WO2022101566A1 - Procédé de synthese de compositions phosphate de fer lithié - carbone - Google Patents

Procédé de synthese de compositions phosphate de fer lithié - carbone Download PDF

Info

Publication number
WO2022101566A1
WO2022101566A1 PCT/FR2021/051903 FR2021051903W WO2022101566A1 WO 2022101566 A1 WO2022101566 A1 WO 2022101566A1 FR 2021051903 W FR2021051903 W FR 2021051903W WO 2022101566 A1 WO2022101566 A1 WO 2022101566A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
lithium
iron
reactor
mass
Prior art date
Application number
PCT/FR2021/051903
Other languages
English (en)
Inventor
Dominique Plee
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2022101566A1 publication Critical patent/WO2022101566A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a process for the synthesis of lithium iron phosphate-carbon compositions, as well as the compositions obtained, cathodes and battery comprising them.
  • This material is not very electrically conductive and different strategies have been carried out to improve this problem by combining with more or less success carbon with LFP.
  • WO201 1 1 17530 describes in Example 1 1 a synthesis in which LFP is combined with carbon nanotubes (CNTs). This process does not make it possible to obtain a conductive network within the LFP particles themselves.
  • multi-walled carbon nanotubes are used in syntheses with LFP precursors.
  • the composites are prepared by mixing MWNTs at different stages of C-LFP synthesis.
  • the authors compare the performance of composites made by pre-mixing (PrB) of MWNTs with LFP precursors before calcination under a reducing atmosphere at 750°C and of composites made by post-mixing (PoB) of MWNTs with LFP. These lead to lower performance.
  • PrB pre-mixing
  • PoB post-mixing
  • the so-called PrB synthesis reaction takes place in the solid state, thereby limiting homogeneous dispersion of the carbon nanotubes within the composition obtained.
  • Porous micro-spherical LiFePO4/CNT nanocomposite for high-performance Li-ion battery cathode material RCS Advances, 2015, 5, 47, p. 37830-37836, the 20-30 nm diameter nanotubes are oxidized to create surface oxygenated groups then dispersed in water with stirring. Iron nitrate is added under ultrasound, and ammonium dihydrogen phosphate. The mixture is heated to 180°C. An FePO MCNT composite is obtained. The carbon coating step includes mixing by grinding with glucose, lithium hydroxide and the FePO4/MCNT powder. A treatment is then carried out under a reducing atmosphere. The maximum temperature is 700°C and the treatment lasts 10 hours.
  • the process makes it possible to have conductive particles inside the LFP aggregates, but the use of unstabilized nanotubes leads, during the synthesis, to a re-agglomeration and a loss of efficiency of the nanotubes.
  • the use of ultrasound cuts and oxidizes the carbon nanotubes, which makes them less efficient.
  • the applicant has therefore sought to combine LFP and carbon nanotubes by an original process, which makes it possible to limit the mechanical degradation of carbon nanotubes and their oxidation by using a ball mill, while maintaining their good dispersion so that precursors of LFPs can generate the LFP in a very intimate way with the carbon nanotubes.
  • the carbon nanotubes are stabilized in the aqueous phase using an alkaline cation of carboxy methyl cellulose such as sodium and the LFP is synthesized directly on the carbon nanotubes.
  • This new process makes it possible to reduce the size of the poorly conductive LFP domains.
  • An optional additional step of covering the composition obtained with carbon also makes it possible to significantly improve the conductive properties of the new composition obtained using this process.
  • the invention relates to a process for the preparation of a carbon-Lithium Iron Phosphate composition
  • a process for the preparation of a carbon-Lithium Iron Phosphate composition comprising the following steps: a) Preparation of a solution of carboxymethyl cellulose in a proportion of between 3 and 5% by weight in water. b) Introduction with stirring of carbon in the amount of 3 to 5% by weight of this solution to obtain a dispersion of carbon in water and carboxymethyl cellulose. c) Transfer of this dispersion into the tank of a vertical or horizontal ball mill in the presence of a basic lithium salt such as lithium hydroxide, to carry out the grinding for a time of between 90 and 150 min.
  • a basic lithium salt such as lithium hydroxide
  • a mixture A is obtained at the end of steps a), b) and c).
  • the carbon can be in the form of graphite, carbon fibers, carbon nanofibers also called carbon nanofibrils, graphene or carbon nanotubes, in combination or not.
  • carbon nanofibers Preferably they are carbon nanotubes. They come in powder form.
  • the carbon nanotubes can be of the double-walled type (DWNT, “double-walled carbon nanotubes” in Anglo-Saxon terminology) or multi-walled (MWNT, “multi-walled carbon nanotubes” in Anglo-Saxon terminology), preferably, they are multi-walled.
  • the carbon nanotubes used according to the invention usually have an average diameter ranging from 0.4 to 100 nm, preferably from 0.4 to 50 nm, more preferably from 1 to 30 nm, or even from 10 to 15 nm, and advantageously a length of 0.1 micron or more and advantageously from 0.1 to 20 microns, preferably from 0.1 to 10 microns. They are preferably presented in the form of a powder.
