WO2022101102A1 - Procédé de traitement d'un effluent de production issu d'un procédé de récupération assistée du pétrole au moyen d'une formulation désémulsifiante à base de gomme guar modifiée cationique - Google Patents

Procédé de traitement d'un effluent de production issu d'un procédé de récupération assistée du pétrole au moyen d'une formulation désémulsifiante à base de gomme guar modifiée cationique Download PDF

Info

Publication number
WO2022101102A1
WO2022101102A1 PCT/EP2021/080776 EP2021080776W WO2022101102A1 WO 2022101102 A1 WO2022101102 A1 WO 2022101102A1 EP 2021080776 W EP2021080776 W EP 2021080776W WO 2022101102 A1 WO2022101102 A1 WO 2022101102A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
water
guar gum
effluent
demulsifying
Prior art date
Application number
PCT/EP2021/080776
Other languages
English (en)
Inventor
Aurélie MOURET
Marie-Hélène KLOPFFER
Jean-Francois Argillier
Astrid TAY
Mathieu SALAÜN
Original Assignee
IFP Energies Nouvelles
Rhodia Operations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles, Rhodia Operations filed Critical IFP Energies Nouvelles
Publication of WO2022101102A1 publication Critical patent/WO2022101102A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/04Dewatering or demulsification of hydrocarbon oils with chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/047Breaking emulsions with separation aids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers

Definitions

  • the present invention relates to the field of exploration and exploitation of an underground formation.
  • the invention relates more particularly to the treatment of a fluid recovered from the subterranean formation.
  • the invention relates in particular to the field of enhanced oil recovery (EOR for “Enhanced Oil Recovery”) and the field of separation and treatment of production effluents.
  • EOR enhanced Oil Recovery
  • Petroleum production by a chemical EOR process can be applied in particular to maintain or improve the production of a reservoir.
  • the scanning fluid generally includes at least one formulation of organic molecules, such as polymers, copolymers and/or surfactants, one or more alkaline compound(s), etc.
  • organic molecules such as polymers, copolymers and/or surfactants, one or more alkaline compound(s), etc.
  • the advantage of the presence of a polymer is to increase the viscosity of the flushing fluid and consequently to improve the mobility ratio between the injected fluid and the hydrocarbons. in place in the underground formation.
  • the interest of the surfactant is for its part to greatly reduce the interfacial tensions between the fluids, in order to make it possible to de-trap the hydrocarbons contained in the underground formation.
  • polyacrylamides PAM
  • HPAM partially hydrolyzed polyacrylamides
  • xanthans guars, etc.
  • these polymers viscosify the aqueous phase in the tank and thus make it possible to improve the efficiency of sweeping of the injection water. After a certain period of time, the polymers thus injected are found (generally in small quantities and partially degraded) in the production water.
  • the surfactants generally used for enhanced oil recovery are in particular sulphonated internal olefins, alkyl benzene sulphonates, ethoxylated alcohols, carboxylates or any other EOR surfactant known by those skilled in the art as being able to be used in a sweeping fluid.
  • alkaline compounds generally used are sodium carbonate, soda, ammonia or organic compounds such as amines, for example MonoEthanolAmine.
  • a production effluent comprising a mixture of aqueous fluid and hydrocarbons in the form of an emulsion, the water/hydrocarbons ratio of which changes according to the duration of production.
  • the presence of polymer in the production effluent due to its viscosifying effect, makes it more difficult to separate the different fluids (oil/gas/water) and, in particular, the secondary water treatments.
  • Chemicals for enhanced oil recovery are injected into the water injection system along with the sweep fluid.
  • Said flushing fluid may in particular contain chemical products of alkaline, surfactant or polymer type and moves along the reservoir from the injection wells to the production wells.
  • the production operation it may be possible to find one or more chemicals in the produced fluids.
  • the residual chemical products of the alkaline type, surfactants, polymers present in the production effluent, sometimes at non-negligible concentrations, for example several hundred ppm, can harm the separation process.
  • the production effluent is in the form of a petroleum emulsion most often consisting of emulsified water (internal phase) dispersed in a continuous phase of crude oil (external phase); the amount of water can vary from less than 1% to 90%. Part of the water is not emulsified and separates easily in "open water”. The rest of the water is generally in the form of a water-in-oil w/o emulsion, which means that the water is distributed in the form of droplets in the continuous oily phase.
  • the emulsions produced from certain oil fields are of the "reverse” type: in this case, the oil forms the internal phase dispersed in the form of droplets in the brine produced ("oil in water” emulsion, or “oil in water, o/w”).
  • This category of emulsion is particularly troublesome, because the disposal of dirty or oily water in the oil field is a common problem for every hydrocarbon producer.
  • the emulsion system found in the surface installation can therefore be in the form of an inverse emulsion, stabilized by the EOR surfactants injected upstream.
  • the conventional demulsifying agents used to break up petroleum emulsions no longer work under these new conditions.
  • the invention relates to a process for treating a production effluent from an enhanced oil recovery process using at least one surfactant, said effluent being in the form of an oil-in-water emulsion comprising at least 20 % volume of oil phase dispersed in an aqueous phase, in which:
  • a demulsifying formulation comprising a cationic modified guar gum
  • the proportion of water in the oil-in-water emulsion can be greater than 50% by volume, preferably greater than 70% by volume.
  • the cationic modified guar gum is a guar gum, 2-hydroxy-(3-trimethylammonium)-propyl ether chloride.
  • the demulsifying formulation comprises at least one secondary demulsifying agent.
  • Said at least one secondary demulsifying agent can be chosen from nonionic surfactants and cationic surfactants.
  • Said at least one secondary demulsifying agent can be chosen from ethoxylated resins, amines, EO-PO (ethylene oxide-propylene oxide) block copolymer resins, cationic polymers.
  • said at least one secondary demulsifying agent is a nonionic surfactant of the polyoxylalkylene glycol type and/or a cationic surfactant of the cationic polymer type with 2-propenamide.
  • the temperature of the contacting step can be between 10 and 100° C., preferably between 50 and 80° C., limits included.
  • the total concentration of demulsifying agent(s), including the cationic modified guar gum can be between 5 and 800 ppm, preferably between 30 and 400 ppm, of very preferably between 50 and 200 ppm, limits included, relative to the total volume of production effluent.
  • the relative proportion between the cationic modified guar gum and said secondary demulsifier(s) can be between 20 and 100% by mass, preferably between 30 and 70% by mass.
  • the invention also relates to a method for enhanced recovery of crude oil contained in a geological reservoir, in which:
  • a flushing fluid comprising at least one surfactant, optionally at least one polymer, and optionally at least one alkaline compound, so as to move the crude oil to at least one producing well;
  • a production effluent is recovered at the surface of the producing well comprising a continuous aqueous phase comprising said surfactants, said optional polymer, and said optional alkalis and an organic phase consisting of droplets of crude oil dispersed in said aqueous phase in the form of an oil-in-water emulsion comprising at least 20% oil;
  • the total concentration of surfactant(s) in the aqueous phase of said sweeping fluid can be between 0.2 and 2 g/l, preferably between 0.4 and 0.8 g/L, very preferably between 0.5 and 0.625 g/l.
  • FIG. 1 represents the results of emulsion breaking tests after 10 minutes for the demulsifying formulations 2 and 3 according to the invention, compared to the reference, tested in Example 3. Description of embodiments
  • production effluent means the oil emulsion comprising an aqueous phase emulsified in the form of droplets dispersed in a continuous organic phase comprising crude oil (water-in-oil emulsion) or the oil emulsion comprising an organic phase comprising crude oil in the form of droplets dispersed in a continuous aqueous phase (oil-in-water emulsion).
  • Said production effluent may comprise surfactants, polymers, residual alkaline compounds.
  • the production effluent can also be in the form of a multiple emulsion (water in oil in water, or oil in water in oil).
  • concentrations of surfactants or of polymer or of any other EOR additive are expressed in g/L relative to the total volume of the aqueous phase of the flushing fluid.
  • the concentration of demulsifying agent(s) is expressed in ppm by volume (i.e. in mL per L relative to the total volume of emulsion comprising the polymer and the optional additive(s), which means that the content is calculated in ppm of the demulsifying formulation according to the invention relative to the total volume of the production effluent to be treated.
  • the invention relates to a process for breaking an oil-in-water emulsion formed in a production installation, that is to say promoting the separation between the aqueous phase and the organic phase within the production effluent, in particular when Surfactants for enhanced oil recovery are present alone or in combination with a polymer and an alkaline agent in the production effluent produced in return.
  • the invention relates in particular to the use of a product of natural origin based on guar as a demulsifying agent.
  • the method according to the invention uses a demulsifier formulation containing a cationic modified guar gum used alone, or in combination with at least one other so-called secondary demulsifier in order to allow rapid and effective separation of the oil and water contained in an inverse or multiple emulsion stabilized by an EOR surfactant.
  • the demulsifying formulation used in the method according to the invention allows rapid action to separate the oil from the water, with the cleanest possible interface.
  • the process according to the invention allows the recovery of clean oil, which is defined as an oily organic phase with a low concentration of water inside, and in particular characterized by a content of basic sediments and water, in English BS&W (for Basic Sediment and Water) less than 0.5%).
  • the method according to the invention also makes it possible to obtain a good quality of the separated aqueous phase (low residual oil dispersed in the water).
  • Demulsifying agents traditionally used to treat conventional petroleum emulsions are oil soluble with a relative solubility index between 9 and 11.
