WO2022158183A1 - 測定装置、及び測定方法 - Google Patents

測定装置、及び測定方法 Download PDF

Info

Publication number
WO2022158183A1
WO2022158183A1 PCT/JP2021/046431 JP2021046431W WO2022158183A1 WO 2022158183 A1 WO2022158183 A1 WO 2022158183A1 JP 2021046431 W JP2021046431 W JP 2021046431W WO 2022158183 A1 WO2022158183 A1 WO 2022158183A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
coefficient
measurement
cable
calibration
Prior art date
Application number
PCT/JP2021/046431
Other languages
English (en)
French (fr)
Inventor
幸生 飯田
篤 山田
卓哉 市原
峻裕 大石
聡幸 廣井
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to EP21921285.9A priority Critical patent/EP4283283A4/en
Priority to CN202180090199.XA priority patent/CN116724226A/zh
Priority to US18/261,127 priority patent/US20240085348A1/en
Publication of WO2022158183A1 publication Critical patent/WO2022158183A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/04Investigating moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/246Earth materials for water content

Definitions

  • the present disclosure relates to a measuring device and a measuring method.
  • Measuring devices that measure the amount of water in media such as soil are commonly used in fields such as agriculture and environmental research.
  • a measuring device has been proposed that measures the water content from the propagation delay time of electromagnetic waves propagating through a medium between a pair of probes.
  • This measuring device connects a pair of probes, a transmitter, and a receiver with a cable, transmits an electrical signal from the transmitter to the receiver, and obtains the delay time from transmission to reception. Then, the measuring device holds in advance the transmission time of the electric signal transmitted through the cable as a fixed error, and subtracts the error from the obtained delay time to obtain the propagation delay time of the electromagnetic wave propagating through the medium.
  • such a measuring device performs error measurement to calibrate the error at the time of shipment from the factory, and saves the calibration coefficient. Thereby, the water content is measured by the measurement data calibrated by the calibration factor.
  • the length of the cable may change due to thermal expansion, and the error will also fluctuate due to the change in length. For this reason, in the above-described sensor device in which the error is a fixed value, there is a possibility that the measurement accuracy of the moisture content may deteriorate when the cable thermally expands.
  • the present disclosure provides a measuring device and a measuring method that can be calibrated even if the error fluctuates.
  • a measuring device for measuring the amount of water contained in a medium, comprising: a first probe embedded with a first cable electrically connectable to the first connection cable; a second probe embedded with a second cable electrically connectable to the second connection cable; It is fixed in a predetermined positional relationship with the first probe and the second probe even during the measurement, and is electrically connectable to the first connection cable and the second connection cable when the measurement is not performed, and the measurement is performed.
  • a standard device used for calibration of A measuring device is provided, comprising:
  • a switching unit for switching connection between the first connection cable and the first probe or the standard and connection between the second connection cable and the second probe or the standard may be further provided.
  • the switching unit is a first switching unit that switches connection between the first connection cable and the first probe or the standard;
  • a second switching unit for switching connection between the second connection cable and the second probe or the standard device may be provided.
  • the standard device has an open reference device, a short reference device, and a non-reflective terminator, and has a first terminal connected to the open reference device, a second terminal connected to the short reference device, and a non-reflective terminator. It may further have a third terminal for connection, and a fourth terminal on one side and a fourth terminal on the other side for directly connecting the first connection cable and the second connection cable.
  • the first switching unit switches connection between the first connection cable and the first probe, the first to third terminals, and the one fourth terminal, and the second switching unit switches the second connection.
  • the connection between the cable and the second probe or the other fourth terminal may be switched.
  • the first probe, the second probe, the standard, the first switching section, and the second switching section may be configured in the same housing.
  • the first probe, the second probe, and the standard device may be configured as a measuring device within the same housing.
  • the coefficient calculation unit, the calibration unit, and the processing unit may be configured as a signal processing device within the same housing.
  • the measuring device and the signal processing device may be integrated within the same housing.
  • the measuring device and the signal processing device may be configured in separate and different housings.
  • a plurality of the measuring devices and the signal processing device may be connected.
  • the signal processing device may be capable of wireless communication.
  • a calculation step of calculating a calibration factor based on the obtained measurement data Obtaining the ratio of the complex amplitudes of the incident wave transmitted to the first probe via the first cable and the reflected wave of the incident wave reflected by the first probe as a reflection coefficient, a coefficient calculating step of obtaining, as a transmission coefficient, a ratio of complex amplitudes of the incident wave and a transmitted wave transmitted through a medium between the first probe and the second probe; a calibration step of calibrating the reflection coefficient and the transmission coefficient with the calibration coefficient; a processing step of measuring the amount of water contained in the medium based on the calibrated reflection coefficient and the calibrated transmission coefficient;
  • a method of measurement is provided comprising:
  • FIG. 2 is a block diagram showing a configuration example of the measuring device according to the first embodiment
  • FIG. 4 is a diagram showing a configuration example of a calibration standard in the first embodiment
  • FIG. 3 is an external view of the sensor head according to the first embodiment
  • FIG. The figure which shows an example of the antenna part and equivalent circuit in 1st Embodiment. 4 is a graph showing an example of impulse response waveforms of reflection coefficients according to the present embodiment.
  • FIG. 2 is a block diagram showing a configuration example of a measurement unit according to the first embodiment;
  • FIG. 2 is a circuit diagram showing one configuration example of a transmitter and a receiver in this embodiment;
  • FIG. 2 is a block diagram showing a configuration example of a control unit in the first embodiment
  • FIG. FIG. 2 is a block diagram showing a configuration example of a signal processing unit in the first embodiment
  • FIG. FIG. 2 is a diagram for explaining propagation paths and transmission paths of electromagnetic waves and electric signals
  • 4 is a graph showing an example of impulse response waveforms of reflection coefficients in the first embodiment.
  • 4 is a graph showing an example of impulse response waveforms of transmission coefficients in the first embodiment.
  • 4 is a graph showing an example of the relationship between round-trip delay time, propagation transmission time, and water content; The graph which shows an example of the relationship between propagation delay time and water content.
  • 4 is a flow chart showing an example of a calibration coefficient measurement operation; 4 is a flow chart showing an example of the operation of the measuring device; The figure which shows the structural example of the measuring apparatus as a comparative example. The figure which shows the structural example of the measuring device which concerns on 2nd Embodiment. The figure which shows the structural example of the calibration standard device which concerns on 2nd Embodiment. 9 is a flowchart showing an example of a calibration coefficient measurement operation according to the second embodiment; The figure which shows the structural example of the calibration standard device which concerns on 3rd Embodiment. 10 is a flowchart showing an example of a calibration coefficient measurement operation according to the third embodiment; The figure which shows the structural example of the measuring device which concerns on 4th Embodiment. The figure which shows the structural example of the measuring device which concerns on 5th Embodiment.
  • FIG. 1 is a block diagram showing a configuration example of a measuring device 1 according to the first embodiment of the present technology.
  • This measuring device 1 measures the amount of water contained in a medium M, and a sensor device 2 and a signal processing device 4 are integrated in the same housing.
  • the medium M for example, soil for growing crops is assumed.
  • the sensor device 2 acquires the data necessary for measuring the moisture content as measurement data.
  • This sensor device 2 has a calibration standard 100 , a switching section 110 and a sensor head 200 .
  • the signal processing device 4 also has a measurement unit 300 and a signal processing unit 400 .
  • the calibration standard 100 has, for example, four types of standards: short, open, load, and through.
  • this calibration standard 100 can be used for so-called SOLT (Short-Open-Load-Thru) calibration.
  • SOLT calibration is used for calibration, but the present invention is not limited to this.
  • the switching unit 110 is a switching element made up of, for example, a semiconductor chip.
  • the switching section 110 has a first switching section 112 and a second switching section 114 .
  • the first switching unit 112 is controlled by a control signal from the signal processing device 4 and switches connection between the first connection cable 308 and the first probe 201 or the calibration standard 100 .
  • the second switching unit 114 is controlled by a control signal from the signal processing device 4 and switches connection between the second connection cable 309 and the second probe 202 or the calibration standard 100 .
  • the sensor head 200 is a component made up of probes 201 and 202 .
  • the probe 201 is connected to the measurement unit 300 via the first cable 3080 , the first switching section 112 and the first connection cable 308 .
  • the probe 202 is connected to the measurement unit 300 via the second cable 3090, the first switching section 112, and the second connection cable 309.
  • Coaxial cables for example, are used as the first cable 3080 , the first connection cable 308 , and the second cable 3090 . These first cable 3080 and second cable 3090 are connected to probes 201 and 202 by embedding their respective tips inside probes 201 and 202 .
  • the measurement unit 300 causes one of the probes 201 and 202 to transmit an electromagnetic wave EW and the other to receive the electromagnetic wave EW to generate measurement data.
  • This measurement unit 300 communicates with the calibration standard 100 via a signal line 310 .
  • Measurement unit 300 also transmits measurement data to signal processing unit 400 via signal line 409 .
  • Signal processing unit 400 measures the moisture content using the measurement data.
  • the measurement unit 300 and the signal processing unit 400 are mounted on different semiconductor chips. Incidentally, as will be described later, the respective circuits of the measurement unit 300 and the signal processing unit 400 can be mounted on the same semiconductor chip.
  • the measurement unit 300 may be configured to include an electronic circuit board having a wiring layer and a semiconductor chip mounted on the electronic circuit board.
  • the measurement unit 300 may be configured to include the electronic circuit board, the semiconductor chip, and a housing that accommodates them.
  • the cables 308 and 309 may be connected to the semiconductor chip via the wiring layer provided on the electronic circuit board.
  • the size of the measurement unit 300 configured to include an electronic circuit board and a semiconductor chip, or the housing that accommodates it, is as follows: , For example, the length of one side may be 1 to 20 centimeters (cm), and the length of the other side orthogonal to this may be 1 to 40 centimeters (cm). 2) its thickness may be, for example, 2 to 20 millimeters (mm);
  • the direction in which the measuring unit 300 is arranged can take at least two ways. That is, (1) measurement unit 300 may be arranged such that the direction in which measurement unit 300 extends is parallel to the direction in which probes 201 and 202 extend. Alternatively, (2) measurement unit 300 may be arranged such that the direction in which measurement unit 300 extends is orthogonal to the direction in which probes 201 and 202 extend.
  • the system including the sensor device 2 and the signal processing device 4 can be treated as a measurement system.
  • FIG. 2 is a diagram showing a configuration example of the calibration standard 100 according to the first embodiment of the present technology.
  • the calibration standard device 100 has, for example, four types of standard devices, short, open, load, and through, and a third switching section 116 . Further, the calibration standard 100 includes a first terminal 100S connected to a short-circuit reference device, a second terminal 100O connected to an open reference device, a third terminal 100L connected to a non-reflective terminator (load reference device), 1 connection cable 308 and second connection cable 309 are connected directly.
  • the third switching unit 116 is a switching element made up of, for example, a semiconductor chip.
  • the third switching unit 116 is controlled by a control signal from the signal processing device 4 and switches connection between the first terminal 100S, the second terminal 100O, the third terminal 100L, and the fourth terminal 100T and the cable 308. FIG. Details of the calibration method will be described later.
  • FIG. 3 is an example of an external view of the sensor head 200 according to the first embodiment of the present technology.
  • Sensor head 200 has probes 201 and 202 .
  • the calibration standard 100 , the first switching section 112 and the second switching section 114 are arranged above the sensor head 200 .
  • each of probes 201 and 202 is, for example, 75 to 150 millimeters (mm).
  • Each of the probes 201 and 202 has a thickness (diameter or cross-sectional width of the probe) of, for example, 3 to 30 millimeters (mm).
  • These probes 201 and 202 are arranged in a medium such as soil, and each have an antenna section 210 capable of transmitting/receiving electromagnetic waves of a predetermined frequency between the probes 201 and 202 .
  • the probes 201 and 202 are embedded in the medium so that the distance between each antenna section 210 is a predetermined value D.
  • these probes are embedded in a medium in a generally vertical orientation.
  • their orientation is not limited to the vertical orientation.
  • the antenna section 210 is provided at or near the tips (in other words, terminal ends) of the probes 201 and 202 to transmit and receive electromagnetic waves.
  • the antenna section 210 is provided at the distal end portions of the probes 201 and 202, the configuration is not limited to this. For example, it can be provided at the center position of the probes 201 and 202, or the like.
  • the antenna section 210 is composed of a minute antenna formed with a size that does not cause the probes 201 and 202 to resonate. As a result, it is possible to suppress deterioration in measurement accuracy due to resonance of the probes 201 and 202 .
  • cables 308 and 309 in FIG. 1 are embedded inside each of the probes 201 and 202 as described above.
  • a part of this coaxial cable is opened and used as an antenna section 210 .
  • the outer periphery of the portion of the coaxial cable other than the antenna section 210 is covered with an electromagnetic wave absorbing material 240 .
  • the electromagnetic wave absorber 240 can suppress leakage of electromagnetic waves from areas other than the opening.
  • Ni—Zn ferrite is mainly used, but it is not limited to this, and other high magnetic permeability materials such as sendust and permalloy may be used depending on the frequency of the electromagnetic wave EW. .
  • the electromagnetic wave absorbing material 240 may be omitted as necessary, or may be provided only on one of the probes 201 and 202 .
  • the size of the distance D between the antenna units 210 is not particularly limited. If the distance D is too large, the attenuation of the electromagnetic wave EW propagating through the medium M will increase, and there is a risk that sufficient reception intensity will not be obtained. On the other hand, if the distance D is too small, it may technically become difficult to observe. Considering these, the distance D is set to an appropriate value. For example, distance D is between 25 and 75 millimeters (mm).
  • a spacer 260 is arranged between the probes 201 and 202 to define the distance between the antenna sections 210 .
  • the outer circumference of each of probes 201 and 202 is also covered by an outer shell 225 having a thickness of 1 to 3 millimeters (mm) to isolate it from the medium.
  • Spacer 260 and outer shell 225 are formed of an electromagnetic wave transparent material.
  • electromagnetic wave transparent materials include polymeric materials, glass, and inorganic materials such as PTEF (PolyTEtraFluoroethylene).
  • PC Poly Carbonate
  • PES Poly Ether Sulfone
  • PEEK Poly Ether Ether Ketone
  • PSS PolyStyrene Sulfonic Acid
  • PMMA PolyMethylMethAcrylate
  • PET PolyEthylene Terephthalate
  • etc. are also used as polymer materials.
  • the thickness of the spacer 260 may be smaller than the size and thickness of the measurement unit 300 that includes an electronic circuit board and a semiconductor chip.
  • the thickness of spacer 260 is equal to the thickness of measuring unit 300. less than the height, preferably less than 1/2, more preferably less than 1/3.
  • the thickness of spacer 260 is It may be smaller than the length in one direction, preferably smaller than 1/2, more preferably smaller than 1/3.
  • the thickness of the spacer 260 may be smaller than the thickness (diameter or width of the cross section of the probe) of at least one of the probes 201 and 202, preferably smaller than 1/2. Preferably, it may be less than 1/3. And the thickness of spacer 260 may be, for example, 1 to 3 millimeters (mm).
  • the thickness of the spacer 260 is made smaller than the thickness of the measuring unit 300, or smaller than the length in one direction in which the measuring unit 300 extends, or the thickness of at least one of the probes 201 and 202 ( diameter or the width of the cross section of the probe), the moisture sensor that measures the propagation delay time of electromagnetic waves between antennas exerts its unique effect. Even if the spacer 260 is made of an electromagnetic wave permeable material, depending on the material, electromagnetic waves radiated from the transmitting antenna may be reflected by the spacer and received by the receiving antenna, resulting in noise. By setting the thickness of the spacer 260 to the above configuration, the above noise reflected by the spacer 260 can be reduced compared to a form without this configuration. This effect of reducing noise by reducing the thickness of the spacer does not occur in moisture sensors other than measuring the propagation delay time of electromagnetic waves between antennas. This is an effect that occurs precisely because it is a sensor.
  • the distance d from the antenna portions (210 and 220) of the pair of probes (201 and 202) to the lower end of the spacer 260 is preferably greater than the distance D between the antennas.
  • the distance d is preferably greater than twice the distance D between the antennas.
  • distance d is more preferably greater than three times the distance D between the antennas and less than the length of each of probes 201 and 202 .
  • this noise can be reduced by moving the spacer 260 away from the antenna.
  • This "effect of reducing noise by moving the spacer 260 away from the antenna” does not occur in moisture sensors other than the method of measuring the propagation delay between antennas. That is why it occurs.
  • the outer edge closer to the antenna section (210 and 220) is is arc-shaped. If the outer edge is arcuate rather than straight, the noise received by the receiving antenna due to the microwaves radiated from the receiving antenna being reflected by the spacer 260 can be further reduced.
  • This "effect of reducing noise by making the spacer 260 arc-shaped" does not occur in moisture sensors other than the method of measuring the propagation delay between antennas, and it occurs only in moisture sensors that employ the method of measuring the propagation delay between antennas. It is something to do.
  • FIG. 4 is a diagram illustrating an example of the antenna section 210 and an equivalent circuit according to the first embodiment of the present technology.
  • a is an enlarged view of the antenna section 210.
  • FIG. b in the figure is an example of an equivalent circuit of the antenna section 210 .
  • a cable 3080 (coaxial cable, etc.) embedded in the probe 201 has a core portion 211 and a shield portion 212 .
  • the thickness and length of the cable are not particularly limited, and may be any thickness and length.
  • the core wire portion 211 is made of a copper wire and the shield portion 212 is made of a copper pipe, but the shield portion 212 may be made of a copper wire mesh.
  • each antenna section 210 of the probes 201 and 202 functions as a minute dipole antenna having a length of about 4 to 10 millimeters (millimeters).
  • the opening has an opening shape such as rectangular, circular, elliptical, or oval. The long axis of the opening can be appropriately set according to the wavelength of the electromagnetic wave to be used.
  • the equivalent circuit of the antenna section 210 is represented by a circuit in which a resistor 511 and fringing capacitors 512 and 513 are connected in parallel.
  • the capacitance value of the fringing capacitance 512 is a value corresponding to the dielectric constant ⁇ c of the material extending inside the coaxial cable.
  • the capacitance value of the fringing capacitance 513 is a value corresponding to the dielectric constant ⁇ * of the substance spreading around the electrode 513 .
  • the wave within the input signal is called the "incident wave”
  • the reflected wave of the incident wave is called the "reflected wave”.
  • the round trip delay time required for the electrical signal to make a round trip in the coaxial cable varies due to the temperature and the dielectric constant ⁇ * of the medium.
  • the reflection coefficient is the ratio of the complex amplitudes of the incident and reflected waves.
