WO2022100027A1 - 一种高维非正交传输方法 - Google Patents

一种高维非正交传输方法 Download PDF

Info

Publication number
WO2022100027A1
WO2022100027A1 PCT/CN2021/090967 CN2021090967W WO2022100027A1 WO 2022100027 A1 WO2022100027 A1 WO 2022100027A1 CN 2021090967 W CN2021090967 W CN 2021090967W WO 2022100027 A1 WO2022100027 A1 WO 2022100027A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
signal
dimension
original signal
precoding
Prior art date
Application number
PCT/CN2021/090967
Other languages
English (en)
French (fr)
Inventor
岳光荣
余代中
杨霖
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学 filed Critical 电子科技大学
Priority to US18/033,372 priority Critical patent/US11936471B2/en
Publication of WO2022100027A1 publication Critical patent/WO2022100027A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting

Definitions

  • the invention belongs to the field of communications, and specifically relates to a high-dimensional non-orthogonal transmission method.
  • NOMA Non-Orthogonal Multiple Access
  • UEs User Equipments
  • 3GPP considered different applications of NOMA.
  • SCMA Power Domain NOMA
  • SCMA Sparse Code Multiple Access
  • PDMA Modular Division Multiple Access
  • RSMA Resource Extended Multiple Access
  • OMA Orthogonal Multiple Access
  • OMA Orthogonal Multiple Access
  • the core challenges of the existing NOMA technology lie in the need for higher receiver complexity, user pairing and user coordination complexity, and the detection complexity increases rapidly as the number of UEs increases.
  • the present invention provides a high-dimensional non-orthogonal transmission method, which can realize non-orthogonal transmission of multi-user data without relying on user pairing and cooperation, and each user does not need iterative feedback, and only needs to use ordinary coherent transmission. Data recovery can be achieved upon reception, thereby greatly reducing the complexity of signal detection.
  • the invention discloses a high-dimensional non-orthogonal transmission method.
  • the method includes: a transmitter, multiple users, and multiple channel resources; the transmitter is used to process and transmit the original signals of the multiple users; The original signal is received and recovered; multiple channel resources include time domain, frequency domain, and space domain, which are used by transmitters and multiple users;
  • the described high-dimensional non-orthogonal transmission method comprises the following steps:
  • Step 1 The transmitter maps the original signal of the u-th user to the u-th high-dimensional original signal, and the u-th high-dimensional original signal is:
  • s 0 (u) represents the original signal of the u-th user
  • s(u) represents the u-th high-dimensional original signal
  • Step 2 The transmitter precodes the u-th high-dimensional original signal to generate the u-th high-dimensional transmitted signal.
  • the precoding process is:
  • x(u) represents the u-th high-dimensional transmission signal
  • x i (u) represents the i-th dimension of the u-th high-dimensional transmission signal
  • ⁇ i (u) represents the i-th dimension of the u-th precoded signal
  • Step 3 The transmitter sums all the uth high-dimensional transmitted signals to obtain the high-dimensional total transmitted signal:
  • U represents the number of users, Represents the high-dimensional total transmitted signal; the transmitter uses multiple channel resources to broadcast the high-dimensional total transmitted signal to all users, wherein one channel resource in the multiple channel resources is used to transmit one dimension of the high-dimensional total transmitted signal;
  • the i-th dimension of the u-th precoded signal in the step 2 is:
  • j represents the imaginary unit
  • L represents the number of precoding layers
  • m k represents the index of the precoding branch of the kth layer
  • the number of precoding layers k and the precoding branch index m k of the kth layer satisfy:
  • M k represents the number of precoding branches of the k-th layer
  • ⁇ f k represents the frequency offset of the k-th layer
  • T represents the offset period, and its value is :
  • gcd( ⁇ f 1 , ⁇ f 2 ,..., ⁇ f L ) represents the greatest common divisor of ⁇ f 1 , ⁇ f 2 ,..., ⁇ f L .
  • the present invention realizes non-orthogonal transmission in a higher dimension by mapping the signals of each user into high-dimensional signals and precoding the high-dimensional signals. At the same time, different users match and receive their respective signals, and only a receiver with linear complexity is needed to recover non-orthogonal transmission signals.
  • the method disclosed in the present invention can realize non-orthogonal transmission of multi-user data without relying on user pairing, cooperation and other conditions, and each user does not need iterative feedback, thereby greatly reducing the detection complexity of non-orthogonal multi-user signals.
  • Figure 1 shows the block diagram of the transmitter.
  • Figure 2 depicts the receiver block diagram of the uth user among the multiple users.
  • the transmitter adopts the system structure shown in Figure 1. First, the original signal of the uth user is mapped to the uth high-dimensional original signal, and the uth high-dimensional original signal is
  • the transmitter precodes the u-th high-dimensional original signal to generate the u-th high-dimensional transmitted signal.
  • the precoding process is as follows:
  • the u-th precoded signal is generated according to the generation structure shown in Figure 3, and the i-th dimension of the u-th precoded signal is
  • the uth user among the multiple users receives the high-dimensional total transmitted signal to obtain the high-dimensional total received signal
  • the high-dimensional total received signal is matched and received according to the u-th precoded signal, and the estimation of the u-th original signal is obtained.
  • the matching receiving process is
  • Figure 3 plots the multi-user communication bit error rate performance curve when 64 channel resources are used in this embodiment. It can be seen that the non-orthogonal transmission method provided by this embodiment can realize communication of more than 64 users, and this The detection method provided by the embodiment only needs to perform related superposition operations, does not require user pairing, collaboration and iterative feedback, and only has linear complexity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

