WO2022100402A1 - 导管和阻流导管 - Google Patents

导管和阻流导管 Download PDF

Info

Publication number
WO2022100402A1
WO2022100402A1 PCT/CN2021/125444 CN2021125444W WO2022100402A1 WO 2022100402 A1 WO2022100402 A1 WO 2022100402A1 CN 2021125444 W CN2021125444 W CN 2021125444W WO 2022100402 A1 WO2022100402 A1 WO 2022100402A1
Authority
WO
WIPO (PCT)
Prior art keywords
catheter
distal end
inner tube
outer tube
diameter
Prior art date
Application number
PCT/CN2021/125444
Other languages
English (en)
French (fr)
Inventor
寸雨曦
刘云云
刘玉梅
孙莉
Original Assignee
微创神通医疗科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 微创神通医疗科技(上海)有限公司 filed Critical 微创神通医疗科技(上海)有限公司
Priority to EP21890929.9A priority Critical patent/EP4233976A4/en
Priority to US18/252,780 priority patent/US20240001090A1/en
Publication of WO2022100402A1 publication Critical patent/WO2022100402A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1006Balloons formed between concentric tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M25/0026Multi-lumen catheters with stationary elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/0045Catheters; Hollow probes characterised by structural features multi-layered, e.g. coated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/005Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/0054Catheters; Hollow probes characterised by structural features with regions for increasing flexibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1034Joining of shaft and balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1079Balloon catheters with special features or adapted for special applications having radio-opaque markers in the region of the balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/32General characteristics of the apparatus with radio-opaque indicia