  • FIG. 5 is a graph showing an example of impulse response waveforms of reflection coefficients according to the present embodiment.
  • the vertical axis in the figure indicates the impulse response of the reflection coefficient, and the horizontal axis indicates time.
  • the solid-line curve indicates the waveform of the impulse response when the medium is air, and the dashed-dotted line indicates the waveform of the impulse response when the medium is water.
  • the peak value of the impulse response does not fluctuate. As a result, the round-trip delay time can be calculated with high accuracy.
  • FIG. 6 is a block diagram showing one configuration example of the measurement unit 300 according to the first embodiment of the present technology.
  • This measurement unit 300 comprises a directional coupler 310 , a transmitter 320 , an incident wave receiver 330 , a reflected wave receiver 340 , a transmitted wave receiver 350 , a communication section 360 and a control section 370 .
  • a vector network analyzer for example, is used as the measurement unit 300 .
  • the directional coupler 310 separates the electrical signal transmitted through the cable 308 into an incident wave and a reflected wave.
  • the incident wave is the wave of the electrical signal transmitted by the transmitter 320 and the reflected wave is the reflection of the incident wave at the end of the probe 201 .
  • the directional coupler 310 feeds the incident wave to the incident wave receiver 330 and the reflected wave to the reflected wave receiver 340 .
  • the transmitter 320 transmits an electrical signal of a predetermined frequency to the probe 201 via the directional coupler 310 and cable 308 as a transmission signal.
  • a CW (Continuous Wave) wave for example, is used as the incident wave in the transmission signal.
  • the transmitter 320 transmits a transmission signal, for example, by sequentially switching frequencies in steps of 50 megahertz (MHz) within a frequency band of 1 to 9 gigahertz (GHz).
  • the incident wave receiver 330 receives the incident wave from the directional coupler 310 .
  • Reflected wave receiver 340 receives the reflected wave from directional coupler 310 .
  • the transmitted wave receiver 350 receives transmitted waves from the probe 202 .
  • the transmitted wave is an electromagnetic wave that has passed through the medium between the probes 201 and 202 and is converted into an electric signal by the probe 202 .
  • the incident wave receiver 330, the reflected wave receiver 340, and the transmitted wave receiver 350 perform quadrature detection and AD (Analog to Digital) conversion on the received incident wave, reflected wave, and transmitted wave to obtain received data. It is supplied to the control section 370 .
  • AD Analog to Digital
  • the incident wave receiver 330, the reflected wave receiver 340, and the transmitted wave receiver 350 are examples of receivers described in claims.
  • the control unit 370 controls the transmitter 320 to transmit a transmission signal containing an incident wave, and performs processing for obtaining reflection coefficients and transmission coefficients. Also, as described above, the control unit 370 controls the first switching unit 112, the second switching unit 114, and the third switching unit 116.
  • the reflection coefficient is the ratio of the complex amplitudes of the incident and reflected waves, as described above.
  • the transmission coefficient is the ratio of the respective complex amplitudes of the incident and transmitted waves.
  • the control unit 370 supplies the calculated reflection coefficient and transmission coefficient to the communication unit 360 .
  • the communication section 360 transmits data indicating the reflection coefficient and the transmission coefficient to the signal processing unit 400 via the signal line 409 as measurement data.
  • FIG. 7 is a diagram illustrating a configuration example of the directional coupler 310 according to the first embodiment of the present technology.
  • This directional coupler 310 comprises transmission lines 311 , 312 and 313 and termination resistors 314 and 315 .
  • This directional coupler 310 can be implemented by, for example, a bridge coupler suitable for miniaturization.
  • the transmission line 311 is connected to the transmitter 320 and the other end is connected to the probe 201 via the cable 308 .
  • the transmission line 312 is a line that is shorter than the transmission line 311 and electromagnetically coupled with the transmission line 311 .
  • a terminal resistor 314 is connected to one end of the transmission line 312 , and the other end is connected to a reflected wave receiver 340 .
  • the transmission line 313 is a line that is shorter than the transmission line 311 and electromagnetically coupled with the transmission line 311 .
  • a terminating resistor 315 is connected to one end of this transmission line 313 and the other end is connected to an incident wave receiver 330 .
  • the directional coupler 310 separates the electrical signal into an incident wave and a reflected wave, and supplies them to the incident wave receiver 330 and the reflected wave receiver 340 .
  • FIG. 8 is a circuit diagram showing one configuration example of the transmitter 320 and the receiver in this embodiment.
  • a is a circuit diagram showing a configuration example of the transmitter 320
  • b in the figure is a circuit diagram showing a configuration example of the incident wave receiver 330.
  • c is a circuit diagram showing a configuration example of the reflected wave receiver 340
  • d in the figure is a circuit diagram showing a configuration example of the transmitted wave receiver 350.
  • the transmitter 320 includes a transmission signal oscillator 322 and a driver 321, as illustrated in a in the figure.
  • the transmission signal oscillator 322 generates an electrical signal as a transmission signal under the control of the control section 370 .
  • Driver 321 outputs a transmission signal to directional coupler 310 .
  • t represents time, and the unit is, for example, nanoseconds (ns).
  • indicates the amplitude of the transmission signal.
  • cos() denotes the cosine function.
  • f indicates a frequency, and its unit is hertz (Hz), for example.
  • represents the phase, and its unit is, for example, radian (rad).
  • the incident wave receiver 330 includes a mixer 331 , a bandpass filter 332 and an analog-to-digital converter 333 , as illustrated in b in FIG.
  • the mixer 331 performs quadrature detection by mixing two local signals and a transmission signal that are 90 degrees out of phase with each other. This quadrature detection provides a complex amplitude consisting of an in-phase component II and a quadrature component QI. These in-phase component II and quadrature component QI are represented, for example, by the following equations.
  • Mixer 331 supplies the complex amplitude to analog-to-digital converter 333 through bandpass filter 332 .
  • II
  • QI
  • sin() denotes a sine function.
  • the bandpass filter 332 passes components in a predetermined frequency band.
  • the analog-to-digital converter 333 performs AD conversion.
  • the analog-to-digital converter 333 generates data representing a complex amplitude by AD conversion, and supplies the data to the control section 370 as received data.
  • the reflected wave receiver 340 includes a mixer 341 , a bandpass filter 342 and an analog-to-digital converter 343 .
  • the configurations of mixer 341 , bandpass filter 342 and analog-to-digital converter 343 are similar to those of mixer 331 , band-pass filter 332 and analog-to-digital converter 333 .
  • Reflected wave receiver 340 quadrature-detects the reflected wave to obtain a complex amplitude consisting of in-phase component IR and quadrature component QR, and supplies reception data indicating the complex amplitude to control section 370 .
  • the transmitted wave receiver 350 includes a receiver 351 , a local signal oscillator 352 , a mixer 353 , a bandpass filter 354 and an analog-to-digital converter 355 .
  • the configurations of mixer 353 , bandpass filter 354 and analog-to-digital converter 355 are similar to those of mixer 331 , band-pass filter 332 and analog-to-digital converter 333 .
  • the receiver 351 receives electrical signals including transmitted waves via the cable 309 and outputs them to the mixer 353 .
  • the local signal oscillator 352 generates two local signals that are 90 degrees out of phase.
  • the transmitted wave receiver 350 quadrature-detects the transmitted wave to obtain a complex amplitude consisting of an in-phase component IT and a quadrature component QT, and supplies data indicating the complex amplitude to the control section 370 as received data.
  • each circuit of the transmitter 320 and the receiver is not limited to the circuit illustrated in the figure as long as it can transmit and receive incident waves and the like.
  • FIG. 9 is a block diagram showing a configuration example of the control unit 370 according to the first embodiment of the present technology.
  • the control section 370 includes a transmission control section 371 , a reflection coefficient calculation section 372 , a transmission coefficient calculation section 373 and a switching section 374 .
  • the transmission control unit 371 controls the transmitter 320 to transmit a transmission signal.
  • the reflection coefficient calculator 372 calculates the reflection coefficient ⁇ for each frequency.
  • the reflection coefficient calculation unit 372 calculates reflection coefficients for each of N (N is an integer) frequencies f1 to fN using Equation 1. Let these N reflection coefficients be .GAMMA.1 to .GAMMA.N. The reflection coefficient calculator 372 supplies these reflection coefficients to the communication unit 360 .
  • the transmission coefficient calculator 373 calculates a transmission coefficient T' for each frequency.
  • the transmission coefficient calculator 373 calculates transmission coefficients for each of the N frequencies f1 to fN using Equation 2. Let these N reflection coefficients be T'1 to T'N. The transmission coefficient calculator 373 supplies these transmission coefficients to the signal processing unit 400 via the communication unit 360 .
  • the switching section 374 performs control to switch the electrical connection between the first switching section 112 and the second switching section 114 to the probe 201 side and the probe 202 side when measuring the amount of water contained in the medium. On the other hand, the switching section 374 performs control to switch the electrical connection between the first switching section 112 and the second switching section 114 to the calibration standard 100 side in a predetermined order during the measurement of the calibration coefficient. Further, the switching unit 374 performs control to switch the electrical connection of the third switching unit 116 between the first terminal 100S, the second terminal 100O, the third terminal 100L, and the fourth terminal 100T in a predetermined order during measurement of the calibration coefficient. conduct.
  • FIG. 10 is a block diagram showing a configuration example of the signal processing unit 400 according to the first embodiment of the present technology.
  • the signal processing unit 400 includes a calibration coefficient calculation section 405 , a communication section 410 , a calibration section 415 , a round trip delay time calculation section 420 , a propagation transmission time calculation section 430 , a water content measurement section 440 and a coefficient storage section 450 .
  • the calibration coefficient calculation unit 405 calculates calibration coefficients (ED, ERX, ES, EX, ET) according to SOLT (Short-Open-Load-Thru) calibration, for example. The details of the calculation method of the calibration coefficients (ED, ERX, ES, EX, ET) will be described later.
  • the calibration coefficient calculation unit 405 supplies the calculated calibration coefficients (ED, ERX, ES, EX, ET) to the coefficient holding unit 450 .
  • the communication section 410 receives measurement data from the measurement unit 300 .
  • the communication unit 410 supplies the reflection coefficients ⁇ ′1 to ⁇ ′N and the transmission coefficients T′1 to T′N in the measurement data to the calibration unit 415 .
  • the calibration unit 415 supplies the calibrated reflection coefficients ⁇ 1 to ⁇ N to the round-trip delay time calculation unit 420 based on the calibration coefficients (ED, ERX, ES, EX, ET) held in the coefficient holding unit 450, and calculates the calibrated transmission coefficients.
  • the coefficients T1 to TN are supplied to the propagation transmission time calculator 430 .
  • the round-trip delay time calculation unit 420 calculates the round-trip delay time of the electric signal in the cable 308 based on the reflection coefficient.
  • the round-trip delay time calculator 420 obtains the impulse response h ⁇ (t) by inverse Fourier transforming the reflection coefficients ⁇ 1 to ⁇ N. Then, the round-trip delay time calculation unit 420 obtains the time difference between the timing of the peak value of the impulse response h ⁇ (t) and the transmission timing of the CW wave as the round-trip delay time ⁇ 11, and supplies it to the water content measurement unit 440 .
  • the propagation transmission time calculation unit 430 calculates the time required for the electromagnetic wave and the electric signal to propagate and transmit through the medium and the cables 308 and 309 as the propagation transmission time based on the transmission coefficient.
  • the propagation transmission time calculator 430 obtains an impulse response hT(t) by inverse Fourier transforming the transmission coefficients T1 to TN. Then, the propagation transmission time calculation unit 430 obtains the time difference between the timing of the peak value of the impulse response hT(t) and the transmission timing of the CW wave as the propagation transmission time ⁇ 21, and supplies it to the water content measurement unit 440 .
  • the water content measurement unit 440 measures the water content based on the round-trip delay time ⁇ 11 and the propagation transmission time ⁇ 21.
  • the water content measurement unit 440 first calculates the propagation delay time ⁇ d from the round-trip delay time ⁇ 11 and the propagation transmission time ⁇ 21.
  • the propagation delay time is the time for electromagnetic waves to propagate through the medium between probes 201 and 202 .
  • each unit of the round-trip delay time ⁇ 11, the propagation transmission time ⁇ 21, and the propagation delay time ⁇ d is, for example, nanoseconds (ns).
  • the coefficient holding unit 450 holds calibration coefficients (ED, ERX, ES, EX, ET) and coefficients a and b.
  • a nonvolatile memory or the like is used as the coefficient holding unit 450 .
  • FIG. 11 is a diagram for explaining propagation paths and transmission paths of electromagnetic waves and electrical signals in the first embodiment of the present technology.
  • the transmitter 320 transmits electrical signals including incident waves to the probe 201 as transmission signals via the cable 308 whose tip is embedded in the probe 201 .
  • the incident wave is reflected at the end of the probe 201, and the reflected wave is received by the reflected wave receiver 340.
  • Thick solid line arrows in FIG. The time it takes for the electrical signal to make a round trip through this path corresponds to the round trip delay time ⁇ 11.
  • an electrical signal containing an incident wave is converted into an electromagnetic wave EW by the probe 201 and transmitted (in other words, propagated) through the medium between the probes 201 and 202 .
  • Probe 202 converts the electromagnetic wave EW into an electrical signal.
  • a transmitted wave receiver 350 receives transmitted waves in the electrical signal via cable 309 . That is, an electrical signal including an incident wave is transmitted through the cable 308, converted into an electromagnetic wave EW to propagate through a medium, converted into an electrical signal including a transmitted wave and transmitted through the cable 309.
  • the thick dotted arrows in the figure indicate paths along which electromagnetic waves and electrical signals (incident waves and transmitted waves) propagate and transmit through the medium and cables 308 and 309 .
  • the time for the electromagnetic wave and electric signal to propagate and transmit through this path corresponds to the propagation transmission time ⁇ 21.
  • the control section 370 in the measurement unit 300 obtains the reflection coefficient ⁇ and the transmission coefficient T from Equations 1 and 2. Then, the signal processing unit 400 obtains the round-trip delay time ⁇ 11 and the propagation transmission time ⁇ 21 from the reflection coefficient ⁇ and the transmission coefficient T.
  • the path from transmission of the incident wave to reception of the transmitted wave includes the medium and cables 308 and 309. Therefore, the propagation delay time ⁇ d for the electromagnetic wave to propagate through the medium is obtained from the difference between the propagation transmission time ⁇ 21 and the delay time for the electric signal to propagate through the cables 308 and 309 .
  • the delay time of transmission through cable 308 and the delay time of transmission through cable 309 are the same.
  • the sum of the delay times of the electrical signals traveling through cables 308 and 309 is equal to the round trip delay time ⁇ 11 traveling through cable 308 . Therefore, Equation 3 holds, and the signal processing unit 400 can calculate the propagation delay time ⁇ d from Equation 3.
  • the signal processing unit 400 calculates the propagation delay time from the obtained round-trip delay time ⁇ 11 and the propagation transmission time ⁇ 21, and performs the process of measuring the amount of water contained in the medium from the propagation delay time and the coefficients a and b. .
  • FIG. 12 is a graph showing an example of impulse response waveforms of reflection coefficients according to the first embodiment of the present technology.
  • the vertical axis in the figure is the impulse response of the reflection coefficient, and the horizontal axis is time.
  • the round trip delay time is constant. This is because probes 201 and 202 are separated by shell 225, as previously described.
  • FIG. 13 is a graph showing an example of the impulse response waveform of the transmission coefficient in the first embodiment of the present technology.
  • the vertical axis in the figure is the impulse response of the transmission coefficient, and the horizontal axis is time.
  • the medium to be measured is four types of Toyoura standard sand similar to those in FIG.
  • the timing of the peak value of the permeability coefficient is delayed as the water content increases.
  • the propagation transmission delay time increases as the water content increases.
  • FIG. 14 is a graph showing an example of the relationship between the round-trip delay time, the propagation transmission time, and the water content in the first embodiment of the present technology.
  • the vertical axis in the figure indicates round-trip delay time or propagation transmission time, and the horizontal axis indicates water content.
  • the dotted line in FIG. 14 shows the relationship between the round-trip delay time and the water content obtained from FIG.
  • a solid line in FIG. 14 indicates the relationship between the propagation transmission time and the water content obtained from FIG.
  • the round trip delay time is constant regardless of the moisture content.
  • the larger the water content the longer the propagation transmission delay time.
  • FIG. 15 is a graph showing an example of the relationship between propagation delay time and water content in the first embodiment of the present technology.
  • the vertical axis in the figure indicates the propagation delay time, and the horizontal axis indicates the water content.
  • the straight line in FIG. 14 is obtained by calculating the difference between the propagation transmission time and the round-trip delay time for each water content in FIG.
  • Equation 4 holds.
  • the coefficient a in Equation 4 is the slope of the straight line in the figure, and the coefficient b is the intercept.
  • FIG. 16 is a flow chart showing an example of the measurement operation of calibration coefficients (ED, ERX, ES, EX, ET).
  • the electrical connection of the third switching unit 116 is switched in order of the first terminal 100S, the second terminal 100O, the third terminal 100L, and the fourth terminal 100T (see FIG. 2) at the time of shipment.
  • the reflection characteristics ⁇ S, ⁇ O, ⁇ L and the transmission characteristics TT corresponding to each terminal have already been measured.
  • the calibration coefficient calculation unit 405 outputs a calibration start signal to the control unit 370 via the communication units 410 and 360 .
  • the control unit 370 executes processing in the processing order shown in FIG.
  • the first switching unit 112 switches the electrical connection to the calibration standard 100 side (step S100). Subsequently, the third switching unit 116 switches electrical connection to the first terminal 100S (step S102). Subsequently, the transmitter 320 transmits the incident wave to the calibration standard 100, and the reflection coefficient calculator 372 holds the reflection coefficient of the first terminal 100S in the coefficient holding unit 450 as the reflection characteristic S11mS.
  • the third switching unit 116 switches the electrical connection to the second terminal 100O (step S104). Subsequently, the transmitter 320 transmits the incident wave to the calibration standard 100, and the reflection coefficient calculator 372 holds the reflection coefficient of the second terminal 100O in the coefficient holding unit 450 as the reflection characteristic S11mO.
  • the third switching unit 116 switches electrical connection to the third terminal 100L (step S106). Subsequently, the transmitter 320 transmits the incident wave to the calibration standard 100, the reflection coefficient calculation unit 372 holds the reflection coefficient of the third terminal 100L as the reflection characteristic S11mL in the coefficient holding unit 450, and the transmission coefficient calculation unit 373 holds the transmission coefficient of the third terminal 100L in the coefficient holding unit 450 as the transmission characteristic S21mL.
  • the third switching section 116 switches the electrical connection to the fourth terminal 100T, and the second switching section 114 switches the electrical connection to the calibration standard 100 side (step S108).
  • the transmitter 320 transmits the incident wave to the calibration standard 100
  • the reflection coefficient calculator 372 holds the reflection coefficient of the fourth terminal 100T as the reflection characteristic S11mT in the coefficient holding unit 450
  • the transmission coefficient calculator 373 holds the transmission coefficient of the fourth terminal 100T in the coefficient holding unit 450 as the transmission characteristic S21mT.
  • the calibration coefficient calculation unit 405 calculates calibration coefficients (ED, ERX, ES, EX, ET) according to, for example, formulas (5) to (8), and stores them in the coefficient storage unit 450 (step S110).
