antennas 231 to 232.
  • the transmitter 214 has the same function as the transmitters 214-1 to 214-3, and the receiver 215 has the same function as the receivers 215-1 to 215-3.
  • FIG. 202 is a diagram showing a configuration example of a sensor device 200 having one receiver in the sixth modification of the first embodiment of the present technology.
  • transmitters 214-1 to 214-3 may be connected to transmitting antennas 221 to 223, and receivers 215 may be connected to receiving antennas 231 to 232.
  • the receiver 215 has the same function as the receivers 215-1 to 215-3.
  • FIG. 203 is a diagram showing a configuration example of a sensor device 200 having one transmitter in the sixth modification of the first embodiment of the present technology.
  • the transmitter 214 may be connected to the transmitting antennas 221 to 223, and the receivers 215-1 to 215-3 may be connected to the receiving antennas 231 to 232.
  • the transmitter 214 has the same function as the transmitters 214-1 to 214-3.
  • FIG. 204 is a diagram showing another example in which the receiver is a plurality of sensor devices 200 in the sixth modification of the first embodiment of the present technology.
  • the transmitter 214-1 is connected to the transmitting antennas 221 and 223, the transmitter 214-2 is connected to the transmitting antenna 222, and the receiver 215 is connected to the receiving antennas 231 to 232. good.
  • the receiver 215 has the same function as the receivers 215-1 to 215-3.
  • the transmitter 214-1 supplies transmission signals having the same frequency to the transmission antennas 221 and 223. Therefore, it is desirable that the transmitting antenna 221 and the transmitting antenna 223 are separated from each other to the extent that interference does not occur.
  • FIG. 205 is a block diagram showing a configuration example of receivers 215-1 to 215-3 in the sixth modification of the first embodiment of the present technology.
  • a is a block diagram of the receiver 215-1.
  • Reference numeral b in the figure is a block diagram of the receiver 215-2.
  • c is a block diagram of the receiver 215-3.
  • the receiver 215-1 includes a mixer 241-1, a local oscillator 242-1, a low-pass filter 243-1 and an ADC (Analog to Digital Converter) 244-1.
  • the local oscillator 242-1 produces a local signal at frequency f LO1 .
  • the mixer 241-1 receives a received signal having a frequency f1 from the receiving antenna 231, mixes it with a local signal, and supplies a signal having an intermediate frequency fIF to the ADC 244-1 via a low-pass filter 243-1.
  • the ADC 244-1 converts a signal having an intermediate frequency fIF into a digital signal and supplies it to the sensor control unit 211.
  • the receiver 215-2 includes a mixer 241-2, a local oscillator 242-2, a low-pass filter 243-2, and an ADC 244-2.
  • the receiver 215-3 includes a mixer 241-3, a local oscillator 242-3, a low-pass filter 243-3, and an ADC 244-3. The configuration of these circuits is similar to the circuit of the same name in the receiver 215-1.
  • FIG. 206 is a diagram showing an example of the frequency characteristics of the received signal in the sixth modification of the first embodiment of the present technology.
  • FIG. 205 there are three receiving systems, but in FIG. 206, two systems are considered for simplification of the explanation.
  • the intermediate frequency shall be one wave, fIF, which is common to all receivers.
  • the cutoff frequency f cutoff of each of the two low-pass filters is the same.
  • the reception frequency of the first antenna is f1
  • the reception frequency of the second antenna is f2 (f1 ⁇ f2).
  • the intermediate frequency f IF is expressed by the following equation.
  • the interference wave f IF12 is expressed by the following equation.
  • f IF12 f2-f lo1 ... Equation 8
  • the interference wave f IF21 is expressed by the following equation.
  • f IF21 f1-f lo2 ... Equation 9
  • Equation 8 f1-f lo2 ⁇ -f cutoff ... Equation 12 f cutoff ⁇ f2-f lo1 ... Equation 13
  • Equation 15 f cutoff ⁇ f lo2 -f1 ⁇ ⁇ ⁇ Equation 14 f cutoff ⁇ f2-f lo1 ... Equation 15
  • f cutoff ⁇ f2 + f IF -f1 f2-f1 + f IF ... Equation 17
  • Equation 16 and 17 may be satisfied by f1, f2, and fIF .
  • f cutoff > f IF holds, only Equation 16 is a constraint condition.
  • Equation 18 f cutoff + f IF ⁇ f2-f1 ⁇ ⁇ ⁇ Equation 18
  • FIG. 207 is an example of a frequency division drive timing chart in the sixth modification of the first embodiment of the present technology.
  • a indicates a sweep of the frequency of the first antenna (transmitting antenna 221 and receiving antenna 231 and the like).
  • Reference numeral b in the figure shows a sweep of the frequency of the second antenna (transmitting antenna 222, receiving antenna 232, etc.).
  • c indicates a sweep of the frequency of the third antenna (transmitting antenna 223, receiving antenna 233, etc.).
  • FIG. 208 is an example of a timing chart showing the operation of each part in the sensor device in the sixth modification of the first embodiment of the present technology.
  • the first antenna sweeps frequencies a1 to a2
  • the second antenna sweeps frequencies a3 to a4
  • the third antenna sweeps frequencies a5 to a6.
  • the first antenna sweeps the frequencies a3 to a4, the second antenna sweeps the frequencies a5 to a6, and the third antenna sweeps the frequencies a1 to a2.
  • the first antenna then sweeps the frequencies a5 to a6, during which the second antenna sweeps the frequencies a1 to a2, and the third antenna sweeps the frequencies a3 to a4.
  • the frequency sweep method does not have to be an up chirp as shown in FIG. 207, as long as the frequency of each antenna is independent. For all antennas, the entire transmission band is swept. This control allows the use of the entire frequency band and improves the resolution of the moisture sensor.
  • FIG. 209 is an example of a frequency division drive timing chart when the sweep period is shortened in the sixth modification of the first embodiment of the present technique.
  • FIG. 210 is an example of a timing chart showing the operation of each part in the sensor device when the sweep period is shortened in the sixth modification of the first embodiment of the present technique.
  • the first antenna sweeps frequencies a1 to a2
  • the second antenna sweeps frequencies a3 to a4
  • the third antenna sweeps frequencies a5 to a6.
  • FIGS. 207 to 210 can be applied to the respective sensor devices 200 of FIGS. 200 to 203.
  • FIG. 211 is an example of a frequency division drive timing chart in which the frequencies of the two antennas in the sixth modification of the first embodiment of the present technology are the same.
  • a indicates a sweep of the frequencies of the first and third antennas.
  • b indicates a sweep of the frequency of the second antenna.
  • FIG. 212 is an example of a timing chart showing the operation of each part in a sensor device having the same frequency of two antennas in the sixth modification of the first embodiment of the present technique.
  • the first and third antennas sweep frequencies a1 to a2, while the second antenna sweeps frequencies a4 to a6. Then, the first and third antennas sweep the frequencies a4 to a6, and the second antenna sweeps the frequencies a1 to a2 in the meantime. By narrowing the frequency band to be swept, the sweep period can be shortened. This control is applied to the sensor device 201 of FIG. 204.
  • the transmitter supplies the transmission signals having different frequencies to the plurality of transmission antennas, so that the transmission switch 216 and the reception switch 217 are supplied. Is unnecessary.
  • the sensor device 200 of the seventh modification of the first embodiment is different from the first embodiment in that a plurality of antennas are connected to one transmission line including a delay line.
  • FIG. 213 is a diagram showing an example of a cross-sectional view of the probe inner substrate 321 in the seventh modification of the first embodiment of the present technology.
  • a is a cross-sectional view of the probe inner substrate 321 when viewed from the Z-axis direction.
  • b shows a cross-sectional view of the probe inner substrate 321 when viewed from the Y-axis direction.
  • a plurality of transmitting antennas such as transmitting antennas 221, 222 and 223 are formed on the probe inner substrate 321. These transmitting antennas are connected by a transmission line such as a strip line.
  • the transmission lines for each transmission antenna are not independent, and on the equivalent circuit, it corresponds to a state in which a plurality of transmission antennas are commonly and electrically connected to one transmission line.
  • the configuration of the probe inner substrate 322 on the receiving side is symmetrical with that on the transmitting side.
  • FIG. 214 is a diagram showing a signal transmission path for each antenna in the seventh modification of the first embodiment of the present technology.
  • the source is TX
  • the points of the transmitting antennas 221, 222, 223 are A, B, and C.
  • the receiving destination is RX, and the points of the receiving antennas 231 and 232, 233 are P, Q, and R.
  • the arrow indicates the transmission direction of the signal.
  • the solid line indicates the signal to be transmitted / received. Dotted lines indicate interference signals and interference signals.
  • the received signal is measured as if all the signals that the transmitting antennas A, B, and C have passed through the receiving antennas P, Q, and R are superimposed. That is, in addition to the above three routes, TX-A-Q-RX, TX-A-R-RX, TX-B-P-RX, TX-B-R-RX, TX-C-P-RX, The signal of the route passing through TX-C-Q-RX will also be included.
  • the transmitting antenna is not sufficiently matched, reflection will occur in the transmitting probe. Therefore, the path radiated from the transmitting antenna after being reflected in the transmitting probe is also superimposed on the received signal. That is, in addition to the above-mentioned nine routes, signals of routes passing through TX-CBQ-RX, TX-B-AP-RX, etc. are also included.
  • the receiving antenna is not well matched, reflections will occur within the receiving probe. Therefore, the path through which the signal received from the transmitting antenna is reflected in the receiving probe is also superimposed on the received signal. That is, in addition to the above-mentioned route, the signal of the route passing through TX-B-Q-R-RX, TX-A-P-Q-RX, etc. is also included.
  • FIG. 215 is a diagram showing transmission paths of signals of two systems in the seventh modification of the first embodiment of the present technique. As illustrated in the figure, attention is paid to two systems, TX-CBQ-RX and TX-C-R-RX.
  • the two paths in the figure are almost the same, so that they cannot be separated from each other, and the CR can be separated from each other.
  • the propagation delay cannot be calculated correctly.
  • FIG. 216 is a diagram showing an example of a sensor device 200 provided with a delay line in a seventh modification of the first embodiment of the present technology.
  • a delay line 265 is inserted in the main transmission line to either the transmitting probe or the receiving probe antenna.
  • delay lines 265 and 266 are inserted between PQ and QR of the receiving probe. These delay lines cause a path difference between the two paths TX-CBQ-RX and TX-C-R-RX, which could not be separated in FIG. 209. Therefore, it is possible to separate the received signals of each route.
  • the path TX-AP-RX, TX-B-Q-RX, TX-C-R-RX to be measured can be measured.
  • the signal can be prevented from overlapping with other paths. Therefore, it is possible to measure the water content with high accuracy.
  • FIG. 217 is a diagram showing an example of the shape of the delay line 265 in the seventh modification of the first embodiment of the present technique.
  • the shape of the delay line 265 may be a meander shape, or may be a zigzag shape as illustrated in b in the figure. As illustrated in c in the figure, it may be spiral.
  • the shape is not limited to the shape shown in the figure as long as the transmission line can be wired longer than when the delay line is not provided.
  • vias may be provided along the delay line 265. As a result, it is possible to prevent jumping of radio waves due to electromagnetic coupling between adjacent lines, so that the effect of delay can be increased as compared with the case where there is no via.
  • FIG. 218 is a diagram showing another example of the shape of the delay line 265 in the seventh modification of the first embodiment of the present technique.
  • the direction of the amplitude of the delay line may be different from the wiring direction of the transmission line when the shape is a meander shape or a zigzag shape.
  • vias may be provided as illustrated in c and d in the figure.
  • FIG. 219 is a diagram for explaining a method of setting a delay amount of a delay line in a seventh modification of the first embodiment of the present technique. So far, we have described the structure that separates the two paths, but we will consider how much propagation delay difference should actually occur. When converted to an impulse response by the inverse Fourier transform of the frequency response, if the two paths have a propagation delay difference of more than the resolution, the two can be separated, so that the water content can be measured accurately. Specifically, when the frequency band is df, it is desirable that the propagation delay difference is 1 / df or more.
  • route A there are two routes, route A and route B, from TX to RX.
  • route B the propagation delay TA from TX to RX in the route A is the sum of the propagation delays between each point, and is expressed by the following equation.
  • the propagation delay TB from TX to RX in the path B is expressed by the following equation.
  • Equation 22 it is desirable to determine the position of the antenna and the delay amount of the delay line so that the propagation delay difference dT satisfies Equation 22.
  • the propagation delay difference between the two paths is 125 ps or more.
  • the delay line 265 and the like are inserted in the transmission line, signals having different paths can be separated.
  • Second Embodiment> In the above-mentioned first embodiment, the probe inner boards 321 and 322 are connected orthogonally to the measuring unit board 311, but in this configuration, it is necessary to wire connectors and cables between the boards, and the structure is Becomes complicated.
  • This second embodiment is different from the first embodiment in that the number of these boards is reduced and the number of connectors and cables connecting the boards is reduced. As a result, the second embodiment has the effect that the number of boards, connectors, cables, and other parts provided in the sensor device 200 can be reduced as compared with the first embodiment.
  • FIG. 220 is a diagram showing an example of the sensor device 200 according to the second embodiment of the present technology.
  • the electronic substrate 311-1 is arranged in the sensor housing 305 instead of the measuring unit substrate 311, the probe inner substrate 321 and the probe inner substrate 322.
  • a part of the electronic board 311-1 is rectangular, and a pair of board protrusions (a transmission board protrusion and a reception board protrusion) are connected to the rectangular board portion, and they are integrated. Therefore, the direction in which the rectangular portion of the substrate, the protruding portion of the transmitting substrate, and the protruding portion of the receiving substrate extend (in other words, the plane direction of these substrates) is parallel, and further, these substrates are in the same plane.
  • circuit on the measurement unit substrate 311 is arranged in the rectangular portion of the substrate. Circuits on the probe inner boards 321 and 322, such as transmission antennas 221 to 223, are formed on the board protrusions. This configuration eliminates the need for components (4) and (7).
  • the sensor device 200 according to the second embodiment of the present technology is, for example, in all the antennas (transmitting antennas 221 to 223 and receiving antennas 231 to 233) provided in the sensor device 200, from FIG. 19 to FIG. It shows that the planar antenna shown in FIG. 47 can be provided.
  • the sensor device 200 according to the second embodiment of the present technology is, for example, in all the antennas (transmitting antennas 221 to 223 and receiving antennas 231 to 233) provided in the sensor device 200, FIGS. 48 to 74. It is also possible to use the flat and slot-shaped antenna described in the above.
  • the measurement unit substrate 311 is housed in the measurement unit housing 310, and the transmission probe inner substrate 321 is housed in the transmission probe housing 320a.
  • the receiving probe inner substrate 322 is housed in the receiving probe housing 320b
  • the electronic substrate 311-1 The rectangular substrate portion is housed in the measuring unit housing 310, the transmitting substrate protruding portion of the electronic board 311-1 is housed in the transmitting probe housing 320a, and the receiving substrate protruding portion of the electronic board 311-1 is a receiving probe. It is housed in the housing 320b.
  • the cross-sectional shapes of the transmitting probe housing 320a and the receiving probe housing 320b are cross-sectional shapes.
  • This will be described with reference to FIGS. 189 and 221 and the effect of the cross-sectional shapes of the transmitting probe housing 320a and the receiving probe housing 320b according to the second embodiment of the present technique will be described in FIG. 221. Will be described with reference to.
  • FIG. 221 is an example of a cross-sectional view in which the structural features of the sensor device 200 when viewed from above in the second embodiment of the present technique and the comparative example are overlaid.
  • a is an example of a cross-sectional view of the sensor device 200 when viewed from above in the second embodiment of the present technique.
  • b is an example of a cross-sectional view of the sensor device 200 of the comparative example.
  • the two ellipses in a in the figure represent a transmitting probe housing and a receiving probe housing.
  • the two perfect circles in b in the figure also represent the transmitting probe housing and the receiving probe housing.
  • the colored regions outside the transmitting probe housing and the receiving probe housing represent soil.
  • the soil located between the transmitting probe housing and the receiving probe housing is the soil for which the water content is to be measured.
  • the rectangles shown by broken lines in a and b in the figure represent the outer shape of the measuring unit housing 310.
  • the sensor device 200 of the second embodiment of the present technology has the following configuration instead of the component (9).
  • the length (width) of the substrate protrusion of the electronic substrate 311-1 in the X-axis direction is larger than its thickness (size in the Z-axis direction).
  • the distance dz from the center of the substrate protruding portion to the housing end of the probe housing 320 in the direction perpendicular to the electronic substrate 311-1 (Z-axis direction) is the substrate protruding portion.
  • the distance from the center of the probe housing 320 in the direction parallel to the electronic substrate 311-1 (X-axis direction) to the housing end of the probe housing 320 is smaller than the distance dx.
  • This configuration is a component (9').
  • dz is the same as dx in the comparative example.
  • the structure (configuration) is that the distance from the center of the substrate to the edge of the probe housing in the direction perpendicular to the substrate is smaller than the distance from the center of the substrate to the end of the probe housing in the direction parallel to the substrate. (9) and configuration (9')) are the same.
  • the orientation of the substrate to be housed in the probe housing is different between a in FIG. 221 and a in FIG. 189 (rotated by 90 °). Therefore, in these figures, the orientation of the cross section of the probe housing is also different (rotated by 90 °).
  • the rainfall from above the sensor device 200 of the two probe housings (transmitting probe housing and receiving probe housing) shown in each figure is shown by a broken line in the figure. It falls on the outer region of the measuring unit housing 310.
  • the rain that has fallen on the outer region of the measuring unit housing 310 permeates (in other words, diffuses) into the soil to be measured for water content, which is located between the two probe housings.
  • the thickness of the component (9') and the probe housing of the comparative example (in other words, the size of the probe housing in the diffusion direction in which rainfall diffuses from the measurement unit housing 310 to the measurement target area). ), The size of the probe housing of the component (9') is smaller than that of the comparative example.
  • the probe housing in a wide area outside the measuring unit housing 310 and from one probe housing to the other probe housing, the probe housing is formed from the soil in the upward and downward directions on the paper surface. Moisture diffuses to the body in a plane. Then, when a part of the water that has diffused on the surface to the probe housing diffuses into the water measurement target area between the probe housings, the water is supplemented from the soil in the vertical direction of the paper surface of the probe housing. While spreading.
  • the water concentration of the soil in the water content measurement target region in the component (9') shown in FIG. 221a is higher than the water concentration of the soil in the water content measurement target region in the comparative example shown in FIG. 221b. It is close to the original soil moisture content (soil moisture content in the region where the sensor device 200 is not arranged). Thereby, the sensor device 200 of the second embodiment of the present technique can measure the water content of the soil more accurately than the comparative example.
  • FIG. 222 is a diagram showing an example of a covered portion of a radio wave absorbing portion during double-sided radiation in the second embodiment of the present technology.
  • the radio wave absorbing unit covers the entire probe other than the antenna.
  • the lower end of the radio wave absorbing portion is the upper end of the antenna, as illustrated in b in the figure.
  • the lower end of the radio wave absorbing unit can be separated from the upper end of the antenna.
  • FIG. 223 is a diagram showing an example in which the radio wave absorbing portion is not covered in the case of double-sided radiation in the second embodiment of the present technique. As illustrated in the figure, it is not necessary to cover with the radio wave absorbing part.
  • FIG. 224 is a diagram showing an example of a covered portion of a radio wave absorbing portion during one-sided radiation in the second embodiment of the present technology. The figure is the same as that of FIG. 222 except that the antenna is radiated on one side.
  • FIG. 225 is a diagram showing an example in which the radio wave absorbing portion is not covered in the case of one-sided radiation in the second embodiment of the present technique. The figure is the same as that of FIG. 223 except that the antenna is radiated on one side.
  • FIG. 2226 is a diagram showing an example of covering one side during one-sided radiation in the second embodiment of the present technique. As illustrated in the figure, the side of the electronic substrate 311-1 on which the antenna is not formed can be further covered with a radio wave absorbing portion.
  • FIG. 227 is a diagram showing an example of covering the transmission line and the tip during bilateral radiation in the second embodiment of the present technique. As illustrated in the figure, the tip of the probe can be further covered by the radio wave absorbers 349 and 350.
  • FIG. 228 is a diagram showing an example in which only the tip is covered during bilateral radiation in the second embodiment of the present technique. As illustrated in the figure, only the tip of the probe can be further covered by the radio wave absorbers 349 and 350.
  • FIG. 229 is a diagram showing an example of covering the transmission line and the tip during one-sided radiation in the second embodiment of the present technique. The figure is the same as that of FIG. 227 except that the antenna is radiated on one side.
  • FIG. 230 is a diagram showing an example in which only the tip is covered during one-sided radiation in the second embodiment of the present technique. The figure is the same as that of FIG. 228 except that the antenna is radiated on one side.
  • FIG. 231 is a diagram showing an example in which the transmission line, one side, and the tip are covered during one-sided radiation in the second embodiment of the present technique. As illustrated in the figure, in the case of one-sided radiation, in addition to the transmission line and the tip, the side of the electronic substrate 311-1 on which the antenna is not formed can be covered with the radio wave absorbing portion.
  • FIG. 232 is a diagram showing an example of a covered portion of a radio wave absorbing portion when a plurality of antenna pairs radiating on both sides are provided in the second embodiment of the present technique. As illustrated in the figure, when forming two or more pairs of antennas, radio wave absorbing units 341, 342, 344, 345 and the like are arranged between the antennas.
  • FIG. 233 is a diagram showing another example of the covering portion of the radio wave absorbing portion when a plurality of antenna pairs radiating on both sides are provided in the second embodiment of the present technique. As illustrated in the figure, a part of the probe other than the antenna can be covered.
  • FIG. 234 is a diagram showing an example of forming a radio wave absorbing unit in the sensor housing according to the second embodiment of the present technology.
  • a shows a comparative example in which the radio wave absorbing portion is not formed in the sensor housing 305.
  • b and c show an example in which a radio wave absorbing portion is formed in the sensor housing 305.
  • the black part in the figure shows the radio wave absorber.
  • a radio wave absorber such as ferrite can be embedded in the sensor housing 305 when the exterior is formed.
  • the black part in the figure shows the radio wave absorber.
  • This radio wave absorber functions as a radio wave absorber.
  • a layer of a radio wave absorber may be provided inside the outer case after the outer case is formed.
  • FIG. 235 is a diagram showing an example of the shape of the radio wave absorbing unit in the second embodiment of the present technology.
  • a protrusion may be formed on the radio wave absorbing portion 341
  • a groove may be formed on the sensor housing 305 side, and these may be fitted.
  • a groove may be formed in the radio wave absorbing portion 341
  • a protrusion may be formed on the sensor housing 305 side, and these may be fitted.
  • FIG. 236 is a diagram showing another example of the shape of the radio wave absorbing unit in the second embodiment of the present technology.
  • the sensor housing 305 may be configured not to cover a part of the entire circumference. In this case, if the thickness is the same as that of covering the entire circumference, the radio wave absorbing power is reduced, so it is preferable to increase the thickness or width of the radio wave absorbing portion.
  • the antenna is formed on one electronic substrate 311-1, the first embodiment of connecting the measurement unit substrate 311 and the probe inner substrates 321 and 322 is performed.
  • the number of substrates can be reduced compared to the form.
  • FIG. 237 is an example of a sensor device 200 which is a planar and slot-shaped antenna and is provided with a lateral radiation type antenna, which will be described later, as a first modification of the second embodiment of the present technology. It is a figure which shows.
  • the sensor device 200 according to the second embodiment of the present technology is, for example, in all the antennas (transmitting antennas 221 to 223 and receiving antennas 231 to 233) provided in the sensor device 200, which will be described later in FIGS. 238 to 233. It is characterized by using the planar, slot-like, and laterally radiating antennas described in 240.
  • FIGS. 238 to 240 are diagrams illustrating the structure of a planar, slot-shaped, and laterally radiating antenna.
  • the lateral radiation type antennas shown in FIGS. 238 to 240 are obtained by changing the shape of the slots provided in the planar and slotted antennas shown in FIGS. 69 to 71. It was
  • planar and slotted antennas shown in FIGS. 69 to 71 are suitable for use in the sensor device 200 of the first embodiment of the present technique and its modifications, and are shown in FIGS. 238 to 240.
  • the planar, slot-shaped, and laterally radiating antennas are suitable for use in the sensor device 200, which is the first modification of the second embodiment of the present technique.
  • the transmitting probe board 321 including the transmitting antenna, the receiving probe board 322 including the receiving antenna, and the second of the present technology in the sensor device 200 (for example, FIG. 4) of the first embodiment of the present technology, the transmitting probe board 321 including the transmitting antenna, the receiving probe board 322 including the receiving antenna, and the second of the present technology.
  • the direction of the substrate plane on which the antenna is formed is such that the transmitting substrate protrusion including the transmitting antenna and the receiving substrate protruding portion including the receiving antenna. Is different (rotated 90 °). Therefore, the directions of the coordinate axes in the figure are different between the antennas shown in FIGS. 69 to 71 and the antennas shown in FIGS. 238 to 240. Specifically, for example, in FIG.
  • the thickness direction of the substrate is the Z-axis direction
  • the direction in which the signal line 255 extends is the Y-axis direction
  • the direction in which the slot intersecting the signal line 255 extends is the X-axis direction.
  • the flat, slot-shaped, and laterally radiating antennas shown in FIGS. 238 to 240 are signal lines among the slots provided in the shield layers (shield layers 256 and 254) exposed from the electromagnetic wave absorber 251 and exposed to the space.
  • the slot at the intersection of 255 extends in the extending direction (X-axis direction) of this slot to the outer edge of the shield layers 254 and 256 (in other words, the outer edge of the substrate protrusion forming the antenna). ing.
  • the shield layer is provided with slots in the shield layers 254 and 256, which are radiation elements (reception elements in the reception antenna) in the transmission antenna. Due to the structure extending to the outer edge of the shield layer (in other words, the outer edge of the board protruding portion forming the antenna), electromagnetic waves are radiated from the opening of the slot provided on the outer edge of the shield layer (outer edge of the board protruding portion) to the outside of the board. Will be done. Then, the electromagnetic wave is mainly radiated to the destination in the direction in which the slot extends to the opening.
  • the direction in which the slot intersecting the signal line 255 extends toward the opening is the direction of the main radiation of the electromagnetic wave in this antenna.
  • the electromagnetic wave is in the X-axis direction, that is, in a direction parallel to the substrate plane on which the antenna is formed and perpendicular to the extending direction of the signal line 255 (in other words, the extending direction of the probe).
  • the antennas shown in FIGS. 238 to 240 are conveniently referred to as planar, slot-like, and laterally radiating antennas, or simply laterally radiating antennas, because they are mainly radiated to. ..
  • the planar, slot-shaped, and laterally radiating antennas shown in FIGS. 238 to 240 have electromagnetic waves in a direction parallel to the substrate plane on which the antenna is formed and in a direction orthogonal to the extending direction of the probe. Since this antenna is mainly radiated, the antenna has a transmitting substrate protruding portion forming a transmitting antenna and a receiving substrate protruding portion forming a receiving antenna formed on the same plane, according to a second embodiment of the present technology. Suitable for use in the sensor device 200 of.
  • some electromagnetic waves are radiated in a direction orthogonal to the shield layers 254 and 256 in which the slots are arranged. ..
  • the electromagnetic waves radiated in the direction of the main radiation (the direction parallel to the substrate on which the antenna is formed) and the main.
  • the ratio of the electromagnetic wave emitted in the direction orthogonal to the radiation is (1)
  • the width of the board on which the antenna is formed is more specifically, the size of the board in the direction orthogonal to the extending direction of the signal line 255 intersecting the slot).
  • the width of the substrate on which the antenna is formed is radiated from the antenna (2). It is desirable that the wavelength of the electromagnetic wave at the center frequency of the electromagnetic wave is approximately one-fifth or less.
  • the width W of the substrate on which the antenna is formed may be 12 mm (mm) or less. desirable.
  • FIG. 241 is a diagram showing a configuration example of the electronic substrate 311-1 in the first modification of the second embodiment of the present technology.
  • a is a top view of the electronic substrate 311-1 when viewed from above
  • b in the figure is a front view of the electronic substrate 311-1 when viewed from the Z-axis direction
  • c is a side view of the electronic substrate 311-1 when viewed from the X-axis direction.
  • FIGS. 242 to 250 show the planar shape and the cross-sectional shape of the protrusion of the transmission board in the electronic board 311-1 in the first modification of the second embodiment of the present technology.
  • the 242 to 250 show the planar shape of the probe inner substrate 321 of the first embodiment of the present technique shown in FIGS. 105 to 113 to the transmission substrate protrusion of the second embodiment of the present technique. It has been modified to adapt.
  • the changed part is the part connected to the measuring part (in the probe inner substrate 321 of the first embodiment of the present technique, which is described above the paper surface (negative direction of the Y axis), and is connected to the transmission line connecting part.
  • 242 and 243 show a planar shape and a cross-sectional shape when the electronic substrate 311-1 in the first modification of the second embodiment of the present technique is formed of an electronic substrate provided with three wiring layers. Represents. 242 and 243 correspond to FIGS. 105 and 106.
  • 244 to 246 show a planar shape and a cross-sectional shape when the electronic substrate 311-1 in the first modification of the second embodiment of the present technique is formed of an electronic substrate provided with five wiring layers. Represents. 244 to 246 correspond to FIGS. 107 to 109.
  • 247 to 250 show a planar shape and a cross-sectional shape when the electronic substrate 311-1 in the first modification of the second embodiment of the present technique is formed of an electronic substrate provided with seven wiring layers. Represents. 247 to 250 correspond to FIGS. 110 to 113.
  • the transmission probe inner substrate of the first embodiment of the present technique described in FIGS. 105 and 106 uses a row of shielding vias as a structure for shielding the side of the signal line provided on the substrate. As a result, the effect of reducing the width of the substrate is obtained as compared with the substrate in the transmission probe shown in FIGS. 103 and 104, which does not have this structure.
  • the substrate protrusions of the second embodiment of the present technique described in FIGS. 242 and 243 also use a row of shielding vias as a structure for shielding the side of the signal line provided on the substrate. , The effect of reducing the width of the substrate is obtained as compared with the substrate not provided with this structure.
  • the transmission probe inner substrates of FIGS. 107 to 109 and the first embodiment of the present technique shown in FIGS. 110 to 113 are compared with the transmission probe inner substrates shown in FIGS. 105 and 106. Therefore, by using more signal line layers, the number of signal lines arranged in one signal line layer is reduced, which has the effect of reducing the width of the substrate.
  • the substrate protrusions of the second embodiment of the present technique described in FIGS. 244 to 246 and 247 to 250 are also more compared to the transmission probe inner substrates described in FIGS. 242 and 243.
  • the number of signal lines arranged in one signal line layer is reduced, which has the effect of reducing the width of the substrate.
  • FIG. 251 shows that in the sensor device 200 of the first modification of the second embodiment of the present technique shown in FIG. 237, the width of the substrate protrusion and the cross-sectional area of the probe housing for accommodating the sensor device 200 are water content. It is a figure for demonstrating the influence on the measurement of quantity.
  • Reference numerals a, b, and c in FIG. 251 are for transmission probe housings when the sensor device 200 in the first modification of the second embodiment of the present technique is viewed from above in the positive direction of the Y axis. It is sectional drawing of the body 320a and the receiving probe housing 320b.
  • the rectangle on the left side represents the protrusion of the transmission substrate, and the thin elliptical line arranged on the outer circumference thereof represents the transmission probe housing 320a.
  • the rectangle on the right side represents the protruding portion of the receiving substrate, and the thin elliptical line arranged on the outer circumference thereof represents the receiving probe housing 320b.
  • the white part inside the probe housing represents the space inside the probe housing.
  • the lightly colored area on the outside of the probe housing represents the same soil as before the probe housing was inserted.
  • the dark colored part near the outside of the probe housing as a result of inserting the probe housing, the displaced soil moves, and as a result, the soil density becomes the soil before the probe is inserted. It represents a region that has become higher than the density of.
  • the ratio of the length of the major axis to the length of the minor axis is 2: 1 for the three types of transmission substrate protrusions and reception substrate protrusions having different widths. It is housed in an elliptical transmission probe housing 320a and a reception probe housing 320b.
  • the distance between the transmission board protrusion and the reception board protrusion is the same. It was done.
  • the sensor device 200 shown in FIGS. 237 and 251 includes a planar, slot-shaped, and laterally radiating antenna described with reference to FIGS. 238 to 240.
  • a, b, and c in the figure are arranged so that the distance between the radiating end of the transmitting antenna and the receiving end of the receiving antenna is the same, in other words, the transmitting antenna. They are arranged so that the distances between the receiving antennas are the same.
  • the smaller the width of the substrate protrusion housed in the probe housing the smaller the width of the above-mentioned region where the soil density has increased.
  • the smaller the width of the substrate protrusion the smaller the proportion of the region between the transmitting antenna and the receiving antenna where the soil density has increased.
  • the measurement result of the water content of the soil becomes closer to the original water content of the soil to be measured. That is, the water content of the soil can be accurately measured.
  • the sensor device 200 according to the second embodiment of the present technology (1)
  • the width of the substrate protrusion can be reduced by using a row of shielding vias as a structure for shielding the side of the signal line in the substrate protrusion housed in the probe housing.
  • the plurality of signal lines are used by using the plurality of wiring layers. By forming at least one of them in different wiring layers, the width of the substrate protrusion can be reduced. As a result, the effect of accurately measuring the water content of the soil can be obtained.
  • the substrate is used as another example of a structure for fixing the orientation and position of the substrate protrusion (electronic substrate 311-1). It has a structure that is abutted against a sensor housing (more specifically, a probe housing 320).
  • FIG. 252 is a diagram showing an example of the sensor device 200 in the second modification of the second embodiment of the present technology.
  • FIG. 253 is an example of a cross-sectional view of the sensor housing 305 and the electronic board 311-1 in the second modification of the second embodiment of the present technique shown in FIG. 252.
  • a in FIG. 253 shows a cross-sectional view of the sensor housing 305 when cut along the AA'line of FIG. 252.
  • a in FIG. 253 shows a cross-sectional view of the sensor housing 305 when cut along the line BB'of FIG. 252.
  • the substrate protrusions provided on the electronic substrate 311-1 are two points in the width direction (X-axis direction) of the substrate shown in FIG. 252a, and FIG.
  • the probe housing 320 By contacting the probe housing 320 at at least two points out of a total of four points, which are the products of the two points in the thickness direction (Z-axis direction) of the substrate shown in b of 253, the inside of the probe housing 320 is formed. The position of the board protrusion and the antenna provided there is fixed.
  • FIG. 254 is a diagram illustrating yet another example of a structure for fixing the orientation and position of a transmitting antenna and a receiving antenna as yet another example in the second embodiment of the present technique.
  • the sensor device 200 shown in FIG. 254 does not include the sensor housing 305 of the second embodiment of the present technique (FIG. 220).
  • the sensor device 200 shown in FIG. 254 does not include the sensor housing 305, but at least, (1) A structure in which the periphery of a transmission board protrusion (same as the transmission probe board 321 in the sensor device 200 shown in FIG. 4) provided with a transmission antenna and a transmission transmission path connected to the transmission antenna is hardened with resin.
  • the transmission probe formed by (2) A structure in which the periphery of the receiving board protrusion (the same as the receiving probe board 322 in the sensor device 200 shown in FIG. 4) provided with the receiving antenna and the receiving transmission path connected to the receiving antenna is hardened with resin.
  • the receiving probe formed by It also has a structure in which the transmission probe (1) and the reception probe (2) are fixed.
  • the sensor device 200 shown in FIG. 254 includes the transmission probe (1) and the reception probe (2), and is different from (3) the third (1) and (2). By further including a structural portion, a structure in which the transmission probe (1) and the reception probe (2) are fixed may be provided.
  • the sensor device 200 shown in FIG. 254 has a transmission probe (1), a reception probe (2), and a rectangular board portion provided on the electronic board 311-1 as the third structural part (3). It is provided with a structural portion in which the periphery of the above is hardened with a resin, and is provided with a structure in which the above-mentioned structures (1) to (3) are integrally fixed.
  • the transmitting probe of (1) and the receiving probe of (2) above are described as follows: "When these probes are inserted into the soil, these probes are deformed and the electrons arranged inside the probes are deformed. The board is deformed, and as a result, the distance between the transmitting antenna and the receiving antenna formed on this electronic board changes from a predetermined value, which causes an error in the water content measurement result. ”
  • the strength of the resin portion contained in this probe is the strength of the transmission board protrusion alone contained in this probe. It is desirable that it is higher than the strength of.
  • the strength of the transmission probe in which the periphery of the transmission substrate protrusion is hardened with resin is at least twice the strength of the transmission substrate protrusion alone contained in this probe.
  • the amount of deformation of the transmission probe in which the periphery of the protrusion of the transmission substrate is hardened with resin, and the amount of deformation of the protrusion of the transmission substrate alone contained in this probe is 1 ⁇ 2 or less of the deformation amount of the transmission substrate protrusion alone contained in this probe. Is desirable.
  • the strength of the resin portion contained in this probe is the strength of the receiving substrate protrusion included in this probe. It is desirable that it is higher than the strength of a single substance. In other words, it is desirable that the strength of the receiving probe in which the periphery of the receiving substrate protrusion is hardened with resin is at least twice the strength of the receiving substrate protrusion alone contained in this probe. In other words, using the method shown in FIG. 135, the amount of deformation of the receiving probe in which the periphery of the receiving substrate protrusion is hardened with resin, and the amount of deformation of the receiving substrate protrusion alone contained in this probe. The amount of deformation of the receiving probe in which the periphery of the receiving substrate protrusion is hardened with resin is 1 ⁇ 2 or less of the amount of deformation of the receiving substrate protrusion alone contained in this probe. Is desirable.
  • the probe housing is used.
  • a structure for preventing deformation when the body 320 is inserted into the soil it is provided with a structure for improving the strength of the probe housing 320 without fear of deteriorating the measurement accuracy of the water content.
  • the fourth modification of the second embodiment of the present technique shown in FIGS. 255 to 264 has a structure for improving the strength of the probe housing 320 without fear of deteriorating the measurement accuracy of the water content.
  • This is an example adapted to the second embodiment of the present technology. Similar to the probe housing 320 shown in FIGS. 191 to 199, the probe housing 320 shown in FIGS. 255 to 264 has a region in which electromagnetic waves transmitted and received are mainly transmitted so as not to deteriorate the measurement accuracy of the water content. To avoid this, the wall thickness of the probe housing 320 is increased in other regions.
  • the shape of the housing shown in FIG. 221a is referred to as a comparative example in which the thick housing is not provided.
  • FIG. 255 is a diagram illustrating a fourth modification example 1 of the second embodiment of the present technique.
  • the probe housing 320 shown in the figure is thicker in the outer direction of the paper surface, mainly avoiding the inner direction of the paper surface through which electromagnetic waves pass through the housing.
  • the shape is such that there are no discontinuities or inflections on both the outer circumference and the inner circumference of the housing.
  • the wall thickness of the housing may be increased.
  • the wall thickness may be increased in the inner direction of the housing.
  • discontinuity points or inflection points are increased on the inner circumference of the housing.
  • the wall thickness may be increased in the outer direction of the housing.
  • discontinuity points or inflection points are increased on the outer periphery of the housing.
  • the wall thickness may be increased in both the inner direction and the outer direction of the housing. In this case, as compared with the comparative example, discontinuity points or inflection points are increased on both the inner circumference and the outer circumference of the housing.
  • FIG. 256 is a diagram illustrating a second modification of the second embodiment of the present technique.
  • the probe housing 320 shown in the figure is thickened mainly in either the upward direction or the downward direction of the paper surface, avoiding the inner direction of the paper surface through which electromagnetic waves pass through the housing.
  • the shape is such that there are no discontinuities or inflection points on both the outer and inner circumferences of the housing.
  • the wall thickness of the housing may be increased.
  • the wall thickness may be increased in the inner direction of the housing. In this case, as compared with the comparative example, discontinuity points or inflection points are increased on the inner circumference of the housing.
  • the wall thickness may be increased in the outer direction of the housing. In this case, as compared with the comparative example, discontinuity points or inflection points are increased on the outer periphery of the housing.
  • the wall thickness may be increased in both the inner direction and the outer direction of the housing. In this case, as compared with the comparative example, discontinuity points or inflection points are increased on both the inner circumference and the outer circumference of the housing.
  • FIG. 257 is a diagram illustrating a fourth modification example No. 3 of the second embodiment of the present technique.
  • the probe housing 320 shown in the figure has a large wall thickness mainly in the upward direction and the downward direction of the paper surface, avoiding the inner direction of the paper surface through which electromagnetic waves pass through the housing.
  • the shape has no discontinuity or inflection on both the outer circumference and the inner circumference of the housing.
  • the wall thickness of the housing may be increased.
  • the wall thickness may be increased in the inner direction of the housing.
  • discontinuity points or inflection points are increased on the inner circumference of the housing.
  • the wall thickness may be increased in the outer direction of the housing.
  • discontinuity points or inflection points are increased on the outer periphery of the housing.
  • the wall thickness may be increased in both the inner direction and the outer direction of the housing. In this case, as compared with the comparative example, discontinuity points or inflection points are increased on both the inner circumference and the outer circumference of the housing.
  • FIG. 258 is a diagram illustrating an exceptional example of the fourth modification of the second embodiment of the present technique.
  • the probe housing 320 shown in the figure is exceptionally thickened at two locations in the left-right direction of the paper surface, including the inside direction of the paper surface through which electromagnetic waves pass through the housing. In this case, although there is a concern that the measurement accuracy of the water content may be deteriorated, the effect of improving the strength of the probe housing 320 can be obtained.
  • the shape is such that there are no discontinuities or inflections on both the outer circumference and the inner circumference of the housing.
  • the wall thickness of the housing may be increased.
  • the wall thickness may be increased toward the inside of the housing. In this case, as compared with the comparative example, discontinuity points or inflection points are increased on the inner circumference of the housing.
  • the wall thickness may be increased in the outward direction of the housing. In this case, as compared with the comparative example, discontinuity points or inflection points are increased on the outer periphery of the housing. As shown in d of FIG. 258, the wall thickness may be increased in both the inner direction and the outer direction of the housing. In this case, as compared with the comparative example, discontinuity points or inflection points are increased on both the inner circumference and the outer circumference of the housing.
  • FIG. 259 is a diagram illustrating a fourth modification example No. 4 of the second embodiment of the present technique.
  • the probe housing 320 shown in the figure has a large wall thickness at three locations excluding the inside direction of the paper surface, mainly avoiding the inside direction of the paper surface through which electromagnetic waves pass through the housing.
  • the shape has no discontinuity or inflection on both the outer circumference and the inner circumference of the housing.
  • the wall thickness of the housing may be increased.
  • the wall thickness may be increased in the inner direction of the housing.
  • discontinuity points or inflection points are increased on the inner circumference of the housing.
  • the wall thickness may be increased in the outer direction of the housing.
  • discontinuity points or inflection points are increased on the outer periphery of the housing.
  • the wall thickness may be increased in both the inner direction and the outer direction of the housing. In this case, as compared with the comparative example, discontinuity points or inflection points are increased on both the inner circumference and the outer circumference of the housing.
  • FIG. 260 is a diagram illustrating a fourth modification example No. 5 of the second embodiment of the present technique.
  • the structure shown in the figure is the same as the shape of the housing except that the antenna having the structure shown in FIG. 255 is changed to one-sided radiation.
  • FIG. 261 is a diagram illustrating a fourth modification example No. 6 of the second embodiment of the present technique.
  • the structure shown in the figure is the same as the shape of the housing except that the antenna having the structure shown in FIG. 256 is changed to one-sided radiation.
  • FIG. 262 is a diagram illustrating a fourth modification example No. 7 of the second embodiment of the present technique.
  • the structure shown in the figure is the same as the shape of the housing except that the antenna having the structure shown in FIG. 257 is changed to one-sided radiation.
  • FIG. 263 is a diagram illustrating an exceptional example of the fourth modification of the second embodiment of the present technique.
  • the structure shown in the figure is the same as the shape of the housing except that the antenna having the structure shown in FIG. 258 is changed to one-sided radiation.
  • FIG. 264 is a diagram illustrating a fourth modification example No. 8 of the second embodiment of the present technique.
  • the structure shown in the figure is the same as the shape of the housing except that the antenna having the structure shown in FIG. 259 is changed to one-sided radiation.
  • the fourth modification of the second embodiment of the present technique described in FIGS. 255 to 264 is the fifth modification of the first embodiment of the present technique shown in FIGS. 191 to 199.
  • the structure for thickening a part of the probe housing shown is applied to the probe housing of the second embodiment of the present technique exemplified in FIG. 221a.
  • the probe housing exemplified in a of FIG. 221 represents a component (9') of the second embodiment of the present technique, but the probe housing shown in the figure is shown in the figure.
  • the probe housing which is the component (9) of the first embodiment of the present technique exemplified by 190a, is rotated by 90 °.
  • FIG. 190 there are b to d of FIG. 190 as an example other than a of FIG. 190.
  • the housings b to d in FIG. 190 are rotated by 90 ° in the same manner that the structure in which the housing in FIG. 190 is rotated by 90 ° becomes the component (9') of the second embodiment.
  • the structure can also be used in the second embodiment as a component (9') of the second embodiment.
  • FIGS. 255 to 264 are shown for each of the structures in which the housings b to d in FIGS. 190 are rotated by 90 °. Structures can also be applied.
  • the region where the transmitted and received electromagnetic waves are mainly transmitted is avoided so as not to deteriorate the measurement accuracy of the water content, and the other regions are avoided.
  • the wall thickness of the probe housing 320 is increased in the above method, whereby the deformation of the probe housing 320 and the substrate inside the probe housing 320 when the probe is inserted into the soil is reduced even when the hardness of the soil is extremely high. As a result, the water content can be measured more accurately.
  • the sensor device 200 measures the water content at a predetermined point in the XY plane parallel to the ground, but in this configuration, when measuring a plurality of points, a plurality of points are measured. Sensor device 200 is required.
  • the sensor device 200 of the fifth modification of the second embodiment is different from the first embodiment in that it measures a plurality of points on the XY plane.
  • FIG. 265 is a diagram showing a configuration example of the sensor device 200 in the fifth modification of the second embodiment of the present technology.
  • the sensor device 200 of the second embodiment is different from the second embodiment in that it includes an electronic substrate 311-1 having two or more (for example, three pairs) of protrusions formed therein.
  • An antenna is formed on each of the protrusions and functions as a probe.
  • a shows an example in which a measurement circuit is arranged for each probe pair
  • b in the figure shows an example in which one measurement circuit is shared.
  • a transmitting antenna 221-1 and a receiving antenna 231-1 are formed on the first pair of probes (protruding portions). These antennas are connected to the measurement circuit 210-1.
  • a transmitting antenna 221-3 and a receiving antenna 231-2 are formed on the second pair of probes. These antennas are connected to the measuring circuit 210-2.
  • a transmitting antenna 221-3 and a receiving antenna 231-3 are formed on the third pair of probes. These antennas are connected to the measuring circuit 210-3.
  • the electronic substrate 311-1 may be stored in the housing and inserted into the soil, or the electronic substrate 311-1 may be inserted into the soil as it is without being stored in the housing.
  • the electronic board 311-1 includes three or more probes, it is possible to measure the water content at a plurality of points by one sensor device 200.
  • three pairs of probes can share one measurement circuit 210.
  • FIG. 266 is a diagram showing an example of the sensor device 200 before and after the connection of the electronic board in the fifth modification of the second embodiment of the present technology.
  • a indicates an electronic board before connection
  • b in the figure shows an electronic board after connection.
  • electronic substrates 311-1, 312-2, 311-3 can be prepared, and as illustrated in b in the figure, they can be connected by connecting portions 370 and 371. ..
  • FIG. 267 is a diagram showing a configuration example of a sensor device 200 provided with a plurality of pairs of antennas for each probe in the fifth modification of the second embodiment of the present technology.
  • a shows an example in which a measurement circuit is arranged for each probe pair
  • b in the figure shows an example in which one measurement circuit is shared.
  • a plurality of pairs of antennas can be provided for each probe pair.
  • FIG. 268 is a diagram showing a configuration example of a sensor device 200 having a different length for each probe pair in the fifth modification of the second embodiment of the present technology.
  • a shows an example in which the number of antennas differs for each probe pair.
  • b shows an example in which the number of antennas for each probe pair is the same.
  • the length is changed for each probe pair, the first pair of probes is provided with three pairs of antennas, the second pair of probes is provided with two pairs of antennas, and the third pair of probes.
  • a pair of antennas may be provided on the probe.
  • the length may be changed for each probe pair, and a pair of antennas may be provided for each probe pair.
  • the sensor device 200 can measure the water content at different depths for each point.
  • FIG. 269 is a diagram showing a configuration example of a sensor device 200 in which a plurality of receiving antennas share a transmitting antenna in a fifth modification of the second embodiment of the present technology.
  • a shows an example in which two receiving antennas share one transmitting antenna.
  • b shows an example in which four receiving antennas share one transmitting antenna.
  • the number of probes is three, the transmitting antenna 221-1 is formed in the middle probe, the receiving antenna 231-1 is formed in one of the remaining two probes, and the receiving antenna is formed in the other. It is also possible to form 231-2. Further, as illustrated in b in the figure, the number of probes is three, the transmitting antenna 221-1 is formed in the middle probe, and the receiving antennas 231-1 and 232-1 are formed in one of the remaining two probes. On the other hand, the receiving antennas 231-2 and 232-2 can also be formed. By sharing the transmitting antenna, the number of probes can be reduced.
  • FIG. 270 is a diagram showing a configuration example of a sensor device 200 in which the substrate surfaces of electronic boards face each other in the fifth modification of the second embodiment of the present technology.
  • a is a perspective view when the end portions of the electronic substrate are connected.
  • b shows a top view when the end portions of the electronic substrate are connected.
  • c shows a perspective view when the electronic substrate other than the end portion is connected.
  • d indicates a top view when the electronic substrate other than the end portion is connected.
  • the connecting portion 370 is connected to other than the end portions (central portion, etc.) so that the respective substrate planes of the electronic substrates 311-1, 311-2 and 311-3 are parallel to each other. It can also be connected and fixed at 371.
  • FIG. 271 is a diagram showing a configuration example of a sensor device 200 that measures a plurality of points arranged in a two-dimensional grid pattern in a fifth modification of the second embodiment of the present technology.
  • the electronic substrates 311-1, 311-2 and 311-3 each of which has three pairs of probes arranged in the X-axis direction, are connected by connecting portions 371 to 375 so that the substrate planes face each other. You can also connect.
  • the sensor device 200 can measure the amount of water at 3 ⁇ 3 points arranged in a two-dimensional grid pattern on the XX plane parallel to the ground.
  • FIG. 272 is a diagram showing a configuration example of the sensor device 200 to which a spirit level is added in the fifth modification of the second embodiment of the present technology.
  • a spirit level 376 can also be provided on an electronic board 311-1 provided with three pairs of probes.
  • levels 376 and 377 can also be provided.
  • the spirit level 376 detects an inclination in the direction in which the probes are arranged (X-axis direction).
  • the spirit level 377 detects an inclination in a direction (Z-axis direction) perpendicular to the direction in which the probes are arranged.
  • levels 376 and 377 can be provided in the sensor device 200 for measuring a plurality of points arranged in a two-dimensional grid pattern.
  • FIG. 273 is a diagram showing a configuration example of the sensor device 200 in which the transmission / reception directions of electromagnetic waves intersect in the fifth modification of the second embodiment of the present technology.
  • the electronic boards 311-1 and 311-2 are connected by the connecting portion 370, and the transmitting signal of the transmitting antenna 221-1 is transmitted to the receiving antenna 232 whose position in the Y-axis direction is different from that of the antenna. It can also be received at -1.
  • the transmission signal of the transmission antenna 222-1 can be received by the reception antenna 231-1 whose position in the Y-axis direction is different from that of the antenna.
  • the sensor device 200 can measure the water content at an intermediate depth between the transmitting antennas 221-1 and 222-1.
  • the sensor device 200 can measure the water content at a plurality of points. can.
  • the positions of the antennas of the transmitting probe and the receiving probe are symmetrical, but it is difficult to further reduce the size of the sensor device 200 in this configuration.
  • the sixth modification of this second embodiment is different from the second embodiment in that the positions of the antennas of the transmitting probe and the receiving probe are asymmetrical.
  • FIG. 274 is a diagram for explaining the effect when the position of the antenna is made asymmetric in the sixth modification of the second embodiment of the present technique.
  • the electronic substrate 311-1 in the sensor device 200 is provided with a quadrangular portion (rectangular or the like) and a pair of protruding portions.
  • a transmitting antenna 221 is formed on one of the pair of protrusions, and a receiving antenna 231 is formed on the other. These protrusions function as a transmission probe and a reception probe.
  • the antenna position at the depth is the same for the transmitting probe and the receiving probe as a comparative example.
  • the antennas are arranged at different positions in the Y-axis direction between the transmitting probe and the receiving probe.
  • the distance d between the antennas a, b, and c in the figure is the same.
  • w be the distance between the probes (in other words, the width).
  • be the angle between the direction from the transmitting antenna to the receiving antenna and the X-axis. In b in the figure, ⁇ is 45 degrees, and in x in the figure, ⁇ is 60 degrees.
  • the width w is equal to the distance d from the equation 20.
  • the width w is d / 2 1/2 from the equation 20.
  • the width w is d / 2 according to the equation 20.
  • FIG. 275 is a diagram showing a configuration example of a sensor device in a sixth modification of the second embodiment of the present technology.
  • the length of the probe may be changed between the receiving side and the transmitting side, and an antenna may be formed at the tip thereof.
  • the length of the probe may be the same on the receiving side and the transmitting side, and the positions of the transmitting antenna and the receiving antenna in the depth direction (Y-axis direction) may be changed. ..
  • FIG. 276 is a diagram showing a configuration example of the sensor device 200 in which the quadrangular portion in the sixth modification of the second embodiment of the present technique is made into a parallelogram.
  • the quadrangle portion may be a parallelogram.
  • a is an example in which the transmitting side is deeper than the receiving side
  • b in the figure is an example in which the receiving side is deeper than the transmitting side
  • c and d are examples in which the lengths of the probes are the same on the transmitting side and the receiving side.
  • the correction value of one of the transmitting side and the receiving side can be applied to the other.
  • FIG. 277 is a diagram showing a configuration example of a sensor device 200 in which the quadrangular portion in the sixth modification of the second embodiment of the present technology is rectangular and the transmission path lengths are matched on the transmitting side and the receiving side. be. It is also possible to make the rectangular portion rectangular and match the transmission path lengths on the transmitting side and the receiving side.
  • a is an example in which the transmitting side is deeper than the receiving side
  • b in the figure is an example in which the receiving side is deeper than the transmitting side.
  • c and d are examples in which the lengths of the probes are the same on the transmitting side and the receiving side.
  • FIG. 278 is a diagram showing a configuration example of a sensor device 200 that measures a plurality of points in a sixth modification of the second embodiment of the present technology. It is also possible to form a plurality of antennas for each probe and measure a plurality of points in the Y-axis direction.
  • a is an example in which the transmitting side is deeper than the receiving side
  • b in the figure is an example in which the receiving side is deeper than the transmitting side
  • c and d are examples in which the lengths of the probes are the same on the transmitting side and the receiving side.
  • e and f are examples in which the quadrilateral portion is made into a parallelogram.
  • g and h are examples in which the quadrangular portion is made into a parallelogram and the lengths of the probes are the same on the transmitting side and the receiving side.
  • FIG. 279 is a diagram showing a configuration example of a sensor device 200 that measures two points by sharing an antenna in the sixth modification of the second embodiment of the present technology.
  • the receiving antenna 231 can be shared by the transmitting antennas 221 and 222.
  • the transmitting antenna 221 can be shared by the receiving antennas 231 and 232.
  • C and d in the figure are examples in which the length of the probe is the same on the transmitting side and the receiving side.
  • e and f are examples in which the quadrilateral portion is made into a parallelogram.
  • g and h are examples in which the quadrangular portion is made into a parallelogram and the lengths of the probes are the same on the transmitting side and the receiving side.
  • FIG. 280 is a diagram showing a configuration example of a sensor device 200 for measuring three or more points by sharing an antenna in the sixth modification of the second embodiment of the present technology. It is also possible to use two pairs of antennas and share the antennas to measure three or more points.
  • the transmitting antennas 221 and 222 and the receiving antennas 231 and 232 can be formed, and the transmitting antennas 221 and 222 can share the receiving antenna 232.
  • the transmitting antennas 221 and 222 and the receiving antennas 231 and 232 can be formed, and one transmitting antenna can be shared by a plurality of receiving antennas.
  • C and d in the figure are examples in which the length of the probe is the same on the transmitting side and the receiving side.
  • e and f are examples in which the quadrilateral portion is made into a parallelogram.
  • g and h are examples in which the quadrangular portion is made into a parallelogram and the lengths of the probes are the same on the transmitting side and the receiving side.
  • FIG. 281 is a diagram showing another example of the sensor device 200 that measures two points by sharing an antenna in the sixth modification of the second embodiment of the present technique.
  • the receiving antenna 231 is shared by the transmitting antennas 221 and 222, the positions of the transmitting antenna 221 and the receiving antenna 231 in the Y-axis direction can be the same.
  • the transmitting antenna is shared by two receiving antennas, one of the receiving antennas and the transmitting antenna can be positioned at the same position in the Y-axis direction.
  • C and d in the figure are examples in which the length of the probe is the same on the transmitting side and the receiving side.
  • e and f are examples in which the quadrilateral portion is made into a parallelogram.
  • g and h are examples in which the quadrangular portion is made into a parallelogram and the lengths of the probes are the same on the transmitting side and the receiving side.
  • FIG. 282 is a diagram showing another example of the sensor device 200 for measuring three or more points by sharing an antenna in the sixth modification of the second embodiment of the present technique.
  • the positions of the transmitting antenna 221 and the receiving antenna 232 in the Y-axis direction are the same. You can also do it.
  • the positions of one of the receiving antennas and one of the transmitting antennas in the Y-axis direction are the same. It can also be.
  • C and d in the figure are examples in which the length of the probe is the same on the transmitting side and the receiving side.
  • e and f are examples in which the quadrilateral portion is made into a parallelogram.
  • g and h are examples in which the quadrangular portion is made into a parallelogram and the lengths of the probes are the same on the transmitting side and the receiving side.
  • FIG. 283 is a diagram showing a configuration example of a sensor device in which the number of probes is increased in the sixth modification of the second embodiment of the present technology.
  • the number of probes may be three, and the transmitting antenna 221 in the middle may be shared by the receiving antennas 231-1 and 232-2 on both sides.
  • the number of probes may be three, and the receiving antenna 231 in the middle may be shared by the transmitting antennas 221-1 and 222-2 on both sides.
  • c and d are examples in which the lengths of the three probes are the same.
  • FIG. 284 is a diagram showing a configuration example of a sensor device in which the number of probes and the number of antennas are increased in the sixth modification of the second embodiment of the present technology.
  • the number of probes may be three, and the transmitting antenna 221 in the middle may be shared by the receiving antennas 231-1, 232-1, 231-2 and 232-2 on both sides.
  • the number of probes may be three, and the receiving antenna 231 in the middle may be shared by the transmitting antennas 221-1, 222-1, 221-2 and 222-2 on both sides.
  • c and d are examples in which the lengths of the three probes are the same.
  • the position of the antenna is asymmetrical between the transmitting side and the receiving side, so that the sensor device 200 can be further miniaturized.
  • the planar antenna is formed on the probe inner substrates 321 and 322, but the shape of the antenna is not limited to the planar shape.
  • the sensor device 200 of the third embodiment is different from the first embodiment in that it includes a cylindrical antenna.
  • FIG. 285 is a diagram showing an example of the sensor device 200 according to the third embodiment of the present technology.
  • the sensor device 200 of the third embodiment is different from the first embodiment in that it does not include the in-probe substrates 321 and 322 and includes coaxial cables 281 to 286.
  • Transmitting antennas 221 to 223 are formed at one end of the coaxial cables 281 to 283, and receiving antennas 231 to 233 are formed at one end of the coaxial cables 284 to 286.
  • the other end of the coaxial cables 281 to 286 is connected to the measuring unit board 311.
  • FIG. 286 is an example of a cross-sectional view and a side view of the antenna according to the third embodiment of the present technique.
  • a is a cross-sectional view of the antenna when viewed from above.
  • b is a side view of the antenna when viewed from the front surface (Z-axis direction) of the sensor device 200
  • c in the figure is an antenna when viewed from the side surface (X-axis direction) of the sensor device 200. It is a side view of.
  • the coaxial cable 281 or the like is composed of a linear signal line 281-3, a shield layer 281-2 covering the signal line 281-3, and a coating layer 281-1 covering the shield layer 281-2.
  • a part of the shield layer 281-2 is exposed at one end of the coaxial cable 281 and the like, and a part of the signal line 281-3 is exposed at the tip of the exposed shield layer 281-2.
  • the exposed signal line 281-3 and the exposed shield layer 281-2 form an antenna (transmitting antenna and receiving antenna).
  • the exposed signal line 281-3 in this antenna functions as a transmitting element in the transmitting antenna and a receiving element in the receiving antenna.
  • the transmission line (coaxial cable 281) between the measuring unit substrate 311 and the antenna and the antenna are formed by using the same continuous material.
  • FIG. 287 is a diagram showing an example of a cross-sectional view of a coaxial cable according to a third embodiment of the present technology. As illustrated in a in the figure, it is also possible to form a cavity in the probe housing 320 for each coaxial cable and arrange the coaxial cable in the cavity.
  • a plurality of coaxial cables can be fixed by the fixture 380 and placed in the cavity inside the probe housing 320.
  • a fixative 380 a binding band, an adhesive, or the like is used.
  • a plurality of coaxial cables can be fixed by a fixture 381 and arranged in a cavity inside the probe housing 320.
  • a fixture 381 a guide structure, a case, or the like is used.
  • the wall thickness of the housing mainly on the side through which electromagnetic waves are transmitted can be made the smallest in one cross section of the probe housing.
  • FIG. 288 is a diagram showing an example of a sensor device in which the number of antennas is reduced in the third embodiment of the present technology. As illustrated in the figure, a pair of antennas can be used as one pair.
  • FIG. 289 is an example of a cross-sectional view and a side view of the antenna when the number of antennas is reduced in the third embodiment of the present technology.
  • FIG. 290 is a diagram showing an example of a cross-sectional view of a coaxial cable when the number of antennas is reduced in the third embodiment of the present technology.
  • the coaxial cable can also be arranged in the cavity inside the probe housing 320.
  • the coaxial cable can be fixed by the fixture 381 and placed in the cavity inside the probe housing 320.
  • the wall thickness of the housing mainly on the side through which electromagnetic waves are transmitted can be made the smallest in one cross section of the probe housing.
  • the columnar antenna is formed at the tip of the coaxial cable, the substrate inside the probe becomes unnecessary.
  • FIG. 291 is a diagram showing an example of the moisture measurement system 100 in the fourth embodiment of the present technique and the comparative example.
  • a is a diagram showing an example of a water measurement system of a comparative example in which the sensor device 200 and the irrigation nozzle 530 are not connected.
  • FIG. B in the figure is a diagram showing an example of the moisture measurement system 100 according to the fourth embodiment.
  • the sensor device 200 and the irrigation nozzle holder 520 are connected by the connecting portion 370.
  • the irrigation nozzle holder 520 holds the irrigation nozzle 530.
  • the irrigation nozzle 530 is attached to one end of the irrigation tube 510.
  • the irrigation nozzle holder 520 may be provided between the plurality of sensor devices 200 to form a stronger support structure.
  • FIG. 292 is a diagram showing an example of a moisture measurement system 100 in which a plurality of sensor devices are connected according to a fourth embodiment of the present technology. As illustrated in a in the figure, the sensor device 200, the sensor device 201, and the irrigation nozzle holder 520 can be connected by the connecting portion 370. The number of sensor devices to be connected is not limited to two.
  • the lengths of the probe housing 320 of the sensor device 200 and the sensor device 201 in the depth direction may be different.
  • FIG. 293 is an example of a top view of a moisture measurement system 100 in which a plurality of sensor devices are connected according to a fourth embodiment of the present technology.
  • the figure shows a top view when viewed from above (Y-axis direction).
  • the shape of the connecting portion 370 when viewed from above may be linear, or as illustrated in b in the figure, the line segment is bent at a predetermined angle. It may be in shape. As illustrated in c in the figure, the shape of the connecting portion 370 may be an arc shape.
  • FIG. 294 is a diagram showing an example of a moisture measurement system 100 provided with a support member according to a fourth embodiment of the present technology.
  • a support member 540 may be provided on the upper portion of the irrigation nozzle holder 520.
  • the support member 540 may have a shape similar to an umbrella.
  • FIG. 295 is a diagram showing an example of a moisture measurement system 100 in which a plurality of sensor devices and a plurality of irrigation nozzle holders are connected according to a fourth embodiment of the present technology.
  • the sensor devices 200 and 201 and the irrigation nozzle holders 520 to 522 can also be connected by the connecting portion 370.
  • the number of each of the irrigation nozzle holder and the sensor device is not limited to three or two in the figure.
  • FIG. 296 is a diagram showing an example of a moisture measurement system 100 to which an irrigation tube holder is connected according to a fourth embodiment of the present technique.
  • the irrigation tube holder 550 can be used instead of the irrigation nozzle holder 520.
  • the irrigation tube holder 550 is attached in place on the sensor device 200.
  • the connecting portion 370 and the irrigation nozzle 530 are not required, and the cost can be reduced.
  • Reference numeral b in the figure shows a top view of the moisture measurement system 100 of a in the figure.
  • the irrigation tube holder 550 can be attached to a predetermined position of the connecting portion 370 connecting a plurality of sensor devices.
  • d indicates a top view of the moisture measurement system 100 of c in the figure.
  • the sensor devices 200 and 201 can be connected by the connecting portion 370, and the irrigation tube holders 550 and 551 can be attached to the sensor devices 200 and 201, respectively.
  • f shows a top view of the moisture measurement system 100 of e in the figure.
  • FIG. 297 is a diagram showing an example of a water content measurement system 100 for irrigating water via an irrigation nozzle according to a fourth embodiment of the present technique.
  • the irrigation tube 510 may be configured to allow water to flow into the irrigation nozzle 530. In this configuration, water flows through the irrigation nozzle 530 to the soil.
  • a plurality of sensor devices can be connected by the connecting portion 370.
  • the lengths of the probe housing 320 of the sensor device 200 and the sensor device 201 in the depth direction (Y-axis direction) may be different.
  • FIG. 298 is a diagram showing an example of a moisture measurement system 100 in which the arrangement direction of the probe and the line segment parallel to the connecting portion are orthogonal to each other in the fourth embodiment of the present technique.
  • the figure shows the top view of the moisture measurement system 100.
  • the sensor devices can be connected so that the arrangement direction of the probes of the sensor devices 200 and 201 is orthogonal to the line segment parallel to the linear connecting portion 370. In this case, it has an H shape when viewed from above.
  • the irrigation tube holder 550 may be attached to the connecting portion 370.
  • the irrigation nozzle holder 520 may be attached to the connecting portion 370.
  • the distance between them can be made constant.
  • the transmitting antenna and the receiving antenna provided in the sensor device 200 are installed in the soil, stress is applied to these antennas so that the orientation of the antennas and the distance between the antennas are predetermined. In order to avoid a situation where the antenna is out of the distance, the transmitting antenna, the receiving antenna, and the transmission path connected to them are housed in a strong housing probe. However, when the hardness of the soil to be measured is low, for example, in a well-cultivated field, the sensor device 200 may be usable even if the structure does not have a strong housing. Therefore, the sensor device 200 according to the fifth embodiment of the present technology is provided with a structure for realizing high durability without the sensor housing 305 and without the sensor housing.
  • the sensor device 200 of the fifth embodiment of the present technology reduces the number of parts, reduces the external size, and reduces the weight as compared with the sensor device 200 of the present technology provided with the sensor housing 305. It has the effect of reducing, simplifying the manufacturing method, and reducing the manufacturing cost.
  • FIGS. 299 and 300 are views showing an example of a front view and a side view of the sensor device 200 according to the fifth embodiment of the present technology.
  • the sensor device 200 according to the fifth embodiment of the present technique shown in FIGS. 299 and 300 is obtained by changing the second embodiment of the present technique and a modification thereof to a form not provided with the probe housing 305.
  • a shows a front view of the sensor device 200
  • b in the figure shows a side view of the sensor device 200.
  • Reference numeral 300A is an example of a rear view of the sensor device 200.
  • Reference numeral b in the figure is an example of a cross-sectional view when the sensor device 200 is cut along the CC'line of a in the figure.
  • the sensor device 200 of the fifth embodiment of the present technology includes one electronic substrate 311-1.
  • the configuration of the electronic substrate 311-1 is the same as that of the second embodiment.
  • a battery 313 or the like is provided on the back surface of the electronic board 311-1.
  • the electronic substrate 311-1 is coated with a coating resin.
  • the resin for coating is shown by a thick black line on the outside of the electronic substrate 311-1 in FIGS. 299 and 300. It is desirable that the coating resin has electromagnetic wave permeability and water resistance, and more preferably chemical resistance, and is more flexible than the electronic substrate 311-1.
  • the sensor device 200 of the present technology requires a predetermined mechanical strength so that the antenna and the transmission line are not deformed when the antenna provided therein and the transmission line connected to the antenna are inserted into a predetermined soil. In the sensor device 200 of the fifth embodiment of the present technology, the electronic substrate 311-1 plays a role of ensuring the predetermined mechanical strength.
  • the coating resin plays a role of protecting the electronic substrate 311-1 from water and pesticides.
  • the coating resin is lifted from the surface of the electronic substrate 311-1
  • the coating resin is used in order to coat the electronic substrate 311-1 without forming a cavity between the electronic substrate 311-1 and the electronic substrate 311-1.
  • a flexible resin is used in order to coat the electronic substrate 311-1 without forming a cavity between the electronic substrate 311-1 and the electronic substrate 311-1.
  • the sensor device 200 transmits an electromagnetic wave from a transmitting antenna covered with a coating resin, and receives this electromagnetic wave with a receiving antenna covered with the coating resin. The amount of water in the medium between the two antennas is measured. Therefore, in the sensor device 200 of the fifth embodiment of the present technology, a resin having electromagnetic wave permeability is used as the coating resin.
  • FIGS. 301 and 302 are views showing an example of a front view and a side view of the sensor device 200 in another example 1 of the fifth embodiment of the present technique.
  • a shows a front view of the sensor device 200
  • b in the figure shows a side view of the sensor device 200
  • Reference numeral 302 in FIG. 302 is an example of a rear view of the sensor device 200.
  • Reference numeral b in the figure is an example of a cross-sectional view when the sensor device 200 is cut along the CC'line of a in the figure.
  • c is an example of a cross-sectional view when the sensor device 200 is cut along the DD'line of a in the figure.
  • d is an example of a cross-sectional view when the sensor device 200 is cut along the EE'line of a in the figure.
  • the thick black lines on the outside of the measurement unit substrate 311 and the probe inner substrates 321 and 322 represent the coating resin.
  • the fifth embodiment of the present technique is based on the sensor device 200 in which the measurement unit substrate 311 and the probe inner substrates 321 and 322 are different substrates.
  • the sensor device 200 in another example 1 of the fifth embodiment of the present technique shown in FIGS. 301 and 302 is similar to the sensor device 200 illustrated in FIGS. 180 and 181 and has frames 291 to 294. It is equipped with. These frames integrate and fix the measurement unit substrate 311 and the probe inner substrates 321 and 322 in an orthogonal state, whereby the fixed structure is the above-mentioned predetermined machine. It is designed to have strength.
  • the outside of the fixed structure is covered with the measurement unit substrate 311 and the probe inner substrate 321. It is coated with a coating resin which is more flexible than 322 and has electromagnetic wave permeability, water resistance and preferably chemical resistance.
  • FIGS. 303 and 304 are views showing an example of a front view and a side view of the sensor device 200 in another example 2 of the fifth embodiment of the present technique.
  • a shows a front view of the sensor device 200
  • b in the figure shows a side view of the sensor device 200
  • Reference numeral 304 is an example of a rear view of the sensor device 200
  • Reference numeral b in the figure is an example of a cross-sectional view when the sensor device 200 is cut along the CC'line of a in the figure.
  • c is an example of a cross-sectional view when the sensor device 200 is cut along the DD'line of a in the figure.
  • d is an example of a cross-sectional view when the sensor device 200 is cut along the EE'line of a in the figure.
  • the thick black lines on the outside of the measurement unit substrate 311 and the probe inner substrates 321 and 322 represent the coating resin.
  • the sensor device 200 in another example 2 of the fifth embodiment of the present technique shown in FIGS. 303 and 304 is in the measurement unit substrate and the probe in the same manner as the sensor device 200 illustrated in FIGS. 182 and 183. There is a notch in either of the substrates, and this is used to provide a structure for fitting two substrates.
  • the measuring unit substrate 311 and the probe inner substrates 321 and 322 are integrated and fixed in an orthogonal state, whereby the fixed structure is formed by the above-mentioned predetermined machine. It is designed to have strength.
  • the outside of the fixed structure is covered with the measurement unit substrate 311 and the probe inner substrate 321. It is coated with a coating resin which is more flexible than 322 and has electromagnetic wave permeability, water resistance and preferably chemical resistance.
  • FIGS. 305 and 306 are views showing an example of a front view and a side view of the sensor device 200 in another example 3 of the fifth embodiment of the present technique.
  • a shows a front view of the sensor device 200
  • b in the figure shows a side view of the sensor device 200
  • a in FIG. 306 is an example of a rear view of the sensor device 200.
  • Reference numeral b in the figure is an example of a cross-sectional view when the sensor device 200 is cut along the CC'line of a in the figure.
  • c is an example of a cross-sectional view when the sensor device 200 is cut along the DD'line of a in the figure.
  • d is an example of a cross-sectional view when the sensor device 200 is cut along the EE'line of a in the figure.
  • the thick black lines on the outside of the measurement unit substrate 311 and the probe inner substrates 321 and 322 represent the coating resin.
  • the sensor device 200 in another example 3 of the fifth embodiment of the present technique shown in FIGS. 305 and 306 is in the measurement unit substrate and the probe in the same manner as the sensor device 200 illustrated in FIGS. 184 and 185. It is equipped with a jig to fix it to the board. With this jig, the measuring unit substrate 311 and the probe inner substrates 321 and 322 are integrated and fixed in an orthogonal state, whereby the fixed structure has the above-mentioned predetermined mechanical strength. It is designed to be equipped with.
  • the outside of the fixed structure is covered with the measurement unit substrate 311 and the probe inner substrate 321. It is coated with a coating resin which is more flexible than 322 and has electromagnetic wave permeability, water resistance and preferably chemical resistance.
  • the substrate provided in the sensor device 200 is covered with resin, thereby realizing the sensor device 200 that does not use the sensor housing 305.
  • the sensor device 200 of the fifth embodiment of the present technology reduces the number of parts, reduces the external size, and reduces the weight as compared with the sensor device 200 of the present technology provided with the sensor housing 305. It has the effect of reducing, simplifying the manufacturing method, and reducing the manufacturing cost.
  • the substrate is housed in the sensor housing 305 provided with a pair of protrusions (probes), but in this configuration, the water content at a deep position on the ground is measured. Is difficult. Longer probes allow for deeper measurements, but may deform the probe when inserted into soil.
  • the sensor device 200 of the sixth embodiment differs from the first embodiment in that the stem is connected to the probe.
  • FIG. 307 is a diagram showing an example of the sensor device 200 according to the sixth embodiment of the present technology.
  • a is a diagram showing an example of the internal structure of the sensor device 200.
  • b is an example of an external view of the sensor device 200.
  • the sensor housing 305 of the fifth embodiment includes a rectangular main body portion 305-3, a pipe-shaped stem 305-4, and a protruding portion 305-5 that is partially divided into two and protrudes.
  • the measuring unit board 311 is stored in the main body unit 305-3, and the spirit level 376 is attached to the upper portion.
  • the transmitting antenna 221 and the receiving antenna 231 are stored in the protrusion 305-5.
  • the protrusion 305-5 functions as a probe.
  • the stem 305-4 connects the main body portion 305-3 and the protruding portion 305-5 (probe), and coaxial cables 281 and 282 are wired inside the stem 305-4. These cables connect the transmitting antenna 221 and the receiving antenna 231 to the measuring unit board 311.
  • the spirit level 376 is provided as needed.
  • a scale indicating the depth is described on the surface of the sensor housing 305, and the temperature sensor 390 is attached as needed.
  • a pH sensor, an EC (Electro Conductidity) sensor, or the like can be further attached.
  • the probe By connecting the main body 305-3 and the probe with the stem 305-4, the probe can be easily inserted at a deep position in the soil.
  • the scale on the surface of the stem 305-4 allows the depth of the measurement point of the sensor device 200 to be accurately known.
  • the spirit level 376 allows the stem 305-4 to be inserted vertically into the ground.
  • Various sensors can measure the condition of soil from various angles.
  • FIG. 308 is a diagram showing an example of a sensor device in which the position of the main body portion is changed in the sixth embodiment of the present technology.
  • a is a diagram showing an example of the internal structure of the sensor device 200.
  • b is an example of an external view of the sensor device 200.
  • a rectangular antenna portion 305-6 can be added, and the antenna portion 305-6 and the main body portion 305-3 can be connected by the stem 305-4.
  • the antenna 213 is stored in the antenna unit 305-6.
  • the protrusion 305-5 (probe) is connected to the lower part of the main body 305-3.
  • the probe can be easily inserted at a deep position in the soil.
  • the sensor device 200 is provided with a pair of probes for insertion into the soil, but in this configuration, the probe is deteriorated due to deterioration of the probe or deformation of a member due to stone or hard soil. The distance between them may change. Deformation can be prevented by making the probe thicker to improve its strength, but there is a risk that the size and weight of the sensor device 200 will increase and that it will be difficult to insert it into the soil.
  • the sensor device 200 of the seventh embodiment is different from the first embodiment in that the strength of the sensor device 200 is improved by adding a support.
  • FIG. 309 is a diagram showing an example of the sensor device 200 in the seventh embodiment of the present technology and the comparative example.
  • a indicates a first comparative example.
  • b, c, and d indicate a cross-sectional view taken along the line AA', line BB', and line CC'of a in the figure.
  • Transmission antennas 221 to 223 are formed on the probe housing 320-3 and function as a transmission probe.
  • Receiving antennas 231 to 233 are formed on the probe housing 320-4 and function as a receiving probe.
  • spacer 600 is provided between the antennas as in the first comparative example, soil does not enter between the antennas and the water content cannot be measured.
  • E in the figure shows the second comparative example.
  • f, g, and h indicate a cross-sectional view of e in the figure when cut along the AA'line, the BB'line, and the CC'line.
  • the spacer is separated into a plurality of spacers 600 to 603 to form a space between the antennas.
  • the spacer 600 or the like interferes with the soil and the soil does not sufficiently enter between the antennas.
  • i is a perspective view of the sensor device 200 according to the seventh embodiment.
  • a third column 610 is added to the sensor device 200 of the seventh embodiment. No spacer is placed between the probe enclosures 320-3 and 320-4.
  • the column 610 and the probe housings 320-3 and 320-4 are connected by reinforcing portions 620 and 621. According to this shape, since the spacer is not arranged between the antennas, soil can enter between the antennas without being disturbed by the spacer.
  • FIG. 310 is a diagram showing an example of a cut surface of the sensor device 200 according to the seventh embodiment of the present technology.
  • the column 610 behind the sensor device 200 is omitted.
  • a cross-sectional view taken along the lines BB'and CC'in the figure is shown in FIG. 309 and below.
  • FIG. 311 is a diagram showing an example of a cross-sectional view of the sensor device 200 according to the seventh embodiment of the present technology.
  • a and b are examples of cross-sectional views when cut along the BB'line.
  • c is an example of a cross-sectional view when cut along the CC'line. Either a or b in the figure can be applied to c in the figure.
  • No antenna or sensor is provided in the column 610.
  • D and e in the figure are examples of cross-sectional views when cut along the BB'line.
  • f is an example of a cross-sectional view when cut along the CC'line.
  • Either d or e in the figure can be applied to f in the figure.
  • an antenna or a sensor may be provided in the support column 610 and used as a third probe.
  • G in the figure is an example of a cross-sectional view when cut along the BB'line.
  • h is an example of a cross-sectional view when cut along the CC'line.
  • i is an example of a cross-sectional view when cut along the BB'line.
  • j is an example of a cross-sectional view when cut along the CC'line.
  • the cross section may be circular or elliptical.
  • FIG. 312 is a diagram showing an example of a rectangular cross-sectional view of the sensor device 200 according to the seventh embodiment of the present technology.
  • a and b in the figure are examples of cross-sectional views when cut along the BB'line.
  • c is an example of a cross-sectional view when cut along the CC'line. Either a or b in the figure can be applied to c in the figure.
  • d and e are examples of cross-sectional views when cut along the BB'line.
  • i is an example of a cross-sectional view when cut along the CC'line. Either d or e in the figure can be applied to f in the figure.
  • the cross-sectional shape may be rectangular, and two columns 610 may be provided.
  • G and h in the figure are examples of cross-sectional views when cut along the BB'line.
  • k is an example of a cross-sectional view when cut along the CC'line.
  • Either g or h in the figure can be applied to i in the figure.
  • the cross-sectional shape may be rectangular, and four columns 610 may be provided.
  • J in the figure is an example of a cross-sectional view when cut along the BB'line.
  • k is an example of a cross-sectional view when cut along the CC'line.
  • the inside of the support column 610 may not be provided and may be reinforced by a reinforcing portion.
  • FIG. 313 is a diagram showing an example of a cross-sectional view of a sensor device 200 having three probes according to a seventh embodiment of the present technology.
  • a and b in the figure are examples of cross-sectional views when cut along the BB'line.
  • c is an example of a cross-sectional view when cut along the CC'line. Either a or b in the figure can be applied to c in the figure.
  • D and e in the figure are examples of cross-sectional views when cut along the BB'line.
  • f is an example of a cross-sectional view when cut along the CC'line. Either d or e in the figure can be applied to f in the figure.
  • G and h in the figure are examples of cross-sectional views when cut along the BB'line.
  • i is an example of a cross-sectional view when cut along the CC'line. Either g or h in the figure can be applied to i in the figure.
  • FIG. 314 is a diagram showing another example of a cross-sectional view of a sensor device 200 having three probes according to a seventh embodiment of the present technique.
  • a, c, and e are examples of cross-sectional views when cut along the BB'line.
  • b, d, and f are examples of cross-sectional views when cut along the CC'line.
  • an antenna or a sensor can be provided in the support column 610 and used as a third probe.
  • FIG. 315 is a diagram showing an example of a cross-sectional view of a sensor device 200 having four probes according to a seventh embodiment of the present technology.
  • a, c, and e are examples of cross-sectional views when cut along the BB'line.
  • b, d, and f are examples of cross-sectional views when cut along the CC'line.
  • the antennas and sensors of the columns 610 and 611 can be stored and used as the third and fourth probes.
  • FIG. 316 is an example of a perspective view of the sensor device 200 according to the seventh embodiment of the present technology.
  • the measurement unit housing 310 at the base is arranged between the probe housings 320-3 and 320-4.
  • the measuring unit housing 310 functions as a reinforcing unit. It is desirable that this reinforcing portion has a size larger than that of the reinforcing portion 360 such as the tip.
  • FIG. 317 is an example of the sensor device 200 in which the spacer is grooved in the seventh embodiment of the present technology. As illustrated in the figure, a wavy groove can be formed in the spacer 601 or the like. This groove allows water to escape, preventing the water from traveling through the sensor device 200 and forming a gap. Further, it is possible to suppress the gap created by the sensor device 200 when the sensor device 200 is inserted.
  • FIG. 318 is a diagram showing an example of a groove of a spacer in the seventh embodiment of the present technique. As illustrated in a, b, and c in the figure, holes can be formed in the spacer in a mesh pattern. The formation of holes facilitates the transmission of water in the surrounding soil and makes it difficult to inhibit root growth.
  • the strength of the sensor device 200 can be improved.
  • the measuring unit housing 310 and the probe housing 320 are integrated, but in this configuration, when the probe housing 320 is inserted into the soil, the housing is deformed and the antenna is antennad. The distance between them may change. This variation in the distance between the antennas causes an error in the measured value of water content.
  • the sensor device 200 of the eighth embodiment is different from the first embodiment in that the probe housing is separated.
  • FIG. 319 is a diagram showing an example of the sensor device 200 in the comparative example and the eighth embodiment of the present technique.
  • a is a diagram showing an example of a comparative example sensor device 200 in which the measuring unit housing 310 and the probe housings 320-3 and 320-4 are integrated.
  • b shows a state in which the probe housings 320-3 and 320-4 of the comparative example are inserted into the soil.
  • FIG. C in the figure is a diagram showing an example of the sensor device 200 of the eighth embodiment of the present technology in which the measuring unit housing 310 and the probe housings 320-3 and 320-4 are separated.
  • d indicates a state in which the probe housings 320-3 and 320-4 of the eighth embodiment of the present technique are inserted into the soil.
  • the probe housings 320-3 and 320-4 include a transmit antenna 221 and a receive antenna 231 which serve as a pair of probes.
  • the connection point between the measuring unit housing 310 and the probe may be deformed as illustrated in b in the figure. Deformation can be prevented by sufficiently increasing the rigidity of the housing, but it may be difficult due to reasons such as cost and usability.
  • the measuring unit housing 310 and the probe housings 320-3 and 320-4 are separated as illustrated in c in the figure.
  • the measuring unit housing 310 and the probe housings 320-3 and 320-4 are electrically connected by coaxial cables 281 and 284 and the like.
  • the transmitting antennas 221 to 223 are formed in the probe housing 320-3, and the receiving antennas 231 to 233 are formed in the probe housing 320-4, for example.
  • the connection point between the measuring unit housing 310 and the probe is deformed when the probe is inserted into the soil, as illustrated in d in the figure. Can be prevented.
  • FIG. 320 is a diagram showing an example of a sensor device 200 provided with a scale and a stopper in the eighth embodiment of the present technology. As illustrated in a in the figure, each of the probe housings 320-3 and 320-4 may be provided with a scale indicating the distance (that is, the depth) from the tip. This allows the user to see the insertion depth.
  • stoppers 630 and 631 for preventing insertion into a depth exceeding a certain distance can be attached to the upper portions of the probe housings 320-3 and 320-4. Both a scale and a stopper can be provided.
  • FIG. 321 is a diagram showing an example of the number of antennas on the transmitting side and the receiving side in the eighth embodiment of the present technology.
  • the moisture measurement system 100 needs to measure the distance between the antennas.
  • the number of antennas on at least one of the transmitting side and the receiving side must be three or more. The reason and the measurement method will be described later.
  • the number of antennas on the transmitting side may be one and the number of antennas on the receiving side may be three.
  • the number of antennas on the transmitting side may be three and the number of antennas on the receiving side may be one.
  • the number of antennas on both the transmitting side and the receiving side can be three.
  • FIG. 322 is a block diagram showing a configuration example of the signal processing unit 154 in the central processing unit according to the eighth embodiment of the present technology.
  • the signal processing unit 154 further includes a memory 166 and a distance calculation unit 167.
  • the round-trip delay time calculation unit 162 supplies the calculated round-trip delay time to the water content measuring unit 164 and the memory 166. Further, the propagation transmission time calculation unit 163 supplies the calculated propagation transmission time to the water content measurement unit 164 and the memory 166. Memory 166 holds the values of these parameters.
  • the distance calculation unit 167 reads out the values held in the memory 166 and calculates the distance between the antennas using them. The calculation method will be described later. The distance calculation unit 167 supplies the calculated distance between the antennas to the water content measurement unit 164.
  • the water content measuring unit 164 measures the water content based on the round-trip delay time and the propagation transmission time, and the distance between the antennas calculated by the distance calculation unit 167. When the distance between the antennas fluctuates, the coefficient a and the coefficient b fluctuate. Therefore, the water content measuring unit 164 corrects the coefficient a and the coefficient b according to the measured distance between the antennas, and calculates the water content by the formula 6.
  • FIG. 323 is a diagram showing an example of a sensor device 200 provided with a memory and a stopper to which a plate-shaped member is attached according to the eighth embodiment of the present technique.
  • a is a diagram showing an example of a plate-shaped member 632 before being attached to the sensor device 200.
  • the plate-shaped member 632 is provided with a pair of holes for inserting a pair of probes.
  • B in the figure is a diagram showing an example of a sensor device 200 in which a probe is inserted into a hole of a plate-shaped member 632. It is assumed that the probe is provided with a scale. As illustrated in c in the figure, a probe provided with stoppers 630 and 631 can also be inserted into the hole of the plate-shaped member 632.
  • the distance between the probes can be made constant by attaching the plate-shaped member 632. If the probe can be inserted vertically into the ground, the distance between the antennas will be the design value, eliminating the need to measure the distance between the antennas.
  • FIG. 324 is a diagram showing an example of a sensor device provided with a memory and a stopper to which a rectangular parallelepiped member is attached according to the eighth embodiment of the present technique.
  • a is a diagram showing an example of a rectangular parallelepiped member 633 before being attached to the sensor device 200.
  • the rectangular parallelepiped member 633 is provided with a pair of holes for inserting a pair of probes.
  • B in the figure is a diagram showing an example of a sensor device 200 in which a probe is inserted into a hole of a rectangular parallelepiped member 633. It is assumed that the probe is provided with a scale. As illustrated in c in the figure, a probe provided with stoppers 630 and 631 can also be inserted into the hole of the rectangular parallelepiped member 633.
  • a spirit level 376 or 377 can be attached to a rectangular parallelepiped member 633, and a probe can be inserted into a hole in the member.
  • FIG. 325 is a diagram showing an example of a sensor device that does not separate the probe housing in the eighth embodiment of the present technology.
  • a is a diagram showing an example of a sensor device 200 in which the measuring unit housing 310 and the probe housings 320-3 and 320-4 are integrated without being separated.
  • b shows an example of a state in which the sensor device 200 of a in the figure is inserted into the soil.
  • the connection point between the measuring unit housing 310 and the probe may be deformed and the distance between the antennas may change.
  • deformation may occur due to deterioration over time. Therefore, the signal processing unit 154 of FIG. 320 can be applied to the moisture measurement system 100 including the sensor device 200 in which the measurement unit housing 310 and the probe housings 320-3 and 320-4 are integrated.
  • the fluctuating distance between the antennas can be accurately calculated, and the measurement accuracy of the water content can be improved based on the calculated value.
  • FIG. 326 is a diagram for explaining a method of measuring the distance between antennas in the eighth embodiment of the present technology. As illustrated in a in the figure, it is assumed that the sensor device 200 transmits an electromagnetic wave from the transmitting antenna 221 and receives the electromagnetic wave at each of the receiving antennas 231 to 233.
  • the distance calculation unit 167 described above calculates the propagation delay time between the transmitting antenna 221 and the receiving antenna 231 as ⁇ d1 according to the equation 5. Similarly, the distance calculation unit 167 calculates the propagation delay time between the transmitting antenna 221 and the receiving antenna 232 as ⁇ d2 , and calculates the propagation delay time between the transmitting antenna 221 and the receiving antenna 233 as ⁇ d3 .
  • ⁇ d ⁇ ( ⁇ b ) 1/2 / C ⁇ d ⁇ ⁇ ⁇ Equation 23
  • ⁇ b indicates the permittivity of the medium
  • C is the speed of light.
  • the distance d between the antennas is proportional to the propagation delay time ⁇ d , and ⁇ d1 , ⁇ d2 , and ⁇ d3 can be replaced with d1, d2, and d3 from Equation 23.
  • d1 is the distance between the transmitting antenna 221 and the receiving antenna 231
  • d2 is the distance between the transmitting antenna 221 and the receiving antenna 232
  • d3 is the distance between the transmitting antenna 221 and the receiving antenna 233.
  • the distance calculation unit 167 obtains a circle (Apollonius circle) having a ratio of d1: d2 from x1 and x2 on the xy plane. This circle corresponds to the one-dot chain line circle of a in the figure. Further, the distance calculation unit 167 obtains a circle having a distance of d2: d3 from x2 and x3. This circle corresponds to the dotted circle of a in the figure.
  • the distance calculation unit 167 calculates the coordinates of the intersection of the two obtained circles. This coordinate corresponds to the position of the transmitting antenna 221.
  • the distance calculation unit 167 calculates the distance between the calculated coordinates of the transmission antenna 221 and any one of x1 to x3 (x2, etc.) and supplies the distance to the water content measurement unit 164.
  • the distance calculation unit 167 can obtain the distance.
  • the distance calculation unit 167 When measuring the amount of water between the transmitting antenna 221 and the receiving antenna 232, the distance calculation unit 167 not only propagates the propagation delay time ⁇ d2 between them, but also propagates the propagation delay between the transmitting antenna 221 and the receiving antenna 231 and the like. Time ⁇ d1 is also used. This makes it possible to measure the water content more accurately.
  • the housings are deformed when the probe housings are inserted into the soil, and the distance between the antennas is increased. It is possible to prevent the distance from changing. This makes it possible to measure the water content more accurately.
  • the pair of probes of the sensor device 200 is inserted into the soil, but in this configuration, the probes may be deformed when the soil is hard.
  • the moisture measurement system 100 of the ninth embodiment is different from the first embodiment in that the guide is inserted into the soil before the probe is inserted to prevent the probe from being deformed.
  • FIG. 327 is a diagram showing an example of an insertion method of the sensor device 200 according to the ninth embodiment of the present technology.
  • the moisture measurement system of the ninth embodiment is different from the first embodiment in that the guide 640 is further provided.
  • the outer shape of the sensor device 200 of the ninth embodiment is the same as that of the sixth embodiment including, for example, a stem. It is also possible to use the sensor device 200 having an outer shape different from that of the sixth embodiment.
  • the guide 640 is made of metal and has a pair of protrusions formed at its tip. The shape of these protrusions is substantially the same as the probe. It is desirable that the outer shape of the guide 640 is smaller than the outer shape of the sensor device 200. In particular, it is more preferable that the outer shape of the protrusion of the guide 640 is smaller than the outer shape of the probe of the sensor device 200. By making the outer shape of the guide 640 one size smaller than that of the sensor device 200, it is possible to cope with various sensor devices 200 having a shape without a stem.
  • the user inserts the guide 640 into the soil as illustrated in a in the figure.
  • the alternate long and short dash line in the figure indicates the position of the ground surface.
  • the user pulls out the guide 640.
  • a hole having the same shape as the guide 640 is formed on the ground.
  • the user inserts the sensor device 200 into the hole as illustrated by c in the figure, and starts measuring the water content as illustrated by d in the figure.
  • FIG. 328 is a diagram showing another example of the method of inserting the sensor device 200 according to the ninth embodiment of the present technology. It is also possible to insert the sensor device 200 into the guide 640 and then pull out the guide 640. In this case, a hollow member having a hole at the tip and capable of pulling out the inserted sensor device 200 from the hole is used as the guide 640.
  • the user inserts the guide 640 into the soil as illustrated in a in the figure. Then, the user inserts the sensor device 200 into the guide 640 as illustrated in b and c in the figure. Subsequently, the user extracts the guide 640 as illustrated in d in the figure. Then, the sensor device 200 starts measuring the water content.
  • the guide 640 is inserted before the sensor device 200 is inserted, it is possible to prevent the probe from being deformed when the sensor device 200 is inserted. This makes it possible to improve the measurement accuracy of the water content.
  • the pair of probes of the sensor device 200 is inserted into the soil, but in this configuration, the insertion may be difficult when the soil is hard.
  • the sensor device 200 of the tenth embodiment is different from the first embodiment in that the spiral member and the shovel type housing facilitate the insertion.
  • FIG. 329 is a diagram showing an example of the sensor device 200 according to the tenth embodiment of the present technology.
  • a shows an example of a sensor device 200 in which an antenna is formed in a spiral member
  • b in the figure shows an example of a sensor device 200 in which an antenna is formed in a sensor housing 305.
  • the sensor device 200 of the tenth embodiment includes a spiral member 650.
  • the spiral member 650 is a cylindrical housing formed of resin or ceramics and extending in a helix-shaped shape.
  • an antenna such as a transmitting antenna 221 or a receiving antenna 231 can be formed on the spiral member 650.
  • a spiral member 650 is connected to the rectangular measuring unit housing 310.
  • the spiral member 650 on which the antenna is formed functions as a probe.
  • a sensor housing 305 in which a pair of protrusions is formed can be provided, and a spiral member 650 can be connected to the housing.
  • an antenna is formed on the protruding portion of the sensor housing 305, and the protruding portion functions as a probe.
  • a rotatable portion 661 is attached to the spiral member 650, and the spiral member 650 is connected to the sensor housing 305 via the rotatable movable portion 661. This.
  • the rotatable portion 661 is a member that can rotate around the Y axis along the projecting direction of the probe.
  • spiral member 650 Since the spiral member 650 enables insertion using torque, insertion is easier than in the first embodiment having only two forks. In addition, since there is more soil between the antennas and around the antennas than in the screw and pile shape, it is possible to measure the water content with high accuracy.
  • the tip of the spiral member 650 may have a needle-like pointed shape. This makes it even easier to insert into the soil. Further, the tip portion of the spiral member 650 may be made of metal. This increases the strength of the tip, making it even easier to insert into the soil.
  • the transmitting antenna 221 and the receiving antenna 231 are arranged at a distance of a predetermined distance or more from the tip. This makes it possible to facilitate insertion into the soil without deteriorating the accuracy of moisture measurement.
  • both antennas are provided horizontally in a spiral structure
  • a structure provided with a rotatable movable portion 661 it is easy to arrange them horizontally, which is desired in soil. It becomes easy to arrange the antenna at the measurement position.
  • the spiral radius becomes large due to the stress at the time of insertion, and the distance between the antennas may change.
  • the transmitting antenna and the receiving antenna are provided at a place different from the structure that facilitates the insertion using torque, the change in the distance between the antennas is small. Therefore, it is possible to facilitate insertion into the soil without deteriorating the accuracy of moisture measurement.
  • both the transmitting and receiving probes are subjected to rotational stress in the soil, so that voids are likely to be formed, which not only deteriorates the accuracy of moisture measurement but also may damage the probe in the worst case. There is.
  • FIG. 330 is a diagram showing an example of a spiral member and a sensor housing in the tenth embodiment of the present technology.
  • a shows an example of the spiral member 650
  • b in the figure shows an example of the sensor housing 305.