Definitions

  • the invention relates to the technical field of medical devices, in particular to a catheter and a flow blocking catheter.
  • Stroke mainly caused by thrombus in the cerebral blood vessels, is a common disease that seriously threatens human health. It is the third leading cause of death in the world and the first cause of long-term disability in adults.
  • thrombus removal and recanalization of blood vessels are usually achieved by the use of suction catheters for direct thrombectomy or stent-assisted thrombectomy in clinical practice.
  • the suction catheter After the suction catheter reaches the thrombus along the blood vessel, negative pressure is applied at the proximal end, and the thrombus is sucked into the tube or adsorbed on the nozzle and slowly dragged into the guiding catheter, so that the blood vessel can regain hemodynamics; the stent thrombectomy device needs to cross the thrombus.
  • the thrombus is captured by the stent mesh and withdrawn into the support catheter to recanalize the blood vessel. After the stent is withdrawn into the support catheter, the support catheter is withdrawn together with the stent and the captured thrombus into the guide catheter.
  • the thrombus in the process of thrombectomy, due to the impact of proximal blood flow, the thrombus often falls off and flows to the distal blood vessel, or after successfully capturing the thrombus, the suction catheter or thrombectomy stent is operated and the interventional device (guiding catheter or thrombectomy stent is inputted).
  • the fragmented thrombus flows to the distal end of the blood vessel to form a secondary occlusion, resulting in failure of the operation and threatening the patient's life in severe cases.
  • the rate of myocardial necrosis caused by percutaneous coronary intervention in PCI is as high as 16%-39%.
  • a balloon guide catheter is usually used to temporarily block blood flow to assist thrombectomy.
  • the contrast fluid is injected so that the balloon can be expanded, adhered to the blood vessel wall, and temporarily block blood flow;
  • the balloon guiding catheter is withdrawn, and the thrombus is brought out of the human body to achieve the effect of blood flow reconstruction.
  • the balloon is attached to the catheter as a functional element, which often affects the overall compatibility and ability of the catheter to be in place.
  • functional elements such as flow blocking elements, electronic elements, imaging elements, and thrombectomy elements also have the problem that functional elements affect the overall compatibility and placement ability of the catheter.
  • catheters with functional elements in the prior art have problems of poor compatibility and low ability to place in place.
  • the purpose of the present invention is to provide a catheter to solve the problems of poor compatibility and low ability to place in the existing catheter.
  • the present invention provides a catheter, which includes: a tubular element and a functional element;
  • the tubular element includes an outer tube and an inner tube
  • the outer tube is sleeved on the outside of the inner tube, a first cavity is formed between the outer tube and the inner tube, the outer tube includes an outer tube main body and a first concave portion, and the first concave portion is located at the distal end of the outer tube main body;
  • the functional element is arranged on the tubular element, and at least part of the functional element is connected to the first recess.
  • the functional element is at least one of a blocking element, a developing element, an electronic element, and a plug-removing element.
  • the outer surface of the outer tube is recessed inward to form a first concave portion.
  • the inner diameter of the first concave portion is smaller than or equal to the inner diameter of the main body of the outer tube.
  • the inner surface of the outer tube is concave to the outside to form a first concave portion.
  • the outer diameter of the first concave portion is smaller than or equal to the outer diameter of the outer tube body.
  • the axial length of the first recess is 2-30 mm.
  • the first concave portion includes a first transition area and a first straight area in sequence from the proximal end to the distal end, the first transition area is a variable diameter area, and at the variable diameter area, at least one of the inner diameter and the outer diameter of the outer tube is One gets bigger or smaller.
  • the axial length of the first transition zone is 0 mm ⁇ 10 mm.
  • the inner surface and/or the outer surface of the first transition zone forms a certain inclination angle with the axial direction of the main body of the outer tube, and the inclination angle is 0°-90°.
  • the inner surface and the outer surface of the first transition zone are at the same inclination angle with the axial direction of the main body of the outer tube.
  • the ratio of the outer diameter of the first flat region to the outer diameter of the outer tube main body is 0.7-1.0.
  • the outer diameter of the main body of the outer tube is 1.0 mm ⁇ 3.7 mm, and the outer diameter of the first flat area is 0.7 m ⁇ 3.5 mm.
  • the outer tube further comprises a distal end of the outer tube, the distal end of the outer tube is located at the distal end of the first recess, the outer diameter of the proximal end of the distal end of the outer tube is greater than the outer diameter of the distal end of the first recess, and the outer tube The distal portion is fixedly connected to the inner tube at the distal position.
  • the distal end portion of the outer tube includes a second transition area and a second straight area in sequence from the proximal end to the distal end, the second transition area is a diameter-changing area, and at the diameter-changing area, the inner diameter and the outer diameter of the outer tube are At least one of them becomes larger or smaller.
  • the inner tube includes an inner tube main body and a second concave portion, the second concave portion is located at the distal end of the inner tube main body, and the outer surface of the inner tube is concave inward to form the second concave portion.
  • the second concave portion includes a third transition area and a third straight area in sequence from the proximal end to the distal end, and the third transition area is a diameter-changing area, where the outer diameter of the inner tube becomes smaller.
  • the axial length of the second recess is 2-60 mm.
  • the outer surface of the third transition zone and the axial direction of the inner tube main body form a certain inclination angle, the inclination angle is 0°-90°, and the axial length of the third transition zone is 0-10mm.
  • the ratio of the outer diameter of the third straight region to the outer diameter of the inner tube body is greater than or equal to 0.6 and less than 1.0.
  • the outer diameter of the main body of the inner tube is 0.5 mm ⁇ 3.2 mm, and the outer diameter of the third straight area is greater than or equal to 0.3 mm and less than 3.2 mm.
  • the farthest end of the outer tube body is called the first transition position
  • the farthest end of the inner tube body is called the second transition position
  • the projection of the first transition position on the axial direction of the tubular element is located at the second transition position at the distal end of the axial projection of the tubular element
  • the first concave portion sequentially includes a first transition area and a first straight area from the proximal end to the distal end;
  • the outer surface of the third transition zone forms a first inclination angle with the axial direction of the tubular element
  • the inner surface of the first transition zone forms a second inclination angle with the axial direction of the tubular element
  • the first inclination angle is greater than or equal to second inclination angle
  • the inner tube further includes a distal end portion of the inner tube, and the distal end portion of the inner tube is located at the distal end of the second concave portion.
  • the axial length of the distal end of the inner tube is 1-500 mm.
  • the outer diameter of the distal end portion of the inner tube is smaller than the outer diameter of the second concave portion, and the distal end portion of the inner tube is located at the head end of the catheter.
  • the distal end of the inner tube includes a fourth transition area and a fourth straight area in sequence from the proximal end to the distal end, and the fourth transition area is a diameter-changing area, where the outer diameter of the inner tube becomes smaller.
  • the outer diameter of the fourth straight area is 0.2 mm ⁇ 3.1 mm.
  • the functional element is a flow blocking element, and the proximal end of the flow blocking element is fixed to the first concave portion.
  • the flow blocking element is a polymer membrane.
  • the flow blocking element When the first cavity is in a liquid-filled state, the flow blocking element is in an expanded state; when the first cavity is in a vacuum state, the flow blocking element is in a contracted state.
  • the distal end of the blocking element is fixedly connected to the inner tube.
  • the choke element is arranged in the first recess, the proximal end and the distal end of the choke element are fixedly connected to the outer tube, the distal end of the outer tube is connected to the inner tube, and the first recess is provided with an opening for filling the choke element liquid through holes.
  • the thickness of the polymer film is 0.05mm ⁇ 0.15mm.
  • the material of the polymer film is any one of silica gel, polyurethane, latex, polyethylene, polytetrafluoroethylene, expanded polytetrafluoroethylene, or a mixture thereof.
  • the inner tube comprises an inner tube main body and a second concave part
  • the second concave part is located at the distal end of the inner tube main body
  • the outer diameter of the second concave part is smaller than the outer diameter of the inner tube main body
  • the functional element is a flow blocking element
  • the flow blocking element The proximal end of the blocking element is fixedly connected with the first recess, and the distal end of the blocking element is fixedly connected with the second recess.
  • both the inner pipe and the outer pipe comprise at least one polymer layer, and the material of the polymer layer is one of polyether block polyamide, nylon, polyurethane, polytetrafluoroethylene, polyethylene, polyolefin elastomer or several.
  • the outer tube and/or the inner tube further comprise a reinforcement layer
  • the reinforcement layer is a wire braided structure, a wire spiral wound structure, a cut pipe or a combination thereof
  • the reinforcement layer is made of stainless steel, nickel-titanium alloy, cobalt-chromium alloy or macromolecule.
  • the outer tube and/or the inner tube has a three-layer structure, and the three-layer structure is a first polymer layer, a reinforcing layer, and a second polymer layer in sequence from the inside to the outside.
  • the catheter further includes a first imaging ring, and the first imaging ring is located at the head end of the catheter.
  • the catheter includes a second developing ring, and the second developing ring is located on the inner tube at a position adapted to the position of the functional element.
  • a second cavity is formed inside the inner tube, and the entire inner diameter of the second cavity is the same.
  • the ratio of the inner diameter of the second cavity to the outer diameter of the outer tube body is 0.2-0.9.
  • the inner diameter of the second cavity is 0.1 mm ⁇ 3.0 mm
  • the outer diameter of the main body of the outer tube is 0.5 mm ⁇ 3.7 mm.
  • the outer surface of the first concave portion is an inclined surface with a gradually decreasing outer diameter, and the proximal end of the functional element is fixed on the inclined surface of the first concave portion.
  • the end surface of the distal end of the outer tube is a first chamfered surface
  • the first chamfered surface forms the outer surface of the first concave portion
  • the proximal end of the functional element is a second chamfered surface matched with the first chamfered surface
  • the first chamfered surface and The second chamfered surface is fixedly connected.
  • the present invention also provides a flow blocking conduit, which includes: a tubular element and a flow blocking element; the tubular element includes an outer tube and an inner tube; the outer tube is sleeved on the outside of the inner tube, and a first tube is formed between the outer tube and the inner tube In the cavity, the outer tube includes an outer tube main body and a first concave part, the first concave part is located at the distal end of the outer tube main body; a flow blocking element is arranged on the tubular element, and at least part of the flow blocking element is connected with the first concave part.
  • the flow blocking element is a polymer membrane.
  • the flow blocking element When the first cavity is in a liquid-filled state, the flow blocking element is in an expanded state; when the first cavity is in a vacuum state, the flow blocking element is in a contracted state.
  • the catheter of the present invention can bring at least one of the following beneficial effects:
  • a concave part is arranged on the outer tube and/or the inner tube of the catheter, which reduces the overall thickness of the catheter. While ensuring that the inner cavity of the catheter is large enough, the outer diameter of the catheter is controlled not to be too large, so that the inner cavity of the catheter can pass through a relatively large volume. At the same time of large medical devices, it can also smoothly pass through tortuous blood vessels, reduce the stimulation to the blood vessel wall, and reach a relatively high blood vessel position.
  • the proximal end of the functional element is fixed to the outer tube, and the distal end of the functional element is fixed to the inner tube, which further reduces the influence of the presence of the functional element on the overall outer diameter of the catheter and the compliance performance of the catheter.
  • the inner tube which ensures that the volume of the cavity between the inner tube and the outer tube is large enough to ensure the function of the cavity.
  • the balloon guide tube is connected to the outer tube. Liquid cavity, the volume of the liquid cavity affects the inflation and contraction rate of the balloon.
  • the outer diameter of the distal end of the inner tube is smaller than the outer diameter of the main body of the inner tube at the proximal end, so that the compliance performance of the catheter is gradually increased from the proximal end to the distal end, and the delivery and positioning ability of the catheter is ensured.
  • FIG. 1 is an overall schematic diagram of an expanded state of a catheter provided by a preferred embodiment of the present invention
  • FIG. 2 is an overall schematic diagram of a retracted state of a catheter provided by a preferred embodiment of the present invention
  • FIG. 3 is a cross-sectional view of a distal end portion of a catheter provided by a preferred embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a distal end portion of a catheter provided by a preferred embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a distal end portion of a catheter provided by a preferred embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a distal end portion of a catheter provided by a preferred embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a distal end portion of a catheter provided by a preferred embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a distal end portion of a catheter provided by a preferred embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a distal end portion of a catheter provided by a preferred embodiment of the present invention.
  • FIG. 10 is an overall schematic diagram of a catheter provided by a preferred embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of a distal portion of a catheter provided by a preferred embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of a distal end portion of a catheter provided by a preferred embodiment of the present invention.
  • 100 tubular element; 200: choke element; 101: outer tube; 102: inner tube; 1011: outer tube body; 1012: first recess; 1012-1: first transition zone; 1013: outer tube distal end; 1013-1: second transition zone; 1013-2: second straight zone; 1014: liquid through hole; 1021: inner tube main body; 1022: second recess; 1022-1 : the third transition zone; 1022-2: the third straight zone; 1023: the distal end of the inner tube; 1023-1: the fourth transition zone; 1023-2: the fourth straight zone; 300: the first transition position; 400: The second transition position.
  • the core idea of the present invention is to provide a catheter, which includes: a tubular element and a functional element; the tubular element includes an outer tube and an inner tube; the outer tube is sleeved on the outside of the inner tube, and a first cavity is formed between the outer tube and the inner tube
  • the outer tube includes an outer tube body and a first recess, the first recess is located at the distal end of the outer tube body; the functional element is arranged on the tubular element, and at least part of the functional element is connected to the first recess.
  • the functional element can be any element that is placed on the catheter and exerts medical functions, such as a blocking element, a developing element, an electronic element, a thrombectomy element, etc.
  • the functional element can be connected to the catheter at one end and free at the other end; Conduit connection; can also be integrally fixed to the conduit.
  • Conduit connection can also be integrally fixed to the conduit.
  • the catheter provided by the present invention includes a tubular element 100 and a flow blocking element 200 .
  • the tubular element 100 includes an outer pipe 101 and an inner pipe 102 , the flow blocking element 200 is fixed to the tubular element 100 , and the outer pipe 101 is sleeved. It is disposed outside the inner tube 102 , and a first cavity is formed between the outer tube 101 and the inner tube 102 .
  • the flow blocking element 200 has an expanded state and a contracted state.
  • FIG. 1 and 3 are the overall schematic diagram and the sectional view of the distal end of the flow blocking element 200 when the flow blocking element 200 is in the expanded state, respectively.
  • the flow blocking element 200 can be switched between an expanded state and a contracted state; when the flow blocking element 200 is in the expanded state, the blood flow in the blood vessel is blocked or reduced. As shown in FIG. 3 and FIG.
  • the outer tube 101 includes an outer tube body 1011 and a first recess 1012 , the first recess 1012 is located at the distal end of the outer tube body 1011 , and the proximal end of the blocking element 200 is fixed to the first recess 1012 , The distal end of the blocking element 200 is fixed to the inner tube 102 .
  • the blocking element 200 is fixed between the outer tube 101 and the inner tube 102, which can reduce the influence of the presence of the blocking element 200 on the overall outer diameter of the catheter and the compliance performance of the catheter.
  • the outer surface of the outer tube 101 is recessed inward to form the first recess 1012 ; in other embodiments, the inner surface of the outer tube 101 is recessed outward to form the first recess 1012 .
  • the outer diameter of the first concave portion 1012 is smaller than the outer diameter of the outer tube main body 1011 , the inner diameter of the first concave portion 1012 is smaller than the inner diameter of the outer tube main body 1011 , and the proximal end of the flow blocking element 200 is fixed to the first concave portion 1012
  • the outer diameter of the first recess 1012 is smaller than the outer diameter of the outer tube body 1011
  • the inner diameter of the first recess 1012 is equal to the inner diameter of the outer tube body 1011
  • the proximal end of the flow blocking element 200 is fixed on the The outer surface of a recessed portion 1012; in other embodiments, the outer diameter of the first recessed portion 1012 is equal to the outer diameter of the outer tube body 1011, the inner diameter of the first recessed portion 1012 is larger than the inner diameter of the outer tube body 1011, and the proximal The end is fixed on the inner surface of the first recess 1012; in other embodiments, the outer diameter of
  • the axial length of the first recess 1012 is 2-20 mm; in this embodiment, the axial length of the first recess 1012 is 12 mm; in some other embodiments, the axial length of the first recess 1012 The length is 2mm; in other embodiments, the axial length of the first recess 1012 is 5mm; in other embodiments, the axial length of the first recess 1012 is 10mm; in other embodiments, the first recess 1012 has an axial length of 10mm.
  • the axial length of 1012 is 15 mm; in some other embodiments, the axial length of first recess 1012 is 20 mm.
  • a recess is provided on the outer tube 101 of the catheter, which can be used to accommodate at least part of the volume of the blocking element 200, which can reduce the thickness of the connection position, partially or completely eliminate the influence of the blocking element on the hardness of the catheter, and ensure the flexibility of the catheter. So that the catheter can be pushed smoothly in the blood vessel. At the same time, the overall thickness of the catheter can be reduced, and the outer diameter of the catheter can be controlled not to be too large while ensuring that the inner cavity of the catheter is large enough, so that the inner cavity of the catheter can pass through the large volume of medical devices, and at the same time, it can also smoothly pass through the tortuous blood vessels. Reduces irritation to the vessel wall and is in place to a relatively high vessel position.
  • the first concave portion 1012 sequentially includes a first transition area 1012-1 and a first straight area 1012-2 from the proximal end to the distal end, and the first transition area 1012-
  • the inner diameter of 1 transitions from the inner diameter of the outer tube main body 1011 to the inner diameter of the first flat region 1012-2, and the outer diameter of the first transition region 1012-1 transitions from the outer diameter of the outer tube main body 1011 to the first flat region 1012- 2
  • the first transition zone 1012-1 is a variable diameter zone, and at the first transition zone 1012-1, both the inner diameter and the outer diameter of the outer tube 101 become smaller.
  • the outer diameter of the first concave portion 1012 is smaller than the outer diameter of the outer pipe body 1011 , the inner diameter of the first concave portion 1012 is equal to the inner diameter of the outer pipe body 1011 , and the outer diameter of the first transition zone 1012 - 1 is the same as the outer diameter of the outer pipe body 1011 .
  • the outer diameter of the main body 1011 transitions to the outer diameter of the first flat area 1012-2, the inner diameter of the first transition area 1012-1 is equal to the inner diameter of the outer tube main body 1011 and the inner diameter of the first recess 1012, the first transition area 1012- 1 is a variable diameter area, and at the first transition area 1012-1, the outer diameter of the outer tube 101 becomes smaller.
  • the outer diameter of the first recess 1012 is equal to the outer diameter of the outer tube body 1011
  • the inner diameter of the first recess 1012 is larger than the inner diameter of the outer tube body 1011
  • the inner diameter of the first transition zone 1012 - 1 is the same as the outer diameter of the outer tube body 1011 .
  • the inner diameter of 1011 transitions to the inner diameter of the first straight area 1012-2
  • the outer diameter of the first transition area 1012-1 is equal to the outer diameter of the outer tube main body 1011 and the outer diameter of the first recess 1012