  • calibration coefficient calculation section 405 outputs a calibration end signal to control section 370 via communication section 410 and communication section 360 .
  • the first switching unit 112 switches the electrical connection to the probe 201 side
  • the second switching unit 114 switches the electrical connection to the probe 202 side
  • Drawing 17 is a flow chart which shows an example of operation of measuring device 1 in a 1st embodiment of this art. The operations in the figure are started, for example, when a predetermined application for measuring moisture content is executed.
  • a pair of probes 201 and 202 transmit and receive electromagnetic waves (step S200).
  • the measurement unit 300 calculates a reflection coefficient from the incident wave and the reflected wave (step S202), and calculates a transmission coefficient from the incident wave and the transmitted wave (step S204).
  • the signal processing unit 400 calibrates the reflection coefficient (step S206) and calibrates the transmission coefficient (step S208). Then, the round-trip delay time is calculated from the calibrated reflection coefficient (step S208), and the propagation transmission time is calculated from the calibrated transmission coefficient (step S210). Subsequently, signal processing unit 400 calculates the propagation delay time from the round-trip delay time and the propagation transmission time (step S212), and calculates the water content from the propagation delay time and coefficients a and b (step S214). After step S214, the measurement apparatus 100 ends the operation for measurement.
  • FIG. 18 is a diagram showing a configuration example of a measuring device 1a as a comparative example. As shown in FIG. 18, the apparatus does not have a calibration standard 100 in the measuring apparatus 1a. Therefore, in the measuring device 1a, the calibration coefficient is calculated at the time of shipment from the factory.
  • the lengths of the cables 308 and 309 fluctuate with changes in temperature and the like. For this reason, the factory calibration coefficients (ED, ERX, ES, EX, ET) cannot be calibrated appropriately for temperature changes, etc., and the calibration coefficients (ED, ERX, ES, EX, ET), the error between the calibrated value increases, and there is a possibility that the measurement accuracy of the moisture content decreases.
  • the cables 308 and 309 have different shapes when measuring the calibration standard 100 and when measuring moisture content. This also increases the error between the true value and the calibrated value by the calibration coefficients (ED, ERX, ES, EX, ET) of the measured value, and there is a possibility that the measurement accuracy of the moisture content is lowered.
  • the measuring device 1 can calculate the calibration coefficients (ED, ERX, ES, EX, ET) at an appropriate timing before measurement. Therefore, even if the lengths of the cables 308 and 309 fluctuate due to changes in temperature, etc., the calibration coefficients (ED, ERX, ES, EX, ET) can be obtained. Therefore, the water content measurement accuracy can be improved more than when the calibration coefficients (ED, ERX, ES, EX, ET) are fixed values.
  • the probes 201 and 202 and the calibration standard 100 are fixed in a predetermined positional relationship even during moisture measurement. , the shape deformation of the cables 308 and 309 can be suppressed. Therefore, it is possible to improve the measurement accuracy of the water content compared to the case of measuring the calibration coefficients (ED, ERX, ES, EX, ET) using the detachable calibration standard device 100 .
  • the measurement device 1 is fixed in a predetermined positional relationship with the probes 201 and 202 even during moisture measurement, and the first connection cable 1 is fixed when the moisture measurement is not performed.
  • 308 and a calibration standard 100 electrically connectable to the second connecting cable 309 .
  • the probes 201 and 202 and the calibration standard 100 are fixed in a predetermined positional relationship even during the moisture measurement, deformation of the cables 308 and 309 is suppressed during the moisture measurement and the calibration factor measurement. It is possible. Therefore, the water content measurement accuracy can be improved more than when the calibration coefficients (ED, ERX, ES, EX, ET) are fixed values.
  • the first switching unit 112 and the second switching unit 114 are configured separately from the calibration standard 100, whereas the measuring device 1 according to the second embodiment has The difference is that the first switching section 112 and the second switching section 114 are integrated in the calibration standard 100a. Differences from the measuring apparatus 1 according to the first embodiment will be described below.
  • FIG. 19 is a diagram showing a configuration example of the measuring device 1 according to the second embodiment. As shown in FIG. 19, the measuring device 1 according to the second embodiment has a calibration standard 100a.
  • FIG. 20 is a diagram showing a configuration example of the calibration standard 100a according to the second embodiment.
  • the calibration standard 100a according to the second embodiment includes a first switching section 112a, a second switching section 114a, and open, short, load, through ) has four types of standards.
  • the calibration standard 100 includes a first terminal 100S connected to a short-circuit reference device, a second terminal 100O connected to an open reference device, a third terminal 100L connected to a non-reflective terminator (load reference device), It has fourth terminals 100 Ta and 100 Tb that directly connect the first connection cable 308 and the second connection cable 309 , a fifth terminal 100 Pa that is connected to the first cable 3080 , and a sixth terminal 100 Pb that is connected to the second cable 3090 .
  • the first switching section 112a, the second switching section 114a, and the four kinds of standard devices in the same housing, it is possible to further suppress the influence of the external environment such as humidity. Also, the configuration of the third switching unit 116 can be eliminated.
  • FIG. 21 is a flow chart showing an example of the measurement operation of calibration coefficients (ED, ERX, ES, EX, ET) according to the second embodiment.
  • the electrical connection of the third switching unit 116 is switched in order of the first terminal 100S, the second terminal 100O, the third terminal 100L, and the fourth terminal 100T (see FIG. 2) at the time of shipment.
  • the reflection characteristics ⁇ S, ⁇ O, ⁇ L and the transmission characteristics TT corresponding to each terminal have already been measured.
  • the first switching unit 112a switches the electrical connection to the first terminal 100S (step S302). Subsequently, the transmitter 320 transmits the incident wave to the calibration standard 100a, and the reflection coefficient calculator 372 holds the reflection coefficient of the first terminal 100S in the coefficient holding unit 450 as the reflection characteristic S11mS.
  • the first switching unit 112a switches the electrical connection to the second terminal 100O (step S304). Subsequently, the transmitter 320 transmits the incident wave to the calibration standard 100a, and the reflection coefficient calculator 372 holds the reflection coefficient of the second terminal 100O in the coefficient holding unit 450 as the reflection characteristic S11mT.
  • the first switching unit 112a switches the electrical connection to the third terminal 100L (step S306).
  • the transmitter 320 transmits the incident wave to the calibration standard 100a
  • the reflection coefficient calculation unit 372 holds the reflection coefficient of the third terminal 100L as the reflection characteristic S11mL in the coefficient holding unit 450, holds the transmission coefficient of the third terminal 100L in the coefficient holding unit 450 as the transmission characteristic S21mL.
  • the first switching unit 112a switches electrical connection to the fourth terminal 100Ta
  • the second switching unit 114a switches electrical connection to the fourth terminal 100Tb (step S308).
  • the transmitter 320 transmits the incident wave to the calibration standard 100a
  • the reflection coefficient calculation unit 372 holds the reflection coefficient of the fourth terminal 100T as the reflection characteristic S11mT in the coefficient holding unit 450
  • the transmission coefficient calculation unit 373 holds the transmission coefficient of the fourth terminal 100T in the coefficient holding unit 450 as the transmission characteristic S21mT.
  • the calibration coefficient calculation unit 405 calculates calibration coefficients (ED, ERX, ES, EX, ET) according to, for example, formulas (5) to (8), and stores them in the coefficient storage unit 450 (step S310).
  • calibration coefficient calculation section 405 outputs a calibration end signal to control section 370 via communication section 410 and communication section 360 .
  • the first switching unit 112 switches the electrical connection to the probe 201 side, the first switching unit 112a and the second switching unit 114a switch the electrical connection to the probe 202 side, and end the calibration coefficient measurement operation (step S312).
  • the first switching section 112 and the second switching section 114 are configured within the calibration standard 100a. Thereby, the influence of the external environment such as humidity can be further suppressed. Also, the configuration of the third switching unit 116 can be eliminated.
  • the measurement apparatus 1 according to the third embodiment differs from the measurement apparatus 1 according to the second embodiment in that the configuration of the calibration standard 100 is symmetrical. Differences from the measuring apparatus 1 according to the second embodiment will be described below.
  • FIG. 22 is a diagram showing a configuration example of the calibration standard 100b according to the third embodiment.
  • the calibration standard 100b according to the second embodiment includes a first switching section 112b, a second switching section 114b, and open, short, load, through ) has four types of standards.
  • the calibration standard 100 also has first terminals 100Sa and 100Sb connected to the open reference device, second terminals 100Oa and 100Ob connected to the short reference device, and a third terminal connected to the non-reflective terminator (load reference device).
  • the calibration standard 100a bilaterally symmetrically, it is possible to further improve the calculation accuracy of the calibration coefficients (ED, ERX, ES, EX, ET).
  • the first switching unit 112a, the second switching unit 114a, and the four types of standard devices in the same housing the influence of the external environment such as humidity is reduced. can be further suppressed.
  • FIG. 23 is a flow chart showing an example of the measurement operation of calibration coefficients (ED, ERX, ES, EX, ET) according to the third embodiment.
  • the electrical connection of the third switching unit 116 is switched in order of the first terminal 100S, the second terminal 100O, the third terminal 100L, and the fourth terminal 100T (see FIG. 2) at the time of shipment.
  • the reflection characteristics ⁇ S, ⁇ O, ⁇ L and the transmission characteristics TT corresponding to each terminal have already been measured.
  • the first switching section 112b and the second switching section 114b switch electrical connections to the first terminals 100Sa and 100Sb (step S302). Subsequently, the transmitter 320 transmits the incident wave to the calibration standard 100b, and the reflection coefficient calculator 372 holds the reflection coefficient of the first terminal 100S in the coefficient holding unit 450 as the reflection characteristic S11mS.
  • the first switching section 112b and the second switching section 114ba switch electrical connections to the second terminals 100Oa and 100Ob (step S404).
  • the transmitter 320 transmits the incident wave to the calibration standard 100b, and the reflection coefficient calculator 372 holds the reflection coefficient of the second terminal 100O in the coefficient holding unit 450 as the reflection characteristic S11mT.
  • the first switching section 112b and the second switching section 114ba switch electrical connections to the third terminals 100La and 100Lb (step S406).
  • the transmitter 320 transmits the incident wave to the calibration standard 100b
  • the reflection coefficient calculation unit 372 holds the reflection coefficient of the third terminal 100L as the reflection characteristic S11mL in the coefficient holding unit 450
  • the transmission coefficient calculation unit 373 holds the transmission coefficient of the third terminal 100L in the coefficient holding unit 450 as the transmission characteristic S21mL.
  • the first switching unit 112b and the second switching unit 114ba switch electrical connections to the fourth terminals 100Ta and 100Tb (step S308).
  • the transmitter 320 transmits the incident wave to the calibration standard 100b
  • the reflection coefficient calculation unit 372 holds the reflection coefficient of the fourth terminal 100T as the reflection characteristic S11mT in the coefficient holding unit 450
  • the transmission coefficient calculation unit 373 holds the transmission coefficient of the fourth terminal 100T in the coefficient holding unit 450 as the transmission characteristic S21mT.
  • the calibration coefficient calculation unit 405 calculates calibration coefficients (ED, ERX, ES, EX, ET) according to, for example, formulas (5) to (8), and stores them in the coefficient storage unit 450 (step S310).
  • the calibration coefficient calculation unit 405 outputs a calibration end signal to the control unit 370 via the communication unit 410 and the communication unit 360.
  • the first switching unit 112b and the second switching unit 114ba are electrically connected. Switching to the probes 201 and 202 side, the operation of measuring the calibration coefficient ends (step S412).
  • the calibration standard 100a is configured symmetrically.
  • the calibration standard 100a bilaterally symmetrically, it is possible to further improve the calculation accuracy of the calibration coefficients (ED, ERX, ES, EX, ET).
  • a measurement apparatus 1 according to the fourth embodiment differs from the solid-state imaging apparatus 1 according to the first embodiment in that a plurality of sensor apparatuses 2 and a signal processing apparatus 4 are provided in separate housings. Differences from the solid-state imaging device 1 according to the first embodiment will be described below.
  • FIG. 24 is a diagram showing a configuration example of the measuring device 1 according to the fourth embodiment. As shown in FIG. 24 , the measuring device 1 according to the fourth embodiment includes multiple sensor devices 2 and a signal processing device 4 .
  • the signal processing device 4 has a measurement unit 300 a and a signal processing unit 400 .
  • the measurement unit 300a has a switching element 3000 capable of electrically switching between connections with the plurality of sensor devices 2 .
  • the switching element 3000 switches electrical connections for each of the plurality of sensor devices 2 under the control of the signal processing unit 400 . Thereby, it is possible to perform calculation operation and measurement operation of the calibration coefficients (ED, ERX, ES, EX, ET) for each of the plurality of sensor devices 2 .
  • the multiple sensor devices 2 and the signal processing device 4 are configured in separate housings. This makes it possible to configure the measuring device 1 with longer cables 308 , 309 , 310 . Therefore, the signal processing device 4 can be arranged farther than the probes 201 and 202 . However, the longer the cables 308 and 309, the greater the measurement error due to the calibration coefficients (ED, ERX, ES, EX, ET) due to temperature changes. However, the measuring device 1 can timely calculate the calibration coefficients (ED, ERX, ES, EX, ET) for each of the plurality of sensor devices 2 . Therefore, even when the cables 308, 309, 310 are made longer, the measurement accuracy of the water content can be improved.
  • the plurality of sensor devices 2 and the signal processing device 4 are configured in separate housings. This allows the signal processing device 4 to be arranged farther than the probes 201 and 202 . Further, it is possible to timely calculate the calibration coefficients (ED, ERX, ES, EX, ET) for each of the plurality of sensor devices 2 . Therefore, even when the cables 308, 309, 310 are made longer, the measurement accuracy of the water content can be improved.
  • the measuring device 1 according to the fifth embodiment is different from the measuring device 1 according to the fourth embodiment in that wireless communication is possible. Differences from the measuring apparatus 1 according to the fourth embodiment will be described below.
  • FIG. 25 is a diagram showing a configuration example of the measuring device 1 according to the fifth embodiment. As shown in FIG. 25 , the measuring device 1 according to the fourth embodiment includes multiple sensor devices 2 and a signal processing device 4 .
  • the signal processing device 4 further has an antenna 500, and the communication unit 410 (see FIG. 10) is capable of wireless communication, which is the difference from the signal processing device 4 according to the fourth embodiment. do.
  • the cloud database 4000 can hold calibration coefficients (ED, ERX, ES, EX, ET) and the like for each of the plurality of sensor devices 2 . Therefore, the cloud database 4000 side can manage the calibration coefficients (ED, ERX, ES, EX, ET) and the like for each of the plurality of sensor devices 2 . Therefore, it is also possible to monitor the states of a plurality of sensor devices 2 on the cloud database 4000 side. Also, the storage capacity of the coefficient holding unit 450 (see FIG. 10) can be reduced. Also, each function of the signal processing unit may be provided on the cloud database 4000 side. This makes it possible to further simplify the configuration of the signal processing device 4 .
  • the signal processing device 4 is configured to be able to wirelessly communicate with the cloud database 4000 .
  • This enables the cloud database 4000 to hold calibration coefficients (ED, ERX, ES, EX, ET) and the like for each of the plurality of sensor devices 2 . Therefore, the cloud database 4000 side can manage the calibration coefficients (ED, ERX, ES, EX, ET) and the like for each of the plurality of sensor devices 2 .
  • This technology can be configured as follows.
  • a measuring device for measuring the amount of water contained in a medium, a first probe embedded with a first cable electrically connectable to the first connection cable; a second probe embedded with a second cable electrically connectable to the second connection cable; It is fixed in a predetermined positional relationship with the first probe and the second probe even during the measurement, and is electrically connectable to the first connection cable and the second connection cable when the measurement is not performed, and the measurement is performed.
  • a standard device used for calibration of A measuring device comprising:
  • the switching unit a first switching unit that switches connection between the first connection cable and the first probe or the standard;
  • the standard has an open reference device, a short reference device, and a non-reflective terminator, and has a first terminal connected to the open reference device, a second terminal connected to the short reference device, and a non-reflective terminal.
  • the measuring device according to (3) further comprising a third terminal connected to a terminator, and one fourth terminal and the other fourth terminal directly connecting the first connection cable and the second connection cable.
  • the first switching unit switches connection between the first connection cable and the first probe, the first to third terminals, and the one fourth terminal, and the second switching unit switches the The measuring device according to (4), wherein the connection between the second connection cable and the second probe or the other fourth terminal is switched.
  • the first probe, the second probe, the standard, the first switching section, and the second switching section are configured in the same housing, (4) or (5) ).
  • (8) obtaining a ratio of complex amplitudes of an incident wave transmitted to the first probe via the first cable and a reflected wave reflected from the incident wave by the first probe as a reflection coefficient; a coefficient calculator that obtains, as a transmission coefficient, a ratio of complex amplitudes of the incident wave and a transmitted wave that has passed through a medium between the first probe and the second probe; a calibration unit that calibrates the reflection coefficient and the transmission coefficient with the calibration coefficient obtained using the standard device; a processing unit that performs a process of measuring the amount of water contained in the medium based on the calibrated reflection coefficient and the calibrated transmission coefficient;
  • the measuring device according to any one of (1) to (7), further comprising:
  • a standard device used for calibration of and a measuring method for a measuring device having a calculation step of transmitting incident waves to the standard device in a predetermined order through the first connection cable and calculating a calibration coefficient based on measurement data sequentially measured through the second connection cable; Obtaining the ratio of the complex amplitudes of the incident wave transmitted to the first probe via the first cable and the reflected wave of the incident wave reflected by the first probe as a reflection coefficient, a coefficient calculating step of obtaining, as a transmission coefficient, a ratio of complex amplitudes of the incident wave and a transmitted wave transmitted through a medium between the first probe and the second probe; a calibration step of calibrating the reflection coefficient and the transmission coefficient with the calibration coefficient; a processing step of measuring the amount of water contained in the medium based on the calibrated reflection coefficient and the calibrated transmission coefficient;
  • a measurement method comprising
  • 1 measuring device
  • 2 sensor device
  • 4 signal processing device 4
  • 201 probe
  • 202 probe
  • 100 100a, 100b: calibration standard
  • 112, 112a, 112b first switching unit
  • 114, 114a, 114b second switching unit
  • 116 third switching unit
  • 300 measurement unit
  • 308 first connection cable
  • 309 second connection cable
  • 372 reflection coefficient calculation unit
  • 373 transmission coefficient calculation unit
  • 400 signal Processing unit
  • 415 calibration unit
  • 3080 first cable
  • 3090 second cable.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本発明は、誤差が変動しても校正可能な測定装置を提供することを目的とする。 本発明は媒質に含まれる水分量を測定する測定装置(1)であって、第1接続ケーブル(308)に電気的に接続可能である第1ケーブル(3080)が埋め込まれた第1プローブ(201)と、第2接続ケーブル(309)に電気的に接続可能である第2ケーブル(3090)が埋め込まれた第2プローブ(202)と、前記測定中も第1プローブ(201)及び第2プローブ(202)と所定の位置関係に固定され、前記測定を行っていない場合に前記第1接続ケーブル(308)及び前記第2接続ケーブル(309)に電気的に接続可能であり、前記測定の校正に用いられる標準器(100)と、を備える。

