WO2022100587A1 - 降噪元件、降噪组件和抽油烟机 - Google Patents

降噪元件、降噪组件和抽油烟机 Download PDF

Info

Publication number
WO2022100587A1
WO2022100587A1 PCT/CN2021/129647 CN2021129647W WO2022100587A1 WO 2022100587 A1 WO2022100587 A1 WO 2022100587A1 CN 2021129647 W CN2021129647 W CN 2021129647W WO 2022100587 A1 WO2022100587 A1 WO 2022100587A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise reduction
helical
ventilation
inner cylinder
cavity
Prior art date
Application number
PCT/CN2021/129647
Other languages
English (en)
French (fr)
Inventor
程杰锋
乔扬
马新强
张肃
龚纯
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2022100587A1 publication Critical patent/WO2022100587A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing

Definitions

  • the present application relates to the field of household appliances, in particular to a noise reduction element, a noise reduction assembly and a range hood.
  • the existing noise reduction technology mainly uses sound absorption treatment, sound insulation treatment, etc.
  • Sound absorption treatment includes the use of sound absorption materials or sound absorption structures to absorb sound, thereby reducing noise intensity;
  • the sound wave is reflected on the sound insulation member to achieve the purpose of blocking the transmission of sound wave energy.
  • the existing absorption treatment and sound insulation treatment cannot directly cut off the noise on the sound propagation path, resulting in poor noise reduction effect.
  • the present application provides a noise reduction element, a noise reduction assembly and a range hood, so as to solve the problem that the existing absorption treatment and sound insulation treatment cannot directly cut off the noise on the sound propagation path.
  • the noise reduction element comprises: a cylindrical main body, a muffler cavity and a ventilation cavity capable of ventilation are formed; a spiral structure is arranged in the muffler cavity, and the ventilation direction of the ventilation cavity is the same as the The axes of the helical structure are in the same direction.
  • the helical structure includes opposite ends spaced apart in the axial direction, and a middle portion between the two ends; in the direction from the end portion to the middle portion, the pitch of the helical structure tends to increase.
  • the cylindrical body comprises an inner cylinder and an outer cylinder sleeved on the inner cylinder, the inner cylinder and the outer cylinder form a muffler cavity, the channel of the inner cylinder forms a ventilation cavity, and the spiral structure is arranged between the inner cylinder and the outer cylinder; or A ventilation cavity is formed between the inner cylinder and the outer cylinder, the channel of the inner cylinder constitutes a muffler cavity, and the spiral structure is arranged in the channel of the inner cylinder.
  • the inner cylinder and the outer cylinder are coaxially arranged, the helical structure includes at least one helical sheet, and the helical sheet is helically arranged around the axis of the inner cylinder.
  • the helical sheet includes a plurality of arc-shaped sheets, the plurality of arc-shaped sheets are adjacently arranged end to end to form a helical sheet, and the plurality of arc-shaped sheets are arranged at intervals.
  • the present application proposes a noise reduction assembly, the noise reduction assembly includes a plurality of noise reduction elements, the noise reduction elements are the aforementioned noise reduction elements, and the ventilation directions of the plurality of noise reduction elements are parallel to each other.
  • the ventilation cavities of at least some of the noise reduction elements in the plurality of noise reduction elements have different cross-section areas perpendicular to the ventilation direction.
  • the helical structures of at least some of the noise reduction elements in the plurality of noise reduction elements are different.
  • At least one of the helical pitch, helical radius and helical height of the helical structure of at least part of the noise reduction element is different.
  • the present application proposes a range hood, which includes the aforementioned noise reduction component.
  • the range hood includes a conductive upper frame and a lower frame, the upper frame is provided with a fan, and the lower frame is provided with a smoke outlet; the noise reduction component is arranged between the upper frame and the lower frame.
  • the noise reduction element comprises a cylindrical body and a spiral structure, the cylindrical body is formed with a muffler cavity and a ventilation cavity capable of ventilation; the spiral structure is arranged in the muffler cavity, and the ventilation cavity is The ventilation direction is the same as the axis of the spiral structure.
  • FIG. 1 is a perspective view of a first embodiment of a noise reduction element of the present application
  • Fig. 2 is a partial schematic diagram of the noise reduction element shown in Fig. 1;
  • FIG. 3 is a perspective view of a second embodiment of the noise reduction element of the present application.
  • Fig. 4 is a partial schematic diagram of the noise reduction element shown in Fig. 3;
  • FIG. 5 is a perspective view of the first embodiment of the noise reduction assembly of the present application.
  • Figure 6 is a cross-sectional view of the noise reduction assembly shown in Figure 5;
  • FIG. 7 is a perspective view of a second embodiment of the noise reduction assembly of the present application.
  • Figure 8 is a cross-sectional view of the noise reduction assembly shown in Figure 7;
  • FIG. 9 is a perspective view of a third embodiment of the noise reduction assembly of the present application.
  • Figure 10 is a cross-sectional view of the noise reduction assembly shown in Figure 9;
  • FIG. 11 is a schematic cross-sectional view of the first embodiment of the range hood of the present application.
  • Fig. 12 is a partial schematic view of the range hood shown in Fig. 11;
  • FIG. 14 is a partial schematic view of the range hood shown in FIG. 13 .
  • a noise reduction element in this embodiment, includes a cylindrical body and a spiral structure.
  • the cylindrical body is formed with a muffler cavity and a ventilation cavity that can be ventilated; the spiral structure is arranged in the muffler cavity, and the ventilation direction of the ventilation cavity is In the same direction as the axis of the helical structure.
  • noise reduction element The noise reduction element, noise reduction assembly and range hood provided by the present invention will be described in detail below with reference to the embodiments.
  • FIG. 1 is a perspective view of the noise reduction element according to the first embodiment of the present application
  • FIG. 2 is a partial schematic view of the noise reduction element shown in FIG. 1 .
  • the first embodiment of the noise reduction element 100a includes a cylindrical body 1, and the cylindrical body 1 is formed with a ventilation cavity 12 and a muffler cavity 11, and the ventilation cavity 12 is used for the unobstructed or low resistance passage of wind to ensure the ventilation performance of the noise reduction element 100a. ; can also be used for sound through.
  • the anechoic cavity 11 is used for sound to pass through.
  • the noise reduction element 100 a further includes a helical structure 2 , and the helical structure 2 is arranged in the muffler cavity 11 for sound to pass through the helical structure 2 .
  • the noise reduction element 100a Since the ventilation direction of the ventilation cavity 12 is arranged in the same direction as the axis of the helical structure 2, that is, the noise reduction element 100a is directly arranged on the transmission path of the airflow and sound, the ventilation cavity 12 and the helical structure 2 in the muffler cavity 11 act together, so that the The noise reduction element 100a can not only reduce noise, but also ventilate.
  • the spiral structure 2 includes two end portions and a middle portion, the two end portions are spaced apart and oppositely arranged along the axial direction of the spiral structure 2 , and the middle portion is arranged between the two end portions.
  • the helical structure 2 is formed with several spiral layers, and a helical pitch is formed between adjacent spiral layers.
  • the pitches are equal or may not be equal.
  • the pitches in the helical structure 2 are all equal, and the wind passes through the equal pitches, so that the noise reduction element 100a is used to reduce noise in a specific sound wave frequency band.
  • the spiral structure 2 In order to perform noise reduction processing on the sound wave frequency band within a specific range in the sound, the spiral structure 2 has an increasing trend from one end to the middle or the other end. It can perform noise reduction processing on the sound wave frequency band within a specific range in the sound.
  • the above-mentioned increasing trend of the pitch may be that the pitch increases at equal intervals, or the pitch increases at unequal intervals, as long as the increase in the pitch can be satisfied, which is not limited herein.
  • the cylindrical body 1 includes an inner cylinder 13 and an outer cylinder 14 , and the outer cylinder 14 is sleeved outside the inner cylinder 13 .
  • the muffler cavity 11 is provided between the inner cylinder 13 and the outer cylinder 14
  • the helical structure 2 is provided in the muffler cavity 11 between the inner cylinder 13 and the outer cylinder 14