  • the first transition area 1012- 1 is a variable diameter area, and at the first transition area 1012-1, the inner diameter of the outer tube 101 becomes larger.
  • the inner surface and the outer surface of the first transition zone 1012 - 1 are inclined surfaces that form a certain angle with the axial direction of the outer tube main body 1011 (or the tubular element 100 ). , the angle of inclination is the same, both are 45°.
  • the inner surface and the outer surface of the first transition zone 1012-1 are inclined surfaces at a certain angle with the axial direction of the outer tube main body 1011 (or with the tubular element 100), and the inclination angles are the same as Any angle greater than 0 and less than or equal to 90°; in some other embodiments, the inner and outer surfaces of the first transition zone 1012-1 are axially aligned with the outer pipe body 1011 (or with the tubular element 100).
  • a certain angle of the inclined surface, the same inclination angle is 60°; in some other embodiments, the inner surface and the outer surface of the first transition zone 1012-1 are the same as the outer tube main body 1011 (or the tubular element 100).
  • the inner surface and the outer surface of the first transition zone 1012-11 are the same as the outer tube main body 1011 (or the same as the tubular element). 100) the axial direction of the inclined surface at a certain angle, and the inclined angle is the same, which is 85°; or plane perpendicular to the axial direction of the tubular element 100); in some other embodiments, the inner surface of the first transition zone 1012-11 is parallel to the axial direction of the outer pipe body 1011 (or to the tubular element 100), the first transition The outer surface of the zone 1012-1 is an inclined surface which forms a certain angle with the axial direction of the outer tube body 1011 (or with the tubular element 100).
  • the inner surface of the first transition zone 1012-1 is axially aligned with the outer tube body 1011 (or with the tubular element 100).
  • the outer surface of the first transition zone 1012-1 is a plane perpendicular to the axial direction of the outer tube body 1011 (or the tubular element 100); in some other embodiments, the outer surface of the first transition zone 1012-1 is the same as The axial direction of the outer tube main body 1011 (or with the tubular element 100 ) is parallel, and the inner surface of the first transition zone 1012-1 is an inclined surface at a certain angle with the axial direction of the outer tube main body 1011 (or with the tubular element 100 ).
  • the angle can be any angle greater than 0° and less than or equal to 90°, such as 5°, 15°, 30°, 40°, 45°, 60°, 75°, 85°; in some other embodiments, the first The outer surface of a transition region 1012-1 is parallel to the axial direction of the outer tube body 1011 (or with the tubular element 100), and the inner surface of the first transition region 1012-1 is parallel with the outer tube body 1011 (or with the tubular element 100).
  • the axial length of the first transition zone 1012-1 is 0-10 mm; in this embodiment, the axial length of the first transition zone 1012-1 is 4 mm; in some other embodiments, the first transition zone 1012-1 has an axial length of 4 mm.
  • the axial length of a transition zone 1012-1 is 0 mm; in other embodiments, the axial length of the first transition zone 1012-1 is 3 mm; in other embodiments, the axis of the first transition zone 1012-1 The axial length is 5 mm; in other embodiments, the axial length of the first transition zone 1012-1 is 8 mm; in other embodiments, the axial length of the first transition zone 1012-1 is 10 mm.
  • the outer diameter of the outer tube body 1011 is 1.0mm ⁇ 3.7mm
  • the outer diameter of the first flat area 1012-2 is 0.7m ⁇ 3.5mm
  • the outer diameter of the first flat area 1012-2 is the same as the The outer diameter ratio of the outer tube main body 1011 is 0.7 ⁇ 1.0; in this embodiment, the outer diameter of the outer tube main body 1011 is 2.8 mm, the outer diameter of the first flat area 1012-2 is 2.6 mm, and the first flat area is 2.6 mm.
  • the ratio of the outer diameter of 1012-2 to the outer diameter of the outer tube body 1011 is 0.928; in some other embodiments, the outer diameter of the outer tube body 1011 is 3.7mm, and the outer diameter of the first flat region 1012-2 is 2.8mm , the ratio of the outer diameter of the first flat area 1012-2 to the outer diameter of the outer tube main body 1011 is 0.757; in some other embodiments, the outer diameter of the outer tube main body 1011 is 3.5 mm, and the outer diameter of the first flat area is 0.757.
  • the ratio of the outer diameter of the first flat area 1012-2 to the outer diameter of the outer tube main body 1011 is 1.0; in some other embodiments, the outer diameter of the outer tube main body 1011 is 1.0 mm, and the first flat area The outer diameter of 1012-2 is 0.7 mm, and the ratio of the outer diameter of the first flat region 1012-2 to the outer diameter of the outer tube main body 1011 is 0.7.
  • the overall length of the conduit is 80-160 cm; in this embodiment, the overall length of the conduit is 130 cm; in other embodiments, the overall length of the conduit is 80 cm; in other embodiments, the overall length of the conduit The overall length is 160cm; in other embodiments, the overall length of the catheter is 115cm; in other embodiments, the overall length of the catheter is 110cm; in other embodiments, the overall length of the catheter is 140cm; in other In some embodiments, the overall length of the catheter is 150 cm.
  • the blocking element 200 is a polymer membrane
  • the first cavity is used for passing or withdrawing liquid, so as to control the transition between the expansion state and the contracting state of the blocking element 200
  • the first cavity is used for passing the liquid Or withdrawn liquid such as contrast fluid, physiological saline, etc.
  • the thickness of the polymer film is 0.10mm; in other embodiments, the thickness of the polymer film is 0.05mm-0.15mm, such as 0.05mm, 0.08mm, 0.12mm, 0.15mm.
  • the material of the polymer film is silica gel; in some other embodiments, the material of the polymer film is polyurethane; in some other embodiments, the material of the polymer film is latex; in some other embodiments , the material of the polymer film is polyethylene; in some other embodiments, the material of the polymer film is polytetrafluoroethylene; in some other embodiments, the material of the polymer film is expanded polytetrafluoroethylene; in other In some embodiments, the material of the polymer film is a mixture of polyurethane and polyethylene, and the material ratio is 2:1; in other embodiments, the material of the polymer film is polytetrafluoroethylene and expanded polytetrafluoroethylene The material ratio is 1:1; in some other embodiments, the material of the polymer film is a mixture of silica gel, polyurethane and polyethylene, and the material ratio is 1:1:1.
  • the proximal end of the flow blocking element 200 is connected to the first flat region 1012-2, and the connection can be bonding, binding or fusion connection; in other embodiments, the proximal end of the flow blocking element 200 is connected It can be connected with the first transition region 1012-1, and the connection method can be adhesive, binding or fusion connection.
  • the inner tube 102 has a three-layer structure, which is a first polymer layer, a reinforcing layer, and a second polymer layer in sequence from the inside to the outside.
  • the material of the first polymer layer is polytetrafluoroethylene
  • the reinforcing layer is Wire braided structure
  • the material of the reinforcing layer is stainless steel
  • the second polymer layer is made of polyether block polyamide, nylon, polyurethane, polyethylene, polyolefin elastomers spliced in the axial direction
  • the outer tube 101 is a single-height Molecular layer
  • the material of the outer tube 101 is polyether block polyamide.
  • both the inner tube 102 and the outer tube 101 have a three-layer structure, which are a first polymer layer, a reinforcing layer, and a second polymer layer in sequence from the inside to the outside; in other embodiments, the inner tube 102 is a single-layer polymer structure, and the outer tube 101 is a three-layer structure; in other embodiments, the inner tube 102 is a three-layer structure, and the outer tube 101 is a double-layer polymer structure.
  • the reinforcement layer of the inner tube 102 and/or the outer tube 101 is a wire spiral wound structure; in some other embodiments, the reinforcement layer of the inner tube 102 and/or the outer tube 101 is a cut tube; in some other embodiments, the reinforcement layer of the inner tube 102 and/or the outer tube 101 is a combination of a wire braided structure and a wire helical structure; in some other embodiments, the reinforcement layer of the inner tube 102 and/or the outer tube 101 It is a combination of a wire braided structure and a cut tube; in some other embodiments, the reinforcement layer of the inner tube 102 and/or the outer tube 101 is a combination of a cut tube and a wire helix.
  • the material of the reinforcement layer of the inner tube 102 and/or the outer tube 101 includes Nitinol; in other embodiments, the material of the reinforcement layer of the inner tube 102 and/or the outer tube 101 includes cobalt chromium alloy; in some other embodiments, the material of the reinforcement layer of the inner tube 102 and/or the outer tube 101 includes polymer; in some other embodiments, the material of the reinforcement layer of the inner tube 102 and/or the outer tube 101 is nickel A combination of titanium alloy and stainless steel; in some other embodiments, the material of the reinforcement layer of the inner tube 102 and/or the outer tube 101 is a combination of nickel-titanium alloy and polymer.
  • the catheter includes a first developing ring, and the first developing ring is located at the head of the catheter; the catheter further includes a second developing ring, and the second developing ring is located on the inner tube 102 at a position corresponding to the position of the blocking element 200 . place.
  • a second cavity is formed inside the inner tube 102 of the catheter, and the overall inner diameter of the second cavity is the same.
  • the inner diameter of the second cavity is 0.1 mm to 3.0 mm
  • the outer diameter of the outer tube body 1011 is 0.5 mm to 3.7 mm; in this embodiment, the inner diameter of the second cavity is 2.3 mm, and the outer The outer diameter of the tube body 1011 is 2.8 mm, and the ratio of the inner diameter of the second cavity to the outer diameter of the outer tube body 1011 is 0.821; in some other embodiments, the inner diameter of the second cavity is 0.1 mm, and the outer tube
  • the outer diameter of the main body 1011 is 0.5 mm
  • the ratio of the inner diameter of the second cavity to the outer diameter of the outer tube body 1011 is 0.2; in some other embodiments, the inner diameter of the second cavity is 3.0 mm, and the outer tube body is 3.0 mm.
  • the outer diameter of the 1011 is 3.6 mm, and the ratio of the inner diameter of the second cavity to the outer diameter of the outer tube body 1011 is 0.833; in some other embodiments, the inner diameter of the second cavity is 2.7 mm, and the outer tube body 1011
  • the outer diameter of the second cavity is 3.0mm, and the ratio of the inner diameter of the second cavity to the outer diameter of the outer tube body 1011 is 0.9; in some other embodiments, the inner diameter of the second cavity is 2.5mm, and the outer diameter of the outer tube body 1011
  • the outer diameter is 3.7 mm, and the ratio of the inner diameter of the second cavity to the outer diameter of the outer tube main body 1011 is 0.676.
  • the second cavity is used to pass the medical device.
  • an angle transition is formed between the outer tube main body 1011 and the first concave portion 1012, and between the first transition area 1012-1 and the first straight area 1012-2;
  • a smooth transition may be formed between the pipe main body 1011 and the first concave portion 1012, and/or between the first transition area 1012-1 and the first straight area 1012-2.
  • the first flat area 1012-2 is a flat area with a smooth surface; in other embodiments, the first flat area 1012-2 may be a surface with a concave-convex structure, a groove structure or a curved structure , but the overall inner and outer diameter of the same tubular structure.
  • FIG. 5 is a cross-sectional view of the distal end portion of the catheter provided in the second embodiment.
  • the flow blocking element 200 of the catheter shown in FIG. 5 is in an expanded state.
  • the overall structure of the catheter provided in the second embodiment is similar to that of the first embodiment, which will not be repeated here.
  • the inner tube 102 of the catheter provided in the second embodiment includes an inner tube main body 1021 and a second recess 1022, the second recess 1022 is located at the distal end of the inner tube body 1021, the outer diameter of the second recess 1022 is smaller than the outer diameter of the inner tube body 1021, and the proximal end of the flow blocking element 200 is fixed to the first In the concave portion 1012 , the distal end of the blocking element 200 is fixed to the second concave portion 1022 .
  • a recess is provided on the inner tube 102 of the catheter, which can be used to accommodate at least part of the volume of the blocking element 200, which can reduce the thickness of the connection position, partially or completely eliminate the influence of the blocking element on the hardness of the catheter, and ensure the flexibility of the catheter.
  • the catheter can be smoothly pushed in the blood vessel, and the inner tube 102 is provided with a concave part, which increases the flexibility of the distal end of the catheter, and further enhances the delivery performance of the catheter in the blood vessel.
  • the axial length of the second recess 1022 is 2-60 mm; in this embodiment, the axial length of the second recess 1022 is 30 mm; in some other embodiments, the axial length of the second recess 1022 The length is 2mm; in some other embodiments, the axial length of the second recess 1022 is 10mm; in some other embodiments, the axial length of the second recess 1022 is 25mm; in some other embodiments, the second recess 1022 has an axial length of 25mm.
  • the axial length of the 1022 is 45 mm; in some other embodiments, the axial length of the second recess 1022 is 60 mm.
  • the second concave portion 1022 sequentially includes a third transition region 1022-1 and a third straight region 1022-2 from the proximal end to the distal end.
  • the outer diameter of 1022-2 transitions to the outer diameter of the third straight area 1022-2, the third transition area 1022-1 is a variable diameter area, and at the third transition area 1022-1, the outer diameter of the inner tube 102 becomes smaller.
  • the outer surface of the third transition area 1022-1 is an inclined surface at a certain angle to the axial direction of the inner tube main body 1021 (or the tubular element 100).
  • the angle is 10°; in some other embodiments, the outer surface of the third transition zone 1022-1 is an inclined surface at a certain angle with the axial direction of the inner tube body 1021 (or with the tubular element 100), and the angle of the inclined surface is 5°; in some other embodiments, the outer surface of the third transition zone 1022-1 is an inclined surface at a certain angle with the axial direction of the inner tube body 1021 (or with the tubular element 100 ), and the angle of the inclined surface is 15° ; In some other embodiments, the outer surface of the third transition zone 1022-1 is an inclined surface at a certain angle with the axial direction of the inner tube body 1021 (or with the tubular element 100), and the angle of the inclined surface is 25°; In some other embodiments, the outer surface of the third transition zone 1022-1 is an inclined surface at a certain angle with the axial direction of the inner tube body 1021 (or with the tubular element 100), and the angle of the inclined surface is 20°; In an embodiment, the outer surface of the third transition zone 102
  • the inner surface of the third transition zone 1022-1 is axially parallel to the inner tube body 1021 (or to the tubular element 100), and the outer surface of the third transition zone 1022-1 is axially parallel to the inner tube body 1021 (or to the tubular element 100).
  • An inclined surface that forms a certain angle with the axial direction of the tubular element 100), and the inclined angle can be any angle from 0° to 90°, such as 5°, 15°, 30°, 40°, 45°, 60°, 75° , 85°; in other embodiments, the inner surface of the third transition zone 1022-1 is parallel to the axial direction of the inner tube body 1021 (or the tubular element 100), and the outer surface of the third transition zone 1022-1 is parallel to the axial direction of the inner tube body 1021 (or the tubular element 100).
  • the inner surface of the third transition zone 1022-1 is axially perpendicular to the inner tube body 1021 (or to the tubular element 100).
  • An inclined surface with a certain angle, and the inclined angle can be any angle between 0 and 90°, such as 5°, 15°, 30°, 40°, 45°, 60°, 75°, 85°; in some other implementations
  • the inner surface of the third transition zone 1022-1 is a plane perpendicular to the axial direction of the inner tube body 1021 (or to the tubular element 100).
  • the axial length of the third transition zone 1022-1 is 0-10 mm; in this embodiment, the axial length of the third transition zone 1022-1 is 5 mm; in other embodiments, the third transition zone 1022-1 has an axial length of 5 mm; The axial length of the third transition zone 1022-1 is 0 mm; in some other embodiments, the axial length of the third transition zone 1022-1 is 3 mm; in some other embodiments, the axis of the third transition zone 1022-1 The axial length is 5 mm; in some other embodiments, the axial length of the third transition zone 1022-1 is 8 mm; in other embodiments, the axial length of the third transition zone 1022-1 is 10 mm.
  • the outer diameter of the inner tube main body 1021 is 0.5 mm ⁇ 3.2 mm
  • the outer diameter of the third flat area 1022-2 is 0.3 m ⁇ 3.2 mm
  • the outer diameter of the third flat area 1022-2 is the same as the The outer diameter ratio of the outer tube main body 1011 is 0.6 ⁇ 1.0; in this embodiment, the outer diameter of the inner tube main body 1021 is 2.8 mm, the outer diameter of the third flat area 1022-2 is 2.4 mm, and the third flat area is 2.4 mm.
  • the ratio of the outer diameter of the 1022-2 to the outer diameter of the outer tube body 1011 is 0.857; in some other embodiments, the outer diameter of the inner tube body 1021 is 3.2mm, and the outer diameter of the third flat region 1022-2 is 3.2mm , the ratio of the outer diameter of the third straight area 1022-2 to the outer diameter of the inner tube main body 1021 is 1.0; in some other embodiments, the outer diameter of the inner tube main body 1021 is 0.5 mm, and the third flat area 1022-2 The outer diameter of the inner tube body 1021 is 0.3 mm, and the ratio of the outer diameter of the third straight area 1022-2 to the outer diameter of the inner tube body 1021 is 0.6; in some other embodiments, the outer diameter of the inner tube body 1021 is 1.0 mm, and the third The outer diameter of the flat area 1022-2 is 0.8 mm, and the ratio of the outer diameter of the third flat area 1022-2 to the outer diameter of the inner tube main body 1021 is 0.8; in some other embodiments, the outer diameter
  • the outermost end of the outer tube main body 1011 of the catheter provided in the second embodiment has a first transition position 300 (ie, the junction position between the outer tube main body 1011 and the first recess 1012 is the first transition position 300 ).
  • the first transition position 300 is the position where the outer diameter and inner diameter of the outer tube 101 of the catheter begin to change; in other embodiments, the first transition position 300 is the outer diameter and/or the outer diameter of the outer tube 101 of the catheter. or where the inner diameter begins to change.
  • the most distal end of the inner tube main body 1021 of the catheter has a second transition position 400 (that is, the junction position between the inner tube main body 1021 and the second recess 1022 is the second transition position).
  • the second transition position 400 is The position where the outer diameter of the inner tube of the catheter begins to change; in some other embodiments, the second transition position 400 may also be the position where the outer diameter and inner diameter of the inner tube 102 of the catheter begin to change.
  • the first transition position 300 may be a face with the same cross-sectional shape as the most distal position of the outer tube body 1011
  • the second transition position 400 may be the same as the cross-sectional shape of the most distal position of the inner tube body 1021
  • one face of is collectively referred to as the first transition position 300 and the second transition position 400 .
  • the projection of the first transition location 300 in the axial direction of the tubular element 100 is located distal to the projection of the second transition location 400 in the axial direction of the tubular element 100, and the third transition region 1022-1 is A first inclination angle is formed between the outer surface and the axial direction of the tubular element 100, and a second inclination angle is formed between the inner surface of the first transition zone 1012-1 and the axial direction of the tubular element 100, and the first inclination angle is greater than or equal to second inclination angle.
  • the inner diameter of the outer tube 101 of the catheter begins to decrease at the first transition position 300
  • the outer diameter of the inner tube 102 of the catheter begins to decrease at the second transition position 400.
  • the projection of the axial direction of the element 100 is located at the distal end of the projection of the second transition position 400 in the axial direction of the tubular element 100, and the inclination angle of the third transition zone 1022-1 and the axial direction of the catheter is set greater than that of the first transition zone 1012
  • the inclination angle between -1 and the axial direction of the catheter can ensure that the volume of the first cavity will not become too small because the inner diameter of the outer tube 101 is reduced. The efficiency of liquid passage or withdrawal.
  • both the inner tube 102 and the outer tube 101 have a three-layer structure, with a first polymer layer, a reinforcing layer, and a second polymer layer in sequence from the inside to the outside.
  • the material of the first polymer layer of the inner tube 102 is polytetrafluoroethylene and polyolefin elastomer
  • the reinforcing layer of the inner tube 102 is a wire spiral wound structure
  • the material of the reinforcing layer is nickel-titanium alloy
  • the second The polymer layer is a splicing structure in the axial direction of polyether block polyamide, nylon, polyurethane, polytetrafluoroethylene, polyethylene, polyether block polyamide mixed with additives for reducing friction coefficient, and polyolefin elastomer
  • the first polymer material of the tube 101 is polytetrafluoroethylene
  • the reinforcing layer of the outer tube 101 is a wire braided structure
  • the material of the reinforcing layer is poly
  • the catheter includes a first imaging ring located at the tip end of the catheter.
  • an angle transition is formed between the inner tube main body 1021 and the second recess 1022, and between the third transition area 1022-1 and the third straight area 1022-2; in other embodiments, the inner Between the pipe body 1021 and the second concave portion 1022, and/or between the third transition area 1022-1 and the third straight area 1022-2, there may be a smooth transition in an arc.
  • the third flat region 1022-2 is a flat region with a smooth surface; in other embodiments, the third flat region 1022-2 can be a surface with concave-convex structure, groove structure or curved structure , but the overall inner and outer diameter of the same tubular structure.
  • FIG. 6 is a cross-sectional view of the distal end portion of the catheter provided in the third embodiment.
  • the flow blocking element 200 of the catheter shown in FIG. 6 is in an expanded state.
  • the overall structure of the catheter provided by the third embodiment is similar to that of the second embodiment, which will not be repeated here.
  • the inner tube 102 of the catheter provided by the third embodiment includes an inner tube main body 1021 , a second recess 1022, a distal end portion 1023 of the inner tube, the second recess 1022 is located at the distal end of the inner tube body 1021, the outer diameter of the second recess 1022 is smaller than the outer diameter of the inner tube body 1021, the flow blocking element 200 The proximal end of the blocking element 200 is fixed to the first concave portion 1012 , and the distal end of the blocking element 200 is fixed to the second concave portion 1022 .
  • the distal end portion 1023 of the inner tube is located at the distal end of the second concave portion 1022, the outer diameter of the distal end portion 1023 of the inner tube is smaller than the outer diameter of the second concave portion 1022, and the distal end portion 1023 of the inner tube is located at the head end of the catheter.
  • the presence of the distal end portion 1023 of the inner tube gradually increases the compliance performance of the catheter from the proximal end to the distal end, ensuring the delivery and positioning capability of the catheter.
  • the distal end portion 1023 of the inner tube includes a fourth transition area 1023-1 and a fourth straight area 1023-2 in sequence from the proximal end to the distal end, and the outer diameter of the fourth transition area 1023-1 increases from the third
  • the outer diameter of the straight area 1022-2 transitions to the outer diameter of the fourth straight area
  • the fourth transition area 1023-1 is a variable diameter area.
  • the outer diameter of the inner tube 102 changes in the middle. Small.
  • the outer diameter of the fourth flat area 1023-2 is 0.2mm-3.1mm; in this embodiment, the outer diameter of the fourth flat area 1023-2 is 2.0mm; in other embodiments In some embodiments, the outer diameter of the fourth straight area 1023-2 is 0.2 mm; in other embodiments, the outer diameter of the fourth straight area 1023-2 is 1.5 mm; in some other embodiments, the fourth straight area The outer diameter of the zone 1023-2 is 3.1 mm.
  • the outer diameter of the fourth flat area 1023-2 is smaller than the outer diameter of the second recess 1022, and the inner diameter of the fourth flat area 1023-2 is equal to the inner diameter of the second recess 1022; in other embodiments , the outer diameter of the fourth straight area 1023 - 2 is smaller than the outer diameter of the second concave portion 1022 , and the inner diameter of the fourth straight area 1023 - 2 is larger than the inner diameter of the second concave portion 1022 .
  • a fourth straight area 1023-2 at the distal end of the inner tube 102 With a smaller outer diameter than the proximal end, the hardness of the distal end of the catheter can be further reduced, the passing ability of the catheter in the blood vessel can be enhanced, and the catheter can be reduced in size. Risk of distal poking of vessels, improving in-place performance.
  • the distal end portion 1023 of the inner tube may include 2-10 transition regions and straight regions, and the transition regions and the straight regions are arranged at intervals in sequence, so that the outer diameter of the distal end portion 1023 of the inner tube gradually decreases, and the inner tube The outer diameter of the distal end portion 1023 may gradually decrease from 3 mm at the proximal end to 0.6 mm at the distal end.
  • the distal end portion 1023 of the inner tube includes five transition regions and straight regions that are spaced in sequence, and the outer diameter of the distal end portion 1023 of the inner tube is reduced from 2.7 mm at the proximal end to 0.9 mm at the distal end; In some other embodiments, the distal end portion 1023 of the inner tube includes 10 transition regions and straight regions spaced in sequence, and the outer diameter of the distal end portion 1023 of the inner tube is reduced from 3.0 mm at the proximal end to 0.6 mm at the distal end; In other embodiments, the distal end portion 1023 of the inner tube includes two transition regions and a straight region spaced in sequence, and the outer diameter of the distal end portion 1023 of the inner tube decreases from 2.4 mm at the proximal end to 1.65 mm at the distal end.
  • the inner tube distal end 1023 is a tapered tubular structure with a gradually decreasing outer diameter, and the outer diameter of the inner tube distal end 1023 is tapered; in some embodiments, the inner tube distal end 1023 The outer diameter of the inner tube tapers from 3 mm at the proximal end to 0.6 mm at the distal end; in some embodiments, the outer diameter of the inner tube distal portion 1023 is tapered from 2.5 mm at the proximal end to 0.6 mm at the distal end; in some implementations For example, the outer diameter of the inner tube distal end 1023 tapers from 2 mm at the proximal end to 0.9 mm at the distal end.
  • the projection of the first transition location 300 in the axial direction of the tubular element 100 is located distal to the projection of the second transition location 400 in the axial direction of the tubular element 100 .
  • the inner tube 102 has a three-layer structure, and the inside and outside are sequentially a first polymer layer, a reinforcing layer, and a second polymer layer.
  • the outer tube 101 has a double-layer structure, the outer layer of the outer tube 101 is a polymer layer, the inner layer of the outer tube 101 is a reinforcement layer, and the reinforcement layer of the outer tube 101 is a cut pipe material.
  • the catheter includes a second developing ring, and the second developing ring is provided at the position of the inner tube 102 corresponding to the position of the blocking element 200 .
  • the fourth flat region 1023-2 is a flat region with a smooth surface; in other embodiments, the fourth flat region 1023-2 may be a surface with a concave-convex structure, a groove structure or a curved structure , but the overall inner and outer diameter of the same tubular structure.
  • FIG. 7 is a cross-sectional view of the distal end of the catheter provided in the fourth embodiment.
  • the flow blocking element 200 of the catheter shown in FIG. 7 is in an expanded state.
  • the overall structure of the catheter provided in the fourth embodiment is similar to that of the second embodiment, which will not be repeated here.
  • the difference from the second embodiment is that in the catheter provided in the fourth embodiment, the first The transition zone 1012-1 is a variable diameter region perpendicular to the axial direction of the tubular element 100, that is, the outer and inner surfaces of the first transition zone 1012-1 are at 90° to the axial direction of the tubular element 100, and the first transition zone
  • the axial length of 1012-1 that is, the thickness of the pipe here, is 0.1 mm, and the axial length of the first recess 1012 is 5 mm.
  • the projection of the first transition location 300 in the axial direction of the tubular element 100 is located distal to the projection of the second transition location 400 in the axial direction of the tubular element 100 .
  • the inner tube 102 has a three-layer structure, and the inside and outside are sequentially a first polymer layer, a reinforcing layer, and a second polymer layer.
  • the outer tube 101 has a double-layer structure, the outer layer of the outer tube 101 is a polymer layer, the inner layer of the outer tube 101 is a reinforcement layer, and the reinforcement layer of the outer tube 101 is a cut pipe material.
  • the catheter includes a first developing ring, and the first developing ring is located at the head end of the catheter; the catheter further includes a second developing ring and a third developing ring, and the second developing ring and the third developing ring are arranged in the direction of the blocking flow.
  • the position of the element 200 is adapted to the position on the inner tube 102 , the second developing ring is located at the distal position of the blocking element 200 , and the third developing ring is located at the proximal position of the blocking element 200 .
  • the fifth embodiment provides a catheter.
  • FIG. 8 is a cross-sectional view of the distal end of the catheter provided in the fourth embodiment.
  • the flow blocking element 200 of the catheter shown in FIG. 8 is in an expanded state.
  • the overall structure of the catheter provided in the fifth embodiment is similar to that of the fourth embodiment, and details are not repeated here.
  • the third The transition area 1022-1 is a diameter-reducing area perpendicular to the axial direction of the tubular element 100, that is, the outer and inner surfaces of the third transition area 1022-1 are at 90° to the axial direction of the tubular element 100, and the first transition area 1013
  • the axial length of -1 is 0.5 mm
  • the axial length of the first recess 1012 is 8 mm.
  • the first transition area 1012-1 of the first recess 1012 is a variable diameter area perpendicular to the axial direction of the tubular element 100, that is, the outer surface of the first transition area 1012-1 is at 90° to the axial direction of the tubular element 100.
  • the axial length of the third transition zone 1022-1 is 0 mm, and the axial length of the second recess 1022 is 20 mm.
  • the inner diameter of the second concave portion 1022 is the same as the inner diameter of the inner tube body 1021 , and the thickness of the distal end of the inner tube 102 is smaller than the thickness of the inner tube body 1021 .
  • the outer diameter of the second recess 1022 is smaller than the outer diameter of the inner tube body 1021 , the inner diameter of the second recess 1022 is larger than the inner diameter of the inner tube body 1021 , and the thickness of the distal end of the inner tube is smaller than the thickness of the inner tube body 1021 In some other embodiments, the outer diameter of the second recess 1022 is smaller than the outer diameter of the inner tube body 1021 , and the inner diameter of the second recess 1022 is smaller than the inner diameter of the inner tube body 1021 .
  • the projection of the first transition location 300 in the axial direction of the tubular element 100 is located distal to the projection of the second transition location 400 in the axial direction of the tubular element 100 .
  • the inner tube 102 has a double-layer structure, and the inside and outside are the first polymer layer and the second polymer layer in sequence.
  • the outer tube 101 has a single-layer polymer structure.
  • the catheter includes a second developing ring and a third developing ring, the second developing ring and the third developing ring are sleeved on the inner tube 102 which is compatible with the position of the blocking element 200, and the second developing ring is located at At the distal position of the blocking element 200 , the third developing ring is located at the proximal position of the blocking element 200 .
  • the third transition region 1022 - 1 is a variable diameter region perpendicular to the axial direction of the tubular element 100 , that is, the third transition region 1022 - 1
  • Both the outer and inner surfaces are at 90° to the axial direction of the tubular element 100
  • the axial length of the third transition zone 1022-1 is 0.05 mm
  • the axial length of the second recess 1022 is 8 mm.
  • the inner surface and the outer surface of the first transition area 1012-1 are inclined surfaces at a certain angle with the axial direction of the tubular element 100, and the inclination angle is the same, and both are 40°.
  • FIG. 10 is an overall schematic diagram of the catheter provided by the sixth embodiment of the present invention
  • FIG. 11 is a cross-sectional view of the distal end of the catheter provided by the sixth embodiment of the present invention.
  • the catheter provided by the present invention includes a tubular element 100 and a flow blocking element 200 .
  • the tubular element 100 includes an outer pipe 101 and an inner pipe 102
  • the flow blocking element 200 is fixed to the outer pipe 101 in the tubular element 100 .
  • the outer tube 101 is sleeved on the outside of the inner tube 102
  • a first cavity is formed between the outer tube 101 and the inner tube 102 .
  • the flow blocking element 200 has an expanded state and a contracted state, and the flow blocking element 200 can be converted between the expanded state and the contracted state.
  • the outer tube 101 includes an outer tube body 1011 and a first recess 1012 , the first recess 1012 is located at the distal end of the outer tube body 1011 , the blocking element 200 is fixed to the first recess 1012 , and the first recess 1012 is opened
  • There is a liquid through hole 1014, and the first cavity is used to pass or withdraw liquid to control the expansion and contraction of the flow blocking element 200; when the first cavity is in a liquid-filled state, the flow blocking element 200 is in an expanded state; the first cavity When in a vacuum state, the blocking element 200 is in a contracted state.
  • the liquid through hole 1014 is used for passing liquid, and the liquid in the first cavity enters the blocking element 200 through the liquid passing hole 1014 to expand the blocking element 200 or withdraw from the blocking element 200 to shrink the blocking element 200 .
  • the first concave portion 1012 has been described in detail, and will not be repeated here.
  • the outer tube 101 further includes a distal end portion 1013 of the outer tube.
  • the distal end portion 1013 of the outer tube is located at the distal end of the first concave portion 1012 .
  • the diameter is larger than the outer diameter of the distal end of the first concave portion 1012, and the distal end of the distal end portion of the outer tube 1013 is fixedly connected to the inner tube 102;
  • the second flat area 1013-2, the inner diameter of the second flat area 1013-2 is larger than the inner diameter of the first flat area 1012-2, and the outer diameter of the second flat area 1013-2 is larger than the first flat area 1012- 2,
  • the inner and outer diameters of the second transition region 1013-1 gradually transition from the inner and outer diameters of the first flat region 1012-2 to the inner diameter of the second flat region 1013-2 from the proximal end to the distal end and the outer diameter
  • the second transition region 1013-1 is a variable diameter region where both the inner diameter and the outer diameter of the outer tube 101 become larger.
  • the inner diameter of the second flat region 1013-2 is equal to the inner diameter of the first flat region 1012-2, and the outer diameter of the second flat region 1013-2 is greater than that of the first flat region 1012-2 Outer diameter, the outer diameter of the second transition region 1013-1 gradually transitions from the outer diameter of the first flat region 1012-2 to the outer diameter of the second flat region 1013-2 from the proximal end to the distal end, the second transition region The inner diameter of 1013-1 remains unchanged, and the second transition zone 1013-1 is a diameter-reducing zone, where the outer diameter of the outer tube 101 increases.
  • the distal end portion 1013 of the outer tube and the first concave portion can be combined to form a V-shaped, frame-shaped, arc-shaped, polygonal, irregular-shaped, etc.-shaped depression on the outer tube 101 .
  • both the proximal end and the distal end of the flow blocking element 200 are connected to the first flat region 1012-2, and the connection can be adhesive, bound or fusion connection; in other embodiments, the flow blocking element
  • the proximal end of 200 may be connected to the first transition region 1012-1, and/or the distal end of the flow blocking element 200 may be connected to the second transition region 1013-1, which may be bonded, bound or welded.
  • the inner surface and the outer surface of the second transition zone 1013-1 are inclined surfaces which form a certain angle with the axial direction of the tubular element 100, and the inclination angle is the same, and both are 60°.
  • the inner surface and the outer surface of the second transition zone 1013-1 are inclined surfaces that form a certain angle with the axial direction of the tubular element 100, the inclination angle may be the same or different, and the inclination angle may be 0-90 Any angle in °, such as 5°, 15°, 30°, 40°, 45°, 60°, 75°, 85°; in some other embodiments, the inner surface of the second transition zone 1013-1 and The outer surfaces are all planes perpendicular to the axial direction of the tubular element 100; in some other embodiments, the inner surface of the second transition zone 1013-1 is parallel to the axial direction of the tubular element 100, and the outer surface of the second transition zone 1013-1 is parallel to the axial direction of the tubular element 100.
  • the surface is an inclined surface that forms a certain angle with the axial direction of the tubular element 100, and the inclined angle can be any angle between 0° and 90°, such as 5°, 15°, 30°, 40°, 45°, 60°, 75°, 85°; in other embodiments, the inner surface of the second transition zone 1013-1 is parallel to the axial direction of the tubular element 100, and the outer surface of the second transition zone 1013-1 is parallel to the axial direction of the tubular element 100 vertical plane; in all embodiments, the axial length of the second transition zone 1013-1 is 0-10 mm; in this embodiment, the axial length of the second transition zone 1013-1 is 5 mm; in some other implementations In some embodiments, the axial length of the second transition zone 1013-1 is 0 mm; in other embodiments, the axial length of the second transition zone 1013-1 is 3 mm; in other embodiments, the second transition zone 1013 The axial length of -1 is 8 mm; in some other embodiments, the axial length of the
  • the axial length of the outer tube distal end 1013 is 1-15 mm; in this embodiment, the axial length of the outer tube distal end 1013 is 10 mm; in some other embodiments, the outer tube distal The axial length of the end portion 1013 is 1 mm; in other embodiments, the axial length of the distal end portion 1013 of the outer tube is 8 mm; in other embodiments, the axial length of the distal end portion 1013 of the outer tube is 12 mm; In some other embodiments, the axial length of the outer tube distal portion 1013 is 15 mm.
  • the outer diameter of the second flat region 1013-2 is 1.0-3.7 mm, and in this embodiment, the outer diameter of the second flat region 1013-2 is 2.8 mm. In some other embodiments, the outer diameter of the second flat area 1013-2 is 1.0 mm; in some other embodiments, the outer diameter of the second flat area 1013-2 is 2.0 mm; in some other embodiments , the outer diameter of the second straight area 1013-2 is 3.0 mm; in some other embodiments, the outer diameter of the second straight area 1013-2 is 3.7 mm;
  • the distal end portion 1013 of the outer tube is connected to the inner tube 102 (not shown in FIG. 11 ), so that the distal end of the first cavity is closed, so that the liquid passing through the first cavity will not leak from the distal end of the catheter , thereby controlling the expansion and contraction of the flow blocking element 200 . Therefore, the distal end of the distal end portion of the outer tube 1013 has a reduced diameter area (not shown in the figure), and the reduced diameter area gradually decreases in outer diameter from the proximal end to the distal end so that it can be connected to the inner tube 102 .
  • the position where the distal end portion 1013 of the outer tube is connected to the inner tube 102 may be the most distal position of the inner tube 102 , or may be a position in the inner tube 102 .
  • the inner tube 102 of the catheter provided in this embodiment includes an inner tube body 1021 and a second recess 1022 from the proximal end to the distal end, the second recess 1022 is located at the distal end of the inner tube body 1021, and the second The outer diameter of the concave portion 1022 is smaller than the outer diameter of the inner tube main body 1021 .
  • the second concave portion 1022 has been described in detail, and will not be repeated here.
  • the inner tube 102 of the catheter may be a straight tube structure with the same inner and outer diameters from the proximal end to the distal end;
  • the outer diameter is smaller than the outer diameter of the second recess 1022 .
  • the projection of the first transition location 300 in the axial direction of the tubular element 100 is located distal to the projection of the second transition location 400 in the axial direction of the tubular element 100 .
  • the inner tube 102 has a three-layer structure, and the inside and outside are sequentially a first polymer layer, a reinforcing layer, and a second polymer layer.
  • the outer tube 101 has a double-layer structure, the outer layer of the outer tube 101 is a polymer layer, and the inner layer of the outer tube 101 is a polymer layer.
  • the catheter includes a first developing ring, the first developing ring is sleeved on the outside of the inner tube, and the first developing ring is located at the head end of the catheter; the catheter also includes a second developing ring, and the second developing ring is sleeved with the
  • the position of the blocking element 200 is adapted to the position of the inner tube 102 .
  • the second transition region 1013-1 is a variable diameter region perpendicular to the axial direction of the tubular element 100, that is, the second transition region 1013- Both the outer and inner surfaces of 1 are at 90° to the axial direction of tubular element 100 .
  • the second flat area 1013-2 is a flat area with a smooth surface; in other embodiments, the second flat area 1013-2 may be a surface with a concave-convex structure, a groove structure or a curved structure , but the overall inner and outer diameter of the same tubular structure.
  • This embodiment provides a catheter.
  • the outer surface of the first concave portion 1012 is an inclined surface with a gradually decreasing outer diameter, and the proximal end of the blocking element 200 is fixed on the inclined surface of the first concave portion 1012, that is, The first recess 1012 has only a first transition region 1012-1 and no first flat region 1012-2.
  • the end surface of the distal end of the outer tube is a first chamfered surface
  • the first chamfered surface forms the outer surface of the first concave portion 1012
  • the proximal end of the blocking element 200 is a second chamfered surface matched with the first chamfered surface
  • the cutting plane, the first chamfering plane and the second chamfering plane are fixedly connected. That is, the first concave portion 1012 has only the first transition area 1012-1 but not the first straight area 1012-2, and the slope of the chamfer at the proximal end of the blocking element 200 is the same as the slope of the chamfer at the distal end of the outer tube, which can be matched with each other and Fixed connection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Child & Adolescent Psychology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种导管,其包括:管状元件(100)和功能元件;管状元件(100)包括外管(101)和内管(102);外管(101)套设于内管(102)的外部,外管(101)和内管(102)之间形成第一腔体,外管(101)包括外管主体(1011)和第一凹部(1012),第一凹部(1012)位于外管主体(1011)的远端;功能元件设置于管状元件(100)上,功能元件的至少部分与第一凹部(1012)连接。如此设置,能提高带有功能元件的导管的兼容性和到位能力。

Description

导管和阻流导管 技术领域
本发明涉及医疗器械技术领域,特别涉及一种导管和一种阻流导管。
背景技术
脑卒中,主要由脑血管内的血栓引起,是严重威胁人类健康的常见病,是当今世界引起死亡的第三大原因,也是导致成人长期残疾的首位原因的疾病。目前,临床中通常使用抽吸导管直接吸栓或支架辅助取栓的治疗方法去除血栓,实现血管再通。抽吸导管沿血管到达血栓位置后,在近端给与负压,将血栓吸入管中或吸附在管口缓慢拖入导引导管内,使得血管重新获得血流动力;支架取栓器需要越过血栓位置,靠支架网孔捕捉血栓,回撤入支撑导管,使得血管再通,支架回撤进入支撑导管后,支撑导管连同支架以及捕获的血栓一起回撤进入导引导管。但在取栓过程中,由于近端血流冲击,常有血栓脱落并且流向远端血管,或在成功捕获栓子后,在操作抽吸导管或取栓支架输入介入治疗器械(导引导管或支撑导管)的过程中,产生碎栓流向血管远端形成二次闭塞,造成手术失败,严重时威胁患者生命。例如,经皮冠状动脉介入治疗PCI引起的心肌坏死率高达16%-39%,究其原因,则多为介入操作过程中栓子逃逸远端血管所致。为了解决介入治疗时血栓破裂的带来的问题,现有技术中通常使用球囊导引导管临时阻断血流辅助取栓手术
通常在手术过程中,球囊导引导管辅助取栓器械到达目标位置后,注入造影液使得球囊可以扩张,贴附血管壁,临时阻断血流;而在从血管中取走或抽走血栓后,通过球囊的收缩,回撤球囊导引导管,将血栓带出人体以达到血流重建的效果。球囊作为功能元件依附于导管,往往会影响导管整体的兼容性和到位能力。除了球囊导引导管外,一些带有如阻流元件、电子元件、显影元件、取栓元件等功能元件的导管也存在功能元件影响导管整体的兼容性和到位能力的问题。
目前,现有技术中的带有功能元件的导管存在兼容性差,到位能力低的问题。
发明内容
本发明的目的在于提供一种导管,以解决现有的导管中兼容性差,到位能力低的问题。
为解决上述技术问题,本发明提供了一种导管,其包括:管状元件和功能元件;
管状元件包括外管和内管;
外管套设于内管的外部,外管和内管之间形成第一腔体,外管包括外管主体和第一凹部,第一凹部位于外管主体的远端;
功能元件设置于管状元件上,功能元件的至少部分与第一凹部连接。
优选的,功能元件为阻流元件、显影元件、电子元件、取栓元件中的至少一种。
优选的,外管的外表面向内侧凹陷形成了第一凹部。
优选的,第一凹部的内径小于或等于外管主体的内径。
优选的,外管的内表面向外侧凹陷形成了第一凹部。
优选的,第一凹部的外径小于或等于外管主体的外径。
优选的,第一凹部的轴向长度为2-30mm。
优选的,第一凹部从近端至远端依次包括第一过渡区和第一平直区,第一过渡区为变径区,在变径区处,外管的内径和外径中的至少一个变大或变小。
优选的,第一过渡区的轴向长度为0mm~10mm。
优选的,第一过渡区的内表面和/或外表面与外管主体的轴向呈一定倾斜角度,倾斜角度为0°-90°。
优选的,第一过渡区的内表面和外表面与外管主体的轴向呈相同的倾斜角度。
优选的,第一平直区的外径与外管主体的外径之比为0.7~1.0。
优选的,外管主体的外径为1.0mm~3.7mm,第一平直区的外径为0.7m~3.5mm。
优选的,外管还包含外管远端部,外管远端部位于第一凹部的远端,外管远端部的近端的外径大于第一凹部的远端的外径,外管远端部与内管在远端位置固定连接。
优选的,外管远端部从近端至远端依次包括第二过渡区和第二平直区,第二过渡区为变径区,在变径区处,外管的内径和外径中的至少一个变大或变小。
优选的,内管包含内管主体和第二凹部,第二凹部位于内管主体的远端,内管的外表面向内侧凹陷形成第二凹部。
优选的,第二凹部从近端至远端依次包括第三过渡区和第三平直区,第三过渡区为变径区,在变径区处,内管的外径变小。
优选的,第二凹部的轴向长度为2-60mm。
优选的,第三过渡区的外表面与内管主体的轴向呈一定倾斜角度,倾斜角度为0°-90°,第三过渡区的轴向长度为0-10mm。
优选的,第三平直区的外径与内管主体的外径之比为大于等于0.6且小于1.0。
优选的,内管主体的外径为0.5mm~3.2mm,第三平直区的外径大于等于0.3mm且小于3.2mm。
优选的,外管主体的最远端称为第一过渡位置,内管主体的最远端称为第二过渡位置,第一过渡位置在管状元件的轴向上的投影位于第二过渡位置在管状元件的轴向上的投影的远端;
第一凹部从近端至远端依次包括第一过渡区与第一平直区;
第三过渡区的外表面与管状元件的轴向方向之间呈第一倾斜角,第一过渡区的内表面与管状元件的轴向方向之间呈第二倾斜角,第一倾斜角大于等于第二倾斜角。
优选的,内管还包含内管远端部,内管远端部位于第二凹部的远端。
优选的,内管远端部的轴向长度为1-500mm。
优选的,内管远端部的外径小于第二凹部的外径,内管远端部位于导管的头端。
优选的,内管远端部从近端至远端依次包括第四过渡区和第四平直区,第四过渡区为变径区,在变径区处,内管的外径变小。
优选的,第四平直区的外径为0.2mm~3.1mm。
优选的,功能元件为阻流元件,阻流元件的近端固定于第一凹部。
优选的,阻流元件为一高分子膜,第一腔体处于液体充盈状态时,阻流元件处于膨胀状态;第一腔体处于真空状态时,阻流元件处于收缩状态。
优选的,阻流元件的远端与内管固定连接。
优选的,阻流元件设置在第一凹部,阻流元件的近端与远端均与外管固定连接,外管的远端与内管连接,第一凹部上开设有用于向阻流元件充盈液体的通液孔。
优选的,高分子膜的厚度为0.05mm~0.15mm。
优选的,高分子膜的材料为硅胶、聚氨酯、乳胶、聚乙烯、聚四氟乙烯,膨体聚四氟乙烯中的任意一种或其混合物。
优选的,内管包含内管主体和一个第二凹部,第二凹部位于内管主体的远端,第二凹部的外径小于内管主体的外径,功能元件为阻流元件,阻流元件的近端与第一凹部固定连接,阻流元件的远端与第二凹部固定连接。
优选的,内管和外管都至少包含一个高分子层,高分子层的材料为聚醚嵌段聚酰胺、尼龙、聚氨酯、聚四氟乙烯、聚乙烯、聚烯烃弹性体中的一种或几种。
优选的,外管和/或内管还包含有加强层,加强层为丝材编织结构、丝材螺旋缠绕结构、切割管材或其组合,加强层的材料为不锈钢、镍钛合金、钴铬合金或高分子。
优选的,外管和/或内管为三层结构,三层结构从内向外依次为第一高分子层、加强层、第二高分子层。
优选的,导管还包括第一显影环,第一显影环位于导管的头端。
优选的,导管包括第二显影环,第二显影环位于内管上与功能元件位置相适应的位置。
优选的,内管的内部形成第二腔体,第二腔体整体的内径相同。
优选的,第二腔体的内径与外管主体的外径之比为0.2~0.9。
优选的,第二腔体的内径为0.1mm~3.0mm,外管主体的外径为0.5mm~3.7mm。
优选的,第一凹部的外表面为一个外径逐渐减小的斜面,功能元件的近端固定于第一凹部的斜面上。
优选的,外管远端的端面为第一斜切面,第一斜切面形成第一凹部的外表面,功能元件的近端为与第一斜切面配合的第二斜切面,第一斜切面和第二斜切面固定连接。
本发明还提供了一种阻流导管,其包括:管状元件和阻流元件;管状元件包括外管和内管;外管套设于内管的外部,外管和内管之间形成第一腔体,外管包括外管主体和第一凹部,所述第一凹部位于所述外管主体的远端;阻流元件设置于管状元件上,阻流元件的至少部分与第一凹部连接。
优选的,阻流元件为一高分子膜,第一腔体处于液体充盈状态时,阻流元件处于膨胀状态;第一腔体处于真空状态时,阻流元件处于收缩状态。
综上,通过本发明的导管,能够带来以下至少一种有益效果:
1、在导管的外管和/或内管上设置凹部,用于容置功能元件的至少部分体积,减小连接位置的厚度,部分或全部消除了功能元件对导管硬度的影响,保证导管的柔性,使导管能在血管中顺利推送。
2、在导管的外管和/或内管上设置凹部,减小了导管整体的厚度,在保证导管的内腔足够大的同时控制导管的外径不过大,使导管内腔能通过体积较大的医疗器械的同时,还能顺利通过迂曲血管,减小对血管壁的刺激,且到位到比较高的血管位置。
3、功能元件近端固定于外管,功能元件的远端固定于内管,进一步减小了功能元件的存在对导管整体外径和导管柔顺性能的影响。
4、内管上还设有凹部,保证了内管与外管之间的腔体的体积足够大,保证了腔体的功能,例如球囊导引导管,内管与外管之间为通液腔,通液腔的体积大小影响球囊的膨胀和收缩的速率。
5、内管远端的外径相对近端的内管主体的外径小,使导管从近端至远 端柔顺性能逐渐增大,保证了导管的输送和到位能力。
附图说明
本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。其中:
图1是本发明一优选实施例提供的导管的膨胀状态的整体示意图;
图2是本发明一优选实施例提供的导管的收缩状态的整体示意图;
图3是本发明一优选实施例提供的导管的远端部分的剖面图;
图4是本发明一优选实施例提供的导管的远端部分的剖面图;
图5是本发明一优选实施例提供的导管的远端部分的剖面图;
图6是本发明一优选实施例提供的导管的远端部分的剖面图;
图7是本发明一优选实施例提供的导管的远端部分的剖面图;
图8是本发明一优选实施例提供的导管的远端部分的剖面图;
图9是本发明一优选实施例提供的导管的远端部分的剖面图;
图10本发明一优选实施例提供的导管的整体示意图;
图11是本发明一优选实施例提供的导管的远端部分的剖面图;
图12是本发明一优选实施例提供的导管的远端部分的剖面图;
附图中:
100:管状元件;200:阻流元件;101:外管;102:内管;1011:外管主体;1012:第一凹部;1012-1:第一过渡区;1012-2:第一平直区;1013:外管远端部;1013-1:第二过渡区;1013-2:第二平直区;1014:通液孔;1021:内管主体;1022:第二凹部;1022-1:第三过渡区;1022-2:第三平直区;1023:内管远端部;1023-1:第四过渡区;1023-2:第四平直区;300:第一过渡位置;400:第二过渡位置。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例 对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且未按比例绘制,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例。
如在本说明书和所附权利要求书中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,除非内容另外明确指出外。如在本说明书和所附权利要求中所使用的,术语“或”通常是以包括“和/或”的含义而进行使用的,除非内容另外明确指出外,术语“近端”通常是靠近操作者的一端,术语“远端”通常是靠近患者靠近病灶的一端。
本发明的核心思想在于提供一种导管,其包括:管状元件和功能元件;管状元件包括外管和内管;外管套设于内管的外部,外管和内管之间形成第一腔体,外管包括外管主体和第一凹部,第一凹部位于外管主体的远端;功能元件设置于管状元件上,功能元件的至少部分与第一凹部连接。功能元件可以是设置于导管的、发挥医学功能的任意元件,例如阻流元件、显影元件、电子元件、取栓元件等,功能元件可以一端连接于导管,另一端自由;也可以两端都与导管连接;也可以整体固定于导管。以下实施例以阻流元件为功能元件的代表详细描述本发明提供的导管的结构,其他种类的功能元件与导管之间的关系与阻流元件相似。
以下参考附图进行描述。
实施例一
本实施例提供一种导管,图1、图2是本发明实施例一提供的导管的整体示意图,图3、图4是本发明实施例一提供的导管的远端部分的剖面图。如图1-图4所示,本发明提供的导管包括管状元件100和阻流元件200,管状元件100包括外管101和内管102,阻流元件200固定于管状元件100,外管101套设于内管102的外部,外管101与内管102之间形成第一腔体。阻流元件200具有膨胀状态和收缩状态,图1与图3分别为阻流元件200呈现膨胀状态时的整体示意图和远端部分剖面图,图2与图4分别为阻流元件200呈现收缩状态时的整体示意图和远端部分剖面图。阻流元件200可以在膨胀状态和 收缩状态之间相互转换;当阻流元件200处于膨胀状态时,阻断或减小血管内的血流。如图3和图4所示,外管101包括外管主体1011和第一凹部1012,第一凹部1012位于外管主体1011的远端,阻流元件200的近端固定于第一凹部1012,阻流元件200的远端固定于内管102。阻流元件200固定于外管101与内管102之间,可以减小阻流元件200的存在对导管整体外径和导管柔顺性能的影响。
在该实施例中,外管101的外表面向内侧凹陷形成了第一凹部1012;在其他一些实施例中,外管101的内表面向外侧凹陷形成了所述第一凹部1012。
在该实施例中,第一凹部1012的外径小于外管主体1011的外径,第一凹部1012的内径小于外管主体1011的内径,阻流元件200的近端固定于第一凹部1012的外表面;在其他一些实施例中,第一凹部1012的外径小于外管主体1011的外径,第一凹部1012的内径等于外管主体1011的内径,阻流元件200的近端固定于第一凹部1012的外表面;在其他一些实施例中,第一凹部1012的外径等于外管主体1011的外径,第一凹部1012的内径大于外管主体1011的内径,阻流元件200的近端固定于第一凹部1012的内表面;在其他一些实施例中,第一凹部1012的外径小于外管主体1011的外径,第一凹部1012的内径大于外管主体1011的内径,阻流元件200的近端固定于第一凹部1012的内表面或外表面。
在所有实施例中,第一凹部1012的轴向长度为2-20mm;在该实施例中,第一凹部1012的轴向长度为12mm;在其他一些实施例中,第一凹部1012的轴向长度为2mm;在其他一些实施例中,第一凹部1012的轴向长度为5mm;在其他一些实施例中,第一凹部1012的轴向长度为10mm;在其他一些实施例中,第一凹部1012的轴向长度为15mm;在其他一些实施例中,第一凹部1012的轴向长度为20mm。在导管的外管101上设置凹部,可用于容置阻流元件200的至少部分体积,可以减小连接位置的厚度,部分或全部消除了阻流元件对导管硬度的影响,保证导管的柔性,使导管能在血管中顺利推送。同时,能够减小导管整体的厚度,在保证导管的内腔足够大的同时 控制导管的外径不过大,使导管内腔能通过体积较大的医疗器械的同时,还能顺利通过迂曲血管,减小对血管壁的刺激,且到位到比较高的血管位置。
如图3、图4所示,在该实施例中,第一凹部1012从近端至远端依次包括第一过渡区1012-1和第一平直区1012-2,第一过渡区1012-1的内径从外管主体1011的内径过渡至第一平直区1012-2的内径,第一过渡区1012-1的外径从外管主体1011的外径过渡至第一平直区1012-2的外径,第一过渡区1012-1为变径区,在第一过渡区1012-1处,外管101的内径和外径都变小。在其他一些实施例中,第一凹部1012的外径小于外管主体1011的外径,第一凹部1012的内径等于外管主体1011的内径,第一过渡区1012-1的外径从外管主体1011的外径过渡至第一平直区1012-2的外径,第一过渡区1012-1的内径与外管主体1011的内径和第一凹部1012的内径相等,第一过渡区1012-1为变径区,在第一过渡区1012-1处,外管101的外径变小。在其他一些实施例中,第一凹部1012的外径等于外管主体1011的外径,第一凹部1012的内径大于外管主体1011的内径,第一过渡区1012-1的内径从外管主体1011的内径过渡至第一平直区1012-2的内径,第一过渡区1012-1的外径与外管主体1011的外径和第一凹部1012的外径相等,第一过渡区1012-1为变径区,在第一过渡区1012-1处,外管101的内径变大。
如图3、图4所示,在该实施例中,第一过渡区1012-1的内表面和外表面为与外管主体1011(或与管状元件100)的轴向呈一定角度的倾斜面,倾斜的角度相同,都为45°。在其他一些实施例中,第一过渡区1012-1的内表面和外表面为与外管主体1011(或与管状元件100)的轴向呈一定角度的倾斜面,倾斜的角度相同,都为大于0且小于等于90°中的任意一个角度;在其他一些实施例中,第一过渡区1012-1的内表面和外表面为与外管主体1011(或与管状元件100)的轴向呈一定角度的倾斜面,倾斜的角度相同,都为60°;在其他一些实施例中,第一过渡区1012-1的内表面和外表面为与外管主体1011(或与管状元件100)的轴向呈一定角度的倾斜面,倾斜的角度相同,都为5°;在其他一些实施例中,第一过渡区1012-11的内表面和外表面为与外管主体1011(或与管状元件100)的轴向呈一定角度的倾斜面,倾斜 的角度相同,都为85°;在其他一些实施例中,第一过渡区1012-1的内表面和外表面都为与外管主体1011(或与管状元件100)的轴向垂直的面;在其他一些实施例中,第一过渡区1012-11的内表面与外管主体1011(或与管状元件100)的轴向平行,第一过渡区1012-1的外表面为与外管主体1011(或与管状元件100)的轴向呈一定角度的倾斜面,倾斜的角度可以为大于0°,小于90°,例如5°,15°,30°,40°,45°,60°,75°,85°;在其他一些实施例中,第一过渡区1012-1的内表面与外管主体1011(或与管状元件100)的轴向平行,第一过渡区1012-1的外表面为与外管主体1011(或与管状元件100)的轴向垂直的面;在其他一些实施例中,第一过渡区1012-1的外表面与外管主体1011(或与管状元件100)的轴向平行,第一过渡区1012-1的内表面为与外管主体1011(或与管状元件100)的轴向呈一定角度的倾斜面,倾斜的角度可以为大于0°且小于等于90°中的任意角度,例如5°,15°,30°,40°,45°,60°,75°,85°;在其他一些实施例中,第一过渡区1012-1的外表面与外管主体1011(或与管状元件100)的轴向平行,第一过渡区1012-1的内表面为与外管主体1011(或与管状元件100)的轴向垂直的面。在所有实施例中,第一过渡区1012-1的轴向长度为0-10mm;在该实施例中,第一过渡区1012-1的轴向长度为4mm;在其他一些实施例中,第一过渡区1012-1的轴向长度为0mm;在其他一些实施例中,第一过渡区1012-1的轴向长度为3mm;在其他一些实施例中,第一过渡区1012-1的轴向长度为5mm;在其他一些实施例中,第一过渡区1012-1的轴向长度为8mm;在其他一些实施例中,第一过渡区1012-1的轴向长度为10mm。
在所有实施例中,外管主体1011的外径为1.0mm~3.7mm,第一平直区1012-2的外径为0.7m~3.5mm,第一平直区1012-2的外径与外管主体1011的外径比为0.7~1.0;在该实施例中,外管主体1011的外径为2.8mm,第一平直区1012-2的外径为2.6mm,第一平直区1012-2的外径与外管主体1011的外径比为0.928;在其他一些实施例中,外管主体1011的外径为3.7mm,第一平直区1012-2的外径为2.8mm,第一平直区1012-2的外径与外管主体1011的外径比为0.757;在其他一些实施例中,外管主体1011的外径为3.5mm, 第一平直区的外径为3.5mm,第一平直区1012-2的外径与外管主体1011的外径比为1.0;在其他一些实施例中,外管主体1011的外径为1.0mm,第一平直区1012-2的外径为0.7mm,第一平直区1012-2的外径与外管主体1011的外径比为0.7。
在所有实施例中,导管整体的长度为80-160cm;在该实施例中,导管整体的长度为130cm;在其他一些实施例中,导管整体的长度为80cm;在其他一些实施例中,导管整体的长度为160cm;在其他一些实施例中,导管整体的长度为115cm;在其他一些实施例中,导管整体的长度为110cm;在其他一些实施例中,导管整体的长度为140cm;在其他一些实施例中,导管整体的长度为150cm。
在该实施例中,阻流元件200为一高分子膜,第一腔体用于通过或回抽液体,从而控制阻流元件200的膨胀状态和收缩状态的转变,第一腔体用于通过或回抽的液体如造影液、生理盐水等,第一腔体处于液体充盈状态时,阻流元件200处于膨胀状态;第一腔体处于真空状态时,阻流元件200处于收缩状态。在该实施例中,高分子膜的厚度为0.10mm;在其他一些实施例中,高分子膜的厚度为0.05mm-0.15mm,例如0.05mm,0.08mm,0.12mm,0.15mm。在该实施例中,高分子膜的材料为硅胶;在其他一些实施例中,高分子膜的材料为聚氨酯;在其他一些实施例中,高分子膜的材料为乳胶;在其他一些实施例中,高分子膜的材料为聚乙烯;在其他一些实施例中,高分子膜的材料为聚四氟乙烯;在其他一些实施例中,高分子膜的材料为膨体聚四氟乙烯;在其他一些实施例中,高分子膜的材料为聚氨酯与聚乙烯的混合物,其材料比例为2:1;在其他一些实施例中,高分子膜的材料为聚四氟乙烯与膨体聚四氟乙烯的混合物,其材料比例为1:1;在其他一些实施例中,高分子膜的材料为硅胶、聚氨酯与聚乙烯的混合物,其材料比例为1:1:1。在该实施例中,阻流元件200的近端与第一平直区1012-2连接,连接方式可以为粘接,束缚或熔融连接;在其他一些实施例中,阻流元件200的近端可以与第一过渡区1012-1连接,连接方式可以为粘接,束缚或熔融连接。
在该实施例中,内管102为三层结构,从内向外依次为第一高分子层、 加强层、第二高分子层,第一高分子层的材料为聚四氟乙烯,加强层为丝材编织结构,加强层的材料为不锈钢,第二高分子层由聚醚嵌段聚酰胺、尼龙、聚氨酯,聚乙烯、聚烯烃弹性体在轴向上拼接而成;外管101为单高分子层,外管101的材料为聚醚嵌段聚酰胺。在其他一些实施例中,内管102和外管101都为三层结构,从内向外依次都为第一高分子层、加强层、第二高分子层;在其他一些实施例中,内管102为单层高分子结构,外管101为三层结构;在其他一些实施例中,内管102为三层结构,外管101为双层高分子结构。在其他一些实施例中,内管102和/或外管101的加强层为丝材螺旋缠绕结构;在其他一些实施例中,内管102和/或外管101的加强层为切割管材;在其他一些实施例中,内管102和/或外管101的加强层为丝材编织结构和丝材螺旋结构的组合;在其他一些实施例中,内管102和/或外管101的加强层为丝材编织结构和切割管材的组合;在其他一些实施例中,内管102和/或外管101的加强层为切割管材和丝材螺旋结构的组合。在其他一些实施例中,内管102和/或外管101的加强层的材料包括镍钛合金;在其他一些实施例中,内管102和/或外管101的加强层的材料包括钴铬合金;在其他一些实施例中,内管102和/或外管101的加强层的材料包括高分子;在其他一些实施例中,内管102和/或外管101的加强层的材料为镍钛合金和不锈钢的组合;在其他一些实施例中,内管102和/或外管101的加强层的材料为镍钛合金和高分子的组合。
在该实施中,导管包括第一显影环,第一显影环位于导管的头部;导管还包括第二显影环,第二显影环位于内管102上与阻流元件200的位置相适应的位置处。
在该实施例中,导管的内管102的内部形成第二腔体,第二腔体的整体内径相同。在所有实施例中,第二腔体的内径为0.1mm~3.0mm,外管主体1011的外径为0.5mm~3.7mm;在该实施例中,第二腔体的内径为2.3mm,外管主体1011的外径为2.8mm,第二腔体的内径与所述外管主体1011的外径之比为0.821;在其他一些实施例中,第二腔体的内径为0.1mm,外管主体1011的外径为0.5mm,第二腔体的内径与所述外管主体1011的外径之比为 0.2;在其他一些实施例中,第二腔体的内径为3.0mm,外管主体1011的外径为3.6mm,第二腔体的内径与所述外管主体1011的外径之比为0.833;在其他一些实施例中,第二腔体的内径为2.7mm,外管主体1011的外径为3.0mm,第二腔体的内径与所述外管主体1011的外径之比为0.9;在其他一些实施例中,第二腔体的内径为2.5mm,外管主体1011的外径为3.7mm,第二腔体的内径与所述外管主体1011的外径之比为0.676。在该实施例中,第二腔体用于通过医疗器械。
在该实施例中,外管主体1011和第一凹部1012之间,以及第一过渡区1012-1和第一平直区1012-2之间呈一个角度过渡;在其他一些实施例中,外管主体1011和第一凹部1012之间,和/或,第一过渡区1012-1和第一平直区1012-2之间可以呈一个弧度圆滑过渡。在该实施例中,第一平直区1012-2为表面光滑的平直区;在其他一些实施例中,第一平直区1012-2可以为表面带有凹凸结构、槽结构或者曲线结构,但是整体内外径相同的管状结构。
实施例二
本实施例提供一种导管,图5为实施例二提供的导管的远端部分的剖面图,图5所示的导管的阻流元件200处于膨胀状态。如图5所示,实施例二提供的导管的整体结构与实施例一相似,在此不再赘述,与实施例一不同的是,实施例二提供的导管的内管102包含内管主体1021和第二凹部1022,第二凹部1022位于所述内管主体1021的远端,第二凹部1022的外径小于所述内管主体1021的外径,阻流元件200的近端固定于第一凹部1012,阻流元件200的远端固定于第二凹部1022。在导管的内管102上设置凹部,可用于容置阻流元件200的至少部分体积,可以减小连接位置的厚度,部分或全部消除了阻流元件对导管硬度的影响,保证导管的柔性,使导管能在血管中顺利推送,并且在内管102设置凹部,使导管远端的柔软度增加,进一步增强导管在血管中的输送性能。
在所有实施例中,第二凹部1022的轴向长度为2-60mm;在该实施例中,第二凹部1022的轴向长度为30mm;在其他一些实施例中,第二凹部 1022的轴向长度为2mm;在其他一些实施例中,第二凹部1022的轴向长度为10mm;在其他一些实施例中,第二凹部1022的轴向长度为25mm;在其他一些实施例中,第二凹部1022的轴向长度为45mm;在其他一些实施例中,第二凹部1022的轴向长度为60mm。
如图5所示,第二凹部1022从近端至远端依次包括第三过渡区1022-1和第三平直区1022-2,第三过渡区1022-1的外径从内管主体1021的外径过渡至第三平直区1022-2的外径,第三过渡区1022-1为变径区,在第三过渡区1022-1处,内管102的外径变小。与第一凹部1012的第一过渡区1012-1相似,第三过渡区1022-1的外表面为与内管主体1021(或与管状元件100)轴向呈一定角度的倾斜面,倾斜面的角度为10°;在其他一些实施例中,第三过渡区1022-1的外表面为与内管主体1021(或与管状元件100)的轴向呈一定角度的倾斜面,倾斜面的角度为5°;在其他一些实施例中,第三过渡区1022-1的外表面为与内管主体1021(或与管状元件100)的轴向呈一定角度的倾斜面,倾斜面的角度为15°;在其他一些实施例中,第三过渡区1022-1的外表面为与内管主体1021(或与管状元件100)的轴向呈一定角度的倾斜面,倾斜面的角度为25°;在其他一些实施例中,第三过渡区1022-1的外表面为与内管主体1021(或与管状元件100)的轴向呈一定角度的倾斜面,倾斜面的角度为20°;在其他一些实施例中,第三过渡区1022-1外表面为与内管主体1021(或与管状元件100)的轴向垂直的面。在一些实施例中,第三过渡区1022-1的内表面与内管主体1021(或与管状元件100)轴向平行,第三过渡区1022-1的外表面为与内管主体1021(或与管状元件100)的轴向呈一定角度的倾斜面,倾斜的角度可以为0-90°中的任意角度,例如5°,15°,30°,40°,45°,60°,75°,85°;在其他一些实施例中,第三过渡区1022-1的内表面与内管主体1021(或与管状元件100)的轴向平行,第三过渡区1022-1的外表面为与内管主体1021(或与管状元件100)的轴向垂直的面;在其他一些实施例中,第三过渡区1022-1的内表面与内管主体1021(或与管状元件100)的轴向呈一定角度的倾斜面,倾斜的角度可以为0-90°中的任意角度,例如5°,15°,30°,40°,45°,60°,75°, 85°;在其他一些实施例中,第三过渡区1022-1的内表面为与内管主体1021(或与管状元件100)的轴向垂直的面。在所有实施例中,第三过渡区1022-1的轴向长度为0-10mm;在该实施例中,第三过渡区1022-1的轴向长度为5mm;在其他一些实施例中,第三过渡区1022-1的轴向长度为0mm;在其他一些实施例中,第三过渡区1022-1的轴向长度为3mm;在其他一些实施例中,第三过渡区1022-1的轴向长度为5mm;在其他一些实施例中,第三过渡区1022-1的轴向长度为8mm;在其他一些实施例中,第三过渡区1022-1的轴向长度为10mm。
在一些实施例中,内管主体1021的外径为0.5mm~3.2mm,第三平直区1022-2的外径为0.3m~3.2mm,第三平直区1022-2的外径与外管主体1011的外径比为0.6~1.0;在该实施例中,内管主体1021的外径为2.8mm,第三平直区1022-2的外径为2.4mm,第三平直区1022-2的外径与外管主体1011的外径比为0.857;在其他一些实施例中,内管主体1021的外径为3.2mm,第三平直区1022-2的外径为3.2mm,第三平直区1022-2的外径与内管主体1021的外径比为1.0;在其他一些实施例中,内管主体1021的外径为0.5mm,第三平直区1022-2的外径为0.3mm,第三平直区1022-2的外径与内管主体1021的外径比为0.6;在其他一些实施例中,内管主体1021的外径为1.0mm,第三平直区1022-2的外径为0.8mm,第三平直区1022-2的外径与内管主体1021的外径比为0.8;在其他一些实施例中,内管主体1021的外径为2.0mm,第三平直区1022-2的外径为1.8mm,第三平直区1022-2的外径与内管主体1021的外径比为0.9。
如图5所示,实施例二提供的导管的外管主体1011的最远端有一个第一过渡位置300(即外管主体1011与第一凹部1012的交界位置为第一过渡位置300)。在该实施例中,第一过渡位置300为导管的外管101的外径和内径开始变化的位置;在其他一些实施例中,第一过渡位置300为导管的外管101的外径和/或内径开始变化的位置。导管的内管主体1021的最远端有一个第二过渡位置400(即内管主体1021与第二凹部1022的交界位置为第二过渡位置),在该实施例中,第二过渡位置400为导管的内管的外径开始变化的位 置;在其他一些实施例中,第二过渡位置400还可以为导管的内管102的外径和内径开始变化的位置。在导管中,第一过渡位置300可以是与外管主体1011最远端位置的横截面形状相同的一个面,第二过渡位置400可以是与内管主体1021最远端位置的横截面形状相同的一个面,在此为了叙述方便,统一称为第一过渡位置300和第二过渡位置400。在该实施例中,第一过渡位置300在管状元件100的轴向上的投影位于第二过渡位置400在管状元件100的轴向上的投影的远端,且第三过渡区1022-1的外表面与管状元件100的轴向方向之间呈第一倾斜角,第一过渡区1012-1的内表面与管状元件100的轴向方向之间呈第二倾斜角,第一倾斜角大于等于第二倾斜角。在该实施例中,导管的外管101的内径在第一过渡位置300开始减小,导管的内管102的外径在第二过渡位置400开始减小,通过设置第一过渡位置300在管状元件100的轴向上的投影位于第二过渡位置400在管状元件100的轴向上的投影的远端,且设置第三过渡区1022-1与导管轴向的倾斜角大于第一过渡区1012-1与导管轴向的倾斜角,可以保证第一腔体的体积不会因为外管101的内径减小而变得太小,当第一腔体用于液体的通过或回抽时,保证液体通过或回抽的效率。
在该实施例中,内管102与外管101都为三层结构,内向外依次为第一高分子层、加强层、第二高分子层。内管102的第一高分子层的材料为聚四氟乙烯和聚烯烃弹性体,内管102的加强层为丝材螺旋缠绕结构,加强层的材料为镍钛合金,内管102的第二高分子层为聚醚嵌段聚酰胺、尼龙、聚氨酯、聚四氟乙烯、聚乙烯、混有降低摩擦系数添加剂的聚醚嵌段聚酰胺、聚烯烃弹性体在轴向上的拼接结构;外管101的第一高分子材料为聚四氟乙烯,外管101的加强层为丝材编织结构,加强层的材料为高分子丝,外管101的第二高分子层为聚醚嵌段聚酰胺、尼龙、聚氨酯、聚乙烯、聚烯烃弹性体在轴向上的拼接结构。
在该实施例中,导管包括第一显影环,第一显影环位于导管的头端。
在该实施例中,内管主体1021和第二凹部1022之间,以及第三过渡区1022-1和第三平直区1022-2之间呈一个角度过渡;在其他一些实施例中,内 管主体1021和第二凹部1022之间,和/或,第三过渡区1022-1和第三平直区1022-2之间可以呈一个弧度圆滑过渡。在该实施例中,第三平直区1022-2为表面光滑的平直区;在其他一些实施例中,第三平直区1022-2可以为表面带有凹凸结构、槽结构或者曲线结构,但是整体内外径相同的管状结构。
实施例三
本实施例提供一种导管,图6为实施例三提供的导管的远端部分的剖面图,图6所示的导管的阻流元件200处于膨胀状态。如图6所示,实施例三提供的导管的整体结构与实施例二相似,在此不再赘述,与实施例二不同的是,实施例三提供的导管的内管102包含内管主体1021、第二凹部1022、内管远端部1023,第二凹部1022位于所述内管主体1021的远端,第二凹部1022的外径小于所述内管主体1021的外径,阻流元件200的近端固定于第一凹部1012,阻流元件200的远端固定于第二凹部1022。内管远端部1023位于第二凹部1022的远端,内管远端部1023的外径小于第二凹部1022的外径,内管远端部1023位于导管的头端。内管远端部1023的存在使导管从近端至远端柔顺性能逐渐增大,保证了导管的输送和到位能力。
如图6所示,内管远端部1023从近端至远端依次包括第四过渡区1023-1和第四平直区1023-2,第四过渡区1023-1的外径从第三平直区1022-2的外径过渡至第四平直区的外径,第四过渡区1023-1为变径区,在第四过渡区1023-1处,内管102的外径中变小。在一些实施例中,第四平直区1023-2的外径为0.2mm-3.1mm;在该实施例中,第四平直区1023-2的外径为2.0mm;在其他一些实施例中,第四平直区1023-2的外径为0.2mm;在其他一些实施例中,第四平直区1023-2的外径为1.5mm;在其他一些实施例中,第四平直区1023-2的外径为3.1mm。在该实施例中,第四平直区1023-2的外径小于第二凹部1022的外径,第四平直区1023-2的内径等于第二凹部1022的内径;在其他一些实施例中,第四平直区1023-2的外径小于第二凹部1022的外径,第四平直区1023-2的内径大于第二凹部1022的内径。通过在内管102的远端设置一个外径比近端小的第四平直区1023-2,可以使导管的远端的硬度进一 步减小,增强导管在血管中的通过能力,减小导管远端戳伤血管的风险,提高到位性能。
在其他一些实施例中,内管远端部1023可以包含2-10个过渡区和平直区,过渡区和平直区依次间隔设置,使内管远端部1023的外径逐渐减小,内管远端部1023的外径可以从近端3mm逐渐降低至远端的0.6mm。在其他一些实施例中,内管远端部1023包含了5个依次间隔设置的过渡区和平直区,内管远端部1023的外径从近端的2.7mm降低至远端的0.9mm;在其他一些实施例中,内管远端部1023包含了10个依次间隔设置的过渡区和平直区,内管远端部1023的外径从近端的3.0mm降低至远端的0.6mm;在其他一些实施例中,内管远端部1023包含了2个依次间隔设置的过渡区和平直区,内管远端部1023的外径从近端的2.4mm降低至远端的1.65mm。在其他一些实施例中,内管远端部1023为一个外径逐渐减小的锥形管状结构,内管远端部1023的外径渐缩;在一些实施例中,内管远端部1023的外径从近端的3mm渐缩成远端的0.6mm;在一些实施例中,内管远端部1023的外径从近端的2.5mm渐缩成远端的0.6mm;在一些实施例中,内管远端部1023的外径从近端的2mm渐缩成远端的0.9mm。
在该实施例中,第一过渡位置300在管状元件100的轴向上的投影位于第二过渡位置400在管状元件100的轴向上的投影的远端。
在该实施例中,内管102为三层结构,内向外依次为第一高分子层、加强层、第二高分子层。外管101为双层结构,外管101的外层为高分子层,外管101的内层为加强层,外管101的加强层为切割管材。
在该实施例中,导管包括第二显影环,第二显影环设于与阻流元件200的位置相适应的内管102位置处。
在该实施例中,第二凹部1022和内管远端部1023之间,以及第四过渡区1023-1和第四平直区1023-2之间呈一个角度过渡;在其他一些实施例中,第二凹部1022和内管远端部1023之间,和/或,第四过渡区1023-1和第四平直区1023-2之间可以呈一个弧度圆滑过渡。在该实施例中,第四平直区1023-2为表面光滑的平直区;在其他一些实施例中,第四平直区1023-2可以 为表面带有凹凸结构、槽结构或者曲线结构,但是整体内外径相同的管状结构。
实施例四
实施例四提供一种导管,图7为实施例四提供的导管的远端部分的剖面图,图7所示的导管的阻流元件200处于膨胀状态。如图7所示,实施例四提供的导管的整体结构与实施例二相似,在此不再赘述,与实施例二不同的是,实施例四提供的导管中,第一凹部1012的第一过渡区1012-1为与管状元件100的轴向垂直的变径区域,即,第一过渡区1012-1的外表面和内表面都与管状元件100的轴向呈90°,第一过渡区1012-1的轴向长度即管材在此处的厚度,为0.1mm,第一凹部1012的轴向长度为5mm。
在该实施例中,第一过渡位置300在管状元件100的轴向上的投影位于第二过渡位置400在管状元件100的轴向上的投影的远端。
在该实施例中,内管102为三层结构,内向外依次为第一高分子层、加强层、第二高分子层。外管101为双层结构,外管101的外层为高分子层,外管101的内层为加强层,外管101的加强层为切割管材。
在该实施例中,导管包括第一显影环,第一显影环位于导管的头端;导管还包括第二显影环和第三显影环,第二显影环和第三显影环设于与阻流元件200的位置相适应的内管102上的位置,第二显影环位于阻流元件200的远端位置,第三显影环位于阻流元件200的近端位置。
实施例五
实施例五提供一种导管,图8为实施例四提供的导管的远端部分的剖面图,图8所示的导管的阻流元件200处于膨胀状态。如图8所示,实施例五提供的导管的整体结构与实施例四相似,在此不再赘述,与实施例四不同的是:实施例五提供的导管中,第二凹部1012的第三过渡区1022-1为与管状元件100的轴向垂直的变径区域,即,第三过渡区1022-1的外表面和内表面都与管状元件100轴向呈90°,第一过渡区1013-1的轴向长度为0.5mm,第一 凹部1012的轴向长度为8mm。第一凹部1012的第一过渡区1012-1为与管状元件100的轴向垂直的变径区域,即,第一过渡区1012-1的外表面与管状元件100的轴向呈90°,第三过渡区1022-1的轴向长度为0mm,第二凹部1022的轴向长度为20mm。在该实施例中,第二凹部1022的内径与内管主体1021的内径相同,内管102远端的厚度小于内管主体1021的厚度。在其他一些实施例中,第二凹部1022的外径小于内管主体1021的外径,第二凹部1022的内径大于内管主体1021的内径,内管远端的厚度小于内管主体1021的厚度;在其他一些实施例中,第二凹部1022的外径小于内管主体1021的外径,第二凹部1022的内径小于内管主体1021的内径。
在该实施例中,第一过渡位置300在管状元件100的轴向上的投影位于第二过渡位置400在管状元件100的轴向上的投影的远端。
在该实施例中,内管102为双层结构,内向外依次为第一高分子层、第二高分子层。外管101为单层高分子结构。
在该实施例中,导管包括第二显影环和第三显影环,第二显影环和第三显影环套设于与阻流元件200的位置相适应的内管102上,第二显影环位于阻流元件200的远端位置,第三显影环位于阻流元件200的近端位置。
如图9所示,在其他一些实施例中,第二凹部1022中,第三过渡区1022-1为与管状元件100的轴向垂直的变径区域,即,第三过渡区1022-1的外表面和内表面都与管状元件100的轴向呈90°,第三过渡区1022-1的轴向长度为0.05mm,第二凹部1022的轴向长度为8mm。第一凹部1012中,第一过渡区1012-1的内表面和外表面为与管状元件100的轴向呈一定角度的倾斜面,倾斜的角度相同,都为40°。
实施例六
本实施例提供一种导管,图10是本发明实施例六提供的导管的整体示意图,图11是本发明实施例六提供的导管的远端部分的剖面图。如图10、图11所示,本发明提供的导管包括管状元件100和阻流元件200,管状元件100包括外管101和内管102,阻流元件200固定于管状元件100中的外管101, 外管101套设于内管102的外部,外管101与内管102之间形成第一腔体。阻流元件200具有膨胀状态和收缩状态,阻流元件200可以在膨胀状态和收缩状态之间相互转换,当阻流元件200处于膨胀状态时,阻断或减小血管内的血流。如图11所示,外管101包括外管主体1011和第一凹部1012,第一凹部1012位于外管主体1011的远端,阻流元件200固定于第一凹部1012,第一凹部1012上开设有通液孔1014,第一腔体用于通过或回抽液体从而控制阻流元件200的膨胀和收缩;第一腔体处于液体充盈状态时,阻流元件200处于膨胀状态;第一腔体处于真空状态时,阻流元件200处于收缩状态。通液孔1014用于通过液体,第一腔体中的液体通过通液孔1014进入阻流元件200使阻流元件200膨胀或者从阻流元件200中回抽使阻流元件200收缩。在实施例一到实施例五中,已经对第一凹部1012进行了详细的描述,在此不再赘述。
如图11所示,在该实施例中,外管101还包括外管远端部1013,外管远端部1013位于第一凹部1012的远端,外管远端部1013的近端的外径大于第一凹部1012远端的外径,外管远端部1013的远端与内管102固定连接;外管远端部1013从近端至远端依次包括第二过渡区1013-1和第二平直区1013-2,第二平直区1013-2的内径大于第一平直区1012-2的内径,第二平直区1013-2的外径大于第一平直区1012-2的外径,第二过渡区1013-1的内径和外径从近端至远端逐渐从第一平直区1012-2的内径和外径过渡至第二平直区1013-2的内径和外径,第二过渡区1013-1为变径区,在变径区处,外管101的内径和外径都变大。在其他一些实施例中,第二平直区1013-2的内径等于第一平直区1012-2的内径,第二平直区1013-2的外径大于第一平直区1012-2的外径,第二过渡区1013-1的外径从近端至远端逐渐从第一平直区1012-2的外径过渡至第二平直区1013-2的外径,第二过渡区1013-1的内径不变,第二过渡区1013-1为变径区,在变径区处,外管101的外径变大。外管远端部1013和第一凹部结合可以形成在外管101上的V型、框型、弧形、多边形、不规则图形等形状的凹陷。在该实施例中,阻流元件200的近端和远端都与第一平直区1012-2连接,连接方式可以为粘接,束缚或熔融连接;在 其他一些实施例中,阻流元件200的近端可以与第一过渡区1012-1连接,和/或,阻流元件200的远端可以与第二过渡区1013-1连接,连接方式可以为粘接,束缚或熔融连接。
在该实施例中,第二过渡区1013-1的内表面和外表面为与管状元件100的轴向呈一定角度的倾斜面,倾斜的角度相同,都为60°。在其他一些实施例中,第二过渡区1013-1的内表面和外表面为与管状元件100的轴向呈一定角度的倾斜面,倾斜角度可以相同也可以不同,倾斜角度可以为0-90°中的任意一个角度,例如5°,15°,30°,40°,45°,60°,75°,85°;在其他一些实施例中,第二过渡区1013-1的内表面和外表面都为与管状元件100的轴向垂直的面;在其他一些实施例中,第二过渡区1013-1的内表面与管状元件100的轴向平行,第二过渡区1013-1的外表面为与管状元件100的轴向呈一定角度的倾斜面,倾斜的角度可以为0-90°中的任意一个角度,例如5°,15°,30°,40°,45°,60°,75°,85°;在其他一些实施例中,第二过渡区1013-1的内表面与管状元件100的轴向平行,第二过渡区1013-1的外表面为与管状元件100的轴向垂直的面;在所有实施例中,第二过渡区1013-1的轴向长度为0-10mm;在该实施例中,第二过渡区1013-1的轴向长度为5mm;在其他一些实施例中,第二过渡区1013-1的轴向长度为0mm;在其他一些实施例中,第二过渡区1013-1的轴向长度为3mm;在其他一些实施例中,第二过渡区1013-1的轴向长度为8mm;在其他一些实施例中,第二过渡区1013-1的轴向长度为10mm。在所有实施例中,外管远端部1013的轴向长度为1-15mm;在该实施例中,外管远端部1013的轴向长度为10mm;在其他一些实施例中,外管远端部1013的轴向长度为1mm;在其他一些实施例中,外管远端部1013的轴向长度为8mm;在其他一些实施例中,外管远端部1013的轴向长度为12mm;在其他一些实施例中,外管远端部1013的轴向长度为15mm。
在所有实施例中,第二平直区1013-2的外径为1.0-3.7mm,在该实施例中,第二平直区1013-2的外径为2.8mm。在其他一些实施例中,第二平直区1013-2的外径为1.0mm;在其他一些实施例中,第二平直区1013-2的外径为 2.0mm;在其他一些实施例中,第二平直区1013-2的外径为3.0mm;在其他一些实施例中,第二平直区1013-2的外径为3.7mm;。
在该实施例中,外管远端部1013与内管102相连(图11中未示),使第一腔体远端封闭,使第一腔体中通过液体时不会从导管远端泄漏,从而控制阻流元件200的膨胀和收缩。因此,外管远端部1013的远端存在一段变径区域(图中未示),变径区域从近端至远端外径逐渐减小从而可以与内管102相连。外管远端部1013与内管102相连的位置可以是内管102最远端的位置,也可以是内管102中的一个位置。
如图11所示,该实施例提供的导管的内管102从近端至远端包含内管主体1021和第二凹部1022,第二凹部1022位于所述内管主体1021的远端,第二凹部1022的外径小于所述内管主体1021的外径。在实施例二至实施例五中,已经详细描述第二凹部1022,在此不再赘述。在其他一些实施例中,导管的内管102可以为内外径从近端至远端相同的平直管结构;在其他一些实施例中,导管的内管102可以包括内管主体1021,位于内管主体1021远端的第二凹部1022,位于第二凹部1022远端的内管远端部1023,其中,第二凹部1022的外径小于内管主体1021的外径,内管远端部1023的外径小于第二凹部1022的外径。
在该实施例中,第一过渡位置300在管状元件100的轴向上的投影位于第二过渡位置400在管状元件100的轴向上的投影的远端。
在该实施例中,内管102为三层结构,内向外依次为第一高分子层、加强层、第二高分子层。外管101为双层结构,外管101的外层为高分子层,外管101的内层为高分子层。
在该实施例中,导管包括第一显影环,第一显影环套设于内管外部,第一显影环位于导管的头端;导管还包括第二显影环,第二显影环套设于与阻流元件200的位置相适应的内管102位置处。
如图12所示,在其他一些实施例中,外管远端部1013中,第二过渡区1013-1为与管状元件100的轴向垂直的变径区域,即,第二过渡区1013-1的外表面和内表面都与管状元件100的轴向呈90°。
在该实施例中,第一凹部1012和外管远端部1013之间,以及第二过渡区1013-1和第二平直区1013-2之间呈一个角度过渡;在其他一些实施例中,第一凹部1012和外管远端部1013之间,和/或,第二过渡区1013-1和第二平直区1013-2之间可以呈一个弧度圆滑过渡。在该实施例中,第二平直区1013-2为表面光滑的平直区;在其他一些实施例中,第二平直区1013-2可以为表面带有凹凸结构、槽结构或者曲线结构,但是整体内外径相同的管状结构。
实施例七
该实施例提供一种导管,在该实施例中,第一凹部1012的外表面为一个外径逐渐减小的斜面,阻流元件200的近端固定于第一凹部1012的斜面上,即,第一凹部1012只有第一过渡区1012-1而没有第一平直区1012-2。
在其他一些实施例中,外管远端的端面为第一斜切面,第一斜切面形成第一凹部1012的外表面,阻流元件200的近端为与第一斜切面配合的第二斜切面,第一斜切面和第二斜切面固定连接。即,第一凹部1012只有第一过渡区1012-1而没有第一平直区1012-2,阻流元件200的近端的斜切面与外管远端的斜切面斜率相同,可以相互配合并固定连接。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (43)

  1. 一种导管,其特征在于,包括:管状元件和功能元件;
    所述管状元件包括外管和内管;
    所述外管套设于所述内管的外部,所述外管和所述内管之间形成第一腔体,所述外管包括外管主体和第一凹部,所述第一凹部位于所述外管主体的远端;
    所述功能元件设置于所述管状元件上,所述功能元件的至少部分与所述第一凹部连接。
  2. 如权利要求1所述的导管,其特征在于,所述功能元件为阻流元件、显影元件、电子元件、取栓元件中的至少一种。
  3. 如权利要求1所述的导管,其特征在于,所述外管的外表面向内侧凹陷形成了所述第一凹部。
  4. 如权利要求3所述的导管,其特征在于,所述第一凹部的内径小于或等于所述外管主体的内径。
  5. 如权利要求1所述的导管,其特征在于,所述外管的内表面向外侧凹陷形成了所述第一凹部。
  6. 如权利要求5所述的导管,其特征在于,所述第一凹部的外径小于或等于所述外管主体的外径。
  7. 如权利要求1所述的导管,其特征在于,所述第一凹部的轴向长度为2-30mm。
  8. 如权利要求1所述的导管,其特征在于,所述第一凹部从近端至远端依次包括第一过渡区和第一平直区,所述第一过渡区为变径区,在所述变径区处,所述外管的内径和外径中的至少一个变大或变小。
  9. 如权利要求8所述的导管,其特征在于,所述第一过渡区的轴向长度为0mm~10mm。
  10. 如权利要求8所述的导管,其特征在于,所述第一过渡区的内表面和/或外表面与所述外管主体的轴向呈一定倾斜角度,所述倾斜角度为0°-90°。
  11. 如权利要求10所述的导管,其特征在于,所述第一过渡区的内表面和外表面与所述外管主体的轴向呈相同的倾斜角度。
  12. 如权利要求8所述的导管,其特征在于,所述第一平直区的外径与所述外管主体的外径之比为0.7~1.0。
  13. 如权利要求12所述的导管,其特征在于,所述外管主体的外径为1.0mm~3.7mm,所述第一平直区的外径为0.7m~3.5mm。
  14. 如权利要求1所述的导管,其特征在于,所述外管还包含外管远端部,所述外管远端部位于所述第一凹部的远端,所述外管远端部的近端的外径大于所述第一凹部的远端的外径,所述外管远端部与所述内管在远端位置固定连接。
  15. 如权利要求14所述的导管,其特征在于,所述外管远端部从近端至远端依次包括第二过渡区和第二平直区,所述第二过渡区为变径区,在所述变径区处,所述外管的内径和外径中的至少一个变大或变小。
  16. 如权利要求1-15中任意一项所述的导管,其特征在于,所述内管包含内管主体和第二凹部,所述第二凹部位于所述内管主体的远端,所述内管的外表面向内侧凹陷形成所述第二凹部。
  17. 如权利要求16所述的导管,其特征在于,所述第二凹部从近端至远端依次包括第三过渡区和第三平直区,所述第三过渡区为变径区,在所述变径区处,所述内管的外径变小。
  18. 如权利要求16所述的导管,其特征在于,所述第二凹部的轴向长度为2-60mm。
  19. 如权利要求17所述的导管,其特征在于,所述第三过渡区的外表面与所述内管主体的轴向呈一定倾斜角度,所述倾斜角度为0°-90°,所述第三过渡区的轴向长度为0-10mm。
  20. 如权利要求17所述的导管,其特征在于,所述第三平直区的外径与所述内管主体的外径之比为大于等于0.6且小于1.0。
  21. 如权利要求20所述的导管,其特征在于,所述内管主体的外径为0.5mm~3.2mm,所述第三平直区的外径大于等于0.3mm且小于3.2mm。
  22. 如权利要求17所述的导管,其特征在于,所述外管主体的最远端称为第一过渡位置,所述内管主体的最远端称为第二过渡位置,所述第一过渡位置在所述管状元件的轴向上的投影位于第二过渡位置在所述管状元件的轴向上的投影的远端;
    所述第一凹部从近端至远端依次包括第一过渡区与第一平直区;
    所述第三过渡区的外表面与所述管状元件的轴向方向之间呈第一倾斜角,所述第一过渡区的内表面与所述管状元件的轴向方向之间呈第二倾斜角,所述第一倾斜角大于等于第二倾斜角。
  23. 如权利要求16所述的导管,其特征在于,所述内管还包含内管远端部,所述内管远端部位于所述第二凹部的远端。
  24. 如权利要求23所述的导管,其特征在于,所述内管远端部的轴向长度为1-500mm。
  25. 如权利要求23所述的导管,其特征在于,所述内管远端部的外径小于所述第二凹部的外径,所述内管远端部位于导管的头端。
  26. 如权利要求23所述的导管,其特征在于,所述内管远端部从近端至远端依次包括第四过渡区和第四平直区,所述第四过渡区为变径区,在所述变径区处,所述内管的外径变小。
  27. 如权利要求26所述的导管,其特征在于,所述第四平直区的外径为0.2mm~3.1mm。
  28. 如权利要求2所述的导管,其特征在于,所述功能元件为阻流元件,所述阻流元件的近端固定于所述第一凹部。
  29. 如权利要求28所述的导管,其特征在于,所述阻流元件为一高分子膜,所述第一腔体处于液体充盈状态时,所述阻流元件处于膨胀状态;所述第一腔体处于真空状态时,所述阻流元件处于收缩状态。
  30. 如权利要求28所述的导管,其特征在于,所述阻流元件的远端与所述内管固定连接;
    或者,
    所述阻流元件设置在所述第一凹部,所述阻流元件的近端与远端均与所 述外管固定连接,所述外管的远端与所述内管连接,所述第一凹部上开设有用于向阻流元件充盈液体的通液孔。
  31. 如权利要求29所述的导管,其特征在于,所述高分子膜的厚度为0.05mm~0.15mm,和/或,所述高分子膜的材料为硅胶、聚氨酯、乳胶、聚乙烯、聚四氟乙烯,膨体聚四氟乙烯中的任意一种或其混合物。
  32. 如权利要求1所述的导管,其特征在于,所述内管包含内管主体和一个第二凹部,所述第二凹部位于所述内管主体的远端,所述第二凹部的外径小于所述内管主体的外径,所述功能元件为阻流元件,所述阻流元件的近端与第一凹部固定连接,所述阻流元件的远端与第二凹部固定连接。
  33. 如权利要求1所述的导管,其特征在于,所述内管和外管都至少包含一个高分子层,所述高分子层的材料为聚醚嵌段聚酰胺、尼龙、聚氨酯、聚四氟乙烯、聚乙烯、聚烯烃弹性体中的一种或几种。
  34. 如权利要求33所述的导管,其特征在于,所述外管和/或内管还包含有加强层,所述加强层为丝材编织结构、丝材螺旋缠绕结构、切割管材或其组合,所述加强层的材料为不锈钢、镍钛合金、钴铬合金或高分子。
  35. 如权利要求34所述的导管,其特征在于,所述外管和/或所述内管为三层结构,所述三层结构从内向外依次为第一高分子层、加强层、第二高分子层。
  36. 如权利要求1所述的导管,其特征在于,所述导管还包括第一显影环,所述第一显影环位于所述导管的头端,
    和/或,
    所述导管包括第二显影环,所述第二显影环位于所述内管上与所述功能元件位置相适应的位置。
  37. 如权利要求1所述的导管,其特征在于,所述内管的内部形成第二腔体,所述第二腔体整体的内径相同。
  38. 如权利要求37所述的导管,其特征在于,所述第二腔体的内径与所述外管主体的外径之比为0.2~0.9。
  39. 如权利要求38所述的导管,其特征在于,所述第二腔体的内径为 0.1mm~3.0mm,所述外管主体的外径为0.5mm~3.7mm。
  40. 如权利要求1所述的导管,其特征在于,所述第一凹部的外表面为一个外径逐渐减小的斜面,所述功能元件的近端固定于所述第一凹部的斜面上。
  41. 如权利要求40所述的导管,其特征在于,所述外管远端的端面为第一斜切面,所述第一斜切面形成所述第一凹部的外表面,所述功能元件的近端为与所述第一斜切面配合的第二斜切面,所述第一斜切面和所述第二斜切面固定连接。
  42. 一种阻流导管,其特征在于,包括:管状元件和阻流元件;
    所述管状元件包括外管和内管;
    所述外管套设于所述内管的外部,所述外管和所述内管之间形成第一腔体,所述外管包括外管主体和第一凹部,所述第一凹部位于所述外管主体的远端;
    所述阻流元件设置于所述管状元件上,所述阻流元件的至少部分与所述第一凹部连接。
  43. 如权利要求42所述的阻流导管,其特征在于,所述阻流元件为一高分子膜,所述第一腔体处于液体充盈状态时,所述阻流元件处于膨胀状态;所述第一腔体处于真空状态时,所述阻流元件处于收缩状态。
PCT/CN2021/125444 2020-11-13 2021-10-21 导管和阻流导管 WO2022100402A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21890929.9A EP4233976A4 (en) 2020-11-13 2021-10-21 CATHETER AND BOTTLE NECK CATHETER
US18/252,780 US20240001090A1 (en) 2020-11-13 2021-10-21 Catheter and choke catheter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011272049.4A CN114470489A (zh) 2020-11-13 2020-11-13 导管和阻流导管
CN202011272049.4 2020-11-13

Publications (1)

Publication Number Publication Date
WO2022100402A1 true WO2022100402A1 (zh) 2022-05-19

Family

ID=81490134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125444 WO2022100402A1 (zh) 2020-11-13 2021-10-21 导管和阻流导管

Country Status (4)

Country Link
US (1) US20240001090A1 (zh)
EP (1) EP4233976A4 (zh)
CN (1) CN114470489A (zh)
WO (1) WO2022100402A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0452901A2 (en) * 1990-04-19 1991-10-23 Terumo Kabushiki Kaisha Catheter equipped with a dilatation element
CN102488955A (zh) * 2011-12-07 2012-06-13 湖南埃普特医疗器械有限公司 球囊导引导管及其制备方法
CN203090196U (zh) * 2013-01-25 2013-07-31 业聚医疗器械(深圳)有限公司 球囊导管
US20140276412A1 (en) * 2013-03-13 2014-09-18 Abbott Cardiovascular Systems Inc. Catheter having movable tubular structure
CN109908453A (zh) * 2019-03-15 2019-06-21 兰州大学第一医院 一种辅助导引导管通过迂曲血管的装置
CN109999322A (zh) * 2019-04-25 2019-07-12 禾木(中国)生物工程有限公司 球囊导引导管
CN209827933U (zh) * 2019-02-01 2019-12-24 科塞尔医疗科技(苏州)有限公司 一种球囊导管
CN211156010U (zh) * 2019-08-29 2020-08-04 微创神通医疗科技(上海)有限公司 一种植入物的输送装置和管腔植入系统
CN215084026U (zh) * 2020-11-13 2021-12-10 微创神通医疗科技(上海)有限公司 导管

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304134A (en) * 1992-01-17 1994-04-19 Danforth Biomedical, Inc. Lubricious yet bondable catheter channel sleeve for over-the-wire catheters
US5549552A (en) * 1995-03-02 1996-08-27 Scimed Life Systems, Inc. Balloon dilation catheter with improved pushability, trackability and crossability
US5891110A (en) * 1997-10-15 1999-04-06 Scimed Life Systems, Inc. Over-the-wire catheter with improved trackability
US6638245B2 (en) * 2001-06-26 2003-10-28 Concentric Medical, Inc. Balloon catheter
US8597240B2 (en) * 2011-02-02 2013-12-03 Futurematrix Interventional, Inc. Coaxial catheter shaft having balloon attachment feature with axial fluid path

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0452901A2 (en) * 1990-04-19 1991-10-23 Terumo Kabushiki Kaisha Catheter equipped with a dilatation element
CN102488955A (zh) * 2011-12-07 2012-06-13 湖南埃普特医疗器械有限公司 球囊导引导管及其制备方法
CN203090196U (zh) * 2013-01-25 2013-07-31 业聚医疗器械(深圳)有限公司 球囊导管
US20140276412A1 (en) * 2013-03-13 2014-09-18 Abbott Cardiovascular Systems Inc. Catheter having movable tubular structure
CN209827933U (zh) * 2019-02-01 2019-12-24 科塞尔医疗科技(苏州)有限公司 一种球囊导管
CN109908453A (zh) * 2019-03-15 2019-06-21 兰州大学第一医院 一种辅助导引导管通过迂曲血管的装置
CN109999322A (zh) * 2019-04-25 2019-07-12 禾木(中国)生物工程有限公司 球囊导引导管
CN211156010U (zh) * 2019-08-29 2020-08-04 微创神通医疗科技(上海)有限公司 一种植入物的输送装置和管腔植入系统
CN215084026U (zh) * 2020-11-13 2021-12-10 微创神通医疗科技(上海)有限公司 导管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4233976A4 *

Also Published As

Publication number Publication date
EP4233976A4 (en) 2024-04-24
US20240001090A1 (en) 2024-01-04
EP4233976A1 (en) 2023-08-30
CN114470489A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
US6045734A (en) Process of making a catheter
JP3217806U (ja) 先端とバルーンの間にフレキシブルな接続部が設けられたバルーンカテーテル
EP1620159B1 (en) Large diameter delivery catheter/sheath
US11000670B2 (en) Flexible sheath with varying durometer
TW200821002A (en) Indwelling catheter, hollow needle, and indwelling needle assembly
JP4544526B2 (ja) カテーテル
WO2006090707A1 (ja) カテーテル
JPH0871157A (ja) カテーテルチューブ
US20120065621A1 (en) Double lumen tubing with improved kinking resistance
US20220296851A1 (en) Catheter assembly
WO2022100402A1 (zh) 导管和阻流导管
CN215084026U (zh) 导管
US20200215300A1 (en) Catheter, separator, and suction system
US20140228821A1 (en) Delivery catheter with controlled flexibility
WO2022100403A1 (zh) 球囊导管
JP6500410B2 (ja) 医療用接続具およびカテーテル組立体
JP6813570B2 (ja) 経皮カテーテル
CN206007781U (zh) 一种采用非锥状头端的球囊导管
WO2019180928A1 (ja) バルーンカテーテル
WO2023246277A1 (zh) 一种心室辅助装置及心室辅助装置的制作方法
WO2024090107A1 (ja) カテーテル
CN117504089A (zh) 医疗导管
JPH10290841A (ja) マイクロカテーテル
CN115430005A (zh) 一种尖端柔性可调弯曲的导管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890929

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18252780

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021890929

Country of ref document: EP

Effective date: 20230526

NENP Non-entry into the national phase

Ref country code: DE