Description

測定装置、及び測定方法
 本開示は、測定装置、及び測定方法に関する。
 土壌などの媒質中の水分量を測定する測定装置が、農業や環境調査などの分野において一般に使用されている。例えば、一対のプローブの間の媒質を電磁波が伝搬する伝搬遅延時間から水分量を測定する測定装置が提案されている。この測定装置は、一対のプローブと送信機および受信機とをケーブルで接続し、送信機から受信機へ電気信号を送信し、その送信から受信までの遅延時間を求めている。そして、測定装置は、ケーブルを電気信号が伝送する伝送時間を固定値の誤差として予め保持しておき、求めた遅延時間から、その誤差を減算することにより、電磁波が媒質を伝搬する伝搬遅延時間を求めている。
 また、一般にこのような測定装置は、工場出荷時に誤差を校正する誤差測定が行われ、校正係数が保存される。これにより、校正係数により校正された測定データにより水分量が測定される。
国際公開第2018/221051号公報 特願平8-300197号公報
 しかしながら、ケーブルの長さが熱膨張により変わることがあり、その長さの変化に起因して誤差も変動する。このため、誤差を固定値とした上述のセンサ装置では、ケーブルが熱膨張した際に、水分量の測定精度が低下するおそれがある。
 そこで、本開示では、誤差が変動しても校正可能な測定装置、及び測定方法を提供するものである。
 上記の課題を解決するために、本開示によれば、媒質に含まれる水分量を測定する測定装置であって、
 第1接続ケーブルに電気的に接続可能である第1ケーブルが埋め込まれた第1プローブと、
 第2接続ケーブルに電気的に接続可能である第2ケーブルが埋め込まれた第2プローブと、
 前記測定中も第1プローブ及び第2プローブと所定の位置関係に固定され、前記測定を行っていない場合に前記第1接続ケーブル及び前記第2接続ケーブルに電気的に接続可能であり、前記測定の校正に用いられる標準器と、
 を備える、測定装置が提供される。
 前記第1接続ケーブルと第1プローブ又は前記標準器との接続、及び前記第2接続ケーブルと第2プローブ又は前記標準器との接続を切り換える切替部と、を更に備えてもよい。
 前記切替部は、
 前記第1接続ケーブルと第1プローブ又は前記標準器との接続を切り換える第1切替部と、
 前記第2接続ケーブルと第2プローブ又は前記標準器との接続を切り換える第2切替部と、を有してもよい。
 前記標準器は、開放基準器、短絡基準器、及び無反射終端器を有し、前記開放基準器へ接続する第1端子、前記短絡基準器へ接続する第2端子、及び無反射終端器へ接続する第3端子と、前記第1接続ケーブル及び前記第2接続ケーブルを直結する一方の第4端子及び他方の第4端子とを更に有してもよい。
 前記第1切替部は、前記第1接続ケーブルと第1プローブ、第1乃至第3端子、及び前記一方の第4端子のいずれかとの接続を切り替え、前記第2切替部は、前記第2接続ケーブルと第2プローブ又は前記他方の第4端子との接続を切り替えてもよい。
 前記第1プローブと、前記第2プローブと、前記標準器と、前記第1切替部と、前記第2切替部とは、同一の筐体内に構成されてもよい。
 前記第1プローブへ前記第1ケーブルを介して送信される入射波と、前記第1プローブで前記入射波が反射した反射波との複素振幅の比を反射係数として求め、
 前記入射波と、前記第1プローブと前記第2プローブとの間の媒質を透過した透過波との複素振幅の比を透過係数として求める係数算出部と、
 前記標準器を用いて求められた校正係数により前記反射係数及び前記透過係数を校正する校正部と、
 前記校正された反射係数および前記校正された透過係数に基づいて前記媒質に含まれる水分量を測定する処理を行う処理部と、
 を更に備えてもよい。
 前記第1プローブと、前記第2プローブと、前記標準器と、が同一の筐体内に測定装置として構成されてもよい。
 前記係数算出部と、前記校正部と、前記処理部とは、同一の筐体内に信号処理装置として構成されてもよい。
 前記測定装置と前記信号処理装置は、同一の筐体内に一体構成されてもよい。
 前記測定装置と前記信号処理装置とは、分離された異なる筐体内に構成されてもよい。
 複数の前記測定装置と前記信号処理装置とが接続されてもよい。
 前記信号処理装置は、無線通信が可能であってもよい。
 上記の課題を解決するために、本開示によれば、第1接続ケーブルに電気的に接続可能である第1ケーブルが埋め込まれた第1プローブと、
 第2接続ケーブルに電気的に接続可能である第2ケーブルが埋め込まれた第2プローブと、
 前記測定中も第1プローブ及び第2プローブと所定の位置関係に固定され、前記測定を行っていない場合に前記第1接続ケーブル及び前記第2接続ケーブルに電気的に接続可能であり、前記測定の校正に用いられる標準器と、を有する測定装置の測定方法であって、 前記第1接続ケーブルを介して前記標準器に所定順に入射波を送信し、前記第2接続ケーブルを介して順に測定さえた測定データに基づき、校正係数を算出する算出工程と、
 前記第1プローブへ前記第1ケーブルを介して送信される入射波と、前記第1プローブで前記入射波が反射した反射波との複素振幅の比を反射係数として求め、
 前記入射波と、前記第1プローブと前記第2プローブとの間の媒質を透過した透過波との複素振幅の比を透過係数として求める係数算出工程と、
 前記校正係数により前記反射係数及び前記透過係数を校正する校正工程と、
 前記校正された反射係数および前記校正された透過係数に基づいて前記媒質に含まれる水分量を測定する処理を行う処理工程と、
 を備える測定方法が提供される。
第1実施形態における測定装置の一構成例を示すブロック図。 第1実施形態における校正標準器の構成例を示す図。 第1実施形態におけるセンサヘッドの外観図。 第1実施形態におけるアンテナ部および等価回路の一例を示す図。 本実施形態に係る反射係数のインパルス応答の波形の一例を示すグラフ。 第1実施形態における測定ユニットの一構成例を示すブロック図。 第1実施形態における方向性結合器の一構成例を示す図。 本実施形態における送信機および受信機の一構成例を示す回路図。 第1実施形態における制御部の一構成例を示すブロック図。 第1実施形態における信号処理ユニットの一構成例を示すブロック図。 第電磁波および電気信号の伝搬経路および伝送経路を説明するための図。 第1実施形態における反射係数のインパルス応答の波形の一例を示すグラフ。 第1実施形態における透過係数のインパルス応答の波形の一例を示すグラフ。 往復遅延時間および伝搬伝送時間と水分量との関係の一例を示すグラフ。 伝搬遅延時間と水分量との関係の一例を示すグラフ。 校正係数の測定動作例を示すフローチャート。 測定装置の動作の一例を示すフローチャート。 比較例としての測定装置の構成例を示す図。 第2実施形態に係る測定装置の構成例を示す図。 第2実施形態に係る校正標準器の構成例を示す図。 第2実施形態に係る校正係数の測定動作例を示すフローチャート。 第3実施形態に係る校正標準器の構成例を示す図。 第3実施形態に係る校正係数の測定動作例を示すフローチャート。 第4実施形態に係る測定装置の構成例を示す図。 第5実施形態に係る測定装置の構成例を示す図。
 以下、図面を参照して、測定装置、および測定方法の実施形態について説明する。以下では、測定装置の主要な構成部品分を中心に説明するが、測定装置には、図示又は説明されていない構成部品分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部品分や機能を除外するものではない。
 <第1実施形態>
 [測定装置の構成例]
 図1は、本技術の第1実施形態における測定装置1の一構成例を示すブロック図である。この測定装置1は、媒質Mに含まれる水分量を測定するものであり、センサ装置2と、信号処理装置4が同一の筐体内に一体構成される。媒質Mとしては、例えば、農作物を育成するための土壌が想定される。
 センサ装置2は、水分量の測定に必要なデータを測定データとして取得するものである。このセンサ装置2は、校正標準器100と、切替部110と、センサヘッド200と、を有する。また、信号処理装置4は、測定ユニット300と、信号処理ユニット400とを有する。
 校正標準器100は、例えば短絡(short)、開放(open)、負荷(load)、スルー(through)の4 種類の標準器を有する。例えば、この校正標準器100は、所謂SOLT(Short-Open-Load-Thru)校正に用いることが可能である。なお、本実施形態では、校正にSOLT校正を用いるがこれに限定されない。
 切替部110は、例えば半導体チップで構成されるスイッチング素子である。切替部110は、第1切替部112と第2切替部114とを有する。第1切替部112は、信号処理装置4の制御信号により制御され、第1接続ケーブル308と第1プローブ201又は校正標準器100との接続を切り換える。第2切替部114は、信号処理装置4の制御信号により制御され、第2接続ケーブル309と第2プローブ202又は校正標準器100との接続を切り換える。
 図1に示すように、センサヘッド200は、プローブ201および202からなる部品である。プローブ201は、第1ケーブル3080、第1切替部112、及び第1接続ケーブル308を介して測定ユニット300に接続される。プローブ202は、第2ケーブル3090、第1切替部112、及び第2接続ケーブル309を介して測定ユニット300に接続される。第1ケーブル3080、第1接続ケーブル308、及び第2ケーブル3090として、例えば、同軸ケーブルが用いられる。これらの第1ケーブル3080および第2ケーブル3090は、それぞれの先端をプローブ201および202の内部に埋め込むことにより、プローブ201および202に接続されている。
 測定ユニット300は、プローブ201および202の一方に電磁波EWを送信させ、その電磁波EWを他方に受信させて測定データを生成するものである。この測定ユニット300は、信号線310を介して校正標準器100と通信を行う。また、測定ユニット300は、測定データを、信号線409を介して信号処理ユニット400へ送信する。信号処理ユニット400は、測定データを用いて水分量を測定する。
 また、測定ユニット300と、信号処理ユニット400とは互いに異なる半導体チップに実装される。なお、後述するように、測定ユニット300と信号処理ユニット400とのそれぞれの回路を同一の半導体チップに実装することもできる。
 さらに、測定ユニット300は、配線層を備えた電子回路基板とこの電子回路基板上に実装された半導体チップを含んで構成されてもよい。測定ユニット300は、上記電子回路基板と上記半導体チップと、これらを収容した筐体とを含んで構成されてもよい。そして、上記ケーブル308および309は、上記電子回路基板に備わる上記配線層を介して、上記半導体チップと接続されてよい。
 電子回路基板と半導体チップを含んで構成された測定ユニット300、あるいはこれを収容した筐体、の大きさは、(1)その延在する方向(電子回路基板の基板平面方向)の大きさが、例えば、1辺の長さが1乃至20センチメートル(cm)、これと直交する他辺の長さが1乃至40センチメートル(cm)、の略長方形に収まる大きさであってよく、(2)その厚さは、例えば、2乃至20ミリメートル(mm)であってよい。
 測定ユニット300を配置する方向は、少なくとも2通りのいずれかを取り得る。すなわち、(1)測定ユニット300の延在する方向が、プローブ201および202の延在する方向と平行となるように、測定ユニット300を配置してよい。あるいは、(2)測定ユニット300の延在する方向が、プローブ201および202の延在する方向と直交するように、測定ユニット300を配置してもよい。
 なお、センサ装置2と、信号処理装置4と異なる筐体内に配置した場合、センサ装置2と、信号処理装置4とを有するシステムを測定システムとして扱うこともできる。
 [校正標準器の構成例]
 図2は、本技術の第1実施形態における校正標準器100の構成例を示す図である。校正標準器100は、例えば短絡(short)、開放(open)、負荷(load)、スルー(through)の4種類の標準器と、第3切替部116と、を有する。また、校正標準器100は、短絡基準器へ接続する第1端子100S、開放基準器へ接続する第2端子100O、及び無反射終端器(負荷基準器)へ接続する第3端子100Lと、第1接続ケーブル308及び第2接続ケーブル309を直結する第4端子100Tを有する。
 第3切替部116は、例えば半導体チップで構成されるスイッチング素子である。第3切替部116は、信号処理装置4の制御信号により制御され、第1端子100S、第2端子100O、第3端子100L、及び第4端子100Tと、ケーブル308との接続を切り換える。なお、校正方法の詳細は、後述する。
 [センサヘッドの構成例]
 図3は、本技術の第1実施形態におけるセンサヘッド200の外観図の一例である。センサヘッド200は、プローブ201および202を有する。また、センサヘッド200の上部には、校正標準器100、第1切替部112、及び第2切替部114が配置される。
 プローブ201および202のそれぞれの長さは、例えば、75乃至150ミリメートル(mm)である。プローブ201および202のそれぞれの太さ(直径、あるいは、プローブ断面の幅)は、例えば、3乃至30ミリメートル(mm)である。これらのプローブ201および202は、土壌等の媒質の中に配置され、プローブ201および202の間で所定周波数の電磁波を送受信することが可能なアンテナ部210をそれぞれ有する。
 プローブ201および202は、それぞれのアンテナ部210の間の距離が所定値Dとなるように媒質中に埋め込まれる。例えば、これらのプローブは、媒質中に概ね垂直な姿勢で埋め込まれる。なお、アンテナ部210の間の距離がDとなるのであれば、それらの姿勢は、垂直な姿勢に限定されない。
 アンテナ部210は、プローブ201および202の先端部(言い換えれば、終端部)又はその近傍に設けられ、電磁波を送受信するものである。なお、アンテナ部210は、プローブ201および202の先端部に設けられているが、この構成に限定されない。例えば、プローブ201および202の中央位置などに設けることもできる。
 また、アンテナ部210は、プローブ201および202を共振させない程度の大きさで形成された微小アンテナで構成される。これにより、プローブ201および202の共振による測定精度の低下を抑制することができる。
 また、プローブ201および202のそれぞれの内部には、前述したように図1におけるケーブル308および309(同軸ケーブル)の先端が埋め込まれている。この同軸ケーブルの一部が開口され、アンテナ部210として用いられる。同軸ケーブルのうちアンテナ部210以外の部分の外周は、電磁波吸収材240により被覆されている。電磁波吸収材240により、開口部以外の領域からの電磁波の漏洩を抑制することができる。
 電磁波吸収材240として、主にNi-Zn系のフェライトが用いられるが、これに限られず、電磁波EWの周波数等に応じて、センダストやパーマロイ等の他の高透磁率材料が用いられてもよい。また、電磁波吸収材240は、必要に応じて省略されてもよいし、プローブ201および202の一方にのみ設けられてもよい。
 アンテナ部210の間の距離Dの大きさは特に限定されない。距離Dが大きすぎると、媒質Mを伝搬する電磁波EWの減衰が大きくなり、十分な受信強度が得られなくなるおそれがある。一方、距離Dが小さすぎると、技術的に観測が難しくなるおそれがある。これらを考慮して、距離Dは適切な値に設定される。例えば、距離Dは、25乃至75ミリメートル(mm)である。
 そして、プローブ201および202の間には、アンテナ部210の間の距離を規定するためにスペーサ260が配置される。また、プローブ201および202のそれぞれの外周は、厚さが1乃至3ミリメートル(mm)の外殻225により被覆され、媒質から隔離されている。スペーサ260および外殻225は、電磁波透過性の材料により形成される。電磁波透過性の材料としては、例えば、高分子系材料、ガラスや、PTEF(PolyTEtraFluoroethylene)などの無機系材料が挙げられる。高分子系材料として、PC(PolyCarbonate)、PES(PolyEtherSulfone)、PEEK(PolyEtherEtherKetone)、PSS(PolyStyrene Sulfonic acid)などが用いられる。その他、高分子材料として、PMMA(PolyMethylMethAcrylate)、PET(PolyEthylene Terephthalate)なども用いられる。
 スペーサ260の厚さは、電子回路基板と半導体チップを含んで構成された測定ユニット300の大きさや厚さより小さくてよい。例えば、測定ユニット300の延在する方向が、プローブ201および202の延在する方向と平行となるように、測定ユニット300が配置されている場合、スペーサ260の厚さは、測定ユニット300の厚さよりも小さくてよく、好ましくは、1/2よりも小さくてよく、より好ましくは、1/3よりも小さくてよい。あるいは、測定ユニット300の延在する方向が、プローブ201および202の延在する方向と直交するように、測定ユニット300が配置されている場合、スペーサ260の厚さは、測定ユニット300が延在する一方向の長さよりも小さくてよく、好ましくは、1/2よりも小さくてよく、より好ましくは、1/3よりも小さくてよい。また、スペーサ260の厚さは、プローブ201および202の少なくともいずれか一方の太さ(直径、あるいは、プローブ断面の幅)よりも小さくてよく、好ましくは、1/2よりも小さくてよく、より好ましくは、1/3よりも小さくてよい。そして、スペーサ260の厚さは、例えば、1乃至3ミリメートル(mm)であってよい。
 スペーサ260の厚さを、測定ユニット300の厚さよりも小さくする、あるいは、測定ユニット300が延在する一方向の長さよりも小さくする、もしくは、プローブ201および202の少なくともいずれか一方の太さ(直径、あるいは、プローブ断面の幅)よりも小さくする、という構成は、アンテナ間の電磁波の伝搬遅延時間を計測する水分センサならではの効果を発揮する。仮に、スペーサ260を電磁波透過材料で形成しても、その材料によっては、送信アンテナから放射された電磁波がスペーサで反射されて受信アンテナで受信され、ノイズとなる可能性がある。スペーサ260の厚さを、上記の構成とすることによって、この構成を備えない形態と比較して、スペーサ260で反射される上記のノイズを低減することができる。この、スペーサの厚さを小さくすることによってノイズを低減する効果は、アンテナ間の電磁波の伝搬遅延時間を計測する以外の水分センサでは発生せず、アンテナ間の電磁波の伝搬遅延時間を計測する水分センサであるからこそ発生する効果である。
 なお、一対のプローブ(201および202)のアンテナ部(210および220)からスペーサ260の下端までの距離dは、アンテナ間の距離Dよりも大きいことが好ましい。特に、その距離dは、アンテナ間の距離Dの2倍よりも大きいことが好ましい。さらに、距離dは、アンテナ間の距離Dの3倍よりも大きく、プローブ201および202のそれぞれの長さよりも小さいことがより好ましい。仮に、プローブ201および202の間のスペーサ260を電磁波透過材料で形成しても、その材料によっては、送信アンテナから放射されたマイクロ波がスペーサで反射されて、受信アンテナで受信され、ノイズとなる可能性がある。上述のように、スペーサ260をアンテナから遠ざけることによって、このノイズを低減することができる。この「スペーサ260をアンテナから遠ざけることによってノイズを低減する効果」は、アンテナ間の伝搬遅延計測方式以外の水分センサでは発生せず、本技術のように、アンテナ間の伝搬遅延計測方式の水分センサであるからこそ発生するものである。
 また、スペーサ260の外縁であって、一対のプローブ(201および202)の間に延在する該外縁のうち、アンテナ部(210および220)に近い方の該外縁は、同図に例示するように円弧状になっている。該外縁が、直線であるよりも円弧状になっている方が、信アンテナから放射されたマイクロ波がスペーサ260で反射されて受信アンテナで受信されるノイズをより低減できる。この「スペーサ260を円弧状にすることによってノイズを低減する効果」は、アンテナ間の伝搬遅延計測方式以外の水分センサでは発生せず、アンテナ間の伝搬遅延計測方式の水分センサであるからこそ発生するものである。
 [アンテナ部の構成例]
 図4は、本技術の第1実施形態におけるアンテナ部210および等価回路の一例を示す図である。同図におけるaは、アンテナ部210の拡大図である。同図におけるbは、アンテナ部210の等価回路の一例である。
 プローブ201内に埋め込まれたケーブル3080(同軸ケーブル等)は、芯線部211とシールド部212を有する。当該ケーブルの太さおよび長さは特に限定されず、任意の太さおよび長さとすることができる。同図におけるaに例示するように、芯線部211は銅線で構成され、シールド部212は銅パイプで構成されるが、シールド部212は銅線のメッシュ体で構成されてもよい。
 ケーブル3080(同軸ケーブル等)の先端付近の一部が開口され、電極部213が取り付けられる。これにより、プローブ201および202のそれぞれのアンテナ部210は、長さが4乃至10ミリメートル(ミリメートル)程度の微小ダイポールアンテナとして機能する。開口部は、矩形、円形、楕円形、長円形等の開口形状を有する。開口部の長軸は、使用する電磁波の波長に応じて適宜設定可能である。
 また、同図におけるbに例示するように、アンテナ部210の等価回路は、抵抗511と、フリンジング容量512および513とが並列に接続された回路により表される。フリンジング容量512の容量値は、同軸ケーブルの内側に広がる物質の誘電率εcに応じた値である。フリンジング容量513の容量値は、電極513の周囲に広がる物質の誘電率ε*に応じた値である。
 プローブ201および202のいずれかに電気信号が送信されると、その信号の一部が終端で反射して、同軸ケーブル内を電気信号が往復する。この電気信号のうち、入力された信号内の波を「入射波」とし、その入射波が反射したものを「反射波」とする。
 ここで、外殻225を設けない比較例を想定する。この比較例において、電気信号が同軸ケーブル内を往復するのに要する往復遅延時間は、温度と媒質の誘電率ε*とに起因して変動する。
 温度が高くなるほど、同軸ケーブルが熱膨張により長くなるため、遅延時間が長くなる。また、媒質の誘電率ε*が変化すると、その値に応じてフリンジング容量512が変化し、反射係数のインパルス応答のピーク時間が変化する。ここで、反射係数は、入射波および反射波のそれぞれの複素振幅の比である。
 図5は、本実施形態に係る反射係数のインパルス応答の波形の一例を示すグラフである。同図における縦軸は、反射係数のインパルス応答を示し、横軸は、時間を示す。実線の曲線は、媒質が空気である場合のインパルス応答の波形を示し、一点鎖線の曲線は、媒質が水である場合のインパルス応答の波形を示す。図5に例示したように、インパルス応答のピーク値が変動しない。これにより、往復遅延時間を高い精度で算出することができる。
 図6は、本技術の第1実施形態における測定ユニット300の一構成例を示すブロック図である。この測定ユニット300は、方向性結合器310、送信機320、入射波受信機330、反射波受信機340、透過波受信機350、通信部360および制御部370を備える。測定ユニット300として、例えば、ベクトルネットワークアナライザが用いられる。
 方向性結合器310は、ケーブル308を伝送する電気信号を入射波と反射波とに分離するものである。入射波は、送信機320により送信された電気信号の波であり、反射波は、プローブ201の終端で入射波が反射したものである。この方向性結合器310は、入射波を入射波受信機330に供給し、反射波を反射波受信機340に供給する。
 送信機320は、所定周波数の電気信号を送信信号として方向性結合器310およびケーブル308を介して、プローブ201に送信するものである。送信信号内の入射波として、例えば、CW(Continuous Wave)波が用いられる。この送信機320は、例えば、1乃至9ギガヘルツ(GHz)の周波数帯域内において、50メガヘルツ(MHz)のステップで周波数を順に切り替えて送信信号を送信する。
 入射波受信機330は、方向性結合器310からの入射波を受信するものである。反射波受信機340は、方向性結合器310からの反射波を受信するものである。透過波受信機350は、プローブ202からの透過波を受信するものである。ここで、透過波は、プローブ201および202の間の媒質を透過した電磁波をプローブ202が電気信号に変換したものである。
 入射波受信機330、反射波受信機340および透過波受信機350は、受信した入射波、反射波および透過波に対して、直交検波とAD(Analog to Digital)変換とを行って受信データとして制御部370に供給する。
 なお、入射波受信機330、反射波受信機340および透過波受信機350は、特許請求の範囲に記載の受信機の一例である。
 制御部370は、送信機320を制御して、入射波を含む送信信号を送信させる制御と、反射係数および透過係数を求める処理とを行う。また、上述のように、制御部370は、第1切替部112、第2切替部114、及び第3切替部116を制御する。ここで、反射係数は、前述したように入射波および反射波のそれぞれの複素振幅の比である。透過係数は、入射波および透過波のそれぞれの複素振幅の比である。制御部370は、求めた反射係数および透過係数を通信部360に供給する。
 通信部360は、反射係数および透過係数を示すデータを測定データとして信号線409を介して信号処理ユニット400に送信するものである。
 [方向性結合器の構成例]
 図7は、本技術の第1実施形態における方向性結合器310の一構成例を示す図である。この方向性結合器310は、伝送線路311、312および313と、終端抵抗314および315とを備える。この方向性結合器310は、例えば、小型化に好適なブリッジカップラーにより実装することができる。
 伝送線路311の一端は、送信機320に接続され、他端は、ケーブル308を介してプローブ201に接続される。伝送線路312は、伝送線路311より短く、伝送線路311と電磁界結合する線路である。この伝送線路312の一端には終端抵抗314が接続され、他端は、反射波受信機340に接続される。伝送線路313は、伝送線路311より短く、伝送線路311と電磁界結合する線路である。この伝送線路313の一端には終端抵抗315が接続され、他端は、入射波受信機330に接続される。
 上述の構成により、方向性結合器310は、電気信号を入射波および反射波に分離し、入射波受信機330および反射波受信機340に供給する。
 [送信機および受信機の構成例]
 図8は、本実施形態における送信機320および受信機の一構成例を示す回路図である。同図におけるaは、送信機320の一構成例を示す回路図であり、同図におけるbは、入射波受信機330の一構成例を示す回路図である。同図におけるcは、反射波受信機340の一構成例を示す回路図であり、同図におけるdは、透過波受信機350の一構成例を示す回路図である。
 同図におけるaに例示するように、送信機320は、送信信号発振器322およびドライバ321を備える。
 送信信号発振器322は、制御部370の制御に従って電気信号を送信信号として生成するものである。ドライバ321は、送信信号を方向性結合器310に出力するものである。この送信信号S(t)は、例えば、次の式により表される。
  S(t)=|A|cos(2πft+θ)
上式において、tは、時刻を表し、単位は、例えば、ナノ秒(ns)である。|A|は、送信信号の振幅を示す。cos()は、余弦関数を示す。fは、周波数を示し、単位は例えば、ヘルツ(Hz)である。θは、位相を表し、単位は、例えば、ラジアン(rad)である。
 同図におけるbに例示するように、入射波受信機330は、ミキサ331、バンドパスフィルタ332およびアナログデジタル変換器333を備える。
 ミキサ331は、位相が90度異なる2つのローカル信号と送信信号とを混合することにより、直交検波を行うものである。この直交検波により、同相成分IIおよび直交成分QIからなる複素振幅が得られる。これらの同相成分IIおよび直交成分QIは、例えば、次の式により表される。ミキサ331は、複素振幅を、バンドパスフィルタ332を介してアナログデジタル変換器333に供給する。
  II=|A|cos(θ)
  QI=|A|sin(θ)
上式において、sin()は、正弦関数を示す。
 バンドパスフィルタ332は、所定の周波数帯域の成分を通過させるものである。アナログデジタル変換器333は、AD変換を行うものである。このアナログデジタル変換器333は、AD変換により複素振幅を示すデータを生成し、受信データとして制御部370に供給する。
 同図におけるcに例示するように、反射波受信機340は、ミキサ341、バンドパスフィルタ342およびアナログデジタル変換器343を備える。ミキサ341、バンドパスフィルタ342およびアナログデジタル変換器343の構成は、ミキサ331、バンドパスフィルタ332およびアナログデジタル変換器333と同様である。反射波受信機340は、反射波を直交検波して同相成分IRおよび直交成分QRからなる複素振幅を取得し、その複素振幅を示す受信データを制御部370に供給する。
 同図におけるdに例示するように、透過波受信機350は、レシーバ351、ローカル信号発振器352、ミキサ353、バンドパスフィルタ354およびアナログデジタル変換器355を備える。ミキサ353、バンドパスフィルタ354およびアナログデジタル変換器355の構成は、ミキサ331、バンドパスフィルタ332およびアナログデジタル変換器333と同様である。
 レシーバ351は、ケーブル309を介して、透過波を含む電気信号を受信し、ミキサ353に出力するものである。ローカル信号発振器352は、位相が90度異なる2つのローカル信号を生成するものである。
 透過波受信機350は、透過波を直交検波して同相成分ITおよび直交成分QTからなる複素振幅を取得し、その複素振幅を示すデータを受信データとして制御部370に供給する。
 なお、送信機320および受信機(入射波受信機330等)のそれぞれの回路は、入射波等を送受信することができるものであれば、同図に例示した回路に限定されない。
 [制御部の構成例]
 図9は、本技術の第1実施形態における制御部370の一構成例を示すブロック図である。この制御部370は、送信制御部371、反射係数算出部372、透過係数算出部373、及び切替部374を備える。
 送信制御部371は、送信機320を制御して、送信信号を送信させる。
 反射係数算出部372は、周波数毎に反射係数Γを算出するものである。この反射係数算出部372は、入射波受信機330および反射波受信機340から、入射波および反射波のそれぞれの複素振幅を受信し、次の式により、それらの比を反射係数Γ‘として算出する。
  Γ‘=(IR+jQR)/(II+jQI)      ・・・(1)
上式において、jは、虚数単位である。
 反射係数算出部372は、N(Nは、整数)個の周波数f1乃至fNのそれぞれについて式1により反射係数を算出する。これらのN個の反射係数をΓ1乃至ΓNとする。反射係数算出部372は、それらの反射係数を通信部360に供給する。
 透過係数算出部373は、周波数毎に透過係数T‘を算出するものである。この透過係数算出部373は、入射波受信機330および透過波受信機350から、入射波および透過波のそれぞれの複素振幅を受信し、次の式により、それらの比を透過係数T’として算出する。
  T‘=(IT+jQT)/(II+jQI)      ・・・(2)
 透過係数算出部373は、N個の周波数f1乃至fNのそれぞれについて式2により透過係数を算出する。これらのN個の反射係数をT‘1乃至T’Nとする。透過係数算出部373は、それらの透過係数を、通信部360を介して信号処理ユニット400へ供給する。
 切替部374は、媒質に含まれる水分量を測定する場合に、第1切替部112と第2切替部114との電気的接続をプローブ201側及びプローブ202側に切り換える制御を行う。一方で、切替部374は、校正係数の測定中は、第1切替部112と第2切替部114との電気的接続を所定順に校正標準器100側に切り換える制御を行う。また、切替部374は、校正係数の測定中は、第3切替部116の電気的接続を所定順に第1端子100S、第2端子100O、第3端子100L、及び第4端子100Tと切り換える制御を行う。
