WO2022101969A1 - 多層接合型光電変換素子およびその製造方法 - Google Patents
多層接合型光電変換素子およびその製造方法 Download PDFInfo
- Publication number
- WO2022101969A1 WO2022101969A1 PCT/JP2020/041884 JP2020041884W WO2022101969A1 WO 2022101969 A1 WO2022101969 A1 WO 2022101969A1 JP 2020041884 W JP2020041884 W JP 2020041884W WO 2022101969 A1 WO2022101969 A1 WO 2022101969A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- electrode
- photoelectric conversion
- conversion element
- silicon
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 63
- 239000010703 silicon Substances 0.000 claims abstract description 63
- 238000000034 method Methods 0.000 claims abstract description 45
- 239000004065 semiconductor Substances 0.000 claims abstract description 34
- 238000000576 coating method Methods 0.000 claims abstract description 25
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 230000008569 process Effects 0.000 claims abstract description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 61
- 229910052751 metal Inorganic materials 0.000 claims description 38
- 239000002184 metal Substances 0.000 claims description 37
- 239000000872 buffer Substances 0.000 claims description 33
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052698 phosphorus Inorganic materials 0.000 claims description 11
- 239000011574 phosphorus Substances 0.000 claims description 11
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 abstract description 18
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 313
- 239000010408 film Substances 0.000 description 85
- 239000000463 material Substances 0.000 description 42
- 229910044991 metal oxide Inorganic materials 0.000 description 22
- 150000004706 metal oxides Chemical class 0.000 description 22
- 230000006870 function Effects 0.000 description 18
- -1 halogen ion Chemical group 0.000 description 18
- 238000002161 passivation Methods 0.000 description 18
- 239000013078 crystal Substances 0.000 description 14
- 238000011282 treatment Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 230000005525 hole transport Effects 0.000 description 12
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical group C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 11
- 238000000137 annealing Methods 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 9
- 229910052796 boron Inorganic materials 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 229910021417 amorphous silicon Inorganic materials 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 238000007740 vapor deposition Methods 0.000 description 8
- 238000005755 formation reaction Methods 0.000 description 7
- 229910052736 halogen Inorganic materials 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000010248 power generation Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 239000002019 doping agent Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000005388 borosilicate glass Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 229910003472 fullerene Inorganic materials 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- LLWRXQXPJMPHLR-UHFFFAOYSA-N methylazanium;iodide Chemical compound [I-].[NH3+]C LLWRXQXPJMPHLR-UHFFFAOYSA-N 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 239000005964 Acibenzolar-S-methyl Substances 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000000149 argon plasma sintering Methods 0.000 description 3
- 239000003518 caustics Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229920000123 polythiophene Polymers 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- CRUIOQJBPNKOJG-UHFFFAOYSA-N thieno[3,2-e][1]benzothiole Chemical class C1=C2SC=CC2=C2C=CSC2=C1 CRUIOQJBPNKOJG-UHFFFAOYSA-N 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- FNQJDLTXOVEEFB-UHFFFAOYSA-N 1,2,3-benzothiadiazole Chemical compound C1=CC=C2SN=NC2=C1 FNQJDLTXOVEEFB-UHFFFAOYSA-N 0.000 description 2
- KZDTZHQLABJVLE-UHFFFAOYSA-N 1,8-diiodooctane Chemical compound ICCCCCCCCI KZDTZHQLABJVLE-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UUIQMZJEGPQKFD-UHFFFAOYSA-N Methyl butyrate Chemical compound CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 150000002366 halogen compounds Chemical class 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- PZYDAVFRVJXFHS-UHFFFAOYSA-N n-cyclohexyl-2-pyrrolidone Chemical compound O=C1CCCN1C1CCCCC1 PZYDAVFRVJXFHS-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 2
- 125000001544 thienyl group Chemical group 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- 238000005011 time of flight secondary ion mass spectroscopy Methods 0.000 description 2
- 238000002042 time-of-flight secondary ion mass spectrometry Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- KLFKZIQAIPDJCW-GPOMZPHUSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCC KLFKZIQAIPDJCW-GPOMZPHUSA-N 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 1
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 1
- CMSGUKVDXXTJDQ-UHFFFAOYSA-N 4-(2-naphthalen-1-ylethylamino)-4-oxobutanoic acid Chemical compound C1=CC=C2C(CCNC(=O)CCC(=O)O)=CC=CC2=C1 CMSGUKVDXXTJDQ-UHFFFAOYSA-N 0.000 description 1
- YSHMQTRICHYLGF-UHFFFAOYSA-N 4-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=NC=C1 YSHMQTRICHYLGF-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910017107 AlOx Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-O Methylammonium ion Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910005855 NiOx Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910006398 SnNx Inorganic materials 0.000 description 1
- 229910006854 SnOx Inorganic materials 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 1
- IAVSXZUIQUYMAZ-UHFFFAOYSA-N [Co+3].N1(N=CC=C1)C1=NC=CC=N1.N1(N=CC=C1)C1=NC=CC=N1.N1(N=CC=C1)C1=NC=CC=N1 Chemical compound [Co+3].N1(N=CC=C1)C1=NC=CC=N1.N1(N=CC=C1)C1=NC=CC=N1.N1(N=CC=C1)C1=NC=CC=N1 IAVSXZUIQUYMAZ-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- KOPBYBDAPCDYFK-UHFFFAOYSA-N caesium oxide Chemical compound [O-2].[Cs+].[Cs+] KOPBYBDAPCDYFK-UHFFFAOYSA-N 0.000 description 1
- 229910001942 caesium oxide Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- UTFJHBNXHONIAI-UHFFFAOYSA-N cobalt(3+) 2-pyrazol-1-ylpyridine Chemical compound [Co+3].C1=CC=NN1C1=CC=CC=N1.C1=CC=NN1C1=CC=CC=N1.C1=CC=NN1C1=CC=CC=N1 UTFJHBNXHONIAI-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- BQVVSSAWECGTRN-UHFFFAOYSA-L copper;dithiocyanate Chemical compound [Cu+2].[S-]C#N.[S-]C#N BQVVSSAWECGTRN-UHFFFAOYSA-L 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- UIJLKECZHOSSHF-UHFFFAOYSA-N diphenyl-bis(4-pyridin-3-ylphenyl)silane Chemical compound C1=CC=CC=C1[Si](C=1C=CC(=CC=1)C=1C=NC=CC=1)(C=1C=CC(=CC=1)C=1C=NC=CC=1)C1=CC=CC=C1 UIJLKECZHOSSHF-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000012433 hydrogen halide Substances 0.000 description 1
- 229910000039 hydrogen halide Inorganic materials 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- ZZLONYJSCSHJMR-UHFFFAOYSA-N hydron 2,2,2-trifluoroethanamine iodide Chemical compound [I-].FC(C[NH3+])(F)F ZZLONYJSCSHJMR-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- NJWNEWQMQCGRDO-UHFFFAOYSA-N indium zinc Chemical compound [Zn].[In] NJWNEWQMQCGRDO-UHFFFAOYSA-N 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- DCZNSJVFOQPSRV-UHFFFAOYSA-N n,n-diphenyl-4-[4-(n-phenylanilino)phenyl]aniline Chemical class C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 DCZNSJVFOQPSRV-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- VJYJJHQEVLEOFL-UHFFFAOYSA-N thieno[3,2-b]thiophene Chemical class S1C=CC2=C1C=CS2 VJYJJHQEVLEOFL-UHFFFAOYSA-N 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N trans-stilbene Chemical class C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 238000009279 wet oxidation reaction Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/50—Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/20—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
- H10K30/211—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
- H10K30/57—Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/84—Layers having high charge carrier mobility
- H10K30/86—Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/60—Forming conductive regions or layers, e.g. electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/84—Layers having high charge carrier mobility
- H10K30/85—Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- An embodiment of the present invention relates to a multi-layer junction type photoelectric conversion element having high efficiency, a large area, and high durability, and a method for manufacturing the same.
- semiconductor devices such as photoelectric conversion elements or light emitting elements have generally been manufactured by a relatively complicated method such as a chemical vapor deposition method (CVD method).
- CVD method chemical vapor deposition method
- these semiconductor devices can be produced by a simpler method, for example, a coating method, a printing method, or a physical vapor deposition method (PVD method), they can be easily manufactured at low cost. Is being sought.
- semiconductor devices such as solar cells, sensors, or light emitting devices, which are made of organic materials or are made of a combination of organic materials and inorganic materials, are being actively researched and developed. These studies aim to find a device with high photoelectric conversion efficiency. Further, as a target of such research, an element using a perovskite semiconductor can be manufactured by a coating method or the like, and high efficiency can be expected, so that it has been attracting attention in recent years.
- An object of the present embodiment is to provide a semiconductor element capable of generating electricity with high efficiency and having high durability.
- the multilayer junction type photoelectric conversion element is With the first electrode, The first photoactive layer containing the perovskite semiconductor, The first dope layer, the tunnel insulating film, A second photoactive layer containing silicon, With the second electrode, In this order, the multilayer junction type photoelectric conversion element is provided.
- the thickness of the tunnel insulating film is 1 nm to 15 nm, and the thickness of the tunnel insulating film is 1 nm to 15 nm.
- the first dope layer contains silicon and a trivalent or pentavalent element as an impurity.
- the method for manufacturing the multilayer junction type photoelectric conversion element includes the following steps: (A) A step of forming a second metal electrode on one surface of a silicon wafer constituting the second photoactive layer. (B) A step of forming a tunnel insulating film on the back surface of a silicon wafer on which a second electrode is formed. (C) A step of forming a first dope layer on the tunnel insulating film. (D) A step of forming a first photoactive layer containing perovskite on the first dope layer by a coating method, and (e) a first electrode on the first photoactive layer. The process of forming.
- a multilayer junction type photoelectric conversion element having a large amount of light absorption, suppressed carrier recombination, high efficiency, high generated current amount, and high durability, and manufacturing thereof. The method is provided.
- the conceptual diagram which shows the structure of the multilayer junction type photoelectric conversion element by one Embodiment of this invention The conceptual diagram which shows the structure of the multilayer junction type photoelectric conversion element by the comparative example 1.
- FIG. The conceptual diagram which shows the structure of the multilayer junction type photoelectric conversion element by Example 2.
- the photoelectric conversion element means both an element such as a solar cell or a sensor that converts light into electricity and an element that converts electricity into light.
- the basic structure of these is the same, although there is a difference in whether the active layer functions as a power generation layer or a light emitting layer.
- the constituent members of the multilayer junction type photoelectric conversion element according to the embodiment will be described by taking a solar cell as an example, but the embodiment can also be applied to other photoelectric conversion elements having a common structure.
- FIG. 1 is a schematic diagram showing an example of the configuration of a solar cell, which is one aspect of the multilayer junction type photoelectric conversion element according to the embodiment.
- the first electrode 101 and the second electrode 112 serve as an anode or a cathode, from which electrical energy generated by the element is extracted.
- the photoelectric conversion element according to the embodiment has a tunnel between the first electrode 101 and the second electrode 112, a first photoactive layer 103 including a perovskite semiconductor, a first doped layer 106 having semiconductor characteristics, and a tunnel.
- the insulating film 107 and the second photoactive layer 108 containing silicon are provided in this order.
- the first photoactive layer 103 and the second photoactive layer 108 are layers containing a material that is excited by incident light to generate electrons or holes in the first electrode 101 and the second electrode 112. Is.
- each photoactive layer is a layer containing a material that produces light when electrons and holes are injected from the first electrode and the second electrode.
- the first buffer layer 102 is arranged between the first electrode and the first photoactive layer, and the first photoactive layer 103 and the first dope layer 106 are arranged.
- a second buffer layer 104 and an intermediate transparent electrode 105 are arranged between the two, and a third dope layer 111 is arranged between the second photoactive layer and the second electrode 112.
- a second dope layer 109 and a passivation film 110 are arranged on the back surface of the second photoactive layer.
- the device according to the embodiment preferably comprises these layers or films.
- the first electrode 101 is arranged on the light incident surface side.
- the first electrode 101 is a complex of a first metal electrode 101a and a first transparent electrode 101b. Since the metal electrode and the transparent electrode have different characteristics, either one or a combination thereof may be used depending on the characteristics.
- the metal electrode can be selected from any conventionally known metal electrode as long as it has conductivity. Specifically, conductive materials such as gold, silver, copper, platinum, aluminum, titanium, iron, and palladium can be used.
- the first metal electrode can be formed by any method. For example, it can be formed by applying a paste-like composition containing a metal material on a substrate or a film and then heat-treating it. It is also possible to form a metal electrode by physical vapor deposition (PVD) using a mask pattern. Further, a vacuum heating vapor deposition method, an electron beam vapor deposition method, a resistance heating vapor deposition method and the like can be used. According to these methods, the conversion efficiency and durability of the solar cell can be improved because the damage to the underlying layer, for example, the perovskite semiconductor layer is less than that of the sputter film formation. A screen printing method using a metal paste is also preferable. The metal paste may contain a glass frit or an organic solvent. In addition, light induced plating (LIP) can be used. LIP is a method capable of selectively forming an electrode in a portion where silicon is exposed. In this case, Ni, Ag, Cu or the like can be used as the plating metal.
- the first electrode is generally formed on a laminate of other layers and then on top of it, for example, on the first buffer layer.
- it can be formed by applying a paste-like composition containing a metal as described above and heating the composition.
- the temperature is preferably lower than the annealing temperature of the perovskite-containing active layer described later.
- the temperature of the element is controlled, a surface different from the electrode forming surface is brought into contact with a stage having a cooling mechanism, and the atmosphere is evacuated. It becomes possible to control by setting.
- this heating step can be performed at the same time as the heating step in the formation of the second electrode, which will be described later. That is, heating in the manufacturing process of the first metal electrode and the second electrode can be performed at the same time.
- the first metal electrode has a shape in which a plurality of metal wires are arranged substantially in parallel.
- the thickness of the first metal electrode is preferably 30 to 300 nm, and the width is preferably 10 to 1000 ⁇ m. If the thickness of the metal electrode is thinner than 30 nm, the conductivity tends to decrease and the resistance tends to increase. If the resistance becomes high, it may cause a decrease in photoelectric conversion efficiency. When the thickness of the metal electrode is 100 nm or less, it has light transmittance and is preferable because it can improve power generation efficiency and luminous efficiency.
- the sheet resistance of the metal electrode is preferably as low as possible, preferably 10 ⁇ / ⁇ or less.
- the metal electrode may have a single-layer structure or a multi-layer structure in which layers composed of different materials are laminated.
- the first transparent electrode 101b is a transparent or translucent conductive layer.
- the first electrode 101b may have a structure in which a plurality of materials are laminated. Further, since the transparent electrode transmits light, it can be formed on the entire surface of the laminated body.
- Examples of the material of such a transparent electrode include a conductive metal oxide film and a translucent metal thin film. Specifically, indium oxide, zinc oxide, tin oxide, and their composites, indium tin oxide (ITO), indium zinc oxide (IZO), fluorine-doped tin oxide (FTO), and indium zinc.
- -A film made of conductive glass made of oxide or the like, aluminum, gold, platinum, silver, copper or the like is used.
- metal oxides such as ITO or IZO are preferred.
- a transparent electrode made of such a metal oxide can be formed by a generally known method. Specifically, it is formed by sputtering in an atmosphere rich in a reaction gas such as oxygen.
- the thickness of the first transparent electrode is preferably 30 to 300 nm when the electrode material is ITO. If the thickness of the electrode is thinner than 30 nm, the conductivity tends to decrease and the resistance tends to increase. If the resistance becomes high, it may cause a decrease in photoelectric conversion efficiency. On the other hand, when the thickness of the electrode is thicker than 300 nm, the flexibility of the ITO film tends to be low. As a result, when the thickness is thick, it may crack when stress is applied.
- the sheet resistance of the electrode is preferably as low as possible, and preferably 10 ⁇ / ⁇ or less.
- the electrode may have a single-layer structure or a multi-layer structure in which layers composed of materials having different work functions are laminated.
- the first photoactive layer (photoelectric conversion layer) 103 formed by the method of the embodiment has a perovskite structure at least in a part thereof.
- This perovskite structure is one of the crystal structures and refers to the same crystal structure as the perovskite.
- the perovskite structure consists of ions A, B, and X, which may take a perovskite structure when ion B is smaller than ion A.
- the chemical composition of this crystal structure can be represented by the following general formula (1). ABX 3 (1)
- A can utilize a primary ammonium ion.
- CH 3 NH 3+ (hereinafter sometimes referred to as MA), C 2 H 5 NH 3+ , C 3 H 7 NH 3+ , C 4 H 9 NH 3+ , and HC (NH 2 ) 2+ (hereinafter, FA).
- CH 3 NH 3+ is preferable, but the present invention is not limited to this.
- A is preferably Cs, 1,1,1-trifluoro-ethylammonium iodide (FEAI), but is not limited thereto.
- B is a divalent metal ion, and Pb 2+ or Sn 2+ is preferable, but the present invention is not limited thereto.
- X is preferably a halogen ion.
- it is selected from F-, Cl- , Br-, I- , and At- , and Cl- , Br- or I- is preferable , but not limited to this.
- the materials constituting the ions A, B, or X may be single or mixed.
- the constituent ions can function without necessarily matching the stoichiometric ratio of ABX 3 .
- the ion A constituting the perovskite of the first photoactive layer is composed of an atomic weight or a total atomic weight (molecular weight) constituting the ion of 45 or more. More preferably, it contains 133 or less ions. Since ion A under these conditions has low stability by itself, it may be mixed with general MA (molecular weight 32), but when MA is mixed, it approaches the silicon bandgap of 1.1 eV and is divided into wavelengths. As a tandem to improve efficiency, the overall characteristics are reduced. In addition, the refractive index with respect to the light wavelength is also affected, and the effect of the light scattering layer is reduced.
- MA has a small molecular weight, it is preferable to avoid it because it gasifies as deterioration progresses and creates voids in the perovskite layer, resulting in an unintended combination of light scattering and light scattering layer.
- Cs When Cs is contained, it is more preferable that Cs is 0.1 to 0.9.
- This crystal structure has a unit cell of cubic, tetragonal, rectangular, etc., with A at each vertex, B at the body center, and X at each face center of the cube centered on this.
- the octahedron consisting of one B and six Xs contained in the unit cell is easily distorted by the interaction with A and undergoes a phase transition to a symmetric crystal. It is presumed that this phase transition dramatically changes the physical characteristics of the crystal, causing electrons or holes to be released outside the crystal, resulting in power generation.
- the thickness of the first photoactive layer is preferably 30 nm to 1000 nm, more preferably 60 to 600 nm.
- the device according to the embodiment can realize higher conversion efficiency than a general device under a low illuminance condition of about 200 lux.
- the first photoactive layer can be formed by any method. However, it is preferable to form the first photoactive layer by the coating method from the viewpoint of cost. That is, a coating liquid containing a precursor compound having a perovskite structure and an organic solvent capable of dissolving the precursor compound is applied to a substrate, for example, a first dope layer, an intermediate passion layer, an intermediate transparent electrode, or a second buffer layer. Apply on top to form a coating. At this time, the surface of the base layer with which the first photoactive layer comes into contact is substantially a smooth surface. That is, the interlayer interface existing between the first photoactive layer and the adjacent layer on the second photoactive layer side is a substantially smooth surface. By forming the base layer in such a shape, the thickness of the first photoactive layer can be made uniform, and the formation of a short-circuit structure can be prevented.
- the solvent used in the coating liquid for example, N, N-dimethylformamide (DMF), ⁇ -butyrolactone, dimethyl sulfoxide (DMSO) and the like are used.
- the solvent is not restricted as long as it can dissolve the material, and may be mixed.
- the first photoactive layer can be formed by applying a single coating solution in which all the raw materials forming the perovskite structure are dissolved in one solution. Further, a plurality of raw materials forming a perovskite structure may be individually prepared as a plurality of solutions, or a plurality of coating liquids may be prepared and coated sequentially.
- a spin coater, a slit coater, a bar coater, a dip coater, or the like can be used for coating.
- the coating liquid may further contain additives.
- additives 1,8-diiodooctane (DIO) and N-cyclohexyl-2-pyrrolidone (CHP) are preferable.
- the element structure includes a mesoporous structure
- the leakage current between the electrodes can be suppressed even if pinholes, cracks, voids, etc. occur in the photoactive layer.
- the element structure does not have a mesoporous structure, it is difficult to obtain such an effect.
- the coating liquid contains a plurality of raw materials having a perovskite structure
- the volume shrinkage at the time of forming the active layer is small, so that a film having less pinholes, cracks and voids can be easily obtained.
- MAI methylammonium iodide
- a metal halide compound and the like coexist during the formation of the perovskite structure, the reaction with the unreacted metal halide compound proceeds, and a film having few pinholes, cracks and voids can be easily obtained. Therefore, it is preferable to add MAI or the like to the coating liquid or to apply a solution containing MAI or the like on the coating film after coating.
- the coating liquid containing the precursor of the perovskite structure may be applied twice or more.
- the active layer formed by the first coating tends to be a lattice mismatch layer, so it is preferable to coat the active layer so as to have a relatively thin thickness.
- the conditions for the second and subsequent applications are that the rotation speed of the spin coater is relatively fast, the slit width of the slit coater or bar coater is relatively narrow, and the pulling speed of the dip coater is relatively fast. It is preferable that the conditions are such that the solute concentration in the coating solution is relatively thin and the film thickness is thinned.
- the perovskite structure formation reaction After the perovskite structure formation reaction is completed, it is preferable to perform annealing to dry the solvent. Since this annealing is performed to remove the solvent contained in the perovskite layer, it is preferable to perform this annealing before forming the next layer, for example, a buffer layer on the first photoactive layer.
- the annealing temperature is 50 ° C. or higher, more preferably 90 ° C. or higher, and the upper limit is 200 ° C. or lower, more preferably 150 ° C. or lower. It should be noted that if the annealing temperature is low, the solvent may not be sufficiently removed, and if the annealing temperature is too high, the smoothness of the surface of the first photoactive layer may be lost.
- the surface other than the coated surface for example, the surface of the second electrode may be contaminated. Since perovskite contains a corrosive halogen element, it is preferable to remove the contamination.
- the method for removing the contamination is not particularly limited, but a method of colliding ions with the passivation layer, laser treatment, etching paste treatment, and solvent cleaning are preferable. It is preferable that the contamination is removed before the first electrode is formed.
- the first buffer layer 102 and the second buffer layer 104 are between the first electrode and the first photoactive layer, or between the first photoactive layer and the tunnel insulating film, respectively. It is a layer that exists. It is a layer that preferentially extracts electrons or holes.
- the second buffer layer becomes a base layer of the first photoactive layer when present, it is preferable that the surface thereof is substantially smooth.
- the first buffer layer and the second buffer layer may have a laminated structure of two or more layers.
- the first buffer layer can be a layer containing an organic semiconductor and a layer containing a metal oxide.
- the layer containing the metal oxide can play a function of protecting the active layer when forming the first transparent electrode.
- the first transparent electrode has an effect of suppressing deterioration of the first electrode. In order to fully exert such an effect, the first transparent electrode is preferably a denser layer than the first buffer layer.
- one of the first buffer layer and the second buffer layer functions as a hole transport layer, and the other functions as an electron transport layer. It is preferable that the semiconductor device is provided with these layers in order to achieve better conversion efficiency, but it is not always essential in the embodiment, and even if one or both of them are not provided. good.
- the electron transport layer has a function of efficiently transporting electrons.
- the buffer layer functions as an electron transport layer, it preferably contains either a halogen compound or a metal oxide.
- Suitable examples of the halogen compound include LiF, LiCl, LiBr, LiI, NaF, NaCl, NaCl, NaI, KF, KCl, KBr, KI, or CsF. Of these, LiF is particularly preferable.
- the elements constituting the metal oxide are titanium, molybdenum, vanadium, zinc, nickel, lithium, potassium, cesium, aluminum, niobium, tin and barium.
- Composite oxides containing a plurality of metal elements are also preferred.
- aluminum-doped zinc oxide (AZO), niobium-doped titanium oxide, and the like are preferable.
- Titanium oxide is more preferable among these metal oxides.
- As the titanium oxide amorphous titanium oxide obtained by hydrolyzing titanium alkoxide by the sol-gel method is preferable.
- an inorganic material such as metallic calcium can be used for the electron transport layer.
- an n-type semiconductor can also be used for the electron transport layer.
- the n-type organic semiconductor is preferably fullerene and its derivatives, but is not particularly limited. Specific examples thereof include derivatives having C60, C70, C76, C78, C84 and the like as a basic skeleton.
- the carbon atom in the fullerene skeleton may be modified with an arbitrary functional group, and the functional groups may be bonded to each other to form a ring.
- Fullerene derivatives include fullerene-bound polymers. A fullerene derivative having a functional group having a high affinity for the solvent and having a high solubility in the solvent is preferable.
- Examples of the functional group in the fullerene derivative include a hydrogen atom; a hydroxyl group; a halogen atom such as a fluorine atom and a chlorine atom; an alkyl group such as a methyl group and an ethyl group; an alkenyl group such as a vinyl group; a cyano group; a methoxy group and an ethoxy group.
- a hydrogen atom such as C60H36 and C70H36, oxide fullerenes such as C60 and C70, and fullerene metal complexes.
- PCBM [6,6] -phenylC61 butyrate methyl ester
- PCBM [6,6] -phenylC71 butyrate methyl ester
- n-type organic semiconductor a small molecule compound that can be formed by vapor deposition can be used.
- the small molecule compound referred to here is one in which the number average molecular weight Mn and the weight average molecular weight Mw match. Either is 10,000 or less.
- BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
- TpPyPB (1,3,5-tri (p-pyridine-) 3-Il-phenyl) benzene
- DPPS diphenyl-bis (4-pyridin-3-yl) phenyl) silane
- the thickness of the electron transport layer is preferably 20 nm or less. This is because the film resistance of the electron transport layer can be lowered and the conversion efficiency can be increased. On the other hand, the thickness of the electron transport layer can be 5 nm or more.
- the hole transport layer has a function of efficiently transporting holes.
- the layer can include a p-type organic semiconductor material or an n-type organic semiconductor material.
- the p-type organic semiconductor material and the n-type organic semiconductor material referred to here are materials that can function as an electron donor material and an electron acceptor material when a heterojunction or a bulk heterojunction is formed.
- a p-type organic semiconductor can be used as the material of the hole transport layer.
- the p-type organic semiconductor preferably contains, for example, a copolymer composed of a donor unit and an acceptor unit.
- a donor unit fluorene, thiophene, or the like can be used.
- acceptor unit benzothiadiazole or the like can be used.
- polythiophene and its derivatives polypyrrole and its derivatives, pyrazoline derivatives, arylamine derivatives, stilben derivatives, triphenyldiamine derivatives, oligothiophene and its derivatives, polyvinylcarbazole and its derivatives, polysilane and its derivatives, side chains or Polysiloxane derivatives with aromatic amines in the main chain, polyaniline and its derivatives, phthalocyanine derivatives, porphyrin and its derivatives, polyphenylene vinylene and its derivatives, polythienylene vinylene and its derivatives, benzodithiophene derivatives, thieno [3,2- b] A thiophene derivative or the like can be used.
- These materials may be used in combination for the hole transport layer, or a copolymer composed of comonomers constituting these materials may be used.
- a copolymer composed of comonomers constituting these materials may be used.
- polythiophene and its derivatives are preferable because they have excellent stereoregularity and have relatively high solubility in a solvent.
- poly [N-9'-heptadecanyl-2,7-carbazole-alto-5,5- (4', 7), which is a copolymer containing carbazole, benzothiadiazole and thiophene, is used as a material for the hole transport layer.
- Derivatives such as'-di-2-thienyl-2', 1', 3'-benzothiadiazole)] (hereinafter, may be referred to as PCDTBT) may be used.
- poly [[4,8-bis [(2-ethylhexyl) oxy] benzo [1,2-b: 4,5-b'] dithiophene-2,6-diyl] [3-fluoro-2-[(2). -Ethylhexyl) carbonyl] thorium [3,4-b] thiopheneyl]] (hereinafter sometimes referred to as PTB7), PTB7-Th (PCE10, or PBDTTT) in which a thienyl group having a weaker electron donating property than the alkoxy group of PTB7 is introduced. -Sometimes called EFT) and the like are also preferable.
- a metal oxide can be used as the material of the hole transport layer.
- metal oxide examples include titanium oxide, molybdenum oxide, vanadium oxide, zinc oxide, nickel oxide, lithium oxide, calcium oxide, cesium oxide and aluminum oxide. These materials have the advantage of being inexpensive. Further, thiocyanate such as copper thiocyanate may be used as the material of the hole transport layer.
- dopants can be used for transport materials such as spiro-OMeTAD and the p-type organic semiconductor.
- Dopants include oxygen, 4-tert-butylpyridine, lithium-bis (trifluoromethanesulfonyl) imide (Li-TFSI), acetonitrile, tris [2- (1H-pyrazole-1-yl) pyridine] cobalt (III) tris. (Hexafluorophosphate) salt (commercially available under the trade name "FK102”), Tris [2- (1H-pyrazole-1-yl) pyrimidine] Cobalt (III) Tris [bis (trisfluoromethylsulfonyl) imide] (MY11) Etc. can be used.
- a conductive polymer compound such as polyethylene dioxythiophene can be used as the hole transport layer.
- a conductive polymer compound those listed in the section of electrodes can be used.
- a polythiophene-based polymer such as PEDOT
- another material such as PEDOT
- the first buffer layer is preferably an electron transport layer. Further, it is preferably an oxide layer of a metal selected from the group consisting of zinc, titanium, aluminum, tin and tungsten. This oxide layer may be a composite oxide layer containing two or more kinds of metals. This is because the light soaking effect improves the electrical conductivity, so that the electric power generated in the active layer can be efficiently extracted. By arranging this layer on the first electrode side of the active layer, light soaking becomes possible especially with UV light.
- the first buffer layer preferably has a structure in which a plurality of layers are laminated. In such a case, it is preferable to contain the oxide of the above metal. With such a structure, when a new type of metal oxide is newly formed by sputtering, the active layer and the metal oxide adjacent to the active layer are less likely to be damaged by sputtering.
- the first buffer layer has a structure including voids. More specifically, a buffer layer composed of a deposit of nanoparticles and having voids between the nanoparticles, a structure composed of a conjugate of nanoparticles and having voids between the bound nanoparticles, and the like. Is preferable.
- the first buffer layer contains a metal oxide film
- the film functions as a barrier layer.
- the barrier layer is provided between the second electrode and the second buffer layer in order to suppress corrosion of the second electrode by a substance penetrating from another layer.
- the material constituting the perovskite layer tends to have a high vapor pressure at high temperatures.
- halogen gas, hydrogen halide gas, and methylammonium gas are likely to be generated in the perovskite layer.
- the device When these gases are confined by the barrier layer, the device may be damaged from the inside due to the increase in internal pressure. In such a case, peeling of the layer interface is particularly likely to occur. Therefore, when the second buffer layer contains voids, the increase in internal pressure is alleviated, and it becomes possible to provide high durability.
- the first electrode that is, the metal layer is structurally isolated from the first photoactive layer by the metal oxide film
- the first electrode is less likely to be corroded by substances penetrating from the other layers.
- the first photoactive layer comprises a perovskite semiconductor. It is generally known that halogen ions such as iodine and bromine diffuse into the device from the photoactive layer containing the perovskite semiconductor, and the component reaching the metal electrode causes corrosion.
- a metal oxide film it is considered that the diffusion of such a substance can be efficiently blocked. It preferably contains indium tin oxide (ITO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO).
- the thickness is preferably 5 to 100 nm, more preferably 10 to 70 nm.
- the same metal oxide as that generally used for the transparent electrode can be used, but the one having physical properties different from the general metal oxide layer used for the transparent electrode is used. It is preferable to use it. That is, it is not only characterized by its constituent materials, but also its crystallinity or oxygen content.
- the crystallinity or oxygen content of the metal oxide film contained in the first buffer layer is lower than that of the metal oxide layer formed by sputtering, which is generally used as an electrode.
- the oxygen content is preferably 62.1 to 62.3 atomic%.
- the metal oxide film functions as a permeation prevention layer for corrosive substances can be confirmed by elemental analysis in the cross-sectional direction after the durability test.
- a time-of-flight secondary ion mass spectrometry TOF-SIMS
- the peak of the deteriorated substance is detected by dividing it into two or more so as to sandwich the material indicating the prevention of penetration of the corrosive substance, and the peak area on the first electrode side is the total area of the other peaks. Is smaller than. When the penetration is completely prevented, the peak on the first electrode side cannot be confirmed.
- the peak on the first electrode side is so small that it cannot be confirmed, but even if most of the peak is shielded, the durability of the device is greatly improved. That is, even if a part of the first electrode is deteriorated, the characteristics such as the overall electric resistance of the first electrode do not change significantly, so that the conversion efficiency of the solar cell does not change significantly. On the other hand, if the permeation is not sufficiently prevented and the corrosive substance reacts with the first electrode, the characteristics such as the electric resistance of the first electrode change significantly, so that the conversion efficiency of the solar cell changes greatly. (Decrease in conversion efficiency).
- the method for forming the peak area on the first electrode side is not particularly limited, but it is preferably 0.007 with respect to the total area of the other peaks. Such a metal oxide film can be formed by sputtering under specific conditions.
- the intermediate transparent electrode 105 has a function of electrically connecting the top cell and the bottom cell while isolating them, and guiding the light not absorbed by the top cell to the bottom cell. Therefore, the material can be selected from transparent or translucent conductive materials. Such a material can be selected from the same materials as the first transparent electrode.
- the thickness of the intermediate bright electrode is preferably 10 nm to 70 nm. If it is thinner than 10 nm, there are many membrane defects, and the separation of the layer adjacent to the intermediate transparent electrode becomes insufficient. If it is thicker than 70 nm, the light transmittance may cause a decrease in the amount of power generation of the bottom cell, for example, a silicon cell due to the diffraction effect.
- first dope layer 106 and the second dope layer 109 are between the first photoactive layer 103 and the second photoactive layer 108, or between the second photoactive layer 108 and the second. These are layers arranged between the electrodes 110 and the electrodes 110.
- n-type layer, p-type layer, p + type layer, p ++ type layer and the like are combined according to the purpose such as improvement of carrier collection efficiency according to the characteristics of the second photoactive layer. Can be done.
- the first dope layer can be combined with a phosphorus-doped silicon film (n layer), and the second dope layer can be combined with a p + layer.
- the first doped layer is made by doping silicon with a trivalent or pentavalent element as an impurity, specifically, phosphorus, arsenic, antimony, boron, aluminum, gallium, or indium. be. With such a configuration, the tunnel effect in the tunnel insulating film described later can be realized.
- p + + layers, p ++ layers, and the like can be formed by introducing a required dopant into, for example, amorphous silicon (a-Si).
- silicon can be deposited by a PECVD method or the like to form an a—Si layer, and a part of the a—Si layer can be crystallized by an annealing treatment to form a layer having high carrier transportability.
- the doped amorphous silicon can also be formed by forming a film using silane and diborane, or silane and phosphine as raw materials at a low temperature.
- the a—Si layer can be doped with phosphorus.
- the method of doping phosphorus is not particularly limited.
- phosphorus-containing compounds such as POCl 3 and PH 3 can be used.
- Phosphorus silicate glass (PSG) is widely used as a diffusion source of phosphorus. More specifically, PSG is deposited on the surface of a silicon substrate by utilizing the reaction between POCl 3 and oxygen, and then heat treatment is performed at 800 to 950 ° C., and phosphorus is doped into the silicon substrate by thermal diffusion. be able to. After the doping treatment, PSG can also be removed with acid.
- the a—Si layer can be doped with boron.
- the method of doping Poron is not particularly limited.
- a compound containing boron such as BBr 3 , B 2 H 6 , and BN can be used.
- Borosilicate glass (BSG) is widely used as a diffusion source of boron. More specifically, BSG is deposited on the surface of the substrate by utilizing the reaction between BBr 3 and oxygen, and then heat treatment is performed at, for example, 800 to 1000 ° C, preferably 850 to 950 ° C, and the silicon substrate is thermally diffused. Boron can be doped into. After the doping treatment, BSG can be removed with acid.
- a dopant such as phosphorus or boron
- a laser Such a method can also be used to form a selective emitter.
- the first dope layer is substantially a smooth surface. Since the first dope layer has a smooth surface, it is suitable for forming a perovskite layer on the smooth surface by coating to a uniform thickness.
- the bottom cell corresponds to a silicon solar cell.
- a general silicon solar cell has a textured structure on the surface, but when such a battery is adopted as a bottom cell, the thickness of the perovskite layer formed on it becomes non-uniform, and a short-circuit structure is formed in the thin portion. And deteriorates the characteristics of the solar cell.
- the texture structure of the surface is eliminated to make the surface smooth, the light reflection on the surface is reduced, the amount of light taken into the silicon layer having a large refractive index is reduced, and as a result, the amount of current is reduced. It ends up.
- the first transparent electrode when the first transparent electrode is provided, its refractive index is close to that of the atmosphere, so that the amount of light taken in can be increased even without a texture structure.
- the first dope layer tends to absorb light having a longer wavelength because the forbidden band width becomes narrower due to the effect of the doping.
- carriers with a short life tend to be generated in the first dope layer. Therefore, by adopting a substantially uniform layer of uniform thickness instead of adopting a texture structure for the first dope layer, the carrier generation region is narrowed, and carrier generation, in other words, carrier loss is reduced. It can be suppressed. As a result, it is possible to increase the amount of current generated.
- the carrier generation region can be further limited, so that the amount of current generated can be further increased.
- the thickness of the first dope layer is preferably 1 to 1000 nm, more preferably 2 to 4 nm.
- tunnel insulating film In an embodiment, it is disposed between the first photoactive layer and the second photoactive layer, preferably between the first doped layer and the second photoactive layer, from the second photoactive layer.
- the insulating film having a carrier extraction function is the tunnel insulating film 107.
- the tunnel insulating film is an insulator because of its large bandgap, but when an electric field is applied, it is a first doped layer (generally a silicon oxide layer) having semiconductor characteristics from the conduction band of the second photoactive layer. The carrier is moved to the conduction band by the tunnel effect.
- the tunnel insulating film passesivates the surface of the silicon or the first dope layer constituting the second photoactive layer, and also contributes to the reduction of dangling bonds. Therefore, carrier recombination at the interface can be prevented and the photocurrent from silicon can be improved.
- the thickness of the tunnel insulating film is 1 nm to 15 nm, preferably 1 nm to 10 nm. If it exceeds 20 nm, the insulating effect becomes large and becomes a resistance component, which deteriorates the performance of the solar cell.
- the tunnel current is divided into a Flower-nordheim tunnel current and a direct tunnel current, but when the tunnel insulating film is thin, a direct tunnel phenomenon occurs.
- the material of the tunnel insulating film is not limited, but an oxide of silicon is preferable.
- the manufacturing method is not particularly limited, but it is also possible to form a film as a secondary effect during phosphorus doping or to form a film by a film forming apparatus such as CVD. It is also convenient and preferable to thermally oxidize the silicon layer. Further, it can be formed by chemical treatment, and can be formed by treating it in an atmosphere of HNO 3 , O 2 , etc. at 400 to 700 ° C. for 1 to 100 minutes.
- Silicon oxide has a different refractive index from silicon, so if a silicon oxide film is placed between the top cell and the bottom cell, the amount of light that reaches each cell will be affected. However, if it is a thin film that can obtain a tunnel effect, it is possible to suppress the influence on the amount of light and balance the current value of each cell, and it is possible to avoid a decrease in efficiency as a multilayer junction type photoelectric conversion element. can. In particular, if the thickness of the tunnel insulating film is too thick, the amount of light incident on the bottom cell may decrease, and the current value of the bottom cell may decrease, so care must be taken.
- the tunnel insulating film also functions as a barrier layer that suppresses the diffusion of halogen ions and the like. Therefore, the top cell of the second electrode, which is often composed of metal, is less likely to be corroded by a substance that permeates from another layer, particularly the first photoactive layer containing halogen ions.
- halogen ions such as iodine and bromine diffuse from the active layer into the device, and the components that reach the metal electrodes and the like cause corrosion. It is considered that the diffusion of various substances can be efficiently blocked.
- the refractive index of the tunnel insulating film is preferably between the refractive index of the atmosphere and the refractive index of silicon.
- the refractive index at 630 nm is preferably 1.2 to 2.5, more preferably 1.4 to 2, and most preferably 1.6 or less.
- the second photoactive layer 108 contains silicon.
- the silicon contained in the second photoactive layer can adopt the same structure as the silicon generally used for a photovoltaic cell. Specific examples thereof include crystalline silicon containing crystalline silicon such as single crystal silicon, polysilicon, and heterojunction silicon, and thin film silicon containing amorphous silicon. Further, the silicon may be a thin film cut out from a silicon wafer. As the silicon wafer, an n-type silicon crystal doped with phosphorus or the like and a p-type silicon crystal doped with boron or the like can also be used. The electrons in the p-type silicon crystal have a long diffusion length, which is preferable.
- the thickness of the second photoactive layer is preferably 100 to 300 ⁇ m.
- the second photoactive layer may have a uniform thickness, but in order to increase the utilization efficiency of the incident light, a texture may be formed on one surface.
- a texture may be formed on the incident surface side of light, but in the embodiment, the light incident surface of the second photoactive layer uses the light transmitted through the top cell. It is preferable to smooth the light incident surface and form a texture on the opposite side surface.
- the second electrode 112 can be formed by using any conventionally known material as long as it has conductivity. Further, the forming method thereof is not particularly limited. Specifically, it can be formed in the same manner as the above-mentioned first metal electrode. Further, in FIG. 1, the second electrode 112 has a plurality of electrodes arranged apart from each other on the back surface of the element, but may be formed along the entire back surface of the element. In this case, the light that could not be absorbed by the first and second photoactive layers can be reflected by the second electrode and used again for photoelectric conversion in the first and second photoactive layers.
- the thickness of the second electrode is preferably 30 to 300 nm. If the thickness of the electrode is thinner than 30 nm, the conductivity tends to decrease and the resistance tends to increase. If the resistance becomes high, it may cause a decrease in photoelectric conversion efficiency. When it is 100 nm or less, even a metal has light transmission property, which is preferable for improving power generation efficiency and luminous efficiency.
- the sheet resistance of the electrode is preferably as low as possible, and preferably 10 ⁇ / ⁇ or less.
- the electrode may have a single-layer structure or a multi-layer structure in which layers composed of different materials are laminated.
- the thickness of the second electrode is thinner than the above range, the resistance may become too large and the generated charge may not be sufficiently transmitted to the external circuit.
- the film thickness is thick, it takes a long time to form an electrode, so that the material temperature rises, which may damage other materials and deteriorate the performance. Further, since a large amount of material is used, the occupancy time of the film forming apparatus becomes long, which may lead to an increase in cost.
- the passivation layer 110 is arranged on the outermost surface on the side opposite to the light incident surface in the photoelectric conversion element according to the embodiment shown in FIG. This layer is provided to reduce the surface of the silicon material constituting the second photoactive layer or the dangling bond of the second dope layer.
- the passivation layer has an opening and has a structure for drawing a current from the element through the opening. Therefore, since the area where the carrier can move is limited, the carrier can be efficiently collected.
- the material used to form the first passivation film is preferably a material capable of reducing dangling bonds on the silicon surface, and is not particularly limited.
- AlOx formed by a silicon oxide film formed by thermally oxidizing the surface of a silicon material plasma-enhanced chemical vapor deposition (PECVD), plasma-assisted atomic layer deposition (PEALD), or the like.
- PECVD plasma-enhanced chemical vapor deposition
- PEALD plasma-assisted atomic layer deposition
- Examples include a film such as SiNx.
- the silicon oxide film is formed by thermal oxidation, either dry oxidation in which oxidation is performed in an oxygen atmosphere or wet oxidation in which participation is performed in a water vapor atmosphere can be used.
- a wet oxide film is suitable for efficiently obtaining an oxide film having a uniform thickness.
- the first passivation film is preferably 100 nm to 100 ⁇ m.
- the passivation layer is formed over the entire back surface side of the second photoactive layer, but a part thereof is removed to form an opening.
- the opening can be formed by removing a part of the passivation layer by, for example, a wet treatment.
- a paste-like composition containing a metal is applied and fired in order to form a second electrode, if the passivation layer is a silicon nitride film, hydrogen contained in the silicon nitride film is contained in the silicon crystal. It diffuses and the ends of the crystal lattice are terminated by hydrogen to improve the electrical characteristics.
- the third dope layer 111 is a layer that can be arranged between the second dope layer and the second electrode.
- the third dope layer is generally formed after the passivation layer is partially removed.
- the third dope layer can be a p + layer, a p ++ layer, or the like, depending on the characteristics of the second photoactive layer and the second dope layer. It is preferable to provide a relatively high dope layer at a portion of the third dope layer that is electrically connected to the second electrode. With such a configuration, carrier recombination at the interface between the third dope layer and the electrode can be suppressed.
- the method for forming the high-doped layer is not particularly limited, but it can be formed by a thermal reaction path using BBr 3 .
- an antireflection layer may be provided on the outermost layer of the device, that is, the interface with the atmosphere.
- Such an antireflection film can be used as a generally known material such as SnNx or MgF 2 . These materials can be formed into a film by a PECVD method, a vapor deposition method, or the like.
- the first electrode and the second electrode need to obtain an electrical connection with the outside in order to draw a current from the device. Therefore, it is preferable to remove a part of the antireflection film so as not to obstruct the electrical connection.
- a wet etching treatment method, a method using an etching paste, a method using a laser, or the like can be used.
- the element illustrated in FIG. 1 includes two photoactive layers, the unit including the photoactive layer containing a perovskite semiconductor is a top cell, and the unit including a photoactive layer containing silicon is a bottom cell. It is a tandem solar cell having a structure connected in series by an intermediate transparent electrode. Generally, the bandgap of a silicon solar cell is about 1.1 eV, but by combining it with a photovoltaic cell containing a perovskite semiconductor having a relatively wide bandgap, light in a wider wavelength range can be efficiently emitted. It becomes possible to absorb.
- the open circuit voltage of a silicon solar cell is 0.6 to 0.75 V
- the open circuit voltage of a perovskite solar cell is 0.9 to 1.3 V.
- the tandem solar cell that combines these, by increasing the amount of power generated by the perovskite solar cell, it is possible to obtain electric power having a higher voltage than that of the silicon solar cell alone. That is, the output obtained by the tandem solar cell can exceed that of the silicon solar cell alone. Since the tandem solar cell is a series circuit of the top cell and the bottom cell, the voltage can be obtained to be close to the total of the top cell and the bottom cell.
- the current is rate-determined by the lower current of the top cell and the bottom cell.
- the material of the active layer is selected to change the wavelength range of the absorbed light, or the thickness of the photoactive layer is adjusted to change the amount of absorbed light. Is done. Since the short-circuit current density of a silicon solar cell is generally about 40 mA / cm 2 alone, it is preferable to adjust the tandem solar cell so that the top cell and the bottom cell are about 20 mA / cm 2 .
- the multilayer junction type photoelectric conversion element according to the embodiment can be manufactured by laminating the above-mentioned layers in an appropriate order.
- the stacking order is not particularly limited as long as a desired structure can be obtained, but for example, it can be produced in the following order.
- Manufacturing method of multilayer junction type photoelectric conversion element including the following steps: (A) A step of forming a second metal electrode on one surface of a silicon wafer constituting the second photoactive layer. (B) A step of forming a tunnel insulating film on the back surface of a silicon wafer on which a second electrode is formed. (C) A step of forming a first dope layer on the tunnel insulating film. (D) A step of forming a first photoactive layer containing perovskite on the first dope layer by a coating method, and (e) a first electrode on the first photoactive layer. The process of forming.
- step (A0) A step of forming a texture structure on one side surface of a silicon wafer.
- any of the following steps can be combined between the steps (a) and (b).
- (A1) A step of forming a texture structure on the surface of the silicon wafer on which the second electrode is formed, if necessary.
- (A2) A step of forming a second dope layer on the surface of the silicon wafer on which the second electrode is formed, if necessary.
- (A3) A step of forming a passivation layer on the surface of the silicon wafer on which the second electrode is formed or on the second dope layer, if necessary.
- any of the following steps can be combined between the steps (c) and (d).
- (C1) A step of forming an intermediate transparent electrode on the first dope layer
- (C2) A step of forming a second buffer layer on the first dope layer or the intermediate transparent electrode.
- step (D1) A step of forming a first buffer layer on the first photoactive layer, Can also be combined.
- the bottom cell containing the second photoactive layer is formed first, and the top cell containing the first photoactive layer is formed later.
- the steps (a) and (c) of heating at a high temperature are performed before the step (d)
- the first photoactive layer is less likely to be damaged by heat.
- the first electrode is formed by the step (e)
- the first photoactive layer is heated, but when it is heated in the step (d), it is heated in the step (f). It is preferable to adopt a temperature lower than the temperature.
- the method of forming the tunnel insulating film can be performed by, for example, vapor deposition treatment such as CVD, thermal oxidation treatment of the silicon layer, chemical treatment with an oxidizing agent, etc., but chemical treatment, specifically Is preferably treated at 400 to 700 ° C. for 1 to 100 minutes in an atmosphere such as HNO 3 or O 2 .
- Example 1 A multilayer junction type photoelectric conversion element having the structure shown in FIG. 1 is manufactured.
- a tandem solar cell can be created using an n-type silicon wafer as a bottom cell.
- the (111) plane can be selectively left by etching the silicon crystal (100) plane.
- a pyramid-shaped uneven structure can be formed on the surface.
- the opposite side can be flattened by polishing.
- Boron can be doped on the surface on which the texture structure is formed to form a P + layer as a second doped layer. It can be formed by performing thermal diffusion using BBr 3 as a diffusion source of boron.
- a passivation layer can be formed on the surface of the second dope layer.
- the passivation layer can form Al 2 O 3 with PEALD at 10 nm. Part of the passivation layer can be removed by etching.
- the third dope layer can be formed as a P ++ layer by thermal diffusion using BBr 3 .
- a metal electrode containing silver as a main component can be formed on the third dope layer by Electron beam evolution to form a second electrode as a hole extraction electrode.
- the smooth surface of the silicon wafer can be subjected to HNO 3 and heat treatment to form a tunnel insulating film.
- the refractive index of the tunnel insulating film is 1.5.
- a phosphorus-doped Si layer can be formed from silane and phosphine by PECVD as a first doping layer on the tunnel insulating film.
- An intermediate transparent electrode can be sputtered on the first dope layer using ITO as a sputter source to form an ITO layer having a diameter of 20 nm.
- an alcohol dispersion of NiOx particles can be formed by spin coating. After film formation, annealing is performed at 150 ° C.
- the first photoactive layer is a precursor solution in which the precursor of Cs 0.17 FA 0.83 Pb (Br 0.17 I 0.83 ) 3 is dissolved in a mixed solvent of DMF and DMSO (DMSO is 10 Vol%). It can be formed by applying. After film formation, annealing is performed at 150 ° C. for 5 minutes.
- C60 can be deposited by a vapor deposition machine at 50 nm. Further, SnOx can be formed into a composite film by forming a 10 nm film with ALD.
- IZO can be formed into a film by spatter as the first transparent electrode.
- a tandem solar cell can be formed by depositing silver as the first metal electrode with a vapor deposition machine. The light incident on the tandem solar cell passes through the tunnel insulating film and is provided to silicon. Since recombination can be suppressed by the tunnel insulating film, high conversion efficiency can be obtained.
- Comparative Example 1 An element having the structure shown in FIG. 2 is formed. It can be formed by forming a 20 nm silicon oxide film instead of the tunnel insulating film with respect to the first embodiment. It is difficult to confirm power generation with an undoped silicon oxide film. Power generation can be confirmed by using an n-type doped silicon oxide film as the silicon oxide film. When the thickness of the silicon oxide film is 20 nm, the current of the bottom cell can be increased as compared with the case where the thickness is thicker than that. It is lower than Example 1.
- Example 2 An element having the structure shown in FIG. 3 is formed. As shown in FIG. 3, the second electrode can be extensively provided above the passivation layer. As a result, of the light that has passed through the tunnel insulating film and passed through the second photoactive layer, the light that could not be photoelectrically converted is reflected by the second electrode and provided to the photoelectric conversion again by the photoactive layer. can do.
- Multilayer junction type photoelectric conversion element (multilayer junction type photoelectric conversion element of Example 1) 101 ... First electrode 101a ... First metal electrode 101b ... First transparent electrode 102 ... First buffer layer 103 ... First photoactive layer 104 containing perovskite semiconductor ... Second buffer layer 105 ... Intermediate transparent Electrode 106: Doping layer having semiconductor characteristics (first doping layer) 107 ... Tunnel insulating film 108 ... Second photoactive layer 109 containing silicon ... Second dope layer 110 ... Passivation film 111 ... Third dope layer 112 ... Second electrode 200 ... Multilayer junction type photoelectric of Comparative Example 1 Conversion element 207 ... Silicon insulating film 300 ... Multilayer junction type photoelectric conversion element 312 of Example 2 ... Second electrode
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
第一の電極と、
ペロブスカイト半導体を含む第一の光活性層と、
第一のドープ層と
トンネル絶縁膜と、
シリコンを含む第二の光活性層と、
第二の電極と、
を、この順に具備する多層接合型光電変換素子であって、
前記トンネル絶縁膜の厚さが1nm~15nmであり、
前記第一のドープ層層が、シリコンと、不純物としての3価または5価の元素を含むものである。
(a)第二の光活性層を構成するシリコンウェハーの一面に、第二の金属電極を形成させる工程、
(b)第二の電極が形成されたシリコンウェハーの裏面に、トンネル絶縁膜を形成させる工程、
(c)前記トンネル絶縁膜の上に、第一のドープ層を形成させる工程、
(d)前記第一のドープ層の上に、塗布法により、ペロブスカイトを含む第一の光活性層を形成させる工程、および
(e)前記第一の光活性層の上に、第一の電極を形成させる工程。
本実施形態においては、第一の電極101は光入射面側に配置される。
図1において、第一の電極101は、第一の金属電極101aと第一の透明電極101bとの複合体である。金属電極と透明電極は、それぞれ特性が異なるので、特性に応じて、いずれか一方を用いても、組み合わせて用いてもよい。
実施形態の方法により形成される第一の光活性層(光電変換層)103はペロブスカイト構造を少なくとも一部に有するものである。このペロブスカイト構造とは、結晶構造のひとつであり、ペロブスカイトと同じ結晶構造をいう。典型的には、ペロブスカイト構造はイオンA、B、およびXからなり、イオンBがイオンAに比べて小さい場合にペロブスカイト構造をとる場合がある。この結晶構造の化学組成は、下記一般式(1)で表すことができる。
ABX3 (1)
図1において、第一のバッファー層102と第二のバッファー層104は、第一の電極と第一の光活性層との間、または第一の光活性層とトンネル絶縁膜との間にそれぞれ存在する層である。電子またはホールを輸送する優先的に取り出す層である。ここで、第二のバッファー層は、存在する場合には第一の光活性層の下地層となるので、その表面は実質的に平滑面であることが好ましい。
中間透明電極105は、トップセルとボトムセルとを隔絶しながら電気的に連結し、かつトップセルで吸収されなかった光をボトムセルへ導く機能を有するものである。したがって、その材料は透明または半透明の導電性を有する材料から選択することができる。このような材料としては、第一の透明電極と同じものから選択することができる。
中間明電極の厚さは、10nm~70nmであることが好ましい。10nmよりも薄いと膜欠損が多く、中間透明電極に隣接する層の隔絶が不十分になる。70nmよりも厚いと、光透過性は回折効果により、ボトムセル、例えばシリコンセルの発電量の低下を招くことがある。
図1において、第一のドープ層106と第二のドープ層109は、第一の光活性層103と第二の光活性層108との間、または第二の光活性層108と第二の電極110との間にそれぞれ配置される層である。
成膜することで形成させることもできる。
実施形態において、第一の光活性層と第二の光活性層との間、好ましくは第一のドープ層と第二の光活性層との間に配置され、第二の光活性層からのキャリア取り出し機能を有する絶縁膜がトンネル絶縁膜107である。トンネル絶縁膜はバンドギャップが大きいために絶縁体であるが、電界が掛かった時には、第二の光活性層の伝導帯から半導体特性を有する第一のドープ層(一般的にシリコン酸化物層)の伝導帯にトンネル効果によってキャリアを移動させる。トンネル絶縁膜は、トンネル効果によりキャリア移動が行われる一方で、第二の光活性層を構成するシリコンまたは第一のドープ層の表面をパッシベーションし、ダングリングボンドの低減にも寄与する。したがって、界面でのキャリア再結合が予防され、シリコンからの光電流を向上させることができる。
図1において、第二の光活性層108は、シリコンを含む。第二の光活性層に含まれるシリコンは、一般的に光電池に用いられるシリコンと同様の構成を採用することができる。具体的には、単結晶シリコン、多結晶シリコン、ヘテロ接合型シリコンなどの結晶シリコンを含む結晶シリコン、アモルファスシリコンを含む薄膜シリコンなどが挙げられる。また、シリコンはシリコンウェハーから切り出した薄膜であってもよい。シリコンウェハーとしては、リンなどをドープしたn型シリコン結晶、ボロンなどをドーピングしたp型シリコン結晶も使用できる。p型シリコン結晶中の電子は長い拡散長を有しているので好ましい。なお、第二の光活性層の厚さは、100~300μmであることが好ましい。
第二の電極112は導電性を有するものであれば、従来知られている任意の材料を用いて形成させることができる。またその形成方法も特に限定されない。具体的には、上記した第一の金属電極と同様にして形成させることができる。また、図1において、第二の電極112は、複数の電極が素子の裏面に離間して配置されているが、素子の裏面全体に沿うとして形成されていてもよい。この場合、第一および第二の光活性層で吸収できなかった光を、第二の電極で反射させ、再び第一および第二の光活性層において光電変換に利用することができる。
パッシベーション層110は、図1に示される実施形態による光電変換素子において、光入射面とは反対側の最外面に配置されている。この層は、第二の光活性層を構成するシリコン材料の表面、または第二のドープ層のダングリングボンドを低減するために設けられる。
第三のドープ層111は第二のドープ層と第二の電極の間に配置することができる層である。第三のドープ層は、一般的にパッシベーション層を部分的に取り除いた後に形成される。第三のドープ層は、第二の光活性層や第二のドープ層の特性に応じて、p+層、p++層などとすることができる。第三のドープ層の、第二の電極と電気的に接続する部位には、相対的に高ドープ層を設けることが好ましい。このような構成により、第三のドープ層と電極界面でのキャリア再結合を抑制することができる。高ドープ層の形成方法は特に制限されないが、BBr3を利用した熱反応路で形成することができる。
外部からの光取り込み量を増やすため、素子の最外層、つまり大気との界面部分に反射防止層を設けてもよい。このような反射防止膜は、一般的に知られている材料、例えばSnNx、やMgF2など材料として用いることができる。これらの材料をPECVD法、蒸着法等で成膜することができる。素子の最外層に反射防止膜を設ける場合、素子から電流を取り出すためには、第一の電極、および第二の電極は、外部と電気的接続を得る必要がある。このため反射防止膜が電気的接続を阻害しないように、その一部を除去することが好ましい。このような除去方法としては、湿式エッチング処理方法、エッチングペーストを用いた方法、レーザーを用いた方法などを用いることができる。
図1に例示されている素子は、光活性層を2つ具備しており、ペロブスカイト半導体を含む光活性層を具備する単位をトップセル、シリコンを含む光活性層を具備する単位をボトムセルとして、中間透明電極によりに直列に接続した構造を有するタンデム太陽電池である。一般的に、シリコン太陽電池のバンドギャップは1.1eV程度であるが、これに対して相対的にバンドギャップが広いペロブスカイト半導体を含む光電池を組み合わせることで、より広い波長域の光を効率的に吸収することが可能となる。
実施形態による多層接合型光電変換素子は、上記した各層を、適切な順序で積層することで製造することができる。積層順序は、所望の構造を得ることができれば特に制限されないが、例えば以下の順序で製造することができる。
下記の工程を含む、多層接合型光電変換素子の製造方法:
(a)第二の光活性層を構成するシリコンウェハーの一面に、第二の金属電極を形成させる工程、
(b)第二の電極が形成されたシリコンウェハーの裏面に、トンネル絶縁膜を形成させる工程、
(c)前記トンネル絶縁膜の上に、第一のドープ層を形成させる工程、
(d)前記第一のドープ層の上に、塗布法により、ペロブスカイトを含む第一の光活性層を形成させる工程、および
(e)前記第一の光活性層の上に、第一の電極を形成させる工程。
(a0)シリコンウェハーの片側表面にテクスチャ構造を形成させる工程。
(a1)必要に応じて、前記シリコンウェハーの、前記第二の電極を形成させる面に、テクスチャ構造を形成する工程、
(a2)必要に応じて、前記シリコンウェハーの、前記第二の電極を形成させる面に、第二のドープ層を形成させる工程、
(a3)必要に応じて、前記シリコンウェハーの、前記第二の電極を形成させる面に、または第二のドープ層の上にパッシベーション層を形成させる工程、
(a4)必要に応じて、前記第二のドープ層に開口部を形成させ、第三のドープ層を形成させる工程。
(c1)第一のドープ層の上に、中間透明電極を形成させる工程、
(c2)第一のドープ層または前記中間透明電極の上に、第二のバッファー層を形成させる工程。
第一のパッシベーション層が形成されたシリコンウェハーの裏面に、第二のドープ層を形成させる工程。
(d1)第一の光活性層の上に、第一のバッファー層を形成させる工程、
を組み合わせることもできる。
図1に示される構造を有する多層接合型光電変換素子を作製する。まず、n型シリコンウェハーをボトムセルとしてタンデム太陽電池を作成できる。シリコン結晶(100)面のエッチングにより(111)面を選択的に残すことができる。これにより表面にピラミッド状の凹凸構造(テクスチャ構造)を形成できる。反対側面は研磨すれば平面化することができる。テクスチャ構造を形成した面にボロンをドープして、第二のドープ層としてP+層として形成できる。ボロンの拡散源としてBBr3を用いて熱拡散を実施して形成できる。第二のドープ層の表面にはパッシベーション層を形成できる。パッシベーション層はAl2O3をPEALDで10nmを形成できる。パッシベーション層の一部はエッチング処理で取り除くことができる。第三のドープ層は、BBr3を用いた熱拡散でP++層として形成できる。第三のドープ層に第二の電極をElectron beam evaporationで銀を主成分とする金属電極を形成して正孔の取り出し電極にできる。
図2に示した構造を有する素子を形成する。実施例1に対して、トンネル絶縁膜の代わりに20nmのシリコン酸化膜を成膜することで形成できる。未ドープのシリコン酸化膜では発電を確認は難しい。シリコン酸化膜としてn型ドープシリコン酸化膜を用いることで発電を確認できる。シリコン酸化膜の厚さが20nmである場合、それ以上に厚い場合よりもボトムセルの電流を増やすことができるが、ドープによりシリコン酸化膜の光透過率が減少するため、タンデム全体の電流量は実施例1よりも低くなる。
図3に示した構造を有する素子を形成する。図3に示したように、第二の電極をパッシベーション層の上の広範囲に設けることができる。これにより、トンネル絶縁膜を透過して、第二の光活性層を通過した光のうち、光電変換できなかった光を、第二の電極で反射して、光活性層で再度光電変換に供与することができる。
101…第一の電極
101a…第一の金属電極
101b…第一の透明電極
102…第一のバッファー層
103…ペロブスカイト半導体を含む第一の光活性層
104…第二のバッファー層
105…中間透明電極
106…半導体特性を有するドープ層(第一のドープ層)
107…トンネル絶縁膜
108…シリコンを含む第二の光活性層
109…第二のドープ層
110…パッシベーション膜
111…第三のドープ層
112…第二の電極
200…比較例1の多層接合型光電変換素子
207…シリコン絶縁膜
300…実施例2の多層接合型光電変換素子
312…第二の電極
Claims (10)
- 第一の電極と、
ペロブスカイト半導体を含む第一の光活性層と、
第一のドープ層と
トンネル絶縁膜と、
シリコンを含む第二の光活性層と、
第二の電極と、
を、この順に具備する多層接合型光電変換素子であって、
前記トンネル絶縁膜の厚さが1nm~15nmであり、
前記第一のドープ層が、シリコンと、不純物としての3価または5価の元素を含む、多層接合型光電変換素子。 - 前記トンネル絶縁膜がシリコン酸化物である、請求項1に記載の多層接合型光電変換素子。
- 前記トンネル絶縁膜の屈折率が1.4~2である、請求項1または2に記載の多層接合型光電変換素子。
- 前記不純物がリンである、請求項1~3のいずれか1項に記載の多層接合型光電変換素子。
- 前記第一のドープ層と前記第一の光活性層との間に、正孔輸送性バッファー層をさらに具備する、請求項1~4のいずれか1項に記載の多層接合型光電変換素子。
- 前記第一のドープ層と前記第一の光活性層との間に、中間透明電極をさらに具備する、請求項1~5のいずれか1項に記載の多層接合型光電変換素子。
- 前記第二の光活性層と前記第二の金属電極との間に第二のドープ層をさらに具備する、請求項1~6のいずれか1項に記載の多層接合型光電変換素子。
- 下記の工程を含む、多層接合型光電変換素子の製造方法:
(a)第二の光活性層を構成するシリコンウェハーの一面に、第二の金属電極を形成させる工程、
(b)第二の電極が形成されたシリコンウェハーの裏面に、トンネル絶縁膜を形成させる工程、
(c)前記トンネル絶縁膜の上に、第一のドープ層を形成させる工程、
(d)前記第一のドープ層の上に、塗布法により、ペロブスカイトを含む第一の光活性層を形成させる工程、および
(e)前記第一の光活性層の上に、第一の電極を形成させる工程。 - 工程(e)における温度が、工程(d)における温度よりも低い、請求項8に記載の多層接合型光電変換素子の製造方法。
- 工程(c)において、トンネル絶縁膜が化学的処理により行われる、請求項8または9に記載の多層接合型光電変換素子の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080108319.XA CN116784015A (zh) | 2020-11-10 | 2020-11-10 | 多层接合型光电转换元件及其制造方法 |
JP2022527240A JPWO2022101969A1 (ja) | 2020-11-10 | 2020-11-10 | |
DE112020007791.8T DE112020007791T5 (de) | 2020-11-10 | 2020-11-10 | Mehrschichtübergang-Fotoelektrokonvertierungselement und Verfahren zur Herstellung desselben |
PCT/JP2020/041884 WO2022101969A1 (ja) | 2020-11-10 | 2020-11-10 | 多層接合型光電変換素子およびその製造方法 |
US18/314,412 US20230345743A1 (en) | 2020-11-10 | 2023-05-09 | Multilayer junction photoelectric conversion element and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/041884 WO2022101969A1 (ja) | 2020-11-10 | 2020-11-10 | 多層接合型光電変換素子およびその製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/314,412 Continuation US20230345743A1 (en) | 2020-11-10 | 2023-05-09 | Multilayer junction photoelectric conversion element and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022101969A1 true WO2022101969A1 (ja) | 2022-05-19 |
Family
ID=81600919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/041884 WO2022101969A1 (ja) | 2020-11-10 | 2020-11-10 | 多層接合型光電変換素子およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230345743A1 (ja) |
JP (1) | JPWO2022101969A1 (ja) |
CN (1) | CN116784015A (ja) |
DE (1) | DE112020007791T5 (ja) |
WO (1) | WO2022101969A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018011058A (ja) * | 2016-07-13 | 2018-01-18 | エルジー エレクトロニクス インコーポレイティド | タンデム太陽電池、これを含むタンデム太陽電池モジュール及びこの製造方法 |
US20180374977A1 (en) * | 2015-12-18 | 2018-12-27 | Stichting Energieonderzoek Centrum Nederland | Hybrid tandem solar cell |
CN111081878A (zh) * | 2018-10-19 | 2020-04-28 | 君泰创新(北京)科技有限公司 | 一种钙钛矿/硅基异质结叠层太阳能电池及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018057419A1 (en) * | 2016-09-20 | 2018-03-29 | The Board Of Trustees Of The Leland Stanford Junior University | Solar cell comprising a metal-oxide buffer layer and method of fabrication |
-
2020
- 2020-11-10 WO PCT/JP2020/041884 patent/WO2022101969A1/ja active Application Filing
- 2020-11-10 JP JP2022527240A patent/JPWO2022101969A1/ja active Pending
- 2020-11-10 DE DE112020007791.8T patent/DE112020007791T5/de active Pending
- 2020-11-10 CN CN202080108319.XA patent/CN116784015A/zh active Pending
-
2023
- 2023-05-09 US US18/314,412 patent/US20230345743A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180374977A1 (en) * | 2015-12-18 | 2018-12-27 | Stichting Energieonderzoek Centrum Nederland | Hybrid tandem solar cell |
JP2018011058A (ja) * | 2016-07-13 | 2018-01-18 | エルジー エレクトロニクス インコーポレイティド | タンデム太陽電池、これを含むタンデム太陽電池モジュール及びこの製造方法 |
CN111081878A (zh) * | 2018-10-19 | 2020-04-28 | 君泰创新(北京)科技有限公司 | 一种钙钛矿/硅基异质结叠层太阳能电池及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
DE112020007791T5 (de) | 2023-09-28 |
US20230345743A1 (en) | 2023-10-26 |
JPWO2022101969A1 (ja) | 2022-05-19 |
CN116784015A (zh) | 2023-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tonui et al. | Perovskites photovoltaic solar cells: An overview of current status | |
Gao et al. | Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications | |
KR101117127B1 (ko) | 비정질 실리콘 태양전지와 유기 태양전지를 이용한 탠덤형 태양전지 | |
US11410818B2 (en) | Semiconductor elements and method for manufacturing the same | |
WO2016012274A1 (en) | Organic-inorganic tandem solar cell | |
US20230307560A1 (en) | Multilayer junction photoelectric conversion element and method for manufacturing the same | |
US10229952B2 (en) | Photovoltaic cell and a method of forming a photovoltaic cell | |
KR20190053374A (ko) | 탠덤 태양전지 | |
KR20190089394A (ko) | 태양 전지 | |
Yan et al. | Recent progress of metal-halide perovskite-based tandem solar cells | |
KR102600452B1 (ko) | 태양전지 | |
KR20190052981A (ko) | 태양전지 | |
WO2023097365A1 (en) | Tandem photovoltaic cell | |
WO2023193065A1 (en) | Photovoltaic cell and methods of fabricating same | |
WO2022101969A1 (ja) | 多層接合型光電変換素子およびその製造方法 | |
US20240008296A1 (en) | Tandem photovoltaic device combining a silicon-based sub-cell and a perovskite-based sub-cell comprising a p- or n-type material/perovskite composite layer | |
WO2022080196A1 (ja) | 多層接合型光電変換素子およびその製造方法 | |
JP6990219B2 (ja) | 半導体素子の製造方法 | |
JP7497539B1 (ja) | 光電変換素子の製造方法およびタンデム型太陽電池の製造方法 | |
WO2022102167A1 (ja) | 光電変換素子およびその製造方法 | |
WO2022244411A1 (ja) | 太陽電池および太陽電池の製造方法 | |
US20240016052A1 (en) | Tandem photovoltaic device combining a silicon-based sub-cell and a perovskite-based sub-cell including an n-layer with controlled carbon content | |
KR20230149924A (ko) | 탠덤형 페로브스카이트 태양전지 하프셀의 제조방법 | |
AU2023250513A1 (en) | Photovoltaic cell and methods of fabricating same. | |
Sanni et al. | THE IMPORTANCE OF FILM THICKNESS ON THE PHOTOVOLTAIC PERFORMANCE OF PEROVSKITE SOLAR CELLS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022527240 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20961497 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112020007791 Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202080108319.X Country of ref document: CN |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20961497 Country of ref document: EP Kind code of ref document: A1 |