  • Cationic modified guar gum is a water soluble product.
  • the demulsifying formulation according to the invention comprises a cationic modified guar gum as a demulsifying agent.
  • said cationic modified guar gum is a guar gum, 2-hydroxy-(3-trimethylammonium)-propyl ether chloride.
  • the demulsifying formulation comprises only a cationically modified guar gum as the demulsifying agent.
  • the demulsifying formulation according to the invention can also comprise one or more secondary demulsifying agents.
  • the cationic modified guar gum is the primary demulsifying agent.
  • the demulsifying formulation according to the invention in any one of its embodiments, can be brought into contact with the emulsion to be treated according to all the variants known to those skilled in the art, for example at the bottom of a well, in wellhead, on the production site, in a production separator or in an electro-coalescer according to techniques known to those skilled in the art.
  • the water-oil separation takes place in separation tanks (production separator, gravitational separation tank, electrostatic coalescence, heating treatment device).
  • demulsifier formulation comprising cationic guar gum alone or in combination with one or more secondary demulsifiers.
  • concentration of each of the demulsifiers can be determined by those skilled in the art, given the conditions of temperature, salinity, pressure encountered in the field, as well as the type of oil and the relative proportions of the different phases in the 'emulsion.
  • the secondary demulsifiers which can be used in combination with cationic guar gum are advantageously chosen from nonionic surfactants or cationic surfactants.
  • the said secondary demulsifier(s) can be chosen from ethoxylated resins, amines, ethylene oxide/propylene oxide copolymer resins, cationic polymers.
  • the said secondary demulsifying agent(s) used in association with the cationic modified guar gum can be a nonionic surfactant of the polyoxylalkylene glycol type and/or a cationic surfactant of the cationic polymer type with 2-propenamide, alone or in combination. mixed.
  • the total content of primary and secondary demulsifying agent(s) can advantageously be between 5 and 800 ppm, preferably between 30 and 400 ppm, very preferably between 50 and 200 ppm, limits included, relative to the total volume of production effluent to be treated.
  • the relative proportion of the primary demulsifier (cationic modified guar gum) relative to the secondary demulsifier(s) is advantageously between 20 and 100% by weight, preferably between 30 and 70% by weight.
  • the primary demulsifying agent (cationic modified guar gum) advantageously represents between 20 and 100%, preferably between 30 and 70% mass relative to the total mass of the primary and secondary demulsifiers of said demulsifier formulation.
  • the separation process according to the invention makes it possible to break the inverse emulsion in the production water and to obtain an improved quality of the separated oil and water phases.
  • the temperature of the contacting step can be between 10 and 100° C., preferably between 50 and 80° C., limits included.
  • the separation process according to the invention makes it possible in particular to act both on the quality of the separated water and on the quality of the oil.
  • the separation process according to the invention makes it possible in particular to act from the primary separation to carry out simultaneous de-oiling.
  • the present invention can also be applied to the treatment of produced water resulting from a first stage of water/oil separation applied to an oil effluent, the effluent resulting from an assisted recovery of hydrocarbons trapped within an underground formation, in order to eliminate the residual drops of crude oil: sedimentation by gravity separation, centrifugation, flotation with or without gas injection and filtration.
  • the treatment method according to the invention can be followed by any production water treatment known to those skilled in the art, making it possible to further improve the quality of the separated water.
  • the present invention can also be applied directly to any petroleum effluent in the form of an emulsion, when this effluent is predominantly aqueous, that is to say with proportions of water greater than or equal to 50% by volume.
  • the evaluation of the effectiveness of the demulsifying formulation on the water-oil separation in the process according to the invention is based on tests in test specimens on a reconstituted water-in-oil emulsion.
  • the total volume of emulsion is 60mL.
  • the emulsion is created using a high mixing energy homogenizer, branded Ultra-turrax UT25 disperser type I KA, in order to generate a strong water/oil mixture and to obtain a sample that is as representative as possible of what is encountered on the hydrocarbon production field.
  • the classic protocol consists of preheating the fluids to the test temperature in an oven, then introducing the aqueous phase drop by drop over 30 s into the oily phase, previously placed in a beaker, with stirring at 3000 rpm. minute for a total mixing time of 2 minutes.
  • the demulsifying formulation is added 5 seconds before the end of mixing so that it can act on an emulsion that has already formed, while being well dispersed throughout the mixture.
  • This protocol can be adapted according to the volume of water in the mixture (also called “water-cut”), the viscosity of the oil and the stability of the reference emulsion (without demulsifying agent) desired.
  • the emulsion is immediately transferred to a graduated cylinder and the separation of water as a function of time is followed by measuring the volume of free water compared to the total volume of water initially. added in the sample; the graduated cylinder is maintained at the desired temperature for the duration of the test.
  • the separated water and the supernatant oil are sampled using a syringe in order to assess their quality by physico-chemical measurements.
  • the test time can be adapted according to the typical separation time of each field.
  • the quantity of water present in the oily phase is measured by the volumetric Karl-Fischer method (Metrohm device) which is based on a bi-potentiometric titration measuring the quantity of iodine consumed by the water present in a alcoholic environment.
  • the quantity of oil dispersed in the aqueous phase is evaluated by extracting the oil with dichloromethane, then by measuring the extracted sample by UV spectrophotometry (Hach Lange apparatus). Table 1 below gives the parameters of the emulsion breaking tests carried out in the laboratory.
  • the tests are carried out on emulsions comprising: A. only one or more EOR surfactants
  • Example 2 Results on a light oil case at a temperature of 50° C., with a demulsifying formulation comprising, as demulsifying agent, a cationic modified guar gum alone
  • the demulsifying formulation used in Example 2 consists of a cationic modified guar gum (Guar gum, 2-hydroxy-(3-trimethylammonium)-propyl ether chloride), at a content of 200 ppm in the emulsion to be treated. (Formulation 1). For comparison are also prepared:
  • a comparative sample comprising a commercial demulsifying agent of the nonionic surfactant type (oxyalkylate resin) at a content in the emulsion of 200 ppm.
  • the results, after an observation time of 10 minutes, are given in Table 2 below.
  • formulation 1 according to the invention comprising a cationic modified guar gum exhibits performance identical to the reference commercial demulsifier (oxyalkylate resin, Clearbreak 6218) in terms of separated water and oil quality (water content in oil ), but shows a better result in terms of water quality (oil content in water about 31% lower).
  • demulsifier oxyalkylate resin, Clearbreak 6218
  • Example 3 Results with a demulsifying formulation according to the invention formed of a cationic modified guar gum combined with at least one other secondary demulsifier
  • the demulsifying formulations according to the invention are in example 3:
  • cationic modified guar gum Guar gum, 2-hydroxy-(3-trimethylammonium)-propyl ether chloride 33.3% by weight, in combination with two secondary demulsifying agents: a nonionic surfactant ( Polyoxylalkylene Glycol) 33.3% by mass and a cationic polymer with 2-propenamide 33.3% by mass;
  • cationic modified guar gum (Guar gum, 2-hydroxy-(3-trimethylammonium)-propyl ether chloride) 50% by weight in association with a cationic polymer secondary demulsifying agent with 2-propenamide 50% by weight.
  • Figure 1 illustrates the efficiency of the separation with a clear interface between the water and oil phases, after an observation time of 10 minutes, for test specimens 2a (formulation 2 at 50 ppm), 2b (formulation 2 at 200 ppm ), 3a (formulation 3 at 50 ppm), 3b (formulation 3 at 200 ppm), in comparison with the untreated reference emulsion. A more effective clarification of the water is also observed for the demulsifying formulation contents of 200ppm.
  • Example 4 Study of the impact of field conditions on the treatment using a demulsifying formulation with a cationic modified guar gum associated with at least one other demulsifying agent (formulation 3) The performances of formulation 3 of example 3 at a content of 200 ppm are evaluated according to different operating conditions encountered in the field (type of crude, chemistry of the surfactants used, type of EOR process, temperature).
  • composition A mixture of alkylbenzene sulphonate and water-soluble sulphonated surfactant, the concentration being adapted to the conditions of the case, in particular the type of oil and the type of EOR process.
  • Surfactant composition B zwitterionic surfactant (case of light oil and ASP)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Fats And Perfumes (AREA)