 [信号処理ユニットの構成例]
 図10は、本技術の第1実施形態における信号処理ユニット400の一構成例を示すブロック図である。この信号処理ユニット400は、校正係数算出部405、通信部410、校正部415、往復遅延時間算出部420、伝搬伝送時間算出部430、水分量測定部440、及び係数保持部450を備える。
 校正係数算出部405は、校正係数(ED、ERX、ES、EX、ET)を例えばSOLT(Short-Open-Load-Thru)校正に従い算出する。校正係数(ED、ERX、ES、EX、ET)の算出方法の詳細は後述する。校正係数算出部405は、算出した校正係数(ED、ERX、ES、EX、ET)を係数保持部450に供給する。
 通信部410は、測定ユニット300からの測定データを受信するものである。この通信部410は、測定データ内の反射係数Γ‘1乃至Γ’N、及び透過係数T‘1乃至T’Nを校正部415に供給する。
 校正部415は、係数保持部450に保持される校正係数(ED、ERX、ES、EX、ET)に基づき、校正した反射係数Γ1乃至ΓNを往復遅延時間算出部420に供給し、校正した透過係数T1乃至TNを伝搬伝送時間算出部430に供給する。
 往復遅延時間算出部420は、反射係数に基づいて、電気信号がケーブル308を往復する時間を往復遅延時間として算出するものである。この往復遅延時間算出部420は、反射係数Γ1乃至ΓNを逆フーリエ変換することにより、インパルス応答hΓ(t)を求める。そして、往復遅延時間算出部420は、インパルス応答hΓ(t)のピーク値のタイミングと、CW波の送信タイミングとの時間差を往復遅延時間τ11として求め、水分量測定部440に供給する。
 伝搬伝送時間算出部430は、透過係数に基づいて、電磁波および電気信号が媒質とケーブル308および309とを伝搬および伝送する時間を伝搬伝送時間として算出するものである。この伝搬伝送時間算出部430は、透過係数T1乃至TNを逆フーリエ変換することにより、インパルス応答hT(t)を求める。そして、伝搬伝送時間算出部430は、インパルス応答hT(t)のピーク値のタイミングと、CW波の送信タイミングとの時間差を伝搬伝送時間τ21として求め、水分量測定部440に供給する。
 水分量測定部440は、往復遅延時間τ11および伝搬伝送時間τ21に基づいて水分量を測定するものである。この水分量測定部440は、まず、往復遅延時間τ11および伝搬伝送時間τ21から伝搬遅延時間τdを算出する。ここで、伝搬遅延時間は、プローブ201および202の間の媒質を電磁波が伝搬する時間である。伝搬遅延時間τdは、次の式により算出される。
  τd=τ21-τ11                ・・・(3)
上式において、往復遅延時間τ11、伝搬伝送時間τ21および伝搬遅延時間τdのそれぞれの単位は、例えば、ナノ秒(ns)である。
 そして、水分量測定部440は、水分量と伝搬遅延時間τdとの間の関係を示す係数aおよびbを係数保持部450から読み出し、式3で算出した伝搬遅延時間τdを次の式に代入して、水分量xを測定する。そして、水分量測定部440は、測定した水分量を、必要に応じた外部の装置や機器へ出力する。
  τd=a・x+b                  ・・・(4)
上式において、水分量xの単位は、例えば、体積パーセント(%)である。
 係数保持部450は、校正係数(ED、ERX、ES、EX、ET)、係数a、bを保持するものである。係数保持部450として、不揮発性のメモリなどが用いられる。
 図11は、本技術の第1実施形態における電磁波および電気信号の伝搬経路および伝送経路を説明するための図である。
 前述したように、プローブ201に先端が埋め込まれたケーブル308を介して、送信機320は、入射波を含む電気信号を送信信号としてプローブ201に送信する。
 プローブ201の終端で入射波が反射し、その反射波を反射波受信機340が受信する。これにより、入射波および反射波を含む電気信号がケーブル308内を往復する。同図における太い実線の矢印は、ケーブル308を電気信号が往復した経路を示す。この経路を電気信号が往復する時間が、往復遅延時間τ11に該当する。
 また、入射波を含む電気信号はプローブ201により、電磁波EWに変換され、プローブ201および202の間の媒質を透過(言い換えれば、伝搬)する。プローブ202は、その電磁波EWを電気信号に変換する。透過波受信機350は、ケーブル309を介して、その電気信号内の透過波を受信する。すなわち、入射波を含む電気信号がケーブル308を伝送し、電磁波EWに変換されて媒質を伝搬し、透過波を含む電気信号に変換されてケーブル309を伝送する。同図における太い点線の矢印は、電磁波と電気信号(入射波および透過波)とが、媒質とケーブル308および309とを伝搬および伝送した経路を示す。この経路を電磁波および電気信号が伝搬および伝送する時間が、伝搬伝送時間τ21に該当する。
 測定ユニット300内の制御部370は、式1および式2により反射係数Γおよび透過係数Tを求める。そして、信号処理ユニット400は、反射係数Γおよび透過係数Tから往復遅延時間τ11および伝搬伝送時間τ21を求める。
 ここで、入射波の送信から、透過波の受信までの経路は、媒質と、ケーブル308および309とを含む。このため、媒質を電磁波が伝搬する伝搬遅延時間τdは、伝搬伝送時間τ21と、ケーブル308および309を電気信号が伝送する遅延時間との差分により求められる。ここで、ケーブル308および309のそれぞれの長さが同一と仮定すると、ケーブル308を伝送する遅延時間と、ケーブル309を伝送する遅延時間とは同一になる。この場合、ケーブル308および309を電気信号が伝送する遅延時間の合計は、ケーブル308を往復する往復遅延時間τ11に等しくなる。したがって式3が成立し、信号処理ユニット400は、式3により、伝搬遅延時間τdを算出することができる。
 そして、信号処理ユニット400は、求めた往復遅延時間τ11および伝搬伝送時間τ21から伝搬遅延時間を算出し、伝搬遅延時間と係数aおよびbとから、媒質に含まれる水分量を測定する処理を行う。
 図12は、本技術の第1実施形態における反射係数のインパルス応答の波形の一例を示すグラフである。同図における縦軸は、反射係数のインパルス応答であり、横軸は、時間である。
 水分量の異なる4種類の豊浦標準砂を媒質として用意し、測定装置100が反射係数のインパルス応答を求めたものとする。それぞれの水分量は、0.0、10.1、19.7、および32.9体積パーセント(%)とする。
 同図に例示するように、水分量が変化しても、反射係数のピーク値は変化しない。すなわち、往復遅延時間は一定である。これは、前述したように、プローブ201および202が外殻225により隔離されているためである。
 図13は、本技術の第1実施形態における透過係数のインパルス応答の波形の一例を示すグラフである。同図における縦軸は、透過係数のインパルス応答であり、横軸は、時間である。同図において、測定対象の媒質は、図12と同様の4種類の豊浦標準砂である。
 同図に例示するように、水分量が多くなるほど、透過係数のピーク値のタイミングが遅くなる。これにより、水分量が多くなるほど、伝搬伝送遅延時間が長くなる。
 図14は、本技術の第1実施形態における往復遅延時間および伝搬伝送時間と水分量との関係の一例を示すグラフである。同図における縦軸は、往復遅延時間または伝搬伝送時間を示し、横軸は水分量を示す。
 図14における点線は、図12から得られた往復遅延時間と水分量との関係を示す。図14における実線は、図13から得られた伝搬伝送時間と水分量との関係を示す。図14に例示するように、水分量に関わらず、往復遅延時間は一定である。一方、水分量が多くなるほど、伝搬伝送遅延時間は長くなる。
 図15は、本技術の第1実施形態における伝搬遅延時間と水分量との関係の一例を示すグラフである。同図における縦軸は、伝搬遅延時間を示し、横軸は、水分量を示す。同図の直線は、図14の水分量毎に、伝搬伝送時間および往復遅延時間の差分を求めることにより得られる。
 図15に例示するように、伝搬遅延時間は、水分量が多くなるほど、長くなり、両者は比例関係にある。したがって式4が成立する。式4における係数aは、同図における直線の傾きであり、係数bは、切片である。
 [校正係数の測定動作例]
 図16は、校正係数(ED、ERX、ES、EX、ET)の測定動作例を示すフローチャートである。ここでは、校正標準器データとして、出荷時に、第3切替部116の電気的接続を第1端子100S、第2端子100O、第3端子100L、及び第4端子100T(図2参照)の順に切り換え、それぞれの端子に対応する反射特性ΓS、ΓO、ΓLおよび透過特性TTが測定済みである場合を説明する。
 まず、校正係数算出部405は、校正の開始信号を通信部410、及び通信部360を介して、制御部370に出力する。制御部370は、図16に示す処理順で処理を実行する。
  第1切替部112は、電気的接続を校正標準器100側に切り換える(ステップS100)。続けて、第3切替部116は、電気的接続を第1端子100Sに切り換える(ステップS102)。続けて送信機320は、入射波を校正標準器100に送信し、反射係数算出部372は、第1端子100Sの反射係数を反射特性S11mSとして係数保持部450に保持する。
 次に、第3切替部116は、電気的接続を第2端子100Oに切り換える(ステップS104)。続けて送信機320は、入射波を校正標準器100に送信し、反射係数算出部372は、第2端子100Oの反射係数を反射特性S11mOとして係数保持部450に保持する。
 次に、第3切替部116は、電気的接続を第3端子100Lに切り換える(ステップS106)。続けて送信機320は、入射波を校正標準器100に送信し、反射係数算出部372は、第3端子100Lの反射係数を反射特性S11mLとして係数保持部450に保持し、透過係数算出部373は、第3端子100Lの透過係数を透過特性S21mLとして係数保持部450に保持する。
 次に、第3切替部116は、電気的接続を第4端子100Tに切り換え、第2切替部114は、電気的接続を校正標準器100側に切り換える(ステップS108)。続けて送信機320は、入射波を校正標準器100に送信し、反射係数算出部372は、第4端子100Tの反射係数を反射特性S11mTとして係数保持部450に保持し、透過係数算出部373は、第4端子100Tの透過係数を透過特性S21mTとして係数保持部450に保持する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 次に、校正係数算出部405は、例えば(5)~(8)式に従い、校正係数(ED、ERX、ES、EX、ET)を算出し、係数保持部450に保持する(ステップS110)。
 そして、校正係数算出部405は、校正の終了信号を通信部410、及び通信部360を介して、制御部370に出力する。第1切替部112は、電気的接続をプローブ201側に切り換え、第2切替部114は、電気的接続をプローブ202側に切り換え、校正係数の測定動作を終了する(ステップS112)。
[測定装置の測定動作例]
 図17は、本技術の第1実施形態における測定装置1の動作の一例を示すフローチャートである。同図における動作は、例えば、水分量を測定するための所定のアプリケーションが実行されたときに開始される。
 一対のプローブ201および202は、電磁波を送受信する(ステップS200)。測定ユニット300は、入射波および反射波から反射係数を算出し(ステップS202)、入射波および透過波から透過係数を算出する(ステップS204)。
 次いで、信号処理ユニット400は、反射係数を校正し(ステップS206)、透過係数を校正する(ステップS208)。そして、校正した反射係数から往復遅延時間を算出し(ステップS208)、校正した透過係数から伝搬伝送時間を算出する(ステップS210)。続けて、信号処理ユニット400は、往復遅延時間および伝搬伝送時間から伝搬遅延時間を算出し(ステップS212)、その伝搬遅延時間と係数aおよびbとから水分量を算出する(ステップS214)。ステップS214の後に、測定装置100は、測定のための動作を終了する。
 図18は、比較例としての測定装置1aの構成例を示す図である。図18に示すように、校正標準器100を測定装置1a内に有さない装置である。このため、測定装置1aでは、工場からの出荷時に校正係数が算出される。
 ところが、ケーブル308および309は、温度変化などにともない長さが変動する。このため、出荷時の校正係数(ED、ERX、ES、EX、ET)では、適切に温度変化などに対応した校正ができず、真値と、測定値の校正係数(ED、ERX、ES、EX、ET)による校正値との間の誤差が拡大し、水分量の測定精度が低下するおそれがある。また、測定装置1aでは、校正標準器100の測定時と、水分測定時とではケーブル308および309の形状が異なる恐れもある。これによっても、真値と測定値の校正係数(ED、ERX、ES、EX、ET)による校正値との間の誤差が拡大し、水分量の測定精度が低下するおそれがある。
 しかし、本実施形態に係る測定装置1は、測定前の適切なタイミングで、校正係数(ED、ERX、ES、EX、ET)を算出可能である。このため、温度変化などにともないケーブル308および309の長さが変動しても、その変動時の校正係数(ED、ERX、ES、EX、ET)を得ることができる。このため、校正係数(ED、ERX、ES、EX、ET)を固定値とする場合よりも水分量の測定精度を向上させることができる。また、本実施形態に係る測定装置1は、水分の測定中もプローブ201及びプローブ202と校正標準器100は、所定の位置関係に固定されるため、水分の測定時と校正係数の測定時とでケーブル308および309の形状変位を抑制できる。このため、取り外し式の校正標準器100により校正係数(ED、ERX、ES、EX、ET)を測定する場合よりも水分量の測定精度を向上させることができる。
 以上説明したように、本実施形態によれば、測定装置1が、水分の測定中もプローブ201及びプローブ202と所定の位置関係に固定され、水分の測定を行っていない場合に第1接続ケーブル308及び第2接続ケーブル309に電気的に接続可能である校正標準器100を有する。これにより、温度変化などにともないケーブル308および309の長さが変動しても、その変動時の校正係数(ED、ERX、ES、EX、ET)を得ることが可能となる。また、水分の測定中もプローブ201及びプローブ202と校正標準器100は、所定の位置関係に固定されるため、水分の測定時と校正係数の測定時とでケーブル308および309の形状変位を抑制可能である。このため、校正係数(ED、ERX、ES、EX、ET)を固定値とする場合よりも水分量の測定精度を向上させることができる。
 (第2実施形態)
 第1実施形態に係る測定装置1は、第1切替部112及び第2切替部114を校正標準器100と別体として構成していたのに対し、第2実施形態に係る測定装置1は、第1切替部112及び第2切替部114を校正標準器100a内に一体的に構成する点で相違する。以下では第1実施形態に係る測定装置1と相違する点を説明する。
 図19は、第2実施形態に係る測定装置1の構成例を示す図である。図19に示すように、第2実施形態に係る測定装置1は、校正標準器100aを有する。
 図20は、第2実施形態に係る校正標準器100aの構成例を示す図である。図20に示すように、第2実施形態に係る校正標準器100aは、第1切替部112a、第2切替部114a、及び開放(open)、短絡(short)、負荷(load)、スルー(through)の4種類の標準器を有する。また、校正標準器100は、短絡基準器へ接続する第1端子100S、開放基準器へ接続する第2端子100O、及び無反射終端器(負荷基準器)へ接続する第3端子100Lと、第1接続ケーブル308及び第2接続ケーブル309を直結する第4端子100Ta、100Tb、第1ケーブル3080に接続される第5端子100Pa、及び第2ケーブル3090に接続される第6端子100Pbを有する。このように、第1切替部112a、第2切替部114a、及び4種類の標準器を同一筐体内に構成することにより、湿度などの外部環境の影響をより抑制できる。また、第3切替部116の構成を不要とすることが可能である。
