JP2022110737A - 測定装置、及び測定方法 - Google Patents

測定装置、及び測定方法 Download PDF

Info

Publication number
JP2022110737A
JP2022110737A JP2021006339A JP2021006339A JP2022110737A JP 2022110737 A JP2022110737 A JP 2022110737A JP 2021006339 A JP2021006339 A JP 2021006339A JP 2021006339 A JP2021006339 A JP 2021006339A JP 2022110737 A JP2022110737 A JP 2022110737A
Authority
JP
Japan
Prior art keywords
probe
coefficient
measurement
calibration
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021006339A
Other languages
English (en)
Inventor
幸生 飯田
Yukio Iida
篤 山田
Atsushi Yamada
卓哉 市原
Takuya Ichihara
峻裕 大石
Toshihiro Oishi
聡幸 廣井
Satoyuki Hiroi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Group Corp
Original Assignee
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Group Corp filed Critical Sony Group Corp
Priority to JP2021006339A priority Critical patent/JP2022110737A/ja
Priority to EP21921285.9A priority patent/EP4283283A1/en
Priority to US18/261,127 priority patent/US20240085348A1/en
Priority to CN202180090199.XA priority patent/CN116724226A/zh
Priority to PCT/JP2021/046431 priority patent/WO2022158183A1/ja
Publication of JP2022110737A publication Critical patent/JP2022110737A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/04Investigating moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/246Earth materials for water content

Abstract

【課題】誤差が変動しても校正可能な測定装置、及び測定方法を提供する。【解決手段】測定装置は媒質に含まれる水分量を測定する測定装置であって、第1接続ケーブルに電気的に接続可能である第1ケーブルが埋め込まれた第1プローブと、第2接続ケーブルに電気的に接続可能である第2ケーブルが埋め込まれた第2プローブと、前記測定中も第1プローブ及び第2プローブと所定の位置関係に固定され、前記測定を行っていない場合に前記第1接続ケーブル及び前記第2接続ケーブルに電気的に接続可能であり、前記測定の校正に用いられる標準器と、を備える。【選択図】図1