Abstract

La présente invention concerne un procédé de traitement d'un effluent de production issu d'un procédé de récupération assistée du pétrole mettant en œuvre au moins un tensio-actif, ledit effluent étant sous forme d'une émulsion huile dans eau comprenant au moins 20% volume de phase huile dispersée dans une phase aqueuse, dans lequel on met en contact ledit effluent de production avec une formulation désémulsifiante comprenant une gomme guar modifiée cationique et on sépare la phase huile de la phase aqueuse. L'invention concerne également un procédé de récupération assistée de pétrole brut contenu dans un réservoir géologique dans lequel on traite l'effluent de production obtenu au moyen dudit procédé de traitement.

Description

Procédé de traitement d'un effluent de production issu d'un procédé de récupération assistée du pétrole au moyen d'une formulation désémulsifiante à base de gomme guar modifiée cationique
Domaine technique
La présente invention concerne le domaine de l'exploration et l'exploitation d'une formation souterraine. L'invention concerne plus particulièrement le traitement d'un fluide récupéré de la formation souterraine. L'invention concerne notamment le domaine de la récupération assistée des hydrocarbures (EOR de l'anglais "Enhanced Oil Recovery") et le domaine de la séparation et du traitement des effluents de production.
Technique antérieure
Pour l'exploration et l'exploitation d'une formation souterraine, notamment lorsqu'un champ pétrolifère devient mature, il est courant d'injecter un fluide dans la formation souterraine afin d'augmenter l'efficacité des procédés (Han D. K. & al, Recent Development of Enhanced oil Recovery in China, J. Petrol. Sci. Eng. 22(1-3) : 181-188 ; 1999). Il existe plusieurs méthodes de récupération assistée de pétrole. Lorsque le fluide injecté, aussi appelé fluide de balayage, est additionné de composés, on parle de récupération assistée tertiaire. Ces composés chimiques sont des polymères, tensioactifs, des composés alcalins, ou des mélanges de ces composés. Cette opération est connue sous le nom d'EOR chimique.
La production pétrolière par un procédé EOR chimique peut être notamment appliquée pour maintenir ou améliorer la production d'un réservoir.
Dans ce cadre, le fluide de balayage inclut généralement au moins une formulation de molécules organiques, telles que des polymères, des copolymères et/ou des tensioactifs, un ou plusieurs composé(s) alcalin(s), etc. Par rapport à une simple injection d'eau ou de saumure, l'intérêt de la présence d'un polymère est d'augmenter la viscosité du fluide de balayage et par conséquent d'améliorer le rapport de mobilité entre le fluide injecté et les hydrocarbures en place dans la formation souterraine. L'intérêt du tensio-actif est quant à lui de diminuer fortement les tensions interfaciales entre les fluides, afin de permettre de dépiéger les hydrocarbures contenus dans la formation souterraine.
L'intérêt d'une combinaison d'additifs de type ASP (Alcalins, Surfactant (ou tensio-actifs), Polymères) permet d'augmenter la récupération de pétrole sur champ. L'ajout d'un ou plusieurs composé(s) alcalin(s) permet de générer des tensioactifs in situ au contact d'une huile réactive et par conséquent de réduire la consommation de tensio-actifs synthétiques. (Clara Hernandez et al., SPE-69544-MS).
Parmi les familles de polymères utilisés pour la récupération assistée de pétrole, on trouve les polymères hydrosolubles de haute masse moléculaire tels que les polyacrylamides (PAM), les polyacrylamides partiellement hydrolysés (HPAM), ou certains polysaccharides (xanthanes, guars...). Ces polymères viscosifient la phase aqueuse dans le réservoir et permettent ainsi d'améliorer l'efficacité de balayage de l'eau d'injection. Après un certain laps de temps, les polymères ainsi injectés sont retrouvés (généralement en faibles quantités et partiellement dégradés) dans les eaux de production.
Les tensio-actifs généralement utilisés pour la récupération assistée de pétrole sont notamment des oléfines internes sulfonées, des alkyl benzène sulfonates, des alcools éthoxylés, des carboxylates ou tout autre tensio-actif EOR connu par l'Homme du Métier comme pouvant être utilisé dans un fluide de balayage.
Les composés alcalins généralement utilisés sont le carbonate de sodium, de la soude, de l'ammoniac ou des composés organiques comme des amines, par exemple la MonoEthanolAmine.
L'utilisation de polymères et/ou de tensio-actifs et/ou d'agent alcalin dans la récupération assistée tertiaire pose néanmoins des problèmes opérationnels. Au niveau des puits producteurs, on récupère un effluent de production comprenant un mélange de fluide aqueux et d'hydrocarbures sous forme d'une émulsion dont le rapport eau/hydrocarbures évolue en fonction de la durée de production. La présence de polymère dans l'effluent de production, du fait de l'effet viscosifiant de celui-ci, rend plus difficile la séparation des différents fluides (huile/gaz/eau) et, en particulier, les traitements secondaires de l'eau (Zhang Y.Q & al. Treatment of produced water from polymer flooding in oil production by the combined method of hydrolysis acidification dynamic membrane bioreactor-coagulation process, J. Petrol. Sci. Eng., 74 (1-2) : 14-19, 2010). Lorsque l'effluent de production arrive en surface, il est traité dans une unité de surface. Cette unité permet de séparer les différents fluides, gaz, huile et eau. A l'issue du traitement de surface, les hydrocarbures sont prêts à être raffinés. L'eau est traitée et dépolluée afin de minimiser les rejets de produits toxiques dans l'environnement, dont les seuils sont soumis à des normes. L'industrie pétrolière encourage à la réinjection des eaux de production dans la roche réservoir, dans ce cas, l'eau de production traitée doit répondre à des spécifications dépendant des caractéristiques de la roche réservoir. La présence d'additifs dans les fluides produits, comme il est rapporté dans le document SPE 65390 (2001) "Emulsification and stabilization of ASP Flooding Produced liquid", peut entraîner la stabilisation des émulsions dans les fluides produits et poser des problèmes au niveau des procédés de traitement de surface, au niveau de la séparation eau/huile/gaz et en particulier, au niveau des procédés de traitement secondaire de l'eau.
Cette thématique actuelle nécessite une nouvelle approche pour la séparation eau / huile en présence de tensio-actifs, car la présence de ces derniers engendre des difficultés opérationnelles lorsque cette séparation est réalisée sur site.
Les produits chimiques pour la récupération assistée de pétrole sont injectés dans le réseau d'injection d'eau avec le fluide de balayage . Ledit fluide de balayage peut notamment contenir des produits chimiques de type alcalins, tensio-actifs, polymères et se déplace le long du réservoir depuis les puits d'injection jusqu'aux puits de production. Pendant l'opération de production, il peut être possible de retrouver un ou plusieurs produits chimiques dans les fluides produits. Dans ce cas, les produits chimiques résiduels de type alcalin, tensio-actifs, polymères présents dans l'effluent de production, parfois à des concentrations non négligeables, par exemple plusieurs centaines de ppm peuvent nuire au processus de séparation.
Dans les procédés de production conventionnels, l'effluent de production se présente sous la forme d'une émulsion pétrolière le plus souvent constituée d'eau émulsionnée (phase interne) dispersée dans une phase continue de pétrole brut (phase externe); la quantité d'eau peut varier de moins de 1% à 90%. Une partie de l'eau n'est pas émulsionnée et se sépare facilement en «eau libre». Le reste de l'eau se trouve généralement sous forme d'émulsion eau dans huile (« water in oil » w/o), ce qui signifie que l'eau est distribuée sous forme de gouttelettes dans la phase huileuse continue.
Parfois, les émulsions produites à partir de certains champs pétrolifères sont du type «inverse» : dans ce cas, l'huile forme la phase interne dispersée sous forme de gouttelettes dans la saumure produite (émulsion « huile dans eau », ou « oil in water, o/w »). Cette catégorie d'émulsion est particulièrement gênante, car l'élimination des eaux sales ou huileuses dans le champ pétrolifère est un problème commun à chaque producteur d'hydrocarbures.
Lorsque la concentration en agents tensioactifs EOR dépasse une certaine limite dans les fluides produits, le système d'émulsion trouvé dans l'installation de surface peut donc être sous forme d'émulsion inverse, stabilisée par les tensioactifs EOR injectés en amont. Dans ce cas, on observe généralement que les agents désémulsifiants classiques utilisés pour casser les émulsions pétrolières ne fonctionnent plus dans ces nouvelles conditions.
Un besoin subsiste donc pour séparer de manière efficace la phase aqueuse de l'effluent de production sous forme d'émulsion inverse, et agir également sur la qualité de l'huile séparée lorsque l'émulsion comprend une quantité d'huile non négligeable.
Le document US 4 088 600 décrit l'utilisation d'amidons cationiques pour le cassage d'émulsions huile dans eau et eau dans huile, notamment au moyen d'éthers alkyl ammonium quaternaires.
Le document US 5 169 562 décrit l'utilisation d'un mélange d'amidon ammonium quaternaires avec des gommes naturelles pour le cassage d'émulsions contenant de très faibles quantités d'huile.
De manière inattendue, la Demanderesse a découvert qu'une formulation désémulsifiante spécifique à base de gomme guar modifiée cationique permettait d'effectuer une séparation efficace de l'eau et de l'huile, dans une émulsion de type huile dans eau contenant plus de 20% d'huile en volume, avec une bonne qualité obtenue à la fois pour l'eau et pour l'huile produites. Résumé de l'invention