 図21は、第2実施形態に係る校正係数(ED、ERX、ES、EX、ET)の測定動作例を示すフローチャートである。ここでは、校正標準器データとして、出荷時に、第3切替部116の電気的接続を第1端子100S、第2端子100O、第3端子100L、及び第4端子100T(図2参照)の順に切り換え、それぞれの端子に対応する反射特性ΓS、ΓO、ΓLおよび透過特性TTが測定済みである場合を説明する。
 第1切替部112a、は、電気的接続を第1端子100Sに切り換える(ステップS302)。続けて送信機320は、入射波を校正標準器100aに送信し、反射係数算出部372は、第1端子100Sの反射係数を反射特性S11mSとして係数保持部450に保持する。
 次に、第1切替部112aは、電気的接続を第2端子100Oに切り換える(ステップS304)。続けて送信機320は、入射波を校正標準器100aに送信し、反射係数算出部372は、第2端子100Oの反射係数を反射特性S11mTとして係数保持部450に保持する。
 次に、第1切替部112aは、電気的接続を第3端子100Lに切り換える(ステップS306)。続けて送信機320は、入射波を校正標準器100aに送信し、反射係数算出部372は、第3端子100Lの反射係数を反射特性S11mLとして係数保持部450に保持し、透過係数算出部373は、第3端子100Lの透過係数を透過特性S21mLとして係数保持部450に保持する。
 次に、第1切替部112aは、電気的接続を第4端子100Taに切り換え、第2切替部114aは、電気的接続を第4端子100Tbに切り換える(ステップS308)。続けて送信機320は、入射波を校正標準器100aに送信し、反射係数算出部372は、第4端子100Tの反射係数を反射特性S11mTとして係数保持部450に保持し、透過係数算出部373は、第4端子100Tの透過係数を透過特性S21mTとして係数保持部450に保持する。
 次に、校正係数算出部405は、例えば(5)~(8)式に従い、校正係数(ED、ERX、ES、EX、ET)を算出し、係数保持部450に保持する(ステップS310)。
 そして、校正係数算出部405は、校正の終了信号を通信部410、及び通信部360を介して、制御部370に出力する。第1切替部112は、電気的接続をプローブ201側に切り換え、第1切替部112a、及び第2切替部114aは、電気的接続をプローブ202側に切り換え、校正係数の測定動作を終了する(ステップS312)。
 以上説明したように、本実施形態によれば、第1切替部112及び第2切替部114を校正標準器100a内に構成することとした。これにより、湿度などの外部環境の影響をより抑制できる。また、第3切替部116の構成を不要とすることが可能となる。
 (第3実施形態)
 第3実施形態に係る測定装置1は、校正標準器100の構成を左右対称とした点で第2実施形態に係る測定装置1と相違する。以下では第2実施形態に係る測定装置1と相違する点を説明する。
 図22は、第3実施形態に係る校正標準器100bの構成例を示す図である。図20に示すように、第2実施形態に係る校正標準器100bは、第1切替部112b、第2切替部114b、及び開放(open)、短絡(short)、負荷(load)、スルー(through)の4種類の標準器を有する。また、校正標準器100は、開放基準器へ接続する第1端子100Sa、100Sb、短絡基準器へ接続する第2端子100Oa、100Ob、及び無反射終端器(負荷基準器)へ接続する第3端子100La、100Lbと、第1接続ケーブル308及び第2接続ケーブル309を直結する第4端子100Ta、100Tb、第1ケーブル3080に接続される第5端子100Pa、及び第2ケーブル3090に接続される第6端子100Pbを有する。このように、校正標準器100aを左右対象に構成することにより、より校正係数(ED、ERX、ES、EX、ET)の算出精度をよりあげることが可能となる。また、第2実施形態に係る校正標準器100aと同様に第1切替部112a、第2切替部114a、及び4種類の標準器を同一筐体内に構成することにより、湿度などの外部環境の影響をより抑制できる。
 図23は、第3実施形態に係る校正係数(ED、ERX、ES、EX、ET)の測定動作例を示すフローチャートである。ここでは、校正標準器データとして、出荷時に、第3切替部116の電気的接続を第1端子100S、第2端子100O、第3端子100L、及び第4端子100T(図2参照)の順に切り換え、それぞれの端子に対応する反射特性ΓS、ΓO、ΓLおよび透過特性TTが測定済みである場合を説明する。
 第1切替部112b、及び第2切替部114bは、電気的接続を第1端子100Sa、100Sbに切り換える(ステップS302)。続けて送信機320は、入射波を校正標準器100bに送信し、反射係数算出部372は、第1端子100Sの反射係数を反射特性S11mSとして係数保持部450に保持する。
 次に、第1切替部112b、及び第2切替部114baは、電気的接続を第2端子100Oa、100Obに切り換える(ステップS404)。続けて送信機320は、入射波を校正標準器100bに送信し、反射係数算出部372は、第2端子100Oの反射係数を反射特性S11mTとして係数保持部450に保持する。
 次に、第1切替部112b、及び第2切替部114baは、電気的接続を第3端子100La、100Lbに切り換える(ステップS406)。続けて送信機320は、入射波を校正標準器100bに送信し、反射係数算出部372は、第3端子100Lの反射係数を反射特性S11mLとして係数保持部450に保持し、透過係数算出部373は、第3端子100Lの透過係数を透過特性S21mLとして係数保持部450に保持する。
 次に、第1切替部112b、及び第2切替部114baは、電気的接続を第4端子100Ta、100Tb、に切り換える(ステップS308)。続けて送信機320は、入射波を校正標準器100bに送信し、反射係数算出部372は、第4端子100Tの反射係数を反射特性S11mTとして係数保持部450に保持し、透過係数算出部373は、第4端子100Tの透過係数を透過特性S21mTとして係数保持部450に保持する。
 次に、校正係数算出部405は、例えば(5)~(8)式に従い、校正係数(ED、ERX、ES、EX、ET)を算出し、係数保持部450に保持する(ステップS310)。
 そして、校正係数算出部405は、校正の終了信号を通信部410、及び通信部360を介して、制御部370に出力する第1切替部112b、及び第2切替部114baは、電気的接続をプローブ201、202側に切り換え、校正係数の測定動作を終了する(ステップS412)。
 以上説明したように、本実施形態によれば、校正標準器100aを左右対象に構成することとした。これにより、校正標準器100aを左右対象に構成することにより、校正係数(ED、ERX、ES、EX、ET)の算出精度をよりあげることが可能となる。
 (第4実施形態)
 第4実施形態に係る測定装置1は、複数のセンサ装置2と、信号処理装置4とを別筐体とし点で、第1実施形態に係る固体撮像装置1と相違する。以下では第1実施形態に係る固体撮像装置1と相違する点を説明する。
 図24は、第4実施形態に係る測定装置1の構成例を示す図である。図24に示すように、第4実施形態に係る測定装置1は、複数のセンサ装置2と、信号処理装置4とを備える。
 信号処理装置4は、測定ユニット300aと、信号処理ユニット400とを有する。測定ユニット300aは、複数のセンサ装置2との接続を電気的に相互に切り替えることが可能なスイッチング素子3000を有する。スイッチング素子3000は、信号処理ユニット400の制御に従い電気的接続を、複数のセンサ装置2ごとに切り換える。これにより、複数のセンサ装置2ごとに、校正係数(ED、ERX、ES、EX、ET)の算出動作、及び測定動作を行うことが可能である。
 図24に示すように、複数のセンサ装置2と、信号処理装置4は、別筐体に構成される。これにより、ケーブル308、309、310をより長くした測定装置1を構成可能である。このため、信号処理装置4を、プローブ201および202よりも遠方に配置することができる。ただし、ケーブル308および309を長くするほど、温度変化に伴う校正係数(ED、ERX、ES、EX、ET)による測定誤差が大きくなる。しかし、測定装置1は、複数のセンサ装置2ごとに、校正係数(ED、ERX、ES、EX、ET)の算出を適時に行うことが可能である。このため、ケーブル308、309、310をより長くした場合にも水分量の測定精度を向上させることができる。
 以上説明したように、本実施形態によれば、複数のセンサ装置2と、信号処理装置4とを別筐体に構成することした。これにより、信号処理装置4を、プローブ201および202よりも遠方に配置することが可能である。また、複数のセンサ装置2ごとに、校正係数(ED、ERX、ES、EX、ET)の算出を適時に行うことが可能である。このため、ケーブル308、309、310をより長くした場合にも水分量の測定精度を向上させることができる。
 (第5実施形態)
 第5実施形態に係る測定装置1は、無線通信が可能である点で、第4実施形態に係る測定装置1と相違する。以下では第4実施形態に係る測定装置1と相違する点を説明する。
 図25は、第5実施形態に係る測定装置1の構成例を示す図である。図25に示すように、第4実施形態に係る測定装置1は、複数のセンサ装置2と、信号処理装置4とを備える。
 図25に示すように、信号処理装置4は、アンテナ500を更に有し、通信部410(図10参照)は無線通信が可能である点で、第4実施形態に係る信号処理装置4と相違する。これにより、複数のセンサ装置2ごとの校正係数(ED、ERX、ES、EX、ET)などをクラウドデータベース4000に保持可能となる。このため、複数のセンサ装置2ごとの校正係数(ED、ERX、ES、EX、ET)などをクラウドデータベース4000側で管理可能となる。このため、クラウドデータベース4000側で複数のセンサ装置2の状態を監視することも可能となる。また、係数保持部450(図10参照)の記憶容量も低減可能である。また、信号処理ユニットの各機能をクラウドデータベース4000側が有する構成としてもよい。これにより、信号処理装置4の構成をより簡易化可能となる。
 以上説明したように、本実施形態によれば、信号処理装置4がクラウドデータベース4000と無線通信可能に構成することした。これにより、複数のセンサ装置2ごとの校正係数(ED、ERX、ES、EX、ET)などをクラウドデータベース4000に保持可能となる。このため、複数のセンサ装置2ごとの校正係数(ED、ERX、ES、EX、ET)などをクラウドデータベース4000側で管理可能となる。
 なお、本技術は以下のような構成を取ることができる。
 (1)媒質に含まれる水分量を測定する測定装置であって、
 第1接続ケーブルに電気的に接続可能である第1ケーブルが埋め込まれた第1プローブと、
 第2接続ケーブルに電気的に接続可能である第2ケーブルが埋め込まれた第2プローブと、
 前記測定中も第1プローブ及び第2プローブと所定の位置関係に固定され、前記測定を行っていない場合に前記第1接続ケーブル及び前記第2接続ケーブルに電気的に接続可能であり、前記測定の校正に用いられる標準器と、
 を備える、測定装置。
 (2)前記第1接続ケーブルと第1プローブ又は前記標準器との接続、及び前記第2接続ケーブルと第2プローブ又は前記標準器との接続を切り換える切替部と、を更に備える、(1)に記載の測定装置。
 (3)前記切替部は、
 前記第1接続ケーブルと第1プローブ又は前記標準器との接続を切り換える第1切替部と、
 前記第2接続ケーブルと第2プローブ又は前記標準器との接続を切り換える第2切替部と、を有する、(2)に記載の測定装置。
 (4)前記標準器は、開放基準器、短絡基準器、及び無反射終端器を有し、前記開放基準器へ接続する第1端子、前記短絡基準器へ接続する第2端子、及び無反射終端器へ接続する第3端子と、前記第1接続ケーブル及び前記第2接続ケーブルを直結する一方の第4端子及び他方の第4端子とを更に有する、(3)に記載の測定装置。
 (5)前記第1切替部は、前記第1接続ケーブルと第1プローブ、第1乃至第3端子、及び前記一方の第4端子のいずれかとの接続を切り替え、前記第2切替部は、前記第2接続ケーブルと第2プローブ又は前記他方の第4端子との接続を切り替える、(4)に記載の測定装置。
 (6)前記第1プローブと、前記第2プローブと、前記標準器と、前記第1切替部と、前記第2切替部とは、同一の筐体内に構成される、(4)又は(5)に記載の測定装置。
 (7)前記第1切替部、前記第1乃至第4端子、及び前記第2切替部が左右対称に構成される、(6)に記載の測定装置。
 (8)前記第1プローブへ前記第1ケーブルを介して送信される入射波と、前記第1プローブで前記入射波が反射した反射波との複素振幅の比を反射係数として求め、
 前記入射波と、前記第1プローブと前記第2プローブとの間の媒質を透過した透過波との複素振幅の比を透過係数として求める係数算出部と、
 前記標準器を用いて求められた校正係数により前記反射係数及び前記透過係数を校正する校正部と、
 前記校正された反射係数および前記校正された透過係数に基づいて前記媒質に含まれる水分量を測定する処理を行う処理部と、
 を更に備える、(1)乃至(7)のいずれかに記載の測定装置。
 (9)前記第1プローブと、前記第2プローブと、前記標準器と、が同一の筐体内に測定装置として構成される、(8)に記載の測定装置。
 (10)前記係数算出部と、前記校正部と、前記処理部とは、同一の筐体内に信号処理装置として構成される、(9)に記載の測定装置。
 (11)前記測定装置と前記信号処理装置は、同一の筐体内に一体構成される、(10)に記載の測定装置。
 (12)前記測定装置と前記信号処理装置とは、分離された異なる筐体内に構成される、(10)に記載の測定装置。
 (13)複数の前記測定装置と前記信号処理装置とが接続される、(10)に記載の測定装置。
 (14)前記信号処理装置は、無線通信が可能である、(13)に記載の測定装置。
 (15)第1接続ケーブルに電気的に接続可能である第1ケーブルが埋め込まれた第1プローブと、
 第2接続ケーブルに電気的に接続可能である第2ケーブルが埋め込まれた第2プローブと、
 前記測定中も第1プローブ及び第2プローブと所定の位置関係に固定され、前記測定を行っていない場合に前記第1接続ケーブル及び前記第2接続ケーブルに電気的に接続可能であり、前記測定の校正に用いられる標準器と、有する測定装置の測定方法であって、
 前記第1接続ケーブルを介して前記標準器に所定順に入射波を送信し、前記第2接続ケーブルを介して順に測定さえた測定データに基づき、校正係数を算出する算出工程と、
 前記第1プローブへ前記第1ケーブルを介して送信される入射波と、前記第1プローブで前記入射波が反射した反射波との複素振幅の比を反射係数として求め、
 前記入射波と、前記第1プローブと前記第2プローブとの間の媒質を透過した透過波との複素振幅の比を透過係数として求める係数算出工程と、
 前記校正係数により前記反射係数及び前記透過係数を校正する校正工程と、
 前記校正された反射係数および前記校正された透過係数に基づいて前記媒質に含まれる水分量を測定する処理を行う処理工程と、
 を備える測定方法。
 本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。
 1:測定装置、2:センサ装置、4:信号処理装置4、201:プローブ、202:プローブ、100、100a、100b:校正標準器、112、112a、112b:第1切替部、114、114a、114b:第2切替部、116:第3切替部、300:測定ユニット、308:第1接続ケーブル、309:第2接続ケーブル、372:反射係数算出部、373:透過係数算出部、400:信号処理ユニット、415:校正部、3080:第1ケーブル、3090:第2ケーブル。