  • the length/diameter ratio of the carbon nanotubes, or form factor is advantageously greater than 10 and most often greater than 100.
  • Their specific surface is for example between 50 and 300 m 2 /g, advantageously between 100 and 300 m 2 /g, and their apparent density may in particular be between 0.01 and 0.5 g/cm 3 and more preferably between 0.07 and 0.2 g/cm 3 .
  • the MWNTs can for example comprise from 5 to 25 walls or sheets and more preferentially from 7 to 20 sheets.
  • the carbon nanotubes are in particular obtained by chemical vapor deposition (CCVD), for example according to the method described in document WO06/082325. They can be obtained from renewable raw material, in particular of plant origin, as described in patent application EP1980530.
  • CCVD chemical vapor deposition
  • carbon nanotubes can be found under the trade name Graphistrength® C100 from Arkema. These nanotubes can be purified.
  • the LFP/CNT composition comprises between 1 to 10%, and preferably between 2 and 5% by mass of CNT.
  • CMC carboxy methylcellulose
  • the amount of carboxy methylcellulose in this solution is between 2 and 7% and preferably between 3 and 5% by mass.
  • the treatment of the Water/CMC/NTC solution consists of a stay in a vertical or horizontal ball mill for a time of between 90 and 150 minutes.
  • the balls are of the zirconia type with a diameter ranging from 1.2 to 1.6mm and the rotor speed can vary from 1500 to 2000 rpm.
  • the use of a ball mill limits the shearing and makes it possible to preserve the integrity of the carbon nanotubes by avoiding cutting them, which is favorable to good subsequent electrical continuity and better growth of the LFP.
  • a basic lithium salt such as lithium hydroxide is added.
  • a nonionic surfactant for example carrying 8 to 12 polyoxyethylene groups. BrijTM S20 is an example of such a surfactant that can be used.
  • the lithium added to this step can represent up to 99% of the total lithium of the composition obtained by the process of the invention.
  • the mixture obtained is characterized by a D50 value greater than 1 ⁇ m and a D 99 less than 10 ⁇ m measured by a mastersizer 3000.
  • This mixture is placed in the presence of LFP precursors in a stirred reactor.
  • a static mixer can be used to carry out the Water/CMC/CNT/basic lithium salt mixing operation with the mixture of phosphorus, lithium and iron prior to loading the reactor.
  • These precursors consist of an iron II salt, preferably in the form of an oxalate, of a phosphoric acid partially neutralized or not with lithium, preferably lithium dihydrogen phosphate in an iron/phosphorus molar ratio equal to 1.
  • the operation is carried out in such a way that the Lithium/Iron molar ratio of the final composition is between 1 and 1.1 and preferably between 1.02 and 1.08.
  • the mass content of carbon nanotubes of the final composition is between 0.3 and 10%, preferably between 0.5 and 6% and more preferably between 1 and 5%.
  • the iron and phosphorus concentrations are between 0.05 and 5M.
  • the reactor is closed and the reaction forming the composition LFP/carbon nanotubes is carried out between 170 and 230°C, typically 200°C under autogenous pressure.
  • the reactor is cooled and the LFP/NTC composition is recovered, filtered, washed and dried.
  • the invention also relates to the compositions obtained using the process of the invention. They are characterized by a lithium/iron molar ratio of between 1 and 1.1, an iron/phosphorus molar ratio equal to 1 and a mass proportion of carbon nanotubes of between 0.3 and 10%.
  • compositions are then used to manufacture a cathode as such or after having undergone a grinding step in a ceramic ball or air jet mill.
  • compositions whether ground or not, can undergo an additional step aimed at covering the particles of these compositions with a layer of carbon.
  • compositions are dispersed in a solution of a sugar such as glucose, the mass content of which is between 10 and 50%.
  • the mass of excess carbon originating from the sugar represents a proportion by mass of carbon of between 0.1 and 5% of the mass of these compositions.
  • the dispersion of the compositions and of the sugar solution is subjected to atomization, then to drying before undergoing carbonization at a temperature of between 300 and 700° C. under an inert atmosphere to obtain a carbonized powder.
  • the carboxymethylcellulose present advantageously contributes its excess carbon contribution.
  • This powder is then ground using a ceramic or air jet grinder.
  • the powder compositions obtained at the end of this additional step also form part of the scope of the invention.
  • compositions of the invention have a capacity greater than 150 mAh/g.
  • the invention also relates to the cathodes and batteries obtained using the compositions resulting from the process of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention concerne un procédé de synthèse de compositions phosphate de fer lithié–carbone, ainsi que les compositions obtenues, cathodes et batterie les comprenant.