L'invention concerne un procédé de traitement d'un effluent de production issu d'un procédé de récupération assistée du pétrole mettant en œuvre au moins un tensio-actif, ledit effluent étant sous forme d'une émulsion huile dans eau comprenant au moins 20% volume de phase huile dispersée dans une phase aqueuse, dans lequel :
- On met en contact ledit effluent de production avec une formulation désémulsifiante comprenant une gomme guar modifiée cationique ;
- On sépare la phase huile de la phase aqueuse.
La proportion d'eau dans l'émulsion huile dans eau peut être supérieure à 50% en volume, de préférence supérieure à 70% en volume.
De préférence, la gomme guar modifiée cationique est une gomme de guar, chlorure d'éther 2-hydroxy-(3-triméthylammonium)-propyle.
Avantageusement, la formulation désémulsifiante comprend au moins un agent désémulsifiant secondaire.
Ledit au moins un agent désémulsifiant secondaire peut être choisi parmi les tensio-actifs non ioniques et les tensio-actifs cationiques.
Ledit au moins un agent désémulsifiant secondaire peut être choisi parmi les résines éthoxylées, les amines, les résines blocs copolymères EO-PO (ethylène oxyde - propylène oxyde), les polymères cationiques.
De préférence, ledit au moins un agent désémulsifiant secondaire est un tensio-actif non ionique de type polyoxylalkylene glycol et/ou un tensio-actif cationique de type polymère cationique avec 2-propenamide.
La température de l'étape de mise en contact peut être comprise entre 10 et 100°C, de préférence entre 50 et 80°C, bornes incluses.
La concentration totale en agent(s) désémulsifiant(s) y compris la gomme guar modifiée cationique peut être comprise entre 5 et 800 ppm, de préférence entre 30 et 400 ppm, de manière très préférée entre 50 et 200 ppm, bornes incluses, par rapport au volume total d'effluent de production.
La proportion relative entre la gomme guar modifiée cationique et ledit ou lesdits désémulsifiants secondaires peut être comprise entre 20 et 100 % massique, de préférence entre 30 et 70 % massique.
L'invention concerne également un procédé de récupération assistée de pétrole brut contenu dans un réservoir géologique dans lequel :
- on injecte dans ledit réservoir un fluide de balayage comprenant au moins un tensio-actif éventuellement au moins un polymère, et éventuellement au moins un composé alcalin, de manière à déplacer le pétrole brut vers au moins un puits producteur ;
- on collecte un effluent comprenant la majeure partie du pétrole brut par ledit puits producteur ;
- on récupère en surface du puits producteur un effluent de production comprenant une phase aqueuse continue comprenant lesdits tensio-actifs, ledit éventuel polymère, et lesdits éventuels alcalins et une phase organique constituée de gouttelettes de pétrole brut dispersées dans ladite phase aqueuse sous forme d'une émulsion huile dans eau comprenant au moins 20% d'huile;
- on traite ledit effluent de production au moyen du procédé de traitement selon l'une quelconques des variantes décrites.
La concentration totale en tensio-actif(s) dans la phase aqueuse dudit fluide de balayage peut être comprise entre 0,2 et 2 g/l, de préférence entre 0,4 et 0,8 g/L, de manière très préférée entre 0,5 et 0,625 g/l.
Liste des figures
La figure 1 représente les résultats de tests de cassage d'émulsions au bout de 10 minutes pour les formulations désémulsifiantes 2 et 3 selon l'invention, par rapport à la référence, testées dans l'exemple 3. Description des modes de réalisation
Dans l'ensemble de la description, on entend par « effluent de production » l'émulsion pétrolière comprenant une phase aqueuse émulsionnée sous forme de gouttelettes dispersées dans une phase organique continue comprenant le pétrole brut (émulsion eau dans huile) ou l'émulsion pétrolière comprenant une phase organique comprenant le pétrole brut sous forme de gouttelettes dispersées dans une phase aqueuse continue (émulsion huile dans eau). Ledit effluent de production peut comprendre des tensio-actifs, des polymères, des composés alcalins résiduels. L'effluent de production peut également se présenter sous forme d'une émulsion multiple (eau dans huile dans eau, ou huile dans eau dans huile).
Dans la description et les exemples, les concentrations en tensio-actifs ou en polymère ou en tout autre additif EOR sont exprimées en g/L par rapport au volume total de la phase aqueuse du fluide de balayage.
La concentration en agent(s) désémulsifiant(s) est exprimée en ppm volumique (soit en mL par L par rapport au volume total d'émulsion comprenant le polymère et le ou les additifs éventuels), ce qui signifie qu'on calcule la teneur en ppm de la formulation désémulsifiante selon l'invention par rapport au volume total de l'effluent de production à traiter.
L'invention concerne un procédé pour casser une émulsion huile dans eau formée dans une installation de production, c'est-à-dire favoriser la séparation entre la phase aqueuse et la phase organique au sein de l'effluent de production, notamment lorsque des tensioactifs pour la récupération assistée de pétrole sont présents seuls ou en combinaison avec un polymère et un agent alcalin dans l'effluent de production produit en retour.
L'invention concerne notamment l'utilisation d'un produit d'origine naturelle à base de guar comme agent désémulsifiant. Le procédé selon l'invention met en œuvre une formulation désémulsifiante contenant une gomme guar modifiée cationique utilisée seule, ou en combinaison avec au moins un autre désémulsifiant dit secondaire afin de permettre une séparation rapide et efficace de l'huile et de l'eau contenues dans une émulsion inverse ou multiple stabilisée par un tensioactif EOR.
La formulation désémulsifiante utilisée dans le procédé selon l'invention permet une action rapide pour séparer l'huile de l'eau, avec une interface la plus nette possible. Le procédé selon l'invention permet la récupération d'huile propre, qui est définie comme une phase organique huile avec une faible concentration d'eau à l'intérieur, et en particulier caractérisée par une teneur en sédiments basiques et eau, en anglais BS&W (pour Basic Sediments and Water) inférieure à 0,5%).
Le procédé selon l'invention permet par ailleurs d'obtenir une bonne qualité de la phase aqueuse séparée (faible huile résiduelle dispersée dans l'eau).
Les agents désémulsifiants traditionnellement utilisés pour traiter les émulsions de pétrole conventionnelles sont solubles dans l'huile avec un indice de solubilité relative compris entre 9 et 11.
La gomme guar modifiée cationique est un produit soluble dans l'eau.
Procédé de séparation
La formulation désémulsifiante selon l'invention comprend une gomme guar modifiée cationique comme agent désémulsifiant. De préférence, ladite gomme guar modifiée cationique est une gomme de guar, chlorure d'éther 2-hydroxy-(3-triméthylammonium)- propyle.
Dans un mode de réalisation, la formulation désémulsifiante comprend uniquement une gomme guar modifiée cationique comme agent désémulsifiant.
Dans un autre mode de réalisation, la formulation désémulsifiante selon l'invention peut également comprendre un ou plusieurs agents désémulsifiants secondaires. Dans ce cas, la gomme guar modifiée cationique est l'agent désémulsifiant primaire.
La formulation désémulsifiante selon l'invention, dans l'un quelconque de ses modes de réalisation, peut être mise en contact avec l'émulsion à traiter selon toutes les variantes connues de l'homme du métier, par exemple en fond de puits, en tête de puits, sur le site de production, dans un séparateur de production ou dans un électro-coalesceur selon les techniques connues de l'homme du métier. La séparation eau-huile a lieu dans des cuves de séparation (séparateur de production, tank de séparation gravitationnaire , coalescence électrostatique, dispositif de traitement par chauffage).
Pour un couple huile (brut) dans eau de production donné, il est possible d'utiliser une formulation désémulsifiante comprenant la gomme guar cationique seule ou en combinaison avec un ou plusieurs désémulsifiants secondaires. Les proportions relatives et la concentration de chacun des désémulsifiants peuvent être déterminées par l'homme du métier, au vu des conditions de température, salinité, pression rencontrées sur champ, ainsi que du type d'huile et des proportions relatives des différents phases dans l'émulsion.
Les agents désémulsifiants secondaires pouvant être utilisés en association avec la gomme guar cationique sont avantageusement choisis parmi les tensio-actifs non ioniques ou les tensioactifs cationiques.
Plus particulièrement, le ou lesdits agents désémulsifiants secondaires peuvent être choisis parmi les résines éthoxylées , les amines, les résines copolymères d'oxyde d'ethylène - oxyde de propylène, les polymères cationiques.
De préférence, le ou lesdits agents désémulsifiants secondaires utilisés en association avec la gomme guar modifiée cationique peuvent être un tensio-actif non ionique de type polyoxylalkylene glycol et/ou un tensio-actif cationique de type polymère cationique avec 2- propenamide, seuls ou en mélange.
La teneur totale en agent(s) désémulsifiant(s) primaire et secondaires (donc y compris la gomme guar modifiée cationique) peut avantageusement être comprise entre 5 et 800 ppm, de préférence entre 30 et 400 ppm, de manière très préférée entre 50 et 200 ppm, bornes incluses, par rapport au volume total d'effluent de production à traiter.