Claims (15)

  1.  媒質に含まれる水分量を測定する測定装置であって、
     第1接続ケーブルに電気的に接続可能である第1ケーブルが埋め込まれた第1プローブと、
     第2接続ケーブルに電気的に接続可能である第2ケーブルが埋め込まれた第2プローブと、
     前記測定中も第1プローブ及び第2プローブと所定の位置関係に固定され、前記測定を行っていない場合に前記第1接続ケーブル及び前記第2接続ケーブルに電気的に接続可能であり、前記測定の校正に用いられる標準器と、
     を備える、測定装置。
  2.  前記第1接続ケーブルと前記第1プローブ又は前記標準器との接続、及び前記第2接続ケーブルと前記第2プローブ又は前記標準器との接続を切り換える切替部と、を更に備える、請求項1に記載の測定装置。
  3.  前記切替部は、
     前記第1接続ケーブルと前記第1プローブ又は前記標準器との接続を切り換える第1切替部と、
     前記第2接続ケーブルと前記第2プローブ又は前記標準器との接続を切り換える第2切替部と、を有する、請求項2に記載の測定装置。
  4.  前記標準器は、開放基準器、短絡基準器、及び無反射終端器を有し、前記開放基準器へ接続する第1端子、前記短絡基準器へ接続する第2端子、及び無反射終端器へ接続する第3端子と、前記第1接続ケーブル及び前記第2接続ケーブルを直結する一方の第4端子及び他方の第4端子とを更に有する、請求項3に記載の測定装置。
  5.  前記第1切替部は、前記第1接続ケーブルと前記第1プローブ、第1乃至第3端子、及び前記一方の第4端子のいずれかとの接続を切り替え、前記第2切替部は、前記第2接続ケーブルと前記第2プローブ又は前記他方の第4端子との接続を切り替える、請求項4に記載の測定装置。
  6.  前記第1プローブと、前記第2プローブと、前記標準器と、前記第1切替部と、前記第2切替部とは、同一の筐体内に構成される、請求項4に記載の測定装置。
  7.  前記第1切替部、前記第1乃至第4端子、及び前記第2切替部が左右対称に構成される、請求項6に記載の測定装置。
  8.  前記第1プローブへ前記第1ケーブルを介して送信される入射波と、前記第1プローブで前記入射波が反射した反射波との複素振幅の比を反射係数として求め、
     前記入射波と、前記第1プローブと前記第2プローブとの間の媒質を透過した透過波との複素振幅の比を透過係数として求める係数算出部と、
     前記標準器を用いて求められた校正係数により前記反射係数及び前記透過係数を校正する校正部と、
     前記校正された反射係数および前記校正された透過係数に基づいて前記媒質に含まれる水分量を測定する処理を行う処理部と、
     を更に備える、請求項1に記載の測定装置。
  9.  前記第1プローブと、前記第2プローブと、前記標準器と、が同一の筐体内にセンサ装置として構成される、請求項8に記載の測定装置。
  10.  前記係数算出部と、前記校正部と、前記処理部とは、同一の筐体内に信号処理装置として構成される、請求項9に記載の測定装置。
  11.  前記センサ装置と前記信号処理装置は、同一の筐体内に一体構成される、請求項10に記載の測定装置。
  12.  前記センサ装置と前記信号処理装置とは、分離された異なる筐体内に構成される、請求項10に記載の測定装置。
  13.  複数の前記センサ装置と前記信号処理装置とが接続される、請求項10に記載の測定装置。
  14.  前記信号処理装置は、無線通信が可能である、請求項13に記載の測定装置。
  15.  第1接続ケーブルに電気的に接続可能である第1ケーブルが埋め込まれた第1プローブと、
     第2接続ケーブルに電気的に接続可能である第2ケーブルが埋め込まれた第2プローブと、
     前記測定中も第1プローブ及び第2プローブと所定の位置関係に固定され、前記測定を行っていない場合に前記第1接続ケーブル及び前記第2接続ケーブルに電気的に接続可能であり、前記測定の校正に用いられる標準器と、を有する測定装置の測定方法であって、 前記第1接続ケーブルを介して前記標準器に所定順に入射波を送信し、前記第2接続ケーブルを介して順に測定さえた測定データに基づき、校正係数を算出する算出工程と、
     前記第1プローブへ前記第1ケーブルを介して送信される入射波と、前記第1プローブで前記入射波が反射した反射波との複素振幅の比を反射係数として求め、
     前記入射波と、前記第1プローブと前記第2プローブとの間の媒質を透過した透過波との複素振幅の比を透過係数として求める係数算出工程と、
     前記校正係数により前記反射係数及び前記透過係数を校正する校正工程と、
     前記校正された反射係数および前記校正された透過係数に基づいて前記媒質に含まれる水分量を測定する処理を行う処理工程と、
     を備える測定方法。
PCT/JP2021/046431 2021-01-19 2021-12-16 測定装置、及び測定方法 WO2022158183A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21921285.9A EP4283283A4 (en) 2021-01-19 2021-12-16 MEASURING DEVICE AND MEASURING METHODS
CN202180090199.XA CN116724226A (zh) 2021-01-19 2021-12-16 测量装置和测量方法
US18/261,127 US20240085348A1 (en) 2021-01-19 2021-12-16 Measurement device and measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-006339 2021-01-19
JP2021006339A JP2022110737A (ja) 2021-01-19 2021-01-19 測定装置、及び測定方法

Publications (1)

Publication Number Publication Date
WO2022158183A1 true WO2022158183A1 (ja) 2022-07-28

Family

ID=82548206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046431 WO2022158183A1 (ja) 2021-01-19 2021-12-16 測定装置、及び測定方法

Country Status (5)

Country Link
US (1) US20240085348A1 (ja)
EP (1) EP4283283A4 (ja)
JP (1) JP2022110737A (ja)
CN (1) CN116724226A (ja)
WO (1) WO2022158183A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024064730A1 (en) * 2022-09-23 2024-03-28 Qualcomm Incorporated Support for calibrating round trip time errors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548538A (en) * 1994-12-07 1996-08-20 Wiltron Company Internal automatic calibrator for vector network analyzers
JPH08300197A (ja) 1995-04-28 1996-11-19 Shinko Sellbick:Kk ロータリプレス装置
US20180224382A1 (en) * 2015-08-02 2018-08-09 Vayyar Imaging Ltd System and method for measuring soil properties characteristics using electromagnetic propagation
WO2018221051A1 (ja) * 2017-06-02 2018-12-06 ソニー株式会社 センサ装置、水分量測定装置、水分量測定方法、情報処理装置および情報処理方法
KR20190066337A (ko) * 2017-12-05 2019-06-13 주식회사 아이자랩 Tdr 방식의 토양 수분 측정장치
EP3605152A1 (en) * 2018-07-31 2020-02-05 Lombardi SA Ingegneri Consulenti Ground penetrating radar and electromagnetic soil analysis method
JP2020187120A (ja) * 2019-05-13 2020-11-19 ソニー株式会社 測定装置、測定システム、および、測定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031537A1 (fr) * 2000-10-12 2002-04-18 Cos Co., Ltd. Procede pour etalonner la permittivite relative d'un detecteur electromagnetique et detecteur electromagnetique
CN108051485B (zh) * 2017-12-14 2023-07-25 北京雨根科技有限公司 土壤水分测量方法和土壤水分传感器
WO2020085837A1 (ko) * 2018-10-25 2020-04-30 주식회사 다모아텍 토양 수분 센서 및 그 동작 방법
CN110726738B (zh) * 2019-11-26 2023-02-24 上海航天测控通信研究所 一种机载微波主被动土壤湿度探测仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548538A (en) * 1994-12-07 1996-08-20 Wiltron Company Internal automatic calibrator for vector network analyzers
JPH08300197A (ja) 1995-04-28 1996-11-19 Shinko Sellbick:Kk ロータリプレス装置
US20180224382A1 (en) * 2015-08-02 2018-08-09 Vayyar Imaging Ltd System and method for measuring soil properties characteristics using electromagnetic propagation
WO2018221051A1 (ja) * 2017-06-02 2018-12-06 ソニー株式会社 センサ装置、水分量測定装置、水分量測定方法、情報処理装置および情報処理方法
KR20190066337A (ko) * 2017-12-05 2019-06-13 주식회사 아이자랩 Tdr 방식의 토양 수분 측정장치
EP3605152A1 (en) * 2018-07-31 2020-02-05 Lombardi SA Ingegneri Consulenti Ground penetrating radar and electromagnetic soil analysis method
JP2020187120A (ja) * 2019-05-13 2020-11-19 ソニー株式会社 測定装置、測定システム、および、測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4283283A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024064730A1 (en) * 2022-09-23 2024-03-28 Qualcomm Incorporated Support for calibrating round trip time errors

Also Published As

Publication number Publication date
US20240085348A1 (en) 2024-03-14
JP2022110737A (ja) 2022-07-29
EP4283283A1 (en) 2023-11-29
EP4283283A4 (en) 2024-06-26
CN116724226A (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
JP7388581B2 (ja) 測定装置、測定システム、および、測定方法
WO2018221051A1 (ja) センサ装置、水分量測定装置、水分量測定方法、情報処理装置および情報処理方法
JP6305444B2 (ja) 媒体の誘電特性を求めるためのセンサおよび方法
WO2022158183A1 (ja) 測定装置、及び測定方法
US20210341568A1 (en) High-frequency module
JP3404238B2 (ja) 高周波測定の校正標準器および校正法ならびに高周波用伝送線路の伝送損失の測定方法
US20240048182A1 (en) High-performance probe for near-field antenna measurement
US6188365B1 (en) Testing device and method
Kang et al. Design of a miniaturized printed multi-turn loop antenna for shielding effectiveness measurement
Raza et al. SDR based VNA for characterization of RF sensors and circuits
CN107394396B (zh) 天线系数可计算的标准环天线、系统及天线系数确定方法
Jiang et al. High‐precision dielectric sensor system based on balanced CSRR‐SIW resonators
WO2022102593A1 (ja) センサ装置
US20240004030A1 (en) Sensor device
WO2022102555A1 (ja) センサ装置
WO2022102572A1 (ja) センサ装置
WO2021085198A1 (ja) センサ装置および水分量測定装置
WO2022102570A1 (ja) センサ装置
EP3995836B1 (en) Ultra-wideband interconnection
RU2731020C1 (ru) Способ измерения коэффициента отражения свч нагрузки
Loader et al. A calculable dipole antenna to cover the frequency range 850 MHz to 2.2 GHz
Werner et al. Representation of absolute electric fieldstrength by superposition of radiated and guided waves
Alexander et al. A dipole antenna with calculable gain over the frequency range 20 MHz to 2.2 GHz
Memarzadeh-Tehran et al. Low Scattering Photodiode-Modulated Probe for Microwave Near-Field Imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921285

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180090199.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18261127

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021921285

Country of ref document: EP

Effective date: 20230821