Description

本開示は、測定装置、及び測定方法に関する。
土壌などの媒質中の水分量を測定する測定装置が、農業や環境調査などの分野において一般に使用されている。例えば、一対のプローブの間の媒質を電磁波が伝搬する伝搬遅延時間から水分量を測定する測定装置が提案されている。この測定装置は、一対のプローブと送信機および受信機とをケーブルで接続し、送信機から受信機へ電気信号を送信し、その送信から受信までの遅延時間を求めている。そして、測定装置は、ケーブルを電気信号が伝送する伝送時間を固定値の誤差として予め保持しておき、求めた遅延時間から、その誤差を減算することにより、電磁波が媒質を伝搬する伝搬遅延時間を求めている。
また、一般にこのような測定装置は、工場出荷時に誤差を校正する誤差測定が行われ、校正係数が保存される。これにより、校正係数により校正された測定データにより水分量が測定される。
国際公開第2018/221051号公報 特願平8-300197号公報
しかしながら、ケーブルの長さが熱膨張により変わることがあり、その長さの変化に起因して誤差も変動する。このため、誤差を固定値とした上述のセンサ装置では、ケーブルが熱膨張した際に、水分量の測定精度が低下するおそれがある。
そこで、本開示では、誤差が変動しても校正可能な測定装置、及び測定方法を提供するものである。
上記の課題を解決するために、本開示によれば、媒質に含まれる水分量を測定する測定装置であって、
第1接続ケーブルに電気的に接続可能である第1ケーブルが埋め込まれた第1プローブと、
第2接続ケーブルに電気的に接続可能である第2ケーブルが埋め込まれた第2プローブと、
前記測定中も第1プローブ及び第2プローブと所定の位置関係に固定され、前記測定を行っていない場合に前記第1接続ケーブル及び前記第2接続ケーブルに電気的に接続可能であり、前記測定の校正に用いられる標準器と、
を備える、測定装置が提供される。
前記第1接続ケーブルと第1プローブ又は前記標準器との接続、及び前記第2接続ケーブルと第2プローブ又は前記標準器との接続を切り換える切替部と、を更に備えてもよい。
前記切替部は、
前記第1接続ケーブルと第1プローブ又は前記標準器との接続を切り換える第1切替部と、
前記第2接続ケーブルと第2プローブ又は前記標準器との接続を切り換える第2切替部と、を有してもよい。
前記標準器は、開放基準器、短絡基準器、及び無反射終端器を有し、前記開放基準器へ接続する第1端子、前記短絡基準器へ接続する第2端子、及び無反射終端器へ接続する第3端子と、前記第1接続ケーブル及び前記第2接続ケーブルを直結する一方の第4端子及び他方の第4端子とを更に有してもよい。
前記第1切替部は、前記第1接続ケーブルと第1プローブ、第1乃至第3端子、及び前記一方の第4端子のいずれかとの接続を切り替え、前記第2切替部は、前記第2接続ケーブルと第2プローブ又は前記他方の第4端子との接続を切り替えてもよい。
前記第1プローブと、前記第2プローブと、前記標準器と、前記第1切替部と、前記第2切替部とは、同一の筐体内に構成されてもよい。
前記第1プローブへ前記第1ケーブルを介して送信される入射波と、前記第1プローブで前記入射波が反射した反射波との複素振幅の比を反射係数として求め、
前記入射波と、前記第1プローブと前記第2プローブとの間の媒質を透過した透過波との複素振幅の比を透過係数として求める係数算出部と、
前記標準器を用いて求められた校正係数により前記反射係数及び前記透過係数を校正する校正部と、
前記校正された反射係数および前記校正された透過係数に基づいて前記媒質に含まれる水分量を測定する処理を行う処理部と、
を更に備えてもよい。
前記第1プローブと、前記第2プローブと、前記標準器と、が同一の筐体内に測定装置として構成されてもよい。
前記係数算出部と、前記校正部と、前記処理部とは、同一の筐体内に信号処理装置として構成されてもよい。
前記測定装置と前記信号処理装置は、同一の筐体内に一体構成されてもよい。
前記測定装置と前記信号処理装置とは、分離された異なる筐体内に構成されてもよい。
複数の前記測定装置と前記信号処理装置とが接続されてもよい。
前記信号処理装置は、無線通信が可能であってもよい。
上記の課題を解決するために、本開示によれば、第1接続ケーブルに電気的に接続可能である第1ケーブルが埋め込まれた第1プローブと、
第2接続ケーブルに電気的に接続可能である第2ケーブルが埋め込まれた第2プローブと、
前記測定中も第1プローブ及び第2プローブと所定の位置関係に固定され、前記測定を行っていない場合に前記第1接続ケーブル及び前記第2接続ケーブルに電気的に接続可能であり、前記測定の校正に用いられる標準器と、を有する測定装置の測定方法であって、
前記第1接続ケーブルを介して前記標準器に所定順に入射波を送信し、前記第2接続ケーブルを介して順に測定さえた測定データに基づき、校正係数を算出する算出工程と、
前記第1プローブへ前記第1ケーブルを介して送信される入射波と、前記第1プローブで前記入射波が反射した反射波との複素振幅の比を反射係数として求め、
前記入射波と、前記第1プローブと前記第2プローブとの間の媒質を透過した透過波との複素振幅の比を透過係数として求める係数算出工程と、
前記校正係数により前記反射係数及び前記透過係数を校正する校正工程と、
前記校正された反射係数および前記校正された透過係数に基づいて前記媒質に含まれる水分量を測定する処理を行う処理工程と、
を備える測定方法が提供される。
第1実施形態における測定装置の一構成例を示すブロック図。 第1実施形態における校正標準器の構成例を示す図。 第1実施形態におけるセンサヘッドの外観図。 第1実施形態におけるアンテナ部および等価回路の一例を示す図。 本実施形態に係る反射係数のインパルス応答の波形の一例を示すグラフ。 第1実施形態における測定ユニットの一構成例を示すブロック図。 第1実施形態における方向性結合器の一構成例を示す図。 本実施形態における送信機および受信機の一構成例を示す回路図。 第1実施形態における制御部の一構成例を示すブロック図。 第1実施形態における信号処理ユニットの一構成例を示すブロック図。 第電磁波および電気信号の伝搬経路および伝送経路を説明するための図。 第1実施形態における反射係数のインパルス応答の波形の一例を示すグラフ。 第1実施形態における透過係数のインパルス応答の波形の一例を示すグラフ。 往復遅延時間および伝搬伝送時間と水分量との関係の一例を示すグラフ。 伝搬遅延時間と水分量との関係の一例を示すグラフ。 校正係数の測定動作例を示すフローチャート。 測定装置の動作の一例を示すフローチャート。 比較例としての測定装置の構成例を示す図。 第2実施形態に係る測定装置の構成例を示す図。 第2実施形態に係る校正標準器の構成例を示す図。 第2実施形態に係る校正係数の測定動作例を示すフローチャート。 第3実施形態に係る校正標準器の構成例を示す図。 第3実施形態に係る校正係数の測定動作例を示すフローチャート。 第4実施形態に係る測定装置の構成例を示す図。 第5実施形態に係る測定装置の構成例を示す図。
以下、図面を参照して、測定装置、および測定方法の実施形態について説明する。以下では、測定装置の主要な構成部品分を中心に説明するが、測定装置には、図示又は説明されていない構成部品分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部品分や機能を除外するものではない。
<第1実施形態>
[測定装置の構成例]
図1は、本技術の第1実施形態における測定装置1の一構成例を示すブロック図である。この測定装置1は、媒質Mに含まれる水分量を測定するものであり、センサ装置2と、信号処理装置4が同一の筐体内に一体構成される。媒質Mとしては、例えば、農作物を育成するための土壌が想定される。
センサ装置2は、水分量の測定に必要なデータを測定データとして取得するものである。このセンサ装置2は、校正標準器100と、切替部110と、センサヘッド200と、を有する。また、信号処理装置4は、測定ユニット300と、信号処理ユニット400とを有する。
校正標準器100は、例えば短絡(short)、開放(open)、負荷(load)、スルー(through)の4 種類の標準器を有する。例えば、この校正標準器100は、所謂SOLT(Short-Open-Load-Thru)校正に用いることが可能である。なお、本実施形態では、校正にSOLT校正を用いるがこれに限定されない。
切替部110は、例えば半導体チップで構成されるスイッチング素子である。切替部110は、第1切替部112と第2切替部114とを有する。第1切替部112は、信号処理装置4の制御信号により制御され、第1接続ケーブル308と第1プローブ201又は校正標準器100との接続を切り換える。第2切替部114は、信号処理装置4の制御信号により制御され、第2接続ケーブル309と第2プローブ202又は校正標準器100との接続を切り換える。
図1に示すように、センサヘッド200は、プローブ201および202からなる部品である。プローブ201は、第1ケーブル3080、第1切替部112、及び第1接続ケーブル308を介して測定ユニット300に接続される。プローブ202は、第2ケーブル3090、第1切替部112、及び第2接続ケーブル309を介して測定ユニット300に接続される。第1ケーブル3080、第1接続ケーブル308、及び第2ケーブル3090として、例えば、同軸ケーブルが用いられる。これらの第1ケーブル3080および第2ケーブル3090は、それぞれの先端をプローブ201および202の内部に埋め込むことにより、プローブ201および202に接続されている。
測定ユニット300は、プローブ201および202の一方に電磁波EWを送信させ、その電磁波EWを他方に受信させて測定データを生成するものである。この測定ユニット300は、信号線310を介して校正標準器100と通信を行う。また、測定ユニット300は、測定データを、信号線409を介して信号処理ユニット400へ送信する。信号処理ユニット400は、測定データを用いて水分量を測定する。
また、測定ユニット300と、信号処理ユニット400とは互いに異なる半導体チップに実装される。なお、後述するように、測定ユニット300と信号処理ユニット400とのそれぞれの回路を同一の半導体チップに実装することもできる。
さらに、測定ユニット300は、配線層を備えた電子回路基板とこの電子回路基板上に実装された半導体チップを含んで構成されてもよい。測定ユニット300は、上記電子回路基板と上記半導体チップと、これらを収容した筐体とを含んで構成されてもよい。そして、上記ケーブル308および309は、上記電子回路基板に備わる上記配線層を介して、上記半導体チップと接続されてよい。
電子回路基板と半導体チップを含んで構成された測定ユニット300、あるいはこれを収容した筐体、の大きさは、(1)その延在する方向(電子回路基板の基板平面方向)の大きさが、例えば、1辺の長さが1乃至20センチメートル(cm)、これと直交する他辺の長さが1乃至40センチメートル(cm)、の略長方形に収まる大きさであってよく、(2)その厚さは、例えば、2乃至20ミリメートル(mm)であってよい。
測定ユニット300を配置する方向は、少なくとも2通りのいずれかを取り得る。すなわち、(1)測定ユニット300の延在する方向が、プローブ201および202の延在する方向と平行となるように、測定ユニット300を配置してよい。あるいは、(2)測定ユニット300の延在する方向が、プローブ201および202の延在する方向と直交するように、測定ユニット300を配置してもよい。
なお、センサ装置2と、信号処理装置4と異なる筐体内に配置した場合、センサ装置2と、信号処理装置4とを有するシステムを測定システムとして扱うこともできる。
[校正標準器の構成例]
図2は、本技術の第1実施形態における校正標準器100の構成例を示す図である。校正標準器100は、例えば短絡(short)、開放(open)、負荷(load)、スルー(through)の4種類の標準器と、第3切替部116と、を有する。また、校正標準器100は、短絡基準器へ接続する第1端子100S、開放基準器へ接続する第2端子100O、及び無反射終端器(負荷基準器)へ接続する第3端子100Lと、第1接続ケーブル308及び第2接続ケーブル309を直結する第4端子100Tを有する。
第3切替部116は、例えば半導体チップで構成されるスイッチング素子である。第3切替部116は、信号処理装置4の制御信号により制御され、第1端子100S、第2端子100O、第3端子100L、及び第4端子100Tと、ケーブル308との接続を切り換える。なお、校正方法の詳細は、後述する。
[センサヘッドの構成例]
図3は、本技術の第1実施形態におけるセンサヘッド200の外観図の一例である。センサヘッド200は、プローブ201および202を有する。また、センサヘッド200の上部には、校正標準器100、第1切替部112、及び第2切替部114が配置される。