La proportion relative de l'agent désémulsifiant primaire (gomme guar modifiée cationique) par rapport au(x) désémulsifiant(s) secondaire(s) est avantageusement comprise entre 20 et 100% massique, de préférence entre 30 et 70% massique.
Dans la formulation désémulsifiante, l'agent désémulsifiant primaire (gomme guar modifiée cationique) représente avantageusement entre 20 et 100%, de préférence entre 30 et 70% massique par rapport à la masse totale des désémulsifiants primaire et secondaires de ladite formulation désémulsifiante.
A différentes températures, le procédé de séparation selon l'invention permet de casser l'émulsion inverse dans l'eau de production et d'obtenir une qualité des phases huile et eau séparées améliorée. Avantageusement , la température de l'étape de mise en contact peut être comprise entre 10 et 100°C, de préférence entre 50 et 80°C, bornes incluses.
Le procédé de séparation selon l'invention permet notamment d'agir à la fois sur la qualité de l'eau séparée et sur la qualité de l'huile.
Le procédé de séparation selon l'invention permet notamment d'agir dès la séparation primaire pour effectuer un déshuilage simultané.
La présente invention peut aussi s'appliquer au traitement d'une eau de production résultant d'une première étape de séparation eau/huile appliquée à un effluent pétrolier, l'effluent étant issu d'une récupération assistée d'hydrocarbures piégés au sein d'une formation souterraine, afin d'éliminer les gouttes de brut dispersées résiduelles : sédimentation par séparation gravitaire, centrifugation, flottation avec ou sans injection de gaz et filtration.
Le procédé de traitement selon l'invention peut être suivi de tout traitement d'eau de production connu de l'homme du métier permettant d'améliorer encore la qualité de l'eau séparée.
La présente invention peut également s'appliquer directement à tout effluent pétrolier sous forme d'émulsion, lorsque cet effluent est majoritairement aqueux, c'est-à-dire avec des proportions d'eau supérieures ou égales à 50 % en volume.
Exemples
Exemple 1 : Protocole expérimental pour les tests en laboratoire
L'évaluation de l'efficacité de la formulation désémulsifiante sur la séparation eau-huile dans le procédé selon l'invention se fonde sur des tests en éprouvette sur une émulsion eau dans huile reconstituée. Le volume total d'émulsion est de 60mL. L'émulsion est créée à l'aide d'un homogénéiseur à haute énergie de mélange, type disperseur Ultra-turrax UT25 de marque I KA, afin de générer un fort mélange eau/huile et d'obtenir un échantillon le plus représentatif possible de ce qui est rencontré sur champ de production des hydrocarbures.
Le protocole classique consiste à préchauffer dans une étuve les fluides à la température de l'essai, puis d'introduire goutte à goutte la phase aqueuse en 30 s dans la phase huileuse, préalablement placée dans un bêcher, sous une agitation à 3000 tours/minute pour un temps de mélange total de 2 minutes. La formulation désémulsifiante est ajoutée 5 secondes avant la fin du mélange afin qu'elle puisse agir sur une émulsion déjà formée, tout en étant bien dispersée dans l'ensemble du mélange.
Ce protocole peut être adapté en fonction du volume d'eau dans le mélange (également appelé « water-cut »), de la viscosité de l'huile et de la stabilité de l'émulsion de référence (sans agent désémulsifiant) souhaitée.
Cependant, une fois la vitesse et le temps d'agitation établis, ils seront maintenus pour toutes les séries de tests en éprouvette, à moins que l'énergie de mélange de l'émulsion soit un paramètre d'étude.
Après cette étape de formation d'émulsion, l'émulsion est immédiatement transférée dans une éprouvette graduée et la séparation de l'eau en fonction du temps est suivie en mesurant le volume d'eau libre par rapport au volume total de l'eau initialement ajouté dans l'échantillon ; l'éprouvette graduée est maintenue à la température souhaitée pendant toute la durée du test.
Après une durée de 10 minutes, l'eau séparée et l'huile surnageante sont prélevées à l'aide d'une seringue afin d'évaluer leur qualité par des mesures physico-chimiques. Le temps de test peut être adapté en fonction du temps de séparation typique de chaque champ.
D'une part, la quantité d'eau présente dans la phase huileuse est mesurée par la méthode volumétrique Karl-Fischer (appareil Metrohm) qui repose sur un titrage bi-potentiométrique mesurant la quantité d'iode consommée par l'eau présente dans un milieu alcoolisé.
D'autre part, la quantité d'huile dispersée dans la phase aqueuse est évaluée grâce à une extraction du pétrole avec du dichlorométhane, puis à une mesure par spectrophotométrie UV (appareil Hach Lange) de l'échantillon extrait. Le tableau 1 ci-dessous donne les paramètres des tests de cassage d'émulsion réalisés en laboratoire.
Tableau 1
Figure imgf000014_0001
Les tests sont effectués sur des émulsions comprenant : A. uniquement un ou plusieurs tensio-actifs EOR
B. un ou plusieurs tensio-actifs EOR et un ou plusieurs polymères,
C. un ou plusieurs alcalins/un ou plusieurs tensio-actifs EOR /un ou plusieurs polymères.
Exemple 2 : Résultats sur un cas huile légère à la température de 50°C, avec une formulation désémulsifiante comprenant comme agent désémulsifiant une gomme guar modifiée cationique seule
La formulation désémulsifiante mise en œuvre dans l'exemple 2 est constituée d'une gomme guar modifiée cationique (Gomme de guar, chlorure d'éther 2-hydroxy-(3- triméthylammonium)-propyle), à une teneur de 200 ppm dans l'émulsion à traiter. (Formulation 1). A titre comparatif sont également préparés:
- un échantillon de référence ne contenant pas d'agent désémulsifiant ;
- Un échantillon comparatif comprenant un agent désémulsifiant commercial de type tensio- actif non ionique (résine oxyalkylate) à une teneur dans l'émulsion de 200 ppm. Les résultats, après un temps d'observation de 10 minutes, sont donnés dans le tableau 2 ci-dessous.
Tableau 2
Figure imgf000015_0001
Les mesures montrent que la formulation 1 selon l'invention comprenant une gomme guar modifiée cationique présente des performances identiques au désémulsifiant commercial de référence (résine oxyalkylate, Clearbreak 6218) en termes d'eau séparée et de qualité d'huile (teneuren eau dans huile), mais montre un meilleur résultat en terme de qualité d'eau (teneur en huile dans eau environ 31% plus faible).
Exemple 3 : Résultats avec une formulation désémulsifiante selon l'invention formée d'une gomme guar modifiée cationique associée à au moins un autre désémulsifiant secondaire Les formulations désémulsifiantes selon l'invention sont dans l'exemple 3 :
- Formulation 2 : gomme guar modifiée cationique (Gomme de guar, chlorure d'éther 2-hydroxy-(3-triméthylammonium)-propyle) 33,3% massique, en association avec deux agents désémulsifiants secondaires : un tensio-actif non ionique (Polyoxylalkylene Glycol) 33,3% massique et un polymère cationique avec 2-propenamide 33,3% massique ;
- Formulation 3 : gomme guar modifiée cationique (Gomme de guar, chlorure d'éther 2-hydroxy-(3-triméthylammonium)-propyle) 50% massique en association avec un agent désémulsifiant secondaire polymère cationique avec 2-propenamide 50% massique.
La figure 1 illustre l'efficacité de la séparation avec une interface nette entre les phase eau et huile, après un temps d'observation de 10 minutes, pour les éprouvettes 2a (formulation 2 à 50 ppm), 2b (formulation 2 à 200 ppm), 3a (formulation 3 à 50 ppm), 3b (formulation 3 à 200 ppm), en comparaison avec l'émulsion de référence non traitée. On observe également une clarification de l'eau plus efficace pour les teneurs en formulation désémulsifiante de 200ppm.
Les résultats sont donnés dans le tableau 3 ci-dessous.
Tableau 3
Figure imgf000017_0001
Exemple 4 : Etude de l'impact des conditions sur champ sur le traitement utilisant une formulation désémulsifiante avec une gomme guar modifiée cationique associée à au moins un autre agent désémulsifiant (formulation 3) Les performances de la formulation 3 de l'exemple 3 à une teneur de 200 ppm sont évaluées en fonction de différentes conditions d'opérations rencontrées sur champ (type de brut, chimie des tensio-actifs utilisés, type de procédé EOR, température).
Deux types d'huile sont testées : huile légère et huile lourde. Trois types de procédé EOR, dépendant de la composition du fluide de balayage utilisé pour la récupération assistée de pétrole, sont évalués :
- avec tensio-actif EOR (S),
- avec tensio-actif EOR et polymère (SP),
- avec composé alcalin, tensio-actif EOR et polymère (ASP). Deux types de tensio-actifs EOR sont évalués :
- Composition tensio-active A : mélange alkylbenzène sulfonate et tensio-actif sulfoné hydrosoluble, la concentration étant adaptée aux conditions du cas, notamment le type d'huile et le type de procédé EOR.
Composition tensio-active B : tensio-actif zwittérionique (cas huile légère et ASP)
Les paramètres de chaque cas et les résultats en termes de séparation d'eau, qualité d'eau et qualité d'huile sont reportées dans le tableau 4 ci-dessous.
Tableau 4
Figure imgf000019_0001
Les performances en termes de séparation d'eau, de qualité d'eau et de qualité d'huile sont classées en référence aux performances attendues sur champ, comme satisfaisante, intermédiaire ou non satisfaisante. On observe que les performances en séparation et en qualité d'huile du procédé selon l'invention sont satisfaisantes pour tous les cas évalués. Dans les cas SP et ASP, une qualité d'eau inférieure est obtenue, mais l'eau de production ainsi séparée peut être traitée ultérieurement avec les procédés de traitement d'eau classiques.

