WO2022102206A1 - 漂白パルプの製造方法 - Google Patents

漂白パルプの製造方法 Download PDF

Info

Publication number
WO2022102206A1
WO2022102206A1 PCT/JP2021/031196 JP2021031196W WO2022102206A1 WO 2022102206 A1 WO2022102206 A1 WO 2022102206A1 JP 2021031196 W JP2021031196 W JP 2021031196W WO 2022102206 A1 WO2022102206 A1 WO 2022102206A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulp
bleaching
acid
chlorine dioxide
mass
Prior art date
Application number
PCT/JP2021/031196
Other languages
English (en)
French (fr)
Inventor
泰輔 中平
和良 上等
妹井子 新開
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2022561290A priority Critical patent/JPWO2022102206A1/ja
Priority to CN202180075349.XA priority patent/CN116507772A/zh
Publication of WO2022102206A1 publication Critical patent/WO2022102206A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/12Bleaching ; Apparatus therefor with halogens or halogen-containing compounds
    • D21C9/14Bleaching ; Apparatus therefor with halogens or halogen-containing compounds with ClO2 or chlorites
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/147Bleaching ; Apparatus therefor with oxygen or its allotropic modifications
    • D21C9/153Bleaching ; Apparatus therefor with oxygen or its allotropic modifications with ozone
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/16Bleaching ; Apparatus therefor with per compounds

Definitions

  • the present invention relates to a method for producing bleached pulp.
  • pulp bleaching is generally performed by chlorine-free (ECF: Elemental Chlorine Free) bleaching that does not use chlorine itself or hypochlorous acid.
  • ECF Elemental Chlorine Free
  • unbleached pulp obtained by evaporating a lignocellulose substance is bleached with alkali oxygen, then treated with inorganic peroxyic acid and / or a salt thereof without adding a chelating agent, and then washed.
  • an invention relating to a method for producing bleached pulp which comprises performing a multi-stage bleaching treatment starting from an ozone treatment, is described.
  • Patent Document 1 describes that the use of chlorine dioxide (ClO 2 ) is the mainstream in ECF bleaching, and that light ECF bleaching that reduces the amount of chlorine dioxide used as much as possible is drawing attention. There is.
  • Patent Document 1 by performing ozone bleaching after performing acid cleaning with an inorganic peroxy acid as a pretreatment, the reaction selectivity of ozone bleaching is improved and the reaction efficiency is improved, and the latter stage. It is stated that the amount of chlorine dioxide used in can be reduced.
  • unbleached pulp obtained by evaporating a lignocellulose substance is bleached with alkali oxygen, then treated with inorganic peroxyic acid and / or a salt thereof, and then further subjected to a multi-stage bleaching treatment starting with chlorine dioxide treatment.
  • An invention relating to a method for producing a bleached pulp, which is characterized by the above-mentioned technique, is described.
  • pulp is bleached by combining various bleaching methods in addition to bleaching with chlorine dioxide as described above, but a method for preferably producing bleached pulp having a higher degree of whiteness is required. ing.
  • the present invention provides a means for producing bleached pulp having excellent whiteness.
  • the present inventors have conducted diligent research to solve the above problems. As a result, the above problem is solved by combining the bleaching step with monopersulfuric acid and the bleaching step with chlorine dioxide, and setting the ratio of the monopersulfuric acid addition rate and the chlorine dioxide addition rate in each step within a predetermined range. It was found that this could be done, and the present invention was completed. That is, the present invention is, for example, as follows.
  • An alkaline oxygen bleaching process for bleaching unbleached pulp with alkaline oxygen.
  • Monosulfuric acid bleaching process and monosulfuric acid bleaching process The first chlorine dioxide bleaching process, which is treated with chlorine dioxide, Including The ratio of the addition rate of monopersulfuric acid (% by mass) to the absolute dry mass of the unbleached pulp and the addition rate of chlorine dioxide (mass%) to the absolute dry mass of the unbleached pulp (addition rate of chlorine dioxide / mono).
  • a method for producing bleached pulp, wherein the addition rate of persulfuric acid) is 0.25 to 4.0.
  • Alkaline oxygen bleaching process for bleaching unbleached pulp with alkaline oxygen, Monosulfuric acid bleaching process and monosulfuric acid bleaching process
  • the first chlorine dioxide bleaching process which is treated with chlorine dioxide, Including The ratio of the addition rate of monopersulfuric acid (mass%) to the absolute dry mass of the unbleached pulp and the addition rate of chlorine dioxide (mass%) to the absolute dry mass of the unbleached pulp (addition rate of chlorine dioxide / mono).
  • the addition rate of persulfuric acid is 0.25 to 2.0.
  • a method for producing bleached pulp wherein the treatment temperature of the monosulfuric acid bleaching step is 70 to 98 ° C.
  • Monosulfuric acid bleaching process and monosulfuric acid bleaching process The first chlorine dioxide bleaching process, which is treated with chlorine dioxide, Alkaline hydrogen peroxide bleaching process that treats with alkaline hydrogen peroxide, A second chlorine dioxide bleaching process that treats with chlorine dioxide, In this order, The ratio of the addition rate of monopersulfuric acid (% by mass) to the absolute dry mass of the unbleached pulp and the addition rate (mass%) of chlorine dioxide to the absolute dry mass of the unbleached pulp in the first chlorine dioxide bleaching step. (Chlorine dioxide addition rate / monopersulfuric acid addition rate) is 0.25 to 2.0.
  • a method for producing bleached pulp, wherein the treatment temperature of the monosulfuric acid bleaching step is 70 to 98 ° C.
  • An alkaline oxygen bleaching process for bleaching unbleached pulp with alkaline oxygen.
  • Monosulfuric acid bleaching process and monosulfuric acid bleaching process The first chlorine dioxide bleaching process, which is treated with chlorine dioxide, Including The addition ratio (mass%) of monosulfuric acid to the absolute dry mass of the unbleached pulp is 0.30 to 1.75% by mass.
  • a method for producing bleached pulp, wherein the addition rate of persulfuric acid) is 0.5 to 2.0.
  • the TOC increase rate (TOC 1 / TOC 2 ⁇ 100) with respect to the total organic carbon (TOC 2 ) of the wastewater obtained in the sulfuric acid bleaching step and the first chlorine dioxide bleaching step in the method is more than 100%, the above [1].
  • the present invention may include, for example, the following aspects.
  • the first chlorine dioxide bleaching process which is treated with chlorine dioxide, Including The ratio of the addition rate of monopersulfuric acid (% by mass) to the absolute dry mass of the unbleached pulp and the addition rate of chlorine dioxide (mass%) to the absolute dry mass of the unbleached pulp (addition rate of chlorine dioxide / mono).
  • a method for producing bleached pulp, wherein the addition rate of persulfuric acid) is 0.25 to 4.0.
  • a sulfuric acid bleaching step of treating with sulfuric acid is performed instead of the monopersulfuric acid bleaching step of the total organic carbon (TOC 1 ) of the wastewater obtained in the monopersulfuric acid bleaching step and the first chlorine dioxide bleaching step.
  • the TOC increase rate (TOC 1 / TOC 2 ⁇ 100) with respect to the total organic carbon (TOC 2 ) of the wastewater obtained in the sulfuric acid bleaching step and the first chlorine dioxide bleaching step in the reference method is more than 100%, as described above [1].
  • [6'] The production method according to any one of the above [1'] to [5'], wherein the treatment pH of the monosulfuric acid bleaching step is 2 to 5.
  • [7'] The production method according to any one of [1'] to [6'] above, further comprising an alkaline hydrogen peroxide bleaching step of treating with alkaline hydrogen peroxide.
  • [8'] The production method according to any one of the above [1'] to [7'], further comprising an ozone bleaching step of treating with ozone.
  • a means for producing bleached pulp having excellent whiteness is provided.
  • the method for producing bleached pulp of the present invention includes an alkaline oxygen bleaching step of bleaching unbleached pulp with alkaline oxygen, a monopersulfate bleaching step of treating with monopersulfate, and a first chlorine dioxide bleaching step of treating with chlorine dioxide. ,including.
  • the rate / addition rate of monopersulfuric acid is 0.25 to 4.0.
  • the method for producing bleached pulp may further include an unbleached pulp preparation step, an alkaline hydrogen peroxide bleaching step for treating with alkaline hydrogen peroxide, and an ozone bleaching step for treating with ozone.
  • each step may be repeated two or more times. For example, when the chlorine dioxide bleaching step is performed twice, the first chlorine dioxide bleaching step and the second chlorine dioxide bleaching step may be included.
  • the method for producing bleached pulp is an unbleached pulp preparation step, an alkali oxygen bleaching step (O step), a monopersulfate bleaching step (MPS step), an ozone bleaching step (Z step), and a chlorine dioxide bleaching step (step).
  • Step D) and alkaline hydrogen peroxide bleaching step (Ep step) are included in this order.
  • each step will be described.
  • the unbleached pulp preparation step is a step of preparing unbleached pulp mainly from a lignocellulosic substance.
  • lignocellulosic substance examples include wood, non-wood, used paper and the like.
  • the wood is not particularly limited, and examples thereof include broad-leaved trees such as eucalyptus, acacia, poplar, beech, maple, chestnut, kiri, hippopotamus, and elm; and coniferous trees such as sugi, pine, fir, cypress, and hemlock.
  • broad-leaved trees such as eucalyptus, acacia, poplar, beech, maple, chestnut, kiri, hippopotamus, and elm
  • coniferous trees such as sugi, pine, fir, cypress, and hemlock.
  • the non-wood is not particularly limited, and examples thereof include straw, pragmites, quail, kenaf, orange, and mandarin orange.
  • the lignocellulosic substance is preferably wood or used paper, more preferably wood, and even more preferably hardwood.
  • the above-mentioned lignocellulosic substance may be used alone or in combination of two or more.
  • Unbleached pulp is prepared by separating (melting) at least a portion of lignin from a lignocellulosic substance containing the cellulose that forms the backbone of the lignocellulosic substance, the cross-linking component hemicellulose, and the adhesive component lignin. .. That is, in one embodiment, the unbleached pulp preparation step comprises the step of cooking the lignocellulosic material. The unbleached pulp obtained after cooking is appropriately washed.
  • the cooking method is not particularly limited, and examples thereof include soda cooking, craft cooking, and sulfite cooking.
  • the soda cooking is a cooking method using sodium hydroxide and sodium carbonate.
  • the craft cooking is a cooking method using sodium hydroxide and sodium sulfide and / or polysodium sulfide.
  • the unbleached pulp obtained by kraft cooking is generally referred to as kraft pulp (KP).
  • the sulfite cooking is a cooking method using sulfurous acid or a salt thereof.
  • alkaline sulfide cooking using Na 2 SO 3 alkaline sulfide cooking using Na 2 SO 3 ; neutral sulfide cooking using Na 2 SO 3 and Na HSO 3 ; slightly acidic sulfide method using Na HSO 3 or Mg (HSO 3 ) 2 ; Acid sulphite method using NaHSO 3 and SO 2 , Mg (HSO 3 ) 2 and SO 2 , or Ca (HSO 3 ) 2 and SO 2 ; polysulfite method using sodium polysulfide (Na 2 S x ), etc. Can be mentioned.
  • the unbleached pulp obtained by sulphite cooking is generally referred to as sulphite pulp (SP).
  • a cooking aid may be used.
  • the cooking aid is not particularly limited, and examples thereof include benzoquinone, naphthoquinone, anthraquinone, anthrone, and phenanthroquinone.
  • Specific examples of the cooking aid include anthraquinone (AQ), 1,4-dihydro-9,10-dihydroxyanthracene (DDA) and the like. These cooking aids may be used alone or in combination of two or more.
  • kraft cooking and sulfite cooking are preferable, and kraft cooking and polysulfite cooking are more preferable.
  • the above-mentioned cooking method may be carried out alone or in combination of two or more.
  • hydrolysis may be carried out for the purpose of further removing at least a part of hemicellulose, which is a lignocellulosic substance.
  • the hydrolysis is usually performed prior to cooking. That is, in one embodiment, the unbleached pulp preparation step includes a step of hydrolyzing a lignocellulosic substance to obtain a hydrolyzate and a step of cooking the hydrolyzate. The hydrolyzate and / or unbleached pulp obtained after cooking is appropriately washed.
  • the method of hydrolysis is not particularly limited, and examples thereof include a method of adding water to a lignocellulosic substance and heating it. As a result, the acetyl group is desorbed from hemicellulose to generate acetic acid, the liquid becomes acidic, and acid hydrolysis proceeds. An acid may be added for the purpose of promoting hydrolysis.
  • the whiteness of the unbleached pulp is preferably 30 to 60%, more preferably 40 to 55%.
  • the whiteness of the unbleached pulp is 30% or more, the cost of the bleaching treatment can be reduced, which is preferable.
  • the whiteness of the unbleached pulp is 60% or less, the cost of cooking can be reduced, which is preferable.
  • the whiteness of unbleached pulp is measured by the following method. That is, two sheets having a basis weight of 400 g / m 2 were prepared according to ISO3688: 1977. Using the obtained sheet, the whiteness (%) of the pulp is measured according to JIS P8148: 2001.
  • the potassium permanganate value (K value) of the unbleached pulp is preferably 5 to 10, and more preferably 6 to 9.
  • K value of the unbleached pulp is 5 or more, the cost of cooking can be reduced, which is preferable.
  • the K value of the unbleached pulp is 10 or less, the amount of chlorine dioxide used and the cost of the bleaching treatment can be reduced, which is preferable.
  • the K value of unbleached pulp is measured by the following method. That is, the K value of the unbleached pulp is measured according to TAPPI UM 253: 2010.
  • the viscosity of the unbleached pulp is preferably 15 cP or more, more preferably 17 cP or more, and further preferably 20 cP or more.
  • the upper limit of the viscosity of the unbleached pulp is not particularly limited, but is preferably 25 cP or less.
  • the viscosity of the unbleached pulp is 25 cP or less, the viscosity of the paper can be maintained, which is preferable.
  • the viscosity of unbleached pulp is measured by the following method. That is, the viscosity of the unbleached pulp was changed to J. TAPPI No. Measure according to the 44 method.
  • the hexenuronic acid content (HexA content) of the unbleached pulp is preferably 25 to 50 ⁇ mol / g, more preferably 30 to 40 ⁇ mol / g.
  • the HexA content of the unbleached pulp is 25 ⁇ mol / g or more, the cost of cooking can be reduced, which is preferable.
  • the HexA content of the unbleached pulp is 50 ⁇ mol / g or less, the cost of the bleaching treatment can be reduced, which is preferable.
  • the HexA content of unbleached pulp is measured by the following method.
  • the alkaline oxygen bleaching step is a step of removing lignin and the like contained in pulp by oxygen bleaching under alkaline conditions.
  • the alkaline oxygen bleaching step is usually carried out by adding oxygen to a pulp slurry containing alkaline pulp and bleaching it. The pulp obtained after the bleaching treatment is appropriately washed.
  • Pulp slurry contains pulp and water.
  • the pulp is not particularly limited and may be unbleached pulp or pulp that has undergone another bleaching step, but unbleached pulp is preferable.
  • the pulp concentration is preferably 8 to 40% by mass, more preferably 10 to 35% by mass, based on the total mass of the pulp slurry.
  • the pH of the pulp slurry is alkaline. Specifically, the pH of the pulp slurry is preferably 8 to 14, and more preferably 10 to 14.
  • bases such as sodium hydroxide (caustic soda) and potassium hydroxide
  • acids such as sulfuric acid, nitric acid, nitric acid, phosphoric acid, boric acid, and carbonic acid
  • oxidized kraft white liquor can be used.
  • the bleaching treatment method is not particularly limited, and examples thereof include a medium concentration method (pulp concentration: 8 to 25% by mass, preferably 10 to 15% by mass) and a high concentration method (pulp concentration: 25 to 40% by mass). .. Of these, the medium concentration method is preferable.
  • the addition rate of oxygen gas is preferably 0.5 to 3% by mass with respect to the absolute dry mass of the unbleached pulp.
  • the oxygen used is not particularly limited, but is oxygen obtained by the deep cold separation method, oxygen obtained by pressure swing adsorption (PSA: Pressure Swing Adsorption), and vacuum swing adsorption (VSA: Vacuum Swing Adsorption). Examples thereof include oxygen obtained by the above method.
  • the mixing method is not particularly limited, but it is preferable to use a high shear mixer.
  • Specific examples include the Kamyr method, the Sunds-Defibrator method, the Kunststoffa-Repola method, and the Impcpo method.
  • the treatment temperature of the alkaline oxygen bleaching step is preferably 80 to 120 ° C.
  • the treatment time of the alkaline oxygen bleaching step is preferably 15 to 100 minutes.
  • the monosulfuric acid bleaching step is a step of removing hexaneuronic acid (HexA) and the like contained in the pulp with monosulfuric acid (MPS).
  • Hexeneuronic acid (HexA) is a substance produced by demethanolization of methylglucuronic acid in the xylan side chain of hemicellulose during cooking.
  • the content of hexenuronic acid (HexA) in the bleached pulp correlates with the fading of the bleached pulp.
  • the monosulfuric acid bleaching step (MPS step) is usually carried out by adding monosulfuric acid (MPS) to the pulp slurry and bleaching it. The pulp obtained after the bleaching treatment is appropriately washed.
  • Pulp slurry contains pulp and water. In addition, additives may be further contained.
  • the pulp is not particularly limited and may be unbleached pulp or pulp that has undergone another bleaching step, but unbleached pulp or pulp that has undergone an alkali oxygen bleaching step is preferable.
  • the pulp concentration is preferably 5 to 30% by mass, more preferably 8 to 15% by mass from the viewpoint of operability, with respect to the total mass of the pulp slurry.
  • additives examples include lignin, bleach-derived substances and the like.
  • the bleaching-derived substance is not particularly limited, but is limited to a lignin derivative, 2-methoxyphenol, 3-methoxyphenol, 4-methoxyphenol, 5-amino-methoxyphenol, muconic acid, 2,5-dimethyl-2,4-. Hexadiendionic acid, and these oxides are mentioned.
  • the lignin derivative is not particularly limited, and examples thereof include lignin sulfonate calcium salt, lignin sulfonate sodium salt, lignin sulfonic acid, lignin sulfonate sodium acetate salt, and organosolvrignin.
  • lignin and bleach-derived substances By adding lignin and bleach-derived substances, the ability to remove hexauronic acid (HexA) by monosulfuric acid (MPS) can be improved.
  • lignin and bleach-derived substances those prepared or prepared separately may be used as additives, but wastewater obtained in the bleaching step of the method for producing bleached pulp may be used. Since lignin and bleach-derived substances are removed from the pulp in each bleaching step of the method for producing bleached pulp, the obtained wastewater may contain lignin and bleach-derived substances.
  • the wastewater containing lignin and bleach-derived substances is not particularly limited, but is unbleached pulp preparation step, alkali oxygen bleaching step (O step), monopersulfate bleaching step (MPS step), ozone bleaching step (Z step), and dioxide.
  • Examples thereof include a chlorine bleaching step (D step) and an alkaline hydrogen peroxide bleaching step (Ep step).
  • the "drainage" is usually derived from the washing liquid of pulp after the bleaching treatment. Of these, it is preferable to reuse the wastewater from the monopersulfate bleaching step (MPS step) and the chlorine dioxide bleaching step (D step), and the monopersulfate bleaching step (MPS step) and the first chlorine dioxide bleaching step (MPS step).
  • step D it is more preferable to reuse the wastewater from step D). That is, in a preferred embodiment, in the monopersulfuric acid bleaching step (MPS step), at least a part of the wastewater obtained in the monopersulfuric acid bleaching step and the wastewater obtained in the first chlorine dioxide bleaching step is monoperfused. Includes reuse in the sulfuric acid bleaching process.
  • MPS step monopersulfuric acid bleaching step
  • the total organic carbon (TOC) of the wastewater is preferably 50 mg / L or more, more preferably ⁇ 500 mg / L, and further preferably 95 to 300 mg / L.
  • the total organic carbon (TOC) includes lignin and bleach-derived substances.
  • concentration of total organic carbon (TOC) in the wastewater the value measured by the same method as the method described in the examples shall be adopted.
  • the wastewater obtained by the bleaching step of the present invention contains a large amount of lignin and bleach-derived substances, so that the concentration of total organic carbon is high. Then, by reusing the wastewater in the monosulfuric acid bleaching step, HexA can be removed at low cost and with high efficiency.
  • the pH of the pulp slurry is preferably 1 to 6, more preferably 2 to 5. That is, in one embodiment, the treatment pH of the monosulfuric acid bleaching step is preferably 1 to 6, and more preferably 2 to 5. When the treatment pH is in the above range, HexA can be preferably removed, which is preferable.
  • Acid can be added for the purpose of adjusting the pH of the pulp slurry.
  • examples of the acid include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, boric acid, carbonic acid and the like.
  • sulfuric acid is preferable as the acid used for pH adjustment.
  • the acid used for the pH adjustment may be used alone or in combination of two or more.
  • the bleaching treatment is preferably carried out by adding monosulfuric acid (MPS) to the pulp slurry and mixing them.
  • MPS monosulfuric acid
  • MPS Monopersulfuric acid
  • H2 SO 5 Hydrophilic acid
  • the amount of monopersulfate (MPS) added is preferably 0.01 to 5% by mass, more preferably 0.05 to 3% by mass, and 0, based on the absolute dry mass of the unbleached pulp. It is more preferably .10 to 2% by mass, particularly preferably 0.15 to 1.75% by mass, and most preferably 0.30 to 1.75% by mass.
  • the amount of monopersulfate (MPS) added is preferably 0.15 to 1.75% by mass, preferably 0.22 to 1.0% by mass, based on the absolute dry mass of the unbleached pulp. %, More preferably 0.22 to 0.75% by mass, and particularly preferably 0.3 to 0.5% by mass.
  • MPS monosulfuric acid
  • HexA lignin and / or hexenuronic acid
  • the obtained bleached pulp may have effects such as high whiteness, low K-value residual rate, and low HexA content residual rate.
  • the ratio of the addition rate of monopersulfuric acid (mass%) to the absolute dry mass of unbleached pulp and the addition rate of chlorine dioxide (mass%) to the absolute dry mass of unbleached pulp (chlorine dioxide addition rate / mono).
  • the addition rate of persulfuric acid is within a predetermined range and the amount of monopersulfuric acid (MPS) added is within the above-mentioned predetermined range, the amount of chlorine dioxide added in the chlorine dioxide bleaching step (step D) described later is increased. It becomes a predetermined value. That is, when the addition rate is within a predetermined range, both the bleaching effect in the monosulfuric acid bleaching step (MPS step) and the bleaching effect in the chlorine dioxide bleaching step (D step) can be effectively obtained.
  • monosulfuric acid can be produced by a known method.
  • specific examples of the method for producing monopersulfuric acid (MPS) include a method in which sulfuric acid is added dropwise to a hydrogen peroxide solution and mixed.
  • the concentration of the hydrogen peroxide solution is preferably 20 to 70% by mass, more preferably 35 to 70% by mass.
  • the concentration of the sulfuric acid is preferably 80 to 98% by mass, more preferably 93 to 98% by mass.
  • the mixing molar ratio of the sulfuric acid and hydrogen peroxide is preferably 1: 1 to 5: 1, and more preferably 2: 1 to 4: 1.
  • the treatment temperature of the monosulfuric acid bleaching step is preferably 40 to 110 ° C, more preferably 40 to 105 ° C, further preferably 40 to 98 ° C, and preferably 70 to 98 ° C. Especially preferable.
  • the treatment temperature of the monosulfuric acid bleaching step is preferably 40 to 98 ° C, more preferably 55 to 98 ° C, still more preferably 65 to 98 ° C, and even more preferably 80 to 98 ° C. It is particularly preferable to be ° C.
  • the treatment temperature of the monosulfuric acid bleaching step may have effects such as lowering the K value residual rate of the obtained bleached pulp and lowering the HexA content residual rate.
  • the obtained bleached pulp may be less likely to deteriorate, for example, decrease in whiteness or decrease in viscosity.
  • the treatment time of the monosulfuric acid bleaching step is preferably 2 to 200 minutes, more preferably 5 to 180 minutes, further preferably 10 to 170 minutes, and preferably 70 to 160 minutes. It is particularly preferable, and most preferably 100 to 150 minutes.
  • the treatment time of the monosulfuric acid bleaching step is preferably 30 to 180 minutes, more preferably 40 to 160 minutes, further preferably 60 to 150 minutes, and even more preferably 80 to 140 minutes. Minutes are particularly preferred, and 100-130 minutes are most preferred.
  • the treatment time of the monosulfuric acid bleaching step is preferably 30 to 120 minutes, more preferably 60 to 120 minutes, and 90 to 120 minutes from the viewpoint of productivity. Is more preferable.
  • the ozone bleaching step is a step of removing lignin and the like contained in pulp by ozone.
  • the ozone bleaching step is usually carried out by adding ozone to a pulp slurry containing pulp and bleaching it.
  • the method for producing bleached pulp preferably further comprises an ozone bleaching step of treating with ozone. The pulp obtained after the bleaching treatment is appropriately washed.
  • Pulp slurry contains pulp and water.
  • the pulp is usually a pulp that has undergone another bleaching step, preferably at least a pulp that has undergone an alkali oxygen bleaching step and a monosulfuric acid bleaching step.
  • the pulp concentration is preferably 8 to 40% by mass, more preferably 10 to 35% by mass, based on the total mass of the pulp slurry.
  • the pH of the pulp slurry is preferably 1 to 6, more preferably 1 to 5, and even more preferably 1 to 3.
  • bases such as sodium hydroxide (caustic soda) and potassium hydroxide; acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, boric acid and carbonic acid can be used.
  • the bleaching treatment method is not particularly limited, and examples thereof include a medium concentration method (pulp concentration: 8 to 25% by mass, preferably 10 to 15% by mass) and a high concentration method (pulp concentration: 25 to 40% by mass). .. Of these, the medium concentration method is preferable.
  • Ozone has a short life, so it is preferable to prepare it at the time of use.
  • the method for preparing ozone is not particularly limited, but a method for preparing ozone by corona discharge of oxygen gas is preferable.
  • the oxygen used is liquid oxygen, oxygen obtained by the cold separation method, oxygen obtained by pressure swing adsorption (PSA: Pressure Swing Adsorption), and oxygen obtained by vacuum swing adsorption (VSA: Vacuum Swing Adsorption). Examples include the oxygen obtained.
  • the addition rate of ozone is preferably 0.05 to 20% by mass, more preferably 0.1 to 15% by mass, and 0.1 to 10% by mass with respect to the absolute dry mass of the unbleached pulp. It is more preferably%, and particularly preferably 0.1 to 1% by mass.
  • the treatment temperature of the ozone bleaching step is preferably 0 to 100 ° C, more preferably 10 to 80 ° C, further preferably 30 to 80 ° C, and particularly preferably 50 to 80 ° C. preferable.
  • the treatment time of the ozone bleaching step is preferably 5 seconds to 60 minutes, more preferably 10 seconds to 10 minutes.
  • the chlorine dioxide bleaching step is a step of removing lignin and the like contained in pulp by chlorine dioxide.
  • ECF bleaching can be achieved by using chlorine dioxide instead of chlorine itself or hypochlorous acid. Further, by appropriately combining other bleaching steps, the amount of chlorine dioxide used in the chlorine dioxide bleaching step can be reduced, and light ECF bleaching can be achieved.
  • the "first chlorine dioxide bleaching step” means the chlorine dioxide bleaching step first performed in the bleaching step (bleaching sequence).
  • the chlorine dioxide bleaching step is usually performed by adding chlorine dioxide to a pulp slurry containing pulp and bleaching it.
  • the pulp obtained after the bleaching treatment is appropriately washed.
  • Pulp slurry contains pulp and water.
  • the pulp is usually a pulp that has undergone another bleaching step, preferably at least a pulp that has undergone an alkali oxygen bleaching step and a monosulfuric acid bleaching step.
  • the pulp concentration is preferably 5 to 30% by mass with respect to the total mass of the pulp slurry, and more preferably 8 to 15% by mass from the viewpoint of operability.
  • the pH of the pulp slurry is preferably 1.5 to 6, more preferably 2 to 6 because it can suppress the decomposition of cellulose, and 3 to 5 because it can enhance the decomposition of hexenuronic acid. More preferred.
  • bases such as sodium hydroxide (caustic soda) and potassium hydroxide; acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, boric acid and carbonic acid can be used.
  • the bleaching treatment is preferably carried out by adding chlorine dioxide to the pulp slurry and mixing them.
  • the amount of chlorine dioxide added is preferably 0.01 to 2.0% by mass, more preferably 0.05 to 1.5% by mass, based on the absolute dry mass of the unbleached pulp. It is more preferably 0.1 to 1.0% by mass, and particularly preferably 0.1 to 0.8% by mass.
  • the amount of chlorine dioxide added is preferably 0.1 to 2.0% by mass, preferably 0.1 to 1.0% by mass, based on the absolute dry mass of the unbleached pulp. Is more preferable, 0.2 to 0.8% by mass is further preferable, and 0.3 to 0.7% by mass is particularly preferable.
  • bleached pulp having a higher whiteness can be produced by setting the ratio of the addition rate of monosulfuric acid to the addition rate of chlorine dioxide within a predetermined range.
  • the ratio (addition rate ratio) is 0.25 to 4.0, preferably 0.25 to 3.5, more preferably 0.25 to 4.0, and even more preferably 0.5 to 4.0. It is 4.0.
  • the method for producing bleached pulp includes two or more chlorine dioxide bleaching steps (step D)
  • the chlorine dioxide addition rate is the same as the chlorine dioxide addition rate in the first chlorine dioxide bleaching step (step D). means.
  • addition rate ratio is in the range of 0.25 or less, lignin is repolymerized in the monosulfuric acid bleaching step, and the chlorine dioxide addition rate increases in the subsequent chlorine dioxide bleaching step. If the addition rate ratio is in the range of 4.0 or more, monosulfuric acid is insufficient, so that sufficient bleaching cannot be performed in the monosulfuric acid bleaching step. As a result, it is possible to produce bleached pulp having an excellent whiteness at the addition rate ratio. In addition, the HexA content can be reduced, and bleached pulp that does not easily fade can be produced.
  • the addition rate ratio is preferably 0.3 to 3.0, more preferably 0.5 to 2.3, and further preferably 0.5 to 1.8. It is preferably 0.9 to 1.8, and most preferably 1.0 to 1.5.
  • the bleaching balance between the monosulfuric acid bleaching step and the chlorine dioxide bleaching step becomes suitable, and for example, lignin and / or hexeneuronic acid (HexA) can be preferably removed from unbleached pulp. can.
  • the obtained bleached pulp may have effects such as high whiteness, low K-value residual rate, and low HexA content residual rate.
  • the addition ratio is preferably 0.25 to 2.0, more preferably 0.25 to 1.5, and more preferably 0.25 to 1.0. Further preferably, it is particularly preferably 0.25 to 0.5, and most preferably 0.25 to 0.3.
  • the bleaching balance between the monosulfuric acid bleaching step and the chlorine dioxide bleaching step is suitable, and for example, the bleached pulp is less likely to deteriorate, which is preferable. Specifically, it is preferable because the whiteness of the bleached pulp is less likely to deteriorate and the viscosity is less likely to decrease due to deterioration.
  • the chlorine dioxide is, for example, a method of reacting sodium sulfite with sulfur dioxide, a method of reacting sodium chlorite with sulfuric acid, a method of reacting calcium chlorate with hydrochloric acid, and a method of reacting sodium chlorate with sodium chloride with sulfuric acid. It can be prepared by a method, a method of reacting sodium chlorate with methanol and sulfuric acid, a method of reacting sodium chlorate with hydrogen peroxide and sulfuric acid, or the like.
  • the treatment temperature of the chlorine dioxide bleaching step is preferably 20 to 100 ° C, more preferably 40 to 90 ° C.
  • the treatment temperature of the chlorine dioxide bleaching step is preferably 30 to 90 ° C, more preferably 40 to 90 ° C, particularly preferably 50 to 80 ° C, and 65 to 75 ° C. Is most preferable.
  • the treatment time of the chlorine dioxide bleaching step is preferably 1 minute to 5 hours, more preferably 10 to 180 minutes, further preferably 20 to 150 minutes, and preferably 20 to 120 minutes. It is particularly preferable, and most preferably 50 to 130 minutes.
  • the treatment time of the chlorine dioxide bleaching step is preferably 10 to 150 minutes, more preferably 10 to 130 minutes, still more preferably 15 to 100 minutes, and 20 to 80 minutes. Is particularly preferable, and 30 to 60 minutes is most preferable.
  • the treatment time of the chlorine dioxide bleaching step is 10 minutes or more, the obtained bleached pulp may have a higher whiteness, and the obtained bleached pulp may be less likely to deteriorate.
  • the treatment time of the chlorine dioxide bleaching step is 150 minutes or less, it is preferable from the viewpoints that bleached pulp having excellent whiteness can be efficiently produced and productivity is excellent.
  • the alkaline hydrogen peroxide bleaching step is a step of removing lignin and the like contained in pulp by hydrogen peroxide bleaching under alkaline conditions.
  • Alkaline hydrogen peroxide bleaching is usually carried out by adding hydrogen peroxide to a pulp slurry containing alkaline pulp and performing a bleaching treatment.
  • the method for producing bleached pulp preferably further comprises an alkaline hydrogen peroxide bleaching step of treating with alkaline hydrogen peroxide. The pulp obtained after the bleaching treatment is appropriately washed.
  • Pulp slurry contains pulp and water.
  • the pulp is not particularly limited and may be unbleached pulp or pulp that has undergone another bleaching step, but unbleached pulp is preferable.
  • the pulp concentration is preferably 8 to 40% by mass, more preferably 10 to 35% by mass, based on the total mass of the pulp slurry.
  • the pH of the pulp slurry is alkaline. Specifically, the pH of the pulp slurry is preferably 8 to 14, and more preferably 10 to 14.
  • bases such as sodium hydroxide (caustic soda) and potassium hydroxide; acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, boric acid and carbonic acid can be used.
  • the method of bleaching treatment is not particularly limited, but is limited to a medium concentration method (pulp concentration: 8 to 25% by mass, preferably 10 to 15% by mass, preferably 10 to 15% by mass) and a high concentration method (pulp concentration: 25). ⁇ 40% by mass). Of these, the medium concentration method is preferable.
  • Hydrogen peroxide is preferably added in the form of hydrogen peroxide solution.
  • the hydrogen peroxide solution includes hydrogen peroxide and water.
  • the hydrogen peroxide solution may further contain an additive.
  • the concentration of hydrogen peroxide in the hydrogen peroxide solution is preferably 1 to 80% by mass, more preferably 10 to 70% by mass, and 30 to 65% by mass with respect to the total mass of the hydrogen peroxide solution. % Is more preferable.
  • the additive is not particularly limited, but is limited to sodium silicate, magnesium silicate, nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminetetraacetic acid (DTPA), aminotri (methylenesulfonic acid) (ATMP), and the like.
  • Stabilizers such as diethylenetriaminepenta (methylenephosphonic acid) (DTPMP) and sodium poly- ⁇ -hydroxyacrylic acid (PHAS) can be mentioned. These stabilizers may be used alone or in combination of two or more.
  • the concentration of the additive in the hydrogen peroxide solution is preferably 0.01 to 5% by mass, more preferably 0.05 to 3% by mass, and 0, based on the total mass of the hydrogen peroxide solution. .1 to 1% by mass is more preferable.
  • the amount of hydrogen peroxide added is preferably 0.01 to 10% by mass, more preferably 0.03 to 5% by mass, and 0.05 to the absolute dry mass of the unbleached pulp. It is more preferably to 2% by mass.
  • oxygen may be further added together with hydrogen peroxide. By adding oxygen, bleaching with oxygen can also be performed.
  • oxygen is used in combination in the alkaline hydrogen peroxide bleaching step (Ep step), it may be particularly referred to as an Eop step.
  • the addition rate of oxygen gas is preferably 0.1 to 3% by mass with respect to the absolute dry mass of the unbleached pulp.
  • the oxygen used is not particularly limited, but is oxygen obtained by the deep cold separation method, oxygen obtained by pressure swing adsorption (PSA: Pressure Swing Adsorption), and vacuum swing adsorption (VSA: Vacuum Swing Adsorption). Examples thereof include oxygen obtained by the above method.
  • the treatment temperature of the alkaline hydrogen peroxide bleaching step is preferably 40 to 120 ° C, more preferably 50 to 100 ° C, and even more preferably 60 to 90 ° C.
  • the treatment time of the alkaline hydrogen peroxide bleaching step is preferably 15 to 150 minutes, more preferably 15 to 120 minutes, and even more preferably 15 to 100 minutes.
  • the unbleached pulp preparation step the alkaline oxygen bleaching step (O step), the monopersulfate bleaching step (MPS step), the ozone bleaching step (Z step), the chlorine dioxide bleaching step (D step), and the alkaline excess step.
  • O step alkaline oxygen bleaching step
  • MPS step monopersulfate bleaching step
  • Z step ozone bleaching step
  • D step chlorine dioxide bleaching step
  • alkaline excess step the form including the hydrogen peroxide bleaching step (Ep step) in this order has been described, it is possible to use a modified example in which the presence / absence of each bleaching step, the order change, and the repetition are changed. Thereby, the physical characteristics of the obtained bleached pulp, the amount of chlorine dioxide used, and the like can be appropriately controlled.
  • the method for producing bleached pulp includes an O step, an MPS step, a first D step, an Ep step, and a second D step in this order.
  • the manufacturing cost can be reduced.
  • the method for producing bleached pulp includes an O step, an MPS step, a Z step, a first D step, an Eop step, and a second D step in this order.
  • the Eop step is a step in which oxygen is used in combination in the Ep step as described above.
  • the Z step it is preferable to perform the first D step without cleaning.
  • the method for producing bleached pulp includes an O step, an MPS step, a Z step, a first D step, an Ep step, and a second D step in this order. At this time, after the Z step, it is preferable to perform the first D step without cleaning.
  • the method for producing bleached pulp includes an O step, an MPS step, a Z step, an Ep step, and a first D step in this order. At this time, it is preferable to perform the Ep step without washing after the Z step.
  • the bleached pulp produced by the above-mentioned production method has excellent whiteness.
  • the whiteness of the bleached pulp is preferably 50% or more, more preferably 50 to 80%, and even more preferably 55 to 70%.
  • the whiteness of the bleached pulp is 50% or more, it is preferable because the bleached pulp has an excellent whiteness.
  • the whiteness of the bleached pulp adopts the value measured by the method of the example.
  • the rate of increase in whiteness of bleached pulp (whiteness of bleached pulp / whiteness of unbleached pulp ⁇ 100) is preferably 115% or more, more preferably 117% or more, and 119% or more. More preferably, it is particularly preferably 120% or more, and most preferably 121% or more.
  • the potassium permanganate value (K value) of the bleached pulp is preferably 6 or less, more preferably 5 or less, further preferably 1 to 4, and particularly preferably 2 to 3. .
  • the K value of bleached pulp is an index showing the amount of residual lignin in the pulp. Further, in the present specification, the K value of the bleached pulp adopts the value measured by the method of the example.
  • the residual ratio of the K value of the bleached pulp is preferably 65% or less, more preferably 56% or less, and 40% or less. Is more preferable, 35% or less is particularly preferable, and 33% or less is most preferable.
  • the viscosity of the bleached pulp is preferably 10 cP or more, more preferably 12 cP or more, and further preferably 14 to 20 cP.
  • the viscosity of the bleached pulp is 10 cP or more, the strength of the paper can be maintained, which is preferable.
  • the viscosity of the bleached pulp adopts the value measured by the method of the example.
  • the retention rate of the viscosity of the bleached pulp is preferably 60% or more, more preferably 70% or more, still more preferably 80% or more. , 85% or more is particularly preferable.
  • the hexenuronic acid content (HexA content) of the bleached pulp is preferably 30 ⁇ mol / g or less, more preferably 20 ⁇ mol / g or less, and further preferably 1 to 10 ⁇ mol / g.
  • the HexA content of the bleached pulp is 30 ⁇ mol / g or less, the bleached pulp does not easily fade, which is preferable.
  • the HexA content of the bleached pulp adopts the value measured by the method of the example.
  • the residual rate of HexA content in bleached pulp is preferably 75% or less, more preferably 65% or less, and more preferably 60% or less. It is more preferably 30% or less, and most preferably 15% or less.
  • the ratio of the addition rate of monopersulfate in the monopersulfuric acid bleaching step (MPS step) to the addition rate of chlorine dioxide in the first chlorine dioxide bleaching step (D step) is within a predetermined range. Therefore, lignin and the like can be removed, and bleached pulp having excellent whiteness can be produced. This effect is significantly higher than that of the prior art in which the monosulfuric acid bleaching step (MPS step) of the present invention is performed in place of the sulfuric acid bleaching step of treating with sulfuric acid. This can be confirmed by comparing the ratio of total organic carbon (TOC) in each method.
  • TOC total organic carbon
  • the TOC of the wastewater obtained in the monopersulfuric acid bleaching step (washing drainage of pulp after the bleaching treatment) and the wastewater obtained in the first chlorine dioxide bleaching step (after the bleaching treatment).
  • TOC 1 is calculated as the sum of TOCs (washing and draining liquid of pulp).
  • a method of performing a sulfuric acid bleaching step instead of the MPS step of the method of the present invention hereinafter also referred to as a "reference method”
  • wastewater obtained in the sulfuric acid bleaching step specifically, a method).
  • TOC 2 is calculated as the sum of the TOC of the washing and draining pulp of the pulp after the bleaching treatment and the TOC of the wastewater obtained in the first chlorine dioxide bleaching step (washing and draining of the pulp after the bleaching treatment).
  • TOC increase rates (TOC 1 / TOC 2 ⁇ 100) are calculated, it is preferably more than 100%, more preferably more than 110%, and even more preferably more than 115%.
  • the TOC in the wastewater contains lignin, a bleach-derived substance (lignin derivative, etc.). Therefore, when the TOC increase rate is more than 100%, it means that lignin and the like can be more preferably removed than in the conventional technique of performing a sulfuric acid bleaching step.
  • a sulfuric acid bleaching step of treating with sulfuric acid instead of the monopersulfuric acid bleaching step of the total organic carbon (TOC 1 ) of the wastewater obtained in the monopersulfate bleaching step and the first chlorine dioxide bleaching step is preferably more than 100%. It is preferably more than 110%, more preferably more than 115%.
  • Example 1 Using the pulp after the alkaline oxygen bleaching step (O step) in which the unbleached pulp is bleached with alkaline oxygen (hereinafter referred to as "raw pulp"), the monopersulfate bleaching step (MPS step) and the first chlorine dioxide bleaching are performed. A step (step D) was carried out to produce bleached pulp.
  • O step alkaline oxygen bleaching step
  • MPS step monopersulfate bleaching step
  • a step D was carried out to produce bleached pulp.
  • the bleaching treatment was performed by immersing in a constant temperature water tank at 98 ° C. for 120 minutes.
  • the pulp after the MPS process was washed. Specifically, pure water was added until the pulp concentration reached 2.4%, and then dehydrated until the pulp concentration reached 20% (cleaning rate 90%).
  • Bleaching was performed by immersing in a constant temperature water bath at 70 ° C. for 120 minutes, and the pulp was washed by the same method as in the MPS step.
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp were measured by the following methods.
  • a pulp sheet (acidic paper machine) prepared by the following method was used as a measurement sample.
  • the pulp sheet (acidic paper) was prepared by diluting the bleached pulp with 2 L of pure water and then adjusting the pH to 5.5 with sulfurous acid water. Next, two sheets were prepared on the Büchner funnel and air-dried for 12 hours.
  • K value [Potassium permanganate (K value)]
  • the K value was measured according to TAPPI UM 253: 2010. As a result, the K value was 2.6 (residual rate of K value with respect to the raw material pulp: 37%).
  • Total organic carbon (TOC) in wastewater 50 mL of washing wastewater (drainage from the MPS step) obtained by dehydration during pulp washing after the MPS step was collected.
  • the collected wastewater from the MPS process was used as a total organic carbon meter TOV-VCN (manufactured by SHIMADZU) to volatilize inorganic carbon by adding acid and aeration treatment, and the sample was used as non-Purgeable Organic Carbon (NPOC).
  • NPOC non-Purgeable Organic Carbon
  • the TOC in the drainage of the MPS process was measured in the NPOC mode to be measured.
  • potassium hydrogen phthalate and sodium hydrogen carbonate were used as standard samples according to JISK0551: 1994.
  • total organic carbon (TOC) in the wastewater was 289 mg / L.
  • the TOC increase rate in wastewater in Example 1 was calculated based on Reference Example 1 (reference method) in which a sulfuric acid bleaching step of treating with sulfuric acid was performed instead of the MPS step of Example 1.
  • Reference Example 1 was carried out as follows.
  • the ISO whiteness, potassium permanganate value (K value), viscosity, hexenuronic acid content (HexA content), and total organic carbon (TOC) in the wastewater of the bleached pulp are measured by the same method as above. bottom.
  • the ISO whiteness was 56.4% (increased rate with respect to the raw material pulp: 115%)
  • the K value was 2.6 (residual rate with respect to the raw material pulp: 37%)
  • the viscosity was 14 cP (retention rate with respect to the raw material pulp: 78). %)
  • the HexA content was 4.8 ⁇ mol / g (residual ratio to raw material pulp: 15%).
  • the TOC in the wastewater of the MPS step (sulfuric acid bleaching step) and the TOC in the wastewater of the D step were measured, and the sum (total organic carbon (TOC) in the wastewater) was calculated. It was / L.
  • the TOC increase rate in the wastewater in Example 1 was calculated by the following formula and found to be 112%.
  • Example 2 Bleaching in the same manner as in Example 1 except that the amount of monosulfuric acid added in the monosulfuric acid bleaching step (MPS step) was changed to 0.20% by mass with respect to the absolute dry mass of the unbleached pulp. Produced pulp.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 2.50.
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp, and the total organic carbon (TOC) in the wastewater were determined by the same method as in Example 1. It was measured. As a result, the ISO whiteness was 58.3% (increased rate with respect to the raw material pulp: 119%), the K value was 2.4 (residual rate with respect to the raw material pulp: 35%), and the viscosity was 15 cP (retention rate with respect to the raw material pulp: 83).
  • the HexA content was 5.6 ⁇ mol / g (residual rate with respect to the raw material pulp: 17%), and the TOC in the wastewater was 295 mg / L (TOC increase rate with respect to Reference Example 1: 115%).
  • Example 3 Bleaching in the same manner as in Example 1 except that the amount of monosulfuric acid added in the monosulfuric acid bleaching step (MPS step) was changed to 0.25% by mass with respect to the absolute dry mass of the unbleached pulp. Produced pulp.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 2.00.
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp, and the total organic carbon (TOC) in the wastewater were determined by the same method as in Example 1. It was measured. As a result, the ISO whiteness was 59.0% (increased rate with respect to the raw material pulp: 120%), the K value was 2.38 (residual rate with respect to the raw material pulp: 34%), and the viscosity was 14.6 cP (retention rate with respect to the raw material pulp). : 81%), HexA content was 4.8 ⁇ mol / g (residual rate with respect to raw material pulp: 15%), and TOC in wastewater was 295 mg / L (TOC increase rate with respect to Reference Example 1: 115%).
  • Example 4 The pH at the start of the reaction in the monopersulfate bleaching step (MPS step) was changed to about 3.5, and the amount of monopersulfuric acid added was changed to 0.40% by mass with respect to the absolute dry mass of the unbleached pulp.
  • the bleached pulp was produced in the same manner as in Example 1 except for the above.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 1.25.
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp, and the total organic carbon (TOC) in the wastewater were determined by the same method as in Example 1. It was measured. As a result, the ISO whiteness was 60.6% (increased rate with respect to the raw material pulp: 123%), the K value was 2.2 (residual rate with respect to the raw material pulp: 32%), and the viscosity was 14 cP (retention rate with respect to the raw material pulp: 78). %), The HexA content was 3.9 ⁇ mol / g (residual rate with respect to raw material pulp: 12%), and the TOC in wastewater was 297 mg / L (TOC increase rate with respect to Reference Example 1: 116%).
  • Example 5 Bleaching in the same manner as in Example 1 except that the amount of monosulfuric acid added in the monosulfuric acid bleaching step (MPS step) was changed to 0.60% by mass with respect to the absolute dry mass of the unbleached pulp. Produced pulp. The addition rate of chlorine dioxide / addition rate of monosulfuric acid is 0.83.
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp, and the total organic carbon (TOC) in the wastewater were determined by the same method as in Example 1. It was measured. As a result, the ISO whiteness was 60.0% (increased rate with respect to the raw material pulp: 122%), the K value was 2.2 (residual rate with respect to the raw material pulp: 32%), and the viscosity was 13.2 cP (retention rate with respect to the raw material pulp). : 73%), HexA content was 3.2 ⁇ mol / g (residual rate with respect to raw material pulp: 10%), and TOC in wastewater was 295 mg / L (TOC increase rate with respect to Reference Example 1: 115%).
  • Example 6 The pH at the start of the reaction in the monopersulfate bleaching step (MPS step) was changed to about 3.2, and the amount of monopersulfuric acid added was changed to 1.50% by mass with respect to the absolute dry mass of the unbleached pulp.
  • the bleached pulp was produced in the same manner as in Example 1 except for the above.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 0.33.
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp, and the total organic carbon (TOC) in the wastewater were determined by the same method as in Example 1. It was measured. As a result, the ISO whiteness was 59.2% (increased rate with respect to the raw material pulp: 120%), the K value was 2.3 (residual rate with respect to the raw material pulp: 33%), and the viscosity was 12 cP (retention rate with respect to the raw material pulp: 67). %), The HexA content was 2.0 ⁇ mol / g (residual rate with respect to raw material pulp: 6%), and the TOC in wastewater was 287 mg / L (TOC increase rate with respect to Reference Example 1: 112%).
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp, and the total organic carbon (TOC) in the wastewater were determined by the same method as in Example 1. It was measured. As a result, the ISO whiteness was 56.2% (increased rate with respect to the raw material pulp: 114%), the K value was 2.6 (residual rate with respect to the raw material pulp: 37%), and the viscosity was 11 cP (retention rate with respect to the raw material pulp: 61). %), The HexA content was 2.5 ⁇ mol / g (residual rate with respect to raw material pulp: 8%), and the TOC in wastewater was 271 mg / L (TOC increase rate with respect to Reference Example 1: 105%).
  • Example 2 The method is the same as in Example 1 except that the amount of monopersulfuric acid added in the monopersulfuric acid bleaching step (MPS step) is changed to 0.10% by mass with respect to the absolute dry mass of the unbleached pulp. Produced bleached pulp. The addition rate of chlorine dioxide / addition rate of monosulfuric acid is 5.00.
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp, and the total organic carbon (TOC) in the wastewater were determined by the same method as in Example 1. It was measured. As a result, the ISO whiteness was 55.8% (increased rate with respect to the raw material pulp: 113%), the K value was 2.7 (residual rate with respect to the raw material pulp: 39%), and the viscosity was 15 cP (retention rate with respect to the raw material pulp: 83). %), The HexA content was 6.7 ⁇ mol / g (residual rate with respect to raw material pulp: 21%), and the TOC in wastewater was 276 mg / L (TOC increase rate with respect to Reference Example 1: 107%).
  • Example 7 Using raw pulp (whiteness: 54.7%, K value: 7.0, viscosity 19 cP, HexA content: 36.1 ⁇ mol / g), the bleaching treatment temperature in the monopersulfate bleaching step (MPS step) was set to 50 ° C. The same as in Example 1 except that the bleaching treatment time was changed to 90 minutes, the bleaching treatment temperature in the first chlorine dioxide bleaching step (step D) was changed to 60 ° C., and the bleaching treatment time was changed to 35 minutes. Bleached pulp was produced by the method of. The addition rate of chlorine dioxide / addition rate of monosulfuric acid is 3.85.
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp were measured by the same method as in Example 1.
  • the ISO whiteness was 63.2% (increased rate with respect to the raw material pulp: 116%)
  • the K value was 4.0 (residual rate with respect to the raw material pulp: 57%)
  • the viscosity was 17 cP (retention rate with respect to the raw material pulp: 89). %)
  • the HexA content was 25.0 ⁇ mol / g (residual ratio to raw material pulp: 69%).
  • the total organic carbon (TOC) in the wastewater was 106 mg / L when measured by the same method as in Example 1.
  • the TOC increase rate in Example 7 was calculated based on Reference Example 2 (reference method) in which a sulfuric acid bleaching step of treating with sulfuric acid was performed instead of the MPS step of Example 7.
  • Reference Example 2 was carried out as follows.
  • the ISO whiteness, potassium permanganate value (K value), viscosity, hexenuronic acid content (HexA content), and total organic carbon (TOC) in the wastewater of the bleached pulp are measured by the same method as above. bottom.
  • the ISO whiteness was 62.4% (increased rate with respect to the raw material pulp: 114%)
  • the K value was 4.3 (residual rate with respect to the raw material pulp: 61%)
  • the viscosity was 17 cP (retention rate with respect to the raw material pulp: 89). %)
  • the HexA content was 28.9 ⁇ mol / g (residual ratio to raw material pulp: 80%).
  • the TOC in the wastewater of the MPS step (sulfuric acid bleaching step) and the TOC in the wastewater of the D step were measured, and the sum (total organic carbon (TOC) in the wastewater) was calculated. It was / L.
  • the TOC increase rate in wastewater in Example 7 was calculated by the following formula and found to be 116%.
  • Example 8 Bleaching in the same manner as in Example 7 except that the amount of monosulfuric acid added in the monosulfuric acid bleaching step (MPS step) was changed to 0.20% by mass with respect to the absolute dry mass of the unbleached pulp. Produced pulp.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 2.50.
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp, and the total organic carbon (TOC) in the wastewater were determined by the same method as in Example 7. It was measured. As a result, the ISO whiteness was 64.2% (increased rate with respect to the raw material pulp: 117%), the K value was 3.8 (residual rate with respect to the raw material pulp: 54%), and the viscosity was 17 cP (retention rate with respect to the raw material pulp: 89). %), The HexA content was 23.5 ⁇ mol / g (residual rate with respect to raw material pulp: 65%), and the TOC in wastewater was 108 mg / L (TOC increase rate with respect to Reference Example 2: 119%).
  • Example 9 Bleaching in the same manner as in Example 7 except that the amount of monosulfuric acid added in the monosulfuric acid bleaching step (MPS step) was changed to 0.25% by mass with respect to the absolute dry mass of the unbleached pulp. Produced pulp.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 2.00.
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp, and the total organic carbon (TOC) in the wastewater were determined by the same method as in Example 7. It was measured. As a result, the ISO whiteness was 65.1% (increased rate with respect to the raw material pulp: 119%), the K value was 3.7 (residual rate with respect to the raw material pulp: 53%), and the viscosity was 16.5 cP (retention rate with respect to the raw material pulp).
  • Example 10 The pH at the start of the reaction in the monopersulfate bleaching step (MPS step) was changed to about 3.5, and the amount of monopersulfuric acid added was changed to 0.40% by mass with respect to the absolute dry mass of the unbleached pulp.
  • the bleached pulp was produced in the same manner as in Example 7 except for the above.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 1.25.
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp, and the total organic carbon (TOC) in the wastewater were determined by the same method as in Example 7. It was measured. As a result, the ISO whiteness was 66.9% (increased rate with respect to the raw material pulp: 122%), the K value was 3.6 (residual rate with respect to the raw material pulp: 51%), and the viscosity was 16 cP (retention rate with respect to the raw material pulp: 84). %), The HexA content was 21.0 ⁇ mol / g (residual rate with respect to raw material pulp: 58%), and the TOC in wastewater was 110 mg / L (TOC increase rate with respect to Reference Example 2: 121%).
  • Example 11 Bleaching in the same manner as in Example 7 except that the amount of monosulfuric acid added in the monosulfuric acid bleaching step (MPS step) was changed to 0.60% by mass with respect to the absolute dry mass of the unbleached pulp. Produced pulp. The addition rate of chlorine dioxide / addition rate of monosulfuric acid is 0.83.
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp, and the total organic carbon (TOC) in the wastewater were determined by the same method as in Example 7. It was measured. As a result, the ISO whiteness was 66.2% (increased rate with respect to the raw material pulp: 121%), the K value was 3.64 (residual rate with respect to the raw material pulp: 52%), and the viscosity was 15.8 cP (retention rate with respect to the raw material pulp).
  • Example 12 The pH at the start of the reaction in the monopersulfate bleaching step (MPS step) was changed to about 3.2, and the amount of monopersulfuric acid added was changed to 1.50% by mass with respect to the absolute dry mass of the unbleached pulp.
  • the bleached pulp was produced in the same manner as in Example 7 except for the above.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 0.33.
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp, and the total organic carbon (TOC) in the wastewater were determined by the same method as in Example 7. It was measured. As a result, the ISO whiteness was 64.0% (increased rate with respect to the raw material pulp: 117%), the K value was 3.9 (residual rate with respect to the raw material pulp: 56%), and the viscosity was 16 cP (retention rate with respect to the raw material pulp: 84).
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp, and the total organic carbon (TOC) in the wastewater were determined by the same method as in Example 7. It was measured. As a result, the ISO whiteness was 62.1% (increased rate with respect to the raw material pulp: 114%), the K value was 4.0 (residual rate with respect to the raw material pulp: 57%), and the viscosity was 15 cP (retention rate with respect to the raw material pulp: 79).
  • the HexA content was 10.5 ⁇ mol / g (residual rate with respect to the raw material pulp: 29%), and the TOC in the wastewater was 98 mg / L (TOC increase rate with respect to Reference Example 2: 108%).
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp, and the total organic carbon (TOC) in the wastewater were determined by the same method as in Example 7. It was measured. As a result, the ISO whiteness was 62.6% (increased rate with respect to the raw material pulp: 114%), the K value was 4.0 (residual rate with respect to the raw material pulp: 57%), and the viscosity was 17 cP (retention rate with respect to the raw material pulp: 89). %), The HexA content was 26.2 ⁇ mol / g (residual rate with respect to raw material pulp: 73%), and the TOC in wastewater was 101 mg / L (TOC increase rate with respect to Reference Example 2: 111%).
  • Example 13 The bleached pulp was produced by the same method as in Example 4 except that the bleaching treatment time in the monosulfuric acid bleaching step (MPS step) was changed to 2 minutes.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 1.25.
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp, and the total organic carbon (TOC) in the wastewater were determined by the same method as in Example 1. It was measured. As a result, the ISO whiteness was 58.0% (increased rate with respect to the raw material pulp: 118%), the K value was 4.3 (residual rate with respect to the raw material pulp: 62%), and the viscosity was 17 cP (retention rate with respect to the raw material pulp: 94). %), The HexA content was 23.1 ⁇ mol / g (residual rate with respect to raw material pulp: 71%), and the TOC in wastewater was 277 mg / L (TOC increase rate with respect to Reference Example 1: 108%).
  • Example 14 The bleached pulp was produced by the same method as in Example 4 except that the bleaching treatment time in the monosulfuric acid bleaching step (MPS step) was changed to 7 minutes.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 1.25.
  • the ISO whiteness, potassium permanganate value (K value), viscosity, and hexenuronic acid content (HexA content) of the bleached pulp, and the total organic carbon (TOC) in the wastewater were determined by the same method as in Example 1. It was measured. As a result, the ISO whiteness was 58.3% (increased rate with respect to the raw material pulp: 118%), the K value was 4.3 (residual rate with respect to the raw material pulp: 61%), and the viscosity was 16 cP (retention rate with respect to the raw material pulp: 89).
  • the HexA content was 19.1 ⁇ mol / g (residual rate with respect to raw material pulp: 59%), and the TOC in wastewater was 285 mg / L (TOC increase rate with respect to Reference Example 1: 111%).
  • the wastewater contains aromatic compounds.
  • the aromatic compound is presumed to be lignin or a derivative thereof.
  • Example 15 Bleaching in the same manner as in Example 1 except that the amount of monosulfuric acid added in the monosulfuric acid bleaching step (MPS step) was changed to 2.00% by mass with respect to the absolute dry mass of the unbleached pulp. Produced pulp.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 0.25.
  • Example 16 The bleached pulp was produced by the same method as in Example 4 except that the bleaching treatment temperature in the first chlorine dioxide bleaching step (step D) was changed to 60 ° C. and the bleaching treatment time was changed to 35 minutes.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 1.25.
  • Example 17 The bleached pulp was produced by the same method as in Example 6 except that the bleaching treatment temperature in the first chlorine dioxide bleaching step (step D) was changed to 60 ° C. and the bleaching treatment time was changed to 35 minutes.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 0.33.
  • Example 18 Bleached pulp was produced in the same manner as in Example 6 except that the bleaching treatment time in the monosulfuric acid bleaching step (MPS step) was changed to 90 minutes.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 0.33.
  • Example 19 The amount of monopersulfate added in the monopersulfate bleaching step (MPS step) was changed to 0.40% by mass with respect to the absolute dry mass of unbleached pulp, the bleaching treatment temperature was 70 ° C., and the bleaching treatment time was 90 minutes.
  • the bleached pulp was produced by the same method as in Example 1 except that the bleaching treatment temperature in the first chlorine dioxide bleaching step (step D) was changed to 60 ° C. and the bleaching treatment time was changed to 35 minutes. ..
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 1.25.
  • Example 20 Bleaching in the same manner as in Example 19 except that the amount of monosulfuric acid added in the monosulfuric acid bleaching step (MPS step) was changed to 1.50% by mass with respect to the absolute dry mass of the unbleached pulp. Produced pulp.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 0.33.
  • Example 21 The amount of monopersulfate added in the monopersulfate bleaching step (MPS step) was changed to 1.50% by mass with respect to the absolute dry mass of the unbleached pulp, the bleaching treatment time was changed to 120 minutes, and the first carbon dioxide was added.
  • the bleached pulp was produced by the same method as in Example 19 except that the bleaching treatment temperature in the chlorine bleaching step (step D) was changed to 70 ° C. and the bleaching treatment time was changed to 120 minutes.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 0.33.
  • Example 22 The bleached pulp was produced in the same manner as in Example 6 except that the bleaching treatment temperature in the monosulfuric acid bleaching step (MPS step) was changed to 60 ° C.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 0.33.
  • Example 23 Bleaching in the same manner as in Example 7 except that the amount of monosulfuric acid added in the monosulfuric acid bleaching step (MPS step) was changed to 2.00% by mass with respect to the absolute dry mass of the unbleached pulp. Produced pulp.
  • the addition rate of chlorine dioxide / addition rate of monosulfuric acid is 0.25.
  • the deterioration test was carried out by holding the acidic papermaking at 80 ° C. and a relative humidity of 65% for 24 hours in accordance with the paper and paperboard-accelerated deterioration treatment method (JIS8154-: 2008).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Paper (AREA)

Abstract

白色度に優れる漂白パルプを製造する手段を提供する。 未晒パルプをアルカリ酸素漂白するアルカリ酸素漂白工程と、モノ過硫酸で処理するモノ過硫酸漂白工程と、二酸化塩素で処理する第1の二酸化塩素漂白工程と、を含み、前記未晒パルプの絶乾質量に対するモノ過硫酸の添加率(質量%)と、前記未晒パルプの絶乾質量に対する二酸化塩素の添加率(質量%)との比(二酸化塩素の添加率/モノ過硫酸の添加率)が、0.25~4.0である、漂白パルプの製造方法。

Description

漂白パルプの製造方法
 本発明は、漂白パルプの製造方法に関する。
 近年の環境意識の高まりから、パルプの漂白は、塩素そのものや次亜塩素酸を使用しない無塩素(ECF:Elemental Chlorine Free)漂白により行われることが一般的になっている。
 例えば、特許文献1には、リグノセルロース物質を蒸解して得られる未漂白パルプをアルカリ酸素漂白し、次いでキレート剤を添加することなく無機ペルオキシ酸および/またはその塩で処理した後、洗浄し、さらにオゾン処理から始まる多段漂白処理を行うことを特徴とする漂白パルプの製造方法に係る発明が記載されている。
 特許文献1には、ECF漂白においては、二酸化塩素(ClO)を用いることが主流になっていること、できるだけ二酸化塩素の使用量を低減するライトECF漂白が注目されていることが記載されている。
 なお、特許文献1に記載の発明によれば、無機ペルオキシ酸による酸洗浄を前処理として行った後にオゾン漂白を行うことで、オゾン漂白の反応選択性を改善し、かつ反応効率を上げ、後段での二酸化塩素使用量をより少なくできることが記載されている。
 また、特許文献2には、リグノセルロース物質を蒸解して得られる未漂白パルプをアルカリ酸素漂白し、次いで無機ペルオキシ酸および/またはその塩で処理した後、さらに二酸化塩素処理から始まる多段漂白処理を行うことを特徴とする漂白パルプの製造方法に係る発明が記載されている。
 特許文献2に記載の発明によれば、アルカリ酸素漂白後のパルプを二酸化塩素漂白する際に、無機ペルオキシ酸で前処理することにより、二酸化塩素段での脱リグニン、ヘキセンウロン酸除去作用が促進されることが記載されている。
特開2007-308815号公報 特開2007-308824号公報
 従来、ECF漂白では、上述のように二酸化塩素による漂白とともに、種々の漂白方法を組み合わせてパルプの漂白を行っているが、さらに白色度が高い漂白パルプを好適に製造するための方法が求められている。
 そこで、本発明は、白色度に優れる漂白パルプを製造する手段を提供する。
 本発明者らは、上記課題を解決するべく鋭意研究を行った。その結果、モノ過硫酸による漂白工程と二酸化塩素による漂白工程とを組み合わせ、かつ、各工程におけるモノ過硫酸の添加率および二酸化塩素の添加率の比を所定の範囲とすることで上記課題が解決されうることを見出し、本発明を完成させるに至った。すなわち、本発明は、例えば以下のとおりである。
 [1]未晒パルプをアルカリ酸素漂白するアルカリ酸素漂白工程と、
 モノ過硫酸で処理するモノ過硫酸漂白工程と、
 二酸化塩素で処理する第1の二酸化塩素漂白工程と、
を含み、
 前記未晒パルプの絶乾質量に対するモノ過硫酸の添加率(質量%)と、前記未晒パルプの絶乾質量に対する二酸化塩素の添加率(質量%)との比(二酸化塩素の添加率/モノ過硫酸の添加率)が、0.25~4.0である、漂白パルプの製造方法。
 [2]未晒パルプをアルカリ酸素漂白するアルカリ酸素漂白工程と、
 モノ過硫酸で処理するモノ過硫酸漂白工程と、
 二酸化塩素で処理する第1の二酸化塩素漂白工程と、
を含み、
 前記未晒パルプの絶乾質量に対するモノ過硫酸の添加率(質量%)と、前記未晒パルプの絶乾質量に対する二酸化塩素の添加率(質量%)との比(二酸化塩素の添加率/モノ過硫酸の添加率)が、0.25~2.0であり、
 前記モノ過硫酸漂白工程の処理温度が、70~98℃である、漂白パルプの製造方法。
 [3]アルカリ過酸化水素で処理するアルカリ過酸化水素漂白工程をさらに含む、上記[2]に記載の製造方法。
 [4]オゾンで処理するオゾン漂白工程をさらに含む、上記[2]または[3]に記載の製造方法。
 [5]未晒パルプをアルカリ酸素漂白するアルカリ酸素漂白工程と、
 モノ過硫酸で処理するモノ過硫酸漂白工程と、
 二酸化塩素で処理する第1の二酸化塩素漂白工程と、
 アルカリ過酸化水素で処理するアルカリ過酸化水素漂白工程と、
 二酸化塩素で処理する第2の二酸化塩素漂白工程と、
をこの順で含み、
 前記未晒パルプの絶乾質量に対するモノ過硫酸の添加率(質量%)と、第1の二酸化塩素漂白工程における前記未晒パルプの絶乾質量に対する二酸化塩素の添加率(質量%)との比(二酸化塩素の添加率/モノ過硫酸の添加率)が、0.25~2.0であり、
 前記モノ過硫酸漂白工程の処理温度が、70~98℃である、漂白パルプの製造方法。
 [6]未晒パルプをアルカリ酸素漂白するアルカリ酸素漂白工程と、
 モノ過硫酸で処理するモノ過硫酸漂白工程と、
 二酸化塩素で処理する第1の二酸化塩素漂白工程と、
を含み、
 前記未晒パルプの絶乾質量に対するモノ過硫酸の添加率(質量%)が、0.30~1.75質量%であり、
 前記未晒パルプの絶乾質量に対するモノ過硫酸の添加率(質量%)と、前記未晒パルプの絶乾質量に対する二酸化塩素の添加率(質量%)との比(二酸化塩素の添加率/モノ過硫酸の添加率)が、0.5~2.0である、漂白パルプの製造方法。
 [7]アルカリ過酸化水素で処理するアルカリ過酸化水素漂白工程をさらに含む、上記[6]に記載の製造方法。
 [8]オゾンで処理するオゾン漂白工程をさらに含む、上記[6]または[7]に記載の製造方法。
 [9]前記モノ過硫酸漂白工程の処理温度が、40~98℃である、上記[6]~[8]のいずれかに記載の製造方法。
 [10]前記モノ過硫酸漂白工程および前記第1の二酸化塩素漂白工程で得られる排水の全有機炭素(TOC)の前記モノ過硫酸漂白工程に代えて硫酸で処理する硫酸漂白工程を行う参照方法における硫酸漂白工程および第1の二酸化塩素漂白工程で得られる排水の全有機炭素(TOC)に対するTOC増大率(TOC/TOC×100)が、100%超である、上記[1]~[9]のいずれかに記載の製造方法。
 [11]前記モノ過硫酸漂白工程で得られる排水および前記第1の二酸化塩素漂白工程で得られる排水の少なくとも一部が、モノ過硫酸漂白工程で再利用されることを含む、上記[10]に記載の製造方法。
 [12]前記モノ過硫酸漂白工程の処理時間が、2~200分である、上記[1]~[11]のいずれかに記載の製造方法。
 [13]前記モノ過硫酸漂白工程の処理pHが、2~5である、上記[1]~[12]のいずれかに記載の製造方法。
 また、本発明は、例えば以下の態様を含みうる。
 [1’]未晒パルプをアルカリ酸素漂白するアルカリ酸素漂白工程と、
 モノ過硫酸で処理するモノ過硫酸漂白工程と、
 二酸化塩素で処理する第1の二酸化塩素漂白工程と、
を含み、
 前記未晒パルプの絶乾質量に対するモノ過硫酸の添加率(質量%)と、前記未晒パルプの絶乾質量に対する二酸化塩素の添加率(質量%)との比(二酸化塩素の添加率/モノ過硫酸の添加率)が、0.25~4.0である、漂白パルプの製造方法。
 [2’]前記モノ過硫酸漂白工程および前記第1の二酸化塩素漂白工程で得られる排水の全有機炭素(TOC)の前記モノ過硫酸漂白工程に代えて硫酸で処理する硫酸漂白工程を行う参照方法における硫酸漂白工程および第1の二酸化塩素漂白工程で得られる排水の全有機炭素(TOC)に対するTOC増大率(TOC/TOC×100)が、100%超である、上記[1’]に記載の製造方法。
 [3’]前記モノ過硫酸漂白工程で得られる排水および前記第1の二酸化塩素漂白工程で得られる排水の少なくとも一部が、モノ過硫酸漂白工程で再利用されることを含む、上記[2’]に記載の製造方法。
 [4’]前記モノ過硫酸漂白工程の処理時間が、2~200分である、上記[1’]~[3’]のいずれかに記載の製造方法。
 [5’]前記モノ過硫酸漂白工程の処理温度が、40~98℃である、上記[1’]~[4’]のいずれかに記載の製造方法。
 [6’]前記モノ過硫酸漂白工程の処理pHが、2~5である、上記[1’]~[5’]のいずれかに記載の製造方法。
 [7’]アルカリ過酸化水素で処理するアルカリ過酸化水素漂白工程をさらに含む、上記[1’]~[6’]のいずれかに記載の製造方法。
 [8’]オゾンで処理するオゾン漂白工程をさらに含む、上記[1’]~[7’]のいずれかに記載の製造方法。
 本発明によれば、白色度に優れる漂白パルプを製造する手段が提供される。
 以下、本発明を実施するための形態について詳細に説明する。
 <漂白パルプの製造方法>
 本発明の漂白パルプの製造方法は、未晒パルプをアルカリ酸素漂白するアルカリ酸素漂白工程と、モノ過硫酸で処理するモノ過硫酸漂白工程と、二酸化塩素で処理する第1の二酸化塩素漂白工程と、を含む。この際、前記未晒パルプの絶乾質量に対するモノ過硫酸の添加率(質量%)と、前記未晒パルプの絶乾質量に対する二酸化塩素の添加率(質量%)との比(二酸化塩素の添加率/モノ過硫酸の添加率)が、0.25~4.0であることを特徴とする。
 なお、前記漂白パルプの製造方法は、さらに未晒パルプ調製工程、アルカリ過酸化水素で処理するアルカリ過酸化水素漂白工程、オゾンで処理するオゾン漂白工程をさらに含んでいてもよい。この際、各工程は2以上繰り返してもよい。例えば、二酸化塩素漂白工程を2度行う場合、第1の二酸化塩素漂白工程および第2の二酸化塩素漂白工程を含んでいてもよい。
 一実施形態において、漂白パルプの製造方法は、未晒パルプ調製工程、アルカリ酸素漂白工程(O工程)、モノ過硫酸漂白工程(MPS工程)、オゾン漂白工程(Z工程)、二酸化塩素漂白工程(D工程)、アルカリ過酸化水素漂白工程(Ep工程)をこの順で含む。以下、各工程について説明する。
 [未晒パルプ調製工程]
 未晒パルプ調製工程は、主にリグノセルロース物質から未晒パルプを調製する工程である。
 (リグノセルロース物質)
 リグノセルロース物質としては、木材、非木材、古紙等が挙げられる。
 前記木材としては、特に制限されないが、ユーカリ、アカシア、ポプラ、ブナ、カエデ、クリ、キリ、カバ、ニレ等の広葉樹;スギ、マツ、モミ、ヒノキ、ツガ等の針葉樹が挙げられる。
 前記非木材としては、特に制限されないが、ワラ、ヨシ、クワ、ケナフ、オレンジ、ミカン等が挙げられる。
 これらのうち、リグノセルロース物質は、木材、古紙であることが好ましく、木材であることがより好ましく、広葉樹であることがさらに好ましい。
 上述のリグノセルロース物質は単独で用いても、2種以上を組み合わせて用いてもよい。
 (未晒パルプの調製)
 未晒パルプは、リグノセルロース物質の骨格を形成するセルロース、架橋成分であるヘミセルロース、および接着成分であるリグニンを含むリグノセルロース物質から、リグニンの少なくとも一部を分離(蒸解)することで調製される。すなわち、一実施形態において、未晒パルプ調製工程は、リグノセルロース物質を蒸解する工程を含む。なお、蒸解後に得られる未晒パルプは適宜洗浄される。
 蒸解方法としては、特に制限されないが、ソーダ蒸解、クラフト蒸解、サルファイト蒸解が挙げられる。
 前記ソーダ蒸解は、水酸化ナトリウムおよび炭酸ナトリウムを用いる蒸解法である。
 前記クラフト蒸解は、水酸化ナトリウム並びに硫化ナトリウムおよび/またはポリ硫化ナトリウムを用いる蒸解法である。なお、クラフト蒸解により得られた未晒パルプは、一般にクラフトパルプ(KP)と称される。
 前記サルファイト蒸解は、亜硫酸またはその塩を用いる蒸解法である。前記サルファイト蒸解としては、NaSOを用いるアルカリ性サルファイト蒸解;NaSOおよびNaHSOを用いる中性サルファイト蒸解;NaHSOまたはMg(HSOを用いる微酸性サルファイト法;NaHSOおよびSO、Mg(HSOおよびSO、またはCa(HSOおよびSOを用いる酸性サルファイト法;多硫化ナトリウム(Na)を用いるポリサルファイト法等が挙げられる。なお、サルファイト蒸解により得られた未晒パルプは、一般にサルファイトパルプ(SP)と称される。
 なお、前記蒸解においては、蒸解助剤を用いてもよい。蒸解助剤としては、特に制限されないが、ベンゾキノン、ナフトキノン、アントラキノン、アントロン、フェナントロキノン等が挙げられる。蒸解助剤の具体例としては、アントラキノン(AQ)、1,4-ジヒドロ-9,10-ジヒドロキシアントラセン(DDA)等が挙げられる。これらの蒸解助剤は単独で用いても、2種以上を組み合わせて用いてもよい。
 これらのうち、蒸解方法としては、パルプ品質、エネルギー効率等の観点から、クラフト蒸解、サルファイト蒸解であることが好ましく、クラフト蒸解、ポリサルファイト蒸解であることがより好ましい。なお、上記蒸解方法は、単独で実施しても、2以上を組み合わせて実施してもよい。
 未晒パルプの調製では、リグノセルロース物質のヘミセルロースの少なくとも一部をさらに除去することを目的として、加水分解を行ってもよい。当該加水分解は、通常、蒸解前に行われる。すなわち、一実施形態において、未晒パルプ調製工程は、リグノセルロース物質を加水分解して加水分解物を得る工程、前記加水分解物を蒸解する工程を含む。なお、加水分解物および/または蒸解後に得られる未晒パルプは適宜洗浄される。
 前記加水分解の方法は特に制限されないが、リグノセルロース物質に水を加えて加熱する方法が挙げられる。これにより、ヘミセルロースからアセチル基が脱離して酢酸が生成して液性が酸性となり、酸加水分解が進行する。なお、加水分解を促進することを目的として、酸を添加してもよい。
 (未晒パルプ)
 未晒パルプの白色度は、30~60%であることが好ましく、40~55%であることがより好ましい。未晒パルプの白色度が30%以上であると、漂白処理のコストが低減できることから好ましい。未晒パルプの白色度が60%以下であると、蒸解のコストが低減できることから好ましい。なお、本明細書において、未晒パルプの白色度は以下の方法により測定する。すなわち、ISO3688:1977に従って坪量400g/mのシートを2枚作製した。得られたシートを用いて、JISP8148:2001に従ってパルプの白色度(%)を測定する。
 未晒パルプの過マンガン酸カリウム価(K価)は、5~10であることが好ましく、6~9であることがより好ましい。未晒パルプのK価が5以上であると、蒸解のコストが低減できることから好ましい。未晒パルプのK価が10以下であると、二酸化塩素の使用量、漂白処理のコストが低減できることから好ましい。なお、本明細書において、未晒パルプのK価は以下の方法により測定する。すなわち、未晒パルプのK価をTAPPI UM 253:2010に準じて測定する。
 さらに、未晒パルプの粘度は、15cP以上であることが好ましく、17cP以上であることがより好ましく、20cP以上であることがさらに好ましい。未晒パルプの粘度が15cP以上であると、濾水度を維持できることから好ましい。なお、未晒パルプの粘度の上限については特に制限はないが、25cP以下であることが好ましい。未晒パルプの粘度が25cP以下であると、紙の粘度を維持できることから好ましい。なお、本明細書において、未晒パルプの粘度は以下の方法により測定する。すなわち、未晒パルプの粘度をJ.TAPPI No.44法に準じて測定する。
 また、未晒パルプのヘキセンウロン酸含有量(HexA含有量)は、25~50μmol/gであることが好ましく、30~40μmol/gであることがより好ましい。未晒パルプのHexA含有量が25μmol/g以上であると、蒸解のコストが低減できることから好ましい。未晒パルプのHexA含有量が50μmol/g以下であると、漂白処理のコストが低減できることから好ましい。なお、本明細書において、未晒パルプのHexA含有量は以下の方法により測定する。すなわち、未晒パルプを絶乾した後、絶乾質量で0.8gの漂白パルプを精秤して耐圧容器に入れる。次いで、純水80mLを加えた後、ギ酸を加えてpH値を3に調整する。耐圧容器をオーブンに入れて120℃で4時間処理し、HexAを酸加水分解する。処理後ろ過を行い、濾別された溶液中に存在するHexAの酸加水分解物である2-フランカルボン酸と5-カルボキシ-2-フランアルデヒドをHPLCにて定量し、それらのモル量の合計から元のHexA含有量を求める。
 [アルカリ酸素漂白工程(O工程)]
 アルカリ酸素漂白工程は、アルカリ条件下、酸素漂白によりパルプに含まれるリグニン等を除去する工程である。アルカリ酸素漂白工程は、通常、アルカリ性のパルプを含むパルプスラリーに酸素を添加し、漂白処理することによって行われる。なお、漂白処理後に得られるパルプは適宜洗浄される。
 (パルプスラリー)
 パルプスラリーは、パルプおよび水を含む。
 (パルプ)
 パルプとしては、特に制限されず、未晒パルプであっても、他の漂白工程を経たパルプであってもよいが、未晒パルプであることが好ましい。
 パルプ濃度は、パルプスラリーの全質量に対して、8~40質量%であることが好ましく、10~35質量%であることがより好ましい。
 また、パルプスラリーのpHは、アルカリ性である。パルプスラリーのpHは、具体的には、8~14であることが好ましく、10~14であることがより好ましい。
 なお、パルプスラリーのpHの調整には、水酸化ナトリウム(苛性ソーダ)、水酸化カリウム等の塩基;硫酸、塩酸、硝酸、リン酸、ホウ酸、炭酸等の酸;酸化されたクラフト白液等を使用することができる。
 (漂白処理)
 漂白処理の方法としては、特に制限されないが、中濃度法(パルプ濃度:8~25質量%、好ましくは10~15質量%)、高濃度法(パルプ濃度:25~40質量%)が挙げられる。このうち中濃度法であることが好ましい。
 酸素ガスの添加率は、未晒パルプの絶乾質量に対して、0.5~3質量%であることが好ましい。
 この際、用いられる酸素としては、特に制限されないが、深冷分離法により得られた酸素、圧力スイング吸着(PSA:Pressure Swing Adsorption)により得られた酸素、真空スイング吸着(VSA:Vacuum Swing Adsorption)により得られた酸素等が挙げられる。
 混合方法としては、特に制限されないが、高剪断ミキサを使用することが好ましい。具体的には、Kamyr方式、Sunds-Defibrator方式、Rauma-Repola方式、Impcpo方式等が挙げられる。
 アルカリ酸素漂白工程の処理温度としては、80~120℃であることが好ましい。
 アルカリ酸素漂白工程の処理時間としては、15~100分であることが好ましい。
 [モノ過硫酸漂白工程(MPS工程)]
 モノ過硫酸漂白工程は、モノ過硫酸(MPS)によりパルプに含まれるヘキサンウロン酸(HexA)等を除去する工程である。ヘキセンウロン酸(HexA)は、ヘミセルロースのキシラン側鎖におけるメチルグルクロン酸が、蒸解において脱メタノール化することにより生成する物質である。なお、漂白パルプ中のヘキセンウロン酸(HexA)の含有量は、漂白パルプの褪色と相関する。
 モノ過硫酸漂白工程(MPS工程)は、通常、パルプスラリーにモノ過硫酸(MPS)を添加し、漂白処理することによって行われる。なお、漂白処理後に得られるパルプは適宜洗浄される。
 (パルプスラリー)
 パルプスラリーは、パルプおよび水を含む。その他、添加剤をさらに含んでいてもよい。
 (パルプ)
 パルプとしては、特に制限されず、未晒パルプであっても、他の漂白工程を経たパルプであってもよいが、未晒パルプ、アルカリ酸素漂白工程を経たパルプであることが好ましい。
 パルプ濃度は、パルプスラリーの全質量に対して、5~30質量%であることが好ましく、操作性の観点から8~15質量%であることがより好ましい。
 添加剤
 添加剤としては、リグニン、漂白由来物質等が挙げられる。
 前記漂白由来物質としては、特に制限されないが、リグニン誘導体、2-メトキシフェノール、3-メトキシフェノール、4-メトキシフェノール、5-アミノ-メトキシフェノール、ムコン酸、2,5-ジメチル-2,4-ヘキサジエンジオン酸、およびにこれらの酸化物が挙げられる。
 なお、前記リグニン誘導体としては、特に制限されないが、リグニンスルホン酸カルシウム塩、リグニンスルホン酸ナトリウム塩、リグニンスルホン酸、リグニンスルホン酸酢酸ナトリウム塩、オルガノソルブリグニン等が挙げられる。
 リグニン、漂白由来物質を添加することで、モノ過硫酸(MPS)によるヘキサウロン酸(HexA)の除去能を向上させることができる。
 なお、リグニン、漂白由来物質は、別途準備または調製をしたものを添加剤として使用してもよいが、漂白パルプの製造方法の漂白工程で得られる排水を使用してもよい。漂白パルプの製造方法の各漂白工程では、リグニン、漂白由来物質がパルプから除去されることから、得られる排水にはリグニン、漂白由来物質が含まれうる。
 リグニン、漂白由来物質を含む排水としては、特に制限されないが、未晒パルプ調製工程、アルカリ酸素漂白工程(O工程)、モノ過硫酸漂白工程(MPS工程)、オゾン漂白工程(Z工程)、二酸化塩素漂白工程(D工程)、アルカリ過酸化水素漂白工程(Ep工程)が挙げられる。なお、「排水」は通常、漂白処理後のパルプの洗浄液に由来する。これらのうち、モノ過硫酸漂白工程(MPS工程)および二酸化塩素漂白工程(D工程)の排水を再利用することが好ましく、モノ過硫酸漂白工程(MPS工程)および第1の二酸化塩素漂白工程(D工程)の排水を再利用することがより好ましい。すなわち、好ましい一実施形態において、モノ過硫酸漂白工程(MPS工程)は、前記モノ過硫酸漂白工程で得られる排水および前記第1の二酸化塩素漂白工程で得られる排水の少なくとも一部が、モノ過硫酸漂白工程で再利用されることを含む。
 また、前記排水の全有機炭素(TOC)は、50mg/L以上であることが好ましく、~500mg/Lであることがより好ましく、95~300mg/Lであることがさらに好ましい。なお、前記全有機炭素(TOC)には、リグニン、漂白由来物質が含まれる。また、排水中の全有機炭素(TOC)の濃度は、実施例に記載の方法と同様の方法により測定された値を採用するものとする。
 なお、本発明では白色度に優れる漂白パルプを製造することができる。換言すると、本発明の漂白工程により得られる排水には、リグニン、漂白由来物質が多く含まれるため、全有機炭素の濃度が高くなる。そして、前記排水をモノ過硫酸漂白工程に再利用することで、低コストかつ高効率でHexAを除去することができる。
 パルプスラリーのpHは、1~6であることが好ましく、2~5であることがより好ましい。すなわち、一実施形態において、モノ過硫酸漂白工程の処理pHが、1~6であることが好ましく、2~5であることがより好ましい。前記処理pHが上記範囲にあると、好適にHexAを除去できることから好ましい。
 パルプスラリーのpHを調整する目的で、酸を添加することができる。このうち、酸としては、硫酸、塩酸、硝酸、リン酸、ホウ酸、炭酸等が挙げられる。これらのうち、pH調整に用いられる酸としては硫酸であることが好ましい。なお、上記pH調整に用いられる酸は単独で用いても、2種以上を組み合わせて用いてもよい。
 (漂白処理)
 漂白処理は、パルプスラリーにモノ過硫酸(MPS)を添加して、混合することにより行われることが好ましい。
 モノ過硫酸(MPS)は、ペルオキシ一硫酸とも呼ばれるものであり、HSOで表される。
 モノ過硫酸(MPS)の添加量は、未晒パルプの絶乾質量に対して、0.01~5質量%であることが好ましく、0.05~3質量%であることがより好ましく、0.10~2質量%であることがさらに好ましく、0.15~1.75質量%であることが特に好ましく、0.30~1.75質量%であることが最も好ましい。
 一実施形態において、モノ過硫酸(MPS)の添加量は、未晒パルプの絶乾質量に対して、0.15~1.75質量%であることが好ましく、0.22~1.0質量%であることがより好ましく、0.22~0.75質量%であることがさらに好ましく、0.3~0.5質量%であることが特に好ましい。モノ過硫酸(MPS)の添加量が上記範囲であると、例えば、未晒パルプからリグニンおよび/またはヘキセンウロン酸(HexA)を好適に除去することができる。その結果、得られる漂白パルプの白色度が高くなる、K価残存率が低くなる、HexA含量残存率を低くなる等の効果を有しうる。また、粘度の低下を防止または抑制することができうる。なお、未晒パルプの絶乾質量に対するモノ過硫酸の添加率(質量%)と、未晒パルプの絶乾質量に対する二酸化塩素の添加率(質量%)との比(二酸化塩素の添加率/モノ過硫酸の添加率)が所定の範囲にある場合、モノ過硫酸(MPS)の添加量が上記所定の範囲となると、これによって後述する二酸化塩素漂白工程(D工程)における二酸化塩素の添加量が所定の数値となる。すなわち、前記添加率が所定の範囲にあると、モノ過硫酸漂白工程(MPS工程)における漂白効果および二酸化塩素漂白工程(D工程)における漂白効果がともに効果的に得られうる。
 なお、モノ過硫酸(MPS)は公知の方法で製造できる。モノ過硫酸(MPS)の製造方法の具体例としては、例えば、過酸化水素水に硫酸を滴下して、混合する方法が挙げられる。この際、前記過酸化水素水の濃度としては、20~70質量%であることが好ましく、35~70質量%であることがより好ましい。また、前記硫酸の濃度としては、80~98質量%であることが好ましく、93~98質量%であることがより好ましい。なお、前記硫酸と過酸化水素との混合モル比は1:1~5:1であることが好ましく、2:1~4:1であることがより好ましい。
 モノ過硫酸漂白工程の処理温度は、40~110℃であることが好ましく、40~105℃であることがより好ましく、40~98℃であることがさらに好ましく、70~98℃であることが特に好ましい。
 一実施形態において、モノ過硫酸漂白工程の処理温度は、40~98℃であることが好ましく、55~98℃であることがより好ましく、65~98℃であることがさらに好ましく、80~98℃であることが特に好ましい。モノ過硫酸漂白工程の処理温度が上記範囲であると、例えば、得られる漂白パルプのK価残存率が低くなる、HexA含量残存率を低くなる等の効果を有しうる。また、得られる漂白パルプが劣化、例えば、白色度の低下、粘度の低下がしにくくなりうる。
 モノ過硫酸漂白工程の処理時間は、2~200分であることが好ましく、5~180分であることがより好ましく、10~170分であることがさらに好ましく、70~160分であることが特に好ましく、100~150分であることが最も好ましい。
 一実施形態において、モノ過硫酸漂白工程の処理時間は、30~180分であることが好ましく、40~160分であることがより好ましく、60~150分であることがさらに好ましく、80~140分であることが特に好ましく、100~130分であることが最も好ましい。
 また、別の一実施形態において、モノ過硫酸漂白工程の処理時間は、生産性の観点から、30~120分であることが好ましく、60~120分であることがより好ましく、90~120分であることがさらに好ましい。
 [オゾン漂白工程(Z工程)]
 オゾン漂白工程は、オゾンによりパルプに含まれるリグニン等を除去する工程である。オゾン漂白工程は、通常、パルプを含むパルプスラリーにオゾンを添加し、漂白処理することによって行われる。一実施形態において、漂白パルプの製造方法は、オゾンで処理するオゾン漂白工程をさらに含むことが好ましい。なお、漂白処理後に得られるパルプは適宜洗浄される。
 (パルプスラリー)
 パルプスラリーは、パルプおよび水を含む。
 (パルプ)
 パルプとしては、通常、他の漂白工程を経たパルプであり、好ましくは少なくともアルカリ酸素漂白工程およびモノ過硫酸漂白工程を経たパルプである。
 パルプ濃度は、パルプスラリーの全質量に対して、8~40質量%であることが好ましく、10~35質量%であることがより好ましい。
 また、パルプスラリーのpHは、1~6であることが好ましく、1~5であることがより好ましく、1~3であることがさらに好ましい。
 なお、パルプスラリーのpHの調整には、水酸化ナトリウム(苛性ソーダ)、水酸化カリウム等の塩基;硫酸、塩酸、硝酸、リン酸、ホウ酸、炭酸等の酸を使用することができる。
 (漂白処理)
 漂白処理の方法としては、特に制限されないが、中濃度法(パルプ濃度:8~25質量%、好ましくは10~15質量%)、高濃度法(パルプ濃度:25~40質量%)が挙げられる。このうち中濃度法であることが好ましい。
 オゾンは、短寿命であるため、使用時に調製することが好ましい。オゾンの調製方法は、特に制限されないが、酸素ガスをコロナ放電して調製する方法であることが好ましい。
 この際、用いられる酸素としては、液体酸素、深冷分離法により得られた酸素、圧力スイング吸着(PSA:Pressure Swing Adsorption)により得られた酸素、真空スイング吸着(VSA:Vacuum Swing Adsorption)により得られた酸素等が挙げられる。
 オゾンの添加率は、未晒パルプの絶乾質量に対して、0.05~20質量%であることが好ましく、0.1~15質量%であることがより好ましく、0.1~10質量%であることがさらに好ましく、0.1~1質量%であることが特に好ましい。
 オゾン漂白工程の処理温度としては、0~100℃であることが好ましく、10~80℃であることがより好ましく、30~80℃であることがさらに好ましく、50~80℃であることが特に好ましい。
 オゾン漂白工程の処理時間としては、5秒~60分であることが好ましく、10秒~10分であることがより好ましい。
 [二酸化塩素漂白工程(D工程)]
 二酸化塩素漂白工程は、二酸化塩素によりパルプに含まれるリグニン等を除去する工程である。塩素そのものや次亜塩素酸に代えて二酸化塩素を使用することで、ECF漂白とすることができる。また、他の漂白工程を適宜組み合わせることで、二酸化塩素漂白工程で使用する二酸化塩素の量を低減することができ、ライトECF漂白とすることができる。ここで、本明細書において、「第1の二酸化塩素漂白工程」とは、漂白工程(漂白シークエンス)において最初に行われる二酸化塩素漂白工程を意味する。
 二酸化塩素漂白工程は、通常、パルプを含むパルプスラリーに二酸化塩素を添加し、漂白処理することによって行われる。なお、漂白処理後に得られるパルプは適宜洗浄される。
 (パルプスラリー)
 パルプスラリーは、パルプおよび水を含む。
 (パルプ)
 パルプとしては、通常、他の漂白工程を経たパルプであり、好ましくは少なくともアルカリ酸素漂白工程およびモノ過硫酸漂白工程を経たパルプである。
 パルプ濃度は、パルプスラリーの全質量に対して、5~30質量%であることが好ましく、操作性の観点から、8~15質量%であることがより好ましい。
 パルプスラリーのpHは、1.5~6であることが好ましく、セルロースの分解を抑制できることから2~6であることがより好ましく、ヘキセンウロン酸の分解を高められることから3~5であることがさらに好ましい。
 なお、パルプスラリーのpHの調整には、水酸化ナトリウム(苛性ソーダ)、水酸化カリウム等の塩基;硫酸、塩酸、硝酸、リン酸、ホウ酸、炭酸等の酸を使用することができる。
 (漂白処理)
 漂白処理は、パルプスラリーに二酸化塩素を添加して、混合することにより行われることが好ましい。
 二酸化塩素の添加量としては、未晒パルプの絶乾質量に対して、0.01~2.0質量%であることが好ましく、0.05~1.5質量%であることがより好ましく、0.1~1.0質量%であることがさらに好ましく、0.1~0.8質量%であることが特に好ましい。
 一実施形態において、二酸化塩素の添加量は、未晒パルプの絶乾質量に対して、0.1~2.0質量%であることが好ましく、0.1~1.0質量%であることがより好ましく、0.2~0.8質量%であることがさらに好ましく、0.3~0.7質量%であることが特に好ましい。
 また、先行するモノ過硫酸漂白工程との関係において、モノ過硫酸の添加率および二酸化塩素の添加率の比を所定の範囲とすることでより白色度に優れる漂白パルプを製造することができる。具体的には、下記式で表される未晒パルプの絶乾質量に対するモノ過硫酸の添加率(質量%)と、前記未晒パルプの絶乾質量に対する二酸化塩素の添加率(質量%)との比(添加率比)が0.25~4.0であり、好ましくは0.25~3.5であり、より好ましくは0.25~4.0であり、さらに好ましくは0.5~4.0である。なお、漂白パルプの製造方法が、二酸化塩素漂白工程(D工程)を2以上含む場合には、前記二酸化塩素の添加率は、初回の二酸化塩素漂白工程(D工程)における二酸化塩素の添加率を意味する。
Figure JPOXMLDOC01-appb-M000001
 前記添加率比が0.25以下の範囲であると、モノ過硫酸漂白工程でリグニンを再重合させてしまい後段の二酸化塩素漂白工程で二酸化塩素の添加率が増大する。前記添加率比が4.0以上の範囲であるとモノ過硫酸が不足するためモノ過硫酸漂白工程で十分な漂白ができない。結果として前記添加率比で白色度に優れる漂白パルプを製造することができる。また、HexA含有量を低減することができ、褪色しにくい漂白パルプを製造することができる。
 一実施形態において、前記添加率比は、0.3~3.0であることが好ましく、0.5~2.3であることがより好ましく、0.5~1.8であることがさらに好ましく、0.9~1.8であることが特に好ましく、1.0~1.5であることが最も好ましい。前記添加率比が上記範囲であると、モノ過硫酸漂白工程および二酸化塩素漂白工程の漂白バランスが好適となり、例えば、未晒パルプからリグニンおよび/またはヘキセンウロン酸(HexA)を好適に除去することができる。その結果、得られる漂白パルプの白色度が高くなる、K価残存率が低くなる、HexA含量残存率を低くなる等の効果を有しうる。また、粘度の低下を防止または抑制することができうる。
 また別の一実施形態において、前記添加比率は0.25~2.0であることが好ましく、0.25~1.5であることがより好ましく、0.25~1.0であることがさらに好ましく、0.25~0.5であることが特に好ましく、0.25~0.3であることが最も好ましい。添加比率が上記範囲であると、モノ過硫酸漂白工程および二酸化塩素漂白工程の漂白バランスが好適となり、例えば、漂白パルプが劣化しにくくなることから好ましい。具体的には、漂白パルプの白色度が劣化しにくくなる、粘度が劣化により低下しにくくなることから好ましい。
 なお、二酸化塩素は、例えば、亜硫酸ナトリウムと二酸化硫黄を反応させる方法、亜塩素酸ナトリウムと硫酸を反応させる方法、塩素酸カルシウムと塩酸を反応させる方法、塩素酸ナトリウムと塩化ナトリウムと硫酸を反応させる方法、塩素酸ナトリウムとメタノールと硫酸を反応させる方法等、塩素酸ナトリウムと過酸化水素と硫酸を反応させる方法等により調製することができる。
 二酸化塩素漂白工程の処理温度は、20~100℃であることが好ましく、40~90℃であることがより好ましい。
 一実施形態において、二酸化塩素漂白工程の処理温度は、30~90℃であることが好ましく、40~90℃であることがより好ましく、50~80℃であることが特に好ましく、65~75℃であることが最も好ましい。
 二酸化塩素漂白工程の処理時間は、1分~5時間であることが好ましく、10~180分であることがより好ましく、20~150分であることがさらに好ましく、20~120分であることが特に好ましく、50~130分であることが最も好ましい。
 一実施形態において、二酸化塩素漂白工程の処理時間は、10~150分であることが好ましく、10~130分であることがより好ましく、15~100分であることがさらに好ましく、20~80分であることが特に好ましく、30~60分であることが最も好ましい。なお、二酸化塩素漂白工程の処理時間が10分以上であると、得られる漂白パルプがより高い白色度を有しうる、得られる漂白パルプが劣化しにくくなりうる。一方、二酸化塩素漂白工程の処理時間が150分以下であると、白色度に優れる漂白パルプを効率的に製造することができる、生産性に優れる等の観点から好ましい。
 [アルカリ過酸化水素漂白工程(Ep工程)]
 アルカリ過酸化水素漂白工程は、アルカリ条件下、過酸化水素漂白によりパルプに含まれるリグニン等を除去する工程である。アルカリ過酸化水素漂白は、通常、アルカリ性のパルプを含むパルプスラリーに過酸化水素を添加し、漂白処理をすることによって行われる。一実施形態において、漂白パルプの製造方法は、アルカリ過酸化水素で処理するアルカリ過酸化水素漂白工程をさらに含むことが好ましい。なお、漂白処理後に得られるパルプは適宜洗浄される。
 (パルプスラリー)
 パルプスラリーは、パルプおよび水を含む。
 (パルプ)
 パルプとしては、特に制限されず、未晒パルプであっても、他の漂白工程を経たパルプであってもよいが、未晒パルプであることが好ましい。
 パルプ濃度は、パルプスラリーの全質量に対して、8~40質量%であることが好ましく、10~35質量%であることがより好ましい。
 パルプスラリーのpHは、アルカリ性である。パルプスラリーのpHは、具体的には、8~14であることが好ましく、10~14であることがより好ましい。
 なお、パルプスラリーのpHの調整には、水酸化ナトリウム(苛性ソーダ)、水酸化カリウム等の塩基;硫酸、塩酸、硝酸、リン酸、ホウ酸、炭酸等の酸を使用することができる。
 (漂白処理)
 漂白処理の方法としては、特に制限されないが、中濃度法(パルプ濃度:8~25質量%、好ましくは10~15質量%、好ましくは10~15質量%)、高濃度法(パルプ濃度:25~40質量%)が挙げられる。このうち中濃度法であることが好ましい。
 過酸化水素は、過酸化水素水の形態で添加されることが好ましい。この際、過酸化水素水は、過酸化水素、水を含む。過酸化水素水は、添加剤をさらに含んでいてもよい。
 過酸化水素水中の過酸化水素の濃度は、過酸化水素水の全質量に対して、1~80質量%であることが好ましく、10~70質量%であることがより好ましく、30~65質量%であることがさらに好ましい。
 前記添加剤としては、特に制限されないが、ケイ酸ナトリウム、ケイ酸マグネシウム、ニトリロ三酢酸(NTA)、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)、アミノトリ(メチレンスルホン酸)(ATMP)、ジエチレントリアミンペンタ(メチレンホスホン酸)(DTPMP)、ポリ-α-ヒドロキシアクリル酸ソーダ(PHAS)等の安定化剤が挙げられる。これらの安定化剤は単独で用いても、2種以上を組み合わせて用いてもよい。
 過酸化水素水中の添加剤の濃度は、過酸化水素水の全質量に対して、0.01~5質量%であることが好ましく、0.05~3質量%であることがより好ましく、0.1~1質量%であることがさらに好ましい。
 過酸化水素の添加量としては、未晒パルプの絶乾質量に対して、0.01~10質量%であることが好ましく、0.03~5質量%であることがより好ましく、0.05~2質量%であることがさらに好ましい。
 アルカリ過酸化水素漂白工程においては、過酸化水素とともに酸素をさらに添加してもよい。酸素を添加することで、酸素による漂白が併せて行われうる。なお、アルカリ過酸化水素漂白工程(Ep工程)において酸素が併用される場合、特にEop工程と表現されることがある。
 酸素ガスの添加率は、未晒パルプの絶乾質量に対して、0.1~3質量%であることが好ましい。
 この際、用いられる酸素としては、特に制限されないが、深冷分離法により得られた酸素、圧力スイング吸着(PSA:Pressure Swing Adsorption)により得られた酸素、真空スイング吸着(VSA:Vacuum Swing Adsorption)により得られた酸素等が挙げられる。
 アルカリ過酸化水素漂白工程の処理温度としては、40~120℃であることが好ましく、50~100℃であることがより好ましく、60~90℃であることがさらに好ましい。
 アルカリ過酸化水素漂白工程の処理時間としては、15~150分であることが好ましく、15~120分であることがより好ましく、15~100分であることがさらに好ましい。
 [変形例]
 上述の実施形態では、未晒パルプ調製工程、アルカリ酸素漂白工程(O工程)、モノ過硫酸漂白工程(MPS工程)、オゾン漂白工程(Z工程)、二酸化塩素漂白工程(D工程)、アルカリ過酸化水素漂白工程(Ep工程)をこの順で含む形態について説明したが、このうち各漂白工程の実施の有無、順序の変更、繰り返しを変更した変形例とした形態とすることができる。これにより、得られる漂白パルプの物性、使用する二酸化塩素量等を適宜制御することができる。
 一実施形態において、漂白パルプの製造方法は、O工程、MPS工程、第1のD工程、Ep工程、第2のD工程をこの順で含む。なお、Z工程を省略することにより、製造コストを低減することができる。
 また、別の一実施形態において、漂白パルプの製造方法は、O工程、MPS工程、Z工程、第1のD工程、Eop工程、第2のD工程をこの順で含む。この際、前記Eop工程は、上述の通り、Ep工程において酸素が併用される工程である。また、前記Z工程後、洗浄せずに第1のD工程を行うことが好ましい。
 また、別の一実施形態において、漂白パルプの製造方法は、O工程、MPS工程、Z工程、第1のD工程、Ep工程、第2のD工程をこの順で含む。この際、前記Z工程後、洗浄せずに第1のD工程を行うことが好ましい。
 また、別の一実施形態において、漂白パルプの製造方法は、O工程、MPS工程、Z工程、Ep工程、第1のD工程をこの順で含む。この際、前記Z工程後、洗浄せずにEp工程を行うことが好ましい。
 [漂白パルプ]
 上述の製造方法によって製造された漂白パルプは白色度に優れる。具体的には、漂白パルプの白色度は、50%以上であることが好ましく、50~80%であることがより好ましく、55~70%であることがさらに好ましい。漂白パルプの白色度が50%以上であると、白色度に優れる漂白パルプとなることから好ましい。なお、本明細書において、漂白パルプの白色度は実施例の方法により測定された値を採用する。
 漂白パルプの白色度の上昇率(漂白パルプの白色度/未晒パルプの白色度×100)は、115%以上であることが好ましく、117%以上であることがより好ましく、119%以上であることがさらに好ましく、120%以上であることが特に好ましく、121%以上であることが最も好ましい。
 漂白パルプの過マンガン酸カリウム価(K価)は、6以下であることが好ましく、5以下であることがより好ましく、1~4であることがさらに好ましく、2~3であることが特に好ましい。漂白パルプのK価が6以下であると、白色度に優れる漂白パルプとなることから好ましい。なお、漂白パルプのK価はパルプ中の残存リグニン量を表す指標である。また、本明細書において、漂白パルプのK価は実施例の方法により測定された値を採用する。
 漂白パルプのK価の残存率(漂白パルプのK価/未晒パルプのK価×100)は65%以下であることが好ましく、56%以下であることがより好ましく、40%以下であることがさらに好ましく、35%以下であることが特に好ましく、33%以下であることが最も好ましい。
 さらに、漂白パルプの粘度は、10cP以上であることが好ましく、12cP以上であることがより好ましく、14~20cPであることがさらに好ましい。漂白パルプの粘度が10cP以上であると、紙の強度を維持できることから好ましい。なお、本明細書において、漂白パルプの粘度は実施例の方法により測定された値を採用する。
 漂白パルプの粘度の保持率(漂白パルプの粘度/未晒パルプの粘度×100)は60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましく、85%以上であることが特に好ましい。
 また、漂白パルプのヘキセンウロン酸含有量(HexA含有量)は、30μmol/g以下であることが好ましく、20μmol/g以下であることがより好ましく、1~10μmol/gであることがさらに好ましい。漂白パルプのHexA含有量が30μmol/g以下であると、漂白パルプが褪色しにくいことから好ましい。なお、本明細書において、漂白パルプのHexA含有量は実施例の方法により測定された値を採用する。
 漂白パルプのHexA含有量の残存率(漂白パルプのHexA含有量/未晒パルプのHexA含有量×100)は75%以下であることが好ましく、65%以下であることがより好ましく、60%以下であることがさらに好ましく、30%以下であることが特に好ましく、15%以下であることが最も好ましい。
 なお、本発明では、モノ過硫酸漂白工程(MPS工程)におけるモノ過硫酸の添加率、および第1の二酸化塩素漂白工程(D工程)における二酸化塩素の添加率の比を所定の範囲とすることで、リグニン等を除去することができ、白色度に優れる漂白パルプを製造することができる。この効果は前記本発明のモノ過硫酸漂白工程(MPS工程)を、硫酸で処理する硫酸漂白工程に代えて行う従来技術よりも顕著に高い効果を奏する。このことは各方法における全有機炭素(TOC)の比を比較することで確認することができる。具体的には、まず本発明の方法において、モノ過硫酸漂白工程で得られる排水(漂白処理後のパルプの洗浄排液)のTOCおよび第1の二酸化塩素漂白工程で得られる排水(漂白処理後のパルプの洗浄排液)のTOCの和としてTOCを算出する。また、従来技術の方法(具体的には、本発明の方法のMPS工程に代えて硫酸漂白工程を行う方法であり、以下、「参照方法」とも称する)において、硫酸漂白工程で得られる排水(漂白処理後のパルプの洗浄排液)のTOCおよび第1の二酸化塩素漂白工程で得られる排水(漂白処理後のパルプの洗浄排液)のTOCの和としてTOCを算出する。そしてこれらのTOC増大率(TOC/TOC×100)を算出したとき、100%超であることが好ましく、110%超であることがより好ましく、115%超であることがさらに好ましい。ここで、前記排水中のTOCには、リグニン、漂白由来物質(リグニン誘導体等)が含まれる。このため、前記TOC増大率が100%超であると、硫酸漂白工程を行う従来技術よりもリグニン等を好適に除去することが可能であることを意味する。すなわち、好ましい一実施形態において、モノ過硫酸漂白工程および第1の二酸化塩素漂白工程で得られる排水の全有機炭素(TOC)の前記モノ過硫酸漂白工程に代えて硫酸で処理する硫酸漂白工程を行う参照方法における硫酸漂白工程および第1の二酸化塩素漂白工程で得られる排水の全有機炭素(TOC)に対するTOC増大率(TOC/TOC×100)が、好ましくは100%超、より好ましくは110%超、さらに好ましくは115%超である。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、特に断りのない限り、「%」は質量基準である。
 [実施例1]
 未晒パルプをアルカリ酸素漂白したアルカリ酸素漂白工程(O工程)後のパルプ(以下、「原料パルプ」と称する)を用いて、モノ過硫酸漂白工程(MPS工程)、および第1の二酸化塩素漂白工程(D工程)を行い、漂白パルプを製造した。
 (モノ過硫酸漂白工程(MPS工程))
 ポリエチレン袋に絶乾質量34gの原料パルプ(白色度:49.2%、K価:7.0、粘度18cP、HexA含有量:32.6μmol/g)をサンプリングした。パルプ濃度10%で漂白するために必要な中空糸膜濾過水を添加し、次いで反応開始時のpHが3程度となる量の硫酸水溶液を添加してよく混合した。その後、未晒パルプの絶乾質量に対して0.13質量%のモノ過硫酸を添加してさらに混合した。
 98℃の恒温水槽に120分間浸漬することにより漂白処理を行った。
 MPS工程後のパルプを洗浄した。具体的には、パルプの濃度が2.4%となるまで純水を添加し、次いで、パルプ濃度が20%となるまで脱水した(洗浄率90%)。
 (第1の二酸化塩素漂白工程(D工程))
 上記で得られた漂白後のパルプを、ポリエチレン袋に絶乾質量16gサンプリングした。パルプ濃度10%で漂白するために必要な中空糸膜濾過水を添加し、次いで反応開始時のpHが3程度となる量の硫酸水溶液を添加してよく混合した。その後、未晒パルプの絶乾質量に対して0.50質量%の二酸化塩素を添加してさらに混合した。なお、未晒パルプの絶乾質量に対するモノ過硫酸の添加率(0.13質量%)と、未晒パルプの絶乾質量に対する二酸化塩素の添加率(0.50質量%)との比(二酸化塩素の添加率/モノ過硫酸の添加率)は3.85である。
 70℃の恒温水槽に120分間浸漬することにより漂白処理を行い、MPS工程と同様の方法でパルプを洗浄した。
 漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、ヘキセンウロン酸含有量(HexA含有量)を以下の方法で測定した。なお、各測定は、以下の方法で作製したパルプシート(酸性抄紙)を測定サンプルとした。ここで、前記パルプシート(酸性抄紙)は、漂白パルプを純水2Lに希釈後、亜硫酸水でpH5.5に調整した。次いで、ブフナーロート上に2枚のシートを作製し、12時間風乾することで作製した。
 [ISO白色度]
 JISP8148:2018に従って白色度(%)を測定した。その結果、ISO白色度は57.4%(原料パルプに対する白色度の上昇率:117%)であった。
 [過マンガン酸カリウム価(K価)]
 K価をTAPPI UM 253:2010に準じて測定した。その結果、K価は2.6(原料パルプに対するK値の残存率:37%)であった。
 [粘度]
 粘度をJ.TAPPI No.44法に準じて測定した。その結果、粘度は15cP(原料パルプに対する粘度の保持率:83%)であった。
 [ヘキセンウロン酸含有量(HexA含有量)]
 パルプシート(酸性抄紙)を絶乾した後、絶乾質量で0.8gのパルプシート(酸性抄紙)を精秤して耐圧容器に入れた。次いで、純水80mLを加えた後、ギ酸を加えてpH値を3に調整した。耐圧容器をオーブンに入れて120℃で4時間処理し、HexAを酸加水分解した。処理後ろ過を行い、濾別された溶液中に存在するHexAの酸加水分解物である2-フランカルボン酸と5-カルボキシ-2-フランアルデヒドをHPLCにて定量し、それらのモル量の合計から元のHexA含有量を求めた。その結果、漂白パルプのHexA含有量は6.4μmol/g(原料パルプに対するHexA含有量の残存率:20%)であった。
 [排水中の全有機炭素(TOC)]
 MPS工程後のパルプ洗浄時に脱水して得られた洗浄排水(MPS工程の排水)50mLを採取した。採取したMPS工程の排水を、全有機炭素計TOV-VCN(SHIMADZU製)を用いて、酸の添加および通気処理により無機炭素を揮発させ、試料を不揮発性有機炭素(Non-PurgeableOrganicCarbon:NPOC)として測定するNPOCモードで、MPS工程の排水中のTOCを測定した。なお、JISK0551:1994に則り標準試料にはフタル酸水素カリウムおよび炭酸水素ナトリウムを使用した。
 また、D工程のパルプ洗浄時に脱水して得られた洗浄排水(D工程の排水)50mLを採取し、MPS工程の排水と同様の方法でD工程の排水中のTOCを測定した。
 前記MPS工程の排水中のTOCとD工程の排水中のTOCとの和(以下、単に「排水中の全有機炭素(TOC)」と称することがある)は289mg/Lであった。
 ここで、実施例1のMPS工程に代えて、硫酸で処理する硫酸漂白工程を行う参考例1(参照方法)を基準として、実施例1における排水中のTOC増大率を算出した。なお、参考例1は以下の通りに実施した。
 参考例1
 モノ過硫酸漂白工程(MPS工程)工程において、モノ過硫酸を添加しなかったことを除いては実施例1と同様の方法で漂白パルプを製造した。
 なお、上記と同様の方法で漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は56.4%(原料パルプに対する上昇率:115%)、K価は2.6(原料パルプに対する残存率:37%)、粘度は14cP(原料パルプに対する保持率:78%)、HexA含有量は4.8μmol/g(原料パルプに対する残存率:15%)であった。また、上記と同様に、MPS工程(硫酸漂白工程)の排水中のTOCおよびD工程の排水中のTOCを測定し、その和(排水中の全有機炭素(TOC))を算出したところ、257mg/Lであった。
 実施例1における排水中のTOC増大率を、以下の式によって算出したところ112%であった。
Figure JPOXMLDOC01-appb-M000002
 [実施例2]
 モノ過硫酸漂白工程(MPS工程)におけるモノ過硫酸の添加量を未晒パルプの絶乾質量に対して0.20質量%に変更したことを除いては、実施例1と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は2.50である。
 実施例1と同様の方法で、漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は58.3%(原料パルプに対する上昇率:119%)、K価は2.4(原料パルプに対する残存率:35%)、粘度は15cP(原料パルプに対する保持率:83%)、HexA含有量は5.6μmol/g(原料パルプに対する残存率:17%)、排水中のTOCは295mg/L(参考例1に対するTOC増大率:115%)であった。
 [実施例3]
 モノ過硫酸漂白工程(MPS工程)におけるモノ過硫酸の添加量を未晒パルプの絶乾質量に対して0.25質量%に変更したことを除いては、実施例1と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は2.00である。
 実施例1と同様の方法で、漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は59.0%(原料パルプに対する上昇率:120%)、K価は2.38(原料パルプに対する残存率:34%)、粘度は14.6cP(原料パルプに対する保持率:81%)、HexA含有量は4.8μmol/g(原料パルプに対する残存率:15%)、排水中のTOCは295mg/L(参考例1に対するTOC増大率:115%)であった。
 [実施例4]
 モノ過硫酸漂白工程(MPS工程)における反応開始時のpHを3.5程度に変更し、モノ過硫酸の添加量を未晒パルプの絶乾質量に対して0.40質量%に変更したことを除いては、実施例1と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は1.25である。
 実施例1と同様の方法で、漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は60.6%(原料パルプに対する上昇率:123%)、K価は2.2(原料パルプに対する残存率:32%)、粘度は14cP(原料パルプに対する保持率:78%)、HexA含有量は3.9μmol/g(原料パルプに対する残存率:12%)、排水中のTOCは297mg/L(参考例1に対するTOC増大率:116%)であった。
 [実施例5]
 モノ過硫酸漂白工程(MPS工程)におけるモノ過硫酸の添加量を未晒パルプの絶乾質量に対して0.60質量%に変更したことを除いては、実施例1と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は0.83である。
 実施例1と同様の方法で、漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は60.0%(原料パルプに対する上昇率:122%)、K価は2.2(原料パルプに対する残存率:32%)、粘度は13.2cP(原料パルプに対する保持率:73%)、HexA含有量は3.2μmol/g(原料パルプに対する残存率:10%)、排水中のTOCは295mg/L(参考例1に対するTOC増大率:115%)であった。
 [実施例6]
 モノ過硫酸漂白工程(MPS工程)における反応開始時のpHを3.2程度に変更し、モノ過硫酸の添加量を未晒パルプの絶乾質量に対して1.50質量%に変更したことを除いては、実施例1と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は0.33である。
 実施例1と同様の方法で、漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は59.2%(原料パルプに対する上昇率:120%)、K価は2.3(原料パルプに対する残存率:33%)、粘度は12cP(原料パルプに対する保持率:67%)、HexA含有量は2.0μmol/g(原料パルプに対する残存率:6%)、排水中のTOCは287mg/L(参考例1に対するTOC増大率:112%)であった。
 [比較例1]
 モノ過硫酸漂白工程(MPS工程)における反応開始時のpHを3.2程度に変更し、モノ過硫酸の添加量を未晒パルプの絶乾質量に対して2.00質量%に変更し、第1の二酸化塩素漂白工程(D工程)における二酸化塩素の添加量を未晒パルプの絶乾質量に対して0.25質量%に変更したことを除いては、実施例1と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は0.13である。
 実施例1と同様の方法で、漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は56.2%(原料パルプに対する上昇率:114%)、K価は2.6(原料パルプに対する残存率:37%)、粘度は11cP(原料パルプに対する保持率:61%)、HexA含有量は2.5μmol/g(原料パルプに対する残存率:8%)、排水中のTOCは271mg/L(参考例1に対するTOC増大率:105%)であった。
 [比較例2]
 モノ過硫酸漂白工程(MPS工程)工程におけるモノ過硫酸の添加量を未晒パルプの絶乾質量に対して0.10質量%に変更したことを除いては、実施例1と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は5.00である。
 実施例1と同様の方法で、漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は55.8%(原料パルプに対する上昇率:113%)、K価は2.7(原料パルプに対する残存率:39%)、粘度は15cP(原料パルプに対する保持率:83%)、HexA含有量は6.7μmol/g(原料パルプに対する残存率:21%)、排水中のTOCは276mg/L(参考例1に対するTOC増大率:107%)であった。
 [実施例7]
 原料パルプ(白色度:54.7%、K価:7.0、粘度19cP、HexA含有量:36.1μmol/g)を用い、モノ過硫酸漂白工程(MPS工程)における漂白処理温度を50℃、漂白処理時間を90分間に変更し、第1の二酸化塩素漂白工程(D工程))における漂白処理温度を60℃、漂白処理時間を35分間に変更したことを除いては実施例1と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は3.85である。
 実施例1と同様の方法で、漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)を測定した。その結果、ISO白色度は63.2%(原料パルプに対する上昇率:116%)、K価は4.0(原料パルプに対する残存率:57%)、粘度は17cP(原料パルプに対する保持率:89%)、HexA含有量は25.0μmol/g(原料パルプに対する残存率:69%)であった。
 なお、排水中の全有機炭素(TOC)については、実施例1と同様の方法で測定したところ、106mg/Lであった。また、実施例7におけるTOC増大率については、実施例7のMPS工程に代えて、硫酸で処理する硫酸漂白工程を行う参考例2(参照方法)を基準として算出した。なお、参考例2は以下の通りに実施した。
 参考例2
 モノ過硫酸漂白工程(MPS工程)工程において、モノ過硫酸を添加しなかったことを除いては実施例7と同様の方法で漂白パルプを製造した。
 なお、上記と同様の方法で漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は62.4%(原料パルプに対する上昇率:114%)、K価は4.3(原料パルプに対する残存率:61%)、粘度は17cP(原料パルプに対する保持率:89%)、HexA含有量は28.9μmol/g(原料パルプに対する残存率:80%)であった。また、上記と同様に、MPS工程(硫酸漂白工程)の排水中のTOCおよびD工程の排水中のTOCを測定し、その和(排水中の全有機炭素(TOC))を算出したところ、91mg/Lであった。
 実施例7における排水中のTOC増大率を、以下の式によって算出したところ116%であった。
Figure JPOXMLDOC01-appb-M000003
 [実施例8]
 モノ過硫酸漂白工程(MPS工程)におけるモノ過硫酸の添加量を未晒パルプの絶乾質量に対して0.20質量%に変更したことを除いては、実施例7と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は2.50である。
 実施例7と同様の方法で、漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は64.2%(原料パルプに対する上昇率:117%)、K価は3.8(原料パルプに対する残存率:54%)、粘度は17cP(原料パルプに対する保持率:89%)、HexA含有量は23.5μmol/g(原料パルプに対する残存率:65%)、排水中のTOCは108mg/L(参考例2に対するTOC増大率:119%)であった。
 [実施例9]
 モノ過硫酸漂白工程(MPS工程)におけるモノ過硫酸の添加量を未晒パルプの絶乾質量に対して0.25質量%に変更したことを除いては、実施例7と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は2.00である。
 実施例7と同様の方法で、漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は65.1%(原料パルプに対する上昇率:119%)、K価は3.7(原料パルプに対する残存率:53%)、粘度は16.5cP(原料パルプに対する保持率:87%)、HexA含有量は22.7μmol/g(原料パルプに対する残存率:63%)、排水中のTOCは109mg/L(参考例2に対するTOC増大率:120%)であった。
 [実施例10]
 モノ過硫酸漂白工程(MPS工程)における反応開始時のpHを3.5程度に変更し、モノ過硫酸の添加量を未晒パルプの絶乾質量に対して0.40質量%に変更したことを除いては、実施例7と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は1.25である。
 実施例7と同様の方法で、漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は66.9%(原料パルプに対する上昇率:122%)、K価は3.6(原料パルプに対する残存率:51%)、粘度は16cP(原料パルプに対する保持率:84%)、HexA含有量は21.0μmol/g(原料パルプに対する残存率:58%)、排水中のTOCは110mg/L(参考例2に対するTOC増大率:121%)であった。
 [実施例11]
 モノ過硫酸漂白工程(MPS工程)におけるモノ過硫酸の添加量を未晒パルプの絶乾質量に対して0.60質量%に変更したことを除いては、実施例7と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は0.83である。
 実施例7と同様の方法で、漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は66.2%(原料パルプに対する上昇率:121%)、K価は3.64(原料パルプに対する残存率:52%)、粘度は15.8cP(原料パルプに対する保持率:83%)、HexA含有量は18.8μmol/g(原料パルプに対する残存率:52%)、排水中のTOCは108mg/L(参考例2に対するTOC増大率:119%)であった。
 [実施例12]
 モノ過硫酸漂白工程(MPS工程)における反応開始時のpHを3.2程度に変更し、モノ過硫酸の添加量を未晒パルプの絶乾質量に対して1.50質量%に変更したことを除いては、実施例7と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は0.33である。
 実施例7と同様の方法で、漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は64.0%(原料パルプに対する上昇率:117%)、K価は3.9(原料パルプに対する残存率:56%)、粘度は16cP(原料パルプに対する保持率:84%)、HexA含有量は8.4μmol/g(原料パルプに対する残存率:23%)、排水中のTOCは107mg/L(参考例2に対するTOC増大率:118%)であった。
 [比較例3]
 モノ過硫酸漂白工程(MPS工程)におけるモノ過硫酸の添加量を未晒パルプの絶乾質量に対して2.00質量%に変更し、第1の二酸化塩素漂白工程(D工程)における二酸化塩素の添加量を未晒パルプの絶乾質量に対して0.25質量%に変更したことを除いては、実施例7と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は0.13である。
 実施例7と同様の方法で、漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は62.1%(原料パルプに対する上昇率:114%)、K価は4.0(原料パルプに対する残存率:57%)、粘度は15cP(原料パルプに対する保持率:79%)、HexA含有量は10.5μmol/g(原料パルプに対する残存率:29%)、排水中のTOCは98mg/L(参考例2に対するTOC増大率:108%)であった。
 [比較例4]
 モノ過硫酸漂白工程(MPS工程)におけるモノ過硫酸の添加量を未晒パルプの絶乾質量に対して0.10質量%に変更したことを除いては、実施例7と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は5.00である。
 実施例7と同様の方法で、漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は62.6%(原料パルプに対する上昇率:114%)、K価は4.0(原料パルプに対する残存率:57%)、粘度は17cP(原料パルプに対する保持率:89%)、HexA含有量は26.2μmol/g(原料パルプに対する残存率:73%)、排水中のTOCは101mg/L(参考例2に対するTOC増大率:111%)であった。
 [実施例13]
 モノ過硫酸漂白工程(MPS工程)における漂白処理時間を2分間に変更したことを除いては実施例4と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は1.25である。
 実施例1と同様の方法で、漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は58.0%(原料パルプに対する上昇率:118%)、K価は4.3(原料パルプに対する残存率:62%)、粘度は17cP(原料パルプに対する保持率:94%)、HexA含有量は23.1μmol/g(原料パルプに対する残存率:71%)、排水中のTOCは277mg/L(参考例1に対するTOC増大率:108%)であった。
 [実施例14]
 モノ過硫酸漂白工程(MPS工程)における漂白処理時間を7分間に変更したことを除いては実施例4と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は1.25である。
 実施例1と同様の方法で、漂白パルプのISO白色度、過マンガン酸カリウム価(K価)、粘度、およびヘキセンウロン酸含有量(HexA含有量)、並びに排水中の全有機炭素(TOC)を測定した。その結果、ISO白色度は58.3%(原料パルプに対する上昇率:118%)、K価は4.3(原料パルプに対する残存率:61%)、粘度は16cP(原料パルプに対する保持率:89%)、HexA含有量は19.1μmol/g(原料パルプに対する残存率:59%)、排水中のTOCは285mg/L(参考例1に対するTOC増大率:111%)であった。
 得られた結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1の結果から、実施例1~14で製造された漂白パルプは白色度に優れることが分かる。
 なお、実施例1、2、4、および6において、MPS工程の排水50mLとD工程の排水50mLの混合排水について、波長280nmにおける吸光度を分光光度計(UV-2450;島津製作所)で測定した。得られた結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000005
 表2の結果から、排水中には芳香族化合物を含むことが分かる。この際、前記芳香族化合物は、リグニンまたはその誘導体と推察される。
 [劣化試験後のISO白色度および粘度]
 上記実施例1、2、4、6、7、10、および12、比較例2および4、参考例1および2、並びに下記実施例15~23の漂白パルプのISO白色度および粘度を測定した。また、劣化試験を行い、劣化試験後の漂白パルプのISO白色度および粘度を測定した。なお、各測定は、実施例1と同様の方法で作製したパルプシート(酸性抄紙)を測定サンプルとした。
 (実施例15)
 モノ過硫酸漂白工程(MPS工程)におけるモノ過硫酸の添加量を未晒パルプの絶乾質量に対して2.00質量%に変更したことを除いては、実施例1と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は0.25である。
 (実施例16)
 第1の二酸化塩素漂白工程(D工程))における漂白処理温度を60℃、漂白処理時間を35分間に変更したことを除いては、実施例4と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は1.25である。
 (実施例17)
 第1の二酸化塩素漂白工程(D工程))における漂白処理温度を60℃、漂白処理時間を35分間に変更したことを除いては、実施例6と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は0.33である。
 (実施例18)
 モノ過硫酸漂白工程(MPS工程)における漂白処理時間を90分間に変更したことを除いては、実施例6と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は0.33である。
 (実施例19)
 モノ過硫酸漂白工程(MPS工程)におけるモノ過硫酸の添加量を未晒パルプの絶乾質量に対して0.40質量%に変更し、漂白処理温度を70℃、漂白処理時間を90分間に変更し、第1の二酸化塩素漂白工程(D工程))における漂白処理温度を60℃、漂白処理時間を35分間に変更したことを除いては実施例1と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は1.25である。
 (実施例20)
 モノ過硫酸漂白工程(MPS工程)におけるモノ過硫酸の添加量を未晒パルプの絶乾質量に対して1.50質量%に変更したことを除いては、実施例19と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は0.33である。
 (実施例21)
 モノ過硫酸漂白工程(MPS工程)におけるモノ過硫酸の添加量を未晒パルプの絶乾質量に対して1.50質量%に変更し、漂白処理時間を120分間に変更し、第1の二酸化塩素漂白工程(D工程))における漂白処理温度を70℃、漂白処理時間を120分間に変更したことを除いては、実施例19と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は0.33である。
 (実施例22)
 モノ過硫酸漂白工程(MPS工程)における漂白処理温度を60℃に変更したことを除いては、実施例6と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は0.33である。
 (実施例23)
 モノ過硫酸漂白工程(MPS工程)におけるモノ過硫酸の添加量を未晒パルプの絶乾質量に対して2.00質量%に変更したことを除いては、実施例7と同様の方法で漂白パルプを製造した。なお、二酸化塩素の添加率/モノ過硫酸の添加率は0.25である。
 (劣化試験)
 劣化試験は、紙および板紙-加速劣化処理方法(JIS8154-3:2008)に則り、酸性抄紙を80℃、相対湿度65%の条件で24時間保持することにより行った。
 (ISO白色度)
 劣化試験前後のISO白色度を実施例1と同様の方法で測定し、白色度変化率を以下の式によって算出した。得られた結果を下記表3に示す。
Figure JPOXMLDOC01-appb-M000006
 (粘度)
 また、劣化試験前後の粘度を実施例1と同様の方法で測定し、粘度差を以下の式によって算出した。得られた結果を下記表3に示す。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-T000008
 表3の結果から、実施例1、2、4、6、7、10、12、および15~23で製造された漂白パルプは劣化試験後であっても白色度が低下しにくいことが分かる。
 

Claims (13)

  1.  未晒パルプをアルカリ酸素漂白するアルカリ酸素漂白工程と、
     モノ過硫酸で処理するモノ過硫酸漂白工程と、
     二酸化塩素で処理する第1の二酸化塩素漂白工程と、
    を含み、
     前記未晒パルプの絶乾質量に対するモノ過硫酸の添加率(質量%)と、前記未晒パルプの絶乾質量に対する二酸化塩素の添加率(質量%)との比(二酸化塩素の添加率/モノ過硫酸の添加率)が、0.25~4.0である、漂白パルプの製造方法。
  2.  未晒パルプをアルカリ酸素漂白するアルカリ酸素漂白工程と、
     モノ過硫酸で処理するモノ過硫酸漂白工程と、
     二酸化塩素で処理する第1の二酸化塩素漂白工程と、
    を含み、
     前記未晒パルプの絶乾質量に対するモノ過硫酸の添加率(質量%)と、前記未晒パルプの絶乾質量に対する二酸化塩素の添加率(質量%)との比(二酸化塩素の添加率/モノ過硫酸の添加率)が、0.25~2.0であり、
     前記モノ過硫酸漂白工程の処理温度が、70~98℃である、漂白パルプの製造方法。
  3.  アルカリ過酸化水素で処理するアルカリ過酸化水素漂白工程をさらに含む、請求項2に記載の製造方法。
  4.  オゾンで処理するオゾン漂白工程をさらに含む、請求項2または3に記載の製造方法。
  5.  未晒パルプをアルカリ酸素漂白するアルカリ酸素漂白工程と、
     モノ過硫酸で処理するモノ過硫酸漂白工程と、
     二酸化塩素で処理する第1の二酸化塩素漂白工程と、
     アルカリ過酸化水素で処理するアルカリ過酸化水素漂白工程と、
     二酸化塩素で処理する第2の二酸化塩素漂白工程と、
    をこの順で含み、
     前記未晒パルプの絶乾質量に対するモノ過硫酸の添加率(質量%)と、第1の二酸化塩素漂白工程における前記未晒パルプの絶乾質量に対する二酸化塩素の添加率(質量%)との比(二酸化塩素の添加率/モノ過硫酸の添加率)が、0.25~2.0であり、
     前記モノ過硫酸漂白工程の処理温度が、70~98℃である、漂白パルプの製造方法。
  6.  未晒パルプをアルカリ酸素漂白するアルカリ酸素漂白工程と、
     モノ過硫酸で処理するモノ過硫酸漂白工程と、
     二酸化塩素で処理する第1の二酸化塩素漂白工程と、
    を含み、
     前記未晒パルプの絶乾質量に対するモノ過硫酸の添加率(質量%)が、0.30~1.75質量%であり、
     前記未晒パルプの絶乾質量に対するモノ過硫酸の添加率(質量%)と、前記未晒パルプの絶乾質量に対する二酸化塩素の添加率(質量%)との比(二酸化塩素の添加率/モノ過硫酸の添加率)が、0.5~2.0である、漂白パルプの製造方法。
  7.  アルカリ過酸化水素で処理するアルカリ過酸化水素漂白工程をさらに含む、請求項6に記載の製造方法。
  8.  オゾンで処理するオゾン漂白工程をさらに含む、請求項6または7に記載の製造方法。
  9.  前記モノ過硫酸漂白工程の処理温度が、40~98℃である、請求項6~8のいずれか1項に記載の製造方法。
  10.  前記モノ過硫酸漂白工程および前記第1の二酸化塩素漂白工程で得られる排水の全有機炭素(TOC)の前記モノ過硫酸漂白工程に代えて硫酸で処理する硫酸漂白工程を行う参照方法における硫酸漂白工程および第1の二酸化塩素漂白工程で得られる排水の全有機炭素(TOC)に対するTOC増大率(TOC/TOC×100)が、100%超である、請求項1~9のいずれか1項に記載の製造方法。
  11.  前記モノ過硫酸漂白工程で得られる排水および前記第1の二酸化塩素漂白工程で得られる排水の少なくとも一部が、モノ過硫酸漂白工程で再利用されることを含む、請求項10に記載の製造方法。
  12.  前記モノ過硫酸漂白工程の処理時間が、2~200分である、請求項1~11のいずれか1項に記載の製造方法。
  13.  前記モノ過硫酸漂白工程の処理pHが、2~5である、請求項1~12のいずれか1項に記載の製造方法。
     
PCT/JP2021/031196 2020-11-16 2021-08-25 漂白パルプの製造方法 WO2022102206A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022561290A JPWO2022102206A1 (ja) 2020-11-16 2021-08-25
CN202180075349.XA CN116507772A (zh) 2020-11-16 2021-08-25 漂白纸浆的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020190390 2020-11-16
JP2020-190390 2020-11-16

Publications (1)

Publication Number Publication Date
WO2022102206A1 true WO2022102206A1 (ja) 2022-05-19

Family

ID=81601039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031196 WO2022102206A1 (ja) 2020-11-16 2021-08-25 漂白パルプの製造方法

Country Status (3)

Country Link
JP (1) JPWO2022102206A1 (ja)
CN (1) CN116507772A (ja)
WO (1) WO2022102206A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308824A (ja) * 2006-05-17 2007-11-29 Oji Paper Co Ltd 漂白パルプの製造方法
JP2008088606A (ja) * 2006-10-03 2008-04-17 Oji Paper Co Ltd 漂白パルプの製造方法
WO2009081714A1 (ja) * 2007-12-20 2009-07-02 Mitsubishi Gas Chemical Company, Inc. 漂白パルプの製造方法
JP2011001637A (ja) * 2009-06-16 2011-01-06 Mitsubishi Gas Chemical Co Inc 漂白パルプの製造方法
JP2012219416A (ja) * 2011-04-13 2012-11-12 Oji Paper Co Ltd 溶解パルプの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308824A (ja) * 2006-05-17 2007-11-29 Oji Paper Co Ltd 漂白パルプの製造方法
JP2008088606A (ja) * 2006-10-03 2008-04-17 Oji Paper Co Ltd 漂白パルプの製造方法
WO2009081714A1 (ja) * 2007-12-20 2009-07-02 Mitsubishi Gas Chemical Company, Inc. 漂白パルプの製造方法
JP2011001637A (ja) * 2009-06-16 2011-01-06 Mitsubishi Gas Chemical Co Inc 漂白パルプの製造方法
JP2012219416A (ja) * 2011-04-13 2012-11-12 Oji Paper Co Ltd 溶解パルプの製造方法

Also Published As

Publication number Publication date
CN116507772A (zh) 2023-07-28
JPWO2022102206A1 (ja) 2022-05-19

Similar Documents

Publication Publication Date Title
CA1206704A (fr) Procede pour le traitement de pates papetieres chimiques
JP5487974B2 (ja) 漂白パルプの製造方法
JP7100315B2 (ja) 漂白パルプの製造方法
JP4887900B2 (ja) 漂白パルプの製造方法
JP5471049B2 (ja) Tcf漂白パルプの製造方法
JP5515409B2 (ja) Ecf漂白パルプの製造方法
WO2022102206A1 (ja) 漂白パルプの製造方法
JP5471050B2 (ja) Tcf漂白方法
JP5526604B2 (ja) Ecf漂白方法
EP1520070A1 (en) Bleaching of lignin and process for producing paper
JP2011001637A (ja) 漂白パルプの製造方法
JP2011001636A (ja) 漂白パルプの製造方法
CN114174589B (zh) 漂白纸浆的制造方法
US20150184346A1 (en) Sulfonation of pulp produced by alkali pulping process
JP3656905B2 (ja) 退色性の改善された漂白パルプの製造方法
JP5888151B2 (ja) 漂白パルプの製造方法
JP2000290887A (ja) リグノセルロースの漂白方法
JP2001192991A (ja) アルカリパルプの漂白方法
JP2002302888A (ja) 漂白パルプの製造方法
JP4039308B2 (ja) 漂白パルプの製造方法
JP2004339628A (ja) 漂白パルプの製造方法
RU2097462C1 (ru) Способ делигнификации и отбеливания лигноцеллюлозосодержащей пульпы

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561290

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180075349.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891454

Country of ref document: EP

Kind code of ref document: A1