プローブ201および202のそれぞれの長さは、例えば、75乃至150ミリメートル(mm)である。プローブ201および202のそれぞれの太さ(直径、あるいは、プローブ断面の幅)は、例えば、3乃至30ミリメートル(mm)である。これらのプローブ201および202は、土壌等の媒質の中に配置され、プローブ201および202の間で所定周波数の電磁波を送受信することが可能なアンテナ部210をそれぞれ有する。
プローブ201および202は、それぞれのアンテナ部210の間の距離が所定値Dとなるように媒質中に埋め込まれる。例えば、これらのプローブは、媒質中に概ね垂直な姿勢で埋め込まれる。なお、アンテナ部210の間の距離がDとなるのであれば、それらの姿勢は、垂直な姿勢に限定されない。
アンテナ部210は、プローブ201および202の先端部(言い換えれば、終端部)又はその近傍に設けられ、電磁波を送受信するものである。なお、アンテナ部210は、プローブ201および202の先端部に設けられているが、この構成に限定されない。例えば、プローブ201および202の中央位置などに設けることもできる。
また、アンテナ部210は、プローブ201および202を共振させない程度の大きさで形成された微小アンテナで構成される。これにより、プローブ201および202の共振による測定精度の低下を抑制することができる。
また、プローブ201および202のそれぞれの内部には、前述したように図1におけるケーブル308および309(同軸ケーブル)の先端が埋め込まれている。この同軸ケーブルの一部が開口され、アンテナ部210として用いられる。同軸ケーブルのうちアンテナ部210以外の部分の外周は、電磁波吸収材240により被覆されている。電磁波吸収材240により、開口部以外の領域からの電磁波の漏洩を抑制することができる。
電磁波吸収材240として、主にNi-Zn系のフェライトが用いられるが、これに限られず、電磁波EWの周波数等に応じて、センダストやパーマロイ等の他の高透磁率材料が用いられてもよい。また、電磁波吸収材240は、必要に応じて省略されてもよいし、プローブ201および202の一方にのみ設けられてもよい。
アンテナ部210の間の距離Dの大きさは特に限定されない。距離Dが大きすぎると、媒質Mを伝搬する電磁波EWの減衰が大きくなり、十分な受信強度が得られなくなるおそれがある。一方、距離Dが小さすぎると、技術的に観測が難しくなるおそれがある。これらを考慮して、距離Dは適切な値に設定される。例えば、距離Dは、25乃至75ミリメートル(mm)である。
そして、プローブ201および202の間には、アンテナ部210の間の距離を規定するためにスペーサ260が配置される。また、プローブ201および202のそれぞれの外周は、厚さが1乃至3ミリメートル(mm)の外殻225により被覆され、媒質から隔離されている。スペーサ260および外殻225は、電磁波透過性の材料により形成される。電磁波透過性の材料としては、例えば、高分子系材料、ガラスや、PTEF(PolyTEtraFluoroethylene)などの無機系材料が挙げられる。高分子系材料として、PC(PolyCarbonate)、PES(PolyEtherSulfone)、PEEK(PolyEtherEtherKetone)、PSS(PolyStyrene Sulfonic acid)などが用いられる。その他、高分子材料として、PMMA(PolyMethylMethAcrylate)、PET(PolyEthylene Terephthalate)なども用いられる。
スペーサ260の厚さは、電子回路基板と半導体チップを含んで構成された測定ユニット300の大きさや厚さより小さくてよい。例えば、測定ユニット300の延在する方向が、プローブ201および202の延在する方向と平行となるように、測定ユニット300が配置されている場合、スペーサ260の厚さは、測定ユニット300の厚さよりも小さくてよく、好ましくは、1/2よりも小さくてよく、より好ましくは、1/3よりも小さくてよい。あるいは、測定ユニット300の延在する方向が、プローブ201および202の延在する方向と直交するように、測定ユニット300が配置されている場合、スペーサ260の厚さは、測定ユニット300が延在する一方向の長さよりも小さくてよく、好ましくは、1/2よりも小さくてよく、より好ましくは、1/3よりも小さくてよい。また、スペーサ260の厚さは、プローブ201および202の少なくともいずれか一方の太さ(直径、あるいは、プローブ断面の幅)よりも小さくてよく、好ましくは、1/2よりも小さくてよく、より好ましくは、1/3よりも小さくてよい。そして、スペーサ260の厚さは、例えば、1乃至3ミリメートル(mm)であってよい。
スペーサ260の厚さを、測定ユニット300の厚さよりも小さくする、あるいは、測定ユニット300が延在する一方向の長さよりも小さくする、もしくは、プローブ201および202の少なくともいずれか一方の太さ(直径、あるいは、プローブ断面の幅)よりも小さくする、という構成は、アンテナ間の電磁波の伝搬遅延時間を計測する水分センサならではの効果を発揮する。仮に、スペーサ260を電磁波透過材料で形成しても、その材料によっては、送信アンテナから放射された電磁波がスペーサで反射されて受信アンテナで受信され、ノイズとなる可能性がある。スペーサ260の厚さを、上記の構成とすることによって、この構成を備えない形態と比較して、スペーサ260で反射される上記のノイズを低減することができる。この、スペーサの厚さを小さくすることによってノイズを低減する効果は、アンテナ間の電磁波の伝搬遅延時間を計測する以外の水分センサでは発生せず、アンテナ間の電磁波の伝搬遅延時間を計測する水分センサであるからこそ発生する効果である。
なお、一対のプローブ(201および202)のアンテナ部(210および220)からスペーサ260の下端までの距離dは、アンテナ間の距離Dよりも大きいことが好ましい。特に、その距離dは、アンテナ間の距離Dの2倍よりも大きいことが好ましい。さらに、距離dは、アンテナ間の距離Dの3倍よりも大きく、プローブ201および202のそれぞれの長さよりも小さいことがより好ましい。仮に、プローブ201および202の間のスペーサ260を電磁波透過材料で形成しても、その材料によっては、送信アンテナから放射されたマイクロ波がスペーサで反射されて、受信アンテナで受信され、ノイズとなる可能性がある。上述のように、スペーサ260をアンテナから遠ざけることによって、このノイズを低減することができる。この「スペーサ260をアンテナから遠ざけることによってノイズを低減する効果」は、アンテナ間の伝搬遅延計測方式以外の水分センサでは発生せず、本技術のように、アンテナ間の伝搬遅延計測方式の水分センサであるからこそ発生するものである。
また、スペーサ260の外縁であって、一対のプローブ(201および202)の間に延在する該外縁のうち、アンテナ部(210および220)に近い方の該外縁は、同図に例示するように円弧状になっている。該外縁が、直線であるよりも円弧状になっている方が、信アンテナから放射されたマイクロ波がスペーサ260で反射されて受信アンテナで受信されるノイズをより低減できる。この「スペーサ260を円弧状にすることによってノイズを低減する効果」は、アンテナ間の伝搬遅延計測方式以外の水分センサでは発生せず、アンテナ間の伝搬遅延計測方式の水分センサであるからこそ発生するものである。
[アンテナ部の構成例]
図4は、本技術の第1実施形態におけるアンテナ部210および等価回路の一例を示す図である。同図におけるaは、アンテナ部210の拡大図である。同図におけるbは、アンテナ部210の等価回路の一例である。
プローブ201内に埋め込まれたケーブル3080(同軸ケーブル等)は、芯線部211とシールド部212を有する。当該ケーブルの太さおよび長さは特に限定されず、任意の太さおよび長さとすることができる。同図におけるaに例示するように、芯線部211は銅線で構成され、シールド部212は銅パイプで構成されるが、シールド部212は銅線のメッシュ体で構成されてもよい。
ケーブル3080(同軸ケーブル等)の先端付近の一部が開口され、電極部213が取り付けられる。これにより、プローブ201および202のそれぞれのアンテナ部210は、長さが4乃至10ミリメートル(ミリメートル)程度の微小ダイポールアンテナとして機能する。開口部は、矩形、円形、楕円形、長円形等の開口形状を有する。開口部の長軸は、使用する電磁波の波長に応じて適宜設定可能である。
また、同図におけるbに例示するように、アンテナ部210の等価回路は、抵抗511と、フリンジング容量512および513とが並列に接続された回路により表される。フリンジング容量512の容量値は、同軸ケーブルの内側に広がる物質の誘電率εcに応じた値である。フリンジング容量513の容量値は、電極513の周囲に広がる物質の誘電率ε*に応じた値である。
プローブ201および202のいずれかに電気信号が送信されると、その信号の一部が終端で反射して、同軸ケーブル内を電気信号が往復する。この電気信号のうち、入力された信号内の波を「入射波」とし、その入射波が反射したものを「反射波」とする。
ここで、外殻225を設けない比較例を想定する。この比較例において、電気信号が同軸ケーブル内を往復するのに要する往復遅延時間は、温度と媒質の誘電率ε*とに起因して変動する。
温度が高くなるほど、同軸ケーブルが熱膨張により長くなるため、遅延時間が長くなる。また、媒質の誘電率ε*が変化すると、その値に応じてフリンジング容量512が変化し、反射係数のインパルス応答のピーク時間が変化する。ここで、反射係数は、入射波および反射波のそれぞれの複素振幅の比である。
図5は、本実施形態に係る反射係数のインパルス応答の波形の一例を示すグラフである。同図における縦軸は、反射係数のインパルス応答を示し、横軸は、時間を示す。実線の曲線は、媒質が空気である場合のインパルス応答の波形を示し、一点鎖線の曲線は、媒質が水である場合のインパルス応答の波形を示す。図5に例示したように、インパルス応答のピーク値が変動しない。これにより、往復遅延時間を高い精度で算出することができる。
図6は、本技術の第1実施形態における測定ユニット300の一構成例を示すブロック図である。この測定ユニット300は、方向性結合器310、送信機320、入射波受信機330、反射波受信機340、透過波受信機350、通信部360および制御部370を備える。測定ユニット300として、例えば、ベクトルネットワークアナライザが用いられる。
方向性結合器310は、ケーブル308を伝送する電気信号を入射波と反射波とに分離するものである。入射波は、送信機320により送信された電気信号の波であり、反射波は、プローブ201の終端で入射波が反射したものである。この方向性結合器310は、入射波を入射波受信機330に供給し、反射波を反射波受信機340に供給する。
送信機320は、所定周波数の電気信号を送信信号として方向性結合器310およびケーブル308を介して、プローブ201に送信するものである。送信信号内の入射波として、例えば、CW(Continuous Wave)波が用いられる。この送信機320は、例えば、1乃至9ギガヘルツ(GHz)の周波数帯域内において、50メガヘルツ(MHz)のステップで周波数を順に切り替えて送信信号を送信する。
入射波受信機330は、方向性結合器310からの入射波を受信するものである。反射波受信機340は、方向性結合器310からの反射波を受信するものである。透過波受信機350は、プローブ202からの透過波を受信するものである。ここで、透過波は、プローブ201および202の間の媒質を透過した電磁波をプローブ202が電気信号に変換したものである。
入射波受信機330、反射波受信機340および透過波受信機350は、受信した入射波、反射波および透過波に対して、直交検波とAD(Analog to Digital)変換とを行って受信データとして制御部370に供給する。
なお、入射波受信機330、反射波受信機340および透過波受信機350は、特許請求の範囲に記載の受信機の一例である。
制御部370は、送信機320を制御して、入射波を含む送信信号を送信させる制御と、反射係数および透過係数を求める処理とを行う。また、上述のように、制御部370は、第1切替部112、第2切替部114、及び第3切替部116を制御する。ここで、反射係数は、前述したように入射波および反射波のそれぞれの複素振幅の比である。透過係数は、入射波および透過波のそれぞれの複素振幅の比である。制御部370は、求めた反射係数および透過係数を通信部360に供給する。
通信部360は、反射係数および透過係数を示すデータを測定データとして信号線409を介して信号処理ユニット400に送信するものである。
[方向性結合器の構成例]