Claims

Revendications
1. Procédé de traitement d'un effluent de production issu d'un procédé de récupération assistée du pétrole mettant en œuvre au moins un tensio-actif, ledit effluent étant sous forme d'une émulsion huile dans eau comprenant au moins 20% volume de phase huile dispersée dans une phase aqueuse, dans lequel :
- On met en contact ledit effluent de production avec une formulation désémulsifiante comprenant une gomme guar modifiée cationique ;
- On sépare la phase huile de la phase aqueuse.
2. Procédé de traitement selon la revendication 1 dans lequel la proportion d'eau dans l'émulsion huile dans eau est supérieure à 50% en volume, de préférence supérieure à 70% en volume.
3. Procédé de traitement selon la revendication 1 ou 2 dans lequel la gomme guar modifiée cationique est une gomme de guar, chlorure d'éther 2-hydroxy-(3-triméthylammonium)- propyle.
4. Procédé de traitement selon l'une des revendications 1 à 3 dans lequel la formulation désémulsifiante comprend au moins un agent désémulsifiant secondaire.
5. Procédé de traitement selon la revendication 4 dans lequel ledit au moins un agent désémulsifiant secondaire est choisi parmi les tensio-actifs non ioniques et les tensio- actifs cationiques.
6. Procédé de traitement selon la revendication 5 dans lequel ledit au moins un agent désémulsifiant secondaire est choisi parmi les résines éthoxylées, les amines, les résines blocs copolymères EO-PO (ethylène oxyde - propylène oxyde), les polymères cationiques.
7. Procédé de traitement selon la revendication 6 dans lequel ledit au moins un agent désémulsifiant secondaire est un tensio-actif non ionique de type polyoxylalkylene Glycol et/ou un tensio-actif cationique de type polymère cationique avec 2-propenamide.
8. Procédé de traitement selon l'une des revendications 1 à 7 dans lequel la température de l'étape de mise en contact est comprise entre 10 et 100°C, de préférence entre 50 et 80°C, bornes incluses.
9. Procédé selon l'une des revendications précédentes dans lequel la concentration totale en agent(s) désémulsifiant(s) y compris la gomme guar modifiée cationique est comprise entre 5 et 800 ppm, de préférence entre 30 et 400 ppm, de manière très préférée entre 50 et 200 ppm, bornes incluses, par rapport au volume total d'effluent de production.
10. Procédé selon l'une des revendications 4 à 9 dans lequel la proportion relative entre la gomme guar modifiée cationique et ledit ou lesdits désémulsifiants secondaires est comprise entre 20 et 100 % massique, de préférence entre 30 et 70 % massique.
11. Procédé de récupération assistée de pétrole brut contenu dans un réservoir géologique dans lequel :
- on injecte dans ledit réservoir un fluide de balayage comprenant au moins un tensio- actif éventuellement au moins un polymère, et éventuellement au moins un composé alcalin, de manière à déplacer le pétrole brut vers au moins un puits producteur ;
- on collecte un effluent comprenant la majeure partie du pétrole brut par ledit puits producteur ;
- on récupère en surface du puits producteur un effluent de production comprenant une phase aqueuse continue comprenant lesdits tensio-actifs, ledit éventuel polymère, et lesdits éventuels alcalins et une phase organique constituée de gouttelettes de pétrole brut dispersées dans ladite phase aqueuse sous forme d'une émulsion huile dans eau comprenant au moins 20% d'huile;
- on traite ledit effluent de production au moyen du procédé de traitement selon l'une des revendications 1 à 10.
12. Procédé de récupération assistée de pétrole brut selon la revendication 11 dans lequel la concentration totale en tensio-actif(s) dans la phase aqueuse dudit fluide de balayage est comprise entre 0,2 et 2 g/l, de préférence entre 0,4 et 0,8 g/L, de manière très préférée entre 0,5 et 0,625 g/l.
PCT/EP2021/080776 2020-11-16 2021-11-05 Procédé de traitement d'un effluent de production issu d'un procédé de récupération assistée du pétrole au moyen d'une formulation désémulsifiante à base de gomme guar modifiée cationique WO2022101102A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2011726A FR3116283B1 (fr) 2020-11-16 2020-11-16 Procédé de traitement d’un effluent de production issu d’un procédé de récupération assistée du pétrole au moyen d’une formulation désémulsifiante à base de gomme guar modifiée cationique
FRFR2011726 2020-11-16