Description

DESCRIPTION
TITRE :
PROCEDE DE SYNTHESE DE COMPOSITIONS PHOSPHATE DE FER LITHIÉ - CARBONE
5 La présente invention concerne un procédé de synthèse de compositions phosphate de fer lithié - carbone, ainsi que les compositions obtenues, cathodes et batterie les comprenant.
Il existe un besoin pour des matériaux de cathode de puissance améliorée en0 particulier pour les batteries destinées aux véhicules électriques. Parmi les matériaux envisagés de coût modéré pour les véhicules d’autonomie moyenne, figure le phosphate de fer lithié (LFP) et de ses dérivés (LFMP - substitution partielle du fer par du manganèse ou du cobalt). En outre, les batteries comprenant des LFP supportent beaucoup plus de cycles de recharge et supportent des intensités élevées ce qui leur permet à la fois de fournir beaucoup de puissance et d’être rechargées rapidement. Enfin les batteries comprenant des LFP présentent des sensibilités à l’inflammation moindre ce qui leur permet d’être utilisées à des températures pouvant aller jusqu’à 70 °C. 0
Ce matériau est peu conducteur électrique et différentes stratégies ont été menées pour améliorer ce problème en combinant avec plus ou moins de succès du carbone avec le LFP.
La demanderesse donne l’appellation de compositions pour de telles associations LFP/carbone quand dans la littérature le terme composite apparaît souvent. On peut considérer que les deux appellations renvoient au même matériau.
Dans Synthesis of porous nano/micro structured LiFePO4/C cathode materials for lithium-ion batteries by spray-drying method, Transactions of Nonferrous0 Metals Society of China, 1 , January 2017, Pages 141 -147, les auteurs mélangent le LFP à un précurseur de carbone sous forme de suspension pour donner des matériaux sphériques poreux et structurés. Le procédé inclut une atomisation suivie d’une calcination à 700 °C. Ce procédé rend la surface des LFP conductrice mais l’interieur des particules ne semble pas concerne par cette amélioration.
WO201 1 1 17530 décrit à l’exemple 1 1 une synthèse dans laquelle on combine le LFP avec des nanotubes de carbone (NTC) . Ce procédé ne permet pas d’obtenir un réseau conducteur au sein même des particules de LFP.
Dans C-LFP-multi-walled carbon nanotubes composite cathode materials synthesized by solid-state reaction for lithium ion batteries, Journal of Nanoscience and Nanotechnology, 01 Aug 2013, 13(8):5440-5444, des nanotubes de carbone multi parois (MWNT) sont utilisés dans des synthèses avec les précurseurs de LFP. Les composites sont préparés en mélangeant les MWNT à différentes étapes de la synthèse du C-LFP. Les auteurs comparent les performances des composites faits par prémélange (PrB) des MWNT avec les précurseurs de LFP avant la calcination sous atmosphère réductrice à 750 °C et des composites faits par mélange postérieur (PoB) des MWNT avec LFP. Ces derniers conduisent à des performances inférieures. Cependant, la réaction de synthèse dite PrB se fait à l’état solide limitant de fait une dispersion homogène des nanotubes de carbone au sein de la composition obtenue.