Abstract

本発明は、媒質中の水分量を測定する装置において、水分量の測定精度を向上させることを目的とする。 本発明のセンサ装置は、一対のアンテナ(221,231)と、前記一対のアンテナ(221,231)の間の媒質中の水分量を測定する測定回路(210)と、前記一対のアンテナ(221,231)と前記測定回路(210)とを接続する伝送路と、前記伝送路の周囲に形成された電波吸収部(341,344)とを具備する。

Description

センサ装置
 本技術は、センサ装置に関する。詳しくは、一対のプローブが設けられたセンサ装置に関する。
 従来より、土壌などの媒質中の水分量を測定する装置や機器が、農業や環境調査などの分野において広く利用されている。例えば、一対のプローブの間の媒質を伝搬した電磁波の送受信結果に基づいて、媒質中の水分量を測定するセンサ装置が提案されている(例えば、特許文献1参照。)。このように、水分の測定に電磁波を用いる方式は、マイクロ波式と呼ばれる。一方、電気抵抗、電気容量の値を水分量に置き換える方式は、電気抵抗式、電気容量式と呼ばれる。
米国特許出願公開第2018/0224382号明細書
 上述のセンサ装置では、マイクロ波式を用いることにより、電気抵抗式や電気容量式と比較して測定の高速化を図っている。しかしながら、電磁波に生じるノイズなどの影響により、水分量の測定精度が低下するおそれがある。
 本技術はこのような状況に鑑みて生み出されたものであり、媒質中の水分量を測定する装置において、水分量の測定精度を向上させることを目的とする。
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、一対のアンテナと、上記一対のアンテナの間の媒質中の水分量を測定する測定回路と、上記一対のアンテナと上記測定回路とを接続する伝送路と、上記伝送路の周囲に形成された電波吸収部とを具備するセンサ装置である。これより、水分量の測定精度が向上するという作用をもたらす。
 また、この第1の側面において、上記電波吸収部は、上記伝送路の全体を被覆してもよい。これにより、伝送路全体からの不要な輻射が抑制されるという作用をもたらす。
 また、この第1の側面において、上記電波吸収部は、上記伝送路の一部を被覆してもよい。これにより、伝送路の一部からの不要な輻射が抑制されるという作用をもたらす。
 また、この第1の側面において、上記電波吸収部は、上記伝送路の所定位置と上記アンテナの一端との間の上記伝送路を被覆してもよい。これにより、伝送路の一部からの不要な輻射が抑制されるという作用をもたらす。
 また、この第1の側面において、上記電波吸収部は、上記アンテナの一端から離れた所定位置と上記測定回路との間の上記伝送路を被覆してもよい。これにより、伝送路の一部からの不要な輻射が抑制されるという作用をもたらす。
 また、この第1の側面において、上記アンテナの他端から上記所定位置までの距離は、上記一対のアンテナが送受信する電磁波の中心周波数の波長の半波長を超えなくてもよい
。これにより、伝送路の一部からの不要な輻射が適切に抑制されるという作用をもたらす。
 また、この第1の側面において、上記アンテナの他端から上記所定位置までの距離は、上記一対のアンテナが送受信する電磁波の波長帯域幅を超えなくてもよい。これにより、伝送路の一部からの不要な輻射が適切に抑制されるという作用をもたらす。
 また、この第1の側面において、一対の突出部を有する電子基板をさらに具備し、前記一対のアンテナと前記伝送路とは、前記一対の突出部に形成されてもよい。これより、1枚の電子基板にアンテナが形成されるセンサ装置において不要な輻射が抑制されるという作用をもたらす。
 また、この第1の側面において、前記電波吸収部は、前記一対の突出部のそれぞれの先端を被覆してもよい。これにより、プローブの先端からの不要な輻射が抑制されるという作用をもたらす。
 また、この第1の側面において、第1のプローブ内基板と、第2のプローブ内基板と、前記第1および第2のプローブ内基板と直交する測定部基板とをさらに具備し、前記一対のアンテナと前記伝送路とは、前記第1および第2のプローブ内基板に形成されてもよい。これにより、基板同士が直交するセンサ装置において不要な輻射が抑制されるという作用をもたらす。
 また、この第1の側面において、前記電波吸収部は、前記第1および第2のプローブ内基板のそれぞれの先端を被覆してもよい。これにより、プローブの先端からの不要な輻射が抑制されるという作用をもたらす。
 また、この第1の側面において、上記第1のプローブ内基板の両面の一方と、上記第2のプローブ内基板の両面の一方との間で電磁波が送受信され、上記電波吸収部は、上記第1のプローブ内基板の両面のうち他方と、上記第2のプローブ内基板の両面のうち他方とを被覆してもよい。これにより、電磁場が送受信される面以外の面からの不要な輻射が抑制されるという作用をもたらす。
 また、この第1の側面において、複数対の上記アンテナを具備し、上記電波吸収部は、上記複数対のアンテナのそれぞれと上記測定部とを接続する上記伝送路を被覆してもよい。これにより、複数対のアンテナが形成されたセンサ装置において、不要な輻射が抑制されるという作用をもたらす。
 また、この第1の側面において、上記電波吸収部は、センサ筐体に埋め込まれた電波吸収材の層であってもよい。これにより、センサ筐体と別途に電波吸収部を配置する必要がなくなるという作用をもたらす。
 また、この第1の側面において、センサ筐体をさらに具備し、上記電波吸収部は、上記センサ筐体内に配置されてもよい。これにより、センサ筐体に電波吸収材を埋め込む必要が無くなるという作用をもたらす。
 また、この第1の側面において、上記センサ筐体には、溝が形成され、上記電波吸収部には、上記溝と篏合する突起が形成されてもよい。これにより、電波吸収部が固定されるという作用をもたらす。
 また、この第1の側面において、上記センサ筐体には、突起が形成され上記電波吸収部には、上記突起と篏合する溝が形成されてもよい。これにより、電波吸収部が固定されるという作用をもたらす。
本技術の第1の実施の形態における水分計測システムの全体図の一例である。 本技術の第1の実施の形態における中央処理装置の一構成例を示すブロック図である。 本技術の第1の実施の形態におけるセンサ装置の一構成例を示すブロック図である。 本技術の第1の実施の形態におけるセンサ装置の全体図の一例である。 本技術の第1の実施の形態におけるセンサ筐体の全体図の一例である。 本技術の第1の実施の形態におけるアンテナ数を増加した水分計測システムの全体図の一例である。 本技術の第1の実施の形態におけるアンテナ数を増加したセンサ装置の全体図の一例である。 本技術の第1の実施の形態におけるアンテナ数を増加したセンサ筐体の全体図の一例である。 本技術の第1の実施の形態におけるアンテナ数を削減した水分計測システムの全体図の一例である。 本技術の第1の実施の形態におけるアンテナ数を削減したセンサ装置の全体図の一例である。 本技術の第1の実施の形態におけるアンテナ数を削減したセンサ筐体の全体図の一例である。 本技術の第1の実施の形態における筐体を分離した水分計測システムの全体図の一例である。 本技術の第1の実施の形態における筐体を分離したセンサ装置の全体図の一例である。 本技術の第1の実施の形態における筐体を分離したセンサ筐体の全体図の一例である。 本技術の第1の実施の形態における筐体を分離し、センサ装置毎に複数のプローブ筐体を設けた水分計測システムの全体図の一例である。 本技術の第1の実施の形態における筐体を分離し、複数のプローブ筐体を設けたセンサ装置の全体図の一例である。 本技術の第1の実施の形態における図15のセンサ装置の一構成例を示すブロック図である。 本技術の第1の実施の形態における筐体を分離したセンサ装置の全体図の別の例である。 本技術の第1の実施の形態における正面から見た際の第1構造のプローブの断面図の一例である。 本技術の第1の実施の形態における第1構造のプローブ筐体内の層毎の平面図の一例である。 本技術の第1の実施の形態における上方から見た際の第1構造のプローブの断面図の一例である。 本技術の第1の実施の形態における正面から見た際の第1構造のプローブの断面図の別の例である。 本技術の第1の実施の形態における第1構造のプローブ筐体内の層毎の平面図の別の例である。 本技術の第1の実施の形態における上方から見た際の第1構造のプローブの断面図の別の例である。 本技術の第1の実施の形態における正面から見た際の第2構造のプローブの断面図の一例である。 本技術の第1の実施の形態における第2構造のプローブ筐体内の層毎の平面図の一例である。 本技術の第1の実施の形態における上方から見た際の第2構造のプローブの断面図の一例である。 本技術の第1の実施の形態における正面から見た際の第2構造のプローブの断面図の別の例である。 本技術の第1の実施の形態における第2構造のプローブ筐体内の層毎の平面図の別の例である。 本技術の第1の実施の形態における上方から見た際の第2構造のプローブの断面図の別の例である。 本技術の第1の実施の形態における正面から見た際の第3構造のプローブの断面図の一例である。 本技術の第1の実施の形態における第3構造のプローブ筐体内の層毎の平面図の一例である。 本技術の第1の実施の形態における上方から見た際の第3構造のプローブの断面図の一例である。 本技術の第1の実施の形態における正面から見た際の第3構造のプローブの断面図の別の例である。 本技術の第1の実施の形態における第3構造のプローブ筐体内の層毎の平面図の別の例である。 本技術の第1の実施の形態における上方から見た際の第3構造のプローブの断面図の別の例である。 本技術の第1の実施の形態における正面から見た際の第4構造のプローブの断面図の一例である。 本技術の第1の実施の形態における第4構造のプローブ筐体内の層毎の平面図の一例である。 本技術の第1の実施の形態における上方から見た際の第4構造のプローブの断面図の一例である。 本技術の第1の実施の形態における正面から見た際の第4構造のプローブの断面図の別の例である。 本技術の第1の実施の形態における第4構造のプローブ筐体内の層毎の平面図の別の例である。 本技術の第1の実施の形態における上方から見た際の第4構造のプローブの断面図の別の例である。 本技術の第1の実施の形態における第1構造に適用される送信アンテナの形状の一例を示す図である。 本技術の第1の実施の形態における第1構造に適用される送信アンテナの形状の別の例を示す図である。 本技術の第1の実施の形態における第3構造に適用される送信アンテナの形状の一例を示す図である。 本技術の第1の実施の形態における第3構造に適用される送信アンテナの形状の別の例を示す図である。 本技術の第1の実施の形態における第3構造に適用される送信アンテナの正面から見た断面図である。 本技術の第1の実施の形態における正面から見た際のスロットを形成した第5構造のスロットを形成したプローブの断面図の一例である。 本技術の第1の実施の形態におけるスロットを形成した第5構造のプローブ筐体内の層毎の平面図の一例である。 本技術の第1の実施の形態における上方から見た際のスロットを形成した第5構造のプローブの断面図の一例である。 本技術の第1の実施の形態における正面から見た際のスロットを形成した第5構造のプローブの断面図の別の例である。 本技術の第1の実施の形態におけるスロットを形成した第5構造のプローブ筐体内の層毎の平面図の別の例である。 本技術の第1の実施の形態における上方から見た際のスロットを形成した第5構造のプローブの断面図の別の例である。 本技術の第1の実施の形態における正面から見た際のスロットを形成した第5構造のプローブの断面図の他の例である。 本技術の第1の実施の形態におけるスロットを形成した第5構造のプローブ筐体内の層毎の平面図の他の例である。 本技術の第1の実施の形態における上方から見た際のスロットを形成した第5構造のプローブの断面図の他の例である。 本技術の第1の実施の形態における正面から見た際のスロットを形成した第6構造のプローブの断面図の一例である。 本技術の第1の実施の形態におけるスロットを形成した第6構造のプローブ筐体内の層毎の平面図の一例である。 本技術の第1の実施の形態における上方から見た際のスロットを形成した第6構造のプローブの断面図の一例である。 本技術の第1の実施の形態における正面から見た際のスロットを形成した第6構造のプローブの断面図の別の例である。 本技術の第1の実施の形態におけるスロットを形成した第6構造のプローブ筐体内の層毎の平面図の別の例である。 本技術の第1の実施の形態における上方から見た際のスロットを形成した第6構造のプローブの断面図の別の例である。 本技術の第1の実施の形態における正面から見た際のスロットを形成した第6構造のプローブの断面図の他の例である。 本技術の第1の実施の形態におけるスロットを形成した第6構造のプローブ筐体内の層毎の平面図の他の例である。 本技術の第1の実施の形態における上方から見た際のスロットを形成した第6構造のプローブの断面図の他の例である。 本技術の第1の実施の形態における上方から見た際のスロットを形成した第7構造のプローブの断面図の一例である。 本技術の第1の実施の形態におけるスロットを形成した第7構造のプローブ筐体内の層毎の平面図の一例である。 本技術の第1の実施の形態における正面から見た際のスロットを形成した第7構造のプローブの断面図の別の例である。 本技術の第1の実施の形態における上方から見た際のスロットを形成した第8構造のプローブの断面図の一例である。 本技術の第1の実施の形態におけるスロットを形成した第8構造のプローブ筐体内の層毎の平面図の一例である。 本技術の第1の実施の形態における正面から見た際のスロットを形成した第8構造のプローブの断面図の別の例である。 本技術の第1の実施の形態におけるスロットを形成した第5構造に適用される送信アンテナの形状の一例を示す図である。 本技術の第1の実施の形態におけるスロットを形成した第7構造に適用される送信アンテナの形状の一例を示す図である。 本技術の第1の実施の形態におけるスロットを形成した第8構造に適用される送信アンテナの形状の一例を示す図である。 本技術の第1の実施の形態におけるセンサ装置の動作原理を説明するための図である。 本技術の第1の実施の形態におけるアンテナ平面と測定部基板とのなす角度の一例を示す図である。 本技術の第1の実施の形態における基板同士の接続方法を説明するための図である。 本技術の第1の実施の形態における基板の詳細図の一例である。 本技術の第1の実施の形態における基板の詳細図および断面図の一例である。 本技術の第1の実施の形態における接続箇所の詳細図の一例である。 本技術の第1の実施の形態におけるプローブ内基板内の第1層から第3層までの平面図の一例である。 本技術の第1の実施の形態におけるプローブ内基板内の第4層、第5層の平面図と基板の断面図の一例である。 本技術の第1の実施の形態におけるシールド配線の無いプローブ内基板内の第1層から第3層までの平面図の一例である。 本技術の第1の実施の形態におけるシールド配線の無いプローブ内基板内の第4層、第5層の平面図と基板の断面図の一例である。 本技術の第1の実施の形態におけるアンテナ数が3つのプローブ内基板内の第1層から第3層までの平面図の一例である。 本技術の第1の実施の形態におけるアンテナ数が3つのプローブ内基板内の第4層、第5層の平面図と基板の断面図の一例である。 本技術の第1の実施の形態におけるシールド配線が無く、アンテナ数が3つのプローブ内基板内の第1層から第3層までの平面図の一例である。 本技術の第1の実施の形態におけるシールド配線が無く、アンテナ数が3つのプローブ内基板内の第4層、第5層の平面図と基板の断面図の一例である。 本技術の第1の実施の形態におけるビア列によるシールドを説明するための図である。 本技術の第1の実施の形態におけるストリップ線路の一例を示す図である。 本技術の第1の実施の形態におけるプローブ内基板内の7層のうち第1層から第3層までの平面図の一例である。 本技術の第1の実施の形態におけるプローブ内基板内の7層のうち第4層から第6層までの平面図の一例である。 本技術の第1の実施の形態におけるプローブ内基板内の第7層の平面図と基板の断面図の一例である。 本技術の第1の実施の形態におけるプローブ内基板内の9層のうち第1層から第3層までの平面図の一例である。 本技術の第1の実施の形態におけるプローブ内基板内の9層のうち第4層から第6層までの平面図の一例である。 本技術の第1の実施の形態におけるプローブ内基板内の9層のうち第7層から第9層までの平面図の一例である。 本技術の第1の実施の形態における9層構造のプローブ内基板の断面図の一例である。 本技術の第1の実施の形態における、プローブ内基板の幅とプローブ筐体の断面積とが、水分量の計測に及ぼす影響を、2つの観点から説明するための図である 本技術の第1の実施の形態におけるスロットを形成したプローブ内基板内の第1層から第3層までの平面図の一例である。 本技術の第1の実施の形態におけるスロットを形成したプローブ内基板内の第4層、第5層の平面図と基板の断面図の一例である。 本技術の第1の実施の形態におけるスロットを形成し、シールド配線を無くしたプローブ内基板内の第1層から第3層までの平面図の一例である。 本技術の第1の実施の形態におけるスロットを形成し、シールド配線を無くしたプローブ内基板内の第4層、第5層の平面図と基板の断面図の一例である。 本技術の第1の実施の形態におけるスロットを形成し、アンテナを3つ設けたプローブ内基板内の第1層から第3層までの平面図の一例である。 本技術の第1の実施の形態におけるスロットを形成し、アンテナを3つ設けたプローブ内基板内の第4層、第5層の平面図と基板の断面図の一例である。 本技術の第1の実施の形態におけるスロットを形成し、シールド配線を無くし、アンテナを3つ設けたプローブ内基板内の第1層から第3層までの平面図の一例である。 本技術の第1の実施の形態におけるスロットを形成し、シールド配線を無くし、アンテナを3つ設けたプローブ内基板内の第4層、第5層の平面図と基板の断面図の一例である。 本技術の第1の実施の形態におけるスロットを形成したプローブ内基板内の7層のうち第1層から第3層までの平面図の一例である。 本技術の第1の実施の形態におけるスロットを形成したプローブ内基板内の7層のうち第4層から第6層までの平面図の一例である。 本技術の第1の実施の形態におけるスロットを形成したプローブ内基板内の第7層と基板の断面図の一例である。 本技術の第1の実施の形態におけるスロットを形成したプローブ内基板内の9層のうち第1層から第3層までの平面図の一例である。 本技術の第1の実施の形態におけるスロットを形成したプローブ内基板内の9層のうち第4層から第6層までの平面図の一例である。 本技術の第1の実施の形態におけるスロットを形成したプローブ内基板内の9層のうち第7層から第9層までの平面図の一例である。 本技術の第1の実施の形態におけるスロットを形成した9層構造のプローブ内基板の断面図の一例である。 本技術の第1の実施の形態におけるストリップ線路の構造を補足説明するための図である。 本技術の第1の実施の形態におけるアンテナの時分割駆動を説明するための図である。 第1の比較例におけるセンサ装置の一構成例を示すブロック図である。 第2の比較例におけるセンサ装置の一構成例を示すブロック図である。 本技術の第1の実施の形態におけるアンテナの時分割駆動に着目したセンサ装置の一構成例を示すブロック図である。 本技術の第1の実施の形態における送信スイッチ、受信スイッチを送信機、受信機に内蔵したセンサ装置の一構成例を示すブロック図である。 本技術の第1の実施の形態における受信側のみにスイッチを設けたセンサ装置2の一構成例を示すブロック図である。 本技術の第1の実施の形態における時分割駆動のタイミングチャートの一例である。 本技術の第1の実施の形態におけるセンサ装置内の各部の動作を示すタイミングチャートの一例である。 本技術の第1の実施の形態における信号処理のタイミングを変更した際の時分割駆動のタイミングチャートの一例である。 本技術の第1の実施の形態における信号処理のタイミングを変更した際のセンサ装置内の各部の動作を示すタイミングチャートの一例である。 本技術の第1の実施の形態における信号処理およびデータ送信のタイミングを変更した際の時分割駆動のタイミングチャートの一例である。 本技術の第1の実施の形態における信号処理およびデータ送信のタイミングを変更した際のセンサ装置内の各部の動作を示すタイミングチャートの一例である。 本技術の第1の実施の形態における送受信検波動作の順番を変更した際の時分割駆動のタイミングチャートの一例である。 本技術の第1の実施の形態における送受信検波動作の順番を変更した際のセンサ装置内の各部の動作を示すタイミングチャートの一例である。 本技術の第1の実施の形態における制御例a、bおよびcのアンテナごとの送信信号の一例を示す図である。 本技術の第1の実施の形態における制御例dのアンテナごとの送信信号の一例を示す図である。 本技術の第1の実施の形態における測定部筐体を薄くしたセンサ装置の一例を示す図である。 本技術の第1の実施の形態における測定部筐体を厚くしたセンサ装置の一例を示す図である。 本技術の第1の実施の形態における測定部筐体を薄くして雨どいを追加したセンサ装置の一例を示す図である。 本技術の第1の実施の形態における測定部筐体を厚くして雨どいを追加したセンサ装置の一例を示す図である。 本技術の第1の実施の形態におけるプローブ筐体の強度を説明するための図である。 本技術の第1の実施の形態における測定回路の一構成例を示すブロック図である。 本技術の第1の実施の形態における方向性結合器の一構成例を示す図である。 本技術の第1の実施の形態における送信機および受信機の一構成例を示す回路図である。 本技術の第1の実施の形態におけるセンサ制御部の一構成例を示すブロック図である。 本技術の第1の実施の形態における中央処理装置内の信号処理部の一構成例を示すブロック図である。 本技術の第1の実施の形態における電磁波および電気信号の伝搬経路および伝送経路を説明するための図である。 本技術の第1の実施の形態における往復遅延時間および伝搬伝送時間と水分量との関係の一例を示すグラフである。 本技術の第1の実施の形態における伝搬遅延時間と水分量との関係の一例を示すグラフである。 本技術の第1の実施の形態における測定回路の別の構成例を示すブロック図である。 本技術の第1の実施の形態におけるセンサ装置の別の構成例を示すブロック図である。 本技術の第1の実施の形態における水分計測システムの動作の一例を示すフローチャートである。 本技術の第1の実施の形態における電波吸収部の被覆箇所の一例を示す図である。 電波吸収部により被覆しない比較例を示す図である。 本技術の第1の実施の形態におけるプローブ内基板の片面を被覆した例を示す図である。 本技術の第1の実施の形態におけるプローブの先端をさらに被覆した例を示す図である。 本技術の第1の実施の形態における先端のみを被覆した例を示す図である。 本技術の第1の実施の形態におけるプローブ内基板の片面と先端とを被覆した例を示す図である。 本技術の第1の実施の形態における電波吸収部の形状の一例を示す図である。 本技術の第1の実施の形態の第1の変形例におけるフレキ基板を用いるセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第1の変形例におけるフレキ基板およびリジッド基板を用いるセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第1の変形例におけるアンテナ数を増やした際のセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第1の変形例におけるアンテナ数を増やした際のフレキ基板およびリジッド基板を用いるセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第1の変形例におけるアンテナごとに伝送路を配線したセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第1の変形例におけるアンテナごとに伝送路を配線し、フレキ基板およびリジッド基板を用いるセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第1の変形例における、ハードシェルのセンサ筐体内に基板を配置したセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第1の変形例における、アンテナ数を増やし、ハードシェルのセンサ筐体内に基板を配置したセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第1の変形例におけるセンサ装置と比較例との一例を示す図である。 本技術の第1の実施の形態の第3の変形例におけるセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第3の変形例におけるセンサ装置の上面図および断面図の一例を示す図である。 本技術の第1の実施の形態の第3の変形例における基板の収容方法を説明するための図である。 本技術の第1の実施の形態の第3の変形例における基板の収容方法の別の例を説明するための図である。 本技術の第1の実施の形態の第3の変形例における基板の収容方法の他の例を説明するための図である。 本技術の第1の実施の形態の第4の変形例におけるセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第4の変形例におけるセンサ装置の上面図および断面図の一例を示す図である。 本技術の第1の実施の形態の第4の変形例における基板の収容方法を説明するための図である。 本技術の第1の実施の形態の第4の変形例における基板の収容方法の別の例を説明するための図である。 本技術の第1の実施の形態の第4の変形例における位置決め部の位置を変更したセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第4の変形例における位置決め部の位置を変更したセンサ装置の上面図および断面図の一例を示す図である。 本技術の第1の実施の形態の第4の変形例における位置決め部を追加したセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第4の変形例における位置決め部を追加したセンサ装置の上面図および断面図の一例を示す図である。 本技術の第1の実施の形態の第4の変形例における位置決め部の形状の異なるセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第4の変形例における位置決め部の形状の異なるセンサ装置の上面図および断面図の一例を示す図である。 本技術の第1の実施の形態の第4の変形例における位置決め部の形状が異なる場合の基板の収容方法を説明するための図である。 本技術の第1の実施の形態の第4の変形例における位置決め部の形状が異なる場合の基板の収容方法の別の例を説明するための図である。 本技術の第1の実施の形態の第4の変形例におけるフレームを伸ばしたセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第4の変形例におけるフレームを伸ばしたセンサ装置の上面図および断面図の一例を示す図である。 本技術の第1の実施の形態の第4の変形例における測定部筐体内の位置決め部を削減したセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第4の変形例における測定部筐体内の位置決め部を削減したセンサ装置の断面図の一例を示す図である。 本技術の第1の実施の形態の第4の変形例における治具を追加したセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第4の変形例における治具を追加したセンサ装置の上面図および断面図の一例を示す図である。 本技術の第1の実施の形態の第4の変形例におけるプローブ内基板をセンサ筐体に突き当てたセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第4の変形例におけるセンサ筐体の断面図の一例である。 本技術の第1の実施の形態の第4の変形例における樹脂で満たしたセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第4の変形例と比較例とにおける上方から見た際のプローブ筐体320の断面図の一例である。 本技術の第1の実施の形態の第5の変形例における上方から見た際のプローブ筐体の断面図の一例である。 本技術の第1の実施の形態の第5の変形例における両側放射でプローブ内基板に平行な方向の肉厚を厚くしたプローブ筐体の断面図の一例である。 本技術の第1の実施の形態の第5の変形例における両側放射でプローブ内基板に垂直な方向の肉厚を厚くしたプローブ筐体の断面図の一例である。 本技術の第1の実施の形態の第5の変形例における両側放射でプローブ内基板に垂直な方向の肉厚を厚くしたプローブ筐体の断面図の別の例である。 本技術の第1の実施の形態の第5の変形例における両側放射でプローブ内基板に垂直な方向と外側との肉厚を厚くしたプローブ筐体の断面図の一例である。 本技術の第1の実施の形態の第5の変形例における片側放射でプローブ内基板に平行な方向の肉厚を厚くしたプローブ筐体の断面図の一例である。 本技術の第1の実施の形態の第5の変形例における片側放射でプローブ内基板に垂直な方向の肉厚を厚くしたプローブ筐体の断面図の一例である。 本技術の第1の実施の形態の第5の変形例における片側放射でプローブ内基板に垂直な方向の肉厚を厚くしたプローブ筐体の断面図の別の例である。 本技術の第1の実施の形態の第5の変形例における片側放射でプローブ内基板に垂直な方向と外側との肉厚を厚くしたプローブ筐体の断面図の一例である。 本技術の第1の実施の形態の第5の変形例におけるセンサ筐体の肉厚の設定例を説明するための図である。 本技術の第1の実施の形態の第6の変形例におけるアンテナごとに送受信機を設けたセンサ装置の一構成例を示す図である。 本技術の第1の実施の形態の第6の変形例における送信機および受信機が1つずつのセンサ装置の一構成例を示す図である。 本技術の第1の実施の形態の第6の変形例における受信機が1つのセンサ装置の一構成例を示す図である。 本技術の第1の実施の形態の第6の変形例における送信機が1つのセンサ装置の一構成例を示す図である。 本技術の第1の実施の形態の第6の変形例における送信機が複数のセンサ装置の別の例を示す図である。 本技術の第1の実施の形態の第6の変形例における受信機の一構成例を示すブロック図である。 本技術の第1の実施の形態の第6の変形例における受信信号の周波数特性の一例を示す図である。 本技術の第1の実施の形態の第6の変形例における周波数分割駆動のタイミングチャートの一例である。 本技術の第1の実施の形態の第6の変形例におけるセンサ装置内の各部の動作を示すタイミングチャートの一例である。 本技術の第1の実施の形態の第6の変形例におけるスイープ期間を短縮した際の周波数分割駆動のタイミングチャートの一例である。 本技術の第1の実施の形態の第6の変形例におけるスイープ期間を短縮した際のセンサ装置内の各部の動作を示すタイミングチャートの一例である。 本技術の第1の実施の形態の第6の変形例における2つのアンテナの周波数が同一の周波数分割駆動のタイミングチャートの一例である。 本技術の第1の実施の形態の第6の変形例における2つのアンテナの周波数が同一のセンサ装置内の各部の動作を示すタイミングチャートの一例である。 本技術の第1の実施の形態の第7の変形例におけるプローブ内基板の断面図の一例を示す図である。 本技術の第1の実施の形態の第7の変形例におけるアンテナごとの信号の伝送経路を示す図である。 本技術の第1の実施の形態の第7の変形例における2系統の信号の伝送経路を示す図である。 本技術の第1の実施の形態の第7の変形例における遅延線を設けたセンサ装置の一例を示す図である。 本技術の第1の実施の形態の第7の変形例における遅延線の形状の一例を示す図である。 本技術の第1の実施の形態の第7の変形例における遅延線の形状の別の例を示す図である。 本技術の第1の実施の形態の第7の変形例における遅延線の遅延量の設定方法を説明するための図である。 本技術の第2の実施の形態におけるセンサ装置の一例を示す図である。 本技術の第2の実施の形態と比較例とにおける上方から見た際のセンサ装置の断面図の一例である。 本技術の第2の実施の形態における両側放射の際の電波吸収部の被覆箇所の一例を示す図である。 本技術の第2の実施の形態における両側放射の際に電波吸収部で被覆しない例を示す図である。 本技術の第2の実施の形態における片側放射の際の電波吸収部の被覆箇所の一例を示す図である。 本技術の第2の実施の形態における片側放射の際に電波吸収部で被覆しない例を示す図である。 本技術の第2の実施の形態における片側放射の際に片面を被覆する例を示す図である。 本技術の第2の実施の形態における両側放射の際に伝送路および先端を被覆する例を示す図である。 本技術の第2の実施の形態における両側放射の際に先端のみを被覆する例を示す図である。 本技術の第2の実施の形態における片側放射の際に伝送路および先端を被覆する例を示す図である。 本技術の第2の実施の形態における片側放射の際に先端のみを被覆する例を示す図である。 本技術の第2の実施の形態における片側放射の際に伝送路、片面および先端を被覆する例を示す図である。 本技術の第2の実施の形態における両側放射の複数のアンテナ対を設ける際の電波吸収部の被覆箇所の一例を示す図である。 本技術の第2の実施の形態における両側放射の複数のアンテナ対を設ける際の電波吸収部の被覆箇所の別の例を示す図である。 本技術の第2の実施の形態におけるセンサ筐体に電波吸収部を形成する例を示す図である。 本技術の第2の実施の形態における電波吸収部の形状の一例を示す図である。 本技術の第2の実施の形態における電波吸収部の形状の別の例を示す図である。 本技術の第2の実施の形態の第1の変形例におけるスロット状のアンテナを設けたセンサ装置の一例を示す図である。 本技術の第2の実施の形態の第1の変形例における平面状かつスロット状かつ横方向放射型のアンテナの構造を説明する図である。 本技術の第2の実施の形態の第1の変形例における平面状かつスロット状かつ横方向放射型のアンテナの構造を説明する図である。 本技術の第2の実施の形態の第1の変形例における平面状かつスロット状かつ横方向放射型のアンテナの構造を説明する図である。 本技術の第2の実施の形態の第2の変形例における電子基板の一構成例を示す図である。 本技術の第2の実施の形態の第1の変形例における電子基板の5層のうち第1層から第3層の平面図の一例を示す図である。 本技術の第2の実施の形態の第1の変形例における電子基板の5層のうち第4層、第5層の平面図および上面図の一例を示す図である。 本技術の第2の実施の形態の第1の変形例における電子基板の7層のうち第1層から第3層の平面図の一例を示す図である。 本技術の第2の実施の形態の第1の変形例における電子基板の7層のうち第4層から第6層の平面図の一例を示す図である。 本技術の第2の実施の形態の第1の変形例における電子基板の7層のうち第7層の平面図および上面図の一例を示す図である。 本技術の第2の実施の形態の第1の変形例における電子基板の9層のうち第1層から第3層の平面図の一例を示す図である。 本技術の第2の実施の形態の第1の変形例における電子基板の9層のうち第4層から第6層の平面図の一例を示す図である。 本技術の第2の実施の形態の第1の変形例における電子基板の9層のうち第7層から第9層の平面図の一例を示す図である。 本技術の第2の実施の形態の第1の変形例における9層構造の電子基板の上面図の一例を示す図である。 本技術の第2の実施の形態の第1の変形例における基板の幅に関して説明するための図である。 本技術の第2の実施の形態の第2の変形例におけるプローブ内基板をセンサ筐体に突き当てたセンサ装置の一例を示す図である。 本技術の第2の実施の形態の第2の変形例におけるセンサ筐体の断面図の一例である。 本技術の第2の実施の形態に第3の変形例おける樹脂で満たしたセンサ装置の一例を示す図である。 本技術の第2の実施の形態の第4の変形例における両側放射で電子基板に平行な方向の肉厚を厚くしたプローブ筐体の断面図の一例である。 本技術の第2の実施の形態の第4の変形例における両側放射で電子基板に垂直な方向の肉厚を厚くしたプローブ筐体の断面図の一例である。 本技術の第2の実施の形態の第4の変形例における両側放射で電子基板に垂直な方向の肉厚を厚くしたプローブ筐体の断面図の別の例である。 本技術の第2の実施の形態の第4の変形例における両側放射で電子基板に平行な方向の肉厚を厚くしたプローブ筐体の断面図の別の例である。 本技術の第2の実施の形態の第4の変形例における両側放射で電子基板に垂直な方向と外側との肉厚を厚くしたプローブ筐体の断面図の一例である。 本技術の第2の実施の形態の第4の変形例における両側放射で電子基板に平行な方向の肉厚を厚くしたプローブ筐体の断面図の一例である。 本技術の第2の実施の形態の第4の変形例における両側放射で電子基板に垂直な方向の肉厚を厚くしたプローブ筐体の断面図の一例である。 本技術の第2の実施の形態の第4の変形例における両側放射で電子基板に垂直な方向の肉厚を厚くしたプローブ筐体の断面図の別の例である。 本技術の第2の実施の形態の第4の変形例における両側放射で電子基板に平行な方向の肉厚を厚くしたプローブ筐体の断面図の別の例である。 本技術の第2の実施の形態の第4の変形例における両側放射でプローブ内基板に垂直な方向と外側との肉厚を厚くしたプローブ筐体の断面図の一例である。 本技術の第2の実施の形態の第5の変形例におけるセンサ装置の一構成例を示す図である。 本技術の第2の実施の形態の第5の変形例における電子基板の接続前後のセンサ装置の一例を示す図である。 本技術の第2の実施の形態の第5の変形例におけるプローブごとに複数対のアンテナを設けたセンサ装置の一構成例を示す図である。 本技術の第2の実施の形態の第5の変形例におけるプローブ対ごとに長さが異なるセンサ装置の一構成例を示す図である。 本技術の第2の実施の形態の第5の変形例における送信アンテナを複数の受信アンテナが共有するセンサ装置の一構成例を示す図である。 本技術の第2の実施の形態の第5の変形例における電子基板の基板面が向かい合うセンサ装置の一構成例を示す図である。 本技術の第2の実施の形態の第5の変形例における二次元格子状に配列された複数の地点を計測するセンサ装置の一構成例を示す図である。 本技術の第2の実施の形態の第5の変形例における水準器を追加したセンサ装置の一構成例を示す図である。 本技術の第2の実施の形態の第5の変形例における電磁波の送受信方向が交差するセンサ装置の一構成例を示す図である。 本技術の第2の実施の形態の第6の変形例におけるアンテナの位置を非対称にした際の効果を説明するための図である。 本技術の第2の実施の形態の第6の変形例におけるセンサ装置の一構成例を示す図である。 本技術の第2の実施の形態の第6の変形例における四角形部を平行四辺形にしたセンサ装置の一構成例を示す図である。 本技術の第2の実施の形態の第6の変形例における四角形部を矩形にし、伝送路長を送信側、受信側で一致させたセンサ装置の一構成例を示す図である。 本技術の第2の実施の形態の第6の変形例における複数の地点を測定するセンサ装置の一構成例を示す図である。 本技術の第2の実施の形態の第6の変形例における、アンテナを共用して2つの地点を測定するセンサ装置の一構成例を示す図である。 本技術の第2の実施の形態の第6の変形例における、アンテナを共用して3つ以上の地点を測定するセンサ装置の一構成例を示す図である。 本技術の第2の実施の形態の第6の変形例における、アンテナを共用して2つの地点を測定するセンサ装置の別の例を示す図である。 本技術の第2の実施の形態の第6の変形例における、アンテナを共用して3つ以上の地点を測定するセンサ装置の別の例を示す図である。 本技術の第2の実施の形態の第6の変形例におけるプローブ数を増やしたセンサ装置の一構成例を示す図である。 本技術の第2の実施の形態の第6の変形例におけるプローブ数、アンテナ数を増やしたセンサ装置の一構成例を示す図である。 本技術の第3の実施の形態におけるセンサ装置の一例を示す図である。 本技術の第3の実施の形態におけるアンテナの断面図および側面図の一例である。 本技術の第3の実施の形態における同軸ケーブルの断面図の一例を示す図である。 本技術の第3の実施の形態におけるアンテナ数を削減したセンサ装置の一例を示す図である。 本技術の第3の実施の形態におけるアンテナ数を削減した際のアンテナの断面図および側面図の一例である。 本技術の第3の実施の形態におけるアンテナ数を削減した際の同軸ケーブルの断面図の一例を示す図である。 本技術の第4の実施の形態と比較例とにおける水分計測システムの一例を示す図である。 本技術の第4の実施の形態における複数のセンサ装置を連結した水分計測システムの一例を示す図である。 本技術の第4の実施の形態における複数のセンサ装置を連結した水分計測システムの上面図の一例である。 本技術の第4の実施の形態における支持部材を設けた水分計測システムの一例を示す図である。 本技術の第4の実施の形態における複数のセンサ装置と複数の潅水ノズルホルダーとを連結した水分計測システムの一例を示す図である。 本技術の第4の実施の形態における潅水チューブホルダーを連結した水分計測システムの一例を示す図である。 本技術の第4の実施の形態における潅水ノズルを介して潅水する水分計測システムの一例を示す図である。 本技術の第4の実施の形態におけるプローブの配列方向と連結部に平行な線分とが直交する水分計測システムの一例を示す図である。 本技術の第5の実施の形態におけるセンサ装置の正面図および側面図の一例を示す図である。 本技術の第5の実施の形態におけるセンサ装置の背面図および断面図の一例を示す図である。 本技術の第5の実施の形態における基板同士を直交させ、フレームを設けたセンサ装置の背面図および断面図の一例を示す図である。 本技術の第5の実施の形態における基板同士を直交させ、フレームを設けたセンサ装置の背面図および断面図の一例を示す図である。 本技術の第5の実施の形態における基板同士を直交させたセンサ装置の背面図および断面図の一例を示す図である。 本技術の第5の実施の形態における基板同士を直交させたセンサ装置の背面図および断面図の一例を示す図である。 本技術の第5の実施の形態における基板同士を直交させ、治具を設けたセンサ装置の背面図および断面図の一例を示す図である。 本技術の第5の実施の形態における基板同士を直交させ、治具を設けたセンサ装置の背面図および断面図の一例を示す図である。 本技術の第6の実施の形態におけるセンサ装置の一例を示す図である。 本技術の第6の実施の形態における本体部の位置を変更したセンサ装置の一例を示す図である。 本技術の第7の実施の形態と比較例とにおけるセンサ装置の一例を示す図である。 本技術の第7の実施の形態におけるセンサ装置の切断面の一例を示す図である。 本技術の第7の実施の形態におけるセンサ装置の断面図の一例を示す図である。 本技術の第7の実施の形態におけるセンサ装置の矩形の断面図の一例を示す図である。 本技術の第7の実施の形態におけるプローブが3本のセンサ装置の断面図の一例を示す図である。 本技術の第7の実施の形態におけるプローブが3本のセンサ装置の断面図の別の例を示す図である。 本技術の第7の実施の形態におけるプローブが4本のセンサ装置の断面図の一例を示す図である。 本技術の第7の実施の形態におけるセンサ装置の斜視図の一例である。 本技術の第7の実施の形態におけるスペーサに溝を設けたセンサ装置200の一例である。 本技術の第7の実施の形態におけるスペーサの溝の例を示す図である。 比較例と本技術の第8の実施の形態とにおけるセンサ装置の一例を示す図である。 本技術の第8の実施の形態における目盛りやストッパを設けたセンサ装置の一例を示す図である。 本技術の第8の実施の形態における送信側、受信側のアンテナ数の一例を示す図である。 本技術の第8の実施の形態における中央処理装置内の信号処理部の一構成例を示すブロック図である。 本技術の第8の実施の形態における板状部材を取り付けたメモリやストッパを設けたセンサ装置の一例を示す図である。 本技術の第8の実施の形態における直方体部材を取り付けたメモリやストッパを設けたセンサ装置の一例を示す図である。 本技術の第8の実施の形態における、プローブ筐体を分離しないセンサ装置の一例を示す図である。 本技術の第8の実施の形態におけるアンテナ間距離の測定方法を説明するための図である。 本技術の第9の実施の形態におけるセンサ装置の挿入方法の一例を示す図である。 本技術の第9の実施の形態におけるセンサ装置の挿入方法の別の例を示す図である。 本技術の第10の実施の形態におけるセンサ装置の一例を示す図である。 本技術の第10の実施の形態における、らせん状部材およびセンサ筐体の一例を示す図である。 本技術の第10の実施の形態における、らせん状部材およびセンサ筐体の別の例を示す図である。 本技術の第10の実施の形態における2重らせんのプローブを設けたセンサ装置の一例を示す図である。 本技術の第10の実施の形態における2重らせんの、らせん状部材を設けたセンサ装置の一例を示す図である。 本技術の第10の実施の形態における2重らせんの、らせん状部材およびセンサ筐体の一例を示す図である。 本技術の第10の実施の形態における、らせん状部材とアンテナとの位置関係の一例を示す図である。 本技術の第10の実施の形態における、らせん状部材の断面図の一例である。 本技術の第10の実施の形態におけるシャベル型筐体を備えるセンサ装置の一例を示す図である。 本技術の第10の実施の形態におけるシャベル型筐体の一例を示す図である。 本技術の第10の実施の形態における持ち手の形状の一例を示す図である。 本技術の第10の実施の形態における刃の形状の一例を示す図である。 本技術の第10の実施の形態における足場部材を追加したセンサ装置の一例を示す図である。 本技術の第11の実施の形態におけるセンサ装置の一例を示すブロック図である。 本技術の第11の実施の形態におけるセンサ装置内の各部の動作を示すタイミングチャートの一例である。 本技術の第11の実施の形態における送信波形の一例を示す図である。 本技術の第11の実施の形態における送信波形の別の例を示す図である。 本技術の第11の実施の形態における、水分量に応じて送信電力を調整する際の送信波形の一例を示す図である。 本技術の第11の実施の形態における、水分量に応じて送信電力を調整し、必要に応じてエラーを出力する際の送信波形の一例を示す図である。 本技術の第11の実施の形態における送受信信号の波形の一例を示す図である。 本技術の第11の実施の形態における出力調整期間内の送受信信号の波形の一例を示す図である。 本技術の第11の実施の形態における計測期間内の送受信信号の波形の一例を示す図である。 本技術の第12の実施の形態におけるセンサ装置の一構成例を示す図である。
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(測定部基板とプローブ内基板とを直交して接続する例)
 2.第2の実施の形態(1枚の電子基板にアンテナを形成する例)
 3.第3の実施の形態(円柱状のアンテナを備える例)
 4.第4の実施の形態(潅水ノズルを適切な位置に固定する例)
 5.第5の実施の形態(センサ筐体を備えない例)
 6.第6の実施の形態(プローブにステムを接続する例)
 7.第7の実施の形態(支柱や補強部を追加する例)
 8.第8の実施の形態(一対のプローブ筐体を分離する例)
 9.第9の実施の形態(センサ装置の挿入前にガイドを挿入する例)
 10.第10の実施の形態(らせん状部材やシャベル型筐体を備える例)
 11.第11の実施の形態(送信電力を調整する例)
 12.第12の実施の形態(プローブの伸びる方向と基板平面とが垂直になる位置に測定部基板を配置する例)
 <1.第1の実施の形態>
 [水分計測システムの構成例]
 図1は、本技術の第1の実施の形態における水分計測システム100の全体図の一例である。この水分計測システム100は、媒質Mに含まれる水分量を測定するものであり、中央処理装置150と、センサ装置200や201などの少なくとも1つのセンサ装置とを備える。媒質Mとしては、例えば、農作物を育成するための土壌が想定される。
 センサ装置200は、水分量の測定に必要なデータを測定データとして取得するものである。測定データの内容については後述する。このセンサ装置200は、測定データを通信経路110(無線の通信経路など)を介して中央処理装置150へ送信する。センサ装置201の構成は、センサ装置200と同様である。中央処理装置150は、測定データを用いて水分量を測定するものである。なお、通信経路110は、有線通信の経路であってもよい。
 なお、水分計測システム100内に、複数の中央処理装置150を設けることもできる。
 ユーザは、土壌の上方から、センサ装置200や201に荷重を加えて土壌に挿し込んで使用する。センサ装置200等は、中央処理装置150と通信を出来るように、センサ装置200等に備わる少なくともアンテナ部分を、土壌表面よりも上方に露出させて使用する。同図における灰色部分は、アンテナを示す。なお、中央処理装置150と通信が可能となる深さであるならば、上記のアンテナ部分を土壌内に埋めて使用してもよい。
 センサ装置200や201は、一対のプローブを備える。プローブの長さは、5乃至200センチメートル(cm)であり、プローブに、後述する1乃至40個のアンテナが設けられる。これにより、土壌の深さ5乃至200センチメートル(cm)の範囲内の複数の深さにおいて、水分を計測することができる。
 [中央処理装置の構成例]
 図2は、本技術の第1の実施の形態における中央処理装置150の一構成例を示すブロック図である。この中央処理装置150は、中央制御部151、アンテナ152、中央通信部153、信号処理部154、記憶部155および出力部156を備える。
 中央制御部151は、中央処理装置150全体を制御するものである。中央通信部153は、アンテナ152を介して、センサ装置200や201へ情報(例えば、測定に関する指示)を送信し、また、センサ装置200や201からの測定データを受信するものである。
 信号処理部154は、測定データに基づいて水分量を求めるものである。記憶部155は、水分量の測定結果などを記憶するものである。出力部156は、水分量の測定結果を表示装置(不図示)などに出力するものである。
 [センサ装置の構成例]
 図3は、本技術の第1の実施の形態におけるセンサ装置200の一構成例を示すブロック図である。このセンサ装置200は、測定回路210、送信プローブユニット220および受信プローブユニット230を備える。測定回路210には、センサ制御部211、センサ通信部212、アンテナ213、送信機214、受信機215、送信スイッチ216および受信スイッチ217が配置される。
 送信プローブユニット220内には、送信アンテナ221乃至223などの所定数の送信アンテナが設けられる。受信プローブユニット230内には、受信アンテナ231乃至233などの所定数の受信アンテナが設けられる。
 センサ制御部211は、測定回路210内の各回路を制御するものである。送信スイッチ216は、センサ制御部211の制御に従って、送信アンテナ221乃至223のいずれかを選択し、送信機214に接続するものである。受信スイッチ217は、センサ制御部211の制御に従って、受信アンテナ231乃至233のいずれかを選択し、受信機215に接続するものである。送信アンテナ221乃至223は、伝送路218-1乃至218-3を介して送信スイッチ216と接続される。また、受信アンテナ231乃至233は、伝送路219-1乃至219-3を介して受信スイッチ217と接続される。
 送信機214は、所定周波数の電気信号を送信信号として、選択された送信アンテナを介して送信するものである。送信信号内の入射波として、例えば、CW(Continuous Wave)波が用いられる。この送信機214は、例えば、1乃至9ギガヘルツ(GHz)の周波数帯域内において、50メガヘルツ(MHz)のステップで周波数を順に切り替えて送信信号を送信する。
 受信機215は、選択された受信アンテナを介して透過波を受信するものである。ここで、透過波は、プローブ間の媒質を透過した電磁波を受信アンテナが電気信号に変換したものである。
 センサ通信部212は、中央処理装置150から送られて来た情報(測定に関する指示)を受信し、また、受信機215の受信結果を示すデータを測定データとして、アンテナ213を介して、中央処理装置150に送信するものである。
 なお、センサ装置201の構成は、センサ装置200と同様である。
 図4は、本技術の第1の実施の形態におけるセンサ装置200の全体図の一例である。同図におけるaは、土壌に挿入する方を下方として、センサ装置200の上方から見た透過図(言い換えれば、上方から見たセンサ装置200の各部の特徴を重ね書きした図)である。同図におけるbは、センサ装置200の正面図である。同図におけるcは、センサ装置200の側方から見た透過図(言い換えれば、側方から見たセンサ装置200の各部の特徴を重ね書きした図)である。なお、これ以降、本明細書における三面図は、特に断り書きの無い場合は、図4と同様に透過図(各部の特徴を重ね書きした図)となっている。
 センサ装置200は、下部に一対の突出部が設けられたセンサ筐体305を備える。図5は、後述するように、センサ筐体305の全体図の一例である。センサ筐体305のうち、一対の突出部が設けられた部分を、便宜的にプローブ筐体320と呼び、それ以外の部分を、便宜的に測定部筐体310と呼ぶ。そして、送信プローブユニット220を収める筐体をプローブ筐体320a、受信プローブユニット230を収める筐体をプローブ筐体320b、と呼ぶ。さらに、送信プローブユニット220とこれを収めたプローブ筐体320aを合わせたものを、送信プローブと呼び、受信プローブユニット230とこれを収めたプローブ筐体320bを合わせたものを、受信プローブと呼ぶ。
 測定部筐体310内には、測定部基板311が配置される。測定部基板311は、配線層を複数積層して備えた電子基板(別の言い方では配線基板)である。この測定部基板311には、測定回路210が形成されている。ここで、図4の測定部312は、図3の測定回路210を表している。図3において、アンテナ213は測定回路210に含まれている。一方、図4において、アンテナ213が、測定回路210の外に配置されているが、これは図3に示された測定回路210の変形例を表している。図4において、アンテナ213が、測定回路210に含まれる形態でもよい。測定基板311には、さらに、電池313、コネクタ314およびコネクタ315が接続されている。なお、図4の測定部312は、1つの半導体装置で構成してもよいし、複数の半導体装置を用いて構成してもよい。測定部312とコネクタ314およびコネクタ315とは、信号線とシールド層を備えたストリップ線路により接続される。同図における3本の白抜きの太線が信号線を示し、黒色の太線がシールド層を便宜的に示す。実際には、信号線間にシールド配線を配置し、基板平面に直交する方向における信号線の上方と下方にはシールド層を配置することで、各信号線間をシールドしたストリップ線路が形成されているが、図4では簡略化して表示している。
 また、プローブ筐体320内には、プローブ内基板321および322と、電波吸収部341乃至346と、位置決め部351および352とが配置される。
 プローブ内基板321は、配線層を複数積層して備えた電子基板(別の言い方では配線基板)である。プローブ内基板321には、コネクタ323と、放射エレメント330乃至332とシールド層325と複数本の信号線(不図示)が形成される。なお、プローブ内基板321において、シールド層は複数層形成されている。放射エレメント330と、シールド層325のうち電波吸収部341等から露出した部分とからなる部分は、1つの送信アンテナ221として機能する。放射エレメント331および332についても同様に、送信アンテナ222および223として機能する。同図では、3つの送信アンテナが配列されている。コネクタ323と、送信アンテナ221乃至223に備わる放射エレメント330乃至332との間は、送信アンテナ毎に独立した伝送路218-1乃至218-3によって接続されている。これらの伝送路は、上記複数本の信号線のそれぞれが、基板平行方向(信号線の左右)と基板垂直方向(信号線の上下)の双方においてプローブ内基板321に形成されたシールド層あるいはシールド配線もしくはシールドビアによってシールドされた、ストリップ線路で形成されている。一方、測定部基板311においても、測定部312とコネクタ314との間は、送信アンテナ毎に独立した伝送路によって接続されており、これらの伝送路は、測定部基板311に備わる信号線とシールド層を用いて、ストリップ線路で形成されている。これにより、測定部312からセンサ装置200に備わる全ての送信アンテナ(図3と4の例で言えば、送信アンテナ221乃至223)までの間が、送信アンテナ毎に独立した伝送路(特にストリップ線路)で接続されている。
 プローブ内基板322も、配線層を複数積層して備えた電子基板(別の言い方では配線基板)である。プローブ内基板322には、コネクタ324と、エレメント(受信エレメント)333乃至335とシールド層326と複数の信号線(不図示)が形成される。なお、プローブ内基板322においても、シールド層は複数層形成されている。エレメント(受信エレメント)333と、シールド層326のうち電波吸収部344等から露出した部分とからなる部分は、1つの受信アンテナ231として機能する。放射エレメント334および335についても同様に、受信アンテナ232および233として機能する。同図では、3つの受信アンテナが配列されている。コネクタ324と、受信アンテナ231乃至233に備わるエレメント(受信エレメント)333乃至335との間は、受信アンテナ毎に独立した伝送路219-1乃至219-3によって接続されている。これらの伝送路は、上記複数本の信号線のそれぞれが、基板平行方向(信号線の左右)と基板垂直方向(信号線の上下)の双方においてプローブ内基板322に形成されたシールド層あるいはシールド配線もしくはシールドビアによってシールドされた、ストリップ線路で形成されている。一方、測定部基板311においても、測定部312とコネクタ315との間は、受信アンテナ毎に独立した伝送路によって接続されており、これらの伝送路は、測定部基板311に備わる信号線とシールド層を用いて、ストリップ線路で形成されている。これにより、測定部312からセンサ装置200に備わる全ての受信アンテナ(図3と4の例で言えば、受信アンテナ231乃至233)までの間が、送信アンテナ毎に独立した伝送路(特にストリップ線路)で接続されている。
 図4のプローブ筐体320aと、プローブ内基板321とを含む部分は、図3の送信プローブユニット220に該当する。図4のプローブ筐体320bと、プローブ内基板322とを含む部分は、図3の受信プローブユニット230に該当するこれらのプローブユニット間には、補強部360が設けられる。
 以下、センサ装置200を土壌に挿入する方向に平行な軸をY軸とする。プローブ筐体320aと320bは、Y軸方向に延在している。プローブ内基板321と322も、Y軸方向に延在している。プローブ内基板321におけるY軸方向の中心線と、プローブ内基板322におけるY軸方向の中心線と、を含む第1の平面上で、Y軸と直交する方向に平行な軸をX軸とする。図4に示すセンサ装置200において、測定部基板311は、X軸方向に平行な線とY軸方向に平行な線とを含む第2の平面上に延在している。X軸およびY軸に垂直な軸をZ軸とする。上記第1および第2の平面は、Z軸に直交する面となる。
 上述したように、センサ装置200は、送受信アンテナ間の媒質を伝搬した電磁波の特性を基にして、媒質内の水分量を計測するための装置である。
 また、送信アンテナおよび受信アンテナのそれぞれの形状は、平面状であり、これらは、プローブ内基板321、322などの電子基板に形成される。この構成を以下、「構成要素(1)」と称する。これにより、アンテナを別部品で形成した後、電子基板(プローブ内基板321、322)へ組み付ける形態と比較して、アンテナの加工精度や取り付け精度が高く、水分を正確に測定できるようにした。また、上記電子基板とアンテナをコンパクトに形成することが可能となり、筐体断面が小さくて済むようにした。その結果、筐体内に不要な空間ができることを低減し、これによっても、水分を正確に測定できるようにした。この効果については、詳細を後述する。
 また、送信アンテナおよび受信アンテナは、互いに対向して、かつ、アンテナ間距離が所定の距離となるようにセンサ筐体305内に固定して配置される。この2つのアンテナを対向させてかつ所定の距離に固定して配置した構成を以下、「構成要素(2)」と称する。これにより、平面状のアンテナを対向させない形態、あるいは、2つのアンテナ間が所定の距離となるように固定して配置していない形態と比較して、アンテナの利得を改善し、感度を高め、水分を正確に測定できるようにした。
 測定部基板311に備わる測定部312と送信アンテナ221乃至223との間を接続する伝送路218-1乃至218-3、および、測定部312と受信アンテナ231乃至233との間を接続する伝送路219-1乃至219-3は、電子基板(測定部基板311およびプローブ内基板321と322)を用いて形成される。この構成を以下、「構成要素(3)」と称する。これにより、伝送路を同軸ケーブルで形成した形態と比較して、伝送路の伸縮を低減し、水分を正確に測定できるようにした。
 また、センサ装置200は、電子基板として測定部基板311とプローブ内基板321および322とを含み、測定部基板311は、プローブ内基板321や322と直交して配置される。より具体的には、(1)測定部基板311は上記第1の平面と平行に配置され、(2)プローブ内基板321と322は、対向して配置され、かつ、上記第1の平面と直交して配置され、(3)その結果、測定部基板311は、プローブ内基板321や322と直交して配置される。この構成を以下、「構成要素(4)」と称する。
 また、センサ筐体305は、プローブ筐体320a、320bを含み、送信アンテナは、プローブ筐体320aが延在する方向に沿って複数個所に配置され、受信アンテナも、プローブ筐体320bが延在する方向に沿って複数個所に配置される。この構成を以下、「構成要素(5)」と称する。
 また、伝送路は、測定部基板311に備わる測定部312とセンサ装置200に備わる全ての送信アンテナのそれぞれとを個別に接続する複数の伝送路と、測定部基板311に備わる測定部312とセンサ装置200に備わる全ての受信アンテナのそれぞれとを個別に接続する複数の伝送路とを含む。測定部基板311に備わる測定部312は、複数の送信アンテナと複数の受信アンテナとを時分割で駆動する。この構成を以下、「構成要素(6)」と称する。
 また、シールドされた複数の信号線を含む伝送線路であって、測定部基板311と312よりも柔軟性が高い伝送線路を介して、直交して配置された2つの基板との間(すなわち測定部基板311とプローブ内基板321との間、および測定部基板311とプローブ内基板322との間)の伝送路が接続される。この構成を以下、「構成要素(7)」と称する。これにより、複数の平面状の送信アンテナと、複数の平面状の受信アンテナとを対向させて配置することを可能とする。その結果、利得の高い送受信アンテナを用いて、複数の送受信アンテナの間に位置する土壌全体に渡って水分を正確に測定できるようになる。
 また、プローブ筐体320aと320bは、電磁波透過性材料で形成され、そのプローブ筐体320aと320bの強度は、その内部に格納された電子基板の強度よりも高い。この構成を以下、「構成要素(8)」と称する。
 また、プローブ内基板321には、送信アンテナが形成され、プローブ内基板322には受信アンテナが形成される。プローブ筐体320aおよびプローブ内基板321の延在方向(Y軸方向)と直交する方向でのこれらの断面において、(1)プローブ内基板321に垂直な方向における、プローブ内基板321の中心からプローブ筐体320aの筐体端までの距離は、(2)プローブ内基板321に平行な方向における、プローブ内基板321の中心から、プローブ筐体320aの筐体端までの距離よりも小さい。同様に、プローブ筐体320bおよびプローブ内基板322の延在方向(Y軸方向)と直交する方向でのこれらの断面において、(1)プローブ内基板322に垂直な方向における、プローブ内基板322の中心からプローブ筐体320bの筐体端までの距離は、(2)プローブ内基板322に平行な方向における、プローブ内基板322の中心から、プローブ筐体320bの筐体端までの距離よりも小さい。この構成を以下、「構成要素(9)」と称する。
 同図に記載のセンサ装置200は、電磁波を吸収する材料を用いて形成され、「送信エレメント(送信アンテナ)と測定部との間を接続する送信用伝送路」の少なくとも一部を覆う、送信用伝送路被覆部と、電磁波を吸収する材料を用いて形成され、「受信エレメント(受信アンテナ)と測定部との間を接続する受信用伝送路」の少なくとも一部を覆う、受信用伝送路被覆部と、を備える。
 送信プローブユニットは、上記の送信用伝送路被覆部を備えており、受信プローブユニットも、上記の受信用伝送路被覆部を備えている。
 また、センサ筐体305は、測定部筐体310と、プローブ筐体320とを備える。プローブ筐体320のうち、送信アンテナを収めた部分は、送信プローブ筐体320aであり、受信アンテナを収めた部分は、受信プローブ筐体320bである。送信プローブ筐体320aと受信プローブ筐体320bとは、測定部筐体310に固定されて一体となった形態である。なお、これらを後述するように分離した状態とすることもできる。
 ここで、センサ筐体305は、センサ筐体305を予め複数の部品に分けて形成した後、これらの部品を固定して一体とした形態であってもよい。また、センサ筐体305は、送信プローブ筐体と受信プローブ筐体と測定部筐体310とを形成する時点で、これらを一体として形成した形態であってもよい。
 センサ筐体305は、筐体の強度を向上させるための、補強部360を備えているが、補強部360を設けない構成とすることもできる。
 補強部360は、送信プローブ筐体320aと受信プローブ筐体320bと測定部筐体310との少なくとも2つに接続された構造となっている。これら3つに接続された構造でもよい。
 また、センサ筐体305は、その全てが、電磁波を透過する材料を用いて形成されてもよい。あるいは、少なくとも送信エレメント(送信アンテナ)と受信エレメント(受信アンテナ)に最も近接した部分は電磁波を透過する材料を用いて形成され、それ以外の部分の少なくとも一部には、上記の材料と異なる材料を用いて形成されてもよい。
 図5は、本技術の第1の実施の形態におけるセンサ筐体305の全体図の一例である。同図におけるaは、センサ筐体305の上方から見た透過図である。同図におけるbは、センサ筐体305の正面図である。同図におけるcは、センサ筐体305の断面図である。センサ筐体305のうち、送信プローブユニット220を収める筐体をプローブ筐体320a、受信プローブユニット230を収める筐体をプローブ筐体320bと呼び、プローブ筐体320aと320bの間に配置され、プローブ筐体320aと320bの強度を向上させるための補強構造を、補強部360と呼ぶ。
 電磁波が送受信されるアンテナ部分だけでなく、少なくとも、送信アンテナと送信用伝送路とを収めた筐体の部分と、受信アンテナと受信用伝送路とを収めた筐体の部分とは、これらの部分の全体が、電磁波透過性材料で形成されている。
 測定部基板を収めた測定部筐体310は、土壌に挿入した際には、土壌に対して立てて配置した状態(言い換えれば、上記第1の平面方向に延在させて配置した状態)となっている。より具体的には、この測定部筐体310の厚さ(Z軸方向の大きさ)は、測定部筐体310の幅(X軸方向の大きさ)および高さ(Y軸方向の大きさ)のどちらよりも小さくなっている。
 補強部360を含むセンサ筐体305は、電磁波透過性の材料により形成される。この電磁波透過性の材料としては、例えば、高分子系材料、ガラスや、PTEF(PolyTEtraFluoroethylene)などの無機系材料が挙げられる。高分子系材料として、PC(PolyCarbonate)、PES(PolyEtherSulfone)、PEEK(PolyEtherEtherKetone)、PSS(PolyStyrene Sulfonic acid)などが用いられる。その他、高分子材料として、PMMA(PolyMethylMethAcrylate)、PET(PolyEthylene Terephthalate)なども用いられる。
 図6は、本技術の第1の実施の形態の別の例であって、図1に記載の水分計測システム100と比較して、センサ装置200と201に備わる送信プローブと受信プローブの長さを大きくして、かつ、送信プローブと受信プローブに配置するアンテナ数を増加した水分計測システム100の全体図の一例である。図6に記載の水分計測システム100は、図1に記載の水分計測システム100と比較して、送信プローブと受信プローブの長さを大きくして、かつ、送信プローブと受信プローブに配置するアンテナ数を増加させて、さらに、図7と図8を参照して後述するように、送信プローブと受信プローブの強度を向上させる補強部361を追加したことにより、図1に記載の水分計測システム100よりも、土壌のより広い領域(特に土壌の深部)において、土壌の水分を、より正確に計測できる。
 図7は、図6に記載の水分計測システム100に備わるセンサ装置200の全体図の一例である。図7に記載のセンサ装置200は、図4に記載のセンサ装置200と比較して、送信プローブと受信プローブの長さを大きく、かつ、送信プローブと受信プローブに配置されたアンテナの数が大きく、かつ、送信プローブと受信プローブの強度を向上させる補強部361を追加した構造となっている。図7に示した例においては、エレメント330乃至339が設けられ、5つの送信アンテナと5つの受信アンテナとが形成される。なお、図7に限り、エレメント330乃至334が放射エレメント、335乃至339が受信エレメント、を表している。
 図8は、図7に記載のセンサ装置200に備わる、センサ筐体305の全体図の一例である。筐体の強度を向上させるために、プローブ筐体320の下部に補強部361が追加される。
 プローブ筐体320の長さが長く、かつ土壌が硬い場合には、センサ装置200に応力を加えてこれを土壌へ挿入する際に、そのプローブ筐体320が変形してしまい、送信アンテナと受信アンテナとの間の距離が、設計時の距離と異なった大きさになってしまう可能性がある。補強部361の追加により、その変形の可能性を小さくしている。また、土壌が硬い場合には、センサ装置200に応力を加えてこれを土壌へ挿入する際に、測定部筐体310とプローブ筐体320との間が破断してしまう可能性がある。補強部361の追加により、その破断の可能性を小さくしている。
 図9は、本技術の第1の実施の形態のさらに別の例であって、図1に記載の水分計測システム100と比較して、アンテナ数を削減した水分計測システム100の全体図の一例である。同図に例示するように、センサ装置200等のアンテナ数を削減し、送信側および受信側のそれぞれにおいて1つにすることもできる。アンテナ数の削減により、より簡便な構成要素(部品点数が少ない構成)で、土壌の水分量を計測することができる。また、複数のアンテナを駆動するための手段も不要となる。この場合、構成要素(5)と(6)は、不要となる。また、送信アンテナと受信アンテナをそれぞれ1個とした場合、直交して配置された2つの基板との間(すなわち測定部基板311とプローブ内基板321との間、および測定部基板311とプローブ内基板322ととの間)の伝送路の接続は、例えばSMAコネクタなどの金属製のコネクタを用いて形成することもできる。この場合には、構成要素(7)も不要となる。
 図10は、図9に記載の水分計測システム100に備わるセンサ装置200の全体図の一例である。
 図11は、図10に記載のセンサ装置200に備わる、センサ筐体305の全体図の一例である。
 図12は、本技術の第1の実施の形態のさらに別の例であって、センサ装置200と201に備わる筐体をそれぞれ2つに分離した、水分計測システム100の全体図の一例である。同図に例示するように、測定部筐体310とプローブ筐体320とを分離することもできる。測定部基板311に形成された伝送路と、プローブ内基板321および322に形成された伝送路と、の間のそれぞれの接続は、ケーブル(例えば、同軸ケーブル)により接続される。プローブ筐体320のアンテナ数は、送信側、受信側で1個ずつである。この場合、構成要素(5)乃至(7)は、不要となる。また、測定部筐体310とプローブ筐体320とが離れた位置に配置され、測定部筐体310を土壌表面に対して配置する方向が、土壌水分の計測対象となるプローブ筐体320aと320bの間の土壌への降雨や散水に影響を及ぼさないのであれば、構成要素(4)も必要ではなくなる。
 図13は、図12に記載の水分計測システム100に備わるセンサ装置200の全体図の一例である。同図の場合、アンテナ数は、送信側、受信側で1個ずつである。測定部基板311を収めた測定部筐体310が1つの独立した筐体を形成している。また、送信アンテナ330を形成したプローブ内基板を収めたプローブ筐体320aと、受信アンテナ331を形成したプローブ内基板322を収めたプローブ筐体320bとが、接続されて、1つの独立したプローブ筐体320を形成している。プローブ筐体320は、補強部360をさらに備える。
 図14は、図13に記載のセンサ装置200に備わる、センサ筐体305の全体図の一例である。
 図15は、本技術の第1の実施の形態のさらに別の例であって、センサ装置200と201に備わる筐体を分離し、センサ装置毎に複数のプローブ筐体を設けた水分計測システム100の全体図の一例である。同図に例示するように、センサ装置200と201は、それぞれが、送信アンテナと受信アンテナを複数備えている。そして、センサ装置200と201のそれぞれにおいて、1つの送信アンテナと1つの受信アンテナを1対として、このアンテナ1対毎に、プローブ筐体を備えている。これにより同図に例示するように、センサ装置200ごとに、測定部筐体310と、プローブ筐体320、320-1、320-2などの複数のプローブ筐体を設けた構成となっている。それぞれのプローブ筐体のアンテナ数は、送信側、受信側で1個ずつである。この場合、構成要素(4)と(7)が不要となる。
 図16は、図15に記載の水分計測システム100に備わるセンサ装置200の全体図の一例である。同図の場合、アンテナ数は、送信側、受信側で1個ずつである。
 図17は、図15のセンサ装置200の一構成例を示すブロック図である。同図に例示するように、分離した3つのプローブ筐体内に、送信プローブユニット220-1乃至220-3と、受信プローブユニット230-1乃至230-3とが配置される。これらの3対のユニットのそれぞれには、アンテナが1つずつ配置される。例えば、送信プローブユニット220-1乃至220-3には、送信アンテナ221乃至223が配置され、受信プローブユニット230-1乃至230-3には、受信アンテナ231乃至233が配置される。これらのアンテナは、互いに独立した伝送路を介して測定回路210に接続される。
 図18は、本技術の第1の実施の形態のさらに別の例であって、複数の送信アンテナ330乃至332と複数の受信アンテナ(333乃至335)を備え、かつ、これらを収めたプローブ筐体320と、測定部基板311を収めた測定部筐体310を分離したセンサ装置200の全体図の別の例である。測定部筐体310と、プローブ筐体320とを分離する場合、アンテナ数を送信側、受信側で3つずつにすることもできる。この場合、構成要素(4)および(7)が不要となる。
 [アンテナの構成例]
 図19は、本技術の第1の実施の形態におけるセンサ装置200の正面図(図19左図)と、センサ装置200を正面から見た際の、プローブ内基板321に備わる送信アンテナ223とその近傍の断面図(図19右図)の一例である。同図は、Z軸方向から見た際の送信アンテナ223とその近傍の断面図の一例である。図19右図において各層の色を付けて示した部分は、左側から順に、電波吸収材251、一般的なソルダーレジスト252、導電体のシールド層254、導電体の信号線255、導電体のシールド層256、ソルダーレジスト253、電波吸収材251、を表している。シールド層254と信号線255の間の着色していない層、および、シールド層254と信号線255の間の着色していない層は、絶縁体を表す。なお、ソルダーレジストと絶縁体は電磁波を透過する。通常、電子基板(配線基板)の層数は、基板に含まれる導電体の層数で呼ばれる。このため、図19右図の基板は、3層基板と呼ばれる。しかし、本明細書においては、電磁波の伝送とシールドおよび電磁波の吸収に着目して、電波吸収材251、シールド層254、信号線255、シールド層256、電波吸収材251を、便宜的にそれぞれ、第1層、第2層、第3層、第4層、第5層、と呼ぶことがある。送信アンテナ221および222の断面図は、送信アンテナ223と同様である。X軸方向において、送信側から受信側への方向を右方向とすると、受信アンテナ231乃至233の断面図は、送信アンテナ223と左右対称である。
 図20は、図19右図にその断面を示した、送信アンテナ223とその近傍についての、層毎の平面図の一例である。同図は、図19右図に示した送信アンテナ223とその近傍を、センサ装置200のX軸方向から見た際の層毎の平面図を示す。同図におけるaは、図18右図の第1層:電波吸収材251の平面図である。同図におけるbは、第2層:シールド層254の平面図である。同図におけるcは、第3層:信号線255の平面図である。同図におけるdは、第4層:シールド層256の平面図である。同図におけるeは、第5層:電波吸収材251の平面図である。また、A-A'線に沿って切断した際の断面図が図18の断面図に相当する。
 図20bに示す第2層は、シールド層254が配線された第1の配線層である。図20cに示す第3層は、線状の信号線255が配線された第2の配線層である。図20dに示す第4層は、シールド層256が配線された第3の配線層である。信号線255のZ軸方向の幅をDzとする。図20b、c、dに記載した、正方形とその対角線を線分で結んだ記号は、図20bに示すシールド層254と図20dに示すシールド層256を接続するビア(図21aにおける符号257)を示す。図20bとdにおいて、その記号は、シールド層254とシールド層256を接続するビア257の位置を表す。図20cにおいてその記号は、ビア257が信号線255の側方を通過する状態を表している。このビア257により、シールド層254とシールド層256は、同じ電位となっている。図20cに記載した2本の点線のうち、図20cに記載の"A"に近い側の点線は、図20eに記載の電波吸収材251の外形線を、図20cへ便宜的に投影したものである。図20cに記載の"A'"に近い側の点線は、図20dに示すシールド層256の外形線を、図20cへ便宜的に投影したものである。図20dとeに記載した点線は、図20cに記載の信号線255の外形線を、図20dとeへ便宜的に投影したものである。
 図21は、図19右図にその断面図を示した、送信アンテナ223とその近傍を、上方から見た際の断面図の一例である。図21におけるaは、図20のB-B'線に沿って切断した際の断面図であり、図21におけるbは、図20のC-C'線に沿って切断した際の断面図である。
 受信プローブの断面図は、送信プローブと同様である。送信プローブは、電波吸収材251により被覆される。この電波吸収材251により電波吸収部341などが形成される。
 また、プローブ内基板321の両面と、電波吸収材251との間にソルダーレジスト252および253が形成される。プローブ内基板321には、シールド層254を配線した配線層と、信号線255を配線した配線層と、シールド層256を配線した配線層とが形成される。信号線255は後述のように、送信アンテナにおいて放射エレメントとして機能する。放射エレメントとなる信号線255を配線した配線層の厚さをDxとする。シールド層254と256にはグランド電位が供給され、信号線255は、送信アンテナから送信する送信波である交流信号(送信信号)を伝送し放射する。以後、送信波(送信信号)を伝送し放射する信号線255を信号線層と呼ぶことがある。また、信号線255のうち、特に送信波の放射に関わる部分を放射エレメントと呼ぶことがある。これを受信アンテナに適応して言えば、受信波(受信信号)を受信し伝送する信号線255を信号線もしくは信号線層と呼ぶことがあり、導電体255のうち受信アンテナで受信された電磁波(受信波あるいは受信信号)の受信に関わる部分を受信エレメントと呼ぶことがある。
 図19乃至21に示すように、信号線層(信号線255)を配置した電子基板(プローブ内基板)において、信号線層に対して、前記基板の裏面側(シールド層254を配置した側)と表面側(シールド層256を配置した側)の双方に、シールド層254およびシールド層256を、信号線層との間に絶縁体を介して配置している。この構造により、信号線層の裏面側と表面側の双方をシールド層254と256によってシールドした伝送路(ストリップ線路)が形成される。この伝送路(送信用伝送路)を、プローブ内基板321において、プローブ内基板に備わる全ての送信アンテナから、コネクタ323まで、アンテナ毎に独立して配線している。同様の伝送路(受信用伝送路)を、プローブ内基板322において、プローブ内基板に備わる全ての受信アンテナから、コネクタ324まで、アンテナ毎に独立して配線している。
 図19乃至21を参照して、電磁波の伝送と放射(もしくは受信)とシールドおよび電磁波の吸収に関係する、第1層:裏面側電波吸収材251、第2層:シールド層254、第3層:信号線層(信号線255)、第4層:シールド層256、第5層:表面側電波吸収材251について、さらに説明する。なお、図19と20において、送信波の送信元(測定部に備わる送信機)に近付く方向を送信元方向と呼び、送信元から遠ざかる方向を先端方向あるいは単に先の方向と便宜的に呼ぶ。受信アンテナについて言えば、受信アンテナで受信した信号(受信波)の受信先(測定部に備わる受信機)に近付く方向を受信先方向と呼び、受信先から遠ざかる方向を先端方向あるいは単に先の方向と便宜的に呼ぶ。図19右図と図20に例示するように、プローブ内基板の裏面側において、裏面側電磁波吸収材251の先端よりもさらに先に、シールド層254の一部が裏面側電磁波吸収材251から露出している。言い換えれば、シールド層254の一部が空間に露出している。(なお、本明細書においては、ある導電体に関して、その外側に、電磁波をシールドもしくは吸収する部材が配置されていない状態を、便宜的に、「その導電体が空間に露出している」と呼ぶ場合がある。)また、プローブ内基板の表面側において、表面側電磁波吸収材251の先端よりもさらに先に、シールド層256の一部が表面側電磁波吸収材251から露出している。言い換えれば、シールド層256の一部が空間に露出している。そして、シールド層256の先端よりもさらに先に、信号線層(信号線255)の一部がシールド層256から露出している。言い換えれば、信号線層の一部が空間に露出している。信号線層のうち、このシールド層256から露出した部分(空間に露出した部分)が送信波を送信する放射エレメントして機能する。(受信アンテナに関して言えば、信号線層のうち、シールド層256から露出した部分(空間に露出した部分)が電磁波(送信アンテナから媒質中を伝搬して来た送信波、言い換えれば、受信波)を受信する受信エレメントして機能する。)送信アンテナ223について言えば、放射エレメント332がこれに該当する。(受信アンテナ233について言えば、受信エレメント335がこれに該当する。)放射エレメントが延在する面であって、シールド層から露出している側の面において、送信波はこの面に対して垂直方向へ最も大きく放射される。この送信波を最も大きく放射する方向を、「主放射の方向」あるいは単に「電磁波を放射する方向」と呼ぶ。また、シールド層の一部であって、電磁波吸収体251から露出して(言い換えれば、空間に露出して)、かつ、放射エレメントよりも電磁波を放射する方向に配置された部分を、「シールド露出部」あるいは単に「シールド部」と称する。これらのシールド露出部および放射エレメントは、送信アンテナ223として機能する。ここで、放射エレメントのY軸方向の長さをDyとする。空間に露出したシールド露出部のうち、特にシールド露出部の線端から、送信元方向(図19、20のY軸の負の方向)へ放射エレメントの長さDyと同じ長さもしくはそれ以内の領域に配置された部分が、送信アンテナ223の一部として特に有効に機能する。そこで、本明細書においては、(1)放射エレメント(シールド層から露出しかつ空間に露出した信号線層)と、(2)電磁波吸収材から露出しかつ空間に露出したシールド露出部のうち、シールド露出部の先端から、送信元方向(図19、20のY軸の負の方向)へ放射エレメントと同じ長さもしくはそれ以内の領域に配置された部分と、からなる構造体を、便宜的に「送信アンテナ」と呼ぶ場合がある。受信アンテナについても同様である。本明細書においては、(1)受信エレメント(シールド層から露出しかつ空間に露出した信号線層)と、(2)電磁波吸収材から露出しかつ空間に露出したシールド露出部のうち、シールド露出部の先端から、受信先方向(図18、19のY軸の負の方向)へ受信エレメントと同じ長さもしくはそれ以内の領域に配置された構造体と、からなる部分を、「受信アンテナ」と呼ぶ場合がある。
 図19乃至図21に例示したように、平面状の送信アンテナ223は、シールド部と放射エレメントとを備える。その送信アンテナ223は、配線層を複数層備えた電子基板(プローブ内基板321など)を用いて形成される。放射エレメントにおいて、第1方向の大きさ(電子基板の厚さ方向、図のX軸方向)の大きさDxよりも、その第1方向と直交する第2方向(電子基板の幅方向、図のZ軸方向)の大きさDzが大きくなっている。また、そのDxよりも、第1方向と第2方向の双方に直交する第3方向(電子基板が延在する長さ方向、図のY軸方向)の大きさDyが大きくなっている。本明細書においては、送信アンテナに備わる放射エレメントについて、DxよりもDzとDyの双方が大きくなっている場合、この送信アンテナを、「平面状のアンテナ」および「平面状の送信アンテナ」であると定義する。そして、放射エレメントの一部であって、第2方向と第3方向で定まる平面上に延在する部分を、「放射エレメントの平面」と定義する。なお、送信アンテナに関して、好ましくは、DxとDzの双方よりも、Dyが大きくなってよい。受信アンテナについても、同様である。図19乃至図21を参照して受信アンテナの構造を説明すると、受信アンテナに備わる受信エレメントにおいて、第1方向(電子基板の厚さ方向、図のX軸方向)の大きさDxよりも、その第1方向と直交する第2方向(電子基板の幅方向、図のZ軸方向)の大きさDzが大きくなっている。また、そのDxよりも、第1方向と第2方向の双方に直交する第3方向(電子基板が延在する長さ方向、図のY軸方向)の大きさDyが大きくなっている。本明細書においては、受信アンテナに備わる受信エレメントについて、DxよりもDzとDyの双方が大きくなっている場合、この受信アンテナを、「平面状のアンテナ」および「平面状の受信アンテナ」であると定義する。そして、受信エレメントの一部であって、第2方向と第3方向で定まる平面上に延在する部分を、「受信エレメントの平面」と定義する。なお、受信アンテナに関して、好ましくは、DxとDzの双方よりも、Dyが大きくなってよい。
 図20と図21に示すように、信号が与えられる信号線255とグランド電位が与えられるシールド層256を含んだ伝送路の周囲(伝送路の延在方向と直交する断面の周囲)が、電波吸収材251で被覆される、もしくは包囲される、あるいは包まれる。この電波吸収材251は、伝送路の延在方向(Y軸方向)に沿って延在し、その伝送路の、電波吸収材251による被覆の外縁の先にアンテナ(送信アンテナや受信アンテナ)が接続される。
 図19に示すように、アンテナは、積層された少なくとも3つの配線層(裏面側から表面へ順に、第1、第2、第3の配線層)を備えた電子基板(プローブ内基板321など)に形成される。アンテナは、信号が与えられる信号線255と、グランド電位が与えられるシールド層254と256とを備える。アンテナにおいて信号が与えられる信号線255は、第2の配線層に形成される。第1の配線層には、シールド層254が形成され、第3の配線層には、シールド層256が形成される。
 図20に示すように、第2の配線層に形成された信号線255の形状を、第3の配線層へ投影すると、シールド層256が配置されていない領域に、導電体255の射影の少なくとも一部が延在する。信号線255の形状を第1の配線層へ投影すると、信号線255の射影が配置されている位置には、第1の配線層のシールド層254が配置されている。
 このような形状により、図19に示す送信アンテナ223おいて、平面状の送信アンテナ223から、表面方向(紙面右方向、X軸の正の方向)へ電磁波が放射される。このように、平面状の放射エレメントの平面の一方の側から電磁波が放射されるアンテナを、「片側放射のアンテナ」と呼び、本明細書においては、これをアンテナの「第1構造」とする。受信アンテナの場合であれば、平面状の受信エレメントの平面の一方の側から電磁波が受信されるアンテナを、「片側受信のアンテナ」と呼び、このような受信アンテナが第1構造に該当する。
 図22は、本技術の第1の実施の形態におけるセンサ装置200を、図4bと同様に正面から見た際の、第1構造の別の例を表す断面図である。同図は、Z軸方向から見た際の送信アンテナ223とその近傍の断面図の一例である。
 図23は、図22にその断面を示した、第1構造の別の例についての、層毎の平面図である。
 図24は、図22にその断面を示した、第1構造の別の例を、上方から見た際の断面図である。
 図22乃至図24に例示した第1構造の別の例において、(1)グランド電位が与えられた第1の配線層(シールド層254)が、放射エレメント(信号線255)よりもさらに先へ延在している点は、第1構造と同じである一方、(2)第2の配線層の一部であって、放射エレメントや信号線とは異なる第2の配線層を用いて、放射エレメントよりも先の領域に、グランド電位が与えられた導電体257を形成している点と、(3)第3の配線層(シールド層256)が、放射エレメントと重畳しないように、放射エレメントの第3の配線層への射影(図23dにおける点線)を避けて、この射影の側方を通って放射エレメントよりも先の方へ延在している点が、第1構造と異なる。この形状は、図22乃至図24に示した送信アンテナ223の先にこれと異なる送信アンテナを配置する場合に、少なくともそこへグランド電位を与えるシールド層256の配線を容易に行うことができるという効果をもたらす。受信アンテナについても、同様である。(1)グランド電位が与えられた第1の配線層(シールド層254)が、受信エレメント(信号線255)よりもさらに先へ延在している点は、第1構造と同じである一方、(2)第2の配線層の一部であって、受信エレメントや信号線とは異なる第2の配線層を用いて、受信エレメントよりも先の領域に、グランド電位が与えられた導電体257を形成している点と、(3)第3の配線層(シールド層256)が、受信エレメントと重畳しないように、受信エレメントの第3の配線層への射影(図23dにおける点線)を避けて、この射影の側方を通って受信エレメントよりも先の方へ延在している点が、第1構造と異なる。この形状は、図22乃至図24に示した受信アンテナ233の先にこれと異なる受信アンテナを配置する場合に、少なくともそこへグランド電位を与えるシールド層256の配線を容易に行うことができるという効果をもたらす。
 図25は、本技術の第1の実施の形態におけるセンサ装置200を、図4bと同様に正面から見た際の、プローブ内基板321に備わる送信アンテナ223とその近傍に関する第2構造の、断面図の一例である。
 図24は、図25にその断面を示した第2構造についての、層毎の平面図の一例である。
 図27は、図25にその断面を示した第2構造を、上方から見た際の断面図の一例である。
 図25と図26に示すように、第2構造では、第2の配線層に形成された、信号が与えられる信号線255の形状を、裏面側(紙面左方向、X軸の負の方向)に配置された第1の配線層へ投影すると、表面側(紙面右方向、X軸の正の方向)に配置された第3の配線層と同様に導電体254が配置されていない領域に、信号線255の射影の少なくとも一部が延在する。この形状により、図25に示す送信アンテナ223おいて、平面状の送信アンテナ223から、表面方向(紙面右方向、X軸の正の方向)と裏面方向(紙面左方向、X軸の負の方向)の両方向へ、電磁波が放射される。このように、平面状の放射エレメントの平面の両側から電磁波が放射されるアンテナを、「両側放射のアンテナ」と呼び、本明細書においては、これをアンテナの「第2構造」とする。この構造の送信アンテナは、第1構造の送信アンテナと比較して、電磁波(送信波)をより効率的に放射できるという効果をもたらす。受信アンテナの場合であれば、平面状の受信エレメントの平面の両側から電磁波が受信されるアンテナを、「両側受信のアンテナ」と呼び、このような受信アンテナが第2構造に該当する。この構造の受信アンテナは、第1構造の受信アンテナと比較して、電磁波(送信アンテナから媒質中を伝搬して来た送信波、言い換えれば、受信波)をより効率的に受信できるという効果をもたらす。
 図28は、本技術の第1の実施の形態におけるセンサ装置200を、図4bと同様に正面から見た際の、第2構造の別の例を表す断面図である。同図は、Z軸方向から見た際の送信アンテナ223とその近傍の断面図の一例である。
 図29は、図28にその断面を示した、第2構造の別の例についての、層毎の平面図である。
 図230は、図28にその断面を示した、第2構造の別の例を、上方から見た際の断面図である。
 図28乃至図30に例示した第2構造の別の例において、(1)第1の配線層(シールド層254)が、放射エレメントと重畳しないように、放射エレメントの第1の配線層への射影(図29bにおける点線)を避けて、この射影の側方を通って放射エレメントよりも先の方へ延在している点と、(2)第2の配線層の一部であって、放射エレメントや信号線とは異なる第2の配線層を用いて、放射エレメントよりも先の領域に、グランド電位が与えられた導電体257を形成している点と、(3)第3の配線層(シールド層256)が、放射エレメントと重畳しないように、放射エレメントの第3の配線層への射影(図29dにおける点線)を避けて、この射影の側方を通って放射エレメントよりも先の方へ延在している点が、第2構造と異なる。この形状は、図28乃至図30に示した送信アンテナ223の先にこれと異なる送信アンテナを配置する場合に、少なくともそこへグランド電位を与えるシールド層254と256の配線を容易に行うことができるという効果をもたらす。受信アンテナについても、同様である。(1)第1の配線層(シールド層254)が、受信エレメントと重畳しないように、受信エレメントの第1の配線層への射影(図29bにおける点線)を避けて、この射影の側方を通って受信エレメントよりも先の方へ延在している点と、(2)第2の配線層の一部であって、受信エレメントや信号線とは異なる第2の配線層を用いて、受信エレメントよりも先の領域に、グランド電位が与えられた導電体257を形成している点と、(3)第3の配線層(シールド層256)が、受信エレメントと重畳しないように、受信エレメントの第3の配線層への射影(図29dにおける点線)を避けて、この射影の側方を通って受信エレメントよりも先の方へ延在している点が、第2構造と異なる。この形状は、図28乃至図30に示した受信アンテナ223の先にこれと異なる受信アンテナを配置する場合に、少なくともそこへグランド電位を与えるシールド層254と256の配線を容易に行うことができるという効果をもたらす。
 図31は、本技術の第1の実施の形態におけるセンサ装置200を、図4bと同様に正面から見た際の、プローブ内基板321に備わる送信アンテナ223とその近傍に関する第3構造の、断面図の一例である。
 図32は、図31にその断面を示した第3構造についての、層毎の平面図の一例である。
 図33は、図31にその断面を示した第3構造を、上方から見た際の断面図の一例である。
 図31と図32に示すように、第3構造では、(1)最も表面側(図30において最も紙面右側、最もX軸の正の方向)の配線層となる第3の配線層において、この第3の配線層の一部を用いてシールド層256が形成されている。(2)さらに、第3の配線層の一部であって、シールド層256とは異なる第3の配線層を用いて、シールド層256よりも先の領域に、放射エレメント(導電体258)が形成されている。そして、第3の配線層を用いて形成した放射エレメントと、第2の配線層を用いて形成した信号線255と、の間を接続するビアを設けることで、放射エレメントと信号線255を電気的に接続している。図31においては、放射エレメントと信号線255との間の、色を付けた部分(斜線で示した部分)が、このビアを表している。図32においては、図32dの放射エレメント内に配置した、正方形とその対角線を線分で結んだ記号と、図32cの信号線255内に配置した上記と同じ記号とが、このビアの位置を表している。(3)最も裏面側(図31において最も紙面右側、最もX軸の負の方向)の配線層であり、グランド電位が与えられた第1の配線層(シールド層254)が、放射エレメントよりもさらに先へ延在している点は、第1構造と同じである。この形状により、第3構造では、送信アンテナを形成するプローブ内基板321の一方の側の最表面の配線層(表層の配線層)を用いて放射エレメントが形成され、これが空間に露出した、片側放射のアンテナとなっている。この構造の送信アンテナは、第1構造の送信アンテナと比較して、電磁波(送信波)をより効率的に放射できるという効果をもたらす。受信アンテナの場合であれば、受信アンテナを形成するプローブ内基板322の一方の側の最表面の配線層(表層の配線層)を用いて受信エレメントが形成され、これが空間に露出した、片側受信のアンテナが、第3構造に該当する。この構造の受信アンテナは、第1構造の受信アンテナと比較して、電磁波(送信アンテナから媒質中を伝搬して来た送信波、言い換えれば、受信波)をより効率的に受信できるという効果をもたらす。
 図34は、本技術の第1の実施の形態におけるセンサ装置200を、図4bと同様に正面から見た際の、第3構造の別の例を表す断面図である。同図は、Z軸方向から見た際の送信アンテナ223とその近傍の断面図の一例である。
 図35は、図34にその断面を示した、第3構造の別の例についての、層毎の平面図の一例である。
 図36は、図34にその断面を示した、第3構造の別の例を、上方から見た際の断面図の一例である。
 図34乃至図36に例示した第3構造の別の例において、(1)グランド電位が与えられた第1の配線層(シールド層254)が、放射エレメントよりもさらに先へ延在している点は、第3構造と同じである一方、(2)第2の配線層の一部であって、信号線とは異なる第2の配線層を用いて、信号線よりも先の領域に、グランド電位が与えられた導電体257を形成している点と、(3)第3の配線層を用いて形成されたシールド層256と放射エレメントのうち、シールド層256が、放射エレメントの側方を通って放射エレメントよりも先の方へ延在している点が、第3構造と異なる。この形状は、図34乃至図36に示した送信アンテナ223の先にこれと異なる送信アンテナを配置する場合に、少なくともそこへグランド電位を与える導電体256の配線を容易に行うことができるという効果をもたらす。受信アンテナについても、同様である。(1)グランド電位が与えられた第1の配線層(シールド層254)が、放射エレメントよりもさらに先へ延在している点は、第3構造と同じである一方、(2)第2の配線層の一部であって、信号線とは異なる第2の配線層を用いて、信号線よりも先の領域に、グランド電位が与えられた導電体257を形成している点と、(3)第3の配線層を用いて形成されたシールド層256と受信エレメント(導電体258)のうち、シールド層256が、受信エレメントの側方を通って放射エレメントよりも先の方へ延在している点が、第3構造と異なる。この形状は、図34乃至図36に示した受信アンテナ223の先にこれと異なる受信アンテナを配置する場合に、少なくともそこへグランド電位を与えるシールド層256の配線を容易に行うことができるという効果をもたらす。
 図37は、本技術の第1の実施の形態におけるセンサ装置200を、図4bと同様に正面から見た際の、プローブ内基板321に備わる送信アンテナ223とその近傍に関する第4構造の、断面図の一例である。
 図38は、図37にその断面を示した第4構造についての、層毎の平面図の一例である。
 図39は、図37にその断面を示した第4構造を、上方から見た際の断面図の一例である。
 第4構造では、図37と図38に示すように、第4構造では、(1)第3構造と同様に、最も表面側(図37において最も紙面右側、最もX軸の正の方向)の配線層となる第3の配線層において、この第3の配線層の一部を用いてシールド層256が形成されている。(2)さらに、第3構造と同様に、第3の配線層の一部であって、シールド層256とは異なる第3の配線層を用いて、シールド層256よりも先の領域に、放射エレメントが形成されている。そして、第3の配線層を用いて形成した放射エレメントと、第2の配線層を用いて形成した信号線255と、の間を接続するビアを設けることで、放射エレメントと信号線255を電気的に接続している。(3)上記(1)と同じようにして、最も裏面側(図37において最も紙面左側、最もX軸の負の方向)の配線層となる第1の配線層において、この第1の配線層の一部を用いてシールド層254が形成されている。(4)さらに、上記(2)と同じようにして、第1の配線層の一部であって、シールド層254とは異なる第1の配線層を用いて、シールド層254よりも先の領域に、放射エレメント(導電体259)が形成されている。そして、第1の配線層を用いて形成した放射エレメントと、第2の配線層を用いて形成した信号線255と、の間を接続するビアを設けることで、放射エレメントと信号線255を電気的に接続している。この形状により、第4構造では、送信アンテナを形成するプローブ内基板321の両方の側の最表面の配線層(表層の配線層)を用いて放射エレメントが形成され、これが空間に露出した、両側放射のアンテナとなっている。この構造の送信アンテナは、第1乃至第3構造のいずれの送信アンテナと比較しても、電磁波(送信波)をより効率的に放射できるという効果をもたらす。受信アンテナの場合であれば、受信アンテナを形成するプローブ内基板322の両方の側の最表面の配線層(表層の配線層)を用いて受信エレメントが形成され、これが空間に露出した、両側受信のアンテナが、第4構造に該当する。この構造の受信アンテナは、第1構造の受信アンテナと比較して、電磁波(送信アンテナから媒質中を伝搬して来た送信波、言い換えれば、受信波)をより効率的に受信できるという効果をもたらす。
 図40は、本技術の第1の実施の形態におけるセンサ装置200を、図4bと同様に正面から見た際の、第4構造の別の例を表す断面図である。同図は、Z軸方向から見た際の送信アンテナ223とその近傍の断面図の一例である。
 図41は、図40にその断面を示した、第4構造の別の例についての、層毎の平面図の一例である。
 図42は、図40にその断面を示した、第4構造の別の例を、上方から見た際の断面図の一例である。
 図40乃至図42に例示した第4構造の別の例において、(1)第1の配線層を用いて形成されたシールド層254と放射エレメントのうち、シールド層254が、放射エレメントの側方を通って放射エレメントよりも先の方へ延在している点と、(2)第2の配線層の一部であって、信号線とは異なる第2の配線層を用いて、信号線よりも先の領域に、グランド電位が与えられた導電体257を形成している点と、(3)第3の配線層を用いて形成されたシールド層256と放射エレメントのうち、シールド層256が、放射エレメントの側方を通って放射エレメントよりも先の方へ延在している点が、第4構造と異なる。この形状は、図40乃至図42に示した送信アンテナ223の先にこれと異なる送信アンテナを配置する場合に、少なくともそこへグランド電位を与えるシールド層254と256の配線を容易に行うことができるという効果をもたらす。受信アンテナについても、同様である。(1)第1の配線層を用いて形成されたシールド層254と受信エレメントのうち、シールド層254が、受信エレメントの側方を通って受信エレメントよりも先の方へ延在している点と、(2)第2の配線層の一部であって、信号線とは異なる第2の配線層を用いて、信号線よりも先の領域に、グランド電位が与えられた導電体257を形成している点と、(3)第3の配線層を用いて形成されたシールド層256と受信エレメントのうち、シールド層256が、受信エレメントの側方を通って放射エレメントよりも先の方へ延在している点が、第4構造と異なる。この形状は、図40乃至図42に示した受信アンテナ223の先にこれと異なる受信アンテナを配置する場合に、少なくともそこへグランド電位を与えるシールド層254と256の配線を容易に行うことができるという効果をもたらす。
 図43は、本技術の第1の実施の形態における第1構造に適用される送信アンテナ223の形状の一例を示す図である。同図においては、電磁波吸収材251の先端とシールド層の先端が同じ位置になっており、かつ、これらの先端からさらに先へ、送信波(送信信号)を与える信号線255(実線で示した放射エレメント)が露出している。このように、送信アンテナ223においてシールド層256(シールド部)を電磁波吸収材251の先端から露出させない構成とすることもできる。その際、同図におけるaに例示するように、電磁波吸収材251の先端から露出した信号線255(言い換えれば、実線で示した放射エレメント)を、電磁波吸収材251の紙面下方に点線で示したストリップ線路の線路(信号線255)と同一の幅にすることもできる。紙面垂直方向が、電波の主放射方向(X軸方向)となる。なお、受信アンテナ233の形状を、図43aに示す形状とすることもできる。この場合、送信アンテナ223における放射エレメントが、受信アンテナ233における受信エレメントとなる。このアンテナを送信アンテナと受信アンテナに対向して用いることで、アンテナの利得が向上する。
 図43におけるbに例示するように、点線で示したストリップ線路の線路(信号線255)の幅よりも、実線で示した放射エレメントの幅を太くすることもできる。同図におけるcに例示するように、メアンダ構造の放射エレメントを形成することもできる。同図におけるdに例示するように、スパイラル状の放射エレメントを形成することもできる。同図におけるeに例示するように、ストリップ線路の線路(信号線255)の幅よりも太い複数の放射エレメントを形成することもできる。同図におけるfに例示するように、ストリップ線路の線路の幅よりも太い放射エレメントを形成し、ストリップ線路との接続部にスリットを設けることもできる。
 同図におけるb乃至eの形状により、同図におけるaよりも主放射方向の利得を改善することができる。同図におけるfの形状により、同図におけるbよりもインピーダンス整合をとることができ、効率よく電波を放射することができる。なお、受信アンテナ233の形状を、図43a乃至fに示す形状とすることもできる。この場合、送信アンテナ223における放射エレメントが、受信アンテナ233における受信エレメントとなる。
 図44は、本技術の第1の実施の形態における第1構造に適用される送信アンテナ223の形状の別の例を示す図である。図44におけるa乃至fは、図43におけるa乃至fにおいて、シールド層256(シールド部)を電磁波吸収材251の先端から露出させたものに該当する。
 図44におけるaでは、主放射方向のシールド層にも高周波電流が流れ、アンテナの一部となることから、図43におけるaよりも利得が向上する。図44におけるb乃至eの形状により、同図におけるaよりも主放射方向の利得を改善することができる。同図におけるfの形状により、同図におけるbよりもインピーダンス整合をとることができ、効率よく電波を放射することができる。なお、受信アンテナ233の形状を、図44a乃至fに示す形状とすることもできる。この場合、送信アンテナ223における放射エレメントが、受信アンテナ233における受信エレメントとなる。
 また、図43および図44のそれぞれの形状を第2構造に適用することもできる。
 図45は、本技術の第1の実施の形態における第3構造に適用される送信アンテナ223の形状の一例を示す図である。同図においては、電磁波吸収材251の先端とシールド層の先端が同じ位置になっており、かつ、これらの先端からさらに先へ、送信波(送信信号)を与える信号線255(放射エレメント)が露出している。このように、送信アンテナ223においてシールド層256(シールド部)を電磁波吸収材251の先端から露出させない構成とすることもできる。その際、同図におけるaに例示するように、点線で示したストリップ線路の線路の幅よりも、放射エレメントの幅を太くすることもできる。同図におけるbに例示するように、メアンダ構造の放射エレメントを形成することもできる。同図におけるcに例示するように、スパイラル状の放射エレメントを形成することもできる。同図におけるdに例示するように、ストリップ線路の線路の幅よりも太い複数の放射エレメントを形成することもできる。同図におけるeに例示するように、ストリップ線路の線路(信号線255)の幅よりも太い放射エレメントを形成し、ストリップ線路との接続部にスリットを設けることもできる。
 図45におけるaの形状により、図43におけるaよりもインピーダンス整合をとることができ、効率よく電波を放射することができる。図45におけるb乃至dの形状により、同図におけるaよりも主放射方向の利得を改善することができる。同図におけるeの形状により、同図におけるaよりもインピーダンス整合をとることができ、効率よく電波を放射することができる。なお、受信アンテナ233の形状を、図45a乃至eに示す形状とすることもできる。この場合、送信アンテナ223における放射エレメントが、受信アンテナ233における受信エレメントとなる。
 図46は、本技術の第1の実施の形態における第3構造に適用される送信アンテナ223の形状の別の例を示す図である。図46におけるa乃至eは、図45におけるa乃至eにおいて、シールド層256(シールド部)を電磁波吸収材251の先端から露出させたものに該当する。
 図46におけるaでは、主放射方向のシールド層にも高周波電流が流れ、アンテナの一部となることから、図45におけるaよりも利得が向上する。図46におけるb乃至dの形状により、同図におけるaよりも主放射方向の利得を改善することができる。同図におけるeの形状により、同図におけるaよりもインピーダンス整合をとることができ、効率よく電波を放射することができる。なお、受信アンテナ233の形状を、図46a乃至eに示す形状とすることもできる。この場合、送信アンテナ223における放射エレメントが、受信アンテナ233における受信エレメントとなる。
 また、図45および図46のそれぞれの形状を第4構造に適用することもできる。
 図47は、本技術の第1の実施の形態における第3構造に適用される送信アンテナ233を、図4bと同様に正面から見た断面図である。図47におけるaは、図46におけるaを正面(Z軸方向)から見た際の断面図に該当する。
 図47におけるaに例示するように、放射エレメント(導電体258)は、プローブ内基板321の表層を用いて形成している。なお、同図におけるbに例示するように、放射エレメント258は表層を用いて形成せずに、プローブ内基板321の内層を用いて形成することもできる。第4構造に適用する際に、同図におけるcに例示するように、導電体258および259を両方とも内層を用いて形成することもできる。
 図48は、本技術の第1の実施の形態におけるセンサ装置200を、図4bと同様に正面から見た(Z軸方向から見た)際の、プローブ内基板321に備わる送信アンテナ223とその近傍に関する第5構造の、断面図の一例である。
 図49は、図48にその断面を示した第5構造についての、層毎の平面図の一例である。
 図50は、図48にその断面を示した第5構造を、上方から見た際の断面図の一例である。
 図48乃至図50に示した第5構造の送信アンテナ223は、図19乃至21に示した第1構造の送信アンテナ232を、平面状かつスロット状のアンテナへ変更したものである。
 「平面状かつスロット状のアンテナ」は、送信アンテナの場合、電磁波吸収材251から露出して空間に露出したシールド層であって、スロットを備えたシールド層(図48乃至図50の例では、シールド層256が放射エレメントとなる。「平面状かつスロット状のアンテナ」は、この放射エレメント256と、誘電体(あるいは絶縁体)と、その誘電体(あるいは絶縁体)を間にはさんでスロットに重畳され、かつ、該スロットを横切る給電部(信号が与えられる信号線255)とを備える。同様にして、受信アンテナの場合、電磁波吸収材251から露出して空間に露出したシールド層であって、スロットを備えたシールド層(図48乃至図50の例では、シールド層256)が受信エレメント256となる。「平面状かつスロット状のアンテナ」は、この受信エレメントと、誘電体(あるいは絶縁体)と、その誘電体(あるいは絶縁体)を間にはさんでスロットに重畳され、かつ、該スロットを横切る給電部(信号が与えられる信号線255)とを備える。
 図48において、信号線255と、シールド層256(放射エレメント256)との間に配置された、色付けされていない層が、上記誘電体(あるいは絶縁体)に該当する。
 図48乃至図50に示したように、平面状かつスロット状のアンテナは、配線層を複数層備えた電子基板(プローブ内基板321など)に形成される。そして、放射エレメント(スロットを備えたシールド層256)の第1方向(電子基板の厚さ方向、図50のX軸方向)の大きさ(言い換えれば、放射エレメントに備わるスロットの前記方向の大きさ)Dxよりも、第1方向と直交する第2方向(電子基板の幅方向、図49のZ軸方向)のスロットの大きさDzと第1方向および第2方向と直交する第3方向(電子基板が延在する長さ方向、図50のy軸方向)のスロットの大きさDyとの双方が、大きくなっている。本明細書では、スロットを有する送信アンテナに備わる放射エレメント(図48乃至図50の例では、シールド層256)について、DxよりもDzとDyの双方が大きくなっている場合、この送信アンテナを、「平面状かつスロット状のアンテナ」および「平面状かつスロット状の送信アンテナ」であると定義する。そして、放射エレメントの一部であって、第2方向と第3方向で定まる平面上に延在する部分を、「放射エレメントの平面」と定義する。また、図49dに示した、スロットの幅Dzと、スロットの長さDyとで定まる四角形の領域を、便宜的に送信アンテナの領域と定義する。受信アンテナについても同様である。本明細書では、スロットを有する受信アンテナに備わる受信エレメント(図48乃至図50の例では、シールド層256)について、DxよりもDzとDyの双方が大きくなっている場合、この受信アンテナを、「平面状かつスロット状のアンテナ」および「平面状かつスロット状の受信アンテナ」であると定義する。そして、受信エレメントの一部であって、第2方向と第3方向で定まる平面上に延在する部分を、「受信エレメントの平面」と定義する。また、図49dに示した、スロットの幅Dzと、スロットの長さDyとで定まる四角形の領域を、便宜的に受信アンテナの領域と定義する。なお、送信アンテナおよび受信アンテナに関して、好ましくは、DxとDzの双方よりも、Dyが大きくなってよい。
 図48乃至図50に示した第5構造では、「平面状かつスロット状のアンテナ」を形成したプローブ内基板において、最も裏面側(X軸の負の方向)の第1の配線層(シールド層254)にはスロットが形成されず、最も表面側(X軸の正の方向)の第3の配線層にスロットが形成される。このような形状により、第5構造の平面状かつスロット状のアンテナは、片側放射のアンテナとなる。
 図51は、本技術の第1の実施の形態におけるセンサ装置200を、図4bと同様に正面から見た(Z軸方向から見た)際の、第5構造の別の例を表す断面図である。
 図52は、図51にその断面を示した、第5構造の別の例についての、層毎の平面図の一例である。
 図53は、図51にその断面を示した、第5構造の別の例を、上方から見た際の断面図の一例である。
 図54は、本技術の第1の実施の形態におけるセンサ装置200を、図4bと同様に正面から見た(Z軸方向から見た)際の、第5構造のさらに別の例を表す断面図である。
 図55は、図54にその断面を示した、第5構造のさらに別の例についての、層毎の平面図の一例である。
 図56は、図54にその断面を示した、第5構造のさらに別の例を、上方から見た際の断面図の一例である。
 図51乃至図53に例示するように、第5構造の別の例として、「平面状かつスロット状のアンテナ」に備わる信号線255を、このアンテナに備わるスロットよりもさらに先の領域において、50オーム(Ω)などの抵抗260を介してグランドへ接続することにより終端することもできる。また、図54乃至図56に例示するように、第5構造のさらに別の例として、「平面状かつスロット状のアンテナ」に備わる信号線255を、このアンテナに備わるスロットよりもさらに先の領域において、他のアンテナ261へ接続することにより終端することもできる。
 図57は、本技術の第1の実施の形態におけるセンサ装置200を、図4bと同様に正面から見た(Z軸方向から見た)際の、プローブ内基板321に備わる送信アンテナ223とその近傍に関する第6構造の、断面図の一例である。
 図58は、図57にその断面を示した第6構造についての、層毎の平面図の一例である。
 図59は、図57にその断面を示した第6構造を、上方から見た際の断面図の一例である。
 図57乃至図59に示した第6構造の送信アンテナ223は、図48乃至50に示した第5構造の平面状かつスロット状のアンテナを、両側放射のアンテナへ変更したものである。第6構造の「平面状かつスロット状のアンテナ」は、送信アンテナの場合、電磁波吸収材251から露出して空間に露出したシールド層であって、スロットを備えたシールド層(シールド層256と254)が放射エレメントとなる。このような形状により、第6構造の平面状かつスロット状のアンテナは、両側放射のアンテナとなる。受信アンテナの場合も同様である。図57乃至図59に示した第6構造の「平面状かつスロット状のアンテナ」が、受信アンテナの場合、電磁波吸収材251から露出して空間に露出したシールド層であって、スロットを備えたシールド層(シールド層256と254)が受信エレメントとなる。
 図60は、本技術の第1の実施の形態におけるセンサ装置200を、図4bと同様に正面から見た(Z軸方向から見た)際の、第6構造の別の例を表す断面図である。
 図61は、図60にその断面を示した、第6構造の別の例についての、層毎の平面図の一例である。
 図62は、図60にその断面を示した、第6構造の別の例を、上方から見た際の断面図の一例である。
 図63は、本技術の第1の実施の形態におけるセンサ装置200を、図4bと同様に正面から見た(Z軸方向から見た)際の、第6構造のさらに別の例を表す断面図である。
 図64は、図63にその断面を示した、第6構造のさらに別の例についての、層毎の平面図の一例である。
 図65は、図63にその断面を示した、第6構造のさらに別の例を、上方から見た際の断面図の一例である。
 図60乃至図62に例示するように、第6構造の別の例として、「平面状かつスロット状のアンテナ」に備わる信号線255を、このアンテナに備わるスロットよりもさらに先の領域において、50オーム(Ω)などの抵抗260を介してグランドへ接続することにより終端することもできる。また、図63乃至図65に例示するように、第6構造のさらに別の例として、「平面状かつスロット状のアンテナ」に備わる信号線255を、このアンテナに備わるスロットよりもさらに先の領域において、他のアンテナ261へ接続することにより終端することもできる。
 図66は、本技術の第1の実施の形態におけるセンサ装置200を、図4bと同様に正面から見た(Z軸方向から見た)際の、プローブ内基板321に備わる、平面状かつスロット状の送信アンテナ223とその近傍に関する第7構造の、断面図の一例である。
 図67は、図66にその断面を示した第7構造についての、層毎の平面図の一例である。
 図68は、図66にその断面を示した第7構造を、上方から見た際の断面図の一例である。
 図66乃至図68に示した第7構造となる平面状かつスロット状の送信アンテナ223は、第5構造の送信アンテナ223と比較して、以下の点が異なる。すなわち、第7構造となる平面状かつスロット状の送信アンテナ223においては、送信元方向から延在した信号線255がスロットの一部を横切った地点よりも先の領域(言い換えれば、送信元方向から延在した信号線255がスロットの一部と重畳された地点よりも先の領域)であって、かつ、スロット近傍となる領域内(より好ましくは、スロットの幅Dzとスロットの長さDyとで定まる四角形の領域によって、便宜的に定義される送信アンテナの領域内)において、信号線255が、図66において斜線で示されたビアを介して、スロットを備えた放射エレメント(シールド層256)へ接続されて終端されている。第7構造となる平面状かつスロット状のアンテナは、この構造を備えることにより、第5構造のアンテナと比較して、信号線255からスロットを跨いで放射エレメント256へ流れる電流が増加し、電磁波を効率的に放射させることができる。受信アンテナの場合も同様である。図66乃至図68に示した第7構造の「平面状かつスロット状のアンテナ」が、受信アンテナの場合、電磁波吸収材251から露出して空間に露出したシールド層であって、スロットを備えたシールド層256が受信エレメントとなる。
 図69は、本技術の第1の実施の形態におけるセンサ装置200を、図4bと同様に正面から見た(Z軸方向から見た)際の、プローブ内基板321に備わる送信アンテナ223とその近傍に関する第8構造の、断面図の一例である。
 図70は、図69にその断面を示した第8構造についての、層毎の平面図の一例である。
 図71は、図69にその断面を示した第8構造を、上方から見た際の断面図の一例である。
 図69乃至図71に示した第8構造の送信アンテナ223は、図66乃至68に示した第7構造の平面状かつスロット状のアンテナを、両側放射のアンテナへ変更したものである。第8構造の「平面状かつスロット状のアンテナ」は、送信アンテナの場合、電磁波吸収材251から露出して空間に露出したシールド層であって、スロットを備えたシールド層(シールド層256と254)が放射エレメントとなる。さらに、送信元方向から延在した信号線255がスロットの一部を横切った地点よりも先の領域(言い換えれば、送信元方向から延在した信号線255がスロットの一部と重畳された地点よりも先の領域)であって、かつ、スロット近傍となる領域内(より好ましくは、スロットの幅Dzとスロットの長さDyとで定まる四角形の領域によって、便宜的に定義される送信アンテナの領域内)において、信号線255が、図69において斜線で示されたビアを介して、スロットを備えた放射エレメント(シールド層256と254)の双方へ接続されて終端されている。このような形状により、第8構造の平面状かつスロット状のアンテナは、両側放射のアンテナとなる。受信アンテナの場合も同様である。図69乃至図71に示した第8構造の「平面状かつスロット状のアンテナ」が、受信アンテナの場合、電磁波吸収材251から露出して空間に露出したシールド層であって、スロットを備えたシールド層(シールド層256と254)が受信エレメントとなる。
 図72は、本技術の第1の実施の形態における平面状かつスロット状のアンテナの第5構造に適用される送信アンテナの形状の一例を示す図である。同図におけるaに例示するように、電磁波吸収材251から露出したシールド層256において、信号線255と重畳する領域の全体を、スロットにすることもできる。同図におけるbに例示するように、電磁波吸収材251から露出した信号線255の線幅を、電磁波吸収材251が配置された領域に延在する信号線255の幅よりも大きくして、かつ、シールド層256において、この幅を大きくした信号線255と重畳する領域の全体を、スロットにすることもできる。同図におけるcに例示するように、電磁波吸収材251から露出した信号線255をメアンダ構造として、かつ、シールド層256において、このメアンダ構造にした信号線255と重畳する領域の全体を、スロットにすることもできる。同図におけるdに例示するように、電磁波吸収材251から露出したシールド層256に設けたスロットが、電磁波吸収材251から露出した信号線255を横切るようにすることもできる。同図におけるeに例示するように、電磁波吸収材251から露出したシールド層256に設けたスロットが、電磁波吸収材251から露出した信号線255を横切るようにして、かつ、そのスロットが信号線255を横切った先の領域において、そのスロットを分岐させる(例えばT字型に分岐させる)こともできる。
 同図におけるa、dの形状により、紙面垂直方向(X軸方向)が電波の主放射方向となり、アンテナの利得が向上する。同図におけるbおよびcの形状により、同図におけるaよりも放射抵抗が大きくなるため、効率的に電波を放射することができる。同図におけるeの形状により、同図におけるdよりも放射抵抗が大きくなるため、効率的に電波を放射することができる。
 また、平面状かつスロット状のアンテナの第6構造に対して、同図におけるaの形状を適用することもできる。この場合、同図におけるaを第5構造に適用した際と比較してインピーダンス整合が取りやすく、効率的に放射させることができる。
 図73は、本技術の第1の実施の形態における平面状かつスロット状のアンテナの第7構造に適用される送信アンテナの形状の一例を示す図である。図73におけるa乃至eは、図72におけるa乃至eの信号線255の先端を、ビアを介して放射エレメント(言い換えれば、スロットをシールド層256)へ接続することで終端したものである。丸印がビアを示す。この構造を備えることにより、図72に記載のアンテナと比較して、信号線255からスロットを跨いで放射エレメントへ流れる電流が増加し、電磁波を効率的に放射させることができる。
 図74は、本技術の第1の実施の形態における平面状かつスロット状のアンテナの第8構造に適用される送信アンテナの形状の一例を示す図である。
 図75は、本技術の第1の実施の形態におけるセンサ装置200の動作原理と、センサ装置200の構造がもたらす効果を説明するための図である。同図におけるaに例示するように、本技術のセンサ装置200は、送信アンテナ221と受信アンテナ231との間の距離を所定の距離d0に固定している。電磁波が、この所定の距離d0を伝搬するために要する伝搬時間が、送信アンテナ221と受信アンテナ231との間の媒質中の水分量に比例して大きくなることに着目し、電磁波の伝搬遅延時間Δtを計測して、その水分量を求めている。
 水分を正確に計測するため、同図におけるbに例示するように、センサ装置200は、利得の高い、平面状もしくは平面状かつスリット状の送信アンテナ221と受信アンテナ231とを備える。それらのアンテナの加工精度と位置決め精度を向上させ、かつ、アンテナおよび伝送路の周囲の環境(例えば、アンテナおよび伝送路の周囲の空間の大きさや、アンテナおよび伝送路から筐体までの距離や、アンテナおよび伝送路から土壌までの距離)を一定に保つために、送信アンテナと送信アンテナに接続された伝送路とを同じ第1電子基板(プローブ内基板321)を用いて形成し、受信アンテナと受信アンテナに接続された伝送路とを同じ第2電子基板(プローブ内基板322)を用いて形成している。
 そして、アンテナ間の媒質の水分量がある一定の値となる条件下で、水分量の計測を繰り返し行ってもその計測結果が常に一定となるように(言い換えれば、繰り返して計測を行っても送信アンテナから受信アンテナへ電磁波が伝搬する時間と伝搬する信号の大きさとが常に一定となるように)、センサ装置200は、新規な構造を備えている。すなわち、センサ装置200は、同図におけるbに例示するように、平面状もしくは平面状かつスロット状となる、送信アンテナと受信アンテナを備え、これらのアンテナの平面を対向させてその向きを固定し、かつ、これら送信アンテナと受信アンテナと間の距離が常に所定の距離となるように、これらのアンテナの位置を固定した構造を、備えている。
 さらに、測定部312には、送信アンテナに接続された送信用伝送路と受信アンテナに接続された受信用伝送路とが接続される。その測定部312は、送信アンテナへ送信波を送信し、受信アンテナから受信波を受信する。この測定部312を備えた測定部基板311は、第1電子基板および第2電子基板と直交する。これら直交した基板の間を、シールドされた複数の信号線を含む伝送線路であって、測定部基板311およびプローブ内基板321、322よりも柔軟性が高い伝送線路ケーブルを介して、伝送路が電気的に延在している。
 特許文献1では、送信アンテナと受信アンテナの平面を対向させ、その向きを固定させた形態は、記載されていない。
 一方、無線通信端末装置の分野では、平面状または平面状かつスロット状のアンテナを用いることがある。しかし、一般的に、無線通信装置では、送信機と受信機が、異なる筐体に収められており、このため、送信アンテナと受信アンテナとの間の距離は、固定されておらず、また、送信アンテナと受信アンテナの向きも、固定されていない。
 特許文献1では、平面状の送信アンテナと受信アンテナを対向させてその向きを固定することで水分を正確に計測するという課題認識もなく、平面状の送信アンテナと受信アンテナを対向させてその向きを固定する構造を組み合せる動機もない。
 予め定めた距離を伝搬する電磁波の伝搬遅延時間と、伝搬する媒質中の水分量と、を正確に計測することができるという本発明の機能は、平面状もしくは平面かつスリット状、の送信アンテナと受信アンテナを所定の向きすなわち対向させた向きで固定して、かつ、これらのアンテナを予め定めた距離を設けた位置に固定しているという構成により、初めて得られるものである。
 また、平面状もしくは平面かつスリット状の送信アンテナと受信アンテナを、所定の向きすなわち対向させた向きで固定して、かつ、これらのアンテナを予め定めた距離を設けた位置に固定しているという構成により、水分を正確に測定するとの効果は、測定部基板がX軸とY軸で定まる1つの面と平行に延在する、図4と図74に記載の形態だけでなく、測定部基板がX軸とZ軸で定まる1つの面と平行に延在する、図351の形態でも得られる。本技術の第1の実施の形態の別の例として、図4に示す本技術の第1の実施の形態における測定部基板が延在する方向を、図351で示すようにX軸とZ軸で定まる1つの面と平行に延在するように変更して、この測定部基板と送信用プローブ基板と受信用プローブ基板を、図4と同様に1つのセンサ筐体に収容した形態もとり得る。
 ここで、アンテナを電子基板(プローブ内基板321など)内に形成しない比較例、例えば、アンテナを複数個の部品を用いて組み立てる例を想定する。この比較例と比較して、センサ装置200では、アンテナを電子基板内に形成するため、アンテナの加工精度を向上させ、水分を正確に測定できる。さらに、アンテナおよびセンサ装置200に備わるプローブ筐体320の体積を小さくすることができる。これにより、プローブ筐体320を地中へ挿した際に、プローブ筐体320が、計測対象となる土壌の方向へ押しのける土の量を少なくすることができる。押しのけられて増える土の量を小さくすることで、プローブ筐体を挿した際に計測対象となる土壌の状態が変化してしまうことを抑制し、これにより計測対象となる土壌の水分を正確に測定できるようになる。
 なお、送信アンテナ平面が測定部基板に対してなす角度、および、受信アンテナ平面が測定部基板に対してなす角度は、0°乃至90°の間の任意の角度を取り得る。
 図76は、本技術の第1の実施の形態におけるアンテナ平面と測定部基板とのなす角度の一例を示す図である。同図におけるaに例示するように、送信側、受信側の両方でアンテナ平面と測定部基板とのなす角度を90度にすることができる。同図におけるbに例示するように、送信側、受信側の両方でアンテナ平面と測定部基板とのなす角度を0度にすることもできる。
 同図におけるcに例示するように、送信側、受信側の両方でアンテナ平面と測定部基板とのなす角度を0度、90度以外の角度にすることもできる。同図におけるdに例示するように、送信側、受信側の両方でアンテナ平面と測定部基板とのなす角度を0度、90度以外の角度とし、一方の角度を+αとして、他方の角度を-αとすることもできる。また、同図におけるeやfに例示するように、送信側および受信側の一方の角度を90度とし、他方を0度とすることもできる。
 図77は、本技術の第1の実施の形態において、センサ装置200に備わる、測定部基板311とプローブ内基板321、322との接続方法を説明するための図である。同図におけるaは、これらの基板同士の接続箇所をセンサ装置200の上方から見た図である。同図におけるbは、これらの基板を、センサ装置200の正面から見た図である。同図におけるcは、測定部基板311のコネクタ部分をY軸方向から見た際の詳細図である。同図の構成は、構成要素(7)に該当する。
 図77cに示した伝送路接続部が、測定部基板311内の伝送路と、プローブ内基板321または322内の伝送路とを電気的に接続している。この伝送路接続部は、アンテナ数と同数の信号線を備え、これら信号線のそれぞれがシールドされている。同図においては、伝送路接続部として、パラレルケーブルが用いられる。このパラレルケーブル内において、信号線のそれぞれの両側にシールド線がさらに配線され、これらが並べて配置されている。例えば、信号線を3本とすると、シールド線が4本配線され、これらが並べて配置されている。これら並べて配置された信号線およびシールド線の上方と下方には、それぞれシールド層が配置されている。信号線間のシールド配線と信号線の上方および下方のシールド層とによって、信号線の周囲がシールドされている。これら信号線とシールド線とシールド層とを含んで一体となった構造の外周は、絶縁性保護材により被覆される。なお、伝送路接続部として、アンテナ数と同数の同軸ケーブルを用いることもできる。
 図78は、本技術の第1の実施の形態におけるセンサ装置200に備わる測定部基板311とプローブ内基板321または322と伝送路接続部の詳細図の一例である。同図におけるaに記載のプローブ内基板は、これを外部から見た状態を示している。同図におけるbに記載のプローブ内基板は、その表層の配線層の形状を色付けしたパターンで示し、表層の配線層に接続されたビアと、内層の配線層の形状は、点線で示している。
 図79は、本技術の第1の実施の形態におけるセンサ装置200に備わる測定部基板311とプローブ内基板321と伝送路接続部の詳細図および断面図の一例である。同図におけるaは、センサ装置200の上方(Y軸方向)から見た際のプローブ内基板321の断面図を示す。同図におけるbは、センサ装置200の正面(Z軸方向)から見た際のプローブ内基板321の断面図を示す。同図におけるcは、センサ装置200の側方(X軸方向)から見た際の、プローブ内基板321の配線の形状を表す。同図におけるcは、に記載のプローブ内基板は、その表層の配線層の形状を色付けしたパターンで示し、表層の配線層に接続されたビアと、内層の配線層の形状は、点線で示している。アンテナ数は3つである。
 図80は、本技術の第1の実施の形態におけるセンサ装置200に備わる伝送路接続部の詳細図の一例である。同図におけるaは、センサ装置200を上方からY軸の正の方向へ見た際の、伝送路接続部の図である。同図の下側には、伝送路接続部とプローブ内基板321とを接続するコネクタ323を上方から見た際の断面図と、プローブ内基板321を上方から見た際の断面図が、記載されている。同図の左側には、伝送路接続部と測定部基板311とを接続するコネクタ314を上方から見た際の断面図が、記載されている。同図におけるbは、センサ装置200を下方からY軸の負の方向へ見た際の、伝送路接続部の図である。同図の下側には、伝送路接続部とプローブ内基板321とを接続するコネクタ323を下方から見た際の断面図と、プローブ内基板321を下方から見た際の断面図が、記載されている。同図の右側には、伝送路接続部と測定部基板311とを接続するコネクタ314を下方から見た際の断面図が、記載されている。同図におけるcは、センサ装置200を側方からX軸の正の方向へ見た際の、伝送路接続部の図である。同図の下側には、伝送路接続部とプローブ内基板321とを接続するコネクタ323を側方からX軸の正の方向へ見た際の平面図が記載されている。同図の左側には、伝送路接続部と測定部基板311とを接続するコネクタ314を側方から見た際の断面図が、記載されている。
同図におけるdは、センサ装置200を正面裏側からZ軸の負の方向へ見た際の、伝送路接続部と、伝送路接続部と測定部基板311とを接続するコネクタ314の図である。同図の下側には、伝送路接続部とプローブ内基板321とを接続するコネクタ323を正面裏側からZ軸の負の方向へ見た際の断面図と、プローブ内基板321を正面裏側からZ軸の負の方向へ見た際の、コネクタ323と接続する部分の断面図が、記載されている。
 同図におけるa乃至dに例示するように、直交して配置された2つの基板(測定部基板311およびプローブ内基板321)のそれぞれに備わる伝送路の間が、測定部基板311およびプローブ内基板321よりも柔軟性が高くかつ複数本の伝送線路を備えた伝送路接続部によって接続される。
 図81と図82は、本技術の第1の実施の形態におけるプローブ内基板321の平面形状の一例を示す。図81と図82に示す例は、1個のアンテナを備え、かつ、アンテナへの伝送路が1層の信号線層とこれを間に挟む2層のシールド層とからなる、合計3層の配線層を備えたプローブ内基板321の平面形状を示す。かつ、図81と図82に示す例は、信号線255と同じ配線層の一部を用いて、信号線255の側方にシールド配線を配置した例を示す。図81におけるaは、第1の配線層の外側に配置されるソルダーレジスト252と電磁波吸収材251の平面形状を示す。ソルダーレジスト252は色付けしたパターンで、電磁波吸収材251はその外形が点線で示されている。図81におけるbは、第1の配線層(シールド層254と放射エレメント)の平面形状を示す。図81におけるcは、第2の配線層(信号線)と、第2の配線層の一部を用いて信号線255の両側に配置されたシールド配線:導電体257)を示す。シールド配線257に配置された、四角形とその対角線を線分で結んだ記号はビアを表し、特に図81におけるcにおいては、シールド層254とシールド配線(導電体257)との間を接続するビアと、シールド配線と後述するシールド層256との間を接続するビアが、シールド配線257のパターン上に示されている。同図におけるWaは、プローブ内基板321の幅を示す。また、Wbは、シールド配線の幅を示し、Wcは、シールド配線端の間隔を示す。
 図82におけるaは、第3の配線層(シールド層256と放射エレメント)の平面形状を示す。図82におけるbは、第3の配線層の外側に配置されるソルダーレジスト253と電磁波吸収材251の平面形状を示す。ソルダーレジスト253は色付けしたパターンで、電磁波吸収材251はその外形が点線で示されている。図82におけるcは、図81におけるcのA-A'線に沿って切断した際のプローブ内基板321の断面図である。
 図82におけるcの断面図は、紙面の下側から順に、ソルダーレジスト252と、第1の配線層(シールド層254)が配置され、その上に、第2の配線層を用いて、信号線255と、その両側のシールド配線257とが配置される。これらの上に、シールド層256とソルダーレジスト253が配置される。プローブ内基板321の伝送路が形成された領域においては、この断面の周囲に、電磁波吸収材251(不図示)が配置されている。
 図83と図84は、本技術の第1の実施の形態におけるプローブ内基板321の平面形状の別の一例を示す。図83と図84に示す例は、1個のアンテナを備え、かつ、アンテナへの伝送路が1層の信号線層とこれを間に挟む2層のシールド層とからなる、合計3層の配線層を備えたプローブ内基板321を示す。かつ、図83と図84に示す例は、信号線255の上方に配置されたシールド層256から信号線255の側方を通過して信号線255の下方に配置されたシールド層254へと至るビアを用いて、このビアを信号線255に沿って列状に配置することで、信号線255の側方をシールドした例を示す。図83におけるcが、このシールド用のビアの列を示している。同図において、信号線255の両側に配置された、四角形とその対角線を線分で結んだ記号は、ビアを表す。そして、同図において色付けしていないこれらのビアは、信号線255と同層となる第2の配線層で形成したものではなく、信号線255よりも上の層から信号線255の側方を通過して信号線255よりも下の層へと延在するビアであることを示している。図83におけるc以外に図83と図84に記載された平面形状は、図81と図82に記載されたそれらと類似のため、説明は省略する。なお、図84におけるcは、図83におけるcのA-A'線に沿って切断した際のプローブ内基板321の断面図である。図83におけるWaは、プローブ内基板321の幅を示す。また、Wbは、シールドビア列の幅を示し、Wcは、ビア列端の間隔を示す。
 次に、図83におけるcに記載の構造がもたらす効果を説明する。図81におけるcに示したシールド配線を用いて、信号線255の側方をシールドする構造の場合、信号線255とシールド配線は、同じ配線層(第2の配線層)を用いて形成される。このため、第2の配線層を加工して、信号線255のパターンとシールド配線257のパターンとを形成する際に、信号線255とシールド配線との間隔は、パターン形成装置が備える最小加工寸法以下には加工することが出来ない。両者の間は、少なくとも、パターン形成装置が備える最小加工寸法に相当する距離を設ける必要がある。これに対して、図83におけるcに示したシールド用のビアの列を用いて、信号線255の側方をシールドする構造の場合、信号線255と、信号線255よりも上の層から信号線255の側方を通過して信号線255よりも下の層へと延在するシールド用のビアは、異なる配線層を用いて形成される。すなわち、信号線255のパターンは、これ単独でパターン形成装置を用いて形成される。シールド用のビアも、信号線255よりも上の層において、これ単独でパターン形成装置を用いて形成される。このため、信号線255と、信号線255の側方を通過するビアとの間の距離は、これらのパターンのレイアウトを設計する際に、任意の値に設定することが可能である。これにより、図83におけるcに示した構造の場合、図81におけるcに示した構造よりも、信号線255とシールド用のビアの列(図81の場合はシールド配線)との間の距離を小さくすることができる。その結果、図83と図84に示すプローブ内基板321の幅は、図81と図82に示すプローブ内基板321の幅よりも小さくすることができるという効果がもたらされる。かつ、プローブ内基板の幅を小さくできると、これを収めるプローブ筐体の断面積を小さくすることができて、これにより水分を正確に計測できるというさらなる効果がもたらされる。これについては、詳細を後述する。
 図85と図86は、本技術の第1の実施の形態におけるプローブ内基板321の平面形状のさらに別の一例を示す。図85と図86に示す例は、n個(例としてn=3)のアンテナを備え、かつ、アンテナへの伝送路が1層の信号線層とこれを間に挟む2層のシールド層とからなる、合計3層の配線層を備えたプローブ内基板321を示す。かつ、図85と図86に示す例は、信号線255と同じ配線層の一部を用いて、信号線255の側方をシールドした例を示す。図85と図86のそれぞれの図に示した各層の役割は、図81と図82のそれらと同様であるので、説明を省略する。
 図85におけるbでは、第1の配線層の一部を用いて、シールド層254が形成され、かつ、これ以外となる第1の配線層の一部を用いて、3個のアンテナに備わる3個の放射エレメントが形成されている。図85におけるcは、図81におけるcと同様に、信号線255と同じ配線層の一部を用いて、信号線255の側方にシールド配線を配置した例を示す。図85におけるcでは、図85におけるbに示した3個の放射エレメントへ接続するための3本の信号線255が、第2の配線層の一部を用いて形成されている。かつ、これら3本の信号線255のそれぞれの側方をシールドするために、これら3本の信号線の間と外側とに、合計4本のシールド配線257が、3本の信号線255と同じ第2の配線層を用いて形成されている。なお、図86におけるcは、図85におけるcのA-A'線に沿って切断した際のプローブ内基板321の断面図である。図85におけるWaは、プローブ内基板321の幅を示す。また、Wbは、シールド層の幅を示し、Wcは、シールド層端の間隔を示す。Wdは、2本の伝送路と、3本のシールド配線の幅を示す。
 図87と図88は、本技術の第1の実施の形態におけるプローブ内基板321の平面形状のさらに別の一例を示す。図87と図88に示す例は、n個(例としてn=3)のアンテナを備え、かつ、アンテナへの伝送路が1層の信号線層とこれを間に挟む2層のシールド層とからなる、合計3層の配線層を備えたプローブ内基板321を示す。かつ、図87と図88に示す例は、信号線255の上方に配置されたシールド層256から信号線255の側方を通過して信号線255の下方に配置されたシールド層254へと至るビアを用いて、このビアを信号線255に沿って列状に配置することで、信号線255の側方をシールドした例を示す。図87におけるbでは、第1の配線層の一部を用いて、シールド層254が形成され、かつ、これ以外となる第1の配線層の一部を用いて、3個のアンテナに備わる3個の放射エレメントが形成されている。図87におけるcは、図83におけるcと同様に、シールド用のビアの列を用いて、信号線255の側方をシールドした例を示す。図87におけるcでは、図87におけるbに示した3個の放射エレメントへ接続するための3本の信号線255が、第2の配線層の一部を用いて形成されている。かつ、これら3本の信号線255のそれぞれの側方をシールドするために、これら3本の信号線の間と外側とに、合計4列となるシールド用のビアの列が配置されている。
なお、図88におけるcは、図87におけるcのA-A'線に沿って切断した際のプローブ内基板321の断面図である。図87におけるWaは、プローブ内基板321の幅を示す。また、Wbは、シールド層の幅を示し、Wcは、シールド層端の間隔を示す。Wdは、2本の伝送路と、3本のシールドビア列の幅を示す。
 次に、図87におけるcに記載の構造がもたらす効果を説明する。
図83におけるcと同様に、図87におけるcに示した3本の信号線255と、4列のビアの列とは、別々に(言い換えれば、独立して)パターン形成される。その結果、図87におけるcに示した3本の信号線255と、4列のビアの列との間の距離は、図85におけるcに示した3本の信号線255と、4本のシールド配線との間の距離よりも、小さくすることができる。その結果、図87と図88に示すプローブ内基板321の幅は、図85と図86に示すプローブ内基板321の幅よりも小さくすることができる。かつ、プローブ内基板の幅を小さくできると、これを収めるプローブ筐体の断面積を小さくすることができて、これにより水分を正確に計測できるというさらなる効果がもたらされる。これについては、詳細を後述する。
 図89は、本技術の第1の実施の形態におけるビア列によるシールドを説明するための図である。同図におけるaは、第1の配線層を示し、同図におけるbは、第2の配線層を示す。同図におけるcは第3の配線層を示す。第2の配線層において、シールド配線を設けず、ビア列を信号線255の周囲に配列してシールドすることもできる。丸印がビアを示す。これらのビアによって、伝送路同士の電気的結合が低減されるため、意図しないアンテナ開口部(放射エレメント)からの放射を抑えることができ、高精度に水分を計測することが可能となる。
 また、隣接するビアの間隔は、電磁波の中心周波数の波長の10分の1以下であることが望ましく、最大周波数の波長の1/10以下であることがさらに望ましい。例えば、測定周波数帯域が1-9GHzであるとき、中心周波数は5GHzであるので、ビアの間隔は6mm以下であることが望ましく、最大周波数は9GHzであるため、3.3mm以下であることがさらに望ましい。
 図90は、本技術の第1の実施の形態におけるストリップ線路の一例を示す図である。同図は、例えばプローブ内配線基板に形成するストリップ線路の断面図を示す。同図におけるaに例示するように、シールド層254および256を上下面として、上下対称なストリップ線路であってもよい。同図におけるbに例示するように、上下が非対称なストリップ線路、すなわち、3層よりも多くの配線層を備えた電子基板を用いて、信号線255を形成した層からからシールド層254を形成した層までの距離と、信号線255を形成した層からシールド層254を形成した層までの距離とが、異なる距離となる配線層を用いたストリップ線路、であってもよい。同図におけるcに例示するように、信号線255の側方かつ両側にシールド配線を配置した上下対称なストリップ線路であってもよい。同図におけるdに例示するように、信号線255の側方にシールド配線を配置した、上下非対称なストリップ線路であってもよい。
 同図におけるeに例示するように、ポスト壁付きの上下対称なストリップ線路であってもよい。ここで、ポスト壁は、伝送路と概並行に複数配置されるビア列のことを指す。ポスト壁の配置により、基板端から基板外部への放射や隣接線路間の電気的結合が低減する。同図におけるfに例示するように、ポスト壁付きの上下非対称なストリップ線路であってもよい。同図におけるgに例示するように、ポスト壁とシールド配線の双方を備えた上下対称なストリップ線路であってもよい。同図におけるhに例示するように、ポスト壁とシールド配線の双方を備えた、上下非対称なストリップ線路であってもよい。
 また、プローブ内基板321は、典型的にはFR-4を基材としたガラスエポキシ基板であるが、高周波特性の優れた変性ポリフェニレンエーテル(m-PPE:modified-PolyPhenyleneEther)やポリテトラフルオロエチレン(PTFE:PolyteTraFluoroEthylene)などを用いた基板であってもよい。また、プローブ内基板321は、高い誘電率を持つセラミックスを用いた基板であってもよいし、上記の基板を複数種類組み合わせたビルドアップ基板であってもよい。また、柔軟性をもつポリイミドやポリエステル、ポリエチレンテレフタレートなどを用いたフレキシブル基板であってもよいし、リジット基板とフレキシブル基板とを組み合わせたリジットフレキ基板であってもよい。
 図91乃至図93は、本技術の第1の実施の形態におけるプローブ内基板321の平面形状のさらに別の一例を示す。図91乃至図93に示す例は、n個(例としてn=3)のアンテナを備え、かつ、n個のアンテナへ接続するn本の伝送路を、n-1層の信号線層とこれを間に挟むn層のシールド層とからなる、合計2n-1層の配線層を備えたプローブ内基板321に形成した一例を示す。かつ、図91乃至図93に示す例は、信号線255の上方に配置されたシールド層から、信号線255の側方を通過して、信号線255の下方に配置されたシールド層へと至るビアを用いて、このビアを信号線255に沿って列状に配置することで、信号線255の側方をシールドした例を示す。
 図91におけるbでは、第1の配線層の一部を用いて、シールド層254が形成され、かつ、これ以外となる第1の配線層の一部を用いて、3個のアンテナに備わる3個の放射エレメント259が形成されている。図91におけるWaは、プローブ内基板321の幅を示す。また、Wbは、シールド層の幅を示し、Wcは、シールド層端の間隔を示す。Wdは、1本の伝送路と、2本のシールドビア列の幅を示す。
 そして、図91乃至図93に示す例では、3個のアンテナのそれぞれに接続する3本の信号線が、5層の配線層を有する基板に備わる2層の信号線層(第2と第4の配線層)を用いて形成されている。
 図91におけるcに示す第2の配線層においては、
(1)図91におけるbに示した3個の放射エレメントのうち、第1の放射エレメントへ接続するための1本の信号線255が、形成されている。
(2)プローブ内基板321の一方の表層(第1の配線層)に配置された3個の放射エレメント259を、それぞれに接続するための信号線255を間に挟んで、もう一方の表層(第5の配線層)に配置された3個の放射エレメントと接続するために、第2の配線層においては信号線255が接続されない、第2と第3の放射エレメントについて、その直下となる位置に、これらの放射エレメントと接続するためのビアが形成されている。
(3)上記(1)の信号線255の側方をシールドするために、この信号線の両側にシールド用のビアの列が配置されている。
(4)第1層の配線層を用いて形成したシールド層254を、第3層と第5層の配線層を用いて形成したシールド層256と密に接続するために、これらシールド層の外縁近傍にもビアの列が配置されている。
 一方、図92におけるbに示す第4の配線層においては、
(1)図91におけるbに示した3個の放射エレメントのうち、第2の配線層においては信号線255が接続されない、第2と第3の放射エレメントについて、これらへ接続するための2本の信号線255が、形成されている。
(2)プローブ内基板321の一方の表層(第1の配線層)に配置された3個の放射エレメント259を、それぞれに接続するための信号線255を間に挟んで、もう一方の表層(第5の配線層)に配置された3個の放射エレメントと接続するために、第4の配線層では信号線255が接続されない、第1の放射エレメントについて、その直下となる位置に、この放射エレメントと接続するためのビアが形成されている。
(3)上記(1)の信号線255の側方をシールドするために、これらの信号線の両側にシールド用のビアの列が配置されている。
(4)第1層の配線層を用いて形成したシールド層254を、第3層と第5層の配線層を用いて形成したシールド層256と密に接続するために、これらシールド層の外縁近傍にもビアの列が配置されている。
 なお、図93におけるbは、図91におけるcのA-A'線に沿って切断した際のプローブ内基板321の断面図である。
 次に、図91におけるcと図92におけるbに記載の構造がもたらす効果を説明する。
これらの図に記載の構造においては、図87におけるcに記載のシールド用のビア列を用いて、信号線255の側方をシールドすることによって、プローブ内基板321の幅を小さくする効果がもたらされている。図91におけるcと図92におけるbに記載の構造は、図87におけるcに記載の構造と比較して、より多くの信号線層を用いることにより、1つの信号線層に配置する信号線の本数を削減している。この構造により、図87におけるcに記載の構造よりも、プローブ内基板321の幅を小さくする効果がもたらされている。
 図94乃至図96は、本技術の第1の実施の形態におけるプローブ内基板321の平面形状のさらに別の一例を示す。図94乃至図96に示す例は、n個(例としてn=3)のアンテナを備え、かつ、n個のアンテナへ接続するn本の伝送路を、n層の信号線層とこれを間に挟むn+1層のシールド層とからなる、合計2n+1層の配線層を備えたプローブ内基板321に形成した一例を示す。かつ、図94乃至図96に示す例は、信号線255の上方に配置されたシールド層から、信号線255の側方を通過して、信号線255の下方に配置されたシールド層へと至るビアを用いて、このビアを信号線255に沿って列状に配置することで、信号線255の側方をシールドした例を示す。
 図94におけるbでは、第1の配線層の一部を用いて、シールド層254が形成され、かつ、これ以外となる第1の配線層の一部を用いて、3個のアンテナに備わる3個の放射エレメント259が形成されている。
 そして、図94乃至図96に示す例では、3個のアンテナのそれぞれに接続する3本の信号線が、7層の配線層を有する基板に備わる3層の信号線層(第2と第4と第6の配線層)を用いて形成されている。図91におけるWaは、プローブ内基板321の幅を示す。また、Wbは、シールド層の幅を示し、Wcは、シールド層端の間隔を示す。Wdは、1本の伝送路と、2本のシールドビア列の幅を示す。
 図94におけるcに示す第2の配線層においては、
(1)図94におけるbに示した3個の放射エレメントのうち、第1の放射エレメントへ接続するための1本の信号線255が、形成されている。
(2)プローブ内基板321の一方の表層(第1の配線層)に配置された3個の放射エレメントを、それぞれに接続するための信号線255を間に挟んで、もう一方の表層(第5の配線層)に配置された3個の放射エレメントと接続するために、第2の配線層においては信号線255が接続されない、第2と第3の放射エレメントについて、その直下となる位置に、これらの放射エレメントと接続するためのビアが形成されている。
(3)上記(1)の信号線255の側方をシールドするために、この信号線の両側にシールド用のビアの列が配置されている。
(4)第1層の配線層を用いて形成したシールド層を、第3層と第5層と第7層の配線層を用いて形成したシールド層と密に接続するために、これらシールド層の外縁近傍にもビアの列が配置されている。
 図95におけるbに示す第4の配線層においては、
(1)図94におけるbに示した3個の放射エレメントのうち、第2の放射エレメントへ接続するための1本の信号線255が、形成されている。
(2)プローブ内基板321の一方の表層(第1の配線層)に配置された3個の放射エレメントを、それぞれに接続するための信号線255を間に挟んで、もう一方の表層(第5の配線層)に配置された3個の放射エレメントと接続するために、第4の配線層においては信号線255が接続されない、第1と第3の放射エレメントについて、その直下となる位置に、これらの放射エレメントと接続するためのビアが形成されている。
(3)上記(1)の信号線255の側方をシールドするために、この信号線の両側にシールド用のビアの列が配置されている。
(4)第1層の配線層を用いて形成したシールド層を、第3層と第5層第7層の配線層を用いて形成したシールド層と密に接続するために、これらシールド層の外縁近傍にもビアの列が配置されている。
 図96におけるaに示す第6の配線層においては、
(1)図94におけるbに示した3個の放射エレメントのうち、第3の放射エレメントへ接続するための1本の信号線255が、形成されている。
(2)プローブ内基板321の一方の表層(第1の配線層)に配置された3個の放射エレメントを、それぞれに接続するための信号線255を間に挟んで、もう一方の表層(第5の配線層)に配置された3個の放射エレメントと接続するために、第6の配線層においては信号線255が接続されない、第1と第2の放射エレメントについて、その直下となる位置に、これらの放射エレメントと接続するためのビアが形成されている。
(3)上記(1)の信号線255の側方をシールドするために、この信号線の両側にシールド用のビアの列が配置されている。
(4)第1層の配線層を用いて形成したシールド層を、第3層と第5層と第7層の配線層を用いて形成したシールド層と密に接続するために、これらシールド層の外縁近傍にもビアの列が配置されている。
 なお、図97は、図94におけるcのA-A'線に沿って切断した際のプローブ内基板321の断面図である。
 次に、図94におけるcと図95におけるbと図96におけるaに記載の構造がもたらす効果を説明する。これらの図に記載の構造においては、図87におけるcに記載のシールド用のビア列を用いて、信号線255の側方をシールドすることによって、プローブ内基板321の幅を小さくする効果がもたらされている。図94におけるcと図95におけるbと図96におけるaに記載の構造は、図87におけるcに記載の構造と比較して、より多くの信号線層を用いることにより、1つの信号線層に配置する信号線の本数を削減している。この構造により、図87におけるcに記載の構造よりも、プローブ内基板321の幅を小さくする効果がもたらされている。
 なお、図94乃至図96に示すプローブ内基板321の幅は、図91乃至図93に示すプローブ内基板321の幅と、同じになっている。
 図98は、本技術の第1の実施の形態において、プローブ内基板の幅とプローブ筐体の断面積とが、水分量の計測に及ぼす影響を、2つの観点から説明するための図である。
[第1の観点]
 同図におけるa、b、cは、本技術の第1の実施の形態におけるセンサ装置200を、その上方からY軸の正の方向に見た際の、送信用プローブ筐体320aと受信用プローブ筐体320bの断面図である。同図におけるa、b、cのそれぞれにおいて、左側の長方形は送信用プローブ基板321を表し、この外周に配置された楕円が、送信用プローブ筐体320aを表す。右側の長方形は受信用プローブ基板322を表し、この外周に配置された楕円が、受信用プローブ筐体320bを表す。プローブ筐体の内側の白色の部分は、プローブ筐体内の空間を表す。プローブ筐体の外側の色を付けた部分は、土壌を表す。同図におけるa、b、cは、(1)幅が異なる3種類の送信用プローブ基板321と受信用プローブ基板322を、長軸と短軸の長さの比が2:1となる楕円形の送信用プローブ筐体320aと受信用プローブ筐体320bに収め、(2)これら3種類において、送信用プローブ基板321と受信用プローブ基板322との距離が同じになるように配置した場合に、(3)送信用プローブ基板321と受信用プローブ基板322との間の領域における、土壌の領域の割合が、3種類のプローブ基板の幅に応じて、どのように変化するかを説明するための図である。同図におけるa、b、cを比較すると、プローブ内基板の幅が大きいほど、送信用プローブ基板321と受信用プローブ基板322との間の領域における、土壌の領域の割合が小さくなっている。本発明の水分計測システム100は、送信アンテナから受信アンテナへ電磁波が伝搬するために要する時間が、土壌の水分量と線形の関係あることに着目して、この電磁波の伝搬遅延時間を計測することで、土壌の水分量を求めている。このため、送信用プローブ基板321と受信用プローブ基板322との間の領域における土壌領域の割合が小さくなるにつれて、前記電磁波の伝搬遅延時間と土壌水分量との関係が、線形関係から乖離してしまう。これにより計測結果に含まれる誤差が大きくなってしまう。これとは反対に、プローブ内基板の幅が小さいほど、送信用プローブ基板321と受信用プローブ基板322との間の領域における、土壌の領域の割合が大きくなる。その結果、前記電磁波の伝搬遅延時間と土壌水分量との関係が、線形関係に近くなり、計測結果に含まれる誤差が小さくなり、土壌の水分量を正確に計測できるようになる。
[第2の観点]
 同図におけるd、e、fは、同図におけるa、b、cに記載の送信用プローブ筐体320aと受信用プローブ筐体320bを土壌へ挿した際に、これらのプローブ筐体を挿すことで押しのけられた土が、移動する先を書き加えた図である。同図のd、e、fにおいて、プローブ筐体の外周に書き加えられた濃く色付けされた領域(符号391)は、プローブ筐体を挿した結果、押しのけられた土が移動して来て、これにより土の密度が、計測対象とする本来の土の密度よりも高くなってしまった領域を、表している。
 プローブ筐体を挿したことで押しのけられた土が移動して土の密度が高くなってしまった領域は、同図におけるd、e、fを比較すると、プローブ内基板の幅が大きいほど、その領域の幅が大きい。その結果、プローブ内基板の幅が大きいほど、送信用プローブ基板321と受信用プローブ基板322との間の領域において、土の密度が高くなってしまった領域の割合が大きくなっている。土の密度が高くなると、水分の浸透のしやすさや、土の粒界の表面積が変化してしまい、土壌が保持する水分量が変化してしまう。このため、土の密度が高くなってしまった領域の割合が大きくなるほど、土壌の水分量の計測結果は、計測対象とする本来の土壌の水分量から、より大きく乖離してしまう。
これとは反対に、プローブ内基板の幅が小さいほど、前述の土の密度が高くなってしまった領域の幅は小さい。その結果、プローブ内基板の幅が小さいほど、送信用プローブ基板321と受信用プローブ基板322との間の領域において、土の密度が高くなってしまった領域の割合が小さくなっている。これにより土壌の水分量の計測結果は、計測対象とする本来の土壌の水分量に、より近いものとなる。すなわち、土壌の水分量を正確に計測できるようになる。
 上記第1および第2の観点の双方から、プローブ内基板の幅を小さくするほど、これをプローブ筐体内に備えたセンサ装置は、土嚢の水分量を正確に計測できるようになる。
本技術の第1の実施の形態におけるセンサ装置200は、
(1)プローブ内基板において、信号線の側方をシールドするための構造として、シールド用のビアの列を用いることで、プローブ内基板の幅を小さくすることができる。そしてこれにより、土壌の水分量を正確に計測する効果を得ることができる。
(2)プローブ内基板において、複数のアンテナを備え、これら複数のアンテナへ接続するために複数の信号線を備える場合、複数の配線層を用いて、前記複数の信号線の中の少なくとも1つ以上を、異なる配線層に形成することで、プローブ内基板の幅を小さくすることができる。そしてこれにより、土壌の水分量を正確に計測する効果を得ることができる。
 図99と図100は、本技術の第1の実施の形態におけるプローブ内基板321の平面形状の別の一例を示す。図99と図92に示す例は、平面状かつスロット状のアンテナを1個備え、かつ、アンテナへの伝送路が1層の信号線層とこれを間に挟む2層のシールド層とからなる、合計3層の配線層を備えたプローブ内基板321の平面形状を示す。かつ、図99と図100に示す例は、信号線255と同じ配線層の一部を用いて、信号線255の側方にシールド配線を配置した例を示す。
 図99におけるaは、第1の配線層の外側に配置されるソルダーレジスト252と電磁波吸収材251の平面形状を示す。ソルダーレジスト252は色付けしたパターンで、電磁波吸収材251はその外形が点線で示されている。図99におけるbは、第1の配線層(スロットを備えたシールド層254、すなわち放射エレメント254)の平面形状を示す。図99におけるcは、第2の配線層(信号線255と、第2の配線層の一部を用いて信号線255の両側に配置されたシールド配線257)を示す。シールド配線257に配置された、四角形とその対角線を線分で結んだ記号はビアを表し、特に図99におけるcにおいては、シールド層254とシールド配線との間を接続するビアと、シールド配線と後述するシールド層256との間を接続するビアが、シールド配線のパターン上に示されている。図99におけるWaは、プローブ内基板321の幅を示す。また、Wbは、シールド配線の幅を示す。Weは、スロットからシールド配線までの長さを示し、Wfは、信号線端からシールド配線までの長さを示す。
 図100におけるaは、第3の配線層(スロットを備えたシールド層256、すなわち放射エレメント256)の平面形状を示す。図100におけるbは、第3の配線層の外側に配置されるソルダーレジスト253と電磁波吸収材251の平面形状を示す。ソルダーレジスト253は色付けしたパターンで、電磁波吸収材251はその外形が点線で示されている。図100におけるcは、図99におけるcのA-A'線に沿って切断した際のプローブ内基板321の断面図である。
 図100におけるcの断面図は、紙面の最も下側に、第1の配線層(シールド層254)が配置され、その上に、第2の配線層を用いて、信号線と、その両側のシールド配線とが配置される。これらの上に、シールド層256が配置される。プローブ内基板321の伝送路が形成された領域においては、この断面の上下にソルダーレジストが配置され、断面の周囲に、電磁波吸収材251が配置されている。
 図101と図102は、本技術の第1の実施の形態におけるプローブ内基板321の平面形状の別の一例を示す。図101と図102に示す例は、平面状かつスロット状のアンテナを1個備え、かつ、アンテナへの伝送路が1層の信号線層とこれを間に挟む2層のシールド層とからなる、合計3層の配線層を備えたプローブ内基板321を示す。かつ、図101と図102に示す例は、信号線255の上方に配置されたシールド層256から信号線255の側方を通過して信号線255の下方に配置されたシールド層254へと至るビアを用いて、このビアを信号線255に沿って列状に配置することで、信号線255の側方をシールドした例を示す。図101におけるcが、このシールド用のビアの列を示している。同図において、信号線255の両側に配置された、四角形とその対角線を線分で結んだ記号は、ビアを表す。そして、同図において色付けしていないこれらのビアは、信号線255と同層となる第2の配線層で形成したものではなく、信号線255よりも上の層から信号線255の側方を通過して信号線255よりも下の層へと延在するビアであることを示している。図101におけるc以外に図101と図102に記載された平面形状は、図99と図100に記載されたそれらと類似のため、説明は省略する。なお、図102におけるcは、図102と図103に示す構造において、スロットアンテナの部分を切断した際のプローブ内基板321の断面図である。
 次に、図101におけるcに記載の構造がもたらす効果を説明する。図101におけるcに示す平面形状は、図83におけるcと同様にして、シールド用のビアの列を用いて、信号線255の側方をシールドする構造を備えている。これにより、図99におけるcに示した構造よりも、信号線255とシールド用のビアの列(図99の場合はシールド配線)との間の距離を小さくすることができる。その結果、図101と図102に示すプローブ内基板321の幅は、図99と図100に示すプローブ内基板321の幅よりも小さくすることができるという効果がもたらされる。かつ、プローブ内基板の幅を小さくできると、これを収めるプローブ筐体の断面積を小さくすることができて、これにより水分を正確に計測できるというさらなる効果がもたらされる。これについての詳細は、図98を参照して説明した通りである。図101におけるWaは、プローブ内基板321の幅を示す。また、Wbは、シールドビア列の幅を示す。Weは、スロットからシールドビア列までの長さを示し、Wfは、信号線端からシールドビア列までの長さを示す。
図103と図104は、本技術の第1の実施の形態におけるプローブ内基板321の平面形状のさらに別の一例を示す。図103と図104に示す例は、平面状かつスロット状のアンテナをn個(例としてn=3)備え、かつ、アンテナへの伝送路が1層の信号線層とこれを間に挟む2層のシールド層とからなる、合計3層の配線層を備えたプローブ内基板321を示す。かつ、図103と図104に示す例は、信号線255と同じ配線層の一部を用いて、信号線255の側方をシールドした例を示す。図103と図104のそれぞれの図に示した各層の役割は、図99と図100のそれらと同様であるので、説明を省略する。
 図103におけるbは、第1の配線層(スロットを備えたシールド層254、すなわち放射エレメント254)を用いて、平面状かつスロット状のアンテナ3個のスロットが配置された平面形状を示す。
 図103におけるcは、図99におけるcと同様に、信号線255と同じ配線層の一部を用いて、信号線255の側方にシールド配線を配置した例を示す。図103におけるcでは、図101におけるbに示した3個のスロットと交差させるための3本の信号線255が、第2の配線層の一部を用いて形成されている。かつ、これら3本の信号線255のそれぞれの側方をシールドするために、これら3本の信号線の間と外側とに、合計4本のシールド配線が、3本の信号線255と同じ第2の配線層を用いて形成されている。なお、図104におけるcは、図103におけるcのA-A'線に沿って切断した際のプローブ内基板321の断面図である。図103におけるWaは、プローブ内基板321の幅を示す。また、Weは、スロットから信号線までの長さを示し、Wfは、信号線端からシールド配線までの長さを示す。Wgは、2本の信号線と3本のシールド配線の幅を示す。
図105と図106は、本技術の第1の実施の形態におけるプローブ内基板321の平面形状のさらに別の一例を示す。図105と図106に示す例は、平面状かつスロット状のアンテナをn個(例としてn=3)備え、かつ、アンテナへの伝送路が1層の信号線層とこれを間に挟む2層のシールド層とからなる、合計3層の配線層を備えたプローブ内基板321を示す。かつ、図105と図106に示す例は、信号線255の上方に配置されたシールド層256から信号線255の側方を通過して信号線255の下方に配置されたシールド層254へと至るビアを用いて、このビアを信号線255に沿って列状に配置することで、信号線255の側方をシールドした例を示す。
 図105におけるbは、第1の配線層(スロットを備えたシールド層254、すなわち放射エレメント)を用いて、平面状かつスロット状のアンテナ3個のスロットが配置された平面形状を示す。図105におけるWaは、プローブ内基板321の幅を示す。また、Weは、スロットからシールドビア列までの長さを示し、Wfは、信号線端からシールド配線までの長さを示す。Wgは、2本の信号線と3本のシールドビア列の幅を示す。
 図105におけるcは、図101におけるcと同様に、シールド用のビアの列を用いて、信号線255の側方をシールドした例を示す。図105におけるcでは、図105におけるbに示した3個の放射エレメントと交差させるための3本の信号線255が、第2の配線層の一部を用いて形成されている。かつ、これら3本の信号線255のそれぞれの側方をシールドするために、これら3本の信号線の間と外側とに、合計4列となるシールド用のビアの列が配置されている。なお、図106におけるcは、図105におけるcのA-A'線に沿って切断した際のプローブ内基板321の断面図である。
 次に、図105におけるcに記載の構造がもたらす効果を説明する。図101におけるcと同様に、図105におけるcに示した3本の信号線255と、4列のビアの列とは、別々に(言い換えれば、独立して)パターン形成される。その結果、図105におけるcに示した3本の信号線255と、4列のビアの列との間の距離は、図103におけるcに示した3本の信号線255と、4本のシールド配線との間の距離よりも、小さくすることができる。その結果、図105と図106に示すプローブ内基板321の幅は、図103と図104に示すプローブ内基板321の幅よりも小さくすることができる。かつ、プローブ内基板の幅を小さくできると、これを収めるプローブ筐体の断面積を小さくすることができて、これにより水分を正確に計測できるというさらなる効果がもたらされる。これについての詳細は、図98を参照して説明した通りである。
図107乃至図109は、本技術の第1の実施の形態におけるプローブ内基板321の平面形状のさらに別の一例を示す。図107乃至図109に示す例は、平面状かつスロット状のアンテナをn個(例としてn=3)備え、かつ、n個のアンテナのスロットと交差させる交差させるn本の伝送路を、n-1層の信号線層とこれを間に挟むn層のシールド層とからなる、合計2n-1層の配線層を備えたプローブ内基板321に形成した一例を示す。かつ、図107乃至図109に示す例は、信号線255の上方に配置されたシールド層から、信号線255の側方を通過して、信号線255の下方に配置されたシールド層へと至るビアを用いて、このビアを信号線255に沿って列状に配置することで、信号線255の側方をシールドした例を示す。
 図107におけるbは、第1の配線層(スロットを備えたシールド層254、すなわち放射エレメント)を用いて、平面状かつスロット状のアンテナ3個のスロットが配置された平面形状を示す。図108におけるaは、第3の配線層(スロットを備えたシールド層256-1、すなわち放射エレメント256-1)を用いて、平面状かつスロット状のアンテナ3個のスロットが配置された平面形状を示す。図108におけるcは、第5の配線層(スロットを備えたシールド層256-2、すなわち放射エレメント256-2)を用いて、平面状かつスロット状のアンテナ3個のスロットが配置された平面形状を示す。図107におけるWaは、プローブ内基板321の幅を示す。また、Weは、スロットからシールドビア列までの長さを示し、Wfは、信号線端からシールド配線までの長さを示す。Wgは、1本の信号線と2本のシールドビア列の幅を示す。
 そして、図107乃至図109に示す例では、3個のアンテナのそれぞれと交差させる3本の信号線が、5層の配線層を有する基板に備わる2層の信号線層(第2と第4の配線層)を用いて形成されている。
 図107におけるcに示す第2の配線層においては、
(1)図107におけるbに示した3個のスロットのうち、第1のスロットと交差させるための1本の信号線255が、形成されている。
(2)上記(1)の信号線255の側方をシールドするために、この信号線の両側にシールド用のビアの列が配置されている。
(3)第1層の配線層を用いて形成したシールド層を、第3層と第5層の配線層を用いて形成したシールド層と密に接続するために、これらシールド層の外縁近傍にもビアの列が配置されている。
 一方、図108におけるbに示す第4の配線層においては、
(1)図107におけるbに示した3個のスロットのうち、第2の配線層においてはスロットと交差させるための信号線255が配置されない、第2と第3のスロットについて、これらと交差ための2本の信号線255が、形成されている。
(2)上記(1)の信号線255の側方をシールドするために、これらの信号線の両側にシールド用のビアの列が配置されている。
(3)第1層の配線層を用いて形成したシールド層を、第3層と第5層の配線層を用いて形成したシールド層と密に接続するために、これらシールド層の外縁近傍にもビアの列が配置されている。
 なお、図109におけるbは、図107におけるcのA-A'線に沿って切断した際のプローブ内基板321の断面図である。
 次に、図107におけるcと図108におけるbに記載の構造がもたらす効果を説明する。これらの図に記載の構造においては、図101におけるcに記載のシールド用のビア列を用いて、信号線255の側方をシールドすることによって、プローブ内基板321の幅を小さくする効果がもたらされている。図107におけるcと図108におけるbに記載の構造は、図105おけるcに記載の構造と比較して、より多くの信号線層を用いることにより、1つの信号線層に配置する信号線の本数を削減している。この構造により、図105におけるcに記載の構造よりも、プローブ内基板321の幅を小さくする効果がもたらされている。
図110乃至図113は、本技術の第1の実施の形態におけるプローブ内基板321の平面形状のさらに別の一例を示す。図110乃至図112に示す例は、平面状かつスロット所のアンテナをn個(例としてn=3)備え、かつ、n個のアンテナと交差させるn本の伝送路を、n層の信号線層とこれを間に挟むn+1層のシールド層とからなる、合計2n+1層の配線層を備えたプローブ内基板321に形成した一例を示す。かつ、図110乃至図112に示す例は、信号線255の上方に配置されたシールド層から、信号線255の側方を通過して、信号線255の下方に配置されたシールド層へと至るビアを用いて、このビアを信号線255に沿って列状に配置することで、信号線255の側方をシールドした例を示す。
 図110におけるbは、第1の配線層(スロットを備えたシールド層254-1、すなわち放射エレメント)を用いて、平面状かつスロット状のアンテナ3個のスロットが配置された平面形状を示す。図111におけるaは、第3の配線層(スロットを備えたシールド層254-2、すなわち放射エレメント)を用いて、平面状かつスロット状のアンテナ3個のスロットが配置された平面形状を示す。図111におけるcは、第5の配線層(スロットを備えたシールド層256-1、すなわち放射エレメント)を用いて、平面状かつスロット状のアンテナ3個のスロットが配置された平面形状を示す。図112におけるbは、第7の配線層(スロットを備えたシールド層256-2、すなわち放射エレメント)を用いて、平面状かつスロット状のアンテナ3個のスロットが配置された平面形状を示す。図110におけるWaは、プローブ内基板321の幅を示す。また、Weは、スロットからシールドビア列までの長さを示し、Wfは、信号線端からシールド配線までの長さを示す。Wgは、1本の信号線と2本のシールドビア列の幅を示す。
 そして、図110乃至図112に示す例では、3個のアンテナのそれぞれに交差させる3本の信号線が、7層の配線層を有する基板に備わる3層の信号線層(第2と第4と第6の配線層)を用いて形成されている。
 図110におけるcに示す第2の配線層においては、
(1)図110におけるbに示した3個のスロットのうち、第1のスロットと交差させるための1本の信号線255が、形成されている。
(2)上記(1)の信号線255の側方をシールドするために、この信号線の両側にシールド用のビアの列が配置されている。
(3)第1層の配線層を用いて形成したシールド層を、第3層と第5層と第7層の配線層を用いて形成したシールド層と密に接続するために、これらシールド層の外縁近傍にもビアの列が配置されている。
 一方、図111におけるbに示す第4の配線層においては、
(1)図111におけるbに示した3個のスロットのうち、第2の配線層においてはスロットと交差させるための信号線255が配置されない、第2と第3のスロットのうち、第2のスロットについて、これと交差ための2本の信号線255が、形成されている。
(2)上記(1)の信号線255の側方をシールドするために、これらの信号線の両側にシールド用のビアの列が配置されている。
(3)第1層の配線層を用いて形成したシールド層を、第3層と第5層と第7層の配線層を用いて形成したシールド層と密に接続するために、これらシールド層の外縁近傍にもビアの列が配置されている。
 さらに、図112におけるaに示す第6の配線層においては、
(1)図111におけるbに示した3個のスロットのうち、第2の配線層と第4の配線層においてはスロットと交差させるための信号線255が配置されない、第3のスロットについて、これと交差ための2本の信号線255が、形成されている。
(2)上記(1)の信号線255の側方をシールドするために、これらの信号線の両側にシールド用のビアの列が配置されている。
(3)第1層の配線層を用いて形成したシールド層を、第3層と第5層と第7層の配線層を用いて形成したシールド層と密に接続するために、これらシールド層の外縁近傍にもビアの列が配置されている。
 なお、図113は、図110におけるcのA-A'線に沿って切断した際のプローブ内基板321の断面図である。
 次に、図110におけるcと図111におけるbと図112におけるaに記載の構造がもたらす効果を説明する。これらの図に記載の構造においては、図101におけるcに記載のシールド用のビア列を用いて、信号線255の側方をシールドすることによって、プローブ内基板321の幅を小さくする効果がもたらされている。図110におけるcと図111におけるbと図112におけるaに記載の構造は、図105におけるcに記載の構造と比較して、より多くの信号線層を用いることにより、1つの信号線層に配置する信号線の本数を削減している。この構造により、図105におけるcに記載の構造よりも、プローブ内基板321の幅を小さくする効果がもたらされている。
 なお、図110乃至図113に示すプローブ内基板321の幅は、図107乃至図109に示すプローブ内基板321の幅と、同じになっている。
 図114は、本技術の第1の実施の形態に備わるプローブ内基板321(および322)において、プローブ内基板321と伝送路接続部との接続に用いるコネクタ323(および324)を配置する領域の基板の断面構造と、その領域で用いる伝送線路の構造と、を説明するための図である。プローブ内基板321において、この基板に備わる送信アンテナ223などとコネクタ323とを接続する伝送路は、先に説明したようにストリップ線路を用いて形成している。一方、コネクタ323を配置する領域においては、ストリップ線路を用いてプローブ内基板321の内層に配置した信号線255と、伝送路接続部とを、コネクタ323を介して電気的に接続するために、プローブ内基板321の内層に配置した信号線255を基板の表層に引き出す必要がある。プローブ内基板321の表層に引き出した信号線255は、その伝送線路の構造として、同図におけるaもしくはbあるいはcに示した構造の伝送線路を用いることができる。より具体的には、同図におけるaに例示するように、信号を伝送する信号線255を表層に配置し、シールド層256を内層に配置したマイクロストリップ線路とすることもできる。同図におけるbに例示するように、信号線255とシールド配線を表層に配置したコプレーナ線路とすることもできる。同図におけるcに例示するように、信号線255を表層に配置し、シールド配線257とシールド層256を表層と内層に配置したコプレーナ線路とすることもできる。
 また、同図におけるdおよびeは、プローブ内基板321と伝送路接続部との接続に用いるコネクタ323(および324)を配置する領域における、前記基板の断面構造を説明するための図である。同図におけるdでは、伝送路と表記した領域が、送信アンテナへと延在するストリップ線路を表している。前記ストリップ線路の左側に記載した構造が、前記基板の内層に形成した信号線255を、紙面上下方向に延在したビアを介して、前記基板の表層へと引き出す構造を表している。前記信号線255に接続したビアの周囲には、シールド層254と256の間を接続するシールド用のビアを配置している。これにより、前記信号線255に接続したビアの周囲をシールドしている。同図における符号311は、前記表層に配置した信号線255と電気的に接触させる伝送路接続部を表している。同図におけるeでは、前記基板の表層にシールド層254もしくはシールド配線をさらに配置し、かつ、表層に引き出した伝送線路の周囲を覆うように、カンシールド(あるいはシールドケース)をさらに配置した構造を表している。前記カンシールドは、シールド層へ接続しグランド電位を与えた構造にすると、なおよい。前記カンシールドを配置することで、表層の伝送路から外部への電磁波の放射、あるいは、外部から表層の伝送路への電磁波(ノイズ)の受信を、低減することができる。前記基板が複数本の伝送線路を備える場合、表層に引き出した複数本の信号線255は、それぞれの間を、表層に配置した複数本のシールド配線257を用いてパラレルシールドしてもよい。表層のマイクロストリップ線路の長さはなるべく短い方がよい。
 [アンテナの時分割駆動の例]
 図115は、本技術の第1の実施の形態におけるセンサ装置200に備わる複数のアンテナを、時分割でスキャン動作させて土壌の水分量を測定することを説明するための図である。
 図115に示したセンサ装置200は、図4bと同様に正面から見た(Z軸方向から見た)図となっている。図115に記載のセンサ装置200は、一例として、送信アンテナと受信アンテナをそれぞれ3個備えている。これら3個の送信アンテナと3個の受信アンテナのうち、1つの送信アンテナと、この送信アンテナから見て、最も近くに配置された1つの受信アンテナと、が水分量の計測に適した送信アンテナと受信アンテナの組み合わせとなる。本明細書においては、この水分量の計測に適した送信アンテナと受信アンテナの組み合わせを、「送受信アンテナ対」と呼ぶことがある。
 図115a乃至eに例示したセンサ装置200は、3組の送受信アンテナ対を備えている。より具体的には、(1)送信アンテナ221と受信アンテナ231とからなる第1の送受信アンテナ対、(2)送信アンテナ222と受信アンテナ232とからなる第2の送受信アンテナ対、(3)送信アンテナ223と受信アンテナ233とからなる第3の送受信アンテナ対、を備えている。
 ここで、センサ装置200に備わる、複数の送受信アンテナ対に関して、そこに含まれる1つの送受信アンテナ対とそれに隣接する送受信アンテナ対との間隔(言い換えれば、隣接する2つの送受信アンテナ対の間隔)について説明する。この説明においては、土壌の水分量の計測を行う際に、センサ装置200が有する全ての送受信アンテナ対において、それらに備わる全ての送信アンテナが同時に電磁波を放射する動作を行い、かつ、それらに備わる全ての受信アンテナが同時に電磁波を受信する動作を行うこと、を想定する。
 ここで一般的に、平面状のアンテナから電磁波を放射する場合、電磁波をアンテナの平面に対して垂直方向のみへ高い指向性を備えて放射することは難しく、実際にはある広がりを持って放射してしまう。
[第1の問題]
 隣接する2つの送受信アンテナ対の間隔が小さい場合には、例えば、第2の送受信アンテナ対の送信アンテナから放射された電磁波の一部が、第1の送受信アンテナ対の受信アンテナで受信されてしまう可能性がある。この場合、第1の送受信アンテナ対に備わる受信アンテナは、第1の送受信アンテナ対に備わる送信アンテナ(所望の送信アンテナ)が放射した電磁波と、第2の送受信アンテナ対に備わる送信アンテナ(所望しない送信アンテナ)が放射した電磁波の一部とを、混在して受信することとなる。言い換えれば、混信が発生した状態となる。このような混信が発生した状態では、土壌の水分量の計測結果に誤差が生じることが、問題となる。
[第2の問題]
 隣接する2つの送受信アンテナ対の間隔を、大きくするほど、前記の混信は低減される。これにより、土壌の水分量の計測結果含まれる誤差は、小さくなる。しかし、隣接する2つの送受信アンテナ対の間隔を大きくしてしまうと、センサ装置200を配置した土壌に関して、ごく一部の地点の水分量しか、計測できないことが、問題となる。
[第1の問題が生じる条件]
 ここで、前記第1の問題がどのような場合に生じるかを考えてみる。土壌の水分量を計測する方式として、いくつかの方式が提案されている。しかし、複数の送信アンテナと複数の受信アンテナとを備え、これらの送信アンテナと受信アンテナとの間に配置した水分量を計測する際に、これら複数のアンテナを同時に動作させてしまうと、所望のアンテナからだけではなく所望しないアンテナからも電磁波を受信してしまい、受信結果に誤差が生じるという前記第1の問題は、そもそも、送信アンテナから放射される電磁波の放射範囲(あるいは指向性)に起因した問題である。
このため、前記第1の問題は、送信アンテナと受信アンテナとを備え、これらのアンテナ間で電磁波を送受信することで、これらのアンテナ間に配置された媒質中の水分量を計測するセンサ装置に固有の問題である。
[第1と第2の問題を解決する手段]
 これら2つの問題を同時に解決するため、すなわち、(1)センサ装置200を配置した土壌に関して、水分量の計測を行う地点の密度を高め(言い換えれば、センサ装置200を配置した土壌内のできるだけ多くの地点で水分量の計測を行い)、かつ、(2)計測結果に含まれる誤差を低減するため、本発明のセンサ装置200は、これに備わる複数のアンテナを、時分割でスキャン動作させて、土壌の水分量を測定する。そこで、センサ装置200は、これに備わる複数のアンテナを、時分割でスキャン動作させるための構成を備え、センサ装置200に備わる測定部312は、複数のアンテナを、時分割でスキャン動作させてアンテナ間の水分量を測定するための、制御を行う。センサ装置200を時分割でスキャン動作させて測定する動作(時分割スキャン測定動作)の概要を手短に説明すると、(1)センサ装置200に備わる複数の送受信アンテナ対の中から、予め定めた順番に従って送受信アンテナ対を1つずつ選択して、土壌の水分を計測するための動作(計測動作、例えば、計測のために送信アンテナから電磁波を送信する動作、あるいは、送信された電磁波を受信アンテナで受信し測定部の受信機で検波する動作、あるいは、送信動作と検波動作を行い検波結果から土壌の水分量を求める動作など)を行う。そして、(2)予め定めた全ての送受信アンテナ対において、前記計測動作を行いその結果を取得し終わるまで、前記計測動作を送受信アンテナ対の1つずつにおいて順番に実行する。以上が、時分割スキャン測定の概要となる。その詳細を以下で説明する。
[時分割スキャン測定の動作]
 センサ装置200に備わる複数のアンテナを、時分割でスキャン動作させて、土壌の水分量を測定する動作を、図115におけるa乃至eを参照して説明する。
 同図におけるaに例示するように、あるタイミング1で水分計測の指示を受信すると、センサ装置200がウェイクアップする。同図におけるbに例示するように、タイミング2で、センサ装置200は、第1の送受信アンテナ対を用いて、水分計測を実行する。
 続いて、同図におけるcに例示するように、タイミング3で、センサ装置200は、第2の送受信アンテナ対を用いて、水分計測を実行する。同図におけるdに例示するように、タイミング4で、センサ装置200は、第3の送受信アンテナ対を用いて、水分計測を実行する。
 同図におけるeに例示するように、センサ装置200は、タイミング5で、全てのアンテナにおけるそれぞれの計測結果を送信する。その後、センサ装置200はスリープモードに移行する。同図に例示したように、センサ装置200は、送信アンテナと受信アンテナを1組ずつ用い、かつ計測を行う時間帯を分けながら、複数組のアンテナのそれぞれについて順番に水分計測を実行する。最終的には複数のアンテナが配置された土壌の領域の全体に渡って、水分の計測結果を得ることができる。この制御が構成要素(6)の時分割スキャン測定駆動に該当する。
[時分割スキャン測定を行うための、ハードウエア構成]
 ここで、時分割スキャン測定を行うための、ハードウエア構成として、構成要素(6)における測定部基板311と複数の送信アンテナのそれぞれとを個別に接続する複数の伝送路を備えた構成(図3)と、測定部基板311と複数の受信アンテナのそれぞれとを個別に接続する複数の伝送路を備えない第1の比較例(図116)を想定する。
 図116は、第1の比較例におけるセンサ装置の一構成例を示すブロック図である。第1の比較例では、送信側、受信側のそれぞれで1本の伝送路が複数に分岐し、複数のアンテナに接続されるものとする。
 この第1の比較例においては、伝送路上に複数の分岐を有するため、それら複数箇所の分岐の先端において、信号の反射が発生してしまい、これがノイズとなることで、土壌水分量の計測精度が低下する。また、筐体に複数配置されたアンテナのそれぞれにスイッチを併せて配置することにより、これらを収容するプローブ筐体の体積が、本発明のプローブ筐体320の体積よりも、大きくなってしまう。これにより、水分センサ装置のプローブ筐体を土壌へ挿した際に、プローブ筐体がより多くの土を押しのけ、押しのけられた土が測定対象部分の土壌に加わり、測定対象部分の土壌の密度が、本来の土壌の密度よりも、より大きくなってしまう。これによっても、土壌水分量の計測精度が低下してしまう。
 次に、送信スイッチ216および受信スイッチ217を設けない第2の比較例を想定する。
 図117は、第2の比較例におけるセンサ装置の一構成例を示すブロック図である。第2の比較例では、送信側、受信側において、アンテナごとに送信機または受信機が測定部基板311に設けられる。
 この第2比較例においては、送信機および受信機のそれぞれを、センサ装置に備わるアンテナの個数と同数となるように、複数設ける必要がある。このため、送信機および受信機が1組のみの場合よりも測定部基板311の面積が大きくなり、それらとアンテナとを接続する、測定部基板311上の伝送路の長さも長くならざるを得ない。その結果、基板上の送信機および受信機を1組動作させる場合、伝送路長が長い第2の比較例の方が、消費電力が大きくならざるを得ない。
 さらに第2比較例においては、測定部基板311の面積が大きくなることにより、測定部基板311を収めた測定部筐体310が、大きくならざるを得ない。この場合、例えば、センサ装置に対して、横風が当たった場合、横風を受けた測定部筐体310と、土壌に埋まったプローブ筐体320との境界で、センサ筐体305が破断する可能性が高まる。
 さらに第2の比較例においては、測定部基板311の面積が大きくなることにより、例えば、スプリンクラーによる横方向からの散水が、測定部筐体310によって、遮られてしまうことや、例えば、植物が成長の初期段階で丈が低い場合に、当該植物あるいは隣接する植物への日光の照射を遮ってしまうことなどの問題が生じる。
 本発明のセンサ装置200は、時分割スキャン測定を行うためのハードウエアとして、かつ、第1と第2の比較例において発生する上記の問題を発生させないハードウエアとして、図3に例示した以下の構成を備える。すなわち、(1)センサ装置200に備わる全ての送信アンテナ221乃至223について、動作させる送信アンテナを1つだけ選択できるように、それぞれの送信アンテナと測定回路210との間を接続する送信用伝送路218-1乃至218-3を、送信アンテナ毎に独立して備える。これにより送信用伝送路は複数本備える。(2)センサ装置200に備わる全ての送信アンテナ221乃至223とそこへ接続した送信用伝送路218-1乃至218-3の中から、1つの送信アンテナと送信用伝送路を選択する装置として、送信機214と複数本の送信用伝送路218-1乃至218-3との間に、送信スイッチ216を備える。(3)センサ装置200に備わる全ての受信アンテナ231乃至233について、動作させる受信アンテナを1つだけ選択できるように、それぞれの受信アンテナと測定回路210との間を接続する受信用の伝送路219-1乃至219-3を、受信アンテナ毎に独立して備える。これにより受信用伝送路は複数本備える。(4)センサ装置200に備わる全ての受信アンテナ221乃至223とそこへ接続した受信用伝送路219-1乃至219-3の中から、1つの受信アンテナと受信用伝送路を選択する装置として、受信機215と複数本の受信用伝送路219-1乃至219-3との間に、受信スイッチ217を備える。
 図118は、図3に例示した本技術の第1の実施の形態におけるセンサ装置200を、アンテナの時分割駆動に着目して簡略化して記載した一構成例を示すブロック図である。
 センサ装置200は、送信スイッチ216および受信スイッチ217を備え、センサ制御部211は、それらを時分割で制御し、送信用、受信用ともに1つの伝送路を選択する。これにより、所望の深さ方向のアンテナを選択することができる。
 図119は、本技術の第1の実施の形態におけるセンサ装置200の別の構成例として、送信スイッチ216、受信スイッチ217を送信機214、受信機215に内蔵した一構成例を示すブロック図である。同図におけるaに例示するように、送信スイッチ216を送信機214内に設け、受信スイッチ217を受信機215内に設けることもできる。ここで送信機214、受信機215は、例えば、送信機IC(Integrated Circuit)、受信機ICや、送信機モジュール、受信機モジュールをいう。同図におけるbに例示するように、送信機214および受信機215の代わりに、それらの機能を持つ送受信機214-4を設けることもできる。また、送信スイッチ216および受信スイッチ217の代わりに、それらの機能を持つスイッチ216-1を設け、そのスイッチ216-1を送受信機214-4に内蔵することもできる。
 図120は、本技術の第1の実施の形態におけるセンサ装置200のさらに別の構成例として、受信側のみにスイッチを設けたセンサ装置200の一構成例を示すブロック図である。同図におけるaに例示するように、送信スイッチ216を設けない構成とすることもできる。同図におけるbに例示するように、送信スイッチ216を設けず、受信スイッチ217を受信機215内に設けることもできる。
 図119および図120に例示するように、スイッチを内蔵することにより、図118と比較して省スペース化できる。図120では、スイッチを受信側にのみ設けるため、図119よりも構成が簡易となり、さらに省スペース化できる。なお、図119および図120に例示したセンサ装置200は、先に説明した測定時の混信を避けることはできないが、装置の大きさを小さくできる効果は得られる。
 図121は、本技術の第1の実施の形態における時分割駆動のタイミングチャートの一例である。
 図122は、センサ装置200内の各部の動作を示すタイミングチャートの一例である。
 図121および図122に例示するように、センサ装置200は、予めスケジューリングされた期間、スリープした後、起動する。送信スイッチ216および受信スイッチ217は、時分割で複数のアンテナの中から1つのアンテナを選択する。送信機214および受信機215は、選択された1つのアンテナにおいて、測定に用いる周波数を時間に対して階段状に変化させながら、測定に用いる全ての周波数のそれぞれについて、測定用の送受信検波動作を行う。送受信検波動作では、信号の送信と、受信と、検波と、検波結果である複素振幅のAD変換と、変換結果のメモリへの保持が行われる。メモリは、例えば、測定部基板311内に設けられる。なお、1回の検波動作行うためには、検波する電磁波を複数周期に渡って、送信アンテナから受信アンテナへ送信することが望ましい。言い換えれば、1回の送受信検波動作においては、複数周期分の電磁波を送信アンテナから送信し、これを測定回路210で検波することが望ましい。
 なお、詳細は後述するが、周波数を変化させて測定を行う意図をここで簡単に説明する。本技術の第1の実施の形態における水分計測システム100は、上記の送受信検波動作(言い換えれば、信号の送信と、受信と、検波と、検波結果である複素振幅のAD変換と、変換結果のメモリへの保持)を行った後、検波結果(複素振幅)から、後述する反射係数と透過係数を算出し、これらを逆フーリエ変換してインパルス応答を求め、これを基に遅延時間を求め、さらにこれを基にして水分量を求める。1つのインパルス応答を得るために、水分計測システム100は、送受信検波動作を、複数の周波数において実行する。これが、図121を参照して説明した、周波数を変化させて測定を行う意図である。
 センサ装置200は、1つの送受信アンテナ対を用いて、測定を行う全ての周波数について、上記動作を一通り実行し終えたら、残余の送受信アンテナ対のそれぞれにおいて、時分割で上記動作を行う。送受信アンテナ対の選択は、予め定めた順番に従って行われる。この順番は、配置されたアンテナの位置の順に従って選択してもよいし、これと異なる任意の順番を予め定めてもよい。
 全ての送受信アンテナ対について、上記動作を実行し終えたら、センサ制御部211は、送受信アンテナ対ごとに、信号処理を行う。この信号処理は、例えば、各周波数での検波結果(複素振幅)から反射係数や透過係数を算出し、これを逆フーリエ変換してインパルス応答を求め、これを基に遅延時間を求める処理である。
 全ての送受信アンテナ対のそれぞれについて信号処理を終えたら、センサ通信部212は、全ての送受信アンテナ対の信号処理結果データを、一括して中央処理装置へ無線送信する。
 中央処理装置150では、受信した結果を基にして、送受信アンテナ対毎に土壌の水分量を算出する。無線送信を終えたら、センサ装置200は、予めスケジューリングされた期間、再びスリープする。
 なお、中央処理装置150の代わりにセンサ装置200が、送受信アンテナ対毎に土壌の水分量を算出し、算出結果を中央処理装置150へ送信してもよい。また、送信側のスイッチ切替と、受信側のスイッチ切替の順序は、同時でもよいし、送信側のスイッチ切替が先でもよいし、受信側のスイッチ切替が先でもよい。また、周波数を階段状に変化させる方法は、階段を上る方向でも、下る方向でもよく、あるいは、周波数の順番を入れ替えて、不連続もしくは予め定めた任意の順番で変化させてもよい。
 また、計測の正確さを高めるため(計測結果の再現性を高めるため)に、1つの送受信アンテナ対の1つの測定周波数において実行する、上記測定用の送受信検波動作は、複数回(例えば100回)繰り返して行ってもよい。
 各アンテナの各測定周波数のそれぞれにおいて、例えば動作を100回繰り返す場合、センサ装置200は、第1の送受信アンテナ対の第1の周波数において、送受信検波動作を100回行い、次いで、第1の送受信アンテナ対の第2の周波数において、送受信検波動作を100回行う。第1の送受信アンテナ対において、残余の周波数のそれぞれでの繰り返し動作を終えたら、残余の送受信アンテナ対のそれぞれについて、上記繰り返し動作を行ってもよい。なお、各送受信アンテナ対の各測定周波数のそれぞれにおいて、所定の繰り返し回数の動作結果を得られるのであれば、動作を実行する順番は上記に限定されなくてもよい。
 図121および図122の制御例を、制御例aとする。
 図123は、本技術の第1の実施の形態における信号処理のタイミングを変更した際の時分割駆動のタイミングチャートの一例である。
 図124は、本技術の第1の実施の形態における信号処理のタイミングを変更した際のセンサ装置内の各部の動作を示すタイミングチャートの一例である。
 図123および図124に例示するように、信号処理のタイミングを変えることもできる。この制御例bでは、センサ制御部211は、複数の周波数での一連の送受信検波動作を終える度に、信号処理を行う。これにより、上記信号処理を行うために保持しておくべき検波結果のデータ量を制御例aより少なくすることができる。
 具体的には、センサ装置がn個の送受信アンテナ対を備える場合、メモリの規模を1/nに削減することができる。かつ、後述のデータの無線送信を行う回数が、制御例cの、1/nでよい。これにより、それぞれの無線送信において、ペイロードデータを送信する前後に行う処理を実行する回数が、1/nとなり、この処理に要する消費電力も、後述の制御例cの1/nとなる。
 図125は、本技術の第1の実施の形態における信号処理およびデータ送信のタイミングを変更した際の時分割駆動のタイミングチャートの一例である。
 図126は、本技術の第1の実施の形態における信号処理およびデータ送信のタイミングを変更した際のセンサ装置内の各部の動作を示すタイミングチャートの一例である。
 図125および図126に例示するように、信号処理およびデータ送信のタイミングを変えることもできる。この制御例cでは、送受信アンテナ対ごとに、一連の周波数での全ての送受信検波動作とこれに続く信号処理とを終える度に、センサ通信部212が得られたデータを無線送信する。これにより、無線送信を行うために保持しておくべき、信号処理結果のデータ量が、制御例bよりも少なくなる。具体的には、センサ装置がn個の送受信アンテナ対を備える場合、その信号処理結果のデータを保持しておくためメモリの規模が、制御例bの1/nでよい。
 図127は、本技術の第1の実施の形態における送受信検波動作の順番を変更した際の時分割駆動のタイミングチャートの一例である。
 図128は、本技術の第1の実施の形態における送受信検波動作の順番を変更した際のセンサ装置内の各部の動作を示すタイミングチャートの一例である。
 図127および図128に例示するように、送受信検波動作の順番を変更することもできる。この制御例dでは、送信機214および受信機215が段階的に周波数を変更し、各周波数ごとに送信スイッチ216および受信スイッチ217が全ての送受信アンテナ対を順に選択する。これにより、無線送信を行うために保持しておくべき、信号処理結果のデータ量が、制御例bよりも少なくなる。具体的には、センサ装置がn個の送受信アンテナ対を備える場合、その信号処理結果のデータを保持しておくためメモリの規模が、制御例bの1/nでよい。
 また、センサ装置200の起動からスリープまでの間に、送信機が送信信号の周波数を切り替える回数を比較すると、制御例a乃至dの中で、制御例dが最も周波数を切り替える回数が少ない。制御例dは、制御例a、b、cと比較して、センサ装置200の起動からスリープまでの間に、送信機214内のPLL(Phase Locked Loop)の周波数切り替えを行う時間の合計を最も短くできるため、測定時間を短くでき、低消費電力化できる。通常、PLLの周波数切り替え時間は100マイクロ秒(μs)程度で、送信スイッチ216の切り替え時間は100ナノ秒(ns)程度である。チャネル数を161とし、アンテナ数を3とすると、制御例a、b、cの切り替えに関わる時間は、次の式により求められる。
  161×3×100μs+50ns×3=0.048s  ・・・式1
 一方、制御例dの切り替えに関わる時間は、次の式により求められる。
  161×1×100μs+50ns×161×3=0.016s…式2
 式1および式2より、切り替えに関わる時間が約1/3になる。
 図129は、本技術の第1の実施の形態における制御例a、bおよびcのアンテナごと(送受信アンテナ対ごと)の送信信号の一例を示す図である。同図に例示するように、第1のアンテナ(送信アンテナ221)は、周波数f乃至fの送信信号を順に出力し、次に第2のアンテナ(送信アンテナ222)が周波数f乃至fの送信信号を順に出力する。そして、次に第3のアンテナ(送信アンテナ223)が周波数f乃至fの送信信号を順に出力する。
 図130は、本技術の第1の実施の形態における制御例dのアンテナごと(送受信アンテナ対ごと)の送信信号の一例を示す図である。同図に例示するように、第1乃至第3のアンテナが順に、周波数f1の送信信号を出力し、次に第1乃至第3のアンテナが順に、周波数f2の送信信号を出力する。以下、周波数fまで同様の制御が実行される。
 [筐体の構成例]
 図131は、本技術の第1の実施の形態におけるセンサ装置200の別の一例を示す図である。図4に記載のセンサ装置200と図131に記載のセンサ装置200を比較すると、前者(図4)は、測定部筐体310の内側に電池を備えている一方、後者(図131)測定部筐体310の内部に電池を備えず、センサ装置200の外部から電力を供給するあるいはセンサ装置200自体が太陽電池などを用いて電力を作り出すことを想定した形態となっている。
 図131に示すセンサ装置200において、測定部基板311は、Z軸方向の大きさよりも、X軸方向とY軸方向の大きさが大きくなるように、配置している。言い換えれば、測定部基板311に備わる最大の面を、地表に対して垂直方向へ延在させた状態で、配置している。センサ装置200に備わる2本のプローブ筐体320との関係で言えば、送信プローブ筐体320aの延在方向を示す、送信プローブ筐体320aの中心線と、受信プローブ筐体320bの延在方向を示す、受信プローブ筐体320bの中心線と、の2つの線分を含む1つの平面と、測定部基板311に備わる最大の面とが、平行となるように、測定部基板311を配置している。
 また、図131に示すセンサ装置200において、測定部基板311を収める測定部筐体310も同様にして、Z軸方向の大きさよりも、X軸方向とY軸方向の大きさが大きくなるように、配置している。言い換えれば、測定部筐体310に備わる最大の面を、地表に対して垂直方向へ延在させた状で、配置している。センサ装置200に備わる2本のプローブ筐体320との関係で言えば、送信プローブ筐体320aの延在方向を示す、送信プローブ筐体320aの中心線と、受信プローブ筐体320bの延在方向を示す、受信プローブ筐体320bの中心線と、の2つの線分を含む1つの平面と、測定部筐体310に備わる最大の面とが、平行となるように、測定部筐体310を配置している。
 図131に示すセンサ装置200は、この配置構造を備えることにより、この配置構造を備えない形態と比較して、2本のプローブ筐体320の間に位置する、水分量の計測対象となる土壌に対して、センサ装置200の上方からの降雨や散水が入りやすい(言い換えれば、センサ装置を配置しない土壌と同じになりやすい)という効果を得ている。
 図132は、本技術の第1の実施の形態における図4に記載のセンサ装置200の一例を簡略化して示す図である。
 図132に示すセンサ装置200は、図4に示すセンサ装置200と同様に、測定部筐体310の内部に電池を備えた形態を表している。このため、図132に示すセンサ装置200は、図131に示すセンサ装置200よりも、測定部筐体310のZ軸方向の大きさが大きくなっている。
 そして、図132に示すセンサ装置200においても、測定部基板311は、Z軸方向の大きさよりも、X軸方向とY軸方向の大きさが大きくなるように、配置している。言い換えれば、測定部基板311に備わる最大の面を、地表に対して垂直方向へ延在させた状態で、配置している。センサ装置200に備わる2本のプローブ筐体320との関係で言えば、送信プローブ筐体320aの延在方向を示す、送信プローブ筐体320aの中心線と、受信プローブ筐体320bの延在方向を示す、受信プローブ筐体320bの中心線と、の2つの線分を含む1つの平面と、測定部基板311に備わる最大の面とが、平行となるように、測定部基板311を配置している。
 また、図132に示すセンサ装置200において、測定部筐体310は、Z軸方向の大きさよりも、X軸方向とY軸方向の大きさが大きくなるように、配置している。言い換えれば、測定部筐体310に備わる最大の面を、地表に対して垂直方向へ延在させた状で、配置している。センサ装置200に備わる2本のプローブ筐体320との関係で言えば、送信プローブ筐体320aの延在方向を示す、送信プローブ筐体320aの中心線と、受信プローブ筐体320bの延在方向を示す、受信プローブ筐体320bの中心線と、の2つの線分を含む1つの平面と、測定部筐体310に備わる最大の面とが、平行となるように、測定部筐体310を配置している。
 図132に示すセンサ装置200は、この配置構造を備えることにより、この配置構造を備えない形態と比較して、2本のプローブ筐体320の間に位置する、水分量の計測対象となる土壌に対して、センサ装置200の上方からの降雨や散水が入りやすい(言い換えれば、センサ装置を配置しない土壌と同じになりやすい)という効果を得ている。
 図133と図134は、図131と図132に示すセンサ装置200を基にして、これらに雨どいを追加したセンサ装置200の一例を示す図である。図133と図134に例示するように、降雨や散水を外部へ排水する雨どい362乃至364を追加することもできる。雨どい362は、測定部筐体310の下部に設けられ、雨どい363および364は、プローブ筐体320の上部に設けられる。これにより、測定部筐体310が、横方向から飛んで来た降雨や散水を集めて、プローブと土壌の界面へ流し込むことを低減することができる。
 図135は、本技術の第1の実施の形態におけるセンサ装置200に備わるプローブ筐体320の強度を説明するための図である。
 同図におけるaは、プローブ筐体320の一端を固定し、他端に一定の荷重を加えた際の変形前の状態を示す。同図におけるbは、変形後のプローブ筐体320の状態を示す。同図におけるcは、プローブ内基板321の一端を固定し、他端に一定の荷重を加えた際の変形前の状態を示す。同図におけるdは、変形後のプローブ内基板321の状態を示す。プローブ内基板322の強度は、プローブ内基板321と同様である。
 プローブ筐体320の強度は、プローブ内基板321および322よりも高いものとする。ここで、「強度が高い」とは、同図に例示するように、プローブ筐体320の一端を固定し、他端に一定の荷重を加えたときの、その筐体の変形量が、プローブ内基板321の一端を固定し、他端に一定の荷重を加えたときの、その基板の変形量よりも、小さいことを意味する。
 このように、本発明のセンサ装置200は、
(1)電磁波を送信する送信アンテナ(例えば223)を収めた送信用プローブ筐体320aと、電磁波を受信する受信アンテナ(例えば233)を収めた受信用プローブ筐体320bと、を備え、送信アンテナから送信し受信アンテナで受信した電磁波の伝搬特性を計測してこれにより媒質中の水分量を計測するセンサ装置であって、
(2)上記送信用プローブ筐体320aと受信用プローブ筐体320bの双方を、前記送信アンテナから送信する電磁波および前記受信アンテナで受信する電磁波を透過する材料(電磁波透過性材料)で形成し、
(3)かつ、上記電磁波透過性材料で形成した送信用プローブ筐体320aと受信用プローブ筐体320bの強度を、これらの筐体の内部に収めた電子基板(配線基板)の強度よりも高くした構造、
を備える。
 そして、本発明のセンサ装置200は、この構造を備えることによって、『プローブ筐体を土壌へ挿した際に、プローブ筐体が変形してしまい、その結果筐体内部に収めた電子基板が変形してしまい、さらにその結果この電子基板に形成した送信アンテナと受信アンテナとの間の距離が所定の値から変わってしまい、これによって水分量の計測結果に誤差が生じること』を防ぎ、これにより水分を正確に測定できるようにする効果を得ている。
 [水分量の測定方法]
 図136は、本技術の第1の実施の形態における測定回路210の一構成例を示すブロック図である。この測定回路210は、方向性結合器410、送信機420、入射波受信機430、反射波受信機440、透過波受信機450、センサ制御部470、センサ通信部212、およびアンテナ213を備える。測定回路210として、例えば、ベクトルネットワークアナライザが用いられる。
 図136の送信機420が、図3の送信機214に対応する。また、入射波受信機430、反射波受信機440および透過波受信機450が図3の受信機215に対応する。センサ制御部470が図3のセンサ制御部211に対応する。図3では、方向性結合器410が省略されている。
 方向性結合器410は、送信用伝送路229-1乃至229-3を伝送する電気信号を入射波と反射波とに分離するものである。入射波は、送信機420により送信された電気信号の波であり、反射波は、送信プローブの終端で入射波が反射したものである。この方向性結合器410は、入射波を入射波受信機430に供給し、反射波を反射波受信機440に供給する。
 送信機420は、所定周波数の電気信号を送信信号として方向性結合器410および送信用伝送路229-1乃至229-3を介して、送信プローブに送信するものである。送信信号内の入射波として、例えば、CW(Continuous Wave)波が用いられる。この送信機420は、例えば、1乃至9ギガヘルツ(GHz)の周波数帯域内において、50メガヘルツ(MHz)のステップで周波数を順に切り替えて送信信号を送信する。
 入射波受信機430は、方向性結合器410からの入射波を受信するものである。反射波受信機440は、方向性結合器410からの反射波を受信するものである。透過波受信機450は、受信プローブからの透過波を受信するものである。ここで、透過波は、送信プローブおよび受信プローブの間の媒質を透過した電磁波を受信プローブが電気信号に変換したものである。
 入射波受信機430、反射波受信機440および透過波受信機450は、受信した入射波、反射波および透過波に対して、直交検波とAD(Analog to Digital)変換とを行って受信データとしてセンサ制御部470に供給する。
 センサ制御部470は、送信機420を制御して、入射波を含む送信信号を送信させる制御と、反射係数および透過係数を求める処理とを行うものである。ここで、反射係数は、前述したように入射波および反射波のそれぞれの複素振幅の比である。透過係数は、入射波および透過波のそれぞれの複素振幅の比である。センサ制御部470は、求めた反射係数および透過係数をセンサ通信部212に供給する。
 センサ通信部212は、反射係数および透過係数を示すデータを測定データとして通信経路110を介して中央処理装置150に送信するものである。
 なお、正確な反射係数と透過係数を測定するために、測定前において、方向性結合器410、送信機420および受信機(入射波受信機430等)のそれぞれの周波数特性の校正(キャリブレーション)が実行されている。
 図137は、本技術の第1の実施の形態における方向性結合器410の一構成例を示す図である。この方向性結合器410は、伝送線路411、412および413と、終端抵抗414および415とを備える。この方向性結合器410は、例えば、小型化に好適なブリッジカップラーにより実装することができる。
 伝送線路411の一端は、送信機420に接続され、他端は、送信スイッチ216を介して送信プローブに接続される。伝送線路412は、伝送線路411より短く、伝送線路411と電磁界結合する線路である。この伝送線路412の一端には終端抵抗414が接続され、他端は、反射波受信機440に接続される。伝送線路413は、伝送線路411より短く、伝送線路411と電磁界結合する線路である。この伝送線路413の一端には終端抵抗415が接続され、他端は、入射波受信機430に接続される。
 上述の構成により、方向性結合器410は、電気信号を入射波および反射波に分離し、入射波受信機430および反射波受信機440に供給する。
 図138は、本技術の第1の実施の形態における送信機420および受信機の一構成例を示す回路図である。同図におけるaは、送信機420の一構成例を示す回路図であり、同図におけるbは、入射波受信機430の一構成例を示す回路図である。同図におけるcは、反射波受信機440の一構成例を示す回路図であり、同図におけるdは、透過波受信機450の一構成例を示す回路図である。
 同図におけるaに例示するように、送信機420は、送信信号発振器422およびドライバ421を備える。
 送信信号発振器422は、センサ制御部470の制御に従って電気信号を送信信号として生成するものである。ドライバ421は、送信信号を方向性結合器410に出力するものである。この送信信号S(t)は、例えば、次の式により表される。
  S(t)=|A|cos(2πft+θ)
上式において、tは、時刻を表し、単位は、例えば、ナノ秒(ns)である。|A|は、送信信号の振幅を示す。cos()は、余弦関数を示す。fは、周波数を示し、単位は例えば、ヘルツ(Hz)である。θは、位相を表し、単位は、例えば、ラジアン(rad)である。
 同図におけるbに例示するように、入射波受信機430は、ミキサ431、バンドパスフィルタ432およびADC433を備える。
 ミキサ431は、位相が90度異なる2つのローカル信号と送信信号とを混合することにより、直交検波を行うものである。この直交検波により、同相成分Iおよび直交成分Qからなる複素振幅が得られる。これらの同相成分Iおよび直交成分Qは、例えば、次の式により表される。ミキサ431は、複素振幅をバンドパスフィルタ432を介してADC433に供給する。
  I=|A|cos(θ)
  Q=|A|sin(θ)
上式において、sin()は、正弦関数を示す。
 バンドパスフィルタ432は、所定の周波数帯域の成分を通過させるものである。ADC433は、AD変換を行うものである。このADC433は、AD変換により複素振幅を示すデータを生成し、受信データとしてセンサ制御部470に供給する。
 同図におけるcに例示するように、反射波受信機440は、ミキサ441、バンドパスフィルタ442およびADC443を備える。ミキサ441、バンドパスフィルタ442およびADC443の構成は、ミキサ431、バンドパスフィルタ432およびADC433と同様である。反射波受信機440は、反射波を直交検波して同相成分Iおよび直交成分Qからなる複素振幅を取得し、その複素振幅を示す受信データをセンサ制御部470に供給する。
 同図におけるdに例示するように、透過波受信機450は、レシーバ451、ローカル信号発振器452、ミキサ453、バンドパスフィルタ454およびADC455を備える。ミキサ453、バンドパスフィルタ454およびADC455の構成は、ミキサ431、バンドパスフィルタ432およびADC433と同様である。
 レシーバ451は、受信スイッチ217を介して、透過波を含む電気信号を受信し、ミキサ453に出力するものである。ローカル信号発振器452は、位相が90度異なる2つのローカル信号を生成するものである。
 透過波受信機450は、透過波を直交検波して同相成分Iおよび直交成分Qからなる複素振幅を取得し、その複素振幅を示すデータを受信データとしてセンサ制御部470に供給する。
 なお、送信機420および受信機(入射波受信機430等)のそれぞれの回路は、入射波等を送受信することができるものであれば、同図に例示した回路に限定されない。
 図139は、本技術の第1の実施の形態におけるセンサ制御部470の一構成例を示すブロック図である。このセンサ制御部470は、送信制御部471、反射係数算出部472および透過係数算出部473を備える。
 送信制御部471は、送信機420を制御して、送信信号を送信させるものである。
 反射係数算出部472は、周波数毎に反射係数Γを算出するものである。この反射係数算出部472は、入射波受信機430および反射波受信機440から、入射波および反射波のそれぞれの複素振幅を受信し、次の式により、それらの比を反射係数Γとして算出する。
  Γ=(I+jQ)/(I+jQ)        ・・・式3
上式において、jは、虚数単位である。I、Qは、反射波受信機440により生成された同相成分および直交成分である。
 反射係数算出部472は、N(Nは、整数)個の周波数f乃至fのそれぞれについて式3により反射係数を算出する。これらのN個の反射係数をΓ乃至Γとする。反射係数算出部472は、それらの反射係数をセンサ通信部212に供給する。
 透過係数算出部473は、周波数毎に透過係数Tを算出するものである。この透過係数算出部473は、入射波受信機430および透過波受信機450から、入射波および透過波のそれぞれの複素振幅を受信し、次の式により、それらの比を透過係数Tとして算出する。
  T=(I+jQ)/(I+jQ)        ・・・式4
、Qは、透過波受信機450により生成された同相成分および直交成分である。
 透過係数算出部473は、N個の周波数f乃至fのそれぞれについて式4により透過係数を算出する。これらのN個の反射係数をT乃至Tとする。透過係数算出部473は、それらの透過係数をセンサ通信部212を介して中央処理装置150へ供給する。
 図140は、本技術の第1の実施の形態における中央処理装置150内の信号処理部154の一構成例を示すブロック図である。この中央処理装置150は、信号処理部154内に、往復遅延時間算出部162、伝搬伝送時間算出部163、水分量測定部164および係数保持部165を備える。同図においては、図2のアンテナ152、中央制御部151、記憶部155および出力部156は省略されている。
 中央通信部153は、測定データ内の反射係数Γ乃至Γを往復遅延時間算出部162に供給し、測定データ内の透過係数T乃至Tを伝搬伝送時間算出部163に供給する。
 往復遅延時間算出部162は、反射係数に基づいて、電気信号が送信用伝送路229-1乃至229-3を往復する時間を往復遅延時間として算出するものである。この往復遅延時間算出部162は、反射係数Γ乃至Γを逆フーリエ変換することにより、インパルス応答hΓ(t)を求める。そして、往復遅延時間算出部162は、インパルス応答hΓ(t)のピーク値のタイミングと、CW波の送信タイミングとの時間差を往復遅延時間τ11として求め、水分量測定部164に供給する。
 伝搬伝送時間算出部163は、透過係数に基づいて、電磁波および電気信号が媒質と送信用伝送路229-1乃至229-3および受信用伝送路239-1乃至239-3とを伝搬および伝送する時間を伝搬伝送時間として算出するものである。この伝搬伝送時間算出部163は、透過係数T乃至Tを逆フーリエ変換することにより、インパルス応答hT(t)を求める。そして、伝搬伝送時間算出部163は、インパルス応答hT(t)のピーク値のタイミングと、CW波の送信タイミングとの時間差を伝搬伝送時間τ21として求め、水分量測定部164に供給する。
 水分量測定部164は、往復遅延時間τ11および伝搬伝送時間τ21に基づいて水分量を測定するものである。この水分量測定部164は、まず、往復遅延時間τ11および伝搬伝送時間τ21から伝搬遅延時間τを算出する。ここで、伝搬遅延時間は、送信プローブおよび受信プローブの間の媒質を電磁波が伝搬する時間である。伝搬遅延時間τは、次の式により算出される。
  τ=τ21-τ11                 ・・・式5
上式において、往復遅延時間τ11、伝搬伝送時間τ21および伝搬遅延時間τのそれぞれの単位は、例えば、ナノ秒(ns)である。
 そして、水分量測定部164は、水分量と伝搬遅延時間τとの間の関係を示す係数aおよびbを係数保持部165から読み出し、式5で算出した伝搬遅延時間τを次の式に代入して、水分量xを測定する。そして、水分量測定部164は、測定した水分量を、必要に応じた外部の装置や機器へ出力する。
  τ=a・x+b                  ・・・式6
上式において、水分量xの単位は、例えば、体積パーセント(%)である。
 係数保持部165は、係数aおよびbを保持するものである。係数保持部165として、不揮発性のメモリなどが用いられる。
 図141は、本技術の第1の実施の形態における電磁波および電気信号の伝搬経路および伝送経路を説明するための図である。前述したように、送信プローブに先端が埋め込まれた送信用伝送路229-1乃至229-3を介して、送信機420は、入射波を含む電気信号を送信信号として送信プローブに送信する。同図では、受信用伝送路239-1乃至239-3のうち1本のみが記載されている。また、送信用伝送路229-1乃至229-3のうち1本のみが記載されている。
 送信プローブの終端で入射波が反射し、その反射波を反射波受信機440が受信する。これにより、入射波および反射波を含む電気信号が送信用伝送路229-1乃至229-3内を往復する。同図における太い実線の矢印は、送信用伝送路229-1乃至229-3を電気信号が往復した経路を示す。この経路を電気信号が往復する時間が、往復遅延時間τ11に該当する。
 また、入射波を含む電気信号は送信プローブにより、電磁波EWに変換され、送信プローブおよび受信プローブの間の媒質を透過(言い換えれば、伝搬)する。受信プローブは、その電磁波EWを電気信号に変換する。透過波受信機450は、受信用伝送路239-1乃至239-3を介して、その電気信号内の透過波を受信する。すなわち、入射波を含む電気信号が送信用伝送路229-1乃至229-3を伝送し、電磁波EWに変換されて媒質を伝搬し、透過波を含む電気信号に変換されて受信用伝送路239-1乃至239-3を伝送する。同図における太い点線の矢印は、電磁波と電気信号(入射波および透過波)とが、媒質と送信用伝送路229-1乃至229-3および受信用伝送路239-1乃至239-3とを伝搬および伝送した経路を示す。この経路を電磁波および電気信号が伝搬および伝送する時間が、伝搬伝送時間τ21に該当する。
 センサ制御部470は、式3および式4により反射係数Γおよび透過係数Tを求める。そして、中央処理装置150は、反射係数Γおよび透過係数Tから往復遅延時間τ11および伝搬伝送時間τ21を求める。
 ここで、入射波の送信から、透過波の受信までの経路は、媒質と、送信用伝送路229-1乃至229-3および受信用伝送路239-1乃至239-3とを含む。このため、媒質を電磁波が伝搬する伝搬遅延時間τは、伝搬伝送時間τ21と、送信用伝送路229-1乃至229-3および受信用伝送路239-1乃至239-3を電気信号が伝送する遅延時間との差分により求められる。送信用伝送路229-1乃至229-3および受信用伝送路239-1乃至239-3のそれぞれの長さが同一と仮定すると、送信用伝送路229-1乃至229-3を伝送する遅延時間と、受信用伝送路239-1乃至239-3を伝送する遅延時間とは同一になる。この場合、送信用伝送路229-1乃至229-3および受信用伝送路239-1乃至239-3を電気信号が伝送する遅延時間の合計は、送信用伝送路229-1乃至229-3を往復する往復遅延時間τ11に等しくなる。したがって式5が成立し、中央処理装置150は、式5により、伝搬遅延時間τを算出することができる。
 そして、中央処理装置150は、求めた往復遅延時間τ11および伝搬伝送時間τ21から伝搬遅延時間を算出し、伝搬遅延時間と係数aおよびbとから、媒質に含まれる水分量を測定する処理を行う。
 図142は、本技術の第1の実施の形態における往復遅延時間および伝搬伝送時間と水分量との関係の一例を示すグラフである。同図における縦軸は、往復遅延時間または伝搬伝送時間を示し、横軸は水分量を示す。
 同図における点線は、往復遅延時間と水分量との関係を示す。実線は、伝搬伝送時間と水分量との関係を示す。同図に例示するように、水分量に関わらず、往復遅延時間は一定である。一方、水分量が多くなるほど、伝搬伝送遅延時間は長くなる。
 図143は、本技術の第1の実施の形態における伝搬遅延時間と水分量との関係の一例を示すグラフである。同図における縦軸は、伝搬遅延時間を示し、横軸は、水分量を示す。同図の直線は、図142の水分量毎に、伝搬伝送時間および往復遅延時間の差分を求めることにより得られる。
 図143に例示するように、伝搬遅延時間は、水分量が多くなるほど、長くなり、両者は比例関係にある。したがって式6が成立する。式6における係数aは、同図における直線の傾きであり、係数bは、切片である。
 図144は、本技術の第1の実施の形態における測定回路210の別の構成例を示すブロック図である。図136の測定回路210は、反射波および透過波を受信するための受信機として、反射波受信機440と透過波受信機450の2つを備えていた。これに対し、図144の測定回路210は、反射波と透過波を受信するための受信機として、1つの第2受信機455を共用する構成となっている。より具体的には、測定回路210において、反射波と透過波は、センサ制御部470によって制御されるスイッチ445により切り替えられ、1つの第2受信機455によって時分割で受信される。その第2受信機455での受信結果は、センサ制御部470へと出力される。この構成により、測定回路210の大きさは図136の場合よりも削減され、その結果、水分計測システム100の大きさは削減されかつその製造コストも削減される。
 図145は、本技術の第1の実施の形態におけるセンサ装置200の別の構成例を示すブロック図である。同図の測定回路210は、センサ通信部212の代わりに、センサ信号処理部460を備える点において図136の回路と異なる。センサ信号処理部460の構成は、第1の実施の形態の中央処理装置150内の信号処理部154と同様である。また、センサ制御部470の機能は、例えば、DSP(Digital Signal Processing)回路により実現される。
 また、測定回路210は、単体の半導体チップに実装されてもよい。これにより、測定回路210および信号処理部154の機能を単体の半導体チップで実現することができる。
 図145を図136と比較すると、中央処理装置150に必要となる機能が削減されている。その結果、中央処理装置150を実装するための電子機器に求められる機能や性能が低減され、中央処理装置150を実装するための電子機器として、例えば、スマートフォンやタブレット端末など市販の端末装置を用いることが、図136と比較して、より容易になっている。
 図146は、本技術の第1の実施の形態における水分計測システム100の動作の一例を示すフローチャートである。同図における動作は、例えば、水分量を測定するための所定のアプリケーションが実行されたときに開始される。
 一対の送信プローブおよび受信プローブは、電磁波を送受信する(ステップS901)。測定回路210は、入射波および反射波から反射係数を算出し(ステップS902)、入射波および透過波から透過係数を算出する(ステップS903)。
 次いで、中央処理装置150は、反射係数から往復遅延時間を算出し(ステップS904)、透過係数から伝搬伝送時間を算出する(ステップS905)。中央処理装置150は、往復遅延時間および伝搬伝送時間から伝搬遅延時間を算出し(ステップS906)、その伝搬遅延時間と係数aおよびbとから水分量を算出する(ステップS907)。ステップS907の後に、水分計測システム100は、測定のための動作を終了する。
 [電波吸収部の構成例]
 続いて、電波吸収部について説明する。TDR(Time Domain Reflectometry)やTDT(Time Domain Transmissometry)方式と異なり、透過型の本願発明の水分センサは広帯域な電波を送信し、送信した電波が、受信機で受信する必要がある。しかしながら、その電波が反射してノイズとなりインパルス応答のピークを算出する際、ピーク位置がずれ、遅延時間にずれが生じることがある。そのため広帯域でのノイズ源を発生させない対策や発生した場合のノイズ除去が求められている。特に1つのプローブに複数のアンテナをもつ場合には、不要輻射が大幅に増え電波の抑制が難しい。
 そこで、センサ装置200では、アンテナを除くプローブの周囲に電波吸収部341等を設置している。
 電波吸収体部の設置方法として、3つが考えられる。1つ目は、基板上もしくは同軸ケーブル上に電波吸収体を設置する方法である。例えば、基板にはめる方法、基板にのせる方法、基板にはりつける方法、基板に巻き付ける方法が用いられる。上下もしくは左右のみ基板に設置する場合は基板幅より大きくすればよい。
 2つ目は、外部筐体にあらかじめ設置もしくは基板層設置時に同時に設置する方法である。例えば、筐体成形時に樹脂に埋没させる方法、樹脂に電波吸収体を混ぜて成形する方法が用いられる。電波吸収体に吸湿性がある場合は、別途、外側を別の樹脂で覆ったり、塗装などでコートすればよい。この他、筐体成形後に電波吸収体をはめる方法や、はりつける方法、筐体成形時に電波吸収体を混ぜた溶液と基板をいれて固める方法が用いられる。その際、電波送受信部分を、別の樹脂またはOリングなどで電波吸収体が付かないように覆うことが望ましい。筐体の内側に電波吸収材を塗布する方法も考えられる。
 3つ目は、電波吸収部をフェライトやシート、電波吸収体フィルムや塗布材と組み合わせてる方法である。この場合、フェライトなどの隙間に塗布してもよい。
 基板に対しての電波吸収体の設置位置と設置方法に関して、基板幅と同等幅以上の上下面に設置するが、基板幅より広くなる方が電波吸収部の設置効果が高く、さらには全面を覆うことが望ましい。
 また、電波吸収部の下端は、アンテナの上端であることが望ましい。アンテナの下端から電波吸収部の下端までの距離は、アンテナ自身の長さを含めて中心周波数の波長の半波長以下もしくは波長帯域幅以内が望ましい。例えば、1乃至9ギガヘルツ(GHz)を用いる場合、中心周波数は5ギガヘルツ(GHz)であり、その波長は60ミリメートル(mm)である。この場合、アンテナの下端から電波吸収部の下端までの距離は、30ミリメートル以内が望ましい。帯域幅は、8ギガヘルツであるため、分解能は37.5ミリメートル(mm)となり、電波吸収部の下端までの距離を分解能未満にすることができる。
 また、電波吸収体は、プローブに設置してもよいし、外装ケースに設置してもよい。外装設置する場合は、外装を成形、切削、混錬するときもしくは外装が出来上がってから塗布、設置してもよい。
 電波吸収部の材料の成分として、
(1) 磁性材料
(2) 導電性高分子
(3) 誘電性高分子
(4) メタマテリアル
を用いることができる。
 また、材料の状態としては、
(a) 電波吸収材のみで形成したものであり、かつ、剛体(フェライト焼結体の板、導電性高分子の成形物など)
(b) 電波吸収材のみで形成したものであり、かつ、柔軟性のあるシート(導電性高分子のシートなど)
(c) 電波吸収材を分散媒中へ分散させたものであり、かつ、剛体(フェライトを分散させた有機樹脂剛体など)
(d) 電波吸収材を分散媒中へ分散させたものであり、かつ、柔軟性のあるシート(フェライトを分散させたシートなど)
(e) 流体(塗布後に固化する材料など)
が挙げられる。
 材料の状態と成分の組合せに関して、状態(a)では、成分(1)、(2)、(3)、(4)のいずれでもよい。状態(b)、(c)および(d)についても同様である。状態(e)では、成分(1)、(2)、(3)が用いられる。
 電波吸収部の作り方に関して、接着する方法、Oリング等の固定材を使ってはめ込む方法、埋め込む方法、差し込む方法、巻く方法や、塗布する方法を用いることができる。
 図147は、本技術の第1の実施の形態における電波吸収部341および344の被覆箇所の一例を示す図である。送信側、受信側のそれぞれのアンテナ数を1つとする。送信側に、放射エレメント330を含む送信アンテナ221が配置され、受信側に、放射エレメント333を含む受信アンテナ231が配置される。これらのアンテナ以外の箇所に電波吸収部341および344が形成される。
 同図におけるaに例示するように、電波吸収部が、アンテナ以外のプローブ全体を被覆することが最も望ましい。アンテナ以外のプローブの一部を被覆する場合、同図におけるbに例示するように、電波吸収部の下端は、アンテナの上端であることが望ましい。同図におけるcに例示するように、電波吸収部の下端をアンテナ上端から離すこともできる。ただし、アンテナの下端から電波吸収部の下端までの距離は、アンテナ自身の長さを含めて中心周波数の波長の半波長以下もしく波長帯域幅以内が望ましい。
 図148は、電波吸収部により被覆しない比較例を示す図である。電波吸収部をアンテナ以外の部分に設けることにより、比較例と比較して、ノイズの原因となる不要輻射の電波を吸収させることができる。
 図149は、本技術の第1の実施の形態におけるプローブ内基板321および322の片面を被覆した例を示す図である。同図におけるaに例示するように、プローブ内基板321の両面のうち、送信アンテナ221が形成されていない方の面を電波吸収部347によりさらに被覆することができる。プローブ内基板322の両面のうち、受信アンテナ231が形成されていない方の面も電波吸収部348により被覆される。
 プローブ内基板321および322の片面を被覆する際は、アンテナ以外のプローブの一部を被覆することもできる。この場合、同図におけるbに例示するように、電波吸収部の下端は、アンテナの上端であることが望ましい。同図におけるcに例示するように、電波吸収部の下端をアンテナ上端から離すこともできる。
 図150は、本技術の第1の実施の形態におけるプローブの先端をさらに被覆した例を示す図である。同図におけるaに例示するように、位置決め部351および352が設けられているプローブの先端を電波吸収部349および350によりさらに被覆することができる。
 プローブの先端を被覆する際は、アンテナ以外のプローブの一部を被覆することもできる。この場合、同図におけるbに例示するように、電波吸収部の下端は、アンテナの上端であることが望ましい。同図におけるcに例示するように、電波吸収部の下端をアンテナ上端から離すこともできる。
 図151は、本技術の第1の実施の形態における先端のみを被覆した例を示す図である。同図に例示するように、電波吸収部349および350により先端のみを被覆することもできる。
 図152は、本技術の第1の実施の形態におけるプローブ内基板321および322の片面と先端とを被覆した例を示す図である。同図におけるaに例示するように、プローブ内基板321および322の片面と、プローブの先端との両方をさらに被覆することができる。
 片面と先端とをさらに被覆する際、アンテナ以外のプローブの一部を被覆することもできる。この場合、同図におけるbに例示するように、電波吸収部の下端は、アンテナの上端であることが望ましい。同図におけるcに例示するように、電波吸収部の下端をアンテナ上端から離すこともできる。
 図153は、本技術の第1の実施の形態における電波吸収部341の形状の一例を示す図である。電波吸収部341は、1つ以上の部品から構成される。電波吸収部341の外側、内側の形状は、円形であってもよいし、多角形であってもよい。
 同図におけるaは、外側および内側が円形の電波吸収部341の上面図および側面図を示す。同図におけるbは、外側が円形で、内側が矩形の電波吸収部341の上面図および側面図を示す。同図におけるcは、外側が矩形で、内側が円形の電波吸収部341の上面図および側面図を示す。同図におけるdは、外側および内側が矩形の電波吸収部341の上面図および側面図を示す。同図におけるeは、螺旋溝が形成された電波吸収部341の側面図を示す。螺旋溝を形成する際、基板やセミリジッドケーブルを挿入する筐体にあらかじめ設置しやすい構造としてもよい。フェイライト材を用いる場合、電波吸収部341は、5mm以上の厚さとする。フィルムや塗布膜の場合は100um以上とすする。電波吸収部341以外の電波吸収部の構造は、電波吸収部341と同様である。
 このように、本技術の第1の実施の形態によれば、平面状の送信アンテナ221を、受信アンテナ231と対向してアンテナ間距離が所定の距離となるように固定して配置したため、伝送損失を減少させ、土壌中の水分を正確に測定することができる。
 [第1の変形例]
 上述の第1の実施の形態では、測定部基板311と直交方向にプローブ内基板321および322を接続してアンテナを対向させていたが、この構成では、3枚の基板に加えて、接続用のコネクタやケーブルが必要となり、構造が複雑になる。この第1の実施の形態の第1の変形例のセンサ装置200は、フレキ基板の一部をねじることによりアンテナを対向させた点において第1の実施の形態と異なる。
 図154は、本技術の第1の実施の形態の第1の変形例におけるフレキ基板271を用いるセンサ装置200の一例を示す図である。本技術の第1の実施の形態の第1の変形例のセンサ装置200内には、測定部基板311、プローブ内基板321およびプローブ内基板322の3枚の代わりに、1枚のフレキ基板271が設けられる。
 同図におけるaは、先端をねじる前のフレキ基板271を示し、同図におけるbは、先端をねじった後のフレキ基板271を示す。センサ筐体305は、省略されている。フレキ基板271は一対の突出部を備え、それらの先端には、送信アンテナ221および受信アンテナ231が配置される。また、フレキ基板271には、測定回路210が配置される。
 同図におけるbに例示するように、フレキ基板271の先端をねじることにより、送信アンテナ221と受信アンテナ231とを対向させた状態にすることができる。この構成により、3枚の基板を接続する第1の実施の形態と比較して、部品点数を削減し、構造を簡易化することができる。
 図155は、本技術の第1の実施の形態の第1の変形例におけるフレキ基板およびリジッド基板を用いるセンサ装置200の一例を示す図である。同図におけるaは、1枚のリジッド基板を用いる例であり、同図におけるbは、3枚のリジッド基板を用いる例である。
 同図におけるaに例示するように、リジッド基板275と、細長いフレキ基板271および272とを接続してセンサ装置200内に配置することもできる。リジッド基板275には測定回路210が配置される。フレキ基板271には送信アンテナ221が配置され、フレキ基板272には受信アンテナ231が配置される。
 例えば、測定回路210の周辺は配線の都合で多層化必要だったり、排熱の関係で熱伝導性の良い基板が必要だったりして、リジッド基板が必要な場合がある。リジッド基板を併用することで、この要求を満たしつつアンテナを対向した配置も実現できる。
 同図におけるbに例示するように、リジッド基板275、276および277と、細長いフレキ基板271および272とを接続してセンサ装置200内に配置することもできる。フレキ基板271の先端にリジッド基板276が接続され、そのリジッド基板276に送信アンテナ221が設けられる。フレキ基板272の先端にリジッド基板277が接続され、そのリジッド基板277に受信アンテナ231が設けられる。
 図156は、本技術の第1の実施の形態の第1の変形例におけるアンテナ数を増やした際のセンサ装置200の一例を示す図である。同図におけるaは、先端をねじる前のフレキ基板271を示し、同図におけるbは、先端をねじった後のフレキ基板271を示す。
 同図に例示するように、複数対のアンテナを配置することもできる。アンテナを複数対とすることにより、深さ方向において、複数地点の水分を測定することができる。
 図157は、本技術の第1の実施の形態の第1の変形例におけるアンテナ数を増やした際のフレキ基板およびリジッド基板を用いるセンサ装置200の一例を示す図である。同図におけるaは、複数対のアンテナを設け、1枚のリジッド基板を用いる例であり、同図におけるbは、複数対のアンテナを設け、5枚のリジッド基板を用いる例である。
 同図におけるbでは、フレキ基板271の先端にリジッド基板276が接続され、そのリジッド基板276に送信アンテナ221が設けられる。フレキ基板272の先端にリジッド基板277が接続され、そのリジッド基板277に受信アンテナ231が設けられる。また、リジッド基板276とリジッド基板278との間にフレキ基板273が設けられ、リジッド基板278に送信アンテナ222が設けられる。リジッド基板277とリジッド基板279との間にフレキ基板274が設けられ、リジッド基板278に受信アンテナ232が設けられる。
 図158は、本技術の第1の実施の形態の第1の変形例におけるアンテナごとに伝送路を配線したセンサ装置200の一例を示す図である。同図におけるaは、先端をねじる前のフレキ基板271を示し、同図におけるbは、先端をねじった後のフレキ基板271を示す。
 複数対のアンテナを配置する場合、同図に例示するように、アンテナごとに伝送路を配線することができる。
 図159は、本技術の第1の実施の形態の第1の変形例におけるアンテナごとに伝送路を配線し、フレキ基板およびリジッド基板を用いるセンサ装置200の一例を示す図である。同図におけるaは、複数対のアンテナを設け、1枚のリジッド基板を用いる例であり、同図におけるbは、複数対のアンテナを設け、5枚のリジッド基板を用いる例である。
 図160は、本技術の第1の実施の形態の第1の変形例における、ハードシェルのセンサ筐体305内に基板を配置したセンサ装置200の一例を示す図である。同図におけるaは、1枚のリジッド基板275と、フレキ基板271および272とを接続して配置した例であり、同図におけるbは、フレキ基板271および272を電波吸収部341および344により被覆した例である。
 フレキ基板271等は柔らかく変形しやすいため、形状維持を目的に、同図におけるaに例示するように、ハードシェルのセンサ筐体305内に設置してもよい。同図におけるbに例示するように、電波吸収部341および344により被覆することもできる。ハードシェルを用いることで形状を維持できる。特にアンテナ間の距離は特性に影響するため、アンテナ間距離を保てることはメリットが大きい。また電波吸収部341等を併用することで不要反射波を吸収でき特性改善につながる。
 図161は、本技術の第1の実施の形態の第1の変形例における、アンテナ数を増やし、ハードシェルのセンサ筐体305内に基板を配置したセンサ装置の一例を示す図である。同図におけるaは、複数対のアンテナを設け、1枚のリジッド基板を用いる例であり、同図におけるbは、複数対のアンテナを設け、5枚のリジッド基板を用いる例である。
 このように、本技術の第1の実施の形態の第1の変形例によれば、フレキ基板の一部をねじることによりアンテナを対向させたため、第1の実施の形態よりもセンサ装置200の構成を簡易化することができる。
 [第2の変形例]
 上述の第1の実施の形態では、測定部基板311と直交方向にプローブ内基板321および322を接続してアンテナを対向させていたが、この構成では、3枚の基板に加えて、接続用のコネクタやケーブルが必要となり、構造が複雑になる。この第1の実施の形態の第2の変形例のセンサ装置200は、フレキシブルリジッド基板の一部を曲げてアンテナを対向させた点において第1の実施の形態と異なる。
 図162は、本技術の第1の実施の形態の第2の変形例におけるセンサ装置200と比較例との一例を示す図である。同図におけるaは、第1の実施の形態の第2の変形例におけるセンサ装置200の一例を示し、同図におけるbは、3枚の基板を接続する比較例のセンサ装置200の一例を示す。
 第1の実施の形態の第2の変形例におけるセンサ装置200内には、フレキ基板271および272とリジッド基板275乃至276とを接合したフレキシブルリジッド基板が配置される。
 リジッド基板275には、測定回路210が配置される。リジッド基板276には送信アンテナ221(不図示)が配置され、リジッド基板277には受信アンテナ231(不図示)が配置される。
 リジッド基板275とリジッド基板276とはフレキ基板271により接続され、リジッド基板275とリジッド基板277とはフレキ基板272により接続される。フレキ基板271および272は折り曲げられ、リジッド基板276上のアンテナとリジッド基板277上のアンテナとが対向した状態となる。
 同図におけるbに例示するように、リジッド基板275と、リジッド基板276および277とをコネクタ314および315により接続する比較例も考えられる。この比較例と比較して、同図におけるaのようにフレキシブルリジッド基板の一部を曲げる構成では、コネクタを使用しないため、コネクタのコストと、組み立て費用を削減できる。また、3つのリジッド基板を一体化することができるため、基板を低コスト化できる。さらに、従来のアンテナの指向性をそのままに使用でき、伝送損失を減らすことができる。
 このように、本技術の第1の実施の形態の第2の変形例によれば、フレキシブルリジッド基板の一部を曲げてアンテナを対向させるため、コネクタのコストと、組み立て費用を削減できる。
 [第3の変形例]
 上述の第1の実施の形態では、プローブ内基板内の伝送路(ストリップ線路など)により、平面状のアンテナもしくは平面状かつスリット状のアンテナと、測定部基板311とを接続していたが、同軸ケーブルにより接続することもできる。この第1の実施の形態の第3の変形例のセンサ装置200は、同軸ケーブルにより、平面状のアンテナもしくは平面状かつスリット状のアンテナと、測定部基板311とを接続した点において第1の実施の形態と異なる。
 図163は、本技術の第1の実施の形態の第3の変形例におけるセンサ装置200の一例を示す図である。この第1の実施の形態の第3の変形例のセンサ装置200は、3対のアンテナと測定部基板311とが同軸ケーブル281乃至286により接続される点において第1の実施の形態と異なる。
 送信アンテナ221乃至223と、測定部基板311とは同軸ケーブル281乃至283により接続され、受信アンテナ231乃至233と、測定部基板311とは同軸ケーブル284乃至286により接続される。
 柔軟材(柔軟性を備えた材料)である同軸ケーブルを用いて、アンテナを所望の位置に配置するには、例えば、熱膨張率が一定となるように形成したフレーム291乃至294を用いればよい。フレーム291および292により、送信アンテナと対応する同軸ケーブルとを挟み、フレーム293および294により、受信アンテナと対応する同軸ケーブルとを挟んでセンサ筐体305に挿せばよい。ここで、例えば、送信アンテナと対応する同軸ケーブルとを挟むフレーム291と292を、熱膨張率が異なる材料で形成してしまうと、センサ装置200が配置された環境温度の変化によって、これら2つのフレームが湾曲してしまう可能性がある。このため、第3の変形例において、フレームを構成する部品は、いずれもが熱膨張率が同じ材料で形成されていることが好ましい。かつ、これらの部品は、電磁波の放射と受信の妨げとならないように、電磁波透過性材料で形成されていることが好ましい。
 図164は、本技術の第1の実施の形態の第3の変形例におけるセンサ装置200の上面図および断面図の一例を示す図である。同図におけるaは、測定部筐体310の上面図の一例を示す。同図におけるbは、アンテナの無い部分のプローブ筐体320の断面図を示し、同図におけるcは、アンテナのある部分のプローブ筐体320の断面図を示す。
 同図におけるaに例示するように、測定部筐体310には、測定部基板311の位置を規定するための位置決め部353および354が設けられる。また、同図におけるb、cに例示するように、同軸ケーブル281等が送信アンテナ221等に接続される。
 図165は、本技術の第1の実施の形態の第3の変形例における基板の収容方法を説明するための図である。まず、同図におけるaに例示するように、フレーム291および292で、同軸ケーブルに接続された送信側のアンテナを挟み、フレーム293および294により、受信側のアンテナを挟む。そして、同図におけるbに例示するように、位置決め部353および354を測定部基板311の下部に取り付け、位置決め部351および352をプローブ内基板321および322の先端に取り付ける。次いで、同図におけるcに例示するように、それらの位置決め部を取り付けた構造体をセンサ筐体305に挿入する。
 図166は、本技術の第1の実施の形態の第3の変形例における基板の収容方法の別の例を説明するための図である。同図におけるaに例示するように、センサ筐体305内に、位置決め部351乃至354と、フレーム291乃至294とを先に取り付けておくこともできる。この場合、同図におけるbおよびcに例示するように、測定部基板311等がセンサ筐体305に挿入され、同図におけるdに例示するようにセンサ筐体305が密閉される。
 図167は、本技術の第1の実施の形態の第3の変形例における基板の収容方法の他の例を説明するための図である。同図に例示するように、前部筐体305-1と後部筐体305-2とに分離可能なセンサ筐体305を用いることもできる。例えば、同図におけるaに例示するように、後部筐体305-2を載置し、同図におけるbおよびcに例示するように測定部基板311等を挿入し、同図におけるdおよびeに例示するように、前部筐体305-1を取り付ければよい。
 このように、本技術の第1の実施の形態の第3の変形例によれば、同軸ケーブルによりアンテナを測定部基板311とを接続したため、伝送路が長い場合でも、送信アンテナと受信アンテナを所定の位置に配置して所定のアンテナ間距離を実現することができる。これにより、水分を正確に測定することができる。
 [第4の変形例]
 上述の第1の実施の形態では、プローブ筐体内に収める送信アンテナと受信アンテナの向きと位置を固定するための構造として、プローブ筐体320内に位置決め部351および352が設けられていた。
プローブ筐体内に収める送信アンテナと受信アンテナの向きと位置を固定するための構造は、第1の実施の形態の図4に記載の構造に限らず、各種の変形例が考え得る。
これら、送信アンテナと受信アンテナの向きと位置を固定するための構造の変形例をまとめて、第4の変形例として説明する。
なお、これらの各種の第4の変形例において、送信アンテナと受信アンテナの向きと位置を固定するための構造(例えば、位置決め部や位置決め用の溝)は、特に断り書きが無い限り、筐体を形成した後に、筐体とは別に形成した構造物を、筐体に取り付ける形態であってもよいし、筐体自体がその形成時から、前記アンテナの位置を固定するための構造を備えている形態であってもよい。
 図168は、本技術の第1の実施の形態の第4の変形例その1として、センサ装置200の一例を示す図である。この第1の実施の形態の第4の変形例その1のセンサ装置200は、測定部筐体310内に位置決め部353および354がさらに配置される点において第1の実施の形態と異なる。
 位置決め部351および352は、プローブ筐体320の先端に配置される。これらの位置決め部351および352は、プローブ内基板321および322の向きを所定の向きに固定し、かつ、これらの位置を所定位置(2つの基板の間に所定の距離を設けた位置)に固定するために用いられる部品である。これらの位置決め部は、センサ筐体305と一体化したものであってもよい。
 位置決め部353および354は、測定部基板311の位置を所定位置に固定するために用いられる部品である。これらの位置決め部は、送信アンテナと受信アンテナとをプローブ筐体320内で移動させながら、予め定めた所定の方向(Y軸方向など)で所定の位置に配置することを容易にするための形状を、併せて備えてよい。例えば、予め定めた所定の方向に向かって、位置決め部が斜面を備えてよい。アンテナを予め定めた所定の位置に導くために、その位置に向かって位置決め部が斜面を備えてよい。位置決め部のそれぞれの材料として、例えば、電磁透過性材料が用いられる。
 図169は、本技術の第1の実施の形態の第4の変形例その1におけるセンサ装置200の上面図および断面図の一例を示す図である。同図におけるaは、測定部筐体310の上面図の一例を示す。同図におけるbは、位置決め部351、352が配置された位置でのプローブ筐体の断面図を示す。測定部筐体310およびプローブ筐体320のそれぞれには、位置決め部351等を取り付けるための溝が設けられている。
 図170は、本技術の第1の実施の形態の第4の変形例その1における基板の収容方法を説明するための図である。同図におけるaに例示するように、センサ筐体305内に位置決め部351乃至354が取り付けられる。そして、同図におけるbおよびcに例示するように、測定部基板311等がセンサ筐体305に挿入され、同図におけるdに例示するようにセンサ筐体305が密閉される。
 図171は、本技術の第1の実施の形態の第4の変形例その1における基板の収容方法の別の例を説明するための図である。同図に例示するように、前部筐体305-1と後部筐体305-2とに分離可能なセンサ筐体305を用いることもできる。
 図172は、本技術の第1の実施の形態の第4の変形例その2として、位置決め部の位置を変更したセンサ装置200の一例を示す図である。同図に例示するように、位置決め部351および352をプローブ筐体320の上端付近に配置することもできる。なお、位置決め部351および352をプローブ筐体320の中央部に配置することもできる。
 図173は、本技術の第1の実施の形態の第4の変形例その2として、位置決め部の位置を変更したセンサ装置200の上面図および断面図の一例を示す図である。
 図174は、本技術の第1の実施の形態の第4の変形例その3として、位置決め部を追加したセンサ装置200の一例を示す図である。同図に例示するように、位置決め部355および356をプローブ筐体320の上端付近に追加することもできる。なお、位置決め部355および356をプローブ筐体320の中央部に配置することもできる。図174に示す例に限らず、位置決め部は、プローブ筐体320内の複数箇所に配置することができる。
 図175は、本技術の第1の実施の形態の第4の変形例その3として位置決め部を追加したセンサ装置200の上面図および断面図の一例を示す図である。
 図176は、本技術の第1の実施の形態の第4の変形例その4として、位置決め部の形状の異なるセンサ装置200の一例を示す図である。
 図177は、本技術の第1の実施の形態の第4の変形例その4として、位置決め部の形状の異なるセンサ装置の上面図および断面図の一例を示す図である。図176と図177に例示するように、位置決め部351、352、355および356は、プローブ断面において、プローブ内基板321や322の断面端部を押さえる形態であってよい。また、プローブ内基板321は、フレーム291および292に挟まれ、プローブ内基板322は、フレーム293および294に挟まれる。
 また、例えば、プローブ筐体320内へ挿した基板の位置が一定となるように、位置決め部355や356は、プローブ筐体内の基板の長さ方向(Y軸方向)へ延在してよい。その長さは、プローブ内基板321等のZ軸方向の長さ(すなわち、幅)以上、あるいは、プローブ内基板321等のY軸方向の長さの1/2以上、であってもよい。
 図178は、本技術の第1の実施の形態の第4の変形例その4として、位置決め部の形状が異なる場合の基板の収容方法を説明するための図である。同図におけるaに例示するように、センサ筐体305内に、位置決め部351乃至354と、フレーム291乃至294とが取り付けられる。そして、同図におけるbおよびcに例示するように、測定部基板311等がセンサ筐体305に挿入され、同図におけるdに例示するようにセンサ筐体305が密閉される。なお、フレーム291乃至294の形状は、基板の挿入を容易にして、かつ、基板の位置を一定にできる構造であれば、種々の形状を選び得る。一例として、溝型の形状であっても構わないし、レール状の形状であっても構わない。
 図179は、本技術の第1の実施の形態の第4の変形例その4として、位置決め部の形状が異なる場合の基板の収容方法の別の例を説明するための図である。同図におけるaに例示するように、センサ筐体305への挿入前に、フレーム291および292で、プローブ内基板321を挟み、フレーム293および294により、プローブ内基板322を挟むこともできる。この場合、同図におけるbに例示するように、位置決め部351乃至354が取り付けられる。次いで、同図におけるcに例示するように、それらの位置決め部を取り付けた構造体がセンサ筐体305に挿入される。
 図180は、本技術の第1の実施の形態の第4の変形例その5として、フレームを伸ばしたセンサ装置200の一例を示す図である。同図に例示するように、センサ筐体305の上端までフレーム291乃至294を伸ばすこともできる。
 図181は、本技術の第1の実施の形態の第4の変形例その5として、フレームを伸ばしたセンサ装置の上面図および断面図の一例を示す図である。同図におけるaは、測定部筐体310の上面図の一例を示す。同図におけるbは、アンテナの無い部分のプローブ筐体320の断面図を示し、同図におけるcは、アンテナのある部分のプローブ筐体320の断面図を示す。
 図182は、本技術の第1の実施の形態の第4の変形例その6として、測定部基板の位置を固定する別の構造をさらに備えたセンサ装置200の一例を示す図である。同図に例示するように、測定部基板と、プローブ内基板とを、嵌合させる構造を備えていてもよい。より具体的には、測定部基板とプローブ内基板のどちらかに切れ込みがあり、これを利用して、2つの基板を嵌合する構造を備えていてもよい。
 図183は、本技術の第1の実施の形態の第4の変形例その6として、測定部基板の位置を固定する別の構造をさらに備えたセンサ装置200の断面図の一例を示す図である。同図におけるaは、位置決め部351、352が配置された位置でのプローブ筐体の断面図を示す。
 図184は、本技術の第1の実施の形態の第4の変形例その7として、治具を追加したセンサ装置200の一例を示す図である。同図に例示するように、測定部基板311と、プローブ内基板321および322とを、固定する冶具359-1および359-2を追加することもできる。これらの冶具は、測定部基板311を嵌合もしくは固定させる部分と、プローブ内基板321等を嵌合もしくは固定させる部分との双方を備える。この形態の場合も、上記の嵌合もしくは固定によって一体となった測定部基板311とプローブ内基板321等のどこか一部をセンサ筐体305に固定することで、それらの基板の位置を固定することができる。
 図185は、本技術の第1の実施の形態の第4の変形例その7として、治具を追加したセンサ装置200の上面図および断面図の一例を示す図である。同図におけるaは、測定部筐体310の上面図の一例を示す。同図におけるbは、位置決め部351、352が配置された位置でのプローブ筐体の断面図を示す。
 図186は、本技術の第1の実施の形態の第4の変形例その8として、プローブ内基板321および322をセンサ筐体305に突き当てる構造を備えたセンサ装置200の一例を示す図である。位置決め部を設けず、プローブ内基板321および322の先端(点線で囲った部分)をセンサ筐体305に突き当てる(言い換えれば、接触させる)ことにより、それらの基板の位置を固定することができる。
 図187は、本技術の第1の実施の形態の第4の変形例その8として、プローブ内基板321および322をセンサ筐体305に突き当てる構造を備えたセンサ装置200のセンサ筐体とプローブ内基板の断面図の一例である。同図におけるaは、図186のA-A'線に沿って切断した際のセンサ筐体305の断面図を示す。図187におけるbは、図181B-B'線に沿って切断した際のセンサ筐体305の断面図を示す。図187におけるcは、図186のC-C'線に沿って切断した際のセンサ筐体305の断面図を示す。図186と図187に例示した、プローブ内基板321および322をプローブ筐体300に突き当てる構造においては、プローブ内基板が、基板の幅方向(Z軸方向)において2点×基板の厚さ方向(Z軸方向)において2点、の合計4点のうち、少なくとも2点でプローブ筐体300筐体と接触することで、筐体内におけるプローブ内基板321および322の位置を固定している。
 図188は、本技術の第1の実施の形態に関する第4の変形例(送信アンテナと受信アンテナの向きと位置を固定する構造の変形例)その9を説明する図である。第4の変形例その9として図188に示したセンサ装置200は、本技術の第1の実施の形態(図4)が有するセンサ筐体305を、備えていない。図188に示したセンサ装置200は、センサ筐体305を備えない代わりに、少なくとも、
(1)送信アンテナとこれに接続した送信用伝送路と備えた送信用基板(図4に示したセンサ装置200における、送信用プローブ基板321と同じもの)の周囲を樹脂で固めた構造によって形成された送信用プローブと、
(2)受信アンテナとこれに接続した受信用伝送路と備えた受信用基板(図4に示したセンサ装置200における、受信用プローブ基板322と同じもの)の周囲を樹脂で固めた構造によって形成された受信用プローブと、
を備え、
かつ、上記(1)の送信用プローブと(2)の受信用プローブとの間が固定された構造を備える。
 そして、第4の変形例その9に含まれるセンサ装置200は、
上記(1)の送信用プローブと、
上記(2)の受信用プローブと、を備え、
(3)上記(1)および(2)と異なる第3の構造部分をさらに備えることで、
上記(1)の送信用プローブと(2)の受信用プローブとの間が固定された構造を備えてよい。ここで、上記(3)第3の構造部分の一例は、図4における補強部260のような補強部材である。
 図188に示したセンサ装置200は、
上記(1)の送信用プローブと、
上記(2)の受信用プローブと、
上記(3)第3の構造部分として、測定部基板311の周囲を樹脂で固めた構造部分と、を備え、
上記(1)乃至(3)の構造が一体となって固定された構造を備える。
 ここで、
上記(1)の送信用プローブと、
上記(2)の受信用プローブは、
『これらのプローブを土壌へ挿した際に、これらのプローブが変形しまい、そのプローブ内部に配置された電子基板が変形してしまい、さらにその結果この電子基板に形成した送信アンテナと受信アンテナとの間の距離が所定の値から変わってしまい、これによって水分量の計測結果に誤差が生じること』を防ぐために、上記(1)送信用基板の周囲を樹脂で固めた構造によって形成された送信用プローブは、このプローブに含まれる樹脂部分の強度が、このプローブに含まれる送信用基板単体の強度よりも、高いことが望ましい。言い換えれば、送信用基板の周囲を樹脂で固めた送信用プローブの強度が、このプローブに含まれる送信用基板単体の強度の2倍以上となることが望ましい。これをさらに言い換えれば、図135に記載の方法を用いて、送信用基板の周囲を樹脂で固めた送信用プローブの変形量と、このプローブに含まれる送信用基板単体の変形量を比較した場合、送信用基板の周囲を樹脂で固めた送信用プローブの変形量の変形量が、このプローブに含まれる送信用基板単体の変形量の、1/2以下であることが望ましい。
 同様に上記(2)受信用基板の周囲を樹脂で固めた構造によって形成された受信用プローブは、このプローブに含まれる樹脂部分の強度が、このプローブに含まれる受信用基板単体の強度よりも、高いことが望ましい。言い換えれば、受信用基板の周囲を樹脂で固めた受信用プローブの強度が、このプローブに含まれる受信用基板単体の強度の2倍以上となることが望ましい。これをさらに言い換えれば、図135に記載の方法を用いて、受信用基板の周囲を樹脂で固めた受信用プローブの変形量と、このプローブに含まれる受信用基板単体の変形量を比較した場合、受信用基板の周囲を樹脂で固めた受信用プローブの変形量の変形量が、このプローブに含まれる受信用基板単体の変形量の、1/2以下であることが望ましい。
 このように、本技術の第1の実施の形態の第4の変形例によれば、プローブ筐体内に収める送信アンテナと受信アンテナの向きと位置を固定するための各種の構造を備えることにより、これにより送信アンテナと受信アンテを所定の向きかつ所定の位置で固定することができる。
 [第5の変形例]
 上述の第1の実施の形態では、図135を参照して説明したように、センサ装置200に備わるプローブ筐体320を土壌へ挿した際に、これが変形してしまうことを防ぐために、プローブ筐体320の強度を、プローブ筐体320の内部に収めたプローブ内基板321、322よりも高くした構造を備えていた。そして、プローブ筐体320の厚さ(肉厚)は、筐体の強度が上記基板の強度を上回るように、所定の厚さとなっていた。しかし、第1の実施の形態のセンサ装置200を使用する土壌の硬さが著しく高い場合には、プローブ筐体320を土壌へ挿した際の変形を防ぐために、プローブ筐体320が、さらに高い強度を備えることが求められる可能性がある。プローブ筐体320の強度を高めるためには、筐体の肉厚を大きくする必要がある。しかし、プローブ筐体320の肉厚を不用意に大きくすると(例えば、アンテナ付近の筐体の肉厚を著しく大きくすると)、場合によっては水分量の計測精度が悪化することが考えられる。そこで、第1の実施の形態の第5の変形例として、水分量の計測精度を悪化させる懸念無しに、第1の実施の形態よりもセンサ装置200に備わるプローブ筐体320の強度を向上させる構造を、図191乃至199を参照して説明する。
 本技術の第1の実施の形態の第5の変形例におけるセンサ装置200に備わるプローブ筐体320の断面形状を説明する前に、図189と190を参照して、本技術の第1の実施の形態のセンサ装置200に備わるプローブ筐体320の断面形状を説明する。
 図4を参照して、本技術の第1の実施の形態は、その構成要素(9)として、
プローブ筐体320a、320bの延在方向(Y軸方向)と直交する方向での断面において、
(1)プローブ内基板321に垂直な方向かつ、受信アンテナへ向かう方向における、プローブ内基板321の中心からプローブ筐体320aの筐体端までの距離は、
(2)プローブ内基板321に平行な方向における、プローブ内基板321の中心から、プローブ筐体320aの筐体端までの距離よりも小さいことを、説明した。
同様に、
(1')プローブ内基板322に垂直な方向かつ、送信アンテナへ向かう方向における、プローブ内基板322の中心からプローブ筐体320bの筐体端までの距離は、
(2')プローブ内基板322に平行な方向における、プローブ内基板322の中心から、プローブ筐体320bの筐体端までの距離よりも小さいことを、説明した。
 図189は、上記構成要素(9)の構造と、比較例の構造を、より具体的に説明する図である。
 図189aは、本技術の第1の実施の形態のセンサ装置200を、その上方からY軸の正の方向に見た際の、センサ装置200に備わる特徴的な構造を重ね書きした図である。同図には、測定部筐体310、測定部基板311、プローブ筐体320、プローブ内基板321および322が、記載してある。同図において、上記(1)プローブ内基板321に垂直な方向かつ、受信アンテナの方向における、プローブ内基板321の中心からプローブ筐体320aの筐体端までの距離は、符号dxで示されている。一方、(2)プローブ内基板321に平行な方向における、プローブ内基板321の中心から、プローブ筐体320aの筐体端までの距離は、符号dzで示されている。そして、同図において、本技術の第1の実施の形態のセンサ装置200は、その構成要素(9)として、センサ装置200に備わるプローブ筐体320が、その延在方向と直交する断面において、上記dxが上記dzよりも小さい構造となっている。
 これに対して、図189のbは、上記構成要素(9)の構造を備えない比較例、すなわち、プローブ内基板321に垂直な方向かつ、受信アンテナの方向における、プローブ内基板321の中心からプローブ筐体320aの筐体端までの距離と、プローブ内基板321に平行な方向における、プローブ内基板321の中心から、プローブ筐体320aの筐体端までの距離とが、等しい構造となっている。
 ここで、図190を参照して、本技術の第1の実施の形態のセンサ装置200の構成要素(9)の各種の例を説明する。同図は、プローブ筐体320の延在方向と直交する方向のプローブ筐体320の断面形状を表している。同図において、プローブ筐体320の断面形状は、
(1)プローブ内基板321に垂直な方向かつ、受信アンテナの方向における、プローブ内基板321の中心からプローブ筐体320aの筐体端までの距離dxが、
(2)プローブ内基板321に平行な方向における、プローブ内基板321の中心から、プローブ筐体320aの筐体端までの距離dyよりも、
小さくなる形状であって、
かつ、同図のaに示すように、プローブ内基板と直交する方向を短軸とする楕円形もしくはこれに略同一となる形状であってもよいし、同図のbに示すように、プローブ内基板と直交する方向のプローブ筐体の幅が、プローブ内基板と平行となる方向のプローブ筐体の幅よりも小さく、かつ紙面左右方向に非対称、かつプローブ内基板の裏面側(対向するアンテナが存在する方向とは反対となる側)に凸となる形状であってもよいし、同図のcに示すように、プローブ内基板と直交する方向のプローブ筐体の幅が、プローブ内基板と平行となる方向のプローブ筐体の幅よりも小さく、紙面左右方向に非対称、かつプローブ内基板の表面側(対向するアンテナが存在する側)に凸となる形状であってもよいし、同図のdに示すように、プローブ内基板と直交する方向を短辺とする長方形もしくはこれに略同一となる形状であってもよい。
 受信アンテナを備えたプローブ筐体の形状は、送信アンテナを備えたプローブ筐体の形状と線対称の形状となるので、それについての説明は省略する。
 なお、同図におけるb、c、dでは、プローブ内基板よりもセンサ装置200の中心方向に矩形の図形が記載されている。これは、アンテナの放射エレメントと受信エレメントの位置を強調して表したものである。実際には、これらのエレメントは、プローブ内基板の表層もしくは内層に形成されている。
 図189に戻り、本技術の第1の実施の形態のセンサ装置200の構成要素(9)がもたらす効果を説明する。
 同図のa(本技術の構成要素(9))とb(比較例)を比較すると、2つの図において、送信用プローブ内基板321と受信用プローブ内基板322との間の距離は等しく、このため、送信用プローブ内基板321に備わる送信アンテナと、受信用プローブ内基板322に備わる受信アンテナとの間の距離も等しい。同図のaとbを比較すると、プローブ筐体320の断面形状のみが異なる。
 次に、同図のaとbにおいて、送信用プローブ基板321と受信用プローブ基板322との間の領域における、筐体外部の領域(すなわち土壌となる領域)の割合を比較すると、同図のbは、同図のaよりも、筐体外部の領域(すなわち土壌となる領域)の割合が小さくなっている。
 既に図98を参照して説明したように、本発明の水分計測システム100は、送信アンテナから受信アンテナへ電磁波が伝搬するために要する時間が、土壌の水分量と線形の関係あることに着目して、土壌の水分量を求めている。このため、送信用プローブ基板321と受信用プローブ基板322との間の領域における土壌領域の割合が小さくなるにつれて、上記伝搬遅延時間と土壌水分量との関係が、線形関係から乖離してしまい、計測結果に含まれる誤差が大きくなってしまう。これとは反対に、上記2つの基板の間の領域における、土壌の領域の割合が大きくなるほど、上記伝搬遅延時間と土壌水分量との関係が、線形関係に近くなり、土壌の水分量を正確に計測できるようになる。
 図189のaに示す本技術の第1の実施の形態のセンサ装置200は、構成要素(9)の構造を備えることにより、同図のbに示す比較例よりも、送信用プローブ基板321と受信用プローブ基板322との間の領域における土壌領域の割合を大きくしており、
これにより、土壌の水分量を正確に計測する効果を得ている。
 次に、図191乃至199を参照して、本技術の第1の実施の形態の第5の変形例を説明する。
 図191乃至199は、本技術の第1の実施の形態の第5の変形例、すなわち、水分量の計測精度を悪化させる懸念無しに、プローブ筐体320の強度を向上させる構造を表した図である。これらの図に記載のプローブ筐体320は、図190のaに記載のプローブ筐体320と比較して、その強度を向上させるために、筐体の一部の肉厚を大きくしている。ただし、筐体の肉厚を大きくする際に、水分量の計測精度を悪化させないように、送受信される電磁波が透過する領域においては、筐体の厚さを大きくしないようにしている。なお、図191乃至199に示す筐体の断面形状を説明する際に、肉厚の筐体を備えていない比較例として図190のaの筐体の形状を参照する。
 図191は、本技術の第1の実施の形態の第5の変形例その1を説明する図であって、
図190のaに記載のプローブ筐体320の断面形状と、平面状かつ両側放射のアンテナを対向させて配置した形状とを備えている。図191に記載のプローブ筐体320は、両側放射のアンテナを対向させて配置しているため、主として電磁波が筐体を透過する紙面内側方向を避けて、紙面上方向と下方向の2箇所において、その肉厚を大きくしている。
 図191では、筐体の肉厚を大きくするための形状として、図191のaに示すように、筐体の外周と内周の双方に、不連続点や変曲点が存在しない形状で、筐体の肉厚を大きくしてよい。図191のbに示すように、筐体の内側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周に不連続点あるいは変曲点が増加している。図191のcに示すように、筐体の外側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の外周に不連続点あるいは変曲点が増加している。図191のdに示すように、筐体の内側方向と外側方向の双方にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周と外周の双方に不連続点あるいは変曲点が増加している。
 図192は、本技術の第1の実施の形態の第5の変形例その2を説明する図であって、図190のaに記載のプローブ筐体320の断面形状と、平面状かつ両側放射のアンテナを対向させて配置した形状とを備えている。図192に記載のプローブ筐体320は、両側放射のアンテナを対向させて配置しているため、主として電磁波が筐体を透過する紙面内側方向を避けて、紙面外側方向の1箇所において、その肉厚を大きくしている。
 図192では、筐体の肉厚を大きくするための形状として、図192のaに示すように、筐体の外周と内周の双方に、不連続点や変曲点が存在しない形状で、筐体の肉厚を大きくしてよい。図192のbに示すように、筐体の内側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周に不連続点あるいは変曲点が増加している。図192のcに示すように、筐体の外側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の外周に不連続点あるいは変曲点が増加している。図192のdに示すように、筐体の内側方向と外側方向の双方にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周と外周の双方に不連続点あるいは変曲点が増加している。
 図193は、本技術の第1の実施の形態の第5の変形例の例外的な事例を説明する図であって、図190のaに記載のプローブ筐体320の断面形状と、平面状かつ両側放射のアンテナを対向させて配置した形状とを備えている。図193に記載のプローブ筐体320は、両側放射のアンテナを対向させて配置しているが、例外的に、主として電磁波が筐体を透過する紙面内側方向も含めて、紙面左右方向の2箇所において、その肉厚を大きくしている。この場合、水分量の計測精度を悪化させる懸念があるものの、プローブ筐体320の強度を向上させる効果は得られる。
 図193では、筐体の肉厚を大きくするための形状として、図193のaに示すように、筐体の外周と内周の双方に、不連続点や変曲点が存在しない形状で、筐体の肉厚を大きくしてよい。図193のbに示すように、筐体の内側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周に不連続点あるいは変曲点が増加している。図193のcに示すように、筐体の外側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の外周に不連続点あるいは変曲点が増加している。図193のdに示すように、筐体の内側方向と外側方向の双方にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周と外周の双方に不連続点あるいは変曲点が増加している。
 図194は、本技術の第1の実施の形態の第5の変形例その3を説明する図であって、図190のaに記載のプローブ筐体320の断面形状と、平面状かつ両側放射のアンテナを対向させて配置した形状とを備えている。図194に記載のプローブ筐体320は、片側放射のアンテナを対向させて配置しているため、主として電磁波が筐体を透過する紙面内側方向を避けて、紙面内側方向を除いた3箇所において、その肉厚を大きくしている。
 図194では、筐体の肉厚を大きくするための形状として、図194のaに示すように、筐体の外周と内周の双方に、不連続点や変曲点が存在しない形状で、筐体の肉厚を大きくしてよい。図194のbに示すように、筐体の内側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周に不連続点あるいは変曲点が増加している。図194のcに示すように、筐体の外側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の外周に不連続点あるいは変曲点が増加している。図194のdに示すように、筐体の内側方向と外側方向の双方にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周と外周の双方に不連続点あるいは変曲点が増加している。
 図195は、本技術の第1の実施の形態の第5の変形例その4を説明する図である。
図195に記載の構造は、図191に記載の構造のアンテナを、片側放射へ変更しただけで、筐体の形状は同じである。
 図196は、本技術の第1の実施の形態の第5の変形例その5を説明する図である。
図196に記載の構造は、図192に記載の構造のアンテナを、片側放射へ変更しただけで、筐体の形状は同じである。
 図197は、本技術の第1の実施の形態の第5の変形例の例外的な事例を説明する図である。図197に記載の構造は、図193に記載の構造のアンテナを、片側放射へ変更しただけで、筐体の形状は同じである。
 図198は、本技術の第1の実施の形態の第5の変形例その6を説明する図である。
図198に記載の構造は、図194に記載の構造のアンテナを、片側放射へ変更しただけで、筐体の形状は同じである。
 図191乃至図198の各構成は、図190のそれぞれに適用することができる。
 図199は、本技術の第1の実施の形態の第5の変形例におけるセンサ筐体305の肉厚の設定例を説明するための図である。同図におけるaに例示するようにプローブ筐体320の内側の肉厚をd1とし、外側の肉厚をd2とする。プローブ内基板321等に平行な方向(Z軸方向)におけるプローブ筐体320の肉厚をd3とする。そのZ軸方向における補強部360の厚みをd6とする。
 同図におけるbに例示するように、測定部筐体310の各面のうちプローブ筐体320と接続される面(言い換えれば、底面)における、測定部筐体310の肉厚をd4とする。その底面以外の面の測定部筐体310の肉厚をd5とする。同図におけるbに例示するように、Z軸方向における測定部筐体310の厚さをd8とする。
 本技術の第1の実施の形態の第5の変形例におけるセンサ筐体305は、d2>d1あるいはd3>d1の条件1を満たすことが望ましい。これにより、この構造を備えない形態(言い換えれば、肉厚の筐体を備えない形態)と比較して、筐体の機械強度を向上させことが可能となり、その結果、筐体の変形および送受信アンテナ間の距離の変化を低減して、水分を正確に測定できる。
 さらに、上記条件1を満たす形態は、筐体の機械強度を向上させるために、筐体の全周においてその厚さを厚くした形態、あるいは、d1該当部において筐体の厚さを厚くした形態と比較して、送信アンテナと受信アンテナとの間の領域における、土壌の領域の割合を減らすことなく、筐体の強度を向上させることができる。これにより、電磁波の伝搬遅延時間と土壌水分量の関係を、線形関係に保ちつつ、筐体の変形および送受信アンテナ間の距離の変化を低減して、水分を正確に測定できるようになる。
 また、d6>d1あるいはd4>d1の条件2を満たすことが望ましい。これにより、送信アンテナと受信アンテナとの間の領域における、土壌の領域の割合を減らすことなく、筐体の強度を向上させることができる。これにより、電磁波の伝搬遅延時間と土壌水分量の関係を、線形関係に保ちつつ、筐体の変形および送受信アンテナ間の距離の変化を低減して、水分を正確に測定できるようになる。また、d6を厚くすることは、送信プローブおよび受信プローブを土壌に挿す際に、これらのプローブに応力が加わっても、これらのプローブの間が所定の距離よりも広がったり狭まったりすることを抑制する効果、つまり送受信アンテナ間を所定の距離に保つ効果をもたらし、この効果によっても水分を正確に測定できるようになる。
 また、d4を厚くすることは、送信プローブと受信プローブを土壌に挿す際に、測定部筐体310の底面に応力が加わり、この応力によって底面が変形して、その底面へのプローブの取り付け角度が変化してしまうことを抑制する効果をもたらす。これにより、プローブの間が所定の距離よりも広がったり狭まったりすることを防止する効果、つまり送受信アンテナ間を所定の距離に保つ効果をもたらし、この効果によっても水分を正確に測定できるようになる。
 条件2を満たす場合、同時に、d6>d5あるいはd4>d5とすると、なおよい。この場合、d1<d6<d5あるいは、d1<d4<d5となる形態よりも、水分を正確に計測することへの寄与が小さい筐体の部分において、その厚さを不必要に厚くすることを防止できる。その結果、筐体の製造を容易にしたり、筐体とセンサ装置の重量を軽くしたり、筐体の製造コストを削減する効果がもたらされる。
 条件2を満たす場合、、同時に、d6>d4としてもよい。d4を厚くすることは、測定部筐体310の底面の変形を防ぎ、アンテナ間を所定の距離に保つ効果をもたらす。一方、d6を厚くすることは、その底面よりもアンテナに近い位置で、アンテナ間を、より効果的に所定の距離に保つ効果をもたらし得る。その結果、水分を正確に測定できるようになる。
 また、d6<d8の条件3を満たすことが望ましい。補強部360を、電磁波透過性材料で形成しても、現在市販されている電磁波透過性材料は、電磁波の反射率がゼロではない。このため、補強部360で電磁波の反射が発生しうる。上記条件3を満たすことにより、この条件3を満たさない場合と比較して、アンンテナから放射された電磁波が、補強部360で反射されて受信アンテナで受信されることによる、ノイズを低減することができる。その結果、水分を正確に測定できるようになる。
 また、d7>d6の条件4を満たすことが望ましい。補強部360の配置によりは、送信プローブと受信プローブを土壌に挿す際に、これらのプローブに応力が加わっても、これらのプローブの間が所定の距離よりも広がったり狭まったりすることを抑制することができる。そして、d7>d6とすることにより、この条件を満たさない場合と比較して、アンテナに近い位置で、アンテナ間を、より効果的に所定の距離に保つ効果をもたらすことが出来る。その結果、水分を正確に測定できるようになる。
 このように、本技術の第1の実施の形態の第5の変形例によれば、プローブ筐体320の肉厚を調整したため、センサ装置200は、水分をより正確に測定することができる。なお、図199を参照した上記の説明では、図面に記載した筐体の構造としては、図194aに記載の構造を用いているが、上記の説明は、図191乃至図198に記載のいずれの構造にも当てはまるものである。
 [第6の変形例]
 上述の第1の実施の形態では、複数対のアンテナが1組ずつ順に電磁波を送受信していたが、この構成では、測定時間の短縮が困難である。この第1の実施の形態の第6の変形例のセンサ装置200は、周波数分割により、複数対のアンテナが同時に電磁波を送受信することを可能にした点において第1の実施の形態と異なる。
 図200は、本技術の第1の実施の形態の第6の変形例におけるアンテナごとに送受信機を設けたセンサ装置200の一構成例を示す図である。この第1の実施の形態の第6の変形例のセンサ装置200は、アンテナの組ごとに送受信機を備える点において第1の実施の形態と異なる。アンテナが3組である場合、送信機214-1、214-2および214-3と、受信機215-1、215-2および215-3とが設けられる。なお、アンテナの組の数は、2組以上であれば、3組に限定されない。
 送信機214-1乃至214-3は、送信アンテナ221乃至223と接続され、受信機215-1乃至215-3は、受信アンテナ231乃至232と接続される。送信スイッチ216および受信スイッチ217は不要となる。これにより、低価格化できる。
 送信機214-1、214-2および214-3は、互いに異なる周波数の送信信号を送信する。また、受信機215-1、215-2および215-3は、対応する送信機の周波数の受信信号を受信する。このような周波数分割の制御により、受信側で送信アンテナ221乃至223のそれぞれからの信号を分離することができる。
 図201は、本技術の第1の実施の形態の第6の変形例における送信機および受信機が1つずつのセンサ装置200の一構成例を示す図である。同図に例示するように、送信機214を送信アンテナ221乃至223と接続し、受信機215を、受信アンテナ231乃至232と接続してもよい。送信機214は、送信機214-1乃至214-3と同等の機能を有し、受信機215は、受信機215-1乃至215-3と同等の機能を有する。
 図202は、本技術の第1の実施の形態の第6の変形例における受信機が1つのセンサ装置200の一構成例を示す図である。同図に例示するように、送信機214-1乃至214-3を送信アンテナ221乃至223と接続し、受信機215を受信アンテナ231乃至232と接続してもよい。受信機215は、受信機215-1乃至215-3と同等の機能を有する。
 図203は、本技術の第1の実施の形態の第6の変形例における送信機が1つのセンサ装置200の一構成例を示す図である。同図に例示するように、送信機214を送信アンテナ221乃至223と接続し、受信機215-1乃至215-3を受信アンテナ231乃至232と接続してもよい。送信機214は、送信機214-1乃至214-3と同等の機能を有する。
 図204は、本技術の第1の実施の形態の第6の変形例における受信機が複数のセンサ装置200の別の例を示す図である。同図に例示するように、送信機214-1を送信アンテナ221および223と接続し、送信機214-2を送信アンテナ222と接続し、受信機215を受信アンテナ231乃至232と接続してもよい。受信機215は、受信機215-1乃至215-3と同等の機能を有する。また、送信機214-1は、送信アンテナ221および223に、同一の周波数の送信信号を供給する。このため、送信アンテナ221と送信アンテナ223とは、混信が生じない程度に距離が離れていることが望ましい。
 図205は、本技術の第1の実施の形態の第6の変形例における受信機215-1乃至215-3の一構成例を示すブロック図である。同図におけるaは、受信機215-1のブロック図である。同図におけるbは、受信機215-2のブロック図である。同図におけるcは、受信機215-3のブロック図である。
 受信機215-1は、ミキサ241-1、ローカル発振器242-1、ローパスフィルタ243-1、および、ADC(Analog to Digital Converter)244-1を備える。ローカル発振器242-1は、周波数fLO1のローカル信号を生成する。ミキサ241-1は、受信アンテナ231から周波数f1の受信信号を受け取り、ローカル信号と混合し、中間周周波数fIFの信号をローパスフィルタ243-1を介してADC244-1に供給する。ADC244-1は、中間周周波数fIFの信号をデジタル信号に変換してセンサ制御部211に供給する。
 受信機215-2は、ミキサ241-2、ローカル発振器242-2、ローパスフィルタ243-2、および、ADC244-2を備える。受信機215-3は、ミキサ241-3、ローカル発振器242-3、ローパスフィルタ243-3、および、ADC244-3を備える。これらの回路の構成は、受信機215-1内の同名の回路と同様である。
 図206は、本技術の第1の実施の形態の第6の変形例における受信信号の周波数特性の一例を示す図である。図205では受信系統が3系統であったが、図206では、説明の簡易化のため、2系統で考える。
 中間周波数は、全ての受信機で共通の1波、fIFとする。2系統のそれぞれのローパスフィルタのカットオフ周波数fcutoffを同一とする。第1のアンテナの受信周波数をf1とし,第2のアンテナの受信周波数f2(f1<f2)とする。このとき、それぞれの系に対応したローカル周波数flo1、flo2の関係は、flo1<flo2となる。また、中間周波数fIFは、次の式により表される。
  fIF=f1-flo1=f2-flo2         ・・・式7
 第1のアンテナの受信系に受信周波数f2の信号が漏れこむ場合、妨害波fIF12は、次の式により表される。
  fIF12=f2-flo1              ・・・式8
 第2のアンテナの受信系に受信周波数f1の信号が漏れこむ場合、妨害波fIF21は、次の式により表される。
  fIF21=f1-flo2              ・・・式9
 このとき、妨害波が受信帯域内に入らない条件は、次の式により表される。
  fIF21<-fcutoff              ・・・式10
  fcutoff<fIF12               ・・・式11
 式10および式11に、式8および式9を代入すると、次の式が得られる。
  f1-flo2<-fcutoff            ・・・式12
  fcutoff<f2-flo1             ・・・式13
 式12および式13を変形すると、次の式が得られる。
  fcutoff<flo2-f1             ・・・式14
  fcutoff<f2-flo1             ・・・式15
 式14および式15に式7を代入すると、次の式が得られる。
  fcutoff<f2-fIF-f1=f2-f1-fIF ・・・式16
  fcutoff<f2+fIF-f1=f2-f1+fIF ・・・式17
 したがって、式16および式17をf1、f2、fIFが満たせばよい。実際には、fcutoff>fIFが成り立つので式16のみが制約条件となる。
 式16を変形すると、次の式が得られる。
  fcutoff+fIF<f2-f1          ・・・式18
 すなわち、隣り合う周波数f2とf1の差が常にfcutoffとfIFの和より大きくなることが周波数分割により測定を行うための条件となる。
 f1、f2の大小に制約が無いとすると、f1>f2の条件を消すことができ、式18より、隣り合う周波数f1、f2について、次の式による条件を満たせばよくなる。
  fcutoff+fIF<|f2-f1|        ・・・式19
 図207は、本技術の第1の実施の形態の第6の変形例における周波数分割駆動のタイミングチャートの一例である。同図におけるaは、第1のアンテナ(送信アンテナ221および受信アンテナ231など)の周波数のスイープを示す。同図におけるbは、第2のアンテナ(送信アンテナ222および受信アンテナ232など)の周波数のスイープを示す。同図におけるcは、第3のアンテナ(送信アンテナ223および受信アンテナ233など)の周波数のスイープを示す。
 図208は、本技術の第1の実施の形態の第6の変形例におけるセンサ装置内の各部の動作を示すタイミングチャートの一例である。
 図207および図208では、第1のアンテナが周波数a1乃至a2をスイープし、その間に第2のアンテナが周波数a3乃至a4をスイープし、第3のアンテナが周波数a5乃至a6をスイープする。
 そして、第1のアンテナが周波数a3乃至a4をスイープし、その間に第2のアンテナが周波数a5乃至a6をスイープし、第3のアンテナが周波数a1乃至a2をスイープする。次いで第1のアンテナが周波数a5乃至a6をスイープし、その間に第2のアンテナが周波数a1乃至a2をスイープし、第3のアンテナが周波数a3乃至a4をスイープする。
 周波数のスイープ方法は、アンテナ毎の周波数が独立していればよく、図207のようにアップチャープである必要はない。全てのアンテナについて、全送信帯域分がスイープされる。この制御では、全周波数帯域を使用することができ、水分センサの分解能が向上する。
 図209は、本技術の第1の実施の形態の第6の変形例におけるスイープ期間を短縮した際の周波数分割駆動のタイミングチャートの一例である。
 図210は、本技術の第1の実施の形態の第6の変形例におけるスイープ期間を短縮した際のセンサ装置内の各部の動作を示すタイミングチャートの一例である。
 図209および図210では、第1のアンテナが周波数a1乃至a2をスイープし、その間に第2のアンテナが周波数a3乃至a4をスイープし、第3のアンテナが周波数a5乃至a6をスイープする。スイープする周波数帯域を狭くすることにより、スイープ期間を短縮することができる。
 図207乃至図210の制御は、図200乃至図203のそれぞれのセンサ装置200に適用することができる。
 図211は、本技術の第1の実施の形態の第6の変形例における2つのアンテナの周波数が同一の周波数分割駆動のタイミングチャートの一例である。同図におけるaは、第1および第3のアンテナの周波数のスイープを示す。同図におけるbは、第2のアンテナの周波数のスイープを示す。
 図212は、本技術の第1の実施の形態の第6の変形例における2つのアンテナの周波数が同一のセンサ装置内の各部の動作を示すタイミングチャートの一例である。
 図211および図212では、第1および第3のアンテナが周波数a1乃至a2をスイープし、その間に第2のアンテナが周波数a4乃至a6をスイープする。そして、第1および第3のアンテナが周波数a4乃至a6をスイープし、その間に第2のアンテナが周波数a1乃至a2をスイープする。スイープする周波数帯域を狭くすることにより、スイープ期間を短縮することができる。この制御は、図204のセンサ装置201に適用される。
 このように、本技術の第1の実施の形態の第6の変形例によれば、送信機が、複数の送信アンテナに互いに異なる周波数の送信信号を供給するため、送信スイッチ216や受信スイッチ217が不要となる。
 [第7の変形例]
 上述の第1の実施の形態では、複数のアンテナそれぞれに対して独立した伝送路を接続しており、アンテナの数に応じてプローブが大型になることは避けられない。この第1の実施の形態の第7の変形例のセンサ装置200は、遅延線を備える一つの伝送路に複数のアンテナを接続する点において第1の実施の形態と異なる。
 図213は、本技術の第1の実施の形態の第7の変形例におけるプローブ内基板321の断面図の一例を示す図である。同図におけるaは、Z軸方向から見た際のプローブ内基板321の断面図を示す。同図におけるbは、Y軸方向から見た際のプローブ内基板321の断面図を示す。
 同図に例示するように、プローブ内基板321には、送信アンテナ221,222および223などの複数の送信アンテナが形成される。これらの送信アンテナは、ストリップ線路などの伝送路により接続される。送信アンテナごとの伝送路は、独立しておらず、等価回路上は、1つの伝送路に、複数の送信アンテナが共通に電気的に接続された状態に該当する。受信側のプローブ内基板322の構成は、送信側と左右対称である。
 図214は、本技術の第1の実施の形態の第7の変形例におけるアンテナごとの信号の伝送経路を示す図である。送信元をTXとし、送信アンテナ221、222、223の地点をA、B、Cとする。受信先をRXとし、受信アンテナ231、232、233の地点をP、Q、Rとする。矢印は、信号の送信方向を示す。実線は、送受信対象の信号を示す。点線は、干渉信号や妨害信号を示す。
 3つの送信アンテナから同時に電磁波を送信して3地点の水分測定を行いたい場合、同図に例示するように、主として、経路TX-A-P-RX、TX-B-Q-RX、TX-C-R-RXそれぞれの伝搬遅延時間を測定する必要がある。
 しかしながら、前述したようにセンサ装置200では、送信側、受信側で複数のアンテナが1つの伝送路に共通に電気的に接続されている。このため、受信信号は、送信アンテナA、B、Cが受信アンテナP、Q、Rそれぞれを通過した信号がすべて重畳されたものとして測定されてしまう。つまり、前記3つの経路のほかに、TX-A-Q-RX、TX-A-R-RX、TX-B-P-RX、TX-B-R-RX、TX-C-P-RX、TX-C-Q-RXを通る経路の信号も含まれることになる。
 さらに、送信アンテナが十分に整合が取れていない場合、送信プローブ内での反射が発生する。そのため、送信プローブ内を反射した後に送信アンテナから放射される経路も受信信号に重畳される。つまり、前述の9つの経路の他に、TX-C-B-Q-RXやTX-B-A-P-RXなどを通る経路の信号も含まれることになる。同様に、受信アンテナが十分に整合が取れていない場合、受信プローブ内での反射が発生する。そのため、送信アンテナから受信した信号が受信プローブ内を反射する経路も受信信号に重畳される。つまり、前述の経路の他に、TX-B-Q-R-RXやTX-A--P-Q-RXなどを通る経路の信号も含まれることになる。
 図215は、本技術の第1の実施の形態の第7の変形例における2系統の信号の伝送経路を示す図である。同図に例示するように、TX-C-B-Q-RXとTX-C-R-RXとの2系統に着目する。
 例えば、送信プローブと受信プローブのアンテナへの主たる伝送路が同一の構造であった場合、同図の2つの経路は、ほぼ同じであるため、両者を切り分けることができなくなり、C-R間の伝搬遅延を正しく求めることができない。
 図216は、本技術の第1の実施の形態の第7の変形例における遅延線を設けたセンサ装置200の一例を示す図である。送信プローブもしくは受信プローブのいずれか一方のアンテナへの主たる伝送路に遅延線265が挿入される。
 例えば、同図のように受信プローブのP-Q間およびQ-R間に遅延線265および266が挿入される。これらの遅延線により、図209では分離することができなかった2つの経路TX-C-B-Q-RXとTX-C-R-RXに経路差が生じる。このため、それぞれの経路の受信信号を分離することが可能となる。
 上記のように、プローブ内基板321や322内に遅延線を適切に設けることによって、測定対象の経路TX-A-P-RX、TX-B-Q-RX、TX-C-R-RXの信号を他の経路と重なることのないようにすることができる。このため、水分量を高精度に測定することが可能となる。
 図217は、本技術の第1の実施の形態の第7の変形例における遅延線265の形状の一例を示す図である。同図におけるaに例示するように、遅延線265の形状はメアンダ状であってもよいし、同図におけるbに例示するようにジグザク状であってもよい。同図におけるcに例示するように、らせん状であってもよい。遅延線を設けない場合よりも伝送路を長く配線できるものであれば、同図の形状に限定されない。
 同図におけるd、eおよびfに例示するように、遅延線265に沿ってビアを設けてもよい。これによって、隣接線路間の電磁気的結合による電波の跳躍を防止することができるため、ビアがない場合と比較して遅延の効果を大きくすることができる。
 図218は、本技術の第1の実施の形態の第7の変形例における遅延線265の形状の別の例を示す図である。同図におけるa、bに例示するようにメアンダ状、ジグザク状とする際に、遅延線の振幅の方向を、伝送路の配線方向と異なる方向にすることもできる。この際、同図におけるc、dに例示するように、ビアを設けることもできる。
 図219は、本技術の第1の実施の形態の第7の変形例における遅延線の遅延量の設定方法を説明するための図である。これまで二つの経路を分離する構造について述べてきたが、実際にどの程度の伝搬遅延差が生じればよいかについて検討する。周波数応答の逆フーリエ変換により、インパルス応答に変換した際、二つの経路が分解能以上の伝搬遅延差であれば、両者を分離できるため、水分量を精度よく測定できる。具体的には、周波数帯域をdfとしたとき、伝搬遅延差は1/df以上あることが望ましい。
 同図におけるaのようにTXからRXに向かう経路Aと経路Bの2つの経路があり、
それぞれの経由地点の数は等しい場合を考える。経路AにおけるTXからRXまでの伝搬遅延Tは、各地点間の伝搬遅延を積算したものであり、次の式により表される。
Figure JPOXMLDOC01-appb-M000001
 同様に、同様に経路BにおけるTXからRXまでの伝搬遅延Tは、次の式により表される。
Figure JPOXMLDOC01-appb-M000002
 従って、伝搬遅延差dTが次の式を満たすようにアンテナの位置や遅延線の遅延量を決めることが望ましい。
 dT=|TB-TA|≧1/df           ・・・式22
 また、同図におけるbのようにTXからRXに向かう経路Aと経路Bの2つの経路があり、それぞれの経由地点の数が異なる場合を考える。ここで、経路Aの経由地点の数をN、経路Bの経由地点の数をMとする。経路Aおよび経路BにおけるTXからRXまでの伝搬遅延Tは、同図におけるaの場合と同様に次の式により表される。伝搬遅延Tは、式21と同様である。
Figure JPOXMLDOC01-appb-M000003
 従って、伝搬遅延差dTが式22を満たすようにアンテナの位置や遅延線の遅延量を決めることが望ましい。例えば、測定する周波数の範囲が1GHzから9GHzまでの場合では、2つの経路の伝搬遅延差は125ps以上あることが望ましい。
 このように、本技術の第1の実施の形態の第7の変形例によれば、伝送路に遅延線265等を挿入したため、経路の異なる信号を分離することができる。
 <2.第2の実施の形態>
 上述の第1の実施の形態では、測定部基板311と直交してプローブ内基板321および322を接続していたが、この構成では、基板間にコネクタやケーブル類を配線する必要があり、構造が複雑になる。この第2の実施の形態は、これらの基板の枚数を削減し、かつ、基板間を接続するコネクタやケーブル類を削減した点において第1の実施の形態と異なる。これにより、第2の実施の形態は、第1の実施の形態と比較して、センサ装置200に備わる基板とコネクタやケーブルなどの部品の数を削減できるとの効果を得ている。
 図220は、本技術の第2の実施の形態におけるセンサ装置200の一例を示す図である。この第2の実施の形態のセンサ装置200内には、測定部基板311、プローブ内基板321およびプローブ内基板322の代わりに、電子基板311-1のみがセンサ筐体305内に配置される。電子基板311-1の一部は矩形であり、その基板矩形部分に、一対の基板突出部(送信用基板突出部と受信用基板突出部)が繋がり、それらが一体となっている。従って、基板矩形部分と送信用基板突出部と受信用基板突出部が延在する方向(言い換えれば、これらの基板の平面方向)は平行となっており、さらに言えば、これらの基板は同一平面上に形成されている。そして、基板矩形部分に、測定部基板311上の回路が配置される。基板突出部には、送信アンテナ221乃至223など、プローブ内基板321および322上の回路が形成される。この構成により、構成要素(4)および(7)が不要となる。
 なお、図220は、本技術の第2の実施の形態におけるセンサ装置200が、一例として、センサ装置200に備わる全てのアンテナ(送信アンテナ221乃至223および受信アンテナ231乃至233)において、図19乃至図47に記載の平面状のアンテナを具備できることを表している。同様にして、本技術の第2の実施の形態におけるセンサ装置200は、一例として、センサ装置200に備わる全てのアンテナ(送信アンテナ221乃至223および受信アンテナ231乃至233)において、図48乃至図74に記載の平面状かつスロット状のアンテナを用いることもできる。
 そして、本技術の第1の実施の形態のセンサ装置200(図4)において、測定部基板311が測定部筐体310に収容され、送信用プローブ内基板321が送信用プローブ筐体320aに収容され、受信用プローブ内基板322が受信用プローブ筐体320bに収容されるのと同様にして、本技術の第2の実施の形態のセンサ装置200(図220)において、電子基板311-1の基板矩形部は測定部筐体310に収容され、電子基板311-1の送信用基板突出部は送信用プローブ筐体320aに収容され、電子基板311-1の受信用基板突出部は受信用プローブ筐体320bに収容される。
 ただし、本技術の第1の実施の形態のセンサ装置200と、本技術の第2の実施の形態のセンサ装置200を比較すると、送信用プローブ筐体320aおよび受信用プローブ筐体320bの断面形状には、異なる点がある。これについて、図189と図221を参照して説明し、かつ、本技術の第2の実施の形態の送信用プローブ筐体320aおよび受信用プローブ筐体320bの断面形状がもたらす効果を、図221を参照して説明する。
 図221は、本技術の第2の実施の形態と比較例とにおける上方から見た際のセンサ装置200の構造上の特徴を重ね書きした断面図の一例である。同図におけるaは、本技術の第2の実施の形態における上方から見た際のセンサ装置200の断面図の一例である。同図におけるbは、比較例のセンサ装置200の断面図の一例である。同図のaにおける2つの楕円は、送信用プローブ筐体と受信用プローブ筐体を表している。同様に、同図のbにおける2つの真円も、送信用プローブ筐体と受信用プローブ筐体を表している。
同図のaとbにおいて、送信用プローブ筐体および受信用プローブ筐体の外側となる色付けした領域は、土壌を表している。そして、送信用プローブ筐体と受信用プローブ筐体の間に位置する土壌が、水分量を計測する対象となる土壌である。なお、同図におけるaとbに破線で示した矩形は、測定部筐体310の外形を表している。
 図221におけるaが示すように、本技術の第2の実施の形態のセンサ装置200は、構成要素(9)の代わりに、下記の構成を備える。電子基板311-1の基板突出部のX軸方向の長さ(幅)は、その厚さ(Z軸方向の大きさ)よりも大きい。かつ、同図におけるaに例示するように、基板突出部の中心から電子基板311-1に垂直な方向(Z軸方向)のプローブ筐体320の筐体端までの距離dzは、基板突出部の中心から電子基板311-1に平行方向(X軸方向)のプローブ筐体320の筐体端までの距離dxよりも、小さい。この構成を構成要素(9')とする。同図におけるbに例示するように、比較例ではdzがdxと同じとする。図221のaに示す、本技術の第2の実施の形態のセンサ装置200のプローブ筐体と、図189のaに示す、本技術の第1の実施の形態のセンサ装置200のプローブ筐体と、を比較すると、基板の中心から、基板と垂直方向のプローブ筐体端までの距離が、基板の中心から、基板と平行方向のプローブ筐体端までの距離よりも小さい、という構造(構成(9)および構成(9'))は、同じである。但し、図221のaと図189のaとでは、プローブ筐体に収める基板の向きが異なる(90°回転している)。このため、これらの図において、プローブ筐体断面の向きも異なる(90°回転している)。
 図221のaとbにおいて、それぞれの図に示した2本のプローブ筐体(送信用プローブ筐体と受信用プローブ筐体)のセンサ装置200の上方からの降雨は、同図に破線で示した測定部筐体310の外側の領域へ降り注ぐ。測定部筐体310の外側の領域へ降り注いだ雨は、2つのプローブ筐体の間に位置する、水分量計測対象の土壌へと浸透(言い換えれば、拡散)する。
 ここで、構成要素(9')と比較例のプローブ筐体の厚さ(言い換えれば、測定部筐体310から計測対象領域へと降雨が拡散して来る、拡散方向におけるプローブ筐体の大きさ)を比較すると、比較例よりも構成要素(9')はプローブ筐体の大きさが小さい。
 比較例の場合、計測対象領域の土壌へは、測定部筐体310の外側かつ計測対象領域の紙面上方向と下方向となる限られた土壌から、水分が線状に拡散するしか無い。この場合、測定部筐体310の外側から計測対象領域へ水分が拡散するに従って土壌の水分濃度が低下し、かつ、拡散経路の途中においてその水分が拡散経路の外部から補われることも無い。
 これに対して、構成要素(9')の場合、測定部筐体310の外側かつ一方のプローブ筐体から他方のプローブ筐体に至る広い領域において、紙面上方向と下方向の土壌からプローブ筐体まで、水分が面状に拡散して来る。そして、プローブ筐体まで面上に拡散して来た水分の一部が、プローブ筐体間の水分計測対象領域へ拡散する際には、プローブ筐体の紙面上下方向の土壌から水分が補われながら拡散する。
 このため、図221のaに示す構成要素(9')における、水分計測対象領域の土壌の水分濃度は、図221のbに示す比較例における、水分計測対象領域の土壌の水分濃度よりも、本来の土壌の水分量(センサ装置200を配置していない領域の土壌水分量)に近いものとなっている。これにより、本技術の第2の実施の形態のセンサ装置200は、比較例よりも、土壌の水分を正確に測定できる。
 図222は、本技術の第2の実施の形態における両側放射の際の電波吸収部の被覆箇所の一例を示す図である。同図におけるaに例示するように、電波吸収部が、アンテナ以外のプローブ全体を被覆することが最も望ましい。アンテナ以外のプローブの一部を被覆する場合、同図におけるbに例示するように、電波吸収部の下端は、アンテナの上端であることが望ましい。同図におけるcに例示するように、電波吸収部の下端をアンテナ上端から離すこともできる。
 図223は、本技術の第2の実施の形態における両側放射の際に電波吸収部で被覆しない例を示す図である。同図に例示するように、電波吸収部で被覆しなくてもよい。
 図224は、本技術の第2の実施の形態における片側放射の際の電波吸収部の被覆箇所の一例を示す図である。同図は、アンテナを片側放射とした点以外は、図222と同様である。
 図225は、本技術の第2の実施の形態における片側放射の際に電波吸収部で被覆しない例を示す図である。同図は、アンテナを片側放射とした点以外は、図223と同様である。
 図2226は、本技術の第2の実施の形態における片側放射の際に片面を被覆する例を示す図である。同図に例示するように、電子基板311-1のアンテナが形成されていない方の面をさらに電波吸収部により被覆することもできる。
 図227は、本技術の第2の実施の形態における両側放射の際に伝送路および先端を被覆する例を示す図である。同図に例示するように、プローブの先端を電波吸収部349および350によりさらに被覆することができる。
 図228は、本技術の第2の実施の形態における両側放射の際に先端のみを被覆する例を示す図である。同図に例示するように、プローブの先端のみを電波吸収部349および350によりさらに被覆することができる。
 図229は、本技術の第2の実施の形態における片側放射の際に伝送路および先端を被覆する例を示す図である。同図は、アンテナを片側放射とした点以外は、図227と同様である。
 図230は、本技術の第2の実施の形態における片側放射の際に先端のみを被覆する例を示す図である。同図は、アンテナを片側放射とした点以外は、図228と同様である。
 図231は、本技術の第2の実施の形態における片側放射の際に伝送路、片面および先端を被覆する例を示す図である。同図に例示するように、片側放射の際に、伝送路および先端に加え、さらに電子基板311-1のアンテナが形成されていない方の面を電波吸収部により被覆することもできる。
 図232は、本技術の第2の実施の形態における両側放射の複数のアンテナ対を設ける際の電波吸収部の被覆箇所の一例を示す図である。同図に例示するように、2対以上のアンテナ対を形成する際には、それらのアンテナの間に、電波吸収部341、342、344、345などが配置される。
 図233は、本技術の第2の実施の形態における両側放射の複数のアンテナ対を設ける際の電波吸収部の被覆箇所の別の例を示す図である。同図に例示するように、アンテナ以外のプローブの一部を被覆することもできる。
 図234は、本技術の第2の実施の形態におけるセンサ筐体に電波吸収部を形成する例を示す図である。同図におけるaは、センサ筐体305に電波吸収部が形成されない比較例を示す。同図におけるbおよびcは、センサ筐体305に電波吸収部を形成した例を示す。同図における黒色の部分は、電波吸収材を示す。
 同図におけるbに例示するように、外装形成時にフェライトなどの電波吸収材をセンサ筐体305に埋め込むこともできる。同図における黒色の部分が電波吸収材を示す。この電波吸収材が電波吸収部として機能する。また、同図におけるcに例示するように、外装ケースを形成後に、その内側に電波吸収材の層を設けることもできる。
 図235は、本技術の第2の実施の形態における電波吸収部の形状の一例を示す図である。同図におけるa、b、c、d、eに例示するように、電波吸収部341に突起を形成し、センサ筐体305側に溝を形成して、それらを嵌め合わせてもよい。同図におけるf、g、h、i、jに例示するように、電波吸収部341に溝を形成し、センサ筐体305側に突起を形成して、それらを嵌め合わせてもよい。
 図236は、本技術の第2の実施の形態における電波吸収部の形状の別の例を示す図である。同図におけるa、b、c、dに例示するように、センサ筐体305の全周の一部を被覆しない構成とすることもできる。この場合、全周を覆う場合に比べて同じ厚さの場合は、電波の吸収力は落ちるため、電波吸収部の厚さを厚くするか、幅を広げるとよい。
 このように、本技術の第2の実施の形態によれば、1枚の電子基板311-1にアンテナを形成したため、測定部基板311とプローブ内基板321および322を接続する第1の実施の形態よりも基板枚数を削減することができる。
 [第1の変形例]
 図237は、本技術の第2の実施の形態の第1の変形例として、平面状かつスロット状のアンテナであって、かつ、後述する横方向放射型のアンテナを設けたセンサ装置200の一例を示す図である。同図は、本技術の第2の実施の形態におけるセンサ装置200が、一例として、センサ装置200に備わる全てのアンテナ(送信アンテナ221乃至223および受信アンテナ231乃至233)において、後述する図238乃至240に記載の平面状かつスロット状かつ横方向放射型のアンテナを用いることを特徴としている。
 図238乃至240は、平面状かつスロット状かつ横方向放射型のアンテナの構造を説明する図である。図238乃至240に記載の横方向放射型のアンテナは、図69乃至71に記載の平面状かつスロット状のアンテナに備わるスロットの形状を変更したものとなる。 
なお、図69乃至71に記載の平面状かつスロット状のアンテナは、本技術の第1の実施の形態およびその変形例のセンサ装置200において用いることに適しており、図238乃至240に記載の平面状かつスロット状かつ横方向放射型のアンテナは、本技術の第2の実施の形態の第1の変形例となるセンサ装置200において用いることに適している。
 ここで、本技術の第1の実施の形態のセンサ装置200(例えば、図4)において、送信アンテナを備える送信用プローブ基板321および受信アンテナを備える受信用プローブ基板322と、本技術の第2の実施の形態の第1の変形例となるセンサ装置200(図237)において送信アンテナを備える送信用基板突出部および受信アンテナを備える受信用基板突出部とでは、アンテナを形成した基板平面の向きが異なる(90°回転している)。このため、図69乃至71に記載のアンテナと図238乃至240の記載のアンテナとでは、図における座標軸の向きが異なる。具体的には、例えば、図239において、基板の厚さ方向はZ軸方向、信号線255が延在する方向(言い換えれば、プローブ筐体および基板突出部が延在する方向)はY軸方向、信号線255と交差するスロットが延在する方向はX軸方向、となる。
 図238乃至240に記載の平面状かつスロット状かつ横方向放射型のアンテナは、電磁波吸収材251から露出して空間に露出したシールド層(シールド層256と254)に備わるスロットのうち、信号線255が交差する部分のスロットが、このスロットの延在方向(X軸方向)へ、シールド層254と256の外縁(言い換えれば、アンテナを形成した基板突出部の外縁)まで延在した構造となっている。
 図238乃至240に記載の平面状かつスロット状かつ横方向放射型のアンテナは、送信アンテナにおいて放射エレメント(受信アンテナにおいては、受信エレメント)となるシールド層254と256に備わるスロットが、該シールド層の外縁(言い換えれば、アンテナを形成した基板突出部の外縁)まで延在した構造により、このシールド層外縁(基板突出部の外縁)に設けられたスロットの開口部から基板外部へと電磁波が放射される。そして、電磁波は、該開口部に至るまでスロットが延在してきた方向の先へと主として放射される。つまり、信号線255と交差したスロットが、前記開口部に向けて延在する方向(X軸方向)が、このアンテナにおける電磁波の主放射の方向となる。図239において、電磁波は、X軸方向、すなわち、アンテナを形成した基板平面と平行となる方向であって、かつ、信号線255の延在方向(言い換えればプローブの延在方向)と直交する方向へ主として放射されることから、本明細書では、図238乃至240に記載のアンテナを、平面状かつスロット状かつ横方向放射型のアンテナ、あるいは単に横方向放射型のアンテナ、と便宜的に呼ぶ。
 図238乃至240に記載の平面状かつスロット状かつ横方向放射型のアンテナは、アンテナを形成した基板平面と平行となる方向であって、かつ、プローブの延在方向と直交する方向へ電磁波が主として放射されることから、このアンテナは、送信アンテナを形成した送信用基板突出部と受信アンテナを形成した受信用基板突出部が同一平面上に形成された、本技術の第2の実施の形態のセンサ装置200において用いることに適している。
 なお、図237および図238乃至240に記載の平面状かつスロット状かつ横方向放射型のアンテナにおいて、一部の電磁波は、スロットを配置したシールド層254および256と、直交する方向へ放射される。
 そして、図237および図238乃至240に記載の平面状かつスロット状かつ横方向放射型のアンテナにおいて、主放射の方向(アンテナを形成した基板と平行となる方向)へ放射される電磁波と、主放射に直交する方向(アンテナを形成した基板と直交する方向)へ放射される電磁波との割合は、
(1)アンテナを形成した基板の幅(より具体的には、基板の大きさであって、スロットと交差する信号線255の延在方向とは、直交する方向の基板の大きさ)と、
(2)アンテナから放射する電磁波の周波数と、
によって変化する。
 上記アンテナから放射される電磁波のうち、主放射の方向へ放射される電磁波の割合を、十分大きくするためには、上記(1)アンテナを形成した基板の幅を、上記(2)アンテナから放射する電磁波の中心周波数における電磁波の波長の概ね5分の1以下、とすることが望ましい。
 一例として、上記アンテナから放射する電磁波の周波数帯域が1ギガヘルツ(GHz)から9ギガヘルツ(GHz)の場合、上記(1)アンテナを形成した基板の幅Wは12ミリメートル(mm)以下であることが望ましい。
 図241は、本技術の第2の実施の形態の第1の変形例における電子基板311-1の一構成例を示す図である。アンテナは、3組とし、図238乃至240に記載の平面状かつスロット状かつ横方向放射型のアンテナとする。同図におけるaは、上方から見た際の電子基板311-1の上面図であり、同図におけるbは、Z軸方向から見た際の電子基板311-1の正面図である。同図におけるcは、X軸方向から見た際の電子基板311-1の側面図である。
 図242乃至250は、本技術の第2の実施の形態の第1の変形例における電子基板311-1のうち、送信用基板突出部の平面形状と断面形状を示す。
 図242乃至250は、図105乃至図113に示した、本技術の第1の実施の形態のプローブ内基板321の平面形状を、本技術の第2の実施の形態の送信用基板突出部に適応するように変更したものである。変更した箇所は、紙面上方(Y軸の負の方向)に記載した、測定部と接続する部分(本技術の第1の実施の形態のプローブ内基板321について言えば、伝送路接続部と接続する箇所、本技術の第2の実施の形態の送信用基板突出部について言えば、基板矩形部分と接続する箇所)である。それ以外の形状は同じであるので、詳細な説明は省略する。
 図242と図243は、本技術の第2の実施の形態の第1の変形例における電子基板311-1を、3層の配線層を備えた電子基板で形成した場合の平面形状と断面形状を表している。図242と図243は、図105と106に相当するものである。
 図244乃至図246は、本技術の第2の実施の形態の第1の変形例における電子基板311-1を、5層の配線層を備えた電子基板で形成した場合の平面形状と断面形状を表している。図244乃至図246は、図107乃至と109に相当するものである。
 図247乃至図250は、本技術の第2の実施の形態の第1の変形例における電子基板311-1を、7層の配線層を備えた電子基板で形成した場合の平面形状と断面形状を表している。図247乃至図250は、図110乃至と113に相当するものである。
 図105と図106に記載した、本技術の第1の実施の形態の送信用プローブ内基板は、基板に備わる信号線の側方をシールドするための構造として、シールド用のビアの列を用いることで、この構造を備えていない図103と図104に記載の送信用プローブ内基板よりも、基板の幅を小さくする効果を得ていた。
 図242と図243に記載した、本技術の第2の実施の形態の基板突出部も、基板に備わる信号線の側方をシールドするための構造として、シールド用のビアの列を用いることで、この構造を備えていない基板よりも、基板の幅を小さくする効果を得ている。
 一方、図107乃至図109と、図110乃至113に記載した本技術の第1の実施の形態の送信用プローブ内基板は、図105と図106に記載した、送信用プローブ内基板と比較して、より多くの信号線層を用いることにより、1つの信号線層に配置する信号線の本数を削減し、これにより基板の幅を小さくする効果を得ていた。
 図244乃至図246と、図247乃至250に記載した、本技術の第2の実施の形態の基板突出部も、図242と図243に記載した、送信用プローブ内基板と比較して、より多くの信号線層を用いることにより、1つの信号線層に配置する信号線の本数を削減し、これにより基板の幅を小さくする効果を得ている。
 図251は、図237に示した本技術の第2の実施の形態の第1の変形例のセンサ装置200において、基板突出部の幅とこれを収容するプローブ筐体の断面積とが、水分量の計測に及ぼす影響を、説明するための図である。
 図251におけるa、b、cは、本技術の第2の実施の形態の第1の変形例におけるセンサ装置200を、その上方からY軸の正の方向に見た際の、送信用プローブ筐体320aと受信用プローブ筐体320bの断面図である。同図におけるa、b、cのそれぞれにおいて、左側の長方形は送信用基板突出部を表し、この外周に配置された細い楕円の線が、送信用プローブ筐体320aを表す。右側の長方形は受信用基板突出部を表し、この外周に配置された細い楕円の線が、受信用プローブ筐体320bを表す。プローブ筐体の内側の白色の部分は、プローブ筐体内の空間を表す。プローブ筐体の外側の薄い色で色付けされた部分は、プローブ筐体を挿す前と同様の土壌を表す。一方、プローブ筐体の外側近傍の濃い色で色付けされた部分は、プローブ筐体を挿した結果、押しのけられた土が移動して来て、これにより土の密度が、プローブを挿す前の土の密度よりも高くなってしまった領域を、表している。
 かつ、同図におけるa、b、cは、(1)幅が異なる3種類の送信用基板突出部と受信用基板突出部を、長軸と短軸の長さの比が2:1となる楕円形の送信用プローブ筐体320aと受信用プローブ筐体320bに収め、(2)これら3種類において、送信用基板突出部と受信用基板突出部との間の距離が同じになるように配置したものである。ここで、図237と図251に記載のセンサ装置200は、図238乃至240を参照して説明した平面状かつスロット状かつ横方向放射型のアンテナを備えている。このため、図におけるa、b、cは、送信用アンテナの放射端部と受信用アンテナの受信端部との間の距離が同じになるように配置したもの、さらに言い換えれば、送信用アンテナと受信用アンテナの間の距離が同じになるように配置したものである。
 プローブ筐体を土壌中へ挿したことで押しのけられた土が移動して土の密度が高くなってしまった領域を、同図におけるa、b、cの間で比較すると、プローブ筐体内に収容した基板突出部の幅が大きいほど、その領域の幅が大きい。その結果、基板突出部の幅が大きいほど、送信用アンテナと受信用アンテナとの間の領域において、土の密度が高くなってしまった領域の割合が大きくなっている。土の密度が高くなると、水分の浸透のしやすさや、土の粒界の表面積が変化してしまい、土壌が保持する水分量が変化してしまう。このため、土の密度が高くなってしまった領域の割合が大きくなるほど、土壌の水分量の計測結果は、計測対象とする本来の土壌の水分量から、より大きく乖離してしまう。
これとは反対に、プローブ筐体内に収容した基板突出部の幅が小さいほど、前述の土の密度が高くなってしまった領域の幅は小さい。その結果、基板突出部の幅が小さいほど、送信用アンテナと受信用アンテナとの間の領域において、土の密度が高くなってしまった領域の割合が小さくなっている。これにより土壌の水分量の計測結果は、計測対象とする本来の土壌の水分量に、より近いものとなる。すなわち、土壌の水分量を正確に計測できるようになる。
 上記の観点から、基板突出部の幅を小さくするほど、これをプローブ筐体内に備えたセンサ装置は、土嚢の水分量を正確に計測できるようになる。
本技術の第2の実施の形態におけるセンサ装置200は、
(1)プローブ筐体内に収容した基板突出部において、信号線の側方をシールドするための構造として、シールド用のビアの列を用いることで、基板突出部の幅を小さくすることができる。そしてこれにより、土壌の水分量を正確に計測する効果を得ることができる。
(2)プローブ筐体内に収容した基板突出部において、複数のアンテナを備え、これら複数のアンテナへ接続するために複数の信号線を備える場合、複数の配線層を用いて、前記複数の信号線の中の少なくとも1つ以上を、異なる配線層に形成することで、基板突出部の幅を小さくすることができる。そしてこれにより、土壌の水分量を正確に計測する効果を得ることができる。
 [第2の変形例]
 本技術の第2の実施の形態(図220)、および、その第1の変形例(図237)におけるセンサ装置200は、アンテナを形成した基板突出部(および、電子基板311-1)の向きと位置を固定する構造として、本技術の第1の実施の形態(図4)と同様に位置決め部を備えていた。
 これに対して、本技術の第2の実施の形態における第2の変形例は、基板突出部(電子基板311-1)の向きとその位置を固定する構造の別の例として、前記基板をセンサ筐体(より具体的には、プローブ筐体320)に突き当てた構造を備える。
 図252は、本技術の第2の実施の形態の第2の変形例におけるセンサ装置200の一例を示す図である。
 図253は、図252に示す本技術の第2の実施の形態の第2の変形例において、そのセンサ筐体305と電子基板311-1の断面図の一例である。図253におけるaは、図252のA-A'線に沿って切断した際のセンサ筐体305の断面図を示す。図253におけるaは、図252のB-B'線に沿って切断した際のセンサ筐体305の断面図を示す。
 電子基板311-1をプローブ筐体320に突き当てる構造においては、電子基板311-1に備わる基板突出部が、図252のaに示す基板の幅方向(X軸方向)における2点と、図253のbに示す基板の厚さ方向(Z軸方向)における2点と、の積となる合計4点のうち、少なくとも2点でプローブ筐体320と接触することで、プローブ筐体320内における基板突出部とそこに備わるアンテナの位置を固定している。
 [第3の変形例]
 図254は、本技術の第2の実施の形態におけるさらに別の例として、送信アンテナと受信アンテナの向きと位置を固定する構造についての別の例を説明する図である。図254に示すセンサ装置200は、本技術の第2の実施の形態(図220)が有するセンサ筐体305を、備えていない。図254に示したセンサ装置200は、センサ筐体305を備えない代わりに、少なくとも、
(1)送信アンテナとこれに接続した送信用伝送路と備えた送信用基板突出部(図4に示したセンサ装置200における、送信用プローブ基板321と同じもの)の周囲を樹脂で固めた構造によって形成された送信用プローブと、
(2)受信アンテナとこれに接続した受信用伝送路と備えた受信用基板突出部(図4に示したセンサ装置200における、受信用プローブ基板322と同じもの)の周囲を樹脂で固めた構造によって形成された受信用プローブと、
を備え、かつ、上記(1)の送信用プローブと(2)の受信用プローブとの間が固定された構造を備える。
 そして、図254に示すセンサ装置200は、上記(1)の送信用プローブと、上記(2)の受信用プローブと、を備え、(3)上記(1)および(2)と異なる第3の構造部分をさらに備えることで、上記(1)の送信用プローブと(2)の受信用プローブとの間が固定された構造を備えてよい。図254に示すセンサ装置200は、上記(1)の送信用プローブと、上記(2)の受信用プローブと、上記(3)第3の構造部分として、電子基板311-1に備わる基板矩形部分の周囲を樹脂で固めた構造部分と、を備え、上記(1)乃至(3)の構造が一体となって固定された構造を備える。
 ここで、上記(1)の送信用プローブと、上記(2)の受信用プローブは、『これらのプローブを土壌へ挿した際に、これらのプローブが変形しまい、そのプローブ内部に配置された電子基板が変形してしまい、さらにその結果この電子基板に形成した送信アンテナと受信アンテナとの間の距離が所定の値から変わってしまい、これによって水分量の計測結果に誤差が生じること』を防ぐために、上記(1)送信用基板突出部の周囲を樹脂で固めた構造によって形成された送信用プローブは、このプローブに含まれる樹脂部分の強度が、このプローブに含まれる送信用基板突出部単体の強度よりも、高いことが望ましい。言い換えれば、送信用基板突出部の周囲を樹脂で固めた送信用プローブの強度が、このプローブに含まれる送信用基板突出部単体の強度の2倍以上となることが望ましい。これをさらに言い換えれば、図135に記載の方法を用いて、送信用基板突出部の周囲を樹脂で固めた送信用プローブの変形量と、このプローブに含まれる送信用基板突出部単体の変形量を比較した場合、送信用基板突出部の周囲を樹脂で固めた送信用プローブの変形量の変形量が、このプローブに含まれる送信用基板突出部単体の変形量の、1/2以下であることが望ましい。
 同様に、上記(1)受信用基板突出部の周囲を樹脂で固めた構造によって形成された受信用プローブは、このプローブに含まれる樹脂部分の強度が、このプローブに含まれる受信用基板突出部単体の強度よりも、高いことが望ましい。言い換えれば、受信用基板突出部の周囲を樹脂で固めた受信用プローブの強度が、このプローブに含まれる受信用基板突出部単体の強度の2倍以上となることが望ましい。これをさらに言い換えれば、図135に記載の方法を用いて、受信用基板突出部の周囲を樹脂で固めた受信用プローブの変形量と、このプローブに含まれる受信用基板突出部単体の変形量を比較した場合、受信用基板突出部の周囲を樹脂で固めた受信用プローブの変形量の変形量が、このプローブに含まれる受信用基板突出部単体の変形量の、1/2以下であることが望ましい。
 [第4の変形例]
 図191乃至図199を参照して説明したように、本技術の第1の実施の形態ではその第5の変形例において、センサ装置200を使用する土壌の硬さが著しく高い場合でも、プローブ筐体320を土壌へ挿した際の変形を防ぐための構造として、水分量の計測精度を悪化させる懸念無しにプローブ筐体の320の強度を向上させる構造を備えていた。
 図255乃至図264に示す、本技術の第2の実施の形態の第4の変形例は、上記水分量の計測精度を悪化させる懸念無しに、プローブ筐体の320の強度を向上させる構造を、本技術の第2の実施の形態に適応した一例である。図255乃至図264に記載のプローブ筐体320は、図191乃至図199に記載のプローブ筐体320と同様に、水分量の計測精度を悪化させないよう、送受信される電磁波が主として透過する領域を避けて、それ以外の領域におけるプローブ筐体320の肉厚を大きくしている。
 なお、図255乃至264に示す筐体の断面形状を説明する際に、肉厚の筐体を備えていない比較例として図221のaの筐体の形状を参照する。
 図255は、本技術の第2の実施の形態の第4の変形例その1を説明する図である。
同図に記載のプローブ筐体320は、主として電磁波が筐体を透過する紙面内側方向を避けて、紙面外側方向において、その肉厚を大きくしている。
 図255では、筐体の肉厚を大きくするための形状として、図255のaに示すように、筐体の外周と内周の双方に、不連続点や変曲点が存在しない形状で、筐体の肉厚を大きくしてよい。図255のbに示すように、筐体の内側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周に不連続点あるいは変曲点が増加している。図255のcに示すように、筐体の外側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の外周に不連続点あるいは変曲点が増加している。図255のdに示すように、筐体の内側方向と外側方向の双方にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周と外周の双方に不連続点あるいは変曲点が増加している。
 図256は、本技術の第2の実施の形態の第4の変形例その2を説明する図である。
同図に記載のプローブ筐体320は、主として電磁波が筐体を透過する紙面内側方向を避けて、紙面上方向と下方向のうちのどちらか1箇所において、その肉厚を大きくしている。
 図256では、筐体の肉厚を大きくするための形状として、図256のaに示すように、筐体の外周と内周の双方に、不連続点や変曲点が存在しない形状で、筐体の肉厚を大きくしてよい。図256のbに示すように、筐体の内側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周に不連続点あるいは変曲点が増加している。図256のcに示すように、筐体の外側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の外周に不連続点あるいは変曲点が増加している。図256のdに示すように、筐体の内側方向と外側方向の双方にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周と外周の双方に不連続点あるいは変曲点が増加している。
 図257は、本技術の第2の実施の形態の第4の変形例その3を説明する図である。
同図に記載のプローブ筐体320は、主として電磁波が筐体を透過する紙面内側方向を避けて、紙面上方向と下方向の2箇所において、その肉厚を大きくしている。
 図257では、筐体の肉厚を大きくするための形状として、図257のaに示すように、筐体の外周と内周の双方に、不連続点や変曲点が存在しない形状で、筐体の肉厚を大きくしてよい。図257のbに示すように、筐体の内側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周に不連続点あるいは変曲点が増加している。図257のcに示すように、筐体の外側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の外周に不連続点あるいは変曲点が増加している。図257のdに示すように、筐体の内側方向と外側方向の双方にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周と外周の双方に不連続点あるいは変曲点が増加している。
 図258は、本技術の第2の実施の形態の第4の変形例の例外的な事例を説明する図である。同図に記載のプローブ筐体320は、例外的に、主として電磁波が筐体を透過する紙面内側方向も含めて、紙面左右方向の2箇所において、その肉厚を大きくしている。この場合、水分量の計測精度を悪化させる懸念があるものの、プローブ筐体320の強度を向上させる効果は得られる。
 図258では、筐体の肉厚を大きくするための形状として、図258のaに示すように、筐体の外周と内周の双方に、不連続点や変曲点が存在しない形状で、筐体の肉厚を大きくしてよい。図258のbに示すように、筐体の内側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周に不連続点あるいは変曲点が増加している。
 図258のcに示すように、筐体の外側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の外周に不連続点あるいは変曲点が増加している。図258のdに示すように、筐体の内側方向と外側方向の双方にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周と外周の双方に不連続点あるいは変曲点が増加している。
 図259は、本技術の第2の実施の形態の第4の変形例その4を説明する図である。
同図に記載のプローブ筐体320は、主として電磁波が筐体を透過する紙面内側方向を避けて、紙面内側方向を除いた3箇所において、その肉厚を大きくしている。
 図259では、筐体の肉厚を大きくするための形状として、図259のaに示すように、筐体の外周と内周の双方に、不連続点や変曲点が存在しない形状で、筐体の肉厚を大きくしてよい。図259のbに示すように、筐体の内側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周に不連続点あるいは変曲点が増加している。図259のcに示すように、筐体の外側方向にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の外周に不連続点あるいは変曲点が増加している。図259のdに示すように、筐体の内側方向と外側方向の双方にその肉厚を大きくしてもよい。この場合、比較例と比べると、筐体の内周と外周の双方に不連続点あるいは変曲点が増加している。
 図260は、本技術の第2の実施の形態の第4の変形例その5を説明する図である。同図に記載の構造は、図255に記載の構造のアンテナを、片側放射へ変更しただけで、筐体の形状は同じである。
 図261は、本技術の第2の実施の形態の第4の変形例その6を説明する図である。同図に記載の構造は、図256に記載の構造のアンテナを、片側放射へ変更しただけで、筐体の形状は同じである。
 図262は、本技術の第2の実施の形態の第4の変形例その7を説明する図である。
同図に記載の構造は、図257に記載の構造のアンテナを、片側放射へ変更しただけで、筐体の形状は同じである。
 図263は、本技術の第2の実施の形態の第4の変形例の例外的な事例を説明する図である。同図に記載の構造は、図258に記載の構造のアンテナを、片側放射へ変更しただけで、筐体の形状は同じである。
 図264は、本技術の第2の実施の形態の第4の変形例その8を説明する図である。
同図に記載の構造は、図259に記載の構造のアンテナを、片側放射へ変更しただけで、筐体の形状は同じである。
 図255乃至図264に記載の、本技術の第2の実施の形態の第4の変形例は、図191乃至図199に記載の本技術の第1の実施の形態の第5の変形例に示したプローブ筐体の一部を肉厚にする構造を、図221のaに例示される本技術の第2の実施の形態のプローブ筐体へ適用したものである。
 ここで、図221のaに例示されるプローブ筐体は、本技術の第2の実施の形態の構成要素(9')を表すものであるが、同図に示したプローブ筐体は、図190のaに例示される本技術の第1の実施の形態の構成要素(9)となるプローブ筐体を90°回転させたものとなる。
 そして、本技術の第1の実施の形態の構成要素(9)には、図190のa以外にも、その例として図190のb乃至dがある。図190のaの筐体を90°回転させた構造が、第2の実施の形態の構成要素(9')となるのと同様に、図190のb乃至dの筐体を90°回転させた構造も、第2の実施の形態の構成要素(9')として、第2の実施の形態において用いることができる。
 そして、本技術の第2の実施の形態の第4の変形例として、上記図190のb乃至dの筐体を90°回転させた構造のそれぞれに対して、図255乃至図264に記載の構造を適用することもできる。
このように、本技術の第2の実施の形態の第4の変形例によれば、水分量の計測精度を悪化させないよう、送受信される電磁波が主として透過する領域を避けて、それ以外の領域におけるプローブ筐体320の肉厚を大きくしており、これにより、土壌の硬度が著しく高い場合であっても、プローブを土壌へ挿した際のプローブ筐体320とその内部の基板の変形を低減することが可能となり、その結果、水分をより正確に測定することができる。
 [第5の変形例]
 上述の第2の実施の形態では、地面に平行なX-Y平面において所定の1点についてセンサ装置200が水分を測定していたが、この構成では、複数の地点を測定する際に、複数のセンサ装置200が必要となる。この第2の実施の形態の第5の変形例のセンサ装置200は、X-Y平面において複数の地点を測定する点において第1の実施の形態と異なる。
 図265は、本技術の第2の実施の形態の第5の変形例におけるセンサ装置200の一構成例を示す図である。この第2の実施の形態のセンサ装置200は、2つ以上(例えば、3対)の突出部が形成された電子基板311-1を備える点において第2の実施の形態と異なる。突出部のそれぞれには、アンテナが形成され、プローブとして機能する。同図におけるaは、プローブ対ごとに測定回路を配置した例を示し、同図におけるbは、1つの測定回路を共有する例を示す。
 同図におけるaに例示するように、1対目のプローブ(突出部)には、送信アンテナ221-1および受信アンテナ231-1が形成される。これらのアンテナは、測定回路210-1に接続される。2対目のプローブには、送信アンテナ221-3および受信アンテナ231-2が形成される。これらのアンテナは、測定回路210-2に接続される。3対目のプローブには、送信アンテナ221-3および受信アンテナ231-3が形成される。これらのアンテナは、測定回路210-3に接続される。電子基板311-1は、筐体内に格納して土壌に挿入してもよいし、筐体に格納せずに、電子基板311-1をそのまま土壌に挿入してもよい。
 電子基板311-1が3つ以上のプローブを備えるため、1つのセンサ装置200により複数の地点の水分量を測定することができる。
 また、同図におけるbに例示するように、3対のプローブが1つの測定回路210を共有することもできる。
 図266は、本技術の第2の実施の形態の第5の変形例における電子基板の接続前後のセンサ装置200の一例を示す図である。同図におけるaは、接続前の電子基板を示し、同図におけるbは、接続後の電子基板を示す。
 同図におけるaに例示するように、電子基板311-1、312-2、311-3を用意し、同図におけるbに例示するように、それらを連結部370および371により接続することもできる。
 図267は、本技術の第2の実施の形態の第5の変形例におけるプローブごとに複数対のアンテナを設けたセンサ装置200の一構成例を示す図である。同図におけるaは、プローブ対ごとに測定回路を配置した例を示し、同図におけるbは、1つの測定回路を共有する例を示す。同図に例示するように、プローブ対毎に複数対のアンテナを設けることもできる。
 図268は、本技術の第2の実施の形態の第5の変形例におけるプローブ対ごとに長さが異なるセンサ装置200の一構成例を示す図である。同図におけるaは、プローブ対毎に、アンテナ数が異なる例を示す。同図におけるbは、プローブ対毎のアンテナ数が同一の例を示す。
 同図におけるaに例示するように、プローブ対ごとに長さを変え、1対目のプローブに、3対のアンテナを設け、2対目のプローブに2対のアンテナを設け、3対目のプローブに1対のアンテナを設けてもよい。同図におけるbに例示するように、プローブ対ごとに長さを変え、プローブ対毎に一対のアンテナを設けてもよい。同図の構成により、センサ装置200は、地点ごとに異なる深さの水分量を計測することができる。
 図269は、本技術の第2の実施の形態の第5の変形例における送信アンテナを複数の受信アンテナが共有するセンサ装置200の一構成例を示す図である。同図におけるaは、2つの受信アンテナが1つの送信アンテナを共有する例を示す。同図におけるbは、4つの受信アンテナが1つの送信アンテナを共有する例を示す。
 同図におけるaに例示するようにプローブ数を3つとし、真ん中のプローブに送信アンテナ221-1を形成し、残りの2つのプローブの一方に受信アンテナ231-1を形成し、他方に受信アンテナ231-2を形成することもできる。また、同図におけるbに例示するようにプローブ数を3つとし、真ん中のプローブに送信アンテナ221-1を形成し、残りの2つのプローブの一方に受信アンテナ231-1および232-1を形成し、他方に受信アンテナ231-2および232-2を形成することもできる。送信アンテナの共有により、プローブ数を削減することができる。
 図270は、本技術の第2の実施の形態の第5の変形例における電子基板の基板面が向かい合うセンサ装置200の一構成例を示す図である。同図におけるaは、電子基板の端部を連結した際の斜視図を示す。同図におけるbは、電子基板の端部を連結した際の上面図を示す。同図におけるcは、電子基板の端部以外を連結した際の斜視図を示す。同図におけるdは、電子基板の端部以外を連結した際の上面図を示す。
 同図におけるaおよびbに例示するように電子基板311-1、311-2および311-3のそれぞれの基板平面が平行になるように、それらの端部を連結部370で接続して固定することもできる。同図におけるcおよびdに例示するように電子基板311-1、311-2および311-3のそれぞれの基板平面が平行になるように、それらの端部以外(中央部など)を連結部370および371で接続して固定することもできる。
 図271は、本技術の第2の実施の形態の第5の変形例における二次元格子状に配列された複数の地点を計測するセンサ装置200の一構成例を示す図である。同図に例示するように、X軸方向に配列された3対のプローブを各々が備える電子基板311-1、311-2および311-3を基板平面が向かい合うように、連結部371乃至375により接続することもできる。これにより、センサ装置200は、地面に平行なX-Z平面において、二次元格子状に配列された3×3の地点の水分量を計測することができる。
 図272は、本技術の第2の実施の形態の第5の変形例における水準器を追加したセンサ装置200の一構成例を示す図である。同図におけるaに例示するように、3対のプローブを設けた電子基板311-1に、水準器376を設けることもできる。また、同図におけるbに例示するように、水準器376および377を設けることもできる。水準器376は、プローブが配列された方向(X軸方向)における傾きを検出するものである。水準器377は、プローブが配列された方向に垂直な方向(Z軸方向)における傾きを検出するものである。
 同図におけるcに例示するように、二次元格子状に配列された複数の地点を計測するセンサ装置200に水準器376および377を設けることもできる。
 図273は、本技術の第2の実施の形態の第5の変形例における電磁波の送受信方向が交差するセンサ装置200の一構成例を示す図である。同図におけるaに例示するように、連結部370で電子基板311-1および311-2を接続し、送信アンテナ221-1の送信信号を、そのアンテナとY軸方向の位置が異なる受信アンテナ232-1で受信することもできる。また、送信アンテナ222-1の送信信号を、そのアンテナとY軸方向の位置が異なる受信アンテナ231-1で受信することもできる。これにより、センサ装置200は、送信アンテナ221-1、222-1の中間の深さの水分量を計測することができる。
 また、同図におけるbに例示するように、3本のプローブを設け、電磁波の送受信方向が交差するように送受信することもできる。
 このように本技術の第2の実施の形態の第5の変形例によれば、電子基板に3つ以上のプローブを設けたため、センサ装置200は、複数の地点の水分量を計測することができる。
 [第6の変形例]
 上述の第2の実施の形態では、送信プローブと、受信プローブとのそれぞれのアンテナの位置が対称であったが、この構成では、センサ装置200をさらに小型化することが困難である。この第2の実施の形態の第6の変形例は、送信プローブと、受信プローブとのアンテナの位置を非対称とする点において第2の実施の形態と異なる。
 図274は、本技術の第2の実施の形態の第6の変形例におけるアンテナの位置を非対称にした際の効果を説明するための図である。センサ装置200内の電子基板311-1は、四角形(矩形など)の四角形部と、一対の突出部とを備えるものとする。一対の突出部の一方には、送信アンテナ221が形成され、他方には受信アンテナ231が形成される。これらの突出部は、送信プローブ、受信プローブとして機能する。
 同図におけるaに例示するように、深さ(Y軸方向)におけるアンテナの位置が、送信プローブと受信プローブとで同一である構成を比較例として想定する。これに対して、第2の実施の形態の第6の変形例では、同図におけるb、cに例示するように、送信プローブと受信プローブとで、Y軸方向において異なる位置にアンテナが配置される。
 同図におけるa、b、cのそれぞれのアンテナ間の距離dは同一とする。プローブ間の距離(言い換えれば、幅)をwとする。送信アンテナから受信アンテナへの方向と、X軸とのなす角度をθとする。同図におけるbでは、θが45度であり、同図におけるxでは、θが60度である。
 この場合、幅wと、距離dとの間には、次の式が成立する。
  w=d×cоs(θ)              ・・・式20
上式において、cоs()は、余弦関数である。
 同図におけるaでは、θが0度であるため、式20より、幅wは、距離dと等しくなる。同図におけるbでは、θが45度であるため、式20より、幅wは、d/21/2となる。同図におけるbでは、θが60度であるため、式20より、幅wは、d/2となる。このように、アンテナの位置を送信側と受信側とで非対称にすることにより、アンテナ間の距離を変えずに、幅wを小さくすることができる。アンテナ間の距離が同一であるため、測定精度を維持することができる。このため、測定精度を維持しつつ、センサ装置200のサイズを小型化することができる。
 図275は、本技術の第2の実施の形態の第6の変形例におけるセンサ装置の一構成例を示す図である。同図におけるaに例示するように、プローブを長さを受信側と送信側とで変え、それらの先端にアンテナを形成してもよい。同図におけるb、cに例示するように、プローブの長さを受信側と送信側とで同一にし、送信アンテナと、受信アンテナとの深さ方向(Y軸方向)における位置を変えてもよい。
 図276は、本技術の第2の実施の形態の第6の変形例における四角形部を平行四辺形にしたセンサ装置200の一構成例を示す図である。送信アンテナ221から測定回路210までの伝送路長と、受信アンテナ231から測定回路210までの伝送路長とを同一とするために、四角形部を平行四辺形とすることもできる。同図におけるaは、送信側を受信側より深くした例であり、同図におけるbは、受信側を送信側より深くした例である。同図におけるc、dは、送信側と受信側とでプローブの長さを同一にした例である。
 受信側と送信側とで伝送路長を同一にすることにより、送信側および受信側の一方の補正値を他方に適用することができる。
 図277は、本技術の第2の実施の形態の第6の変形例における四角形部を矩形にし、伝送路長を送信側、受信側で一致させたセンサ装置200の一構成例を示す図である。四角形部を矩形にし、伝送路長を送信側、受信側で一致させることもできる。同図におけるaは、送信側を受信側より深くした例であり、同図におけるbは、受信側を送信側より深くした例である。同図におけるc、dは、送信側と受信側とでプローブの長さを同一にした例である。
 図278は、本技術の第2の実施の形態の第6の変形例における複数の地点を測定するセンサ装置200の一構成例を示す図である。プローブごとに、複数のアンテナを形成し、Y軸方向において、複数の地点を測定することもできる。
 同図におけるaは、送信側を受信側より深くした例であり、同図におけるbは、受信側を送信側より深くした例である。同図におけるc、dは、送信側と受信側とでプローブの長さを同一にした例である。同図におけるe、fは、四角形部を平行四辺形にした例である。同図におけるg、hは、四角形部を平行四辺形にし、送信側と受信側とでプローブの長さを同一にした例である。
 図279は、本技術の第2の実施の形態の第6の変形例における、アンテナを共用して2つの地点を測定するセンサ装置200の一構成例を示す図である。同図におけるaに例示するように、送信アンテナ221および222で受信アンテナ231を共有することもできる。同図におけるbに例示するように、受信アンテナ231および232で送信アンテナ221を共有することもできる。
 同図におけるc、dは、送信側と受信側とでプローブの長さを同一にした例である。同図におけるe、fは、四角形部を平行四辺形にした例である。同図におけるg、hは、四角形部を平行四辺形にし、送信側と受信側とでプローブの長さを同一にした例である。
 図280は、本技術の第2の実施の形態の第6の変形例における、アンテナを共用して3つ以上の地点を測定するセンサ装置200の一構成例を示す図である。アンテナを2対とし、アンテナを共用して3つ以上の地点を計測することもできる。
 例えば、同図におけるaに例示するように、送信アンテナ221および222と、受信アンテナ231および232を形成し、送信アンテナ221および222で受信アンテナ232を共有することもできる。同図におけるbに例示するように、送信アンテナ221および222と、受信アンテナ231および232を形成し、複数の受信アンテナで1つの送信アンテナを共有することもできる。
 同図におけるc、dは、送信側と受信側とでプローブの長さを同一にした例である。同図におけるe、fは、四角形部を平行四辺形にした例である。同図におけるg、hは、四角形部を平行四辺形にし、送信側と受信側とでプローブの長さを同一にした例である。
 図281は、本技術の第2の実施の形態の第6の変形例における、アンテナを共用して2つの地点を測定するセンサ装置200の別の例を示す図である。同図におけるaに例示するように、送信アンテナ221および222で受信アンテナ231を共有する際に、送信アンテナ221および受信アンテナ231のY軸方向の位置を同一にすることもできる。同図におけるbに例示するように、2つの受信アンテナで送信アンテナを共有する際に、それらの受信アンテナの一方と送信アンテナとのY軸方向の位置を同一にすることもできる。
 同図におけるc、dは、送信側と受信側とでプローブの長さを同一にした例である。同図におけるe、fは、四角形部を平行四辺形にした例である。同図におけるg、hは、四角形部を平行四辺形にし、送信側と受信側とでプローブの長さを同一にした例である。
 図282は、本技術の第2の実施の形態の第6の変形例における、アンテナを共用して3つ以上の地点を測定するセンサ装置200の別の例を示す図である。同図におけるaに例示するように、2対のアンテナを形成し、送信アンテナ221および222で受信アンテナ232を共有する際に、送信アンテナ221および受信アンテナ232のY軸方向の位置を同一にすることもできる。同図におけるbに例示するように、2対のアンテナを形成し、2つの受信アンテナで送信アンテナを共有する際に、それらの受信アンテナの一方と送信アンテナの一方のY軸方向の位置を同一にすることもできる。
 同図におけるc、dは、送信側と受信側とでプローブの長さを同一にした例である。同図におけるe、fは、四角形部を平行四辺形にした例である。同図におけるg、hは、四角形部を平行四辺形にし、送信側と受信側とでプローブの長さを同一にした例である。
 図283は、本技術の第2の実施の形態の第6の変形例におけるプローブ数を増やしたセンサ装置の一構成例を示す図である。同図におけるaに例示するように、プローブ数を3本にし、真ん中の送信アンテナ221を両側の受信アンテナ231-1および232-2で共有することもできる。同図におけるbに例示するように、プローブ数を3本にし、真ん中の受信アンテナ231を両側の送信アンテナ221-1および222-2で共有することもできる。同図におけるc、dは、3本のプローブの長さを同一にした例である。
 図284は、本技術の第2の実施の形態の第6の変形例におけるプローブ数、アンテナ数を増やしたセンサ装置の一構成例を示す図である。同図におけるaに例示するように、プローブ数を3本にし、真ん中の送信アンテナ221を両側の受信アンテナ231-1、232-1、231-2および232-2で共有することもできる。同図におけるbに例示するように、プローブ数を3本にし、真ん中の受信アンテナ231を両側の送信アンテナ221-1、222-1、221-2および222-2で共有することもできる。同図におけるc、dは、3本のプローブの長さを同一にした例である。
 このように、本技術の第2の実施の形態の第6の変形例によれば、送信側と受信側とでアンテナの位置を非対称にしたため、センサ装置200をさらに小型化することができる。
 <3.第3の実施の形態>
 上述の第1の実施の形態では、平面状のアンテナをプローブ内基板321および322に形成していたが、アンテナの形状は、平面状に限定されない。この第3の実施の形態のセンサ装置200は、円柱状のアンテナを備える点において第1の実施の形態と異なる。
 図285は、本技術の第3の実施の形態におけるセンサ装置200の一例を示す図である。この第3の実施の形態のセンサ装置200は、プローブ内基板321および322を備えず、同軸ケーブル281乃至286を備える点において第1の実施の形態と異なる。同軸ケーブル281乃至283の一端に送信アンテナ221乃至223が形成され、同軸ケーブル284乃至286の一端に受信アンテナ231乃至233が形成される。同軸ケーブル281乃至286の他端は、測定部基板311に接続される。
 図286は、本技術の第3の実施の形態におけるアンテナの断面図および側面図の一例である。同図におけるaは、上方から見た際のアンテナの断面図である。同図におけるbは、センサ装置200の正面(Z軸方向)から見た際のアンテナの側面図であり、同図におけるcは、センサ装置200の側面(X軸)方向から見た際のアンテナの側面図である。
 同軸ケーブル281等は、線状の信号線281-3と、その信号線281-3を被覆するシールド層281-2と、そのシールド層281-2を被覆する被覆層281-1とから構成される。同軸ケーブル281等の一端において、シールド層281-2の一部が露出しており、この露出したシールド層281-2の先に信号線281-3の一部が露出している。この露出した信号線281-3と露出したシールド層281-2がアンテナ(送信アンテナおよび受信アンテナ)を構成する。そして、このアンテナにおける前記露出した信号線281-3が、送信アンテナにおける送信エレメント、および、受信アンテナにおける受信エレメントとしてとして機能する。このように、測定部基板311とアンテナとの間の伝送路(同軸ケーブル281)と、アンテナとが、連続した同じ材料用いて形成されている。
 図287は、本技術の第3の実施の形態における同軸ケーブルの断面図の一例を示す図である。同図におけるaに例示するように、同軸ケーブルごとにプローブ筐体320内に空洞を形成しておき、その空洞内に同軸ケーブルを配置することもできる。
 同図におけるbに例示するように、複数の同軸ケーブルを固定具380により固定し、プローブ筐体320内の空洞に配置することもできる。固定具380として、結束バンドや接着剤などが用いられる。複数本の同軸ケーブルを固定具380により固定することで、1本の同軸ケーブルよりも、ケーブル延在方向の強度が向上している。
 同図におけるcに例示するように、複数の同軸ケーブルを固定具381により固定し、プローブ筐体320内に空洞に配置することもできる。固定具381として、ガイド構造体やケースなどが用いられる。同図におけるdに例示するように、同図におけるcの構造について、主として電磁波が透過する側の筐体の肉厚を、プローブ筐体の一断面において最も小さくすることもできる。
 図288は、本技術の第3の実施の形態におけるアンテナ数を削減したセンサ装置の一例を示す図である。同図に例示するように、アンテナ対を1対とすることもできる。
 図289は、本技術の第3の実施の形態におけるアンテナ数を削減した際のアンテナの断面図および側面図の一例である。
 図290は、本技術の第3の実施の形態におけるアンテナ数を削減した際の同軸ケーブルの断面図の一例を示す図である。同図におけるaに例示するように、プローブ筐体320内の空洞に同軸ケーブルを配置することもできる。同図におけるbに例示するように、同軸ケーブルを固定具381により固定し、プローブ筐体320内の空洞に配置することもできる。同図におけるcに例示するように、同図におけるbの構造について、主として電磁波が透過する側の筐体の肉厚を、プローブ筐体の一断面において最も小さくすることもできる。
 このように、本技術の第3の実施の形態によれば、同軸ケーブルの先端に円柱状のアンテナを形成したため、プローブ内基板が不要となる。
 <4.第4の実施の形態>
 上述の第1の実施の形態では、水分計測システム100に潅水ノズルを追加する際、センサ装置200と別々に配置していたが、この構成では、それらを適切な位置に配置することが困難である。この第4の実施の形態の水分計測システム100は、潅水ノズルを適切な位置に固定した点において第1の実施の形態と異なる。
 図291は、本技術の第4の実施の形態と比較例とにおける水分計測システム100の一例を示す図である。同図におけるaは、センサ装置200と、潅水ノズル530とを連結しない比較例の水分計測システムの一例を示す図である。同図におけるbは、第4の実施の形態における水分計測システム100の一例を示す図である。
 同図におけるaに例示するように、センサ装置200と、潅水ノズル530とを別々に配置する際、ユーザーが勘を頼りに設置する必要がある。しかしながら、この場合、センサ装置200を用いて潅水制御を行なう際に、センサ装置200と潅水ノズル530との距離が一定でないと、水分量の変化を検出するまでの時間遅れにばらつきが生じるおそれがある。この結果、潅水制御が適切に機能しなくなり、植物に過剰な水ストレスを与えてしまう問題がある。
 そこで、第4の実施の形態では、同図におけるbに例示するように、連結部370によりセンサ装置200と潅水ノズルホルダー520とを連結している。潅水ノズルホルダー520には、潅水ノズル530が保持される。潅水ノズル530は、潅水チューブ510の一端に取り付けられる。同図におけるbの構成により、センサ装置200と潅水ノズルホルダー520との距離がばらつかないように一定にすることができる。
 ただし、1つのセンサ装置200に潅水ノズルホルダー520を連結する構成では、潅水チューブ510の重みでセンサ装置200の位置がずれやすく、土壌と水分センサの間に空隙が生じて水分量を高い精度で測定できなくなることがある。このため、複数のセンサ装置200の間に潅水ノズルホルダー520を設けて、より強固な支持構造にしてもよい。
 図292は、本技術の第4の実施の形態における複数のセンサ装置を連結した水分計測システム100の一例を示す図である。同図におけるaに例示するように、センサ装置200とセンサ装置201と潅水ノズルホルダー520とを連結部370により連結することもできる。なお、連結するセンサ装置の個数は、2つに限定されない。
 同図におけるbに例示するように、センサ装置200とセンサ装置201とのそれぞれのプローブ筐体320の深さ方向(Y軸方向)の長さが異なっていてもよい。
 図293は、本技術の第4の実施の形態における複数のセンサ装置を連結した水分計測システム100の上面図の一例である。同図は、上方向(Y軸方向)から見た際の上面図を示す。
 同図におけるaに例示するように、上方から見た際の連結部370の形状は線状であってもよいし、同図におけるbに例示するように、線分を所定の角度で折り曲げた形状であってもよい。同図におけるcに例示するように、連結部370の形状は円弧状であってもよい。
 図294は、本技術の第4の実施の形態における支持部材を設けた水分計測システム100の一例を示す図である。同図におけるaに例示するように、潅水ノズルホルダー520の上部に、支持部材540を設けることもできる。支持部材540の設置により、鉢の中で複数のセンサ装置と潅水ノズルホルダー520とを設置しても、それらが植物に干渉しなくなる。この結果、土壌の上部と下部の水分量を測定できるようになり、しおれや根腐れの予兆を検知できる。同図におけるbに例示するように、支持部材540は、傘に類似する形状であってもよい。
 図295は、本技術の第4の実施の形態における複数のセンサ装置と複数の潅水ノズルホルダーとを連結した水分計測システム100の一例を示す図である。同図に例示するように、センサ装置200および201と、潅水ノズルホルダー520乃至522とを連結部370により連結することもできる。潅水ノズルホルダーやセンサ装置のそれぞれの個数は、同図に3個や2個に限定されない。
 図296は、本技術の第4の実施の形態における潅水チューブホルダーを連結した水分計測システム100の一例を示す図である。同図におけるaに例示するように、潅水ノズルホルダー520の代わりに、潅水チューブホルダー550を用いることもできる。潅水チューブホルダー550は、センサ装置200の所定の位置に取り付けられる。この場合、連結部370および潅水ノズル530が不要となり、コストを削減することができる。同図におけるbは、同図におけるaの水分計測システム100の上面図を示す。
 また、同図におけるcに例示するように、複数のセンサ装置を連結する連結部370の所定位置に潅水チューブホルダー550を取り付けることもできる。同図におけるdは、同図におけるcの水分計測システム100の上面図を示す。
 また、同図におけるeに例示するように、センサ装置200および201を連結部370により連結し、センサ装置200および201のそれぞれに潅水チューブホルダー550および551を取り付けることもできる。同図におけるfは、同図におけるeの水分計測システム100の上面図を示す。
 図297は、本技術の第4の実施の形態における潅水ノズルを介して潅水する水分計測システム100の一例を示す図である。同図におけるaに例示するように、潅水チューブ510が潅水ノズル530内に水を流す構成であってもよい。この構成では、潅水ノズル530を伝わって水が土壌に流れる。この場合、同図におけるbに例示するように、複数のセンサ装置を連結部370により連結することもできる。また、同図におけるcに例示するように、センサ装置200とセンサ装置201とのそれぞれのプローブ筐体320の深さ方向(Y軸方向)の長さが異なっていてもよい。
 図298は、本技術の第4の実施の形態におけるプローブの配列方向と連結部に平行な線分とが直交する水分計測システム100の一例を示す図である。同図は、水分計測システム100の上面図を示す。同図に例示するように、センサ装置200および201のそれぞれのプローブの配列方向と、線状の連結部370に平行な線分とが直交するように、センサ装置を連結することもできる。この場合、上方から見てHの字状となる。
 同図におけるaに例示するように、連結部370に潅水チューブホルダー550を取り付けてもよい。同図におけるbに例示するように、連結部370に潅水ノズルホルダー520を取り付けてもよい。
 このように、本技術の第4の実施の形態によれば、センサ装置200と、潅水ノズル530とを適切な位置に固定したため、それらの間の距離を一定にすることができる。
 <5.第5の実施の形態>
 上述の第1の実施の形態では、センサ装置200に備わる送信アンテナと受信アンテナを土壌中へ設置する際に、これらのアンテナに応力が加わることでアンテナの向きやアンテナ間の距離が所定の向きと距離から外れてしまう事態を避けるため、送信アンテナと受信アンテナおよびこれらに接続する伝送路を、強固な筐体プローブ内に収容していた。
しかし、例えば、よく耕された畑など計測対象の土壌の硬度が低い場合には、センサ装置200は、強固な筐体を備えない構造であっても、使用できる可能性がある。そこで、本技術の第5の実施の形態のセンサ装置200は、センサ筐体305を備えず、かつ、センサ筐体を備えずとも高い耐久性を実現するための構造を備えるものとなっている。これにより、本技術の第5の実施の形態のセンサ装置200は、センサ筐体305を備えた本技術のセンサ装置200と比較して、部品点数を削減し、外形サイズを縮小し、重量を軽減し、製造方法を簡単にし、製造コストを低減する、との効果を得ている。
 図299と図300は、本技術の第5の実施の形態におけるセンサ装置200の正面図および側面図の一例を示す図である。図299と図300に示す本技術の第5の実施の形態におけるセンサ装置200は、本技術第2の実施形態およびその変形例を、プローブ筐体305を備えない形態へと変更したものとなっている。図299におけるaは、センサ装置200の正面図を示し、同図におけるbは、センサ装置200の側面図を示す。図300におけるaは、センサ装置200の背面図の一例である。同図におけるbは、同図におけるaのC-C'線に沿ってセンサ装置200を切断した際の断面図の一例である。同図におけるcは、同図におけるaのD-D'線に沿ってセンサ装置200を切断した際の断面図の一例である。同図におけるdは、同図におけるaのE-E'線に沿ってセンサ装置200を切断した際の断面図の一例である。図299と図300に例示するように、本技術の第5の実施の形態のセンサ装置200は、1枚の電子基板311-1を備える。この電子基板311-1の構成は、第2の実施の形態と同様である。電子基板311-1の背面には、電池313などが設けられている。
 図299と図300に示すように、本技術の第5の実施の形態のセンサ装置200において、電子基板311-1は、被覆用樹脂により被覆される。この被覆用の樹脂は、図299と図300において、電子基板311-1の外側の黒い太線で示されている。この被覆用樹脂は、電磁波透過性および耐水性と、さらに望ましくは耐薬品性とを備え、電子基板311-1よりも、柔軟性が高いことが望ましい。本技術のセンサ装置200は、これに備わるアンテナとアンテナに接続した伝送路とを所定の土壌へ挿す際に、前記アンテナや伝送路が変形しないように、所定の機械強度が必要となる。本技術の第5の実施の形態のセンサ装置200では、電子基板311-1が、前記の所定の機械強度を確保する役割を担っている。一方、前記の被覆用樹脂は、水や農薬から電子基板311-1を守る役割を担っている。ここで、被覆用樹脂と電子基板311-1の間に空洞が生じると(言い換えれば、被覆用樹脂が電子基板311-1の表面から浮き上がっていると)、センサ装置200を土壌に挿した際に、この浮き上がった被覆用樹脂に応力が加わり、これが破断する恐れがある。そこで、本技術の第5の実施の形態のセンサ装置200においては、電子基板311-1との間に空洞を生じさせることなく電子基板311-1を被覆するために、被覆用樹脂には、柔軟性を備えた樹脂を用いている。さらに、本技術の第5の実施の形態のセンサ装置200は、被覆用樹脂で覆われた送信アンテナから電磁波を送信し、被覆用樹脂で覆われた受信アンテナでこの電磁波を受信することで、2つのアンテナ間の媒質中の水分量を計測する。そこで、本技術の第5の実施の形態のセンサ装置200において、被覆用樹脂には、電磁波透過性を備えた樹脂を用いている。
 図301と図302は、本技術の第5の実施の形態の別の例その1におけるセンサ装置200の正面図および側面図の一例を示す図である。
 図301におけるaは、センサ装置200の正面図を示し、同図におけるbは、センサ装置200の側面図を示す。図302におけるaは、センサ装置200の背面図の一例である。同図におけるbは、同図におけるaのC-C'線に沿ってセンサ装置200を切断した際の断面図の一例である。同図におけるcは、同図におけるaのD-D'線に沿ってセンサ装置200を切断した際の断面図の一例である。同図におけるdは、同図におけるaのE-E'線に沿ってセンサ装置200を切断した際の断面図の一例である。
なお、図299と図300において、測定部基板311およびプローブ内基板321と322の外側の黒い太線は、被覆用樹脂を表している。
 本技術の第5の実施の形態のセンサ装置200の使用者は、センサ装置200における測定部を備えた備えた部分を持って、センサ装置200のアンテナ部分を土壌へ挿すことになる。このため、本技術の第1の実施の形態のように、測定部基板311とプローブ内基板321および322が異なる基板となる形態のセンサ装置200、を基にして、本技術の第5の実施の形態のように、プローブ筐体305を備えないセンサ装置200を実現するには、プローブ内基板321および322を土壌へ挿した際にこれらの向きと位置が変化しないよう、プローブ内基板321および322がプローブ筐体305を介さずに測定部基板311へ固定されていることが望まれる。
 そこで、図301と図302に示す本技術の第5の実施の形態の別の例その1におけるセンサ装置200は、図180と図181に例示したセンサ装置200と同様にして、フレーム291乃至294を備えている。これらのフレームが、測定部基板311とプローブ内基板321および322とを、直交させた状態で一体化させて固定しており、これにより、この固定してなる構造体が、前記の所定の機械強度を備えるようになっている。
 そして、図301と図302に示す本技術の第5の実施の形態の別の例その1におけるセンサ装置200は、この固定してなる構造体の外側を、測定部基板311およびプローブ内基板321と322よりも柔軟性が高く、かつ、電磁波透過性と耐水性と望ましくは耐薬品性とを備えた被覆用樹脂が被覆している。
 図303と図304は、本技術の第5の実施の形態の別の例その2におけるセンサ装置200の正面図および側面図の一例を示す図である。
 図303におけるaは、センサ装置200の正面図を示し、同図におけるbは、センサ装置200の側面図を示す。図304におけるaは、センサ装置200の背面図の一例である。同図におけるbは、同図におけるaのC-C'線に沿ってセンサ装置200を切断した際の断面図の一例である。同図におけるcは、同図におけるaのD-D'線に沿ってセンサ装置200を切断した際の断面図の一例である。同図におけるdは、同図におけるaのE-E'線に沿ってセンサ装置200を切断した際の断面図の一例である。なお、図303と図304において、測定部基板311およびプローブ内基板321と322の外側の黒い太線は、被覆用樹脂を表している。
 図303と図304に示す本技術の第5の実施の形態の別の例その2におけるセンサ装置200は、図182と図183に例示したセンサ装置200と同様にして、測定部基板とプローブ内基板のどちらかに切れ込みがあり、これを利用して、2つの基板を嵌合する構造を備えている。この嵌合により、測定部基板311とプローブ内基板321および322とを、直交させた状態で一体化させて固定しており、これにより、この固定してなる構造体が、前記の所定の機械強度を備えるようになっている。
 そして、図303と図304に示す本技術の第5の実施の形態の別の例その2におけるセンサ装置200は、この固定してなる構造体の外側を、測定部基板311およびプローブ内基板321と322よりも柔軟性が高く、かつ、電磁波透過性と耐水性と望ましくは耐薬品性とを備えた被覆用樹脂が被覆している。
 図305と図306は、本技術の第5の実施の形態の別の例その3におけるセンサ装置200の正面図および側面図の一例を示す図である。
 図305におけるaは、センサ装置200の正面図を示し、同図におけるbは、センサ装置200の側面図を示す。図306におけるaは、センサ装置200の背面図の一例である。同図におけるbは、同図におけるaのC-C'線に沿ってセンサ装置200を切断した際の断面図の一例である。同図におけるcは、同図におけるaのD-D'線に沿ってセンサ装置200を切断した際の断面図の一例である。同図におけるdは、同図におけるaのE-E'線に沿ってセンサ装置200を切断した際の断面図の一例である。なお、図303と図304において、測定部基板311およびプローブ内基板321と322の外側の黒い太線は、被覆用樹脂を表している。
 図305と図306に示す本技術の第5の実施の形態の別の例その3におけるセンサ装置200は、図184と図185に例示したセンサ装置200と同様にして、測定部基板とプローブ内基板と固定する冶具を備ええている。この冶具により、測定部基板311とプローブ内基板321および322とを、直交させた状態で一体化させて固定しており、これにより、この固定してなる構造体が、前記の所定の機械強度を備えるようになっている。
 そして、図305と図306に示す本技術の第5の実施の形態の別の例その3におけるセンサ装置200は、この固定してなる構造体の外側を、測定部基板311およびプローブ内基板321と322よりも柔軟性が高く、かつ、電磁波透過性と耐水性と望ましくは耐薬品性とを備えた被覆用樹脂が被覆している。
 このように、本技術の第5の実施の形態によれば、センサ装置200に備わる基板を樹脂により被覆し、これにより、センサ筐体305を用いないセンサ装置200を実現した。その結果、本技術の第5の実施の形態のセンサ装置200は、センサ筐体305を備えた本技術のセンサ装置200と比較して、部品点数を削減し、外形サイズを縮小し、重量を軽減し、製造方法を簡単にし、製造コストを低減する、との効果を得ている。
 <6.第6の実施の形態>
 上述の第1の実施の形態では、一対の突出部(プローブ)が設けられたセンサ筐体305内に基板を格納していたが、この構成では、地面の深い位置の水分量を測定することが困難である。プローブを長くすれば、深い位置の測定が可能となるが、土壌に挿す際にプローブが変形するおそれがある。この第6の実施の形態のセンサ装置200は、プローブにステムを接続する点において第1の実施の形態と異なる。
 図307は、本技術の第6の実施の形態におけるセンサ装置200の一例を示す図である。同図におけるaは、センサ装置200の内部構造の一例を示す図である。同図におけるbは、センサ装置200の外観図の一例である。
 第5の実施の形態のセンサ筐体305は、矩形の本体部305-3と、パイプ状のステム305-4と、一部が2又に分かれて突出した突出部305-5とからなる。本体部305-3には、測定部基板311が格納され、水準器376が上部に取り付けられる。突出部305-5内には送信アンテナ221および受信アンテナ231が格納される。この突出部305-5は、プローブとして機能する。ステム305-4は、本体部305-3と突出部305-5(プローブ)とを接続し、その内部に同軸ケーブル281および282が配線される。これらのケーブルにより送信アンテナ221および受信アンテナ231と測定部基板311とが接続される。なお、水準器376は必要に応じて設けられる。
 また、同図におけるbに例示するように、センサ筐体305の表面には、深さを示す目盛りが記載され、温度センサ390が必要に応じて取り付けられる。なお、pHセンサや、EC(Electro Conductidity)センサなどをさらに取り付けることもできる。ただし、プローブから放射された電磁波が,各種センサで反射されない位置に配置する必要がある。このため、プローブのフェライト(電波吸収部)上、もしくはそれよりも遠くに温度センサ390等を配置するのが好ましい。
 本体部305-3とプローブとをステム305-4で接続することにより、土中の深い位置に容易にプローブを挿入することができる。ステム305-4の表面の目盛りにより、センサ装置200の測定点の深さを正確に知ることができる。水準器376によりステム305-4を地面に垂直に挿入することができる。各種のセンサにより、土壌の状態を多角的に測定できる。
 図308は、本技術の第6の実施の形態における本体部の位置を変更したセンサ装置の一例を示す図である。同図におけるaは、センサ装置200の内部構造の一例を示す図である。同図におけるbは、センサ装置200の外観図の一例である。
 同図に例示するように、矩形のアンテナ部305-6を追加し、アンテナ部305-6と本体部305-3とをステム305-4により接続することもできる。アンテナ部305-6内には、アンテナ213が格納される。本体部305-3の下部に突出部305-5(プローブ)が接続される。
 このように、本技術の第6の実施の形態によれば、プローブにステム305-4を接続したため、土中の深い位置に容易にプローブを挿入することができる。
 <7.第7の実施の形態>
 上述の第1の実施の形態では、土中に挿入するための一対のプローブをセンサ装置200に設けていたが、この構成では、プローブの劣化や、石や硬い土壌による部材の変形により、プローブ間の距離が変わることがある。プローブを太くして強度を向上させれば、変形を防止することができるが、センサ装置200のサイズや重量が大きくなる恐れや、土壌への挿入が困難になるおそれがある。この第7の実施の形態のセンサ装置200は、支柱の追加によりセンサ装置200の強度を向上させた点において第1の実施の形態と異なる。
 図309は、本技術の第7の実施の形態と比較例とにおけるセンサ装置200の一例を示す図である。同図におけるaは、第1の比較例を示す。同図におけるb、c、dは、同図におけるaのA-A'線、B-B'線、C-C'線に沿って切断した際の断面図を示す。
 同図におけるaに例示するように、柱状のプローブ筐体320-3および320-4の間にスペーサ600を配置した第1の比較例を想定する。プローブ筐体320-3には、送信アンテナ221乃至223が形成され、送信プローブとして機能する。プローブ筐体320-4には、受信アンテナ231乃至233が形成され、受信プローブとして機能する。
 第1の比較例のように、アンテナ間にスペーサ600を設けると、アンテナ間に土が入らず、水分量を計測することができない。
 同図におけるeは第2の比較例を示す。同図におけるf、g、hは、同図におけるeのA-A'線、B-B'線、C-C'線に沿って切断した際の断面図を示す。第2の比較例では、スペーサをスペーサ600乃至603などの複数に分離して、アンテナ間に空間を形成している。この第2の比較例では、アンテナ間に土が入るものの、スペーサ600等が邪魔して、アンテナ間に土壌が十分に入らないおそれがある。
 同図におけるiは、第7の実施の形態のセンサ装置200の斜視図である。この第7の実施の形態のセンサ装置200には、3本目の支柱610が追加される。プローブ筐体320-3および320-4の間には、スペーサが配置されない。支柱610とプローブ筐体320-3および320-4とは、補強部620や621により接続される。この形状によれば、アンテナ間にスペーサが配置されないため、スペーサに邪魔されずにアンテナ間に土が入るようになる。
 また、水が土壌に十分に伝わり、プローブを伝わる水が少なくなる。さらに、プローブ間に隙間が大きいため、隙間により植物の根の成長を邪魔するおそれが少なくなる。
 図310は、本技術の第7の実施の形態におけるセンサ装置200の切断面の一例を示す図である。同図では、センサ装置200の背後の支柱610は省略されている。同図におけるB-B'線、C-C'線に沿って切断した際の断面図を図309以下に示す。
 図311は、本技術の第7の実施の形態におけるセンサ装置200の断面図の一例を示す図である。同図におけるa、bは、B-B'線に沿って切断した際の断面図の一例である。同図におけるcは、C-C'線に沿って切断した際の断面図の一例である。同図におけるa、bのいずれかを、同図におけるcに適用できる。支柱610内には、アンテナやセンサが設けられていない。
 同図におけるd、eは、B-B'線に沿って切断した際の断面図の一例である。同図におけるfは、C-C'線に沿って切断した際の断面図の一例である。同図におけるd、eのいずれかを、同図におけるfに適用できる。同図におけるd、e、fに例示するように、支柱610内にアンテナやセンサを設け、3つ目のプローブとして用いることもできる。
 同図におけるgは、B-B'線に沿って切断した際の断面図の一例である。同図におけるhは、C-C'線に沿って切断した際の断面図の一例である。同図におけるg、hに例示するように、支柱610を設けず、補強部620や621により補強することもできる。
 同図におけるiは、B-B'線に沿って切断した際の断面図の一例である。同図におけるjは、C-C'線に沿って切断した際の断面図の一例である。同図におけるi、jに例示するように、支柱610を設けない場合、断面を円形や楕円にすることもできる。
 図312は、本技術の第7の実施の形態におけるセンサ装置200の矩形の断面図の一例を示す図である。
 同図におけるa、bは、B-B'線に沿って切断した際の断面図の一例である。同図におけるcは、C-C'線に沿って切断した際の断面図の一例である。同図におけるa、bのいずれかを、同図におけるcに適用できる。同図におけるd、eは、B-B'線に沿って切断した際の断面図の一例である。同図におけるiは、C-C'線に沿って切断した際の断面図の一例である。同図におけるd、eのいずれかを、同図におけるfに適用できる。同図におけるa乃至fに例示するように、断面形状を矩形とし、支柱610を2本設けることもできる。
 同図におけるg、hは、B-B'線に沿って切断した際の断面図の一例である。同図におけるkは、C-C'線に沿って切断した際の断面図の一例である。同図におけるg、hのいずれかを、同図におけるiに適用できる。同図におけるg、h、iに例示するように、断面形状を矩形とし、支柱610を4本設けることもできる。
 同図におけるjは、B-B'線に沿って切断した際の断面図の一例である。同図におけるkは、C-C'線に沿って切断した際の断面図の一例である。同図におけるj、kに例示するように、支柱610内を設けず、補強部により補強することもできる。
 図313は、本技術の第7の実施の形態におけるプローブが3本のセンサ装置200の断面図の一例を示す図である。
 同図におけるa、bは、B-B'線に沿って切断した際の断面図の一例である。同図におけるcは、C-C'線に沿って切断した際の断面図の一例である。同図におけるa、bのいずれかを、同図におけるcに適用できる。
 同図におけるd、eは、B-B'線に沿って切断した際の断面図の一例である。同図におけるfは、C-C'線に沿って切断した際の断面図の一例である。同図におけるd、eのいずれかを、同図におけるfに適用できる。
 同図におけるg、hは、B-B'線に沿って切断した際の断面図の一例である。同図におけるiは、C-C'線に沿って切断した際の断面図の一例である。同図におけるg、hのいずれかを、同図におけるiに適用できる。
 図314は、本技術の第7の実施の形態におけるプローブが3本のセンサ装置200の断面図の別の例を示す図である。同図におけるa、c、eは、B-B'線に沿って切断した際の断面図の一例である。同図におけるb、d、fは、C-C'線に沿って切断した際の断面図の一例である。
 図313、314に例示するように、支柱610内にアンテナやセンサを設け、3つ目のプローブとして用いることもできる。
 図315は、本技術の第7の実施の形態におけるプローブが4本のセンサ装置200の断面図の一例を示す図である。同図におけるa、c、eは、B-B'線に沿って切断した際の断面図の一例である。同図におけるb、d、fは、C-C'線に沿って切断した際の断面図の一例である。同図に例示するように、支柱610、611のそれぞれのアンテナやセンサを格納し、3つ目、4つ目のプローブとして用いることもできる。
 図316は、本技術の第7の実施の形態におけるセンサ装置200の斜視図の一例である。根元の測定部筐体310は、プローブ筐体320-3および320-4の間に配置される。この測定部筐体310は、補強部として機能する。この補強部は、先端などの補強部360よりも大きなサイズが望ましい。
 図317は、本技術の第7の実施の形態におけるスペーサに溝を設けたセンサ装置200の一例である。同図に例示するように、スペーサ601などに波状の溝を形成することもできる。この溝が水を逃がすことにより、水がセンサ装置200を伝わって隙間をつくることを防止する。また、センサ装置200を挿入するときにセンサ装置200によってできる空隙を抑制することができる。
 図318は、本技術の第7の実施の形態におけるスペーサの溝の例を示す図である。同図におけるa、b、cに例示するように、スペーサに網目状に穴を形成することもできる。穴の形成により、周囲の土壌中の水分が伝わりやすくし、根の成長を阻害させにくくすることができる。
 このように、本技術の第7の実施の形態によれば、支柱や補強部より、プローブを補強したため、センサ装置200の強度を向上させることができる。
 <8.第8の実施の形態>
 上述の第1の実施の形態では、測定部筐体310とプローブ筐体320とが一体化していたが、この構成では、プローブ筐体320を土壌に挿入した際に筐体が変形してアンテナ間の距離が変化してしまうおそれがある。このアンテナ間の距離の変動により、水分量の測定値に誤差が生じる。この第8の実施の形態のセンサ装置200は、プローブ筐体を分離した点において第1の実施の形態と異なる。
 図319は、比較例と本技術の第8の実施の形態とにおけるセンサ装置200の一例を示す図である。同図におけるaは、測定部筐体310とプローブ筐体320-3および320-4とが一体化した比較例のセンサ装置200の一例を示す図である。同図におけるbは、比較例のプローブ筐体320-3および320-4を土壌に挿入した状態を示す。同図におけるcは、測定部筐体310とプローブ筐体320-3および320-4とを分離した、本技術の第8の実施の形態のセンサ装置200の一例を示す図である。同図におけるdは、本技術の第8の実施の形態のプローブ筐体320-3および320-4を土壌に挿入した状態を示す。
 同図におけるaに例示するように、測定部筐体310とプローブ筐体320-3および320-4とが一体化した比較例を想定する。プローブ筐体320-3および320-4は、送信アンテナ221および受信アンテナ231を備え、これらは、一対のプローブとして機能する。これらのプローブを土壌に挿入した際に、同図におけるbに例示するように、測定部筐体310とプローブとの接続箇所が変形することがある。筐体の剛性を十分に高くすれば、変形を防止することができるが、コストや使い勝手などの理由により、困難なことがある。
 そこで、と本技術の第8の実施の形態では、同図におけるcに例示するように、測定部筐体310とプローブ筐体320-3および320-4(プローブ)とを分離している。測定部筐体310と、プローブ筐体320-3および320-4とは、同軸ケーブル281および284などにより電気的に接続される。
 また、プローブ筐体320-3には、例えば、送信アンテナ221乃至223が形成され、プローブ筐体320-4には、例えば、受信アンテナ231乃至233が形成される。
 測定部筐体310と一対のプローブとを分離することにより、同図におけるdに例示するように、プローブを土壌に挿入した際に、測定部筐体310とプローブとの接続箇所が変形することを防止することができる。
 図320は、本技術の第8の実施の形態における目盛りやストッパを設けたセンサ装置200の一例を示す図である。同図におけるaに例示するように、プローブ筐体320-3および320-4のそれぞれに、先端からの距離(すなわち、深さ)を示す目盛りを設けることもできる。これにより、ユーザは、挿入した深さを視認することができる。
 また、同図におけるbに例示するように、プローブ筐体320-3および320-4の上部に、一定距離を超える深さへの挿入を防止するストッパ630および631を取り付けることもできる。目盛り、ストッパの両方を設けることもできる。
 図321は、本技術の第8の実施の形態における送信側、受信側のアンテナ数の一例を示す図である。一対のプローブを分離してユーザが任意の位置に挿入する際は、アンテナ間の距離が挿入位置により異なる値となる。このため、水分計測システム100は、アンテナ間の距離を測定する必要がある。このアンテナ間の距離の測定には、送信側、受信側の少なくとも一方のアンテナ数が3つ以上でなければならない。その理由や測定方法については後述する。
 例えば、同図におけるaに例示するように、送信側のアンテナ数を1つとし、受信側のアンテナ数を3つとすることもできる。また、同図におけるbに例示するように、送信側のアンテナ数を3つとし、受信側のアンテナ数を1つとすることもできる。同図におけるcに例示するように、送信側、受信側の両方ともアンテナ数を3つとすることもできる。
 図322は、本技術の第8の実施の形態における中央処理装置内の信号処理部154の一構成例を示すブロック図である。この信号処理部154は、メモリ166および距離算出部167をさらに備える。
 往復遅延時間算出部162は、算出した往復遅延時間を水分量測定部164およびメモリ166に供給する。また、伝搬伝送時間算出部163は、算出した伝搬伝送時間を水分量測定部164およびメモリ166に供給する。メモリ166は、これらのパラメータの値を保持する。
 距離算出部167は、メモリ166に保持された値を読み出し、それらを用いてアンテナ間の距離を算出する。算出方法については後述する。距離算出部167は、算出したアンテナ間距離を、水分量測定部164に供給する。
 水分量測定部164は、往復遅延時間および伝搬伝送時間と、距離算出部167の算出したアンテナ間距離とに基づいて水分量を測定する。アンテナ間距離が変動すると、係数aと係数bが変動する。このため水分量測定部164は測定されたアンテナ間距離に応じて係数aと係数bを補正し、式6により水分量を算出する。
 図323は、本技術の第8の実施の形態における板状部材を取り付けたメモリやストッパを設けたセンサ装置200の一例を示す図である。同図におけるaは、センサ装置200に取り付ける前の板状部材632の一例を示す図である。この板状部材632には、一対のプローブを挿入するための一対の孔が空けられている。
 同図におけるbは、板状部材632の穴にプローブを挿入したセンサ装置200の一例を示す図である。プローブには目盛りが設けられているものとする。なお、同図におけるcに例示するように、ストッパ630および631を設けたプローブを板状部材632の穴に挿入することもできる。
 同図におけるb、cに例示するように、板状部材632を取り付けることにより、プローブ間の距離を一定にすることができる。プローブを地面に垂直に挿入することができた場合は、アンテナ間の距離が設計値となるため、アンテナ間の距離の測定が不要となる。
 図324は、本技術の第8の実施の形態における直方体部材を取り付けたメモリやストッパを設けたセンサ装置の一例を示す図である。同図におけるaは、センサ装置200に取り付ける前の直方体部材633の一例を示す図である。この直方体部材633には、一対のプローブを挿入するための一対の孔が空けられている。
 同図におけるbは、直方体部材633の穴にプローブを挿入したセンサ装置200の一例を示す図である。プローブには目盛りが設けられているものとする。なお、同図におけるcに例示するように、ストッパ630および631を設けたプローブを直方体部材633の穴に挿入することもできる。
 また、同図におけるdに例示するように、直方体部材633に、水準器376や377を取り付け、その部材の穴にプローブを挿入することもできる。
 図325は、本技術の第8の実施の形態における、プローブ筐体を分離しないセンサ装置の一例を示す図である。同図におけるaは、測定部筐体310とプローブ筐体320-3および320-4とが分離せずに一体化したセンサ装置200の一例を示す図である。同におけるbは、同図におけるaのセンサ装置200を土壌に挿入した状態の一例を示す。
 同図におけるbに例示するように、プローブが分離しない場合であっても、測定部筐体310とプローブとの接続箇所が変形し、アンテナ間の距離が変化することがある。あるいは、経年劣化により、変形が生じることもある。このため、測定部筐体310とプローブ筐体320-3および320-4とが一体化したセンサ装置200を含む水分計測システム100に、図320の信号処理部154を適用することもできる。これにより、変動したアンテナ間距離を正確に算出し、その算出値に基づいて水分量の測定精度を向上させることができる。
 図326は、本技術の第8の実施の形態におけるアンテナ間距離の測定方法を説明するための図である。同図におけるaに例示するように、センサ装置200は、送信アンテナ221から電磁波を送信し、受信アンテナ231乃至233のそれぞれで、その電磁波を受信したものとする。
 前述の距離算出部167は、式5により、送信アンテナ221、受信アンテナ231間の伝搬遅延時間をτd1として算出する。同様に、距離算出部167は、送信アンテナ221、受信アンテナ232間の伝搬遅延時間をτd2として算出し、送信アンテナ221、受信アンテナ233間の伝搬遅延時間をτd3として算出する。
 ここで、伝搬遅延時間τと、アンテナ間距離dとの間には、次の関係式が成立する。
  τ={(ε1/2/C}d            ・・・式23
上式において、εは、媒質の誘電率を示し、Cは、光速である。
 誘電率が媒質全体で均一とすると、式23より、アンテナ間距離dは、伝搬遅延時間τに比例し、τd1、τd2、τd3は、d1、d2、d3に置き換えることができる。d1は、送信アンテナ221と受信アンテナ231との間の距離であり、d2は、送信アンテナ221と受信アンテナ232との間の距離である。d3は、送信アンテナ221と受信アンテナ233との間の距離である。
 同図におけるbは、任意の2点からの距離の比が一定の円を示す。このような円は、アポロニウスの円と呼ばれる。
 所定のx-y平面上に、送信アンテナ221と受信アンテナ231乃至233とが位置すると想定する。受信プローブの伸びる方向をx軸方向とし、このx軸上の受信アンテナ231乃至233の位置をx1、x2、x3とする。距離算出部167は、x-y平面において、x1、x2から距離がd1:d2の比となる円(アポロニウスの円)を求める。この円は、同図におけるaの一点鎖線の円に該当する。また、距離算出部167は、x2、x3から距離がd2:d3の比となる円を求める。この円は、同図におけるaの点線の円に該当する。
 距離算出部167は、求めた2つの円の交点の座標を算出する。この座標は、送信アンテナ221の位置に該当する。距離算出部167は、算出した送信アンテナ221の座標と、x1乃至x3のいずれか(x2など)との間の距離を算出し、水分量測定部164に供給する。
 なお、同図では、2次元座標系で考えたが、3次元座標系で演算することもできる。この場合には、円を球に置き換えて計算すれば、距離算出部167は、距離を求めることができる。
 距離算出部167は、送信アンテナ221と受信アンテナ232との間の水分量を計測する際に、それらの間の伝搬遅延時間τd2のみならず、送信アンテナ221と受信アンテナ231などとの伝搬遅延時間τd1も用いる。これにより、より正確に水分量を測定することができる。
 このように、本技術の第8の実施の形態によれば、一対のプローブ筐体を測定部筐体310から分離したため、プローブ筐体を土壌に挿入した際に筐体が変形してアンテナ間の距離が変化することを防止することができる。これにより、水分量をより正確に測定することができる。
 <9.第9の実施の形態>
 上述の第1の実施の形態では、センサ装置200の一対のプローブを土壌に挿入していたが、この構成では、土壌が硬質である場合に、プローブが変形するおそれがある。この第9の実施の形態の水分計測システム100は、プローブの挿入前に、ガイドを土壌に挿入することにより、プローブの変形を防止する点において第1の実施の形態と異なる。
 図327は、本技術の第9の実施の形態におけるセンサ装置200の挿入方法の一例を示す図である。この第9の実施の形態の水分計測システムは、ガイド640をさらに備える点において第1の実施の形態と異なる。また、第9の実施の形態のセンサ装置200の外形は、例えば、ステムを備える第6の実施の形態と同様である。なお、第6の実施の形態と異なる外形のセンサ装置200を用いることもできる。
 ガイド640は、金属製であり、その先端に一対の突出部が形成されている。これらの突出部の形状は、プローブと略同一である。ガイド640の外形は、センサ装置200の外形よりも小さいことが望ましい。特に、ガイド640の突出部の外形は、センサ装置200のプローブの外形よりも小さいことが、より好ましい。ガイド640の外形をセンサ装置200よりも一回り小さくすることにより、ステムを備えない形状の様々なセンサ装置200に対応することができる。
 ユーザは、同図におけるaに例示するように、ガイド640を土壌に挿入する。同図における一点鎖線は、地表の位置を示す。そして、同図におけるbに例示するように、ユーザは、ガイド640を引き抜く。この結果、地面にガイド640と同じ形状の穴が生じる。
 そして、ユーザは、同図におけるcに例示するように穴にセンサ装置200を挿入し、同図におけるdに例示するように水分量の測定を開始する。
 図328は、本技術の第9の実施の形態におけるセンサ装置200の挿入方法の別の例を示す図である。ガイド640内にセンサ装置200を挿入してから、ガイド640を引き抜くこともできる。この場合、空洞の部材で、先端に穴が空けられ、挿入したセンサ装置200をその穴から抜き取ることができるものがガイド640として用いられる。
 ユーザは、同図におけるaに例示するように、ガイド640を土壌に挿入する。そして、ユーザは、同図におけるb、cに例示するようにガイド640内にセンサ装置200を挿入する。続いてユーザは、同図におけるdに例示するように、ガイド640を抜き取る。そして、センサ装置200は、水分量の測定を開始する。
 このように、本技術の第9の実施の形態によれば、センサ装置200の挿入前にガイド640を挿入するため、センサ装置200を挿入する際のプローブの変形を防止することができる。これにより、水分量の測定精度を向上させることができる。
 <10.第10の実施の形態>
 上述の第1の実施の形態では、センサ装置200の一対のプローブを土壌に挿入していたが、この構成では、土壌が硬質である場合に、挿入が困難になることがある。この第10の実施の形態のセンサ装置200は、らせん状部材や、シャベル型筐体により、挿入を容易にした点において第1の実施の形態と異なる。
 図329は、本技術の第10の実施の形態におけるセンサ装置200の一例を示す図である。同図におけるaは、らせん状部材にアンテナを形成したセンサ装置200の一例を示し、同図におけるbは、センサ筐体305にアンテナを形成したセンサ装置200の一例を示す。
 同図におけるaおよびbに例示するように、第10の実施の形態のセンサ装置200は、らせん状部材650を備える。らせん状部材650は、樹脂あるいはセラミックスで形成された弦巻線状(helix shaped)に伸びる筒状の筐体である。
 同図におけるaに例示するように、そのらせん状部材650に送信アンテナ221や受信アンテナ231などのアンテナを形成することができる。矩形の測定部筐体310に、らせん状部材650が接続される。アンテナが形成されたらせん状部材650は、プローブとして機能する。
 また、同図におけるbに例示するように、一対の突出部が形成されたセンサ筐体305を設け、その筐体に、らせん状部材650を接続することもできる。この場合は、センサ筐体305の突出部にアンテナが形成され、その突出部がプローブとして機能する。らせん状部材650には、回転可動部661が取り付けられ、回転可動部661を介して、らせん状部材650がセンサ筐体305と接続される。この。回転可動部661は、プローブの突出する方向に沿ったY軸周りに回転可能な部材である。
 らせん状部材650により、トルクを利用して挿入することが可能となるため、二又のみの第1の実施の形態よりも挿入が容易となる。また、ネジ、杭型形状と比較して、アンテナ間およびアンテナ周囲に土壌が多く存在するため、精度よく水分量を測定することが可能となる。
 また、らせん状部材650の先端は、針状に尖った形状であってもよい。これにより、土壌への挿入がさらに容易となる。また、らせん状部材650の先端部は、金属で形成されてもよい。これにより、先端部の強度が高まるため、土壌への挿入がさらに容易となる。
 らせん状部材650の先端部が金属であるとき、送信アンテナ221および受信アンテナ231は、その先端部から、所定距離以上、離れたところに配置される。これにより、水分測定の精度を悪化させずに、土壌への挿入を容易にすることができる。
 らせん構造にアンテナを持たせた構造では、両アンテナを水平に配置することは困難であるが、回転可動部661を設けた構造では水平に配置することが容易となるため、土壌中の所望の測定位置にアンテナを配置させることが容易となる。加えて、回転可動部661が無いと、挿入時の応力によりらせん半径が大きくなることにより、アンテナ間距離が変化する恐れがある。しかし、回転可動部661を設けた構造では、トルクを利用した挿入を容易にする構造とは別の場所に送信アンテナと受信アンテナを有するため、アンテナ間距離の変化は小さい。そのため、水分測定の精度を悪化させることなく、土壌への挿入を容易にすることができる。
 また、回転可動部661を備えない場合では送受信の両プローブが土壌中で回転応力がかかるため、空隙ができやすくなり、水分測定の精度を悪化させるだけなく、最悪の場合、プローブが破損する恐れがある。
 図330は、本技術の第10の実施の形態における、らせん状部材およびセンサ筐体の一例を示す図である。同図におけるaは、らせん状部材650の一例を示し、同図におけるbは、センサ筐体305の一例を示す。
 回転可動部661を設ける場合、同図におけるaに例示するように、らせん状部材650に回転可動部661が固定される。この回転可動部661の下端は突出しており、同図におけるbに例示するように、センサ筐体305の上部に、回転可動部661の下端と嵌め合わせるための篏合部662が取り付けられる。
 また、同図におけるbに例示するように、センサ筐体305の突出部(プローブ)の先端が尖っている。これにより、土壌への挿入が容易となる。そのプローブの先端部および回転可動部661は、金属で形成されてもよい。これにより、先端部および回転可動部661の強度が高まるため、土壌への挿入が、より容易となる。
 また、篏合部662により、回転可動部661とセンサ筐体305とが取り外し可能なである。また、この場合に、らせん状部材650は金属で形成されてもよい。これにより、らせん状部材650を利用してプローブを土壌中に挿入した後、らせん状部材650を土壌中から取り除くことが可能となる。このため、挿入を容易にすることと水分を高い精度で測定することを両立させることが可能となる。
 図331は、本技術の第10の実施の形態における、らせん状部材およびセンサ筐体の別の例を示す図である。同図におけるaは、らせん状部材650の一例を示し、同図におけるbは、センサ筐体305の一例を示す。同図に例示するように、センサ筐体305に回転可動部661を固定し、らせん状部材650に篏合部662を設けることもできる。
 図332は、本技術の第10の実施の形態における2重らせんのプローブを設けたセンサ装置の一例を示す図である。同図に例示するように、らせん状部材650を2重らせん状とし、そのらせん状部材650に送信アンテナ221などのアンテナを形成することができる。
 図333は、本技術の第10の実施の形態における2重らせんの、らせん状部材を設けたセンサ装置の一例を示す図である。同図に例示するように、一対の突出部が形成されたセンサ筐体305を設け、その筐体に、2重らせん状のらせん状部材650を接続することもできる。
 図334は、本技術の第10の実施の形態における2重らせんの、らせん状部材およびセンサ筐体の一例を示す図である。同図におけるaに例示するように、らせん状部材650に回転可動部661を固定し、同図におけるbに例示するように、センサ筐体305の上部に篏合部662を取り付けることもできる。同図におけるcに例示するように、らせん状部材650に篏合部662を設け、同図におけるdに例示するようにセンサ筐体305に回転可動部661を固定することもできる。
 図335は、本技術の第10の実施の形態における、らせん状部材とアンテナとの位置関係の一例を示す図である。同図は、上方向から見た際の位置関係を示す。らせん状部材650にアンテナを形成しない場合、同図におけるaに例示するように、送信アンテナ221および受信アンテナ231が、上方から見て、らせん状部材650の内部に配置される。あるいは、同図におけるcに例示するように、3つのアンテナをらせん状部材650の内部に配置することもできる。この場合、3本のプローブをセンサ筐体305が備え、3つのアンテナが、それぞれのプローブに形成される。
 また、同図におけるcに例示するように、2つのアンテナを、らせん状部材650に形成することもできる。あるいは、同図におけるdに例示するように、3つのアンテナを、らせん状部材650に形成することもできる。
 同図に例示したように、送信アンテナおよび受信アンテナは同数でなくともよい。つまり、送信アンテナと受信アンテナが1対1に対応した測定方法だけでなく、1対多ないし多対1となるような経路による測定を行ってもよい。
 図336は、本技術の第10の実施の形態における、らせん状部材の断面図の一例である。同図におけるaに例示するように、らせん状部材650において、筒状筐体651の内部に、同軸ケーブル653が格納され、同軸ケーブル653と筒状筐体651との間には電波吸収材652が充填される。同図におけるbに例示するように、2本以上の同軸ケーブル653を円形の空間内に配線し、その空間と筒状筐体651との間に電波吸収材652を充填することもできる。
 また、同図におけるcに例示するように、2本以上の同軸ケーブル653と筒状筐体651との間に電波吸収材652を充填することもできる。同図におけるdに例示するように、同軸ケーブル653のそれぞれを電波吸収材652により被覆し、それらを筒状筐体651内に格納することもできる。同図におけるeに例示するように、フレキ基板654を電波吸収材652により被覆し、筒状筐体651内に格納することもできる。
 図337は、本技術の第10の実施の形態におけるシャベル型筐体を備えるセンサ装置の一例を示す図である。らせん状部材650を用いず、シャベル型筐体670内にセンサ筐体305を内蔵することもできる。
 シャベル型筐体670は、持ち手671と平板部672とを備える。平板部672の先端に刃673が形成されている。また、平板部672の内部に空間が空いており、その空間内に、センサ筐体305の突出部(プローブ)が突き出している。持ち手671および刃673によって土壌への挿入が容易となり、プローブの周囲に空間があいていることにより、プローブの周囲に土壌が存在することができるため、水分測定の精度悪化を防ぐことができる。
 平板部672は、樹脂あるいはセラミックスで形成される。持ち手671および刃673は、樹脂あるいはセラミックス、金属によって形成されることが望ましい。ここで、平板部662はプローブから放射される電磁波を反射するため、土壌の水分測定において悪影響を与えやすい部位である。そのため、電磁波を強く反射する金属ではなく、電磁波をよく透過する樹脂あるいはセラミックスで形成されることが望ましい。一方で、プローブから遠くに位置する持ち手671および刃673は強度を強くするために金属を用いてもよい。
 同図におけるbは、同図におけるaのA-A'線に沿って切断した際の断面図の一例である。同図におけるbに例示するように、平板部662の中心線上に、一対のプローブのそれぞれが位置することが望ましい。また、同図におけるcに例示するように、平板部662のZ軸方向のサイズ(厚み)が、プローブの直径より小さくてもよい。
 また、同図におけるdに例示するように、持ち手671および刃673と平板部672とが別々の部材であってもよい。同図におけるeに例示するように、持ち手671を別の部材とし、2つ以上の空間が空いていてもよい。この際、隣接する空間を分離する仕切りにプローブが内蔵される。同図におけるfに例示するように、刃673を別の部材とし、2つ以上の空間が空いていてもよい。同図におけるgに例示するように、プローブを内蔵させ、空間を1つとしてもよい。
 図338は、本技術の第10の実施の形態におけるシャベル型筐体の一例を示す図である。同図は、図337のシャベル型筐体670の部分のみを示す。
 図339は、本技術の第10の実施の形態における持ち手の形状の一例を示す図である。同図におけるaに例示するように、円柱状の持ち手671が、平板部672の中心位置に垂直に取り付けられる。同図におけるbに例示するように、平板部672の中心より外側に持ち手671を取り付けることもできる。
 同図におけるc例示するように持ち手671が屈曲部を有する形状であってもよい。同図におけるd、eに例示するように、屈曲部が複数であってももよい。同図におけるeでは、中空の矩形が形成されている。
 同図におけるfに例示するように、柄675により持ち手671と平板部672とを接続することもできる。その際、同図におけるgに例示するように、持ち手671が中空の矩形であってもよいし、同図におけるhに例示するように、中空の三角形であってもよい。
 これらの構造は、プローブを挿入する土壌の種類や挿入する深さ、設置する際の状況や設置後の環境を考慮して決定される。
 図340は、本技術の第10の実施の形態における刃の形状の一例を示す図である。同図におけるaに例示するように、刃673は片刃であってもよいし、同図におけるbに例示するように諸刃であってもよい。片刃の方が挿入しやすいが強度は諸刃に劣るため、比較的柔らかい土壌に適し、諸刃は強度に優れるため固い土壌に適する。同図のaとbは刃の断面形状を示し、c以降は正面から見た刃の形状を示す。
 諸刃の場合、同図におけるcに例示するように二等辺三角形であってもよいし、同図におけるdに例示するように、直角三角形であってもよい。同図におけるeに例示するように、それら以外の三角形であってもよい。また、同図におけるf、g、hに例示するように、辺が湾曲していてもよい。これらの構造は、プローブを挿入する土壌の種類や挿入する深さ、設置する際の状況や設置後の環境を考慮して決定される。
 図341は、本技術の第10の実施の形態における足場部材を追加したセンサ装置200の一例を示す図である。同図におけるaは、足場部材675を追加したセンサ装置200の正面図の一例である。同図におけるbは、同図におけるaのセンサ装置200の上面図の一例である。
 足場部材675は、上方(深さ方向)から見て、平板部材672よりも面積が広い部材である。この足場部材675を平板部材672の端面に取り付けることにより、ユーザは、該当の部位に足を置くことができる。この足場部材675にユーザが体重を掛けることにより、プローブを土壌に挿入することがさらに容易となる。
 このように、本技術の第10の実施の形態によれば、らせん状部材やシャベル型筐体を設けたため、プローブを土壌に挿入することが容易となる。
 <11.第11の実施の形態>
 上述の第1の実施の形態では、センサ装置200は土中の空気や土、水の誘電率差を利用して計測を行っている。しかし、媒質によって電波が吸収され、インパルス応答のSN(Signal-Noise)比が低下し、インパルス応答のピークである伝搬遅延時間の算出に大きな誤差が生じることがある。また、各国の電波法等における送信電力の規制により、水分量の精度が低下する問題がある。この第11の実施の形態のセンサ装置200は、送信電力を調整し、電波法を満たす最大電力を出力することで、SN比を向上させる点において第1の実施の形態と異なる。
 図342は、本技術の第11の実施の形態におけるセンサ装置200の一例を示すブロック図である。センサ装置200内のセンサ制御部211、送信機214、受信機215、送信アンテナ221、および、受信アンテナ231以外の構成は、同図において省略されている。同図におけるaに例示するように、第11の実施の形態のセンサ装置200は、送信機214内に信号源710に加えて可変減衰器720を備える点において第1の実施の形態と異なる。
 信号源710は、所定電力の送信信号を生成して可変減衰器720に供給する。可変減衰器720は、センサ制御部211からの制御信号に従って、送信信号を減衰させて送信アンテナ221に供給する。
 センサ制御部211は、受信機215の受信した受信信号の電力に基づいて、所望の送信電力となるように、制御信号により可変減衰器720の減衰量を調整する。
 また、同図におけるbに例示するように、可変減衰器720の代わりに、可変増幅器721を送信機214内に設け、センサ制御部211が増幅量を調整することもできる。
 空気中で計測するときは可変増幅器721は働かないが、土壌中や他の媒質中にある場合は誘電率の影響で電波が弱くなるため可変増幅器721を働かせて送信電力を上げ、受信精度を向上させる。この機能を実施するために、可変増幅器721を送信機側に持たせる。なお、可変減衰器720を用いることもできる。
 通常、トランシーバーなどの一般的な通信機の場合は、空気中を通信するため、日本国内の場合は、電波法の基準以内の電波で通信することが必須となる。しかし、本発明では、空気以外の媒質も計測対象となるため、水などの誘電率が高い媒質中を通信した場合には、その誘電率によって電波が吸収されてしまう。そのため、土壌中にあり、かつ水分量が多い場合の範囲において、電波の電力を調整する機構を持たせている。しかし計測後に土壌から空気中に出てしまった場合には電力が基準を超える可能性があるため、後述するように、電力を調整する機構をもうけるとともに、計測ごとに調整するために都度電力をリセットする機能を持たせることが望ましい。
 図343は、本技術の第11の実施の形態におけるセンサ装置200内の各部の動作を示すタイミングチャートの一例である。同図に例示するように、センサ制御部211は、起動後、可変減衰器720の減衰量を設定する。送信機214は、設定に従って所定電力の送信信号を送信し、受信機215は、受信信号を受信する。センサ制御部211は、受信信号に基づいて、その受信電力と、計測のための所定の目標値との差分を算出し、減衰量を設定する。センサ装置200は、この制御を送信電力が目標値になるまで繰り返す。送信電力の調整を開始してから、送信電力が目標値になり、調整が完了するまでの期間を出力調整期間とする。
 調整が完了すると、センサ装置200は、一定期間に亘って調整後の一定の電力により送信信号を送信し、水分量の計測を行う。この一定の期間を測定期間とする。なお、可変増幅器721を用いる場合は、減衰量の代わりに増幅量が設定される。
 センサ装置200は、上述の電力調整を行うが、計測期間に及ぼす影響が20%以下の場合は、計測期間で用いてもよい値を下回る電力の電波を送信することができる。
 図344は、本技術の第11の実施の形態における送信波形の一例を示す図である。同図に例示するように、センサ装置200は、タイミングT0において受信電力に応じて送信電力を変化させる電力調整動作を開始する。送信信号の振幅が徐々に増大し、タイミングT1で振幅が一定に達する。タイミングT0からT1までが出力調整期間に該当する。そして、一定の計測期間の経過したタイミングT2において、センサ装置200は、測定結果を出力する。
 図345は、本技術の第11の実施の形態における送信波形の別の例を示す図である。同図におけるaに例示するように、センサ制御部211は、送信信号を一定の振幅で複数周期に亘って送信させた後、振幅を大きくして再度送信させる制御を繰り返すこともできる。計測期間内の水分計測には複数種の周波数が用いられるが、出力調整期間においては、そのうちの一部の周波数の送信信号が送信されるものとする。
 また、水分計測の計測回数が、出力調整期間内の振幅一定期間中の測定回数の2倍以上である場合、センサ装置200は、出力調整期間内に水分計測を開始することもできる。この場合、同図におけるaに例示するように、タイミングT0乃至T2の出力調整期間と、タイミングT1乃至T3の計測期間との一部が重複することになる。
 なお、同図におけるbに例示するように、出力調整期間の経過時に水分計測を開始することもできる。この場合、タイミングT0乃至T1の出力調整期間と、タイミングT1乃至T2の計測期間とが重複することがない。
 図346は、本技術の第11の実施の形態における、水分量に応じて送信電力を調整する際の送信波形の一例を示す図である。センサ装置200は、タイミングT0乃至T3の出力調整期間に亘って段階的に振幅を増大させ、タイミングT1乃至T3の計測期間内に水分量の計測を行う。この1回目の水分量をD1とする。
 そして、ユーザは、2回目に測定する土壌の水分量D2が、前回の水分量D1よりも高いと推定されるか否かを判断する。あるいは、水分計測システムは、1回目の計測後に降雨があったか否かなどの天候情報をインターネットなどを介して取得し、2回目に測定する土壌の水分量D2が、前回の水分量D1よりも高いと推定されるか否かを判断する。
 土壌の水分量D2が、前回の水分量D1よりも高いと推定される場合、センサ装置200は、タイミングT4乃至T6の出力調整期間に亘って段階的に振幅を増大させ、タイミングT5乃至T7の計測期間内に水分量の計測を行う。この2回目の出力調整期間において、センサ制御部211は、送信波の振幅を、1回目の段数よりも多い段数だけ変化させ、1回目よりも電力の目標値を大きくする。
 なお、1回目の水分量D1よりも2回目の水分量D2が小さいと推定される場合には、逆に2回目の段数を1回目より少なくすればよい。
 同図に例示したように、センサ装置200は、測定対象の土壌の水分量の推定値に基づいて送信電力を調整することもできる。
 図347は、本技術の第11の実施の形態における、水分量に応じて送信電力を調整し、必要に応じてエラーを出力する際の送信波形の一例を示す図である。同図におけるタイミングT7までの制御は、図344と同様である。この2回目の水分量D2が、推定と異なり、1回目の水分量D1よりも小さかったものとする。この場合に、センサ装置200は、タイミングT8において、エラーを示す信号を中央処理装置150などへ出力することもできる。
 図348は、本技術の第11の実施の形態における送受信信号の波形の一例を示す図である。同図におけるaは、出力調整完了後の送信信号、受信信号の波形の一例を示す。同図におけるbは、1回目の出力調整で受信電力が目標値に達した例を示す。同図におけるcは、2回目の出力調整で受信電力が目標値に達した例を示す。2点鎖線は、受信電力の目標値に対応する振幅を示す。
 同図におけるb、cに例示するように、受信電力に応じてセンサ装置200は、徐々に送信電力を上昇させる。
 図349は、本技術の第11の実施の形態における出力調整期間内の送受信信号の波形の一例を示す図である。同図に例示するように、出力調整期間内のタイミングT10で、受信電力が目標値を超えた場合にセンサ装置200は、送信電力を低下させるか、リセットする。
 図350は、本技術の第11の実施の形態における計測期間内の送受信信号の波形の一例を示す図である。同図におけるaに例示するように、計測期間内に受信電力が目標値を超えた場合にセンサ装置200は、送信電力をリセットする。あるいは、同図におけるbに例示するように、センサ装置200は、送信電力を低下させてもよい。
 このように、本技術の第11の実施の形態によれば、センサ装置200は、送信電力を調整し、電波法を満たす最大電力を出力するため、SN比を向上させることができる。
 <12.第12の実施の形態>
 上述の第1の実施の形態では、プローブの伸びる方向(Y軸方向)と基板平面とが平行になる位置に測定部基板311を配置していたが、Y軸方向と基板平面とが平行になる位置に測定部基板311を配置することもできる。この第12の実施の形態のセンサ装置200は、Y軸方向と基板平面とが垂直になる位置に測定部基板311を配置した点において第1の実施の形態と異なる。
 図351は、本技術の第12の実施の形態を説明する図である。平面状の送信アンテナと受信アンテナを所定の向きで対向させかつ所定の距離も設けた位置に配置し、これら送信アンテナと受信アンテナの向きと位置を固定することで水分を正確に測定する、との効果は、測定部基板がX軸とY軸で定まる1つの面と平行に延在する、図4や図75などに記載の形態だけでなく、測定部基板がX軸とZ軸で定まる1つの面と平行に延在する、図351の形態でも得られる。
 本技術の第12の実施の形態に備わるセンサ装置200は、測定部基板がX軸とZ軸で定まる1つの面と平行に延在する形態をとる。
 なお、上記本技術の第12の実施の形態のにおいて、上記測定部基板の延在方向以外の構成は、本技術の第1の実施の形態とその変形例に含まれる構成を適用できる。一例として、上記XZ平面と平行に延在する測定部基板と送信用プローブ基板と受信用プローブ基板が1つのセンサ筐体305に収容された形態もとり得る。
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
 なお、本技術の第1の形態のセンサ装置200が備える構成は、例えば、以下のように表すこともできる。
 信号(電気信号、交流信号、送信信号)を電磁波として送出する送信アンテナ(例えば、送信アンテナ221)と、前記送信アンテナから送出され媒質(M)中を透過した前記電磁波を受信する受信アンテナ(例えば、受信アンテナ231)と、前記受信アンテナへ伝搬した電磁波を測定する測定部(例えば、測定回路210、あるいは、測定回路210の一部、例えば、測定回路210からアンテナ213を除外した回路)と、センサ筐体(センサ筐体305)と、を備え、
 複数の配線層(例えば、導電体:シールド層254が配線された第1の配線層と導電体:信号線255が配線された第2の配線層)を備えた電子基板である送信用基板(送信用プローブ内基板321)と、複数の配線層(例えば、導電体254が配線された第1の配線層と導電体:信号線255が配線された第2の配線層)を備えた電子基板である受信用基板(受信用プローブ内基板322)をさらに備え、
 あるいは、前記送信用基板の一部において、該基板の外周を被覆し、かつ、電磁波吸収材(例えば、電磁波吸収材251あるいは電波吸収部341など)で形成された、第1の被覆層と、前記受信用基板の一部において、該基板の外周を被覆し、かつ、電磁波吸収材(例えば、電磁波吸収材251あるいは電波吸収部344など)で形成された、第2の被覆層を、さらに備え、
 前記センサ筐体は、前記センサ筐体の一部であって前記送信用基板を収容する送信用プローブ筐体と、前記センサ筐体の別の一部であって前記受信用基板を収容する受信用プローブ筐体と、を含み、
 前記送信用基板は、送信用伝送路(例えば、図87と図88における、信号線255およびシールド層254と256)と、前記送信アンテナの一部を構成する送信用露出部(例えば、図4における放射エレメント330、図19における放射エレメント:信号線255、図37における、導電体258、259、など)と、を備え、
 前記送信用伝送路は、前記送信用基板に備わる配線層を用いて形成され、かつ、第1のシールド層と第1の信号線を重畳させて備え、かつ、前記測定部に電気的に接続され、
 前記送信用露出部は、前記送信用基板に備わる配線層を用いて形成され、かつ、前記第1の信号線と電気的に接続され、かつ、前記第1のシールド層あるいは前記第1の被覆層から露出した導電体であり、
 前記受信用基板は、受信用伝送路(例えば、図86と図87に例示の送信用基板に備わる信号線255およびシールド層254と256に同じ)と、前記受信アンテナの一部を構成する受信用露出部(例えば、図4における放射エレメント330、図19における放射エレメント255、図37における、導電体258、259、などに同じ)と、を備え、
 前記受信用伝送路は、前記受信用基板に備わる配線層を用いて形成され、かつ、第2のシールド層と第2の信号線を重畳させて備え、かつ、前記測定部に電気的に接続され、
 前記受信用露出部は、前記受信用基板に備わる配線層を用いて形成され、かつ、前記第2の信号線と電気的に接続され、かつ、前記第2のシールド層あるいは前記第2の被覆層から露出した導電体であり、
 前記送信用露出部と前記受信用露出部のそれぞれは、前記重畳の方向となる第1の方向(基板の厚さ方向、例えば、図4、37、88におけるX軸方向)における大きさよりも、前記第1の方向と直交する方向であってかつ前記伝送路の延在方向と平行となる第2の方向(基板の長さ方向、例えば、図4、35、88におけるY軸方向)の大きさと、前記第1と第2の方向に直交する第3の方向(基板の幅方向、例えば、図4、37、88におけるZ軸方向)の大きさの双方が大きく、かつ、前記第2の方向と第3の方向で決まる平面に対し平行に延在し、
 かつ、前記送信用基板に備わる配線層を用いて形成した、前記送信用伝送路および前記送信用露出部と、前記受信用基板に備わる配線層を用いて形成した、前記受信用伝送路および前記受信用露出部は、前記送信用露出部の前記平面の延在方向と、前記受信用露出部の前記平面の延在方向と、が平行となるよう向かい合って配置され、かつ、所定の距離だけ離間した位置に配置され、かつ、前記センサ筐体の中で前記延在方向と前記位置を固定されている、センサ装置。
 また、本技術の第2の形態の第1の変形例のセンサ装置200が備える構成は、例えば、以下のように表すこともできる。
 信号(電気信号、交流信号、送信信号)を電磁波として送出する送信アンテナ(例えば、図237の送信アンテナ221)と、前記送信アンテナから送出され媒質(M)中を透過した前記電磁波を受信する受信アンテナ(例えば、図237の受信アンテナ231)と、前記受信アンテナへ伝搬した電磁波を測定する測定部(例えば、測定回路210、あるいは、測定回路210の一部、例えば、測定回路210からアンテナ213を除外した回路)と、センサ筐体(センサ筐体305)と、を備え、
 複数の配線層(例えば、図242と243において、導電体:シールド層254が配線された第1の配線層と導電体:信号線255が配線された第2の配線層)を備えた電子基板である送信用基板(送信用基板突出部)と、複数の配線層(例えば、図242と243において、導電体:シールド層254が配線された第1の配線層と導電体:信号線255が配線された第2の配線層に同じ)を備えた電子基板である受信用基板(受信用基板突出部)と、複数の配線層を備えた電子基板でありかつ前記測定部を備えた測定部基板(電子基板311-1の基板矩形部分)と、をさらに備え、
 あるいは、前記送信用基板の一部において、該基板の外周を被覆し、かつ、電磁波吸収材(例えば、電磁波吸収材251あるいは電波吸収部341など)で形成された、第1の被覆層と、前記受信用基板の一部において、該基板の外周を被覆し、かつ、電磁波吸収材(例えば、電磁波吸収材251あるいは電波吸収部344など)で形成された、第2の被覆層を、さらに備え、
 前記センサ筐体は、前記センサ筐体の一部であって前記送信用基板を収容する送信用プローブ筐体と、前記センサ筐体の別の一部であって前記受信用基板を収容する受信用プローブ筐体と、を含み、
 前記送信用基板は、送信用伝送路(例えば、図49のb乃至dにおいて、符号DyとDzで示された長方形の外側に位置しかつ信号線255とシールド層254および256を重畳させた部分、あるいは、図242と243において、スロットに外接する長方形の領域の外側に位置しかつ信号線255とシールド層254および256を重畳させた部分)と、送信用スロットアンテナ(例えば、図48乃至50、あるいは、図238乃至240、特に、図49のb乃至dにおいて、符号DyとDzで示された長方形の内側に位置する領域)を備え、
 前記送信用伝送路は、前記送信用基板に備わる配線層を用いて形成され、かつ、第1のシールド層と第1の信号線を重畳させて備え、かつ、前記測定部に電気的に接続され、
 前記送信用スロットアンテナは、スロットを備えた放射エレメント(例えば、図49のdにおいて、導電体:シールド層254の一部であって、かつ、符号DyとDzで示された長方形の内側)と、前記第1の信号線に電気的に接続されかつ前記スロットと交差する送信用スロット信号線部(例えば、図49のdにおいて、スロットと交差している信号線255)とを備え、前記放射エレメントは、前記第1のシールド層(例えば、図49のdにおいて、導電体:シールド層254の一部であって、かつ、符号DyとDzで示された長方形の外側)と電気的に接続された導電体であり、
 前記送信用スロットアンテナは、前記送信用伝送路に接続され、
 前記受信用基板は、受信用伝送路(例えば、図49のb乃至dにおいて、符号DyとDzで示された長方形の外側に位置しかつ信号線255とシールド層254および256を重畳させた部分に同じ、あるいは、図242と243において、スロットに外接する長方形の領域の外側に位置しかつ信号線255とシールド層254および256を重畳させた部分に同じ)と、受信用スロットアンテナ(例えば、図48乃至50、あるいは、図238乃至240、特に、図49のb乃至dにおいて、符号DyとDzで示された長方形の内側に位置する領域に同じ)を備え、
 前記受信用伝送路は、前記受信用基板に備わる配線層を用いて形成され、かつ、第2のシールド層と第2の信号線を重畳させて備え、かつ、前記測定部に電気的に接続され、
 前記受信用スロットアンテナは、スロットを備えた受信エレメント(例えば、図48のdにおいて、導電体254の一部であって、かつ、符号DyとDzで示された長方形の内側に同じ)と、前記第2の信号線に電気的に接続されかつ前記スロットと交差する受信用スロット信号線部(例えば、図49のdにおいて、スロットと交差している信号線255に同じ)とを備え、前記受信エレメントは、前記第2のシールド層(例えば、図49のdにおいて、導電体:シールド層254の一部であって、かつ、符号DyとDzで示された長方形の外側に同じ)と電気的に接続された導電体であり、
 前記受信用スロットアンテナは、前記受信用伝送路に接続され、
 前記送信用のスロットを備えた前記放射エレメントと前記受信用のスロットを備えた前記受信エレメントのそれぞれは、前記重畳の方向となる第1の方向(基板の厚さ方向、例えば、図237、図238乃至240、図244乃至246におけるZ軸方向)における大きさよりも、前記第1の方向と直交する方向であってかつ前記伝送路の延在方向と平行となる第2の方向(基板の長さ方向、例えば、図237、図238乃至240、図242乃至246におけるY軸方向)の大きさと、前記第1と第2の方向に直交する第3の方向(基板の幅方向、例えば、図237、図238乃至240、図242乃至246におけるX軸方向)の大きさの双方が大きく、かつ、前記第2の方向と第3の方向で決まる平面に対し平行に延在し、
 かつ、前記送信用基板に備わる配線層を用いて形成した、前記送信用伝送路および前記放射エレメントと、前記受信用基板に備わる配線層を用いて形成した、前記受信用伝送路および前記受信エレメントは、前記放射エレメントの前記平面と前記受信エレメントの前記平面が同一平面上となるように、配置され、かつ、所定の距離だけ離間した位置に配置され、かつ、前記センサ筐体の中で前記延在方向と前記位置を固定されている、センサ装置。
 なお、本技術は以下のような構成もとることができる。
(1)一対のアンテナと、
 前記一対のアンテナの間の媒質中の水分量を測定する測定回路と、
 前記一対のアンテナと前記測定回路とを接続する伝送路と、
 前記伝送路の周囲に形成された電波吸収部と
を具備するセンサ装置。
(2)前記電波吸収部は、前記伝送路の全体を被覆する
前記(1)記載のセンサ装置。
(3)前記電波吸収部は、前記伝送路の一部を被覆する
前記(1)記載のセンサ装置。
(4)前記電波吸収部は、前記伝送路の所定位置と前記アンテナの一端との間の前記伝送路を被覆する
前記(3)記載のセンサ装置。
(5)前記電波吸収部は、前記アンテナの一端から離れた所定位置と前記測定回路との間の前記伝送路を被覆する
前記(3)記載のセンサ装置。
(6)前記アンテナの他端から前記所定位置までの距離は、前記一対のアンテナが送受信する電磁波の中心周波数の波長の半波長を超えない
前記(5)記載のセンサ装置。
(7)前記アンテナの他端から前記所定位置までの距離は、前記一対のアンテナが送受信する電磁波の波長帯域幅を超えない
前記(5)記載のセンサ装置。
(8)一対の突出部を有する電子基板をさらに具備し、
 前記一対のアンテナと前記伝送路とは、前記一対の突出部に形成される
前記(1)から(7)のいずれかに記載のセンサ装置。
(9)前記電波吸収部は、前記一対の突出部のそれぞれの先端を被覆する
前記(8)記載のセンサ装置。
(10)第1のプローブ内基板と、
 第2のプローブ内基板と、
 前記第1および第2のプローブ内基板と直交する測定部基板と
をさらに具備し、
 前記一対のアンテナと前記伝送路とは、前記第1および第2のプローブ内基板に形成される
 前記測定回路は、前記測定部基板に配置される
前記(1)から(7)のいずれかに記載のセンサ装置。
(11)前記電波吸収部は、前記第1および第2のプローブ内基板のそれぞれの先端を被覆する
前記(10)記載のセンサ装置。
(12)前記第1のプローブ内基板の両面の一方と、前記第2のプローブ内基板の両面の一方との間で電磁波が送受信され、
 前記電波吸収部は、前記第1のプローブ内基板の両面のうち他方と、前記第2のプローブ内基板の両面のうち他方とを被覆する
前記(10)または(11)に記載のセンサ装置。
(13)複数対の前記アンテナを具備し、
 前記電波吸収部は、前記複数対のアンテナのそれぞれと前記測定部とを接続する前記伝送路を被覆する
前記(1)から(12)のいずれかに記載のセンサ装置。
(14)前記電波吸収部は、センサ筐体に埋め込まれた電波吸収材の層である
前記(1)から(13)のいずれかに記載のセンサ装置。
(15)センサ筐体をさらに具備し、
 前記電波吸収部は、前記センサ筐体内に配置される
前記(1)から(13)のいずれかに記載のセンサ装置。
(16)前記センサ筐体には、溝が形成され
 前記電波吸収部には、前記溝と篏合する突起が形成される
前記(15)記載のセンサ装置。
(17)前記センサ筐体には、突起が形成され
 前記電波吸収部には、前記突起と篏合する溝が形成される
前記(15)記載のセンサ装置。
 100 水分計測システム
 110 通信経路
 150 中央処理装置
 151 中央制御部
 152 アンテナ
 153 中央通信部
 154 信号処理部
 155 記憶部
 156 出力部
 162 往復遅延時間算出部
 163 伝搬伝送時間算出部
 164 水分量測定部
 165 係数保持部
 166 メモリ
 167 距離算出部
 200、201 センサ装置
 210、210-1~210-3 測定回路
 211 センサ制御部
 212 センサ通信部
 213 アンテナ
 214、214-1、214-2、214-3、420 送信機
 214-4 送受信機
 215、215-1、216-2、215-3 受信機
 216 送信スイッチ
 216-1、445 スイッチ
 217 受信スイッチ
 218-1~218-3、219-1~219-3 伝送路
 220 送信プローブユニット
 221~223、221-1~221-3、222-1~222-3、223-1 送信アンテナ
 230 受信プローブユニット
 231~233、231-1~231-3、232-1~232-3、233-1 受信アンテナ
 241-1、241-2、241-3、431、441、453 ミキサ
 242-1、242-2、242-3 ローカル発振器
 243-1、243-2、243-3 ローパスフィルタ
 244-1、244-2、244-3、433、443、455 ADC
 251、652 電波吸収材
 252、253 ソルダーレジスト
 254、256 シールド層
 255 信号線
 257~259、254-1、254-2、255-1、255-2、255-3、256-1、256-2 導電体
 260 抵抗
 261 アンテナ
 262 カンシールド
 265、266 遅延線
 271~274、654 フレキ基板
 275~279 リジッド基板
 281~286、653 同軸ケーブル
 281-1 被覆層
 281-2 シールド層
 281-3 信号線
 291~294 フレーム
 305 センサ筐体
 305-1 前部筐体
 305-2 後部筐体
 305-3 本体部
 305-4 ステム
 305-5 突出部
 305-6 アンテナ部
 310 測定部筐体
 311 測定部基板
 311-1~311-3 電子基板
 312 測定部半導体装置
 313、340 電池
 314、315、323、324 コネクタ
 320、320-1~320-4 プローブ筐体
 321、322 プローブ内基板
 325 シールド層
 330~332 放射エレメント
 333~335 受信エレメント
 341~350 電波吸収部
 351~358 位置決め部
 359-1、359-2 冶具
 360、361、620、621 補強部
 362~364 雨どい
 370~375 連結部
 376、377 水準器
 380、381 固定具
 390 温度センサ
 410 方向性結合器
 411~413 伝送線路
 414、415 終端抵抗
 421 ドライバ
 422 送信信号発信器
 430 入射波受信機
 432、442、454 バンドパスフィルタ
 440 反射波受信機
 450 透過波受信機
 455 第2受信機
 451 レシーバ
 452 ローカル信号発信器
 460 センサ信号処理部
 470 センサ制御部
 471 送信制御部
 472 反射係数算出部
 473 透過係数算出部
 510 潅水チューブ
 520~522 潅水ノズルホルダー
 530 潅水ノズル
 540 支持部材
 550、551 潅水チューブホルダー
 600~603 スペーサ
 610、611 支柱
 620、621 補強部
 630、631 ストッパ
 632 板状部材
 633 直方体部材
 640 ガイド
 650 らせん状部材
 651 筒状筐体
 661 可動可動部
 662 篏合部
 670 シャベル型筐体
 671 持ち手
 672 平板部
 673 刃
 674 柄
 675 足場部材
 710 信号源
 720 可変減衰器
 721 可変増幅

Claims (17)

  1.  一対のアンテナと、
     前記一対のアンテナの間の媒質中の水分量を測定する測定回路と、
     前記一対のアンテナと前記測定回路とを接続する伝送路と、
     前記伝送路の周囲に形成された電波吸収部と
    を具備するセンサ装置。
  2.  前記電波吸収部は、前記伝送路の全体を被覆する
    請求項1記載のセンサ装置。
  3.  前記電波吸収部は、前記伝送路の一部を被覆する
    請求項1記載のセンサ装置。
  4.  前記電波吸収部は、前記伝送路の所定位置と前記アンテナの一端との間の前記伝送路を被覆する
    請求項3記載のセンサ装置。
  5.  前記電波吸収部は、前記アンテナの一端から離れた所定位置と前記測定回路との間の前記伝送路を被覆する
    請求項3記載のセンサ装置。
  6.  前記アンテナの他端から前記所定位置までの距離は、前記一対のアンテナが送受信する電磁波の中心周波数の波長の半波長を超えない
    請求項5記載のセンサ装置。
  7.  前記アンテナの他端から前記所定位置までの距離は、前記一対のアンテナが送受信する電磁波の波長帯域幅を超えない
    請求項5記載のセンサ装置。
  8.  一対の突出部を有する電子基板をさらに具備し、
     前記一対のアンテナと前記伝送路とは、前記一対の突出部に形成される
    請求項1記載のセンサ装置。
  9.  前記電波吸収部は、前記一対の突出部のそれぞれの先端を被覆する
    請求項8記載のセンサ装置。
  10.  第1のプローブ内基板と、
     第2のプローブ内基板と、
     前記第1および第2のプローブ内基板と直交する測定部基板と
    をさらに具備し、
     前記一対のアンテナと前記伝送路とは、前記第1および第2のプローブ内基板に形成される
     前記測定回路は、前記測定部基板に配置される
    請求項1記載のセンサ装置。
  11.  前記電波吸収部は、前記第1および第2のプローブ内基板のそれぞれの先端を被覆する
    請求項10記載のセンサ装置。
  12.  前記第1のプローブ内基板の両面の一方と、前記第2のプローブ内基板の両面の一方との間で電磁波が送受信され、
     前記電波吸収部は、前記第1のプローブ内基板の両面のうち他方と、前記第2のプローブ内基板の両面のうち他方とを被覆する
    請求項10記載のセンサ装置。
  13.  複数対の前記アンテナを具備し、
     前記電波吸収部は、前記複数対のアンテナのそれぞれと前記測定部とを接続する前記伝送路を被覆する
    請求項1記載のセンサ装置。
  14.  前記電波吸収部は、センサ筐体に埋め込まれた電波吸収材の層である
    請求項1記載のセンサ装置。
  15.  センサ筐体をさらに具備し、
     前記電波吸収部は、前記センサ筐体内に配置される
    請求項1記載のセンサ装置。
  16.  前記センサ筐体には、溝が形成され
     前記電波吸収部には、前記溝と篏合する突起が形成される
    請求項15記載のセンサ装置。
  17.  前記センサ筐体には、突起が形成され
     前記電波吸収部には、前記突起と篏合する溝が形成される
    請求項15記載のセンサ装置。
PCT/JP2021/041083 2020-11-12 2021-11-09 センサ装置 WO2022102593A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/251,901 US20230417686A1 (en) 2020-11-12 2021-11-09 Sensor device
AU2021380274A AU2021380274A1 (en) 2020-11-12 2021-11-09 Sensor device
JP2022561922A JPWO2022102593A1 (ja) 2020-11-12 2021-11-09
EP21891839.9A EP4246134A1 (en) 2020-11-12 2021-11-09 Sensor device
CN202180067187.5A CN116157673A (zh) 2020-11-12 2021-11-09 传感器装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-188902 2020-11-12
JP2020188902 2020-11-12

Publications (1)

Publication Number Publication Date
WO2022102593A1 true WO2022102593A1 (ja) 2022-05-19

Family

ID=81601271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041083 WO2022102593A1 (ja) 2020-11-12 2021-11-09 センサ装置

Country Status (6)

Country Link
US (1) US20230417686A1 (ja)
EP (1) EP4246134A1 (ja)
JP (1) JPWO2022102593A1 (ja)
CN (1) CN116157673A (ja)
AU (1) AU2021380274A1 (ja)
WO (1) WO2022102593A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106154U (ja) * 1983-12-23 1985-07-19 横河電機株式会社 マイクロ波水分計
JPH10325813A (ja) * 1997-05-23 1998-12-08 Matsushita Electric Works Ltd マイクロ波水分計測装置
JP2002076739A (ja) * 2000-08-23 2002-03-15 Kosu:Kk 電磁波レーダアンテナの製造方法および電磁波レーダアンテナ
US20180224382A1 (en) 2015-08-02 2018-08-09 Vayyar Imaging Ltd System and method for measuring soil properties characteristics using electromagnetic propagation
WO2018221051A1 (ja) * 2017-06-02 2018-12-06 ソニー株式会社 センサ装置、水分量測定装置、水分量測定方法、情報処理装置および情報処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106154U (ja) * 1983-12-23 1985-07-19 横河電機株式会社 マイクロ波水分計
JPH10325813A (ja) * 1997-05-23 1998-12-08 Matsushita Electric Works Ltd マイクロ波水分計測装置
JP2002076739A (ja) * 2000-08-23 2002-03-15 Kosu:Kk 電磁波レーダアンテナの製造方法および電磁波レーダアンテナ
US20180224382A1 (en) 2015-08-02 2018-08-09 Vayyar Imaging Ltd System and method for measuring soil properties characteristics using electromagnetic propagation
WO2018221051A1 (ja) * 2017-06-02 2018-12-06 ソニー株式会社 センサ装置、水分量測定装置、水分量測定方法、情報処理装置および情報処理方法

Also Published As

Publication number Publication date
CN116157673A (zh) 2023-05-23
EP4246134A1 (en) 2023-09-20
JPWO2022102593A1 (ja) 2022-05-19
US20230417686A1 (en) 2023-12-28
AU2021380274A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
RU2607769C1 (ru) Антенна
KR101981368B1 (ko) 자기 접지형 안테나 장치
US20150311591A1 (en) Printed antenna having non-uniform layers
RU2006123262A (ru) Линия питания планарного щелевого элемента
US11557826B2 (en) Antenna unit, preparation method, and electronic device
JP2020521941A (ja) アンテナ・アレイ
RU2380799C1 (ru) Компактная антенна круговой поляризации с расширенной полосой частот
JP7235001B2 (ja) 測定装置、測定システム、および、測定方法
EP3719926A1 (en) Wideband antenna array
JP2007142666A (ja) 平面アンテナ装置
WO2022102593A1 (ja) センサ装置
WO2022102576A1 (ja) センサ装置
WO2022102555A1 (ja) センサ装置
WO2022102572A1 (ja) センサ装置
WO2022102570A1 (ja) センサ装置
US10879612B2 (en) Configurable multiband antenna arrangement and design method thereof
WO2022158183A1 (ja) 測定装置、及び測定方法
WO2004066442A1 (en) Antenna element and array antenna
JP3217312U (ja) プローブカード
WO2012171041A1 (en) Multiple layer dielectric panel directional antenna
JP6351450B2 (ja) 無線モジュール、電子モジュール及び測定方法
WO2010113029A1 (en) Antenna device
JP2009115644A (ja) 電界プローブ、電界測定装置
Ta et al. A 3-D radiation pattern measurement method for a 60-GHz-band WPAN phased array antenna
JP4950009B2 (ja) アンテナの放射器およびアンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561922

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18251901

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021891839

Country of ref document: EP

Effective date: 20230612

ENP Entry into the national phase

Ref document number: 2021380274

Country of ref document: AU

Date of ref document: 20211109

Kind code of ref document: A