Publications (1)

Publication Number Publication Date
WO2022101102A1 true WO2022101102A1 (fr) 2022-05-19

Family

ID=75278089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/080776 WO2022101102A1 (fr) 2020-11-16 2021-11-05 Procédé de traitement d'un effluent de production issu d'un procédé de récupération assistée du pétrole au moyen d'une formulation désémulsifiante à base de gomme guar modifiée cationique

Country Status (3)

Country Link
AR (1) AR125112A1 (fr)
FR (1) FR3116283B1 (fr)
WO (1) WO2022101102A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117186381A (zh) * 2023-11-06 2023-12-08 东营市百扬石油科技有限责任公司 一种用于聚合物驱采出液的破乳剂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088600A (en) 1976-11-30 1978-05-09 Chemed Corporation Demulsification using cationic starches of the quaternary ammonium type
US5169562A (en) 1990-03-27 1992-12-08 W. R. Grace & Co.-Conn. Emulsion breaking using cationic quaternary ammonium starch/gums
FR3014938A1 (fr) * 2013-12-17 2015-06-19 IFP Energies Nouvelles Traitement des eaux de production en recuperation assistee par introduction de cations tetravalents

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088600A (en) 1976-11-30 1978-05-09 Chemed Corporation Demulsification using cationic starches of the quaternary ammonium type
US5169562A (en) 1990-03-27 1992-12-08 W. R. Grace & Co.-Conn. Emulsion breaking using cationic quaternary ammonium starch/gums
FR3014938A1 (fr) * 2013-12-17 2015-06-19 IFP Energies Nouvelles Traitement des eaux de production en recuperation assistee par introduction de cations tetravalents

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAN D. K.: "Recent Development of Enhanced oil Recovery in China", J. PETROL. SCI. ENG., vol. 22, no. 1-3, 1999, pages 181 - 188, XP002799238, DOI: 10.1016/S0920-4105(98)00067-9
HASAN ABDULRAHEIM M.A. ET AL: "Applications of guar gum and its derivatives in petroleum industry: A review", EGYPTIAN JOURNAL OF PETROLEUM, vol. 27, no. 4, 1 December 2018 (2018-12-01), pages 1043 - 1050, XP055823010, ISSN: 1110-0621, DOI: 10.1016/j.ejpe.2018.03.005 *
ZHANG Y.Q: "Treatment of produced water from polymer flooding in oil production by the combined method of hydrolysis acidification dynamic membrane bioreactor-coagulation process", J. PETROL. SCI. ENG., vol. 74, no. 1-2, 2010, pages 14 - 19, XP027415739

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117186381A (zh) * 2023-11-06 2023-12-08 东营市百扬石油科技有限责任公司 一种用于聚合物驱采出液的破乳剂的制备方法
CN117186381B (zh) * 2023-11-06 2024-01-23 东营市百扬石油科技有限责任公司 一种用于聚合物驱采出液的破乳剂的制备方法

Also Published As

Publication number Publication date
FR3116283B1 (fr) 2023-11-10
FR3116283A1 (fr) 2022-05-20
AR125112A1 (es) 2023-06-14

Similar Documents

Publication Publication Date Title
US20040224854A1 (en) Recovery composition and method
WO2007011475A1 (fr) Micro- emulsion en phase intermediaire et procede de fabrication et d'utilisation de celle-ci
WO2011132052A1 (fr) Procédé pour éliminer des dépôts d'un puits de pétrole ou de gaz et/ou de structures de surface et/ou d'un équipement relié à ces structures et/ou de formations contenant des hydrocarbures
Chang et al. Experimental investigation on separation behavior of heavy-oil emulsion for polymer flooding on Alaska North Slope
WO2022101102A1 (fr) Procédé de traitement d'un effluent de production issu d'un procédé de récupération assistée du pétrole au moyen d'une formulation désémulsifiante à base de gomme guar modifiée cationique
CA2802156A1 (fr) Procede optimise de recuperation assistee chimique
Argillier et al. Methodological approach for analyzing the impact of chemical EOR on surface processes
EP3083876B1 (fr) Traitement des eaux de production en recuperation assistee par introduction de cations tetravalents
FR2574470A1 (fr) Procede de recuperation assistee de petrole dans un intervalle de fortes et faibles salinites, utilisant des surfactants propoxyles
FR3090618A1 (fr) Procédé de traitement d’eau de production issue de la récupération assistée de pétrole par hydrocyclone en présence d’additifs de type sels de tetrakis(hydroxymethyl)phosphonium
WO2018007305A1 (fr) Stabilisation de mousses par des particules d'argile
EP2699338A1 (fr) Compositions d'alkylarylsulfonates et leur utilisation pour la recuperation assistee d'hydrocarbures
FR3060407B1 (fr) Procede de traitement d'un effluent petrolier issu d'une recuperation assistee utilisant un tensioactif
WO2016110655A1 (fr) Additif pour injectivité
FR2689138A1 (fr) Procédé de lavage de particules solides comportant une solution de sophorosides.
FR2984397A1 (fr) Procede de recuperation assistee chimique comportant un traitement des eaux optimise
US11034892B2 (en) Composition and method for extracting, recovering, or removing hydrocarbon materials
CA2884924C (fr) Adhesifs a base d'hydrocarbure retires d'un substrat solide
AU2009356244B2 (en) Low interfacial tension surfactants for petroleum applications
RU2139420C1 (ru) Состав для добычи нефти
CN116144390A (zh) 相间转移型油泥处理剂及其应用
FR2537883A1 (fr) Procede de transport, de dessalage et deshydratation d'une huile lourde de petrole
CA3082215A1 (fr) Procede de traitement par flottation d'une solution aqueuse issue d'une production petroliere
FR2521583A1 (fr) Fluides de forage et procede pour leur utilisation
FR2579218A1 (fr) Procede de dessalage et de desasphaltage simultanes d'huiles lourdes d'hydrocarbures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21806708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE