WO2022100100A1 - 投影光路和投影设备 - Google Patents

投影光路和投影设备 Download PDF

Info

Publication number
WO2022100100A1
WO2022100100A1 PCT/CN2021/101676 CN2021101676W WO2022100100A1 WO 2022100100 A1 WO2022100100 A1 WO 2022100100A1 CN 2021101676 W CN2021101676 W CN 2021101676W WO 2022100100 A1 WO2022100100 A1 WO 2022100100A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
light source
beam splitter
projection
Prior art date
Application number
PCT/CN2021/101676
Other languages
English (en)
French (fr)
Inventor
龚敬剑
邓杨春
丁卫涛
刘德安
鲁公涛
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to US18/036,790 priority Critical patent/US20230408894A1/en
Priority to KR1020237019338A priority patent/KR20230104275A/ko
Priority to EP21890631.1A priority patent/EP4246228A1/en
Priority to JP2023528462A priority patent/JP2024501612A/ja
Publication of WO2022100100A1 publication Critical patent/WO2022100100A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors

Definitions

  • the present application relates to the technical field of optical display, and in particular, to a projection light path and a projection device.
  • the combination of red, green and blue light is used as the projection light source.
  • the current way to increase the luminous flux is to increase the current of the corresponding power supply, so that the light sources corresponding to the three colors can generate more light.
  • the light source of red light is more sensitive to temperature.
  • the number of red light increases, resulting in a thermal effect, resulting in a sharp drop in the luminous efficiency of the red light source.
  • two red light sources are used to cooperate with each other to reduce the thermal effect produced by the red light source.
  • the luminous efficiency of other color light sources is still low, and it is difficult to effectively improve the overall brightness of the projection image.
  • the existing projection light source when two red light sources are used to cooperate with each other to reduce the thermal effect generated by the red light source, the luminous efficiency of other facial light sources is low, and the overall brightness of the projection screen cannot be effectively improved. It is necessary to Provided are a projection light path and a projection device, which aim to improve the luminous efficiency of other facial light sources while reducing the thermal effect produced by red light, thereby effectively improving the brightness of the overall display screen.
  • the projection light path includes:
  • a three-light source system the three-light source system emits the first convergent light
  • the single light source system emits light of a monochromatic wavelength, and the cross-convergence of the first converged light and the light of the monochromatic wavelength;
  • the three-light source system includes a first light source, a second light source and a fourth light source, the first light source emits light of a first wavelength, the second light source emits light of a second wavelength, and the fourth light source emits light of a fourth wavelength , the second wavelength light and the fourth wavelength light are converged to form a second converged light, the second converged light and the first wavelength light are converged to form the first converged light, and the single light source system includes a first Three light sources, the third light source emits light of a third wavelength, the colors of the light of the first wavelength, the light of the second wavelength and the light of the third wavelength are all different, the light of the first wavelength, the light of the second wavelength The wavelength light and the third wavelength light are respectively one of red light, green light and blue light, and the wavelength range of the fourth wavelength light is within the wavelength range of the red light, and the wavelength of the fourth wavelength light is defined is ⁇ 1, and the wavelength set to red light among the first wavelength light, the second wavelength light, and the
  • excitation light source the excitation light source emits excitation light, and the excitation light is emitted to the three light source system or the single light source system.
  • the three-light source system further includes a first beam splitter, the first beam splitter is arranged at the intersection of the second concentrated light and the first wavelength light, and the excitation light source is arranged at the first wavelength. a side of a beam splitter away from the second light source;
  • the first light source is a green light source, a surface of the first beam splitter facing the excitation light source is provided with a reflective film for the excitation light, and the excitation light is reflected toward the first beam splitter by the first beam splitter. light source;
  • the second light source is a green light source
  • an antireflection film for the excitation light is provided on the surface of the first beam splitter facing the excitation light source, and the excitation light is transmitted toward the second light source.
  • the three light source system further includes a second beam splitter, the second beam splitter is arranged at the intersection of the second wavelength light and the fourth wavelength light, and the second beam splitter faces the A surface of the second light source is provided with an anti-reflection film for light of a second wavelength, and a surface of the second beam splitter facing the fourth light source is provided with a reflection film for light of a fourth wavelength.
  • the projection light path further includes a third beam splitter, the third beam splitter is arranged at the intersection of the first concentrated light and the third wavelength light, the first wavelength light, the second wavelength light The wavelength light, the third wavelength light and the fourth wavelength light are condensed and output through the third beam splitter.
  • the first wavelength light is green light
  • the second wavelength light is red light
  • the third wavelength light is blue light
  • the third beam splitter faces the first light source with green light and red light.
  • An antireflection film for light, and a blue light reflection film is provided on the third beam splitter facing the third light source.
  • the second light source and the third light source are arranged on the upper side of the exit optical path of the first wavelength light, and the excitation light source is arranged on the lower side of the exit optical path of the first wavelength light, so The first light source and the fourth light source are arranged on the left side of the exit light path of the second wavelength light, and the surface of the first beam splitter, the surface of the second beam splitter, and the third beam splitter. The surfaces are parallel to each other.
  • the second light source is arranged on the upper side of the exit optical path of the first wavelength light
  • the third light source and the excitation light source are arranged on the lower side of the exit optical path of the first wavelength light
  • the first light source and the fourth light source are arranged on the left side of the exit light path of the second wavelength light
  • the surface of the first beam splitter and the surface of the second beam splitter are parallel to each other
  • the first beam splitter The surface of the plate is orthogonal to the surface of the third beam splitter plate.
  • the second light source is arranged on the upper side of the exit optical path of the first wavelength light
  • the third light source and the excitation light source are arranged on the lower side of the exit optical path of the first wavelength light
  • the first light source is arranged on the left side of the exit light path of the second wavelength light
  • the fourth light source is arranged on the right side of the exit light path of the second wavelength light
  • the surface of the second beam splitter and the The surfaces of the third beam splitter are parallel to each other, and the surface of the first beam splitter and the surface of the third beam splitter are orthogonal to each other.
  • the projection light path includes a first light emitting end face, the first light emitting end face is perpendicular to the emitting direction of the first wavelength light, the first wavelength light, the second wavelength light and the fourth wavelength light.
  • the wavelength light is transmitted through the third beam splitter, the third wavelength light is reflected on the third beam splitter, the first wavelength light, the second wavelength light, the third wavelength light and the The four-wavelength light is collected by the third beam splitter, and the collected first wavelength light, the second wavelength light, the third wavelength light and the fourth wavelength light are emitted from the first light-emitting end face.
  • the projection light path includes a second light emitting end face, the second light emitting end face and the emitting direction of the first wavelength light are parallel, the first wavelength light, the second wavelength light and the fourth wavelength light.
  • the wavelength light is reflected on the third beam splitter, the third wavelength light is transmitted through the third beam splitter, the first wavelength light, the second wavelength light, the third wavelength light and the The four-wavelength light is collected by the third beam splitter, and the collected first wavelength light, the second wavelength light, the third wavelength light and the fourth wavelength light are emitted from the second light-emitting end face.
  • the present application also provides a projection device, the projection device includes a housing and the above-mentioned projection light path, and the projection light path is provided in the housing.
  • the second wavelength light emitted by the second light source of the three-light source system and the fourth wavelength light emitted by the fourth light source are converged to form the second converged light, and the first wavelength light emitted by the first light source and the second wavelength light emitted by the first light source.
  • the converged light is converged to form the first converged light.
  • the third wavelength light emitted by the third light source of the single light source system is directed to the first condensing light to complete the converging of the four paths of light.
  • the first wavelength light, the second wavelength light and the third wavelength light are respectively one of red light, green light and blue light, and the three colors of light are combined as the light source of the projection screen.
  • the fourth wavelength light is also red.
  • the red color of the projection light source is provided by two light sources, which reduces the thermal effect of a single red light source and reduces the problem of sudden drop in luminous efficiency, thus ensuring that the projection light source can Stable work.
  • the red wavelength of the fourth wavelength light is different from the wavelength of the red light in the first light source, the second light source or the third light source. Therefore, the projection light path can be divided into multiple transmission paths, which reduces the mutual interference between the fourth wavelength light of the fourth light source and the red light in the other three light sources, and ensures that the light rays are combined at the same position and then emitted.
  • the three light source system includes a first light source, a second light source and a fourth light source, and the third light source is arranged in the single light source system.
  • the three light source system and the single light source system can be installed independently, thus completing the projection light path through two installations. The installation of the light source can improve the installation efficiency.
  • the arrangement of two light source systems facilitates rapid placement, which can simplify the design of the light path.
  • the excitation light of the excitation light source is emitted to the three light source system or the single light source system, thereby improving the light extraction efficiency of the light.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a projection light path of the present application
  • FIG. 2 is a schematic structural diagram of a second embodiment of a projection light path of the present application.
  • FIG. 3 is a schematic structural diagram of a third embodiment of a projection light path of the present application.
  • label name label name 1 Three light source system 620 second collimating lens 2 Single light source system 710 first beam splitter 10 first light source 720 second beam splitter 20 second light source 730 third beam splitter 30 third light source 810 first condenser 40 fourth light source 820 second condenser 50 Excitation light source 910 The first light-emitting end face 60 Collimating lens group 920 The second light-emitting end face 610 first collimating lens
  • the combination of red, green and blue light is used as the projection light source.
  • the current of the corresponding power supply is usually increased, so that the corresponding light sources of the three colors can generate more light.
  • the light source of red light is more sensitive to temperature.
  • the number of red light increases, resulting in a thermal effect, resulting in a sharp drop in the luminous efficiency of the red light source.
  • two red light sources are used to cooperate with each other to reduce the thermal effect produced by the red light source.
  • the luminous efficiency of other color light sources is still low, and it is difficult to effectively improve the overall brightness of the projection image.
  • the projection light path includes: a three light source system 1 , a single light source system 2 and an excitation light source 50 .
  • the three light source system 1 emits the first converged light
  • the single light source system 2 emits monochromatic wavelength light
  • the first converged light and the monochromatic wavelength light are cross-converged.
  • the three-light source system 1 includes a first light source 10, a second light source 20 and a fourth light source 40.
  • the first light source 10 emits light of a first wavelength
  • the second light source 20 emits light of a second wavelength
  • the fourth light source 40 emits light of a fourth wavelength.
  • the single light source system 2 includes a third light source 30, and the third light source 30 emits a third wavelength light, the colors of the first wavelength light, the second wavelength light and the third wavelength light are all different, and the first wavelength light, the second wavelength light and the third wavelength light are respectively one of red light, green light and blue light, That is, when the first wavelength light is green light, the second wavelength light may be red light, and the third wavelength light may be blue light, or, when the first wavelength light is green light, the second wavelength light may be blue light, and the third wavelength light may be blue light, and the third wavelength light may be blue light.
  • the wavelength light is red light.
  • the second wavelength light may be green light, and the third wavelength light may be blue light, or, when the first wavelength light is red light, the second wavelength light may be blue light, and the third wavelength light may be blue light and the third wavelength light may be blue light.
  • the wavelength light is green light.
  • the first wavelength light is blue light
  • the second wavelength light may be green light
  • the third wavelength light may be red light
  • the first wavelength light is blue light
  • the second wavelength light may be red light
  • the third wavelength light may be red light.
  • the wavelength light is green light.
  • the colors of the first wavelength light, the second wavelength light and the third wavelength light are selected from red light, green light and blue light, and the colors of the three wavelength lights are different from each other.
  • the wavelength ⁇ 2 of the light with the first wavelength is 625 nm
  • the wavelength ⁇ 1 of the light with the fourth wavelength is 660 nm
  • the first light source 10, the second light source 20, the third light source 30 and the fourth light source 40 can be light emitting diodes (LED, Light-emitting Diode), also can be semiconductor lasers (LD, Laser Diode), can also be super Radiation semiconductor device (SLD, Super Luminescent Diode) any of them.
  • Monochromatic wavelength light is the wavelength light of a certain color, and the monochromatic wavelength light has a certain wavelength range.
  • the excitation light source 50 emits excitation light, and the excitation light is emitted to the three light source system 1 or the single light source system 2 .
  • the excitation light source 50 is a pump lamp, for example, the excitation light is blue light, and the blue excitation light is emitted to the first light source 10 or the second light source 20, thereby increasing the fluorescent molecules of the corresponding light source, thereby increasing the output light quantity of the corresponding light source.
  • the light emitted by any light source is a light beam with a certain wavelength range
  • the first wavelength light in this application refers to the light beam with the first wavelength as the main wavelength
  • the wavelength of the first wavelength light in this application refers to the dominant wavelength of the first wavelength light.
  • the second wavelength light, the third wavelength light, and the fourth wavelength light can also be understood as the central wavelength.
  • the second wavelength light emitted by the second light source 20 of the three light source system 1 and the fourth wavelength light emitted by the fourth light source 40 are converged to form the second converged light, and the first light source emitted by the first light source 10.
  • the wavelength light and the second converged light are converged to form the first converged light.
  • the third wavelength light emitted by the third light source 30 of the single light source system 2 is directed to the first condensing light to complete the converging of the four paths of light.
  • the first wavelength light, the second wavelength light and the third wavelength light are respectively one of red light, green light and blue light, and the three colors of light are combined as the light source of the projection screen.
  • the fourth wavelength light is also red.
  • the red color of the projection light source is provided by two light sources, which reduces the thermal effect of a single red light source and reduces the problem of sudden drop in luminous efficiency, thus ensuring that the projection light source can Stable work.
  • the red wavelength of the fourth wavelength light is different from the wavelength of the red light in the first light source 10 , the second light source 20 or the third light source 30 . Therefore, the projection light path can be divided into multiple transmission paths, which reduces the mutual interference between the fourth wavelength light of the fourth light source 40 and the red light in the other three light sources, and ensures that the light rays are combined at the same position and then exit.
  • the three light source system 1 includes a first light source 10, a second light source 20 and a fourth light source 40, and the third light source 30 is arranged in the single light source system 2.
  • the three light source system 1 and the single light source system 2 can be installed independently, by This completes the installation of the light source in the projection light path through two installations, thereby improving the installation efficiency.
  • the arrangement of two light source systems facilitates rapid placement, which can simplify the design of the light path.
  • the excitation light of the excitation light source 50 is emitted to the three light source system 1 or the single light source system 2, thereby improving the light extraction efficiency of the light.
  • the fluorescent molecules of the green light source can be increased. It can be seen from this that the excitation light is directed to the green light source, and whichever the first light source 10 is the green light source, the excitation light is directed to.
  • the three-light source system 1 further includes a first beam splitter 710, and the first beam splitter 710 is arranged between the second converging light and the second light source.
  • the excitation light source 50 is disposed on the side of the first beam splitter 710 away from the second light source 20 at the intersection of a wavelength of light.
  • the first light source 10 is a green light source, the surface of the first beam splitter 710 facing the excitation light source 50 is provided with a reflective film for excitation light, and the excitation light is reflected to the first light source 10 by the first beam splitter 710; Reflected by the beam splitter 710 , after the excitation light of blue light is emitted to the first light source 10 , the fluorescent molecules of the green light are increased, thereby increasing the amount of light emitted by the green light.
  • the second light source 20 is a green light source
  • the surface of the first beam splitter 710 facing the excitation light source 50 is provided with an antireflection coating for excitation light, and the excitation light is transmitted to the second light source 20 .
  • the fluorescent molecules of the green light are increased, thereby increasing the quantity of light emitted by the green light.
  • the three light source system 1 further includes a second beam splitter 720, and the second beam splitter 720 is arranged at the intersection of the second wavelength light and the fourth wavelength light.
  • the second beam splitter 720 faces the second light source 20 and is provided with an anti-reflection film for the light of the second wavelength
  • the second beam splitter 720 faces the fourth light source 40 and is provided with a reflection film for the light of the fourth wavelength.
  • the second wavelength light and the fourth wavelength light are emitted from the same surface of the second beam splitter 720, thereby completing the second wavelength light and the fourth wavelength light.
  • Convergence of fourth wavelength light may be disposed on the same surface of the second beam splitter 720 , or may be disposed on two surfaces of the second beam splitter 720 separately.
  • the projection light path further includes a third beam splitter 730, and the third beam splitter 730 is arranged at the intersection of the first concentrated light and the third wavelength light, and the first wavelength light, the second beam splitter 730 The wavelength light, the third wavelength light and the fourth wavelength light are condensed and output through the third beam splitter 730 .
  • the projection light path includes a first light emitting end face 910, the first light emitting end face 910 is perpendicular to the emitting direction of the first wavelength light, the first wavelength light, the second wavelength light and the fourth wavelength light are transmitted through the third beam splitter 730, and the first wavelength light is transmitted through the third beam splitter 730.
  • the three-wavelength light is reflected on the third beam splitter 730, the first wavelength light, the second wavelength light, the third wavelength light and the fourth wavelength light are converged by the third beam splitter 730, and the converged first wavelength light, second wavelength light,
  • the third wavelength light and the fourth wavelength light are emitted from the first light exit end face 910 .
  • the anti-reflection films of the first wavelength light, the second wavelength light and the fourth wavelength light are arranged on the third beam splitter 730 facing the first beam splitter 710, and the third beam splitter 730 is arranged facing the third light source 30 with the third wavelength light reflective film. Therefore, when the third beam splitter 730 transmits the light of the first wavelength, the light of the second wavelength and the light of the fourth wavelength, and reflects the light of the third wavelength, it can make the light of the first wavelength, the light of the second wavelength, the light of the third wavelength and the light of the third wavelength.
  • the four wavelengths of light are converged and combined, and are emitted from the first light-emitting end face 910 .
  • the anti-reflection film for the first wavelength light, the second wavelength light and the fourth wavelength light, and the reflective film for the third wavelength light can be arranged on the same surface of the third beam splitter 730 or separately on the third beam splitter 730 of the two surfaces.
  • the first wavelength light is green light
  • the second wavelength light is red light
  • the third wavelength light is blue light.
  • 730 facing the third light source 30 is provided with a blue light reflective film.
  • the wavelength ranges of green light and red light are close, and a higher pass rate can be obtained through the third beam splitter 730 .
  • the second wavelength light and the fourth wavelength light are both red light, although the wavelengths of the two are different, but the wavelength range is close, and a higher pass rate can be obtained through the third beam splitter 730 .
  • the three light source system 1 includes a green light source and a red light source
  • the single light source system includes a blue light source, which can further improve the light output and reduce the decrease in light output due to a long wavelength range difference.
  • this embodiment also provides another light emitting direction
  • the projection light path includes a second light emitting end face 920, the second light emitting end face 920 is parallel to the emitting direction of the first wavelength light, the first wavelength light, the second wavelength light and the fourth wavelength light Reflected on the third beam splitter 730, the third wavelength light is transmitted through the third beam splitter 730, the first wavelength light, the second wavelength light, the third wavelength light and the fourth wavelength light are converged by the third beam splitter 730, The light of one wavelength, the light of the second wavelength, the light of the third wavelength and the light of the fourth wavelength are emitted from the second light-emitting end face 920 .
  • the third beam splitter 730 faces the first beam splitter 710 and is provided with reflective films for the first wavelength light, the second wavelength light and the fourth wavelength light, and the third beam splitter 730 faces the third light source 30. Antireflection coating. Therefore, when the third beam splitter 730 reflects the light of the first wavelength, the light of the second wavelength and the light of the fourth wavelength, and transmits the light of the third wavelength, the light of the first wavelength, the light of the second wavelength, the light of the third wavelength and the light of the third wavelength can be transmitted. The four wavelengths of light are converged and combined, and are emitted from the second light-emitting end face 920 .
  • the reflection films for the first wavelength light, the second wavelength light and the fourth wavelength light, and the antireflection film for the third wavelength light can be arranged on the same surface of the third beam splitter 730 or separately on the third beam splitter 730 of the two surfaces.
  • the projection light path includes a plurality of collimating lens groups 60, and the collimating lens groups 60 are arranged at least in the light emitting direction of one of the first light source 10, the second light source 20, the third light source 30 or the fourth light source 40.
  • the straight lens group 60 can make the corresponding light beam to the corresponding position accurately.
  • the collimating lens group 60 includes a first collimating lens 610 and a second collimating lens 620, the first collimating lens 610 is disposed facing the corresponding light source, the second accurate lens is disposed facing away from the corresponding light source, and the first collimating lens 610 and the second collimating lens 620 are any one of spherical lenses, aspherical lenses or free-form surface lenses.
  • the collimating lens group 60 may further include three collimating lenses, and the three collimating lenses may also be any one of spherical lenses, aspherical lenses or free-form surface lenses.
  • the projection light path further includes a first condensing mirror 810 , and the first condensing mirror 810 is arranged in the light path between the first beam splitter 710 and the third beam splitter 730 .
  • the first condensing light can be gathered and condensed by the condensing action of the first condensing mirror 810, and the first condensed light can be further mixed with the second condensed light, and the divergence of the first condensed light can also be reduced.
  • the projection light path further includes a second condensing mirror 820, the second condensing mirror 820 is arranged in the light path between the second beam splitter 720 and the third beam splitter 730, and the converged second wavelength light and the fourth beam
  • the wavelength light is directed to the second condenser lens 820 .
  • the condensed light of the second wavelength and the light of the fourth wavelength can be condensed by the condensing effect of the second condensing mirror 820, thereby reducing the divergence of the light.
  • the second light source 20 and the third light source 30 are arranged on the upper side of the exit light path of the first wavelength light, and the excitation light source 50 is arranged on the first light source.
  • the first light source 10 and the fourth light source 40 are arranged on the left side of the outgoing optical path of the second wavelength light, the surface of the first beam splitter 710, the surface of the second beam splitter 720 and the third beam splitter The surfaces of the sheets 730 are parallel to each other.
  • the surface of the first beam splitter 710 facing the first light source 10 and the incident angle of the first wavelength light are 45°, and the first beam splitter 710 , the second beam splitter 720 and the third beam splitter 730 are parallel to each other. In this way, the emission and transmission of light can be smoothly ensured, so that the four paths of light can be effectively converged.
  • the second light source 20 is disposed on the upper side of the exit light path of the first wavelength light
  • the third light source 30 and the excitation light source 50 are disposed on the lower side of the exit light path of the first wavelength light
  • the four light sources 40 are arranged on the left side of the exit light path of the second wavelength light.
  • the surface of the first beam splitter 710 and the surface of the second beam splitter 720 are parallel to each other, and the surface of the first beam splitter 710 is the same as the surface of the third beam splitter 730 Orthogonal.
  • the surface of the first beam splitter 710 facing the first light source 10 and the incident angle of the first wavelength light are 45°
  • the first beam splitter 710 and the second beam splitter 720 are arranged in parallel
  • the first beam splitter 710 and the third beam splitter The 730 is set orthogonally, and the angle between the two is 90°. In this way, the emission and transmission of light can be smoothly ensured, so that the four paths of light can be effectively converged.
  • the second light source 20 is arranged on the upper side of the exit light path of the first wavelength light
  • the third light source 30 and the excitation light source 50 are arranged on the lower side of the exit light path of the first wavelength light
  • the first light source 10 is arranged
  • the fourth light source 40 is arranged on the right side of the exit light path of the second wavelength light
  • the surface of the second beam splitter 720 and the surface of the third beam splitter 730 are parallel to each other
  • the surface of the plate 710 is orthogonal to the surface of the third beam splitter plate 730 .
  • the surface of the first beam splitter 710 facing the first light source 10 and the incident angle of the first wavelength light are 45°
  • the third beam splitter 730 and the second beam splitter 720 are arranged in parallel
  • the first beam splitter 710 and the third beam splitter The 730 is set orthogonally, and the angle between the two is 90°.
  • the distance between the first beam splitter 710 and the third beam splitter 730 can be lengthened, so that the second light exit end face 920 can be extended. Keep a distance from the fourth light source 40 .
  • the present application also provides a projection device, the projection device includes a housing and a projection light path as above, and the projection light path is provided in the housing.
  • the housing has an installation space, and the projection light path is arranged in the installation space.
  • the housing can protect the projection light path and reduce the probability of damage to the optical components in the projection light path.
  • the housing can also prevent dust from falling into the projection light path, thereby reducing the influence of dust on the projection light path.
  • the casing is also waterproof, which reduces the penetration of liquids such as rainwater or sweat into the projection light path, and prevents the liquid from corroding optical components in the projection light path.
  • a software module can be placed in random access memory (RAM), internal memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other in the technical field. in any other known form of storage medium.
  • RAM random access memory
  • ROM read only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or any other in the technical field. in any other known form of storage medium.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Projection Apparatus (AREA)

Abstract

一种投影光路和投影设备,该投影光路包括三光源系统(1)发射第一汇聚光,单光源系统(2)发射单色波长光,三光源系统(1)包括第二汇聚光和第一波长光汇聚形成第一汇聚光,单光源系统(2)包括第三光源(30)发出第三波长光,第一波长光、第二波长光和第三波长光分别为红光、绿光和蓝光三者其中一种,第四波长光的波长范围为红光的波长范围内,定义第四波长光的波长为λ1,第一波长光、第二波长光、第三波长光之中设置红光的波长为λ2,满足:λ1≠λ2,激发光源(50)发出激发光线,激发光线射向第一光源(10)或第二光源(20)。该投影光路能够在减少红光产生的热效应时,还能够提高其它颜色光源的发光效率,从而有效提升整体显示画面的亮度。

Description

投影光路和投影设备
本申请要求于2020年11月13日提交中国专利局、申请号为202022637744.8、发明名称为“投影光路和投影设备”的中国专利申请,以及于2021年3月26日提交中国专利局、申请号为202120623773.0、发明名称为“投影光路和投影设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学显示技术领域,尤其涉及一种投影光路和投影设备。
背景技术
在光学投影显示中,采用红绿蓝三种颜色的光组合作为投影光源,为了提高投影画面的亮度,需要增加相应颜色的光线数量,即增加光通量。目前增加光通量的方式是提高相应电源的电流,由此三种颜色相应的光源能够产生更多的光线。但是红光的光源对温度较为敏感,当电流增大到一定程度时,红色光线数量增多,由此产生热效应,导致红光光源的发光效率骤降。为此,采用两种红光光源相互配合,减少红光光源产生的热效应。但是,其它颜色光源的发光效率依然较低,投影画面的整体亮度难以有效提高。
发明内容
基于此,针对现有投影光源中,采用两种红光光源相互配合,减少红光光源产生的热效应时,其它颜射光源的发光效率较低,投影画面的整体亮度难以有效提高的问题,有必要提供一种投影光路和投影设备,旨在能够减少红光产生的热效应时,还能够提高其它颜射光源的发光效率,从而有效提升整体显示画面的亮度。
为实现上述目的,本申请提出的一种投影光路,所述投影光路包括:
三光源系统,所述三光源系统发射第一汇聚光;
单光源系统,所述单光源系统发射单色波长光,所述第一汇聚光和所述单色波长光的交叉汇聚;
所述三光源系统包括第一光源、第二光源和第四光源,所述第一光源发出第一波长光,所述第二光源发出第二波长光,所述第四光源发出第四波长光,所述第二波长光和所述第四波长光汇聚形成第二汇聚光,所述第二汇聚光和所述第一波长光汇聚形成所述第一汇聚光,所述单光源系统包括第三光源,所述第三光源发出第三波长光,所述第一波长光、所述第二波长光和所述第三波长光的颜色均不同,所述第一波长光、所述第二波长光和所述第三波长光分别为红光、绿光和蓝光三者其中一种,所述第四波长光的波长范围为红光的波长范围内,定义所述第四波长光的波长为λ1,所述第一波长光、所述第二波长光、所述第三波长光之中设置为红光的波长为λ2,满足:λ1≠λ2;以及
激发光源,所述激发光源发出激发光线,所述激发光线射向所述三光源系统或所述单光源系统。
可选地,所述三光源系统还包括第一分光片,所述第一分光片设于所述第二汇聚光和所述第一波长光的交叉位置,所述激发光源设于所述第一分光片远离所述第二光源的一侧;
所述第一光源为绿光光源,所述第一分光片面向所述激发光源的表面设置所述激发光线的反射膜,所述激发光线经所述第一分光片的反射向所述第一光源;
或者,所述第二光源为绿光光源,所述第一分光片面向所述激发光源的表面设置所述激发光线的增透膜,所述激发光线透射向所述第二光源。
可选地,所述三光源系统还包括第二分光片,所述第二分光片设于所述第二波长光和所述第四波长光汇聚交叉位置,所述第二分光片面向所述第二光源的表面设置第二波长光的增透膜,所述第二分光片面向所述第四光源表面设置第四波长光的反射膜。
可选地,所述投影光路还包括第三分光片,所述第三分光片设于所述第一汇聚光和所述第三波长光交叉位置,所述第一波长光、所述第二波长光、 所述第三波长光和所述第四波长光经所述第三分光片汇聚出射。
可选地,所述第一波长光为绿光,所述第二波长光为红光,所述第三波长光为蓝光,所述第三分光片面向所述第一光源设置绿光和红光的增透膜,所述第三分光片面向所述第三光源设置蓝光的反射膜。
可选地,所述第二光源和所述第三光源设于所述第一波长光出射光路的上侧,所述激发光源设于所述第一波长光出射光路的下侧,所述第一光源和所述第四光源设于所述第二波长光出射光路的左侧,所述第一分光片的表面、所述第二分光片的表面和所述第三分光片的表面相互平行。
可选地,所述第二光源设于所述第一波长光出射光路的上侧,所述第三光源和所述激发光源设于所述第一波长光出射光路的下侧,所述第一光源和所述第四光源设于所述第二波长光出射光路的左侧,所述第一分光片的表面和所述第二分光片的表面相互平行,所述第一分光片的表面和所述第三分光片的表面相正交。
可选地,所述第二光源设于所述第一波长光出射光路的相上侧,所述第三光源和所述激发光源设于所述第一波长光出射光路的下侧,所述第一光源设于所述第二波长光出射光路的左侧,所述第四光源设于所述第二波长光出射光路的右侧,所述第二分光片的表面和所述第三分光片的表面相互平行,所述第一分光片的表面和所述第三分光片的表面相正交。
可选地,所述投影光路包括第一出光端面,所述第一出光端面和所述第一波长光的出射方向垂直,所述第一波长光、所述第二波长光和所述第四波长光透射于所述第三分光片,所述第三波长光反射于所述第三分光片,所述第一波长光、所述第二波长光、所述第三波长光和所述第四波长光经所述第三分光片汇聚,汇聚的所述第一波长光、所述第二波长光、所述第三波长光和所述第四波长光于所述第一出光端面射出。
可选地,所述投影光路包括第二出光端面,所述第二出光端面和所述第一波长光的出射方向平行,所述第一波长光、所述第二波长光和所述第四波长光反射于所述第三分光片,所述第三波长光透射于所述第三分光片,所述第一波长光、所述第二波长光、所述第三波长光和所述第四波长光经所述第三分光片汇聚,汇聚的所述第一波长光、所述第二波长光、所述第三波长光和所述第四波长光于所述第二出光端面射出。
此外,为了实现上述目的,本申请还提供一种投影设备,所述投影设备包括壳体和如上文所述的投影光路,所述投影光路设于所述壳体。
本申请提出的技术方案中,三光源系统的第二光源发出的第二波长光和第四光源发出的第四波长光汇聚形成第二汇聚光,第一光源发出的第一波长光和第二汇聚光汇聚形成第一汇聚光。单光源系统的第三光源发出的第三波长光射向第一汇聚光,完成四路光线的汇聚。其中,第一波长光、第二波长光和第三波长光分别为红光、绿光和蓝光其中一种,三种颜色光结合作为投影画面的光源。第四波长光也为红色,如此,在增加投影画面亮度时,投影光源的红色由两个光源提供,减少单个红光光源出现热效应的情况,减少发光效率骤降的问题,从而保证投影光源能够稳定工作。
此外,第四波长光的红色波长与第一光源、第二光源或第三光源中红光的波长不同。由此投影光路能够分成多路传递,减少第四光源的第四波长光和另外三种光源中红光的相互干扰,保证光线在同一个位置合光后出射。
再者,三光源系统包括第一光源、第二光源和第四光源,而第三光源设置在单光源系统内,三光源系统和单光源系统可以独立安装,由此通过两次安装完成投影光路中光源的安装,从而提高安装效率。
进一步地,设置两个光源系统便于快速完成摆放,如此能够简化光路设设计。
进一步地,通过激光光源的设置,激发光源的激发光线射向三光源系统或单光源系统,从而提高光线的出光效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请投影光路第一实施例的结构示意图;
图2为本申请投影光路第二实施例的结构示意图;
图3为本申请投影光路第三实施例的结构示意图。
附图标号说明:
标号 名称 标号 名称
1 三光源系统 620 第二准直透镜
2 单光源系统 710 第一分光片
10 第一光源 720 第二分光片
20 第二光源 730 第三分光片
30 第三光源 810 第一聚光镜
40 第四光源 820 第二聚光镜
50 激发光源 910 第一出光端面
60 准直镜组 920 第二出光端面
610 第一准直透镜    
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在光学投影显示中,采用红绿蓝三种颜色的光组合作为投影光源,为了提高投影画面的亮度,通常增加相应电源的电流,由此三种颜色相应的光源能够产生更多的光线。但是红光的光源对温度较为敏感,当电流增大到一定程度时,红色光线数量增多,由此产生热效应,导致红光光源的发光效率骤降。为此,采用两种红光光源相互配合,减少红光光源产生的热效应。但是,其它颜色光源的发光效率依然较低,投影画面的整体亮度难以有效提高。
为了解决上述问题,参阅图1所示,本申请提供一种投影光路,投影光路包括:三光源系统1、单光源系统2和激发光源50。三光源系统1发射第一汇聚 光,单光源系统2发射单色波长光,第一汇聚光和单色波长光的交叉汇聚。三光源系统1包括第一光源10、第二光源20和第四光源40,第一光源10发出第一波长光,第二光源20发出第二波长光,第四光源40发出第四波长光,第二波长光和第四波长光汇聚形成第二汇聚光,第二汇聚光和第一波长光汇聚形成第一汇聚光,单光源系统2包括第三光源30,第三光源30发出第三波长光,第一波长光、第二波长光和第三波长光的颜色均不同,第一波长光、第二波长光和第三波长光分别为红光、绿光和蓝光三者其中一种,也就是说,第一波长光为绿光时、第二波长光可以为红光、第三波长光为蓝光,或者,第一波长光为绿光时、第二波长光可以为蓝光、第三波长光为红光。也可以是,第一波长光为红光时、第二波长光可以为绿光、第三波长光为蓝光,或者,第一波长光为红光时、第二波长光可以为蓝光、第三波长光为绿光。还可以是,第一波长光为蓝光时、第二波长光可以为绿光、第三波长光为红光,或者,第一波长光为蓝光时、第二波长光可以为红光、第三波长光为绿光。第一波长光、第二波长光和第三波长光三种光的颜色在红光、绿光和蓝光三者之中选择,且三种波长光的颜色各不相同。第四波长光的波长范围为红光的波长范围内,定义第四波长光的波长为λ1,第一波长光、第二波长光、第三波长光之中设置为红光的波长为λ2,满足:λ1≠λ2;例如,红光的波长范围在600nm~740nm之间,第一波长光为红光,第一波长光的波长λ2=620nm,则第四波长光的波长λ1=650nm。再例如,第一波长光的波长λ2=625nm,则第四波长光的波长λ1=660nm。其中,第一光源10、第二光源20、第三光源30和第四光源40可以为发光二极管(LED,Light-emitting Diode),也可以是半导体激光器(LD,Laser Diode),还可以是超辐射半导体器件(SLD,Super Luminescent Diode)其中任意一种。单色波长光是某一颜色的波长光,单色波长光具有一定的波长范围。
激发光源50发出激发光线,激发光线射向三光源系统1或单光源系统2。激发光源50是一种泵浦灯,例如激发光线为蓝光,蓝色激发光线射向第一光源10或第二光源20,从而提高相应光源的荧光分子,继而提高相应光源的光线出射数量。
另外,作为本领域的技术人员来说,所熟知的是,任何光源发出的光都是具有一定波长范围的光束,故本申请中第一波长光是指以第一波长为主波 长的光束,本申请中的第一波长光的波长指的是第一波长光的主波长。相应的,第二波长光、第三波长光、第四波长光亦是如此。其中,主波长也可以理解为中心波长。
本实施例提出的技术方案中,三光源系统1的第二光源20发出的第二波长光和第四光源40发出的第四波长光汇聚形成第二汇聚光,第一光源10发出的第一波长光和第二汇聚光汇聚形成第一汇聚光。单光源系统2的第三光源30发出的第三波长光射向第一汇聚光,完成四路光线的汇聚。其中,第一波长光、第二波长光和第三波长光分别为红光、绿光和蓝光其中一种,三种颜色光结合作为投影画面的光源。第四波长光也为红色,如此,在增加投影画面亮度时,投影光源的红色由两个光源提供,减少单个红光光源出现热效应的情况,减少发光效率骤降的问题,从而保证投影光源能够稳定工作。
此外,第四波长光的红色波长与第一光源10、第二光源20或第三光源30中红光的波长不同。由此投影光路能够分成多路传递,减少第四光源40的第四波长光和另外三种光源中红光的相互干扰,保证光线在同一个位置合光后出射。
再者,三光源系统1包括第一光源10、第二光源20和第四光源40,而第三光源30设置在单光源系统2内,三光源系统1和单光源系统2可以独立安装,由此通过两次安装完成投影光路中光源的安装,从而提高安装效率。
进一步地,设置两个光源系统便于快速完成摆放,如此能够简化光路设设计。
进一步地,通过激光光源的设置,激发光源50的激发光线射向三光源系统1或单光源系统2,从而提高光线的出光效率。激发光线射向绿光光源后,能够增加绿光光源的荧光分子。由此可知,激发光线射向绿光光源,第一光源10哪个是绿光光源,激发光线就射向哪个光源。
在上述实施例中,为了保证激发光线能够准确的射向第一光源10或第二光源20,三光源系统1还包括第一分光片710,第一分光片710设于第二汇聚光和第一波长光的交叉位置,激发光源50设于第一分光片710远离第二光源20的一侧。
第一光源10为绿光光源,第一分光片710面向激发光源50的表面设置激发光线的反射膜,激发光线经第一分光片710的反射向第一光源10;激发光线为 蓝光,经过第一分光片710的反射,蓝光的激发光线射向第一光源10后,提高了绿光的荧光分子,从而提高了绿光的出光数量。
或者,第二光源20为绿光光源,第一分光片710面向激发光源50的表面设置激发光线的增透膜,激发光线透射向第二光源20。经过第一分光片710的透射,蓝光的激发光线射向第二光源20后,提高了绿光的荧光分子,从而提高了绿光的出光数量。
在上述实施例中,为了使第二波长光和第四波长光有效汇聚,三光源系统1还包括第二分光片720,第二分光片720设于第二波长光和第四波长光汇聚交叉位置,第二分光片720面向第二光源20设置第二波长光的增透膜,第二分光片720面向第四光源40设置第四波长光的反射膜。通过第二分光片720对第四波长光的反射和对第二波长光的透射,使第二波长光和第四波长光在第二分光片720的同一表面出射,从而完成第二波长光和第四波长光的汇聚。其中,第二波长光的增透膜和第四波长光的反射膜可以设于第二分光片720的同一表面,也可分设于第二分光片720的两个表面。
为了使第三波长光和第一汇聚光有效汇聚,投影光路还包括第三分光片730,第三分光片730设于第一汇聚光和第三波长光交叉位置,第一波长光、第二波长光、第三波长光和第四波长光经第三分光片730汇聚出射。
具体地,投影光路包括第一出光端面910,第一出光端面910和第一波长光的出射方向垂直,第一波长光、第二波长光和第四波长光透射于第三分光片730,第三波长光反射于第三分光片730,第一波长光、第二波长光、第三波长光和第四波长光经第三分光片730汇聚,汇聚的第一波长光、第二波长光、第三波长光和第四波长光于第一出光端面910射出。其中,在第三分光片730面向第一分光片710设置第一波长光、第二波长光和第四波长光的增透膜,在第三分光片730面向第三光源30设置第三波长光的反射膜。从而在第三分光片730透射第一波长光、第二波长光和第四波长光,反射第三波长光的情况下,能够使第一波长光、第二波长光、第三波长光和第四波长光汇聚合并,并在第一出光端面910出射。其中,第一波长光、第二波长光和第四波长光的增透膜,以及第三波长光的反射膜可以设于第三分光片730的同一表面,也可分设于第三分光片730的两个表面。
例如,第一波长光为绿光,第二波长光为红光,第三波长光为蓝光,第 三分光片730面向第一光源10设置绿光和红光的增透膜,第三分光片730面向第三光源30设置蓝光的反射膜。绿光和红光的波长范围接近,通过第三分光片730能够获得更高的通过率。同样可知,第二波长光和第四波长光均为红光,虽然二者波长不同,但是波长范围接近,通过第三分光片730能够获得更高的通过率。由此可知,三光源系统1包括绿光光源和红光光源,单光源系统包括蓝光光源,如此能够进一步提高出光量,减少由于波长范围差距较远导致出光量降低。
另外,本实施例还提供另一出光方向,投影光路包括第二出光端面920,第二出光端面920和第一波长光的出射方向平行,第一波长光、第二波长光和第四波长光反射于第三分光片730,第三波长光透射于第三分光片730,第一波长光、第二波长光、第三波长光和第四波长光经第三分光片730汇聚,汇聚的第一波长光、第二波长光、第三波长光和第四波长光于第二出光端面920射出。其中,在第三分光片730面向第一分光片710设置第一波长光、第二波长光和第四波长光的反射膜,在第三分光片730面向第三光源30设置第三波长光的增透膜。从而在第三分光片730反射第一波长光、第二波长光和第四波长光,透射第三波长光的情况下,能够使第一波长光、第二波长光、第三波长光和第四波长光汇聚合并,并在第二出光端面920出射。其中,第一波长光、第二波长光和第四波长光的反射膜,以及第三波长光的增透膜可以设于第三分光片730的同一表面,也可分设于第三分光片730的两个表面。
再者,投影光路包括若干准直镜组60,准直镜组60至少设于第一光源10、第二光源20、第三光源30或第四光源40其中之一的出光方向中,通过准直镜组60能够使相应的光线准确的射向相应的位置。例如,准直镜组60包括第一准直透镜610和第二准直透镜620,第一准直透镜610面向相应的光源设置,第二准确透镜背向相应的光源设置,第一准直透镜610和第二准直透镜620为球面透镜、非球面透镜或自由曲面透镜的其中任意一种。准直镜组60还可以包括三个准直透镜,三个准直透镜也可以为球面透镜、非球面透镜或自由曲面透镜的其中任意一种。
另外,为了减少第一汇聚光的发散,投影光路还包括第一聚光镜810,第一聚光镜810设于第一分光片710和第三分光片730之间的光路中。通过第一聚光镜810的聚光作用能够使第一汇聚光收拢会聚,在进一步混合第一波长光和 第二汇聚光的同时,还能够减少第一汇聚光的发散。
进一步地,为了减少光线的发散,投影光路还包括第二聚光镜820,第二聚光镜820设于第二分光片720和第三分光片730之间的光路中,汇聚的第二波长光和第四波长光射向第二聚光镜820。通过第二聚光镜820的聚光作用能够使汇聚的第二波长光和第四波长光收拢会聚,从而减少光线的发散。
再次参阅图1所示,为了依据安装空间,灵活的调整投影光路的安装位置,第二光源20和第三光源30设于第一波长光出射光路的上侧,激发光源50设于第一波长光出射光路的下侧,第一光源10和第四光源40设于第二波长光出射光路的左侧,第一分光片710的表面、第二分光片720的表面和第三分光片730的表面相互平行。例如,第一分光片710面向第一光源10的表面和第一波长光的入射角为45°,第一分光片710、第二分光片720以及第三分光片730三者相互平行。如此,顺利保证光线的发射和透射,进而使四路光线有效的完成汇聚。
参阅图2所示,第二光源20设于第一波长光出射光路的上侧,第三光源30和激发光源50设于第一波长光出射光路的下侧,第一光源10和第四光源40设于第二波长光出射光路的左侧,第一分光片710的表面和第二分光片720的表面相互平行,第一分光片710的表面和第三分光片730的表面相正交。例如,第一分光片710面向第一光源10的表面和第一波长光的入射角为45°,第一分光片710和第二分光片720平行设置,第一分光片710和第三分光片730正交设置,两者夹角为90°。如此,顺利保证光线的发射和透射,进而使四路光线有效的完成汇聚。
参阅图3所示,第二光源20设于第一波长光出射光路的相上侧,第三光源30和激发光源50设于第一波长光出射光路的下侧,第一光源10设于第二波长光出射光路的左侧,第四光源40设于第二波长光出射光路的右侧,第二分光片720的表面和第三分光片730的表面相互平行,第一分光片710的表面和第三分光片730的表面相正交。例如,第一分光片710面向第一光源10的表面和第一波长光的入射角为45°,第三分光片730和第二分光片720平行设置,第一分光片710和第三分光片730正交设置,两者夹角为90°。如此,顺利保证光线的发射和透射,进而使四路光线有效的完成汇聚。进一步地,本实施例中,为了避免第四光源40对第二出光端面920造成干涉影响,可以拉长第一分光片 710与第三分光片730之间的距离,从而使第二出光端面920和第四光源40拉开距离。
本申请还提供一种投影设备,投影设备包括壳体和如上文的投影光路,投影光路设于壳体。壳体具有安装空间,投影光路设置在安装空间内,壳体能够对投影光路进行保护,减少投影光路中的光学元器件被损坏的几率。同时,壳体还能够防止灰尘落入到投影光路内,从而减少灰尘对投影光路的影响。另外,壳体还能够防水,减少雨水或者汗水等液体渗入到投影光路内,避免液体对投影光路内的光学元器件造成腐蚀。
本说明书中各个实施例采用并列或者递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处可参见方法部分说明。
本领域普通技术人员还可以理解,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包 括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (11)

  1. 一种投影光路,其特征在于,所述投影光路包括:
    三光源系统,所述三光源系统发射第一汇聚光;
    单光源系统,所述单光源系统发射单色波长光,所述第一汇聚光和所述单色波长光的交叉汇聚;
    所述三光源系统包括第一光源、第二光源和第四光源,所述第一光源发出第一波长光,所述第二光源发出第二波长光,所述第四光源发出第四波长光,所述第二波长光和所述第四波长光汇聚形成第二汇聚光,所述第二汇聚光和所述第一波长光汇聚形成所述第一汇聚光,所述单光源系统包括第三光源,所述第三光源发出第三波长光,所述第一波长光、所述第二波长光和所述第三波长光的颜色均不同,所述第一波长光、所述第二波长光和所述第三波长光分别为红光、绿光和蓝光三者其中一种,所述第四波长光的波长范围为红光的波长范围内,定义所述第四波长光的波长为λ1,所述第一波长光、所述第二波长光、所述第三波长光之中设置为红光的波长为λ2,满足:λ1≠λ2;以及
    激发光源,所述激发光源发出激发光线,所述激发光线射向所述三光源系统或所述单光源系统。
  2. 如权利要求1所述的投影光路,其特征在于,所述三光源系统还包括第一分光片,所述第一分光片设于所述第二汇聚光和所述第一波长光的交叉位置,所述激发光源设于所述第一分光片远离所述第二光源的一侧;
    所述第一光源为绿光光源,所述第一分光片面向所述激发光源的表面设置所述激发光线的反射膜,所述激发光线经所述第一分光片的反射向所述第一光源;
    或者,所述第二光源为绿光光源,所述第一分光片面向所述激发光源的表面设置所述激发光线的增透膜,所述激发光线透射向所述第二光源。
  3. 如权利要求2所述的投影光路,其特征在于,所述三光源系统还包括第二分光片,所述第二分光片设于所述第二波长光和所述第四波长光汇聚交叉位置,所述第二分光片面向所述第二光源的表面设置第二波长光的增透膜, 所述第二分光片面向所述第四光源表面设置第四波长光的反射膜。
  4. 如权利要求3所述的投影光路,其特征在于,所述投影光路还包括第三分光片,所述第三分光片设于所述第一汇聚光和所述第三波长光交叉位置,所述第一波长光、所述第二波长光、所述第三波长光和所述第四波长光经所述第三分光片汇聚出射。
  5. 如权利要求4所述的投影光路,其特征在于,所述第一波长光为绿光,所述第二波长光为红光,所述第三波长光为蓝光,所述第三分光片面向第一光源设置绿光和红光的增透膜,所述第三分光片面向第三光源设置蓝光的反射膜。
  6. 如权利要求4所述的投影光路,其特征在于,所述第二光源和所述第三光源设于所述第一波长光出射光路的上侧,所述激发光源设于所述第一波长光出射光路的下侧,所述第一光源和所述第四光源设于所述第二波长光出射光路的左侧,所述第一分光片的表面、所述第二分光片的表面和所述第三分光片的表面相互平行。
  7. 如权利要求4所述的投影光路,其特征在于,所述第二光源设于所述第一波长光出射光路的上侧,所述第三光源和所述激发光源设于所述第一波长光出射光路的下侧,所述第一光源和所述第四光源设于所述第二波长光出射光路的左侧,所述第一分光片的表面和所述第二分光片的表面相互平行,所述第一分光片的表面和所述第三分光片的表面相正交。
  8. 如权利要求4所述的投影光路,其特征在于,所述第二光源设于所述第一波长光出射光路的相上侧,所述第三光源和所述激发光源设于所述第一波长光出射光路的下侧,所述第一光源设于所述第二波长光出射光路的左侧,所述第四光源设于所述第二波长光出射光路的右侧,所述第二分光片的表面和所述第三分光片的表面相互平行,所述第一分光片的表面和所述第三分光片的表面相正交。
  9. 如权利要求4所述的投影光路,其特征在于,所述投影光路包括第一出光端面,所述第一出光端面和所述第一波长光的出射方向垂直,所述第一波长光、所述第二波长光和所述第四波长光透射于所述第三分光片,所述第三波长光反射于所述第三分光片,所述第一波长光、所述第二波长光、所述第三波长光和所述第四波长光经所述第三分光片汇聚,汇聚的所述第一波长光、所述第二波长光、所述第三波长光和所述第四波长光于所述第一出光端面射出。
  10. 如权利要求4所述的投影光路,其特征在于,所述投影光路包括第二出光端面,所述第二出光端面和所述第一波长光的出射方向平行,所述第一波长光、所述第二波长光和所述第四波长光反射于所述第三分光片,所述第三波长光透射于所述第三分光片,所述第一波长光、所述第二波长光、所述第三波长光和所述第四波长光经所述第三分光片汇聚,汇聚的所述第一波长光、所述第二波长光、所述第三波长光和所述第四波长光于所述第二出光端面射出。
  11. 一种投影设备,其特征在于,所述投影设备包括壳体和如权利要求1至10中任一项所述的投影光路,所述投影光路设于所述壳体。
PCT/CN2021/101676 2020-11-13 2021-06-23 投影光路和投影设备 WO2022100100A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/036,790 US20230408894A1 (en) 2020-11-13 2021-06-23 Projection optical path and projection device
KR1020237019338A KR20230104275A (ko) 2020-11-13 2021-06-23 투영 광로 및 투영 장치
EP21890631.1A EP4246228A1 (en) 2020-11-13 2021-06-23 Projection optical path and projection device
JP2023528462A JP2024501612A (ja) 2020-11-13 2021-06-23 投影光路及び投影装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202022637744 2020-11-13
CN202022637744.8 2020-11-13
CN202120623773.0U CN214375784U (zh) 2020-11-13 2021-03-26 投影光路和投影设备
CN202120623773.0 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022100100A1 true WO2022100100A1 (zh) 2022-05-19

Family

ID=77972812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101676 WO2022100100A1 (zh) 2020-11-13 2021-06-23 投影光路和投影设备

Country Status (6)

Country Link
US (1) US20230408894A1 (zh)
EP (1) EP4246228A1 (zh)
JP (1) JP2024501612A (zh)
KR (1) KR20230104275A (zh)
CN (1) CN214375784U (zh)
WO (1) WO2022100100A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280882A (zh) * 2021-12-30 2022-04-05 歌尔光学科技有限公司 一种照明系统及投影光机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090262308A1 (en) * 2008-04-16 2009-10-22 Casio Computer Co., Ltd. Light source unit and projector
CN102330888A (zh) * 2010-07-12 2012-01-25 红蝶科技(深圳)有限公司 混光式带荧光粉激发的单色光源及使用其的投影光学引擎
CN202995240U (zh) * 2012-12-20 2013-06-12 深圳市光峰光电技术有限公司 发光装置及其相关投影系统
CN105223761A (zh) * 2014-07-01 2016-01-06 中强光电股份有限公司 投影装置及照明系统
CN105474073A (zh) * 2013-08-26 2016-04-06 罗伯特·博世有限公司 光源装置、尤其在微镜装置中使用的光源装置
US20170307969A1 (en) * 2016-04-26 2017-10-26 Canon Kabushiki Kaisha Illumination apparatus and projection type display apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090262308A1 (en) * 2008-04-16 2009-10-22 Casio Computer Co., Ltd. Light source unit and projector
CN102330888A (zh) * 2010-07-12 2012-01-25 红蝶科技(深圳)有限公司 混光式带荧光粉激发的单色光源及使用其的投影光学引擎
CN202995240U (zh) * 2012-12-20 2013-06-12 深圳市光峰光电技术有限公司 发光装置及其相关投影系统
CN105474073A (zh) * 2013-08-26 2016-04-06 罗伯特·博世有限公司 光源装置、尤其在微镜装置中使用的光源装置
CN105223761A (zh) * 2014-07-01 2016-01-06 中强光电股份有限公司 投影装置及照明系统
US20170307969A1 (en) * 2016-04-26 2017-10-26 Canon Kabushiki Kaisha Illumination apparatus and projection type display apparatus

Also Published As

Publication number Publication date
CN214375784U (zh) 2021-10-08
KR20230104275A (ko) 2023-07-07
US20230408894A1 (en) 2023-12-21
EP4246228A1 (en) 2023-09-20
JP2024501612A (ja) 2024-01-15

Similar Documents

Publication Publication Date Title
US9341933B2 (en) Wavelength conversion and filtering module and light source system
EP1024398A1 (en) Solid state based illumination source for a projection display
WO2022100098A1 (zh) 投影光路和投影设备
US11579452B2 (en) Compact polarized illuminators using reflective polarizers
US20070268692A1 (en) Illumination system
WO2022100100A1 (zh) 投影光路和投影设备
US20230176461A1 (en) Projection Display Apparatus
WO2022100097A1 (zh) 投影光路和投影设备
EP3255687A1 (en) Light emitting device
CN112305845A (zh) 投影光路和投影设备
TW202014789A (zh) 照明系統
US10845033B2 (en) White light illumination system
CN212780470U (zh) 一种基于dlp技术的用于aoi检测领域的高亮低成本光路结构
CN213457628U (zh) 投影光路和投影设备
CN213423691U (zh) 投影光路和投影设备
CN214375785U (zh) 投影光路和投影设备
TWI447511B (zh) Projector light source module
TWI548927B (zh) 具有抗反射鍍膜層之玻璃螢光體色輪
CN216979564U (zh) 照明系统和投影设备
CN216979567U (zh) 照明系统和投影设备
CN216979566U (zh) 照明系统和投影设备
TW201907222A (zh) 雷射投影機
CN211979406U (zh) 一种投影机的荧光轮涂层、荧光轮及激光光源
CN102478752B (zh) 投影机光源模块
TW202121012A (zh) 光源模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890631

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023528462

Country of ref document: JP

Ref document number: 18036790

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237019338

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021890631

Country of ref document: EP

Effective date: 20230613