  • the ventilation cavity 12 is provided in the inner cylinder 13 .
  • Inside the passage ie the ventilation cavity 12 and the muffler cavity 11 are separated by the cylinder wall of the inner cylinder 13 .
  • the transverse cross-sectional area of the cylindrical body 1 may be circular or elliptical.
  • the inner cylinder 13 and the outer cylinder 14 are arranged coaxially, as shown in FIG. It is parallel to the sound wave path in the helical structure 2 and a strong coupling effect occurs at one end of the noise reduction element 100a to hinder the sound wave propagation, resulting in better noise reduction results.
  • the helical structure 2 includes a helical sheet 21, and the helical sheet 21 can be an integrally formed structure, wherein the number of the helical sheet 21 is one or more. Whether there are one or more helical sheets 21, the helical sheets 21 need to be helically arranged around the axis of the inner cylinder 13, that is, the helical sheets 21 are spirally wound from one end of the helical structure 2 to the middle, and from the middle to the other end. The sound flows spirally from the pitch formed by the above-mentioned helical sheet 21, so that after the sound comes out of the helical structure 2, it has a strong coupling effect with the sound propagating in the ventilation cavity 12, thereby hindering the propagation of airflow sound waves.
  • the two helical pieces 21 are respectively located in the muffler cavity 11 between the inner cylinder 13 and the outer cylinder 14 , and are spirally arranged around the axis of the inner cylinder 13 in a counterclockwise direction. Under the condition that the height of the helix remains unchanged, by arranging two helical pieces 21, the total number of convoluted layers in the helical structure 2 is increased, thereby increasing the length of the sound flow.
  • the length of the sound flow can be adjusted by changing the number of the spiral pieces 21, so that the noise reduction element 100a can perform noise reduction processing on the sound wave frequency band within a specific range in the sound.
  • the helical sheet 21 may include a plurality of arc-shaped sheets, which is not limited to an integrally formed arrangement.
  • the above-mentioned multiple arc-shaped sheets form the helical sheet 21, that is, the plurality of arc-shaped sheets are adjacently arranged end to end and surround the inner cylinder 13.
  • the axis is helically wound and forms a plurality of spiral layers, and a helical pitch is formed between adjacent spiral layers.
  • the above-mentioned plurality of arc-shaped sheets can form two or more helical sheets 21 , which are spirally wound around the axis of the inner cylinder 13 through the plurality of arc-shaped sheets. Therefore, the length of the sound flow can be adjusted by changing the number of the spiral pieces 21 through a plurality of arc-shaped pieces, so that the noise reduction element 100a can perform noise reduction processing on the sound wave frequency band within a specific range in the sound.
  • the helical sheet 21 is disposed on the inner wall of the outer cylinder 14 or the outer wall of the inner cylinder 13 .
  • the helical sheet 21 is a plurality of arc-shaped sheets
  • the plurality of arc-shaped sheets can all be arranged on the inner wall of the outer cylinder 14 , or all of them can be arranged on the outer wall of the inner cylinder 13 , or part of the inner wall of the outer cylinder 14 and part of the inner cylinder 13
  • the outer wall is not limited here.
  • FIG. 3 is a perspective view of the second embodiment of the noise reduction element of the present application
  • FIG. 4 is a partial schematic view of the noise reduction element shown in FIG. 3 .
  • the second embodiment of the noise reduction element 100b includes a cylindrical body 1 and a helical structure 2.
  • the cylindrical body 1 is provided with a muffler cavity 11 and a ventilation cavity 12.
  • the cylindrical body 1 includes an inner cylinder 13 and an outer cylinder 14, wherein the helical structure 2 is provided. in the muffler chamber 11 .
  • the second embodiment differs from the first embodiment in that the arrangement positions of the spiral structure 2 , the ventilation cavity 12 and the muffler cavity 11 are different.
  • the ventilation cavity 12 is arranged between the inner cylinder 13 and the outer cylinder 14
  • the muffler cavity 11 is arranged in the channel of the inner cylinder 13
  • the spiral structure 2 is arranged in the channel of the inner cylinder 13 . That is, the principle of sound noise reduction in the second embodiment is the same as that in the first embodiment, so that the noise reduction element 100b can not only reduce noise but also ventilate.
  • the connecting piece 15 is connected between the outer cylinder 14 and the inner cylinder 13. , so that the outer cylinder 14 and the inner cylinder 13 are connected by the connecting piece 15 .
  • the above-mentioned connecting pieces 15 may be one or more, and the connecting pieces 15 are vertically arranged between the inner wall of the inner cylinder 13 and the inner wall of the outer cylinder 14 .
  • the connecting piece 15 can be a connecting piece, and of course can also be other structures, which are not limited here.
  • the noise reduction principle of the above-mentioned noise reduction elements 100a, 100b is: when the frequency of the sound wave propagating in the air is close to the resonant frequency of the noise reduction elements 100a, 100b, the sound wave propagating in the helical structure 2 will have a strong impact with the sound wave propagating in the ventilation cavity 12. The coupling effect thus hinders the propagation of sound waves, resulting in the generation of the forbidden band of acoustic propagation, thereby playing the role of sound insulation and noise reduction.
  • the above-mentioned resonant frequency is the frequency that eliminates the sound wave frequency band.
  • the resonant frequency can be a specific frequency in the sound wave, or a range of frequencies in the sound wave in the sound. Therefore, the above-mentioned resonant frequency is determined according to the actual situation and is not limited here.
  • the noise reduction element in this embodiment includes a cylindrical body and a helical structure.
  • the cylindrical body is formed with a ventilating muffler cavity and a ventilation cavity; the helical structure is arranged in the muffler cavity, and the ventilation direction of the ventilation cavity is in the same direction as the axis of the helical structure.
  • FIG. 5 is a perspective view of the first embodiment of the noise reduction assembly of the present application
  • FIG. 6 is a cross-sectional view of the noise reduction assembly shown in FIG. 5
  • FIGS. 7 and 8 FIG. 7 is the application A perspective view of the second embodiment of the noise reduction assembly
  • FIG. 8 is a cross-sectional view of the noise reduction assembly shown in FIG. 7 .
  • the first embodiment of the noise reduction assembly 200a includes a plurality of noise reduction elements 100a, and the ventilation directions of the plurality of noise reduction elements 100a are parallel to each other. It should be noted that, the noise reduction element 100a in this embodiment is the noise reduction element 100a described in the above-mentioned embodiments, which will not be repeated here.
  • the above-mentioned one noise reduction element 100a is used for noise reduction in a specific sound wave frequency band.
  • the structure of the noise reduction element 100a is different, and is used for noise reduction of sound wave frequency bands in different ranges of sound.
  • the noise reduction assembly 200a is used for noise reduction in a specific sound wave frequency band.
  • the noise reduction assembly 200a is used for noise reduction of sound wave bands in different ranges of sound.
  • some of the noise reduction elements 100a in the noise reduction assembly 200a have the same structure, and the other part of the noise reduction elements 100a have different structures.
  • the noise reduction assembly 200a can be used to reduce sound in a specific sound wave band and sound wave bands in different ranges of sound. noise processing.
  • the noise reduction assembly 200a includes a plurality of noise reduction elements 100a
  • the plurality of noise reduction elements 100a are distributed in an array, so that the noise reduction assembly 200a forms different shapes, thereby enabling the noise reduction assembly 200a to match the shapes of different scenes and different structures to cut off the noise directly from the sound wave propagation path.
  • this embodiment adjusts the noise reduction component 200a by changing the structure of the multiple noise reduction components 100a, and then adjusts the noise reduction component 200a.
  • the noise component 200a is used to perform noise reduction processing on sonic belts in different ranges in sound.
  • the structure of the noise reduction element 100a can be changed by the spiral structure 2 . Since the helical sheet 21 in the helical structure 2 is spirally arranged, the pitch, the helical radius and the helical height are formed, that is, by changing at least one of the pitch, the helical radius and the helical height, the noise reduction frequency band can be adjusted.
  • the above-mentioned spiral height is the height formed between the two ends of the spiral piece 21 .
  • the larger the helix pitch the smaller the total number of layers of the helix 21 on the helix height, and the noise reduction element 100a is used to eliminate high-frequency sound waves;
  • the noise reduction element 100a is used to perform noise reduction processing on low-frequency sound waves.
  • the pitch in FIG. 6 is larger than that in FIG. 8
  • the total number of convoluted layers of the flight 21 in FIG. 6 is smaller than that of the flight 21 in FIG. 8 .
  • the noise reduction element 100a is used to perform noise reduction processing on low-frequency sound waves.
  • the helical heights of the middle noise reduction elements 100a on the noise reduction assembly 200a are smaller than the helix heights of the noise reduction elements 100a at both ends, that is, the middle noise reduction elements 100a eliminate sound waves with frequencies higher than those at the two ends.
  • a noise reduction element 100a eliminates acoustic frequencies.
  • the noise reduction element 100a is used to reduce noise in the lower sound wave frequency band.
  • the helical structure 2 in the noise reduction element 100a can be changed by a combination of the pitch, or the radius of the helix, or the radius of the helix and the helix, or the pitch and the height of the helix, etc., to meet the needs of sound wave frequency bands in different ranges, such as eliminating sound
  • the middle and upper sound wave frequency band range, or the lower sound wave frequency band range of sound is not limited here.
  • the structure of the noise reduction assembly 200a can be adjusted according to the ventilation volume.
  • the ventilation volume is controlled by adjusting the ventilation cavity 12 . If at least some of the multiple noise reduction elements 100a have different cross-sectional areas of the ventilation cavity 12 perpendicular to the ventilation direction, that is, the ventilation performance can be adjusted by changing the cross-sectional area of the ventilation cavity 12 .
  • the ventilation capability is stronger; when the cross-sectional neps of the ventilation cavity 12 is smaller, the ventilation capability is weaker.
  • different noise reduction components 200a are set in areas with different ventilation speed. For example, in an area with a fast ventilation flow rate, a ventilation cavity 12 with a large cross-sectional area and a noise reduction component 200a with a weak noise reduction capability are provided to meet the ventilation volume and reduce the influence on the ventilation volume. In an area with a slow ventilation flow rate, a ventilation cavity 12 with a small cross-sectional area and a noise reduction component 200a with strong noise reduction capability are provided to achieve high-efficiency noise reduction.
  • the above ventilation speed is determined according to the actual demand and is not limited here.
  • the second embodiment of the noise reduction assembly 200b includes a plurality of noise reduction elements 100a, and the ventilation directions of the plurality of noise reduction elements 100a are parallel to each other. It should be noted that, the noise reduction element 100a in this embodiment is the noise reduction element 100a described in the above-mentioned embodiments, which will not be repeated here.
  • the noise reduction assembly 200b in the second embodiment is different from the noise reduction assembly 200a in the first embodiment described above in that, as shown in FIGS. 6 and 8, the pitch in the second embodiment is smaller than that in the first embodiment.
  • FIG. 9 is a perspective view of the noise reduction assembly according to the third embodiment of the present application
  • FIG. 10 is a cross-sectional view of the noise reduction assembly shown in FIG. 9 .
  • the third embodiment of the noise reduction assembly 200c includes a plurality of noise reduction elements 100b, and the ventilation directions of the plurality of noise reduction elements 100b are parallel to each other. It should be noted that, the noise reduction element 100b in this embodiment is the noise reduction element 100b described in the above-mentioned embodiments, which will not be repeated here.
  • the noise reduction assembly 200c in the third embodiment is different from the noise reduction assembly 200a in the first embodiment and the noise reduction assembly 200b in the second embodiment in that the structure of the noise reduction element 100b is different.
  • the structure of the noise reduction element 100b can be changed by the ventilation cavity 12 and/or the helical structure 2, and then the noise reduction assembly 200c can be adjusted to reduce noise in sound frequency bands in different ranges.
  • the change of the structure of the noise reduction element 100b in the above-mentioned third embodiment is the same as the change of the structure of the noise reduction element 100a in the above-mentioned first embodiment and the second embodiment, and will not be repeated here.
  • the noise reduction assembly 200c has some noise reduction elements 100a in the first embodiment and some noise reduction elements 100b in the second embodiment, but not It is limited to all the noise reduction elements 100a in the first embodiment or all of the noise reduction elements 100b in the third embodiment.
  • FIG. 11 is a schematic cross-sectional view of the range hood according to the first embodiment of the present application
  • FIG. 12 is a partial schematic view of the range hood shown in FIG. 11 .
  • the noise of the cooker hood 300a mainly has three transmission paths.
  • the first path is the noise radiated through the sheet metal, and the transmitted noise is very small;
  • the second path is the eddy current generated inside the air duct. Aerodynamic noise;
  • the third path is the noise transmitted by the fan 3003 through the air duct and grille structure.
  • the noise of the third path is the loudest, and efficient ventilation needs to be ensured to ensure the effect of oil fume suction.
  • the first embodiment of the range hood 300a includes a noise reduction component 200a and a noise reduction component 200b (not shown in the figure), through the noise reduction components 200a, 200b, so that the range hood 300a can not only be ventilated, thereby effectively sucking oil fume; It can also achieve a good noise reduction effect.
  • the noise reduction components 200a and 200b in this embodiment are the noise reduction components 200a and 200b described in the above-mentioned first embodiment and the second embodiment, which will not be repeated here.
  • the range hood 300a includes an upper frame 3001 and a lower frame 3002, the upper frame 3001 and the lower frame 3002 are connected to each other, and the lower frame 3002 is provided with a smoke outlet 30021 for the passage of oil fume.
  • a fan 3003 is arranged in the upper frame 3001, and the fan 3003 is used for extracting oil fume from the smoke outlet 30021.
  • the noise reduction components 200a and 200b are arranged on the movement path of oil fume to directly cut off noise transmission and achieve effective ventilation and heat dissipation.
  • the noise reduction components 200a and 200b may be arranged at the position of the air inlet and/or outlet of the fan 3003, or the noise reduction components 200a and 200b may be arranged between the upper frame 3001 and the lower frame 3002. In the actual process, due to the limited position between the fan 3003 and the upper frame 3001 , the noise reduction components 200 a and 200 b are preferably arranged between the upper frame 3001 and the lower frame 3002 .
  • the range hood 300a includes an upper frame 3001 and a lower frame 3002, the upper frame 3001 and the lower frame 3002 are connected to each other, and the lower frame 3002 is provided with a smoke outlet 30021 for the passage of oil fume.
  • a fan 3003 is arranged in the upper frame 3001, and the fan 3003 is used for extracting oil fume from the smoke outlet 30021.
  • the noise reduction components 200a and 200b in this embodiment are disposed on the movement path of the range hood to directly cut off noise transmission and achieve effective ventilation and heat dissipation.
  • the noise reduction components 200a and 200b may be disposed at the position of the air inlet and/or the air outlet of the fan 3003 , or between the upper rack 3001 and the lower rack 3002 .
  • the noise reduction component 200 a is preferably arranged between the upper rack 3001 and the lower rack 3002 .
  • FIG. 13 is a cross-sectional view of the range hood according to the second embodiment of the present application
  • FIG. 14 is a partial schematic view of the range hood shown in FIG. 13 .
  • the range hood 300b includes a noise reduction component 200c, and through the noise reduction component 200c, the range hood 300b can not only be ventilated to effectively absorb oil fume, but also achieve a good noise reduction effect.
  • the noise reduction component 200c in this embodiment is the 200c described in the above-mentioned third embodiment, which will not be repeated here.
  • the range hood 300b of the second embodiment is different from the range hood 300b of the first embodiment described above in that the noise reduction component 200c is different, and the installation position of the noise reduction component 200c is different from that of the range hood 300a in the first embodiment.
  • the installation positions of the noise reduction components 200a and 200b are the same, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Duct Arrangements (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

本申请公开了一种降噪元件、降噪组件和抽油烟机,降噪元件包括筒状主体和螺旋结构,筒状主体形成有能够通风的消声腔和通风腔;螺旋结构设置于消声腔内,通风腔的通风方向与螺旋结构的轴线同向。本申请降噪元件不仅能够降噪,而且能够通风。

Description

降噪元件、降噪组件和抽油烟机
本申请要求于2020年11月13日提交的申请号为2020112708098,发明名称为“降噪元件、降噪组件和抽油烟机”的中国专利申请的优先权,其通过引用方式全部并入本申请。
【技术领域】
本申请涉及家用电器领域,特别是涉及一种降噪元件、降噪组件和抽油烟机。
【背景技术】
现有噪音消声技术主要是通过吸声处理、隔声处理等,吸声处理包括使用吸声材料或者吸声结构来吸声音,从而降低噪声强度;而隔声处理是利用材料的刚性特征,使声波在隔声构件上产生反射,达到阻隔声波能量传播的目的。然而现有的吸收处理、隔声处理无法直接在声音传播路径上直接切断噪声,导致降噪效果不好。
【发明内容】
本申请提供一种降噪元件、降噪组件和抽油烟机,以解决现有的吸收处理、隔声处理无法直接在声音传播路径上直接切断噪声。
为解决上述技术问题,本申请提出一种降噪元件,降噪元件包括:筒状主体,形成有能够通风的消声腔和通风腔;螺旋结构,设置于消声腔内,通风腔的通风方向与螺旋结构的轴线同向。
其中,螺旋结构包括在轴线方向上间隔且相对的两端部,以及两端部之间的中部;在端部到中部的方向上,螺旋结构的螺距呈增大趋势。
其中,筒状主体包括内筒和套设于内筒的外筒,内筒和外筒之间构成消声腔,内筒的通道构成通风腔,螺旋结构设置于内筒和外筒之间;或者内筒和外筒之间构成通风腔,内筒的通道构成消声腔,螺旋结构设置于内筒的通道中。
其中,内筒和外筒同轴设置,螺旋结构包括至少一个螺旋片,螺旋片绕着内筒的轴线螺旋设置。
其中,螺旋片包括多个弧形片,多个弧形片首尾相邻排布构成螺旋片,多个弧形片间隔设置。
为解决上述技术问题,本申请提出一种降噪组件,降噪组件包括多个降噪元件,降噪元件为上述所述的降噪元件,多个降噪元件的通风方向相互平行。
其中,多个降噪元件中至少部分降噪元件的通风腔垂直于通风方向的截面的面积不同。
其中,多个降噪元件中至少部分降噪元件的螺旋结构不同。
其中,至少部分降噪元件的螺旋结构中螺距、螺旋半径和螺旋高度中的至少一个不同。
为解决上述技术问题,本申请提出一种抽油烟机,抽油烟机包括上述所述的降噪组件。
其中,抽油烟机包括导通的上机架和下机架,上机架中设置有风机,下机架上设置有抽烟口;降噪组件设置于上机架和下机架之间。
本申请降噪元件、降噪组件和抽油烟机,降噪元件包括筒状主体和螺旋结构,筒状主体形成有能够通风的消声腔和通风腔;螺旋结构设置于消声腔内,通风腔的通风方向与螺旋结构的轴线同向。通过上述方式,使得降噪元件直接设置在气流和声音的传播路径上,通过通风腔和消声腔中的螺旋结构共同作用,使得降噪元件不仅能够降噪,而且能够通风。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本申请降噪元件第一实施例的立体图;
图2是图1所示降噪元件的局部示意图;
图3是本申请降噪元件第二实施例的立体图;
图4是图3所示降噪元件的局部示意图;
图5是本申请降噪组件第一实施例的立体图;
图6是图5所示降噪组件的剖面图;
图7是本申请降噪组件第二实施例的立体图;
图8是图7所示降噪组件的剖面图;
图9是本申请降噪组件第三实施例的立体图;
图10是图9所示降噪组件的剖面图;
图11是本申请抽油烟机第一实施例的剖面示意图;
图12是图11所示抽油烟机的局部示意图;
图13是本申请抽油烟机第二实施例的剖面图;
图14是图13所示抽油烟机的局部示意图。
附图标号:1、筒状主体;11、消声腔;12、通风腔;13、内筒;14、外筒;15、连接件;2、螺旋结构;21、螺旋片;100a,100b、降噪元件;200a,200b,200c、降噪组件;300a,300b、抽油烟机;3001、上机架;3002、下机架;30021、抽烟口;3003、风机。
【具体实施方式】
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本实施例中提供了一种降噪元件,降噪元件包括筒状主体和螺旋结构,筒状主体形成有能够通风的消声腔和通风腔;螺旋结构设置于消声腔内,通风腔的通风方向与螺旋结构的轴线同向。
下面结合实施例对本发明提供的降噪元件、降噪组件和抽油烟机进行详细描述。
请参阅图1和图2,图1是本申请降噪元件第一实施例的立体图;图2是图1所示降噪元件的局部示意图。
降噪元件100a第一实施例包括筒状主体1,筒状主体1形成有通风腔12和消声腔11,通风腔12用于风无阻碍的或低阻通过,保证降噪元件100a的通风性能;同时也能用于声音通过。消声腔11用于声音通过。为了对消声腔11中声音进行降噪,降噪元件100a还包括螺旋结构2,螺旋结构2设置于消声腔11内,用于声音经过螺旋结构2。由于螺旋结构2中的声波与通风腔12中传播的声波发生强烈的耦合作用从而阻碍声波传播,导致声学传播禁带的产生,从而起到隔声降噪的作用。
由于通风腔12的通风方向与螺旋结构2的轴线同向设置,即降噪元件100a直接设置在气流和声音的传播路径上,通过通风腔12和消声腔11中的螺旋结构2共同作用,使得降噪元件100a不仅能够降噪,而且能够通风。
具体地,螺旋结构2包括两个端部和中部,两个端部沿螺旋结构2轴向方向上间隔且相对设置,中部设置于两个端部之间。螺旋结构2形成有若干个盘旋层数,相邻盘旋层之间形成有螺距。螺旋结构2中螺距相等,也可以不相等。如螺旋结构2在一端部向另一端的方向上,螺旋结构2中螺距均相等,风经过等距的螺距中通过,以使得降噪元件100a用于对特定声波频带进行降噪。
为了对声音中特定范围内的声波频带进行降噪处理,螺旋结构2在一端部向中部或向另一端,螺距呈增大趋势,风依次经过螺距增大的螺旋结构2,以使得螺旋结构2能够对声音中特定范围内的声波频带进行降噪处理。上述螺距增大趋势可以是螺距等间隔增大、或螺距不等间隔增大,只要能够满足螺距增大即可,在此不作限定。
具体地,筒状主体1包括内筒13和外筒14,外筒14套设在内筒13外。如图1所示,消声腔11设置在内筒13和外筒14之间,螺旋结构2设置在内筒13和外筒14之间的消声腔11内,通风腔12设置在内筒13的通道内,即通风腔12和消声腔11通过内筒13的筒壁分隔开。通过将消声腔11环绕于通风腔12,不仅结构简单,而且也能够对声音进行降噪处理以及能够通风。上述筒状主体1横向截面面积可以为圆形或椭圆形等。
进一步地,本实施例中内筒13和外筒14同轴设置,图1所示,内筒13和外筒14的中心线与螺旋结构2的轴线重合设置,以使得通过通风腔12的声波与通过螺旋结构2中的声波路径平行且在降噪元件100a一端部发生强烈的耦合作用而阻碍声波传播,具有更好地降噪结果。
具体地,螺旋结构2包括螺旋片21,螺旋片21可以为一体成型结构,其中 螺旋片21数量为一个或者多个。上述螺旋片21无论为一个或者多个,均需要螺旋片21绕内筒13的轴线螺旋设置,即螺旋片21从螺旋结构2的一端部向中部,并从中部向另一端部螺旋缠绕设置。声音从上述螺旋片21形成的螺距中螺旋流动,以使得声音从螺旋结构2出来后,与通风腔12中传播的声音发生强烈的耦合作用从而阻碍气流声波传播。
如图2所示,螺旋片21为两个,两个螺旋片21分别位于内筒13和外筒14之间的消声腔11内,且均逆时针方向绕内筒13的轴线螺旋设置。在螺旋高度不变的情况下,通过设置两个螺旋片21,增加了螺旋结构2中总盘旋层数,进而增长了声音流动长度。
由此,可以通过改变螺旋片21数量来调整声音流动长度,以使得降噪元件100a能够对声音中特定范围内的声波频带进行降噪处理。其中,螺旋片21可以包括多个弧形片,不限定于一体成型设置,上述多个弧形片形成螺旋片21,即通过多个弧形片首尾相邻排布并绕着内筒13的轴线螺旋缠绕,并形成多个盘旋层数,相邻盘旋层之间形成螺距。
上述多个弧形片可以形成两个或多个螺旋片21,通过多个弧形片并绕着内筒13的轴线螺旋缠绕设置。因此,可以通过多个弧形片来改变螺旋片21数量来调整声音流动长度,以使得降噪元件100a能够对声音中特定范围内的声波频带进行降噪处理。
在实际过程中,当螺旋片21一体成型设置时,螺旋片21设置于外筒14内壁或内筒13外壁上。当螺旋片21为多个弧形片时,多个弧形片可以全部设置于外筒14内壁,或全部设置于内筒13外壁,或部分设置于外筒14内壁和部分设置于内筒13外壁上,在此不作限定。
请参阅图3和图4,图3是本申请降噪元件第二实施例的立体图;图4是图3所示降噪元件的局部示意图。
降噪元件100b第二实施例包括筒状主体1和螺旋结构2,筒状主体1内设置消声腔11和通风腔12,筒状主体1包括内筒13和外筒14,其中螺旋结构2设置于消声腔11内。
第二实施例与第一实施例不同之处在于,螺旋结构2、通风腔12和消声腔11设置位置不同。如图3所示,通风腔12设置于内筒13和外筒14之间,消声腔11设置于内筒13的通道内,其中螺旋结构2设置在内筒13的通道中。即第二实施例中声音降噪原理与第一实施例中声音降噪原理相同,从而使得降噪元 件100b既能够降噪,也能够通风。
由于上述降噪元件100b中螺旋结构2设置在内筒13内,同时需要保证内筒13和外筒14之间同轴设置,因此在外筒14和内筒13之间连接有至少一个连接件15,使得外筒14和内筒13之间通过连接件15连接。上述连接件15可以为一个或者多个,连接件15垂直设置于内筒13内壁和外筒14内壁之间。连接件15可以为连接片,当然也可以为其他结构,在此不作限定。
上述降噪元件100a,100b降噪原理为:当空气中传播的声波频率接近降噪元件100a,100b的共振频率时,螺旋结构2中传播的声波将与通风腔12中传播的声波发生强烈的耦合作用从而阻碍声波传播,导致声学传播禁带的产生,从而起到隔声降噪的作用。上述共振频率为消除声音声波频带的频率,该共振频率可以为声音声波中特定一个频率,或声音中声波中一范围频率,因此上述共振频率根据实际情况而定,在此不作限定。
本实施例降噪元件包括筒状主体和螺旋结构,筒状主体形成有能够通风的消声腔和通风腔;螺旋结构设置于消声腔内,通风腔的通风方向与螺旋结构的轴线同向。通过上述方式,使得降噪元件,直接设置在气流和声音的传播路径上,通过通风腔和消声腔中的螺旋结构共同作用,使得降噪元件不仅能够降噪,而且能够通风。
请参阅图5和图6,图5是本申请降噪组件第一实施例的立体图;图6是图5所示降噪组件的剖面图;请参阅图7和图8,图7是本申请降噪组件第二实施例的立体图;图8是图7所示降噪组件的剖面图。
降噪组件200a中第一实施例包括多个降噪元件100a,多个降噪元件100a的通风方向相互平行。需要说明的是,本实施例中降噪元件100a为上述实施例中所阐述的降噪元件100a,在此不作赘述。
上述一个降噪元件100a用于对声音一特定声波频带进行降噪。降噪元件100a的结构不同,用于对声音不同范围内的声波频带进行降噪。当降噪组件200a中的多个降噪元件100a的结构均相同时,降噪组件200a用于对声音一特定声波频带进行降噪。当降噪组件200a中的多个降噪元件100a的结构均不相同时,降噪组件200a用于对声音不同范围内的声波频带进行降噪。当然,降噪组件200a中部分降噪元件100a结构相同,另一部分降噪元件100a结构不相同,上述降噪组件200a能够用于对声音一特定声波频带和对声音不同范围内的声波频带进行降噪处理。
当降噪组件200a包括有多个降噪元件100a时,多个降噪元件100a呈阵列分布,使降噪组件200a形成不同的形状,进而使得降噪组件200a能够匹配不同场景和不同结构的形状处,以直接从声波传播路径上直接切断噪声。
在实际过程中,由于降噪组件200a应用环境和场景不同,声音中不同范围内的声波频带不同,因此本实施例通过改变多个降噪元件100a的结构来调节降噪组件200a,进而调节降噪组件200a以对声音中不同范围内的声波皮带进行降噪处理。
具体地,降噪元件100a的结构可以通过螺旋结构2来改变降噪元件100a的结构。由于螺旋结构2中螺旋片21螺旋设置时,形成有螺距、螺旋半径和螺旋高度,即通过改变螺距、螺旋半径和螺旋高度中至少一个,就能实现降噪频带的调节。上述螺旋高度为螺旋片21两端部之间形成的高度。
举例而言,螺旋结构2中螺旋半径和螺旋高度不变时,螺距越大,螺旋片21在螺旋高度上的总盘旋层数减小,则降噪元件100a用于消除高频带声波;螺距越小时,螺旋片21在螺旋高度上的总盘旋层数增多,则降噪元件100a用于对低频带声波进行降噪处理。如图6和8所示,图6中的螺距大于图8中的螺距,而图6中螺旋片21的总盘旋层数小于图8中螺旋片21的总盘旋层数。
举例而言,当螺旋半径和螺距不变时,螺旋高度增大时,降噪元件100a用于对低频带声波进行降噪处理。如图7所示,降噪组件200a上中间若干个降噪元件100a的螺旋高度小于两端若干个降噪元件100a的螺旋高度,即中间若干个降噪元件100a消除声波频率高于两端若干个降噪元件100a消除声波频率。
举例而言,当螺旋片21半径和螺旋高度均增大时,则降噪元件100a用于对较低的声波频带进行降噪。
由此可知,降噪元件100a中螺旋结构2可以通过螺距,或螺旋半径,或螺旋和螺旋半径,或螺距和螺旋高度等组合方式来改变,以满足不同范围内声波频带的需求,如消除声音中较高声波频带范围,或声音中较低声波频带范围,在此不作限定。
当降噪组件200a应用于不同环境和不同场景中时,可以依据通风量来对降噪组件200a结构进行调节。具体地,通过调节通风腔12来控制通风量。如将多个降噪元件100a中至少部分降噪元件100a的通风腔12垂直于通风方向的截面的面积不同,即通过通风腔12的截面面积变化可以调节通风性能。当通风腔12的截面面积越大时,则通风能力越强;当通风腔12的截面棉结越小时,则通 风能力较弱。
由于不同环境和不同场景中通风速度均不同,基于流场分析,在通风流速不同的区域设置不同的降噪组件200a。如在通风流速快的区域内,设置截面面积大的通风腔12和降噪能力弱的降噪组件200a,以满足通风量、减小对通风量影响。在通风流速慢的区域内,设置截面面积小的通风腔12以及降噪能力强的降噪组件200a,以实现高效降噪。上述通风速度根据实际需求而定,在此不作限定。
降噪组件200b中第二实施例包括多个降噪元件100a,多个降噪元件100a的通风方向相互平行。需要说明的是,本实施例中降噪元件100a为上述实施例中所阐述的降噪元件100a,在此不作赘述。
第二实施例中降噪组件200b与上述第一实施例中降噪组件200a不同之处在于,如图6和8所示,第二实施例中的螺距小于第一实施例中的螺距。
请参阅图9和图10,图9是本申请降噪组件第三实施例的立体图;图10是图9所示降噪组件的剖面图。
降噪组件200c第三实施例包括多个降噪元件100b,多个降噪元件100b的通风方向相互平行。需要说明的是,本实施例中降噪元件100b为上述实施例中所阐述的降噪元件100b,在此不作赘述。
第三实施例中降噪组件200c与上述第一实施例中降噪组件200a和第二实施例中降噪组件200b不同之处在于,降噪元件100b的结构不同。其中降噪元件100b的结构可以通过通风腔12和/或螺旋结构2来改变降噪元件100b的结构,进而调节降噪组件200c以对声音中不同范围内的声音频带进行降噪。
上述第三实施例中的降噪元件100b结构的改变与上述第一实施例和第二实施例中的降噪元件100a结构的改变原理相同,在此不作赘述。
在实际过程中,由于螺旋结构2设置于筒状主体1内,使得降噪组件200c中存在部分第一实施例中的降噪元件100a和部分第二实施例中的降噪元件100b,而不限于全部是第一实施例中的降噪元件100a或全部是第三实施例中的降噪元件100b。
请参阅图11和图12,图11是本申请抽油烟机第一实施例的剖面示意图;图12是图11所示抽油烟机的局部示意图。
由于抽油烟机300a工作时,抽油烟机300a的噪音主要有三条传递路径,第一条路径是噪音通过钣金辐射噪音,其传递的噪音很小;第二条路径是风道内 部产生的涡流气动噪音;第三条路径是风机3003的噪音通过风道和格栅结构向外传递的噪音,其中第三条路径的噪音声音最大,而且需要保证高效的通风,以保证吸油烟效果。
抽油烟机300a第一实施例包括降噪组件200a,降噪组件200b(图上未示意),通过降噪组件200a,200b,以使得抽油烟机300a不仅能够通风,进而有效地吸油烟;而且也能实现很好地降噪效果。需要说明的是,本实施例中降噪组件200a,200b为上述第一实施例和第二实施例中所阐述的降噪组件200a,200b,在此不作赘述。
具体地,抽油烟机300a包括上机架3001和下机架3002,上机架3001和下机架3002导通设置,下机架3002设置有抽烟口30021,用于油烟通过。上机架3001中设置有风机3003,风机3003用于从抽烟口30021抽油烟。为了直接从声音传播路径上对降噪组件200a,200b进行降噪处理,本实施例中降噪组件200a,200b设置于油烟运动路径上,以直接切断噪声传递,并能实现有效通风散热。具体地,可以设置于风机3003进风口和/或出风口位置,或降噪组件200a,200b设置在上机架3001和下机架3002之间。在实际过程中,由于风机3003和上机架3001之间位置限定,使得降噪组件200a,200b优选设置于上机架3001和下机架3002之间。
具体地,抽油烟机300a包括上机架3001和下机架3002,上机架3001和下机架3002导通设置,下机架3002设置有抽烟口30021,用于油烟通过。上机架3001中设置有风机3003,风机3003用于从抽烟口30021抽油烟。为了直接从声音传播路径上对抽油烟机300a进行降噪处理,本实施例中降噪组件200a,200b设置于油烟运动路径上,以直接切断噪声传递,并能实现有效通风散热。
具体地,降噪组件200a,200b可以设置于风机3003进风口和/或出风口位置,或设置在上机架3001和下机架3002之间。在实际过程中,由于风机3003和上机架3001之间位置限定安装空间,由于安装空间过小,使得降噪组件200a优选设置于上机架3001和下机架3002之间。
请参阅图13和图14,图13是本申请抽油烟机第二实施例的剖面图;图14是图13所示抽油烟机的局部示意图。
本实施例中抽油烟机300b中包括降噪组件200c,通过降噪组件200c,以使得抽油烟机300b不仅能够通风,进而有效地吸油烟;而且也能实现很好地降噪效果。需要说明的是,本实施例中降噪组件200c为上述第三实施例中所阐述的 200c,在此不作赘述。
第二实施例的抽油烟机300b与上述第一实施例的抽油烟机300b不同之处在于,降噪组件200c不同,而降噪组件200c的安装位置与上述抽油烟机300a第一实施例中降噪组件200a,200b的安装位置相同,在此不作赘述。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (11)

  1. 一种降噪元件,其特征在于,所述降噪元件包括:
    筒状主体,形成有能够通风的消声腔和通风腔;
    螺旋结构,设置于所述消声腔内,所述通风腔的通风方向与所述螺旋结构的轴线同向。
  2. 根据权利要求1所述的降噪元件,其特征在于,所述螺旋结构包括在所述轴线方向上间隔且相对的两端部,以及所述两端部之间的中部;在所述端部到所述中部的方向上,所述螺旋结构的螺距呈增大趋势。
  3. 根据权利要求1所述的降噪元件,其特征在于,所述筒状主体包括内筒和套设于所述内筒的外筒,所述内筒和所述外筒之间构成所述消声腔,所述内筒的通道构成所述通风腔,所述螺旋结构设置于所述内筒和所述外筒之间;或者
    所述内筒和所述外筒之间构成所述通风腔,所述内筒的通道构成所述消声腔,所述螺旋结构设置于所述内筒的通道中。
  4. 根据权利要求3所述的降噪元件,其特征在于,所述内筒和所述外筒同轴设置,所述螺旋结构包括至少一个螺旋片,所述螺旋片绕着所述内筒的轴线螺旋设置。
  5. 根据权利要求4所述的降噪元件,其特征在于,所述螺旋片包括多个弧形片,所述多个弧形片首尾相邻排布构成所述螺旋片,所述多个弧形片间隔设置。
  6. 一种降噪组件,其特征在于,所述降噪组件包括多个降噪元件,所述降噪元件为权利要求1-5中任一项所述的降噪元件,所述多个降噪元件的通风方向相互平行。
  7. 根据权利要求6所述的降噪组件,其特征在于,所述多个降噪元件中至少部分所述降噪元件的通风腔垂直于所述通风方向的截面的面积不同。
  8. 根据权利要求6所述的降噪组件,其特征在于,所述多个降噪元件中至少部分降噪元件的螺旋结构不同。
  9. 根据权利要求8所述的降噪组件,其特征在于,所述至少部分降噪元件的螺旋结构中螺距、螺旋半径和螺旋高度中的至少一个不同。
  10. 一种抽油烟机,其特征在于,所述抽油烟机包括权利要求6-9中任一项所述的降噪组件。
  11. 根据权利要求10所述的抽油烟机,其特征在于,所述抽油烟机包括导通的上机架和下机架,所述上机架中设置有风机,所述下机架上设置有抽烟口;所述降噪组件设置于所述上机架和所述下机架之间。
PCT/CN2021/129647 2020-11-13 2021-11-09 降噪元件、降噪组件和抽油烟机 WO2022100587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011270809.8 2020-11-13
CN202011270809.8A CN114484530A (zh) 2020-11-13 2020-11-13 降噪元件、降噪组件和抽油烟机

Publications (1)

Publication Number Publication Date
WO2022100587A1 true WO2022100587A1 (zh) 2022-05-19

Family

ID=81490350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129647 WO2022100587A1 (zh) 2020-11-13 2021-11-09 降噪元件、降噪组件和抽油烟机

Country Status (2)

Country Link
CN (1) CN114484530A (zh)
WO (1) WO2022100587A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101890335B1 (ko) * 2018-05-09 2018-08-21 주식회사 코어볼트 스파이럴 강관을 이용한 소음저감 구조를 갖는 머플러 및 그 제조방법
CN208237950U (zh) * 2018-05-31 2018-12-14 广东美的厨房电器制造有限公司 吸油烟机
CN208651287U (zh) * 2018-05-16 2019-03-26 珠海格力电器股份有限公司 一种混流风机及油烟机
CN209604328U (zh) * 2019-01-21 2019-11-08 北京声科源噪声控制设备有限公司 一种用于高噪声设备通风管道上配置的螺旋式消声装置
CN111561252A (zh) * 2020-04-01 2020-08-21 同济大学 一种宽频通风隔声窗单元结构及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072511B (zh) * 2010-12-15 2012-12-19 成都盛尔嘉科技有限公司 一种油烟分离器
US8997923B2 (en) * 2013-08-12 2015-04-07 Hexcel Corporation Sound wave guide for use in acoustic structures
CN204458553U (zh) * 2015-01-09 2015-07-08 国家电网公司 一种多功能气动回收型通风消声器
CN107331381A (zh) * 2017-05-12 2017-11-07 南京大学 一种宽带声学耦合器
CN109340191A (zh) * 2018-09-27 2019-02-15 佛山市顺德区美的洗涤电器制造有限公司 消音器和油烟机
CN110131764A (zh) * 2019-05-06 2019-08-16 华帝股份有限公司 一种吸油烟机的降噪结构及吸油烟机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101890335B1 (ko) * 2018-05-09 2018-08-21 주식회사 코어볼트 스파이럴 강관을 이용한 소음저감 구조를 갖는 머플러 및 그 제조방법
CN208651287U (zh) * 2018-05-16 2019-03-26 珠海格力电器股份有限公司 一种混流风机及油烟机
CN208237950U (zh) * 2018-05-31 2018-12-14 广东美的厨房电器制造有限公司 吸油烟机
CN209604328U (zh) * 2019-01-21 2019-11-08 北京声科源噪声控制设备有限公司 一种用于高噪声设备通风管道上配置的螺旋式消声装置
CN111561252A (zh) * 2020-04-01 2020-08-21 同济大学 一种宽频通风隔声窗单元结构及其应用

Also Published As

Publication number Publication date
CN114484530A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
US8485310B2 (en) Silencing equipment for electric devices
US7350620B2 (en) Compact silencer
US20040134712A1 (en) Acoustic attenuator
CN109864620B (zh) 一种散热效果好的食品加工机
CN210422775U (zh) 具有通风功能的噪声处理装置
WO2022021767A1 (zh) 一种导风箱及应用有该导风箱的内循环吸油烟机
EP3628202B1 (en) Vacuum cleaner and motor module thereof
CN211423009U (zh) 一种可调频降噪的离心通风机及其蜗壳
US1964845A (en) Ventilator
CN202187960U (zh) 阻抗声流型风机消声器
CN111164672B (zh) 隔音结构体
WO2022100587A1 (zh) 降噪元件、降噪组件和抽油烟机
CN111622990A (zh) 降噪装置及燃气热水器
JP2017083652A (ja) 消音構造
CN209875570U (zh) 降噪装置及燃气热水器
CN111288655A (zh) 一种降噪装置及燃气热水器
WO2022111281A1 (zh) 一种降噪元件及抽油烟机
CN110925240A (zh) 一种可调频降噪的离心通风机及其蜗壳
JP2000074471A (ja) エアダクト用消音器
CN207989401U (zh) 一种内外置阻抗复合式消声器
CN208126864U (zh) 一种应用于火力发电厂空冷岛的噪声综合控制系统
WO2022001831A1 (zh) 消声单元和蜂窝式消声器
CN101988524A (zh) 一种消声装置
CN217539123U (zh) 一种复合型消声器
CN213207959U (zh) 烟管组件及烟灶设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21891107

Country of ref document: EP

Kind code of ref document: A1