Dans un autre document, Porous micro-spherical LiFePO4/CNT nanocomposite for high-performance Li-ion battery cathode material, RCS Advances, 2015, 5, 47, p. 37830-37836, les nanotubes de 20-30 nm de diamètre sont oxydés pour créer des groupes oxygénés de surface puis dispersés dans l’eau sous agitation. On ajoute du nitrate de fer sous ultrasons, et du dihydrogénophosphate d’ammonium. Le mélange est chauffé à 180°C. On obtient un composite FePO MCNT. L’étape de recouvrement carbone comprend un mélange par broyage avec du glucose, de l’hydroxyde de lithium et la poudre de FePO4/MCNT. On procède ensuite à un traitement sous atmosphère réductrice. La température maximale est de 700° C et le traitement dure 10 h. Le precede permet d’avoir des particules conductrices a l’interieur des agrégats de LFP, mais l’utilisation de nanotubes non stabilisés conduit, au cours de la synthèse, à une ré agglomération et une perte d’efficacité des nanotubes. De plus, l’utilisation d’ultrasons coupe et oxyde les nanotubes de carbone, ce qui les rend moins performants.
La demanderesse a donc cherché à combiner le LFP et les nanotubes de carbone par un procédé original, qui permet de limiter la dégradation mécanique des nanotubes de carbone et leur oxydation en utilisant un broyeur à billes, tout en maintenant leur bonne dispersion afin que des précurseurs de LFP puissent générer le LFP de façon très intime avec les nanotubes de carbone. Les nanotubes de carbone sont stabilisés dans la phase aqueuse à l’aide d’un cation alcalin de carboxy méthyl cellulose comme par exemple le sodium et le LFP est synthétisé directement sur les nanotubes de carbone.
L’utilisation d’eau dans le procédé permet de diminuer la température nécessaire à l’obtention de la structure olivine souhaitée pour le LFP favorisant ainsi la bonne intercalation du lithium.
Ce nouveau procédé permet de diminuer la taille des domaines de LFP peu conducteurs.
Une étape supplémentaire optionnelle de recouvrement de la composition obtenue avec du carbone permet en outre d’améliorer significativement les propriétés conductrices de la nouvelle composition obtenue à l’aide de ce procédé.
Résumé de l’invention :
L’invention concerne un procédé de préparation d’une composition carbone - Lithium Fer Phosphate comprenant les étapes suivantes : a) Préparation d’une solution de carboxyméthyl cellulose dans une proportion comprise entre 3 et 5 % massique dans de l’eau. b) Introduction sous agitation de carbone à hauteur de 3 à 5% massique de cette solution pour obtenir une dispersion de carbone dans l’eau et la carboxyméthyl cellulose. c) Transfert de cette dispersion dans la cuve d’un broyeur a billes vertical ou horizontal en présence d’un sel basique de Lithium tel que l’hydroxyde de lithium, pour effectuer le broyage durant un temps compris entre 90 et 150 min.
On obtient un mélange A à l’issue des étapes a), b) et c). d) Introduction du mélange A dans un réacteur agité comprenant une solution aqueuse d’un sel de fer préférentiellement sous forme d’oxalate, et d’un acide phosphorique partiellement neutralisé ou non avec du lithium, préférentiellement le dihydrogénophosphate de lithium avec un rapport molaire fer/phosphore égal à 1 (mélange B), dans lequel le ratio molaire Lithium / Fer provenant des mélanges A et B est compris entre 1 et 1 ,1 , la teneur massique en carbone est comprise entre 0,3 et 10 % par rapport à la totalité A+B et les concentrations en Fer et Phosphore comprises entre 0.05 et 5M. e) Fermeture de réacteur puis réaction à 200 °C, durant 2h sous pression autogène. f) Refroidissement du réacteur, suivit d’une récupération de la composition par filtration, lavage et séchage.
Description détaillée :
Dans le cadre de l’invention le carbone peut se présenter sous forme de graphite, de fibres de carbone, de nanofibres de carbone aussi appelée nanofibrilles de carbone, de graphène ou de nanotubes de carbone de façon combinée ou non. De préférence il s’agit de nanotubes de carbone. Ils se présentent sous forme de poudre.
Les nanotubes de carbone peuvent être du type double paroi (DWNT, « double-walled carbon nanotubes » en terminologie anglo-saxonne) ou à parois multiples (MWNT, « multi-walled carbon nanotubes » en terminologie anglo-saxonne), de préférence, ils sont à parois multiples. Les nanotubes de carbone mis en oeuvre selon l'invention ont habituellement un diamètre moyen allant de 0,4 à 100 nm, de préférence de 0,4 à 50 nm, plus préférentiellement de 1 a 30 nm, voire de 10 a 15 nm, et avantageusement une longueur de 0,1 micron ou plus et avantageusement de 0,1 à 20 microns, de préférence de 0,1 à 10 microns. Ils se présentent de façon préférée sous la forme d’une poudre.
Le rapport longueur/diamètre des nanotubes de carbone, ou facteur de forme, est avantageusement supérieur à 10 et le plus souvent supérieur à 100. Leur surface spécifique est par exemple comprise entre 50 et 300 m2/g, avantageusement entre 100 et 300 m2/g, et leur densité apparente peut notamment être comprise entre 0,01 et 0,5 g/cm3 et plus préférentiellement entre 0,07 et 0,2 g/cm3. Les MWNT peuvent par exemple comprendre de 5 à 25 parois ou feuillets et plus préférentiellement de 7 à 20 feuillets.
Les nanotubes de carbone sont notamment obtenus par dépôt chimique en phase vapeur (CCVD), par exemple selon le procédé décrit dans le document WO06/082325. Ils peuvent être obtenus à partir de matière première renouvelable, en particulier d'origine végétale, comme décrit dans la demande de brevet EP1980530.
Un exemple de nanotubes de carbone se trouve sous la dénomination commerciale Graphistrength® C100 de la société Arkema. Ces nanotubes peuvent être purifiés.
Dans le cadre de l’invention, la composition LFP/NTC comprend entre 1 à 10 %, et de préférence entre 2 et 5% en masse de NTC.
Ces nanotubes de carbone sont dispersés sous agitation dans une solution aqueuse de carboxy methylcellulose (CMC) dont la masse moléculaire en poids peut varier de 50000 à 150000 g/mole et de préférence entre 80000 et 120000 g/mole.
La quantité de carboxy methylcellulose dans cette solution est comprise entre 2 et 7 % et de préférence entre 3 et 5% massique.
Le traitement de la solution Eau/CMC/NTC consiste en un séjour dans un broyeur à billes vertical ou horizontal durant en temps compris entre 90 et 150 minutes. Les billes sont du type zircone avec un diamètre allant de 1 ,2 à 1 ,6mm et la vitesse du rotor peut varier de 1500 a 2000 rpm. L’utilisation d’un broyeur à billes limite le cisaillement et permet de conserver l’intégrité des nanotubes de carbone en évitant de les couper ce qui est favorable à une bonne continuité électrique ultérieure et une meilleure croissance du LFP. Durant cette étape, un sel de lithium basique tel que l’hydroxyde de lithium est rajouté. Selon une variante on peut également rajouter un tensioactif non ionique, par exemple porteur de 8 à 12 groupements polyoxyethylene. Le Brij™ S20 est un exemple d’un tel tensioactif qui peut être utilisé.
Le lithium apporté à cette étape peut représenter jusqu’à 99 % du lithium total de la composition obtenue par le procédé de l’invention.
Le mélange obtenu est caractérisé par une valeur D50 supérieure à 1 pm et un D 99 inférieur à 10|im mesuré par un mastersizer 3000.
Ce mélange est mis en présence des précurseurs de LFP dans un réacteur agité. Un mélangeur statique peut être utilisé pour effectuer l’opération de mélange Eau/CMC/NTC/sel basique de lithium avec le mélange de phosphore, de lithium et de fer préalablement à la charge du réacteur.
Ces précurseurs sont constitués d’un sel de fer II, de préférence sous forme d’oxalate, d’un acide phosphorique partiellement neutralisé ou non avec du lithium préférentiellement le dihydrogénophosphate de lithium dans un rapport molaire fer/phosphore égal à 1 .
On opère de telle sorte que le ratio molaire Lithium/Fer de la composition finale soit compris entre 1 et 1 ,1 et de préférence entre 1 ,02 et 1 ,08.
De même, la teneur massique en nanotubes de carbone de la composition finale est comprise entre 0,3 et 10 %, de préférence entre 0,5 et 6% et de façon encore préférée entre 1 et 5 %.
Dans ce réacteur, les concentrations en fer et en phosphore sont comprises entre 0,05 et 5M.
Le réacteur est fermé et la réaction de formation de la composition LFP/nanotubes de carbone est effectuée entre 170 et 230 °C, typiquement 200 °C sous pression autogène.
A l’issue de cette étape, le réacteur est refroidi et la composition LFP/NTC est récupérée, filtrée, lavée et séchée.
L’invention concerne également les compositions obtenues à l’aide du procédé de l’invention. Elles sont caractérisées par un rapport molaire Lithium / fer compris entre 1 et 1 ,1 , un rapport molaire fer / phosphore égal à 1 et une proportion massique de nanotubes de carbone comprise entre 0,3 et 10%.
Ces compositions sont ensuite utilisées pour fabriquer une cathode telle quelle ou après avoir subi une étape de broyage dans un broyeur à billes céramique ou à jet d’air.
Ces compositions broyées ou non peuvent subir une étape supplémentaire visant à recouvrir les particules de ces compositions d’une couche de carbone.
Lors de cette étape supplémentaire, on disperse ces compositions dans une solution d’un sucre tel que le glucose dont la teneur massique est comprise entre 10 et 50 %.
Lors de cette étape supplémentaire la masse de carbone excédentaire provenant du sucre représente une proportion massique de carbone comprise entre 0,1 et 5% de la masse de ces compositions.
La dispersion des compositions et de la solution sucrée est soumise à une atomisation, puis à un séchage avant de subir une carbonisation à une température comprise entre 300 et 700 °C sous atmoqohère inerte pour obtenir une poudre carbonisée. A l’occasion de cette carbonisation, la carboxyméthylcellulose présente apporte avantageusement sa contribution de carbone excédentaire. On procède ensuite à un broyage de cette poudre à l’aide d’un broyeur céramique ou à jet d’air. Les compositions de poudre obtenues à l’issue de cette étape supplémentaire font également partie du cadre de l’invention.
Les compositions de l’invention présentent une capacité supérieure à 150 mAh/g.
L’invention concerne également les cathodes et batteries obtenues à l’aide des compositions issues du procédé de l’invention.

Claims

9
REVENDICATIONS
1 Procédé de préparation d’une composition carbone - Lithium Fer Phosphate comprenant les étapes suivantes : a) Préparation d’une solution de carboxyméthyl cellulose dans une proportion comprise entre 2 et 7 % massique dans de l’eau. b) Introduction sous agitation de carbone à hauteur de 1 à 10% massique de cette solution pour obtenir une dispersion de carbone dans l’eau et la carboxyméthyl cellulose. c) Transfert de cette dispersion dans la cuve d’un broyeur à billes vertical ou horizontal en présence d’un sel basique de Lithium tel que l’hydroxyde de lithium, pour effectuer le broyage durant un temps compris entre 90 et 150 min.
On obtient un mélange A à l’issue des étapes a), b) et c). d) Introduction du mélange A dans un réacteur agité comprenant une solution aqueuse d’un sel de fer préférentiellement sous forme d’oxalate, et d’un acide phosphorique partiellement neutralisé ou non avec du lithium préférentiellement le dihydrogénophosphate de lithium avec un rapport molaire fer/phosphore égal à 1 (mélange B), dans lequel le ratio molaire Lithium / Fer provenant des mélanges A et B est compris entre 1 et 1 ,1 , la teneur massique en carbone est comprise entre 0,3 et 10 % par rapport à la totalité A+B et les concentrations en Fer et Phosphore comprises entre 0.05 et 5M. e) Fermeture de réacteur puis réaction à 200 °C, durant 2h sous pression autogène. f) Refroidissement du réacteur, suivi d’une récupération de la composition par filtration, lavage et séchage.
2 Procédé selon la revendication 1 dans lequel le carbone se présente sous la forme de poudre de nanotubes de carbone. 3 Procédé selon la revendication 1 ou 2 dans laquelle l’etape de melange de A et de B est effectuée à l’aide d’un mélangeur statique puis transférée dans un réacteur.
4 Procédé selon la revendication 1 à 3 comportant en plus une étape de broyage à l’aide d’un broyeur céramique ou à jet d’air.
5 Procédé selon une des revendications 1 à 4 dans lequel la composition obtenue est dispersée dans une solution de 10 à 50 % massique d’un sucre dans de l’eau, la masse de carbone du sucre représentant 0,1 à 5% massique de carbone excédentaire en rapport avec la composition puis subit les étapes suivantes :
- atomisation de la dispersion, récupération de la poudre et séchage.
- Carbonisation de la poudre à une température comprise entre 300 et 700 °C sous atmosphère inerte.
- Broyage de la poudre carbonisée à l’aide d’un broyeur céramique ou à jet d’air.
6 Procédé selon une des revendications 1 à 5 dans lequel la carboxy méthyl cellulose présente une masse moléculaire en poids comprise entre 50 000 et 150 000 g/mole.
7 Procédé selon une des revendications 1 à 6 dans lequel un tensioactif est rajouté à l’étape c).
PCT/FR2021/051903 2020-11-10 2021-10-28 Procédé de synthese de compositions phosphate de fer lithié - carbone WO2022101566A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2011548 2020-11-10
FR2011548A FR3116158B1 (fr) 2020-11-10 2020-11-10 Procédé de synthèse de compositions phosphate de Fer Lithié - Carbone

Publications (1)

Publication Number Publication Date
WO2022101566A1 true WO2022101566A1 (fr) 2022-05-19

Family

ID=74871490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051903 WO2022101566A1 (fr) 2020-11-10 2021-10-28 Procédé de synthese de compositions phosphate de fer lithié - carbone

Country Status (3)

Country Link
FR (1) FR3116158B1 (fr)
TW (1) TWI789077B (fr)
WO (1) WO2022101566A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082325A1 (fr) 2005-02-07 2006-08-10 Arkema France Procede de synthese de nanotubes de carbone
EP1980530A1 (fr) 2007-04-06 2008-10-15 Arkema France Procédé de fabrication de nanotubes de carbone à partir de matières premieres renouvelables
WO2011117530A1 (fr) 2010-03-23 2011-09-29 Arkema France Melange-maitre de charges conductrices carbonees pour les formulations liquides, notamment dans les batteries li-ion
US20120028117A1 (en) * 2009-03-19 2012-02-02 Centre National De La Recherche Scientifique Fluorinated binder composite materials and carbon nanotubes for positive electrodes for lithium batteries
CN103165896A (zh) * 2011-12-13 2013-06-19 湖南省正源储能材料与器件研究所 一种增稠剂掺杂改性制备磷酸铁锂/碳复合材料的方法
CN109686962A (zh) * 2019-01-21 2019-04-26 新奥石墨烯技术有限公司 制备磷酸铁锂复合正极材料的方法、正极、电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009355290B2 (en) * 2009-11-10 2013-05-30 Rockwood Italia S.P.A. Hydrothermal process for the production of LiFePO4 powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082325A1 (fr) 2005-02-07 2006-08-10 Arkema France Procede de synthese de nanotubes de carbone
EP1980530A1 (fr) 2007-04-06 2008-10-15 Arkema France Procédé de fabrication de nanotubes de carbone à partir de matières premieres renouvelables
US20120028117A1 (en) * 2009-03-19 2012-02-02 Centre National De La Recherche Scientifique Fluorinated binder composite materials and carbon nanotubes for positive electrodes for lithium batteries
WO2011117530A1 (fr) 2010-03-23 2011-09-29 Arkema France Melange-maitre de charges conductrices carbonees pour les formulations liquides, notamment dans les batteries li-ion
CN103165896A (zh) * 2011-12-13 2013-06-19 湖南省正源储能材料与器件研究所 一种增稠剂掺杂改性制备磷酸铁锂/碳复合材料的方法
CN109686962A (zh) * 2019-01-21 2019-04-26 新奥石墨烯技术有限公司 制备磷酸铁锂复合正极材料的方法、正极、电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, vol. 13, no. 8, 1 August 2013 (2013-08-01), pages 5440 - 5444
RCS ADVANCES, vol. 5, no. 47, 2015, pages 37830 - 37836

Also Published As

Publication number Publication date
FR3116158B1 (fr) 2022-12-02
TW202225091A (zh) 2022-07-01
TWI789077B (zh) 2023-01-01
FR3116158A1 (fr) 2022-05-13

Similar Documents

Publication Publication Date Title
EP2550699B1 (fr) Melange-maitre de charges conductrices carbonees pour les formulations liquides, notamment dans les batteries li-ion
EP2780401B1 (fr) Procede de preparation d'une composition pateuse a base de charges conductrices carbonees
JP4835881B2 (ja) リチウムイオン電池用電極およびその製造方法
JP5964859B2 (ja) オルトリン酸鉄(iii)−炭素複合材
EP3484814B1 (fr) Procede de preparation d'un materiau particulaire na3v2(po4)2f3
KR20140114786A (ko) 리튬 이온 전지용 애노드 물질로서 Si/C 복합체
WO2010066989A1 (fr) PROCEDE DE FABRICATION D'UN MATERIAU COMPOSITE SnO2 ET NANOTUBES DE CARBONE ET/OU NANOFIBRES DE CARBONE, MATERIAU OBTENU PAR LE PROCEDE, ELECTRODE POUR BATTERIE AU LITHIUM COMPORTANT LEDIT MATERIAU
RU2749904C1 (ru) Способ приготовления анодной пасты для литий-ионной батареи, анодная паста, способ изготовления анода (варианты), анод (варианты) и литий-ионная батарея (варианты)
WO2016139434A1 (fr) Composition solide de nanocharges carbonees pour les formulations utilisees dans les batteries au plomb
EP4038683B1 (fr) Additif de swcnt de haute pureté pour amélioration des performances dans une batterie au lithium-ion
FR3033328A1 (fr) Composition liquide de nanocharges carbonees pour les formulations utilisees dans les batteries au plomb.
WO2022101566A1 (fr) Procédé de synthese de compositions phosphate de fer lithié - carbone
FR3094710A1 (fr) Procédé de préparation d’une composition pâteuse comprenant des nanotubes de carbone
WO2024072202A1 (fr) Procede de synthese d'un materiau pour batterie au lithium-ion constitue de particules de phosphate de fer et de lithium nanoporeuses
FR3082358A1 (fr) Procede de preparation d'un materiau composite lto/carbone utilise comme materiau d'electrode negative pour batterie li-ion
WO2024089453A1 (fr) Composite silicium-graphène-graphite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21811413

Country of ref document: EP

Kind code of ref document: A1