図7は、本技術の第1実施形態における方向性結合器310の一構成例を示す図である。この方向性結合器310は、伝送線路311、312および313と、終端抵抗314および315とを備える。この方向性結合器310は、例えば、小型化に好適なブリッジカップラーにより実装することができる。
伝送線路311の一端は、送信機320に接続され、他端は、ケーブル308を介してプローブ201に接続される。伝送線路312は、伝送線路311より短く、伝送線路311と電磁界結合する線路である。この伝送線路312の一端には終端抵抗314が接続され、他端は、反射波受信機340に接続される。伝送線路313は、伝送線路311より短く、伝送線路311と電磁界結合する線路である。この伝送線路313の一端には終端抵抗315が接続され、他端は、入射波受信機330に接続される。
上述の構成により、方向性結合器310は、電気信号を入射波および反射波に分離し、入射波受信機330および反射波受信機340に供給する。
[送信機および受信機の構成例]
図8は、本実施形態における送信機320および受信機の一構成例を示す回路図である。同図におけるaは、送信機320の一構成例を示す回路図であり、同図におけるbは、入射波受信機330の一構成例を示す回路図である。同図におけるcは、反射波受信機340の一構成例を示す回路図であり、同図におけるdは、透過波受信機350の一構成例を示す回路図である。
同図におけるaに例示するように、送信機320は、送信信号発振器322およびドライバ321を備える。
送信信号発振器322は、制御部370の制御に従って電気信号を送信信号として生成するものである。ドライバ321は、送信信号を方向性結合器310に出力するものである。この送信信号S(t)は、例えば、次の式により表される。
S(t)=|A|cos(2πft+θ)
上式において、tは、時刻を表し、単位は、例えば、ナノ秒(ns)である。|A|は、送信信号の振幅を示す。cos()は、余弦関数を示す。fは、周波数を示し、単位は例えば、ヘルツ(Hz)である。θは、位相を表し、単位は、例えば、ラジアン(rad)である。
同図におけるbに例示するように、入射波受信機330は、ミキサ331、バンドパスフィルタ332およびアナログデジタル変換器333を備える。
ミキサ331は、位相が90度異なる2つのローカル信号と送信信号とを混合することにより、直交検波を行うものである。この直交検波により、同相成分IIおよび直交成分QIからなる複素振幅が得られる。これらの同相成分IIおよび直交成分QIは、例えば、次の式により表される。ミキサ331は、複素振幅を、バンドパスフィルタ332を介してアナログデジタル変換器333に供給する。
II=|A|cos(θ)
QI=|A|sin(θ)
上式において、sin()は、正弦関数を示す。
バンドパスフィルタ332は、所定の周波数帯域の成分を通過させるものである。アナログデジタル変換器333は、AD変換を行うものである。このアナログデジタル変換器333は、AD変換により複素振幅を示すデータを生成し、受信データとして制御部370に供給する。
同図におけるcに例示するように、反射波受信機340は、ミキサ341、バンドパスフィルタ342およびアナログデジタル変換器343を備える。ミキサ341、バンドパスフィルタ342およびアナログデジタル変換器343の構成は、ミキサ331、バンドパスフィルタ332およびアナログデジタル変換器333と同様である。反射波受信機340は、反射波を直交検波して同相成分IRおよび直交成分QRからなる複素振幅を取得し、その複素振幅を示す受信データを制御部370に供給する。
同図におけるdに例示するように、透過波受信機350は、レシーバ351、ローカル信号発振器352、ミキサ353、バンドパスフィルタ354およびアナログデジタル変換器355を備える。ミキサ353、バンドパスフィルタ354およびアナログデジタル変換器355の構成は、ミキサ331、バンドパスフィルタ332およびアナログデジタル変換器333と同様である。
レシーバ351は、ケーブル309を介して、透過波を含む電気信号を受信し、ミキサ353に出力するものである。ローカル信号発振器352は、位相が90度異なる2つのローカル信号を生成するものである。
透過波受信機350は、透過波を直交検波して同相成分ITおよび直交成分QTからなる複素振幅を取得し、その複素振幅を示すデータを受信データとして制御部370に供給する。
なお、送信機320および受信機(入射波受信機330等)のそれぞれの回路は、入射波等を送受信することができるものであれば、同図に例示した回路に限定されない。
[制御部の構成例]
図9は、本技術の第1実施形態における制御部370の一構成例を示すブロック図である。この制御部370は、送信制御部371、反射係数算出部372、透過係数算出部373、及び切替部374を備える。
送信制御部371は、送信機320を制御して、送信信号を送信させる。
反射係数算出部372は、周波数毎に反射係数Γを算出するものである。この反射係数算出部372は、入射波受信機330および反射波受信機340から、入射波および反射波のそれぞれの複素振幅を受信し、次の式により、それらの比を反射係数Γ‘として算出する。
Γ‘=(IR+jQR)/(II+jQI) ・・・(1)
上式において、jは、虚数単位である。
反射係数算出部372は、N(Nは、整数)個の周波数f1乃至fNのそれぞれについて式1により反射係数を算出する。これらのN個の反射係数をΓ1乃至ΓNとする。反射係数算出部372は、それらの反射係数を通信部360に供給する。
透過係数算出部373は、周波数毎に透過係数T‘を算出するものである。この透過係数算出部373は、入射波受信機330および透過波受信機350から、入射波および透過波のそれぞれの複素振幅を受信し、次の式により、それらの比を透過係数T’として算出する。
T‘=(IT+jQT)/(II+jQI) ・・・(2)
透過係数算出部373は、N個の周波数f1乃至fNのそれぞれについて式2により透過係数を算出する。これらのN個の反射係数をT‘1乃至T’Nとする。透過係数算出部373は、それらの透過係数を、通信部360を介して信号処理ユニット400へ供給する。
切替部374は、媒質に含まれる水分量を測定する場合に、第1切替部112と第2切替部114との電気的接続をプローブ201側及びプローブ202側に切り換える制御を行う。一方で、切替部374は、校正係数の測定中は、第1切替部112と第2切替部114との電気的接続を所定順に校正標準器100側に切り換える制御を行う。また、切替部374は、校正係数の測定中は、第3切替部116の電気的接続を所定順に第1端子100S、第2端子100O、第3端子100L、及び第4端子100Tと切り換える制御を行う。
[信号処理ユニットの構成例]
図10は、本技術の第1実施形態における信号処理ユニット400の一構成例を示すブロック図である。この信号処理ユニット400は、校正係数算出部405、通信部410、校正部415、往復遅延時間算出部420、伝搬伝送時間算出部430、水分量測定部440、及び係数保持部450を備える。
校正係数算出部405は、校正係数(ED、ERX、ES、EX、ET)を例えばSOLT(Short-Open-Load-Thru)校正に従い算出する。校正係数(ED、ERX、ES、EX、ET)の算出方法の詳細は後述する。校正係数算出部405は、算出した校正係数(ED、ERX、ES、EX、ET)を係数保持部450に供給する。
通信部410は、測定ユニット300からの測定データを受信するものである。この通信部410は、測定データ内の反射係数Γ‘1乃至Γ’N、及び透過係数T‘1乃至T’Nを校正部415に供給する。
校正部415は、係数保持部450に保持される校正係数(ED、ERX、ES、EX、ET)に基づき、校正した反射係数Γ1乃至ΓNを往復遅延時間算出部420に供給し、校正した透過係数T1乃至TNを伝搬伝送時間算出部430に供給する。
往復遅延時間算出部420は、反射係数に基づいて、電気信号がケーブル308を往復する時間を往復遅延時間として算出するものである。この往復遅延時間算出部420は、反射係数Γ1乃至ΓNを逆フーリエ変換することにより、インパルス応答hΓ(t)を求める。そして、往復遅延時間算出部420は、インパルス応答hΓ(t)のピーク値のタイミングと、CW波の送信タイミングとの時間差を往復遅延時間τ11として求め、水分量測定部440に供給する。
伝搬伝送時間算出部430は、透過係数に基づいて、電磁波および電気信号が媒質とケーブル308および309とを伝搬および伝送する時間を伝搬伝送時間として算出するものである。この伝搬伝送時間算出部430は、透過係数T1乃至TNを逆フーリエ変換することにより、インパルス応答hT(t)を求める。そして、伝搬伝送時間算出部430は、インパルス応答hT(t)のピーク値のタイミングと、CW波の送信タイミングとの時間差を伝搬伝送時間τ21として求め、水分量測定部440に供給する。
水分量測定部440は、往復遅延時間τ11および伝搬伝送時間τ21に基づいて水分量を測定するものである。この水分量測定部440は、まず、往復遅延時間τ11および伝搬伝送時間τ21から伝搬遅延時間τdを算出する。ここで、伝搬遅延時間は、プローブ201および202の間の媒質を電磁波が伝搬する時間である。伝搬遅延時間τdは、次の式により算出される。
τd=τ21-τ11 ・・・(3)
上式において、往復遅延時間τ11、伝搬伝送時間τ21および伝搬遅延時間τdのそれぞれの単位は、例えば、ナノ秒(ns)である。
そして、水分量測定部440は、水分量と伝搬遅延時間τdとの間の関係を示す係数aおよびbを係数保持部450から読み出し、式3で算出した伝搬遅延時間τdを次の式に代入して、水分量xを測定する。そして、水分量測定部440は、測定した水分量を、必要に応じた外部の装置や機器へ出力する。
τd=a・x+b ・・・(4)
上式において、水分量xの単位は、例えば、体積パーセント(%)である。
係数保持部450は、校正係数(ED、ERX、ES、EX、ET)、係数a、bを保持するものである。係数保持部450として、不揮発性のメモリなどが用いられる。
図11は、本技術の第1実施形態における電磁波および電気信号の伝搬経路および伝送経路を説明するための図である。
前述したように、プローブ201に先端が埋め込まれたケーブル308を介して、送信機320は、入射波を含む電気信号を送信信号としてプローブ201に送信する。
プローブ201の終端で入射波が反射し、その反射波を反射波受信機340が受信する。これにより、入射波および反射波を含む電気信号がケーブル308内を往復する。同図における太い実線の矢印は、ケーブル308を電気信号が往復した経路を示す。この経路を電気信号が往復する時間が、往復遅延時間τ11に該当する。
また、入射波を含む電気信号はプローブ201により、電磁波EWに変換され、プローブ201および202の間の媒質を透過(言い換えれば、伝搬)する。プローブ202は、その電磁波EWを電気信号に変換する。透過波受信機350は、ケーブル309を介して、その電気信号内の透過波を受信する。すなわち、入射波を含む電気信号がケーブル308を伝送し、電磁波EWに変換されて媒質を伝搬し、透過波を含む電気信号に変換されてケーブル309を伝送する。同図における太い点線の矢印は、電磁波と電気信号(入射波および透過波)とが、媒質とケーブル308および309とを伝搬および伝送した経路を示す。この経路を電磁波および電気信号が伝搬および伝送する時間が、伝搬伝送時間τ21に該当する。
測定ユニット300内の制御部370は、式1および式2により反射係数Γおよび透過係数Tを求める。そして、信号処理ユニット400は、反射係数Γおよび透過係数Tから往復遅延時間τ11および伝搬伝送時間τ21を求める。
ここで、入射波の送信から、透過波の受信までの経路は、媒質と、ケーブル308および309とを含む。このため、媒質を電磁波が伝搬する伝搬遅延時間τdは、伝搬伝送時間τ21と、ケーブル308および309を電気信号が伝送する遅延時間との差分により求められる。ここで、ケーブル308および309のそれぞれの長さが同一と仮定すると、ケーブル308を伝送する遅延時間と、ケーブル309を伝送する遅延時間とは同一になる。この場合、ケーブル308および309を電気信号が伝送する遅延時間の合計は、ケーブル308を往復する往復遅延時間τ11に等しくなる。したがって式3が成立し、信号処理ユニット400は、式3により、伝搬遅延時間τdを算出することができる。
そして、信号処理ユニット400は、求めた往復遅延時間τ11および伝搬伝送時間τ21から伝搬遅延時間を算出し、伝搬遅延時間と係数aおよびbとから、媒質に含まれる水分量を測定する処理を行う。
図12は、本技術の第1実施形態における反射係数のインパルス応答の波形の一例を示すグラフである。同図における縦軸は、反射係数のインパルス応答であり、横軸は、時間である。
水分量の異なる4種類の豊浦標準砂を媒質として用意し、測定装置100が反射係数のインパルス応答を求めたものとする。それぞれの水分量は、0.0、10.1、19.7、および32.9体積パーセント(%)とする。
同図に例示するように、水分量が変化しても、反射係数のピーク値は変化しない。すなわち、往復遅延時間は一定である。これは、前述したように、プローブ201および202が外殻225により隔離されているためである。
図13は、本技術の第1実施形態における透過係数のインパルス応答の波形の一例を示すグラフである。同図における縦軸は、透過係数のインパルス応答であり、横軸は、時間である。同図において、測定対象の媒質は、図12と同様の4種類の豊浦標準砂である。
同図に例示するように、水分量が多くなるほど、透過係数のピーク値のタイミングが遅くなる。これにより、水分量が多くなるほど、伝搬伝送遅延時間が長くなる。
図14は、本技術の第1実施形態における往復遅延時間および伝搬伝送時間と水分量との関係の一例を示すグラフである。同図における縦軸は、往復遅延時間または伝搬伝送時間を示し、横軸は水分量を示す。
図14における点線は、図12から得られた往復遅延時間と水分量との関係を示す。図14における実線は、図13から得られた伝搬伝送時間と水分量との関係を示す。図14に例示するように、水分量に関わらず、往復遅延時間は一定である。一方、水分量が多くなるほど、伝搬伝送遅延時間は長くなる。
図15は、本技術の第1実施形態における伝搬遅延時間と水分量との関係の一例を示すグラフである。同図における縦軸は、伝搬遅延時間を示し、横軸は、水分量を示す。同図の直線は、図14の水分量毎に、伝搬伝送時間および往復遅延時間の差分を求めることにより得られる。
図15に例示するように、伝搬遅延時間は、水分量が多くなるほど、長くなり、両者は比例関係にある。したがって式4が成立する。式4における係数aは、同図における直線の傾きであり、係数bは、切片である。
[校正係数の測定動作例]
図16は、校正係数(ED、ERX、ES、EX、ET)の測定動作例を示すフローチャートである。ここでは、校正標準器データとして、出荷時に、第3切替部116の電気的接続を第1端子100S、第2端子100O、第3端子100L、及び第4端子100T(図2参照)の順に切り換え、それぞれの端子に対応する反射特性ΓS、ΓO、ΓLおよび透過特性TTが測定済みである場合を説明する。
まず、校正係数算出部405は、校正の開始信号を通信部410、及び通信部360を介して、制御部370に出力する。制御部370は、図16に示す処理順で処理を実行する。
第1切替部112は、電気的接続を校正標準器100側に切り換える(ステップS100)。続けて、第3切替部116は、電気的接続を第1端子100Sに切り換える(ステップS102)。続けて送信機320は、入射波を校正標準器100に送信し、反射係数算出部372は、第1端子100Sの反射係数を反射特性S11mSとして係数保持部450に保持する。
次に、第3切替部116は、電気的接続を第2端子100Oに切り換える(ステップS104)。続けて送信機320は、入射波を校正標準器100に送信し、反射係数算出部372は、第2端子100Oの反射係数を反射特性S11mOとして係数保持部450に保持する。
次に、第3切替部116は、電気的接続を第3端子100Lに切り換える(ステップS106)。続けて送信機320は、入射波を校正標準器100に送信し、反射係数算出部372は、第3端子100Lの反射係数を反射特性S11mLとして係数保持部450に保持し、透過係数算出部373は、第3端子100Lの透過係数を透過特性S21mLとして係数保持部450に保持する。
次に、第3切替部116は、電気的接続を第4端子100Tに切り換え、第2切替部114は、電気的接続を校正標準器100側に切り換える(ステップS108)。続けて送信機320は、入射波を校正標準器100に送信し、反射係数算出部372は、第4端子100Tの反射係数を反射特性S11mTとして係数保持部450に保持し、透過係数算出部373は、第4端子100Tの透過係数を透過特性S21mTとして係数保持部450に保持する。
Figure 2022110737000002
Figure 2022110737000003
Figure 2022110737000004
Figure 2022110737000005
次に、校正係数算出部405は、例えば(5)~(8)式に従い、校正係数(ED、ERX、ES、EX、ET)を算出し、係数保持部450に保持する(ステップS110)。
そして、校正係数算出部405は、校正の終了信号を通信部410、及び通信部360を介して、制御部370に出力する。第1切替部112は、電気的接続をプローブ201側に切り換え、第2切替部114は、電気的接続をプローブ202側に切り換え、校正係数の測定動作を終了する(ステップS112)。
[測定装置の測定動作例]
図17は、本技術の第1実施形態における測定装置1の動作の一例を示すフローチャートである。同図における動作は、例えば、水分量を測定するための所定のアプリケーションが実行されたときに開始される。
一対のプローブ201および202は、電磁波を送受信する(ステップS200)。測定ユニット300は、入射波および反射波から反射係数を算出し(ステップS202)、入射波および透過波から透過係数を算出する(ステップS204)。
次いで、信号処理ユニット400は、反射係数を校正し(ステップS206)、透過係数を校正する(ステップS208)。そして、校正した反射係数から往復遅延時間を算出し(ステップS208)、校正した透過係数から伝搬伝送時間を算出する(ステップS210)。続けて、信号処理ユニット400は、往復遅延時間および伝搬伝送時間から伝搬遅延時間を算出し(ステップS212)、その伝搬遅延時間と係数aおよびbとから水分量を算出する(ステップS214)。ステップS214の後に、測定装置100は、測定のための動作を終了する。
図18は、比較例としての測定装置1aの構成例を示す図である。図18に示すように、校正標準器100を測定装置1a内に有さない装置である。このため、測定装置1aでは、工場からの出荷時に校正係数が算出される。
ところが、ケーブル308および309は、温度変化などにともない長さが変動する。このため、出荷時の校正係数(ED、ERX、ES、EX、ET)では、適切に温度変化などに対応した校正ができず、真値と、測定値の校正係数(ED、ERX、ES、EX、ET)による校正値との間の誤差が拡大し、水分量の測定精度が低下するおそれがある。また、測定装置1aでは、校正標準器100の測定時と、水分測定時とではケーブル308および309の形状が異なる恐れもある。これによっても、真値と測定値の校正係数(ED、ERX、ES、EX、ET)による校正値との間の誤差が拡大し、水分量の測定精度が低下するおそれがある。
しかし、本実施形態に係る測定装置1は、測定前の適切なタイミングで、校正係数(ED、ERX、ES、EX、ET)を算出可能である。このため、温度変化などにともないケーブル308および309の長さが変動しても、その変動時の校正係数(ED、ERX、ES、EX、ET)を得ることができる。このため、校正係数(ED、ERX、ES、EX、ET)を固定値とする場合よりも水分量の測定精度を向上させることができる。また、本実施形態に係る測定装置1は、水分の測定中もプローブ201及びプローブ202と校正標準器100は、所定の位置関係に固定されるため、水分の測定時と校正係数の測定時とでケーブル308および309の形状変位を抑制できる。このため、取り外し式の校正標準器100により校正係数(ED、ERX、ES、EX、ET)を測定する場合よりも水分量の測定精度を向上させることができる。
以上説明したように、本実施形態によれば、測定装置1が、水分の測定中もプローブ201及びプローブ202と所定の位置関係に固定され、水分の測定を行っていない場合に第1接続ケーブル308及び第2接続ケーブル309に電気的に接続可能である校正標準器100を有する。これにより、温度変化などにともないケーブル308および309の長さが変動しても、その変動時の校正係数(ED、ERX、ES、EX、ET)を得ることが可能となる。また、水分の測定中もプローブ201及びプローブ202と校正標準器100は、所定の位置関係に固定されるため、水分の測定時と校正係数の測定時とでケーブル308および309の形状変位を抑制可能である。このため、校正係数(ED、ERX、ES、EX、ET)を固定値とする場合よりも水分量の測定精度を向上させることができる。
(第2実施形態)
第1実施形態に係る測定装置1は、第1切替部112及び第2切替部114を校正標準器100と別体として構成していたのに対し、第2実施形態に係る測定装置1は、第1切替部112及び第2切替部114を校正標準器100a内に一体的に構成する点で相違する。以下では第1実施形態に係る測定装置1と相違する点を説明する。
図19は、第2実施形態に係る測定装置1の構成例を示す図である。図19に示すように、第2実施形態に係る測定装置1は、校正標準器100aを有する。
図20は、第2実施形態に係る校正標準器100aの構成例を示す図である。図20に示すように、第2実施形態に係る校正標準器100aは、第1切替部112a、第2切替部114a、及び開放(open)、短絡(short)、負荷(load)、スルー(through)の4種類の標準器を有する。また、校正標準器100は、短絡基準器へ接続する第1端子100S、開放基準器へ接続する第2端子100O、及び無反射終端器(負荷基準器)へ接続する第3端子100Lと、第1接続ケーブル308及び第2接続ケーブル309を直結する第4端子100Ta、100Tb、第1ケーブル3080に接続される第5端子100Pa、及び第2ケーブル3090に接続される第6端子100Pbを有する。このように、第1切替部112a、第2切替部114a、及び4種類の標準器を同一筐体内に構成することにより、湿度などの外部環境の影響をより抑制できる。また、第3切替部116の構成を不要とすることが可能である。
図21は、第2実施形態に係る校正係数(ED、ERX、ES、EX、ET)の測定動作例を示すフローチャートである。ここでは、校正標準器データとして、出荷時に、第3切替部116の電気的接続を第1端子100S、第2端子100O、第3端子100L、及び第4端子100T(図2参照)の順に切り換え、それぞれの端子に対応する反射特性ΓS、ΓO、ΓLおよび透過特性TTが測定済みである場合を説明する。
第1切替部112a、は、電気的接続を第1端子100Sに切り換える(ステップS302)。続けて送信機320は、入射波を校正標準器100aに送信し、反射係数算出部372は、第1端子100Sの反射係数を反射特性S11mSとして係数保持部450に保持する。
次に、第1切替部112aは、電気的接続を第2端子100Oに切り換える(ステップS304)。続けて送信機320は、入射波を校正標準器100aに送信し、反射係数算出部372は、第2端子100Oの反射係数を反射特性S11mTとして係数保持部450に保持する。
次に、第1切替部112aは、電気的接続を第3端子100Lに切り換える(ステップS306)。続けて送信機320は、入射波を校正標準器100aに送信し、反射係数算出部372は、第3端子100Lの反射係数を反射特性S11mLとして係数保持部450に保持し、透過係数算出部373は、第3端子100Lの透過係数を透過特性S21mLとして係数保持部450に保持する。
次に、第1切替部112aは、電気的接続を第4端子100Taに切り換え、第2切替部114aは、電気的接続を第4端子100Tbに切り換える(ステップS308)。続けて送信機320は、入射波を校正標準器100aに送信し、反射係数算出部372は、第4端子100Tの反射係数を反射特性S11mTとして係数保持部450に保持し、透過係数算出部373は、第4端子100Tの透過係数を透過特性S21mTとして係数保持部450に保持する。
次に、校正係数算出部405は、例えば(5)~(8)式に従い、校正係数(ED、ERX、ES、EX、ET)を算出し、係数保持部450に保持する(ステップS310)。
そして、校正係数算出部405は、校正の終了信号を通信部410、及び通信部360を介して、制御部370に出力する。第1切替部112は、電気的接続をプローブ201側に切り換え、第1切替部112a、及び第2切替部114aは、電気的接続をプローブ202側に切り換え、校正係数の測定動作を終了する(ステップS312)。
以上説明したように、本実施形態によれば、第1切替部112及び第2切替部114を校正標準器100a内に構成することとした。これにより、湿度などの外部環境の影響をより抑制できる。また、第3切替部116の構成を不要とすることが可能となる。
(第3実施形態)
第3実施形態に係る測定装置1は、校正標準器100の構成を左右対称とした点で第2実施形態に係る測定装置1と相違する。以下では第2実施形態に係る測定装置1と相違する点を説明する。
図22は、第3実施形態に係る校正標準器100bの構成例を示す図である。図20に示すように、第2実施形態に係る校正標準器100bは、第1切替部112b、第2切替部114b、及び開放(open)、短絡(short)、負荷(load)、スルー(through)の4種類の標準器を有する。また、校正標準器100は、開放基準器へ接続する第1端子100Sa、100Sb、短絡基準器へ接続する第2端子100Oa、100Ob、及び無反射終端器(負荷基準器)へ接続する第3端子100La、100Lbと、第1接続ケーブル308及び第2接続ケーブル309を直結する第4端子100Ta、100Tb、第1ケーブル3080に接続される第5端子100Pa、及び第2ケーブル3090に接続される第6端子100Pbを有する。このように、校正標準器100aを左右対象に構成することにより、より校正係数(ED、ERX、ES、EX、ET)の算出精度をよりあげることが可能となる。また、第2実施形態に係る校正標準器100aと同様に第1切替部112a、第2切替部114a、及び4種類の標準器を同一筐体内に構成することにより、湿度などの外部環境の影響をより抑制できる。
図23は、第3実施形態に係る校正係数(ED、ERX、ES、EX、ET)の測定動作例を示すフローチャートである。ここでは、校正標準器データとして、出荷時に、第3切替部116の電気的接続を第1端子100S、第2端子100O、第3端子100L、及び第4端子100T(図2参照)の順に切り換え、それぞれの端子に対応する反射特性ΓS、ΓO、ΓLおよび透過特性TTが測定済みである場合を説明する。
第1切替部112b、及び第2切替部114bは、電気的接続を第1端子100Sa、100Sbに切り換える(ステップS302)。続けて送信機320は、入射波を校正標準器100bに送信し、反射係数算出部372は、第1端子100Sの反射係数を反射特性S11mSとして係数保持部450に保持する。
次に、第1切替部112b、及び第2切替部114baは、電気的接続を第2端子100Oa、100Obに切り換える(ステップS404)。続けて送信機320は、入射波を校正標準器100bに送信し、反射係数算出部372は、第2端子100Oの反射係数を反射特性S11mTとして係数保持部450に保持する。
次に、第1切替部112b、及び第2切替部114baは、電気的接続を第3端子100La、 100Lbに切り換える(ステップS406)。続けて送信機320は、入射波を校正標準器100bに送信し、反射係数算出部372は、第3端子100Lの反射係数を反射特性S11mLとして係数保持部450に保持し、透過係数算出部373は、第3端子100Lの透過係数を透過特性S21mLとして係数保持部450に保持する。
次に、第1切替部112b、及び第2切替部114baは、電気的接続を第4端子100Ta、100Tb、に切り換える(ステップS308)。続けて送信機320は、入射波を校正標準器100bに送信し、反射係数算出部372は、第4端子100Tの反射係数を反射特性S11mTとして係数保持部450に保持し、透過係数算出部373は、第4端子100Tの透過係数を透過特性S21mTとして係数保持部450に保持する。
次に、校正係数算出部405は、例えば(5)~(8)式に従い、校正係数(ED、ERX、ES、EX、ET)を算出し、係数保持部450に保持する(ステップS310)。
そして、校正係数算出部405は、校正の終了信号を通信部410、及び通信部360を介して、制御部370に出力する第1切替部112b、及び第2切替部114baは、電気的接続をプローブ201、202側に切り換え、校正係数の測定動作を終了する(ステップS412)。
以上説明したように、本実施形態によれば、校正標準器100aを左右対象に構成することとした。これにより、校正標準器100aを左右対象に構成することにより、校正係数(ED、ERX、ES、EX、ET)の算出精度をよりあげることが可能となる。
(第4実施形態)
第4実施形態に係る測定装置1は、複数のセンサ装置2と、信号処理装置4とを別筐体とし点で、第1実施形態に係る固体撮像装置1と相違する。以下では第1実施形態に係る固体撮像装置1と相違する点を説明する。
図24は、第4実施形態に係る測定装置1の構成例を示す図である。図24に示すように、第4実施形態に係る測定装置1は、複数のセンサ装置2と、信号処理装置4とを備える。
信号処理装置4は、測定ユニット300aと、信号処理ユニット400とを有する。測定ユニット300aは、複数のセンサ装置2との接続を電気的に相互に切り替えることが可能なスイッチング素子3000を有する。スイッチング素子3000は、信号処理ユニット400の制御に従い電気的接続を、複数のセンサ装置2ごとに切り換える。これにより、複数のセンサ装置2ごとに、校正係数(ED、ERX、ES、EX、ET)の算出動作、及び測定動作を行うことが可能である。
図24に示すように、複数のセンサ装置2と、信号処理装置4は、別筐体に構成される。これにより、ケーブル308、309、310をより長くした測定装置1を構成可能である。このため、信号処理装置4を、プローブ201および202よりも遠方に配置することができる。ただし、ケーブル308および309を長くするほど、温度変化に伴う校正係数(ED、ERX、ES、EX、ET)による測定誤差が大きくなる。しかし、測定装置1は、複数のセンサ装置2ごとに、校正係数(ED、ERX、ES、EX、ET)の算出を適時に行うことが可能である。このため、ケーブル308、309、310をより長くした場合にも水分量の測定精度を向上させることができる。
以上説明したように、本実施形態によれば、複数のセンサ装置2と、信号処理装置4とを別筐体に構成することした。これにより、信号処理装置4を、プローブ201および202よりも遠方に配置することが可能である。また、複数のセンサ装置2ごとに、校正係数(ED、ERX、ES、EX、ET)の算出を適時に行うことが可能である。このため、ケーブル308、309、310をより長くした場合にも水分量の測定精度を向上させることができる。
(第5実施形態)
第5実施形態に係る測定装置1は、無線通信が可能である点で、第4実施形態に係る測定装置1と相違する。以下では第4実施形態に係る測定装置1と相違する点を説明する。
図25は、第5実施形態に係る測定装置1の構成例を示す図である。図25に示すように、第4実施形態に係る測定装置1は、複数のセンサ装置2と、信号処理装置4とを備える。
図25に示すように、信号処理装置4は、アンテナ500を更に有し、通信部410(図10参照)は無線通信が可能である点で、第4実施形態に係る信号処理装置4と相違する。これにより、複数のセンサ装置2ごとの校正係数(ED、ERX、ES、EX、ET)などをクラウドデータベース4000に保持可能となる。このため、複数のセンサ装置2ごとの校正係数(ED、ERX、ES、EX、ET)などをクラウドデータベース4000側で管理可能となる。このため、クラウドデータベース4000側で複数のセンサ装置2の状態を監視することも可能となる。また、係数保持部450(図10参照)の記憶容量も低減可能である。また、信号処理ユニットの各機能をクラウドデータベース4000側が有する構成としてもよい。これにより、信号処理装置4の構成をより簡易化可能となる。
以上説明したように、本実施形態によれば、信号処理装置4がクラウドデータベース4000と無線通信可能に構成することした。これにより、複数のセンサ装置2ごとの校正係数(ED、ERX、ES、EX、ET)などをクラウドデータベース4000に保持可能となる。このため、複数のセンサ装置2ごとの校正係数(ED、ERX、ES、EX、ET)などをクラウドデータベース4000側で管理可能となる。
なお、本技術は以下のような構成を取ることができる。
(1)媒質に含まれる水分量を測定する測定装置であって、
第1接続ケーブルに電気的に接続可能である第1ケーブルが埋め込まれた第1プローブと、
第2接続ケーブルに電気的に接続可能である第2ケーブルが埋め込まれた第2プローブと、
前記測定中も第1プローブ及び第2プローブと所定の位置関係に固定され、前記測定を行っていない場合に前記第1接続ケーブル及び前記第2接続ケーブルに電気的に接続可能であり、前記測定の校正に用いられる標準器と、
を備える、測定装置。
(2)前記第1接続ケーブルと第1プローブ又は前記標準器との接続、及び前記第2接続ケーブルと第2プローブ又は前記標準器との接続を切り換える切替部と、を更に備える、(1)に記載の測定装置。
(3)前記切替部は、
前記第1接続ケーブルと第1プローブ又は前記標準器との接続を切り換える第1切替部と、
前記第2接続ケーブルと第2プローブ又は前記標準器との接続を切り換える第2切替部と、を有する、(2)に記載の測定装置。
(4)前記標準器は、開放基準器、短絡基準器、及び無反射終端器を有し、前記開放基準器へ接続する第1端子、前記短絡基準器へ接続する第2端子、及び無反射終端器へ接続する第3端子と、前記第1接続ケーブル及び前記第2接続ケーブルを直結する一方の第4端子及び他方の第4端子とを更に有する、(3)に記載の測定装置。
(5)前記第1切替部は、前記第1接続ケーブルと第1プローブ、第1乃至第3端子、及び前記一方の第4端子のいずれかとの接続を切り替え、前記第2切替部は、前記第2接続ケーブルと第2プローブ又は前記他方の第4端子との接続を切り替える、(4)に記載の測定装置。
(6)前記第1プローブと、前記第2プローブと、前記標準器と、前記第1切替部と、前記第2切替部とは、同一の筐体内に構成される、(4)又は(5)に記載の測定装置。
(7)前記第1切替部、前記第1乃至第4端子、及び前記第2切替部が左右対称に構成される、(6)に記載の測定装置。
(8)前記第1プローブへ前記第1ケーブルを介して送信される入射波と、前記第1プローブで前記入射波が反射した反射波との複素振幅の比を反射係数として求め、
前記入射波と、前記第1プローブと前記第2プローブとの間の媒質を透過した透過波との複素振幅の比を透過係数として求める係数算出部と、
前記標準器を用いて求められた校正係数により前記反射係数及び前記透過係数を校正する校正部と、
前記校正された反射係数および前記校正された透過係数に基づいて前記媒質に含まれる水分量を測定する処理を行う処理部と、
を更に備える、(1)乃至(7)のいずれかに記載の測定装置。
(9)前記第1プローブと、前記第2プローブと、前記標準器と、が同一の筐体内に測定装置として構成される、(8)に記載の測定装置。
(10) 前記係数算出部と、前記校正部と、前記処理部とは、同一の筐体内に信号処理装置として構成される、(9)に記載の測定装置。
(11) 前記測定装置と前記信号処理装置は、同一の筐体内に一体構成される、(10)に記載の測定装置。
(12)前記測定装置と前記信号処理装置とは、分離された異なる筐体内に構成される、(10)に記載の測定装置。
(13)複数の前記測定装置と前記信号処理装置とが接続される、(10)に記載の測定装置。
(14) 前記信号処理装置は、無線通信が可能である、(13)に記載の測定装置。
(15) 第1接続ケーブルに電気的に接続可能である第1ケーブルが埋め込まれた第1プローブと、
第2接続ケーブルに電気的に接続可能である第2ケーブルが埋め込まれた第2プローブと、
前記測定中も第1プローブ及び第2プローブと所定の位置関係に固定され、前記測定を行っていない場合に前記第1接続ケーブル及び前記第2接続ケーブルに電気的に接続可能であり、前記測定の校正に用いられる標準器と、有する測定装置の測定方法であって、
前記第1接続ケーブルを介して前記標準器に所定順に入射波を送信し、前記第2接続ケーブルを介して順に測定さえた測定データに基づき、校正係数を算出する算出工程と、
前記第1プローブへ前記第1ケーブルを介して送信される入射波と、前記第1プローブで前記入射波が反射した反射波との複素振幅の比を反射係数として求め、
前記入射波と、前記第1プローブと前記第2プローブとの間の媒質を透過した透過波との複素振幅の比を透過係数として求める係数算出工程と、
前記校正係数により前記反射係数及び前記透過係数を校正する校正工程と、
前記校正された反射係数および前記校正された透過係数に基づいて前記媒質に含まれる水分量を測定する処理を行う処理工程と、
を備える測定方法。
本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。
1:測定装置、2:センサ装置、4:信号処理装置4、201:プローブ、202:プローブ、100、100a、100b:校正標準器、112、112a、112b:第1切替部、114、114a、114b:第2切替部、116:第3切替部、300:測定ユニット、308:第1接続ケーブル、309:第2接続ケーブル、372:反射係数算出部、373:透過係数算出部、400:信号処理ユニット、415:校正部、3080:第1ケーブル、3090:第2ケーブル。

Claims (15)

  1. 媒質に含まれる水分量を測定する測定装置であって、
    第1接続ケーブルに電気的に接続可能である第1ケーブルが埋め込まれた第1プローブと、
    第2接続ケーブルに電気的に接続可能である第2ケーブルが埋め込まれた第2プローブと、
    前記測定中も第1プローブ及び第2プローブと所定の位置関係に固定され、前記測定を行っていない場合に前記第1接続ケーブル及び前記第2接続ケーブルに電気的に接続可能であり、前記測定の校正に用いられる標準器と、
    を備える、測定装置。
  2. 前記第1接続ケーブルと前記第1プローブ又は前記標準器との接続、及び前記第2接続ケーブルと前記第2プローブ又は前記標準器との接続を切り換える切替部と、を更に備える、請求項1に記載の測定装置。
  3. 前記切替部は、
    前記第1接続ケーブルと前記第1プローブ又は前記標準器との接続を切り換える第1切替部と、
    前記第2接続ケーブルと前記第2プローブ又は前記標準器との接続を切り換える第2切替部と、を有する、請求項2に記載の測定装置。
  4. 前記標準器は、開放基準器、短絡基準器、及び無反射終端器を有し、前記開放基準器へ接続する第1端子、前記短絡基準器へ接続する第2端子、及び無反射終端器へ接続する第3端子と、前記第1接続ケーブル及び前記第2接続ケーブルを直結する一方の第4端子及び他方の第4端子とを更に有する、請求項3に記載の測定装置。
  5. 前記第1切替部は、前記第1接続ケーブルと前記第1プローブ、第1乃至第3端子、及び前記一方の第4端子のいずれかとの接続を切り替え、前記第2切替部は、前記第2接続ケーブルと前記第2プローブ又は前記他方の第4端子との接続を切り替える、請求項4に記載の測定装置。
  6. 前記第1プローブと、前記第2プローブと、前記標準器と、前記第1切替部と、前記第2切替部とは、同一の筐体内に構成される、請求項4に記載の測定装置。
  7. 前記第1切替部、前記第1乃至第4端子、及び前記第2切替部が左右対称に構成される、請求項6に記載の測定装置。
  8. 前記第1プローブへ前記第1ケーブルを介して送信される入射波と、前記第1プローブで前記入射波が反射した反射波との複素振幅の比を反射係数として求め、
    前記入射波と、前記第1プローブと前記第2プローブとの間の媒質を透過した透過波との複素振幅の比を透過係数として求める係数算出部と、
    前記標準器を用いて求められた校正係数により前記反射係数及び前記透過係数を校正する校正部と、
    前記校正された反射係数および前記校正された透過係数に基づいて前記媒質に含まれる水分量を測定する処理を行う処理部と、
    を更に備える、請求項1に記載の測定装置。
  9. 前記第1プローブと、前記第2プローブと、前記標準器と、が同一の筐体内にセンサ装置として構成される、請求項8に記載の測定装置。
  10. 前記係数算出部と、前記校正部と、前記処理部とは、同一の筐体内に信号処理装置として構成される、請求項9に記載の測定装置。
  11. 前記センサ装置と前記信号処理装置は、同一の筐体内に一体構成される、請求項10に記載の測定装置。
  12. 前記センサ装置と前記信号処理装置とは、分離された異なる筐体内に構成される、請求項10に記載の測定装置。
  13. 複数の前記センサ装置と前記信号処理装置とが接続される、請求項10に記載の測定装置。
  14. 前記信号処理装置は、無線通信が可能である、請求項13に記載の測定装置。
  15. 第1接続ケーブルに電気的に接続可能である第1ケーブルが埋め込まれた第1プローブと、
    第2接続ケーブルに電気的に接続可能である第2ケーブルが埋め込まれた第2プローブと、
    前記測定中も第1プローブ及び第2プローブと所定の位置関係に固定され、前記測定を行っていない場合に前記第1接続ケーブル及び前記第2接続ケーブルに電気的に接続可能であり、前記測定の校正に用いられる標準器と、を有する測定装置の測定方法であって、
    前記第1接続ケーブルを介して前記標準器に所定順に入射波を送信し、前記第2接続ケーブルを介して順に測定さえた測定データに基づき、校正係数を算出する算出工程と、
    前記第1プローブへ前記第1ケーブルを介して送信される入射波と、前記第1プローブで前記入射波が反射した反射波との複素振幅の比を反射係数として求め、
    前記入射波と、前記第1プローブと前記第2プローブとの間の媒質を透過した透過波との複素振幅の比を透過係数として求める係数算出工程と、
    前記校正係数により前記反射係数及び前記透過係数を校正する校正工程と、
    前記校正された反射係数および前記校正された透過係数に基づいて前記媒質に含まれる水分量を測定する処理を行う処理工程と、
    を備える測定方法。
JP2021006339A 2021-01-19 2021-01-19 測定装置、及び測定方法 Pending JP2022110737A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021006339A JP2022110737A (ja) 2021-01-19 2021-01-19 測定装置、及び測定方法
EP21921285.9A EP4283283A1 (en) 2021-01-19 2021-12-16 Measuring device and measuring method
US18/261,127 US20240085348A1 (en) 2021-01-19 2021-12-16 Measurement device and measurement method
CN202180090199.XA CN116724226A (zh) 2021-01-19 2021-12-16 测量装置和测量方法
PCT/JP2021/046431 WO2022158183A1 (ja) 2021-01-19 2021-12-16 測定装置、及び測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021006339A JP2022110737A (ja) 2021-01-19 2021-01-19 測定装置、及び測定方法

Publications (1)

Publication Number Publication Date
JP2022110737A true JP2022110737A (ja) 2022-07-29

Family

ID=82548206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021006339A Pending JP2022110737A (ja) 2021-01-19 2021-01-19 測定装置、及び測定方法

Country Status (5)

Country Link
US (1) US20240085348A1 (ja)
EP (1) EP4283283A1 (ja)
JP (1) JP2022110737A (ja)
CN (1) CN116724226A (ja)
WO (1) WO2022158183A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240107468A1 (en) * 2022-09-23 2024-03-28 Qualcomm Incorporated Support for calibrating round trip time errors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548538A (en) * 1994-12-07 1996-08-20 Wiltron Company Internal automatic calibrator for vector network analyzers
JPH08300197A (ja) 1995-04-28 1996-11-19 Shinko Sellbick:Kk ロータリプレス装置
US11029262B2 (en) * 2015-08-02 2021-06-08 Vayyar Imaging Ltd. System and method for measuring soil properties characteristics using electromagnetic propagation
CN110678741B (zh) * 2017-06-02 2023-12-15 索尼公司 传感器装置、水分含量测量装置、水分含量测量方法、信息处理装置和信息处理方法
KR20190066337A (ko) * 2017-12-05 2019-06-13 주식회사 아이자랩 Tdr 방식의 토양 수분 측정장치
ES2965413T3 (es) * 2018-07-31 2024-04-15 Lombardi Sa Ingegneri Consulenti Radar de penetración terrestre y método de análisis electromagnético del suelo
WO2020230478A1 (ja) * 2019-05-13 2020-11-19 ソニー株式会社 測定装置、測定システム、および、測定方法

Also Published As

Publication number Publication date
US20240085348A1 (en) 2024-03-14
CN116724226A (zh) 2023-09-08
EP4283283A1 (en) 2023-11-29
WO2022158183A1 (ja) 2022-07-28

Similar Documents

Publication Publication Date Title
JP7388581B2 (ja) 測定装置、測定システム、および、測定方法
WO2018221051A1 (ja) センサ装置、水分量測定装置、水分量測定方法、情報処理装置および情報処理方法
KR101133743B1 (ko) 도파관을 사용하는 프로브 및 안테나
WO2022158183A1 (ja) 測定装置、及び測定方法
JP2016515202A (ja) 媒体の誘電特性を求めるためのセンサおよび方法
US20210341568A1 (en) High-frequency module
JPH10197577A (ja) 高周波測定の校正標準器および校正法ならびに高周波用伝送線路の伝送損失の測定方法
CN113396335B (zh) 探头、阵列探头、探测器及方法
WO1999046872A1 (en) Testing device and method
Kang et al. Design of a miniaturized printed multi-turn loop antenna for shielding effectiveness measurement
CN107394396B (zh) 天线系数可计算的标准环天线、系统及天线系数确定方法
WO2022102593A1 (ja) センサ装置
US20230194440A1 (en) Detection device and detection method
WO2021085198A1 (ja) センサ装置および水分量測定装置
WO2022102555A1 (ja) センサ装置
US20240004030A1 (en) Sensor device
WO2022102572A1 (ja) センサ装置
WO2022102570A1 (ja) センサ装置
EP3995836B1 (en) Ultra-wideband interconnection
RU2731020C1 (ru) Способ измерения коэффициента отражения свч нагрузки
Werner et al. Representation of absolute electric fieldstrength by superposition of radiated and guided waves
Loader et al. A calculable dipole antenna to cover the frequency range 850 MHz to 2.2 GHz
Memarzadeh-Tehran et al. Low Scattering Photodiode-Modulated Probe for Microwave Near-Field Imaging
Shay et al. Design Methodology and Performance Evaluation of a Tapered Cell
CN115586375A (zh) 一种基于互耦环缝的5g平面电磁传感器及测量方法