该发明公开了一种高维非正交传输方法,属于通信领域,具体涉及高维非正交传输方法。本发明通过将各个用户的信号映射为高维信号,并对高维信号进行预编码,从而在更高的维度上实现非正交传输。与此同时,不同的用户对各自的信号进行匹配接收,只需要线性复杂度的接收机即可恢复出非正交的传输信号。并且,本发明所公开的方法不依赖于用户配对、协同等条件即可实现多用户数据非正交传输,各个用户无需迭代反馈,从而大幅降低非正交多用户信号的检测复杂度。

Description

一种高维非正交传输方法 技术领域
该发明属于通信领域,具体涉及高维非正交传输方法。
背景技术
在过去几年里,非正交多址(NOMA)作为应用于LTE、5G和超5G的候选技术而备受关注,在NOMA中,多个用户设备(UE)实现协同,并且共享时域、频域和码域的信道资源。3GPP考虑了NOMA的不同应用。学术界与工业界也提出了各种不同的SCMA体制,例如功率域NOMA、稀疏码多址(SCMA)、模分多址(PDMA)、资源扩展多址(RSMA)等。经合理配置,NOMA可以相较于正交多址(OMA)获得更高的用户容量。但是,现有NOMA技术的核心挑战在于需要更高的接收机复杂度,用户配对以及用户协同复杂度,其检测复杂度随着UE的数目增加而快速增加。
发明内容
为解决上述问题,本发明提供了一种高维非正交传输方法,可以在不依赖于用户配对、协同的条件下实现多用户数据非正交传输,并且各个用户无需迭代反馈,只需采用普通相干接收即可实现数据恢复,从而大幅降低信号检测复杂度。
本发明公开一种高维非正交传输方法,该方法中包括:发射机、多个用户、多个信道资源,发射机用于对多个用户的原始信号进行处理和发送;多个用户对各自的原始信号进行接收和恢复;多个信道资源包括时域、频域、空域,供发射机和多个用户使用;
其特征在于,所述高维非正交传输方法,包括以下步骤:
步骤1:发射机将第u个用户的原始信号映射为第u高维原始信号,第u高维原始信号为:
Figure PCTCN2021090967-appb-000001
其中,s 0(u)表示第u个用户的原始信号,s(u)表示第u高维原始信号,s i(u)表示第u高维原始信号的第i维,其中i=1,2,…,M,M表示第u高维原始信号的维度,其值等于信道资源的数目;
步骤2:发射机对第u高维原始信号进行预编码,产生第u高维发射信号,预编码过程为
Figure PCTCN2021090967-appb-000002
其中,x(u)表示第u高维发射信号,x i(u)表示第u高维发射信号的第i维,α i(u)表示第u预编码信号的第i维;
步骤3:发射机将所有第u高维发射信号求和得到高维总发射信号:
Figure PCTCN2021090967-appb-000003
其中,U表示用户的数目,
Figure PCTCN2021090967-appb-000004
表示高维总发射信号;发射机利用多个信道资源将高维总发射信号广播给所有的用户,其中多个信道资源中的1个信道资源被用于传输高维总发射信号的一维;
步骤4:第u个用户对高维总发射信号进行接收,得到高维总接收信号,并依据第u预编码信号对高维总接收信号进行匹配接收,得到第u原始信号的估计,其中u=1,2,…,U;匹配接收过程为:
Figure PCTCN2021090967-appb-000005
Figure PCTCN2021090967-appb-000006
其中,
Figure PCTCN2021090967-appb-000007
表示第u原始信号的估计,
Figure PCTCN2021090967-appb-000008
表示第u预编码信号的第i维的共轭,
Figure PCTCN2021090967-appb-000009
表示高维总接收信号,
Figure PCTCN2021090967-appb-000010
表示高维总接收信号的第i维,i=1,2,…,M。
进一步地,所述步骤2中第u预编码信号的第i维为:
Figure PCTCN2021090967-appb-000011
则第u预编码信号为:
Figure PCTCN2021090967-appb-000012
其中j表示虚数单位,L表示预编码层数,m k表示第k层预编码支路索引,预编码层数k、第k层预编码支路索引m k满足:
1≤m k≤M k
Figure PCTCN2021090967-appb-000013
Figure PCTCN2021090967-appb-000014
其中,M k表示第k层预编码支路数,Δf k表示第k层频率偏置量,其值在事先确定,其中k=1,2,…L,T表示偏置周期,其值为:
Figure PCTCN2021090967-appb-000015
其中gcd(Δf 1,Δf 2,…,Δf L)表示Δf 1,Δf 2,…,Δf L的最大公约数。
本发明通过将各个用户的信号映射为高维信号,并对高维信号进行预编码,从而在更高的维度上实现非正交传输。与此同时,不同的用户对各自的信号进行匹配接收,只需要线性复杂度的接收机即可恢复出非正交的传输信号。并且,本发明所公开的方法不依赖于用户配对、协同等条件即可实现多用户数据非正交传输,并且各个用户无需迭代反馈,从而大幅降低非正交多用户信号的检测复杂度。
附图说明
图1绘制了发射机的结构框图。
图2绘制了多个用户中第u个用户的接收机框图。
图3采用64个信道资源时,多用户通信误码率性能曲线
具体实施方式
下面给出本发明的具体实施方式,在该实施方式中,假设用户数目为U=80,并假设信道资源数目为64,其中信道资源在此处特指频域子载波。预编码层数L=2,第1层预编码支路 数为M 1=8,第二层预编码支路数为M 2=8,第1层频率偏置量为Δf 1=100kHz,第2层频率偏置量为Δf 2=200kHz。发射机发射信号时按照以下步骤:
(1)发射机采用如图1所示系统结构,首先将第u个用户的原始信号映射为第u高维原始信号,第u高维原始信号为
Figure PCTCN2021090967-appb-000016
(2)发射机对第u高维原始信号进行预编码,产生第u高维发射信号,预编码过程为
Figure PCTCN2021090967-appb-000017
其中x(u)表示第u高维发射信号,第u预编码信号按照图3所示生成结构生成,第u预编码信号的第i维为
Figure PCTCN2021090967-appb-000018
Figure PCTCN2021090967-appb-000019
(3)多个用户中第u个用户的接收机采用图2所示的框图,发射机将所有第u高维发射信号求和得到高维总发射信号:
Figure PCTCN2021090967-appb-000020
多个用户中的第u个用户对高维总发射信号进行接收,得到高维总接收信号
Figure PCTCN2021090967-appb-000021
并依据第u预编码信号对高维总接收信号进行匹配接收,得到第u原始信号的估计。匹配接收过程为
Figure PCTCN2021090967-appb-000022
Figure PCTCN2021090967-appb-000023
其中
Figure PCTCN2021090967-appb-000024
表示第u原始信号的估计,
Figure PCTCN2021090967-appb-000025
表示第u预编码信号的第i维的共轭,其值为
Figure PCTCN2021090967-appb-000026
Figure PCTCN2021090967-appb-000027
图3绘制了本实施例用64个信道资源时,多用户通信误码率性能曲线,可以看到,采用本实施例提供的非正交传输方法,可以实现超过64个用户的通信,并且本实施例提供的检测方法只用进行相关叠加操作,无需用户配对、协同与迭代反馈,仅具有线性复杂度。

Claims (2)

  1. 一种高维非正交传输方法,该方法中包括:发射机、多个用户、多个信道资源,发射机用于对多个用户的原始信号进行处理和发送;多个用户对各自的原始信号进行接收和恢复;多个信道资源包括时域、频域、空域,供发射机和多个用户使用;
    其特征在于,所述高维非正交传输方法,包括以下步骤:
    步骤1:发射机将第u个用户的原始信号映射为第u高维原始信号,第u高维原始信号为:
    Figure PCTCN2021090967-appb-100001
    其中,s 0(u)表示第u个用户的原始信号,s(u)表示第u高维原始信号,s i(u)表示第u高维原始信号的第i维,其中i=1,2,…,M,M表示第u高维原始信号的维度,其值等于信道资源的数目;
    步骤2:发射机对第u高维原始信号进行预编码,产生第u高维发射信号,预编码过程为
    Figure PCTCN2021090967-appb-100002
    其中,x(u)表示第u高维发射信号,x i(u)表示第u高维发射信号的第i维,α i(u)表示第u预编码信号的第i维;
    步骤3:发射机将所有第u高维发射信号求和得到高维总发射信号:
    Figure PCTCN2021090967-appb-100003
    其中,U表示用户的数目,
    Figure PCTCN2021090967-appb-100004
    表示高维总发射信号;发射机利用多个信道资源将高维总发射信号广播给所有的用户,其中多个信道资源中的1个信道资源被用于传输高维总发射信号的一维;
    步骤4:第u个用户对高维总发射信号进行接收,得到高维总接收信号,并依据第u预编码信号对高维总接收信号进行匹配接收,得到第u原始信号的估计,其中u=1,2,…,U;匹配接收过程为:
    Figure PCTCN2021090967-appb-100005
    Figure PCTCN2021090967-appb-100006
    其中,
    Figure PCTCN2021090967-appb-100007
    表示第u原始信号的估计,
    Figure PCTCN2021090967-appb-100008
    表示第u预编码信号的第i维的共轭,
    Figure PCTCN2021090967-appb-100009
    表示高维总接收信号,
    Figure PCTCN2021090967-appb-100010
    表示高维总接收信号的第i维,i=1,2,…,M。
  2. 如权利要求1所述的一种高维非正交传输方法,其特征在于,所述步骤2中第u预编码信号的第i维为:
    Figure PCTCN2021090967-appb-100011
    则第u预编码信号为:
    Figure PCTCN2021090967-appb-100012
    其中j表示虚数单位,L表示预编码层数,m k表示第k层预编码支路索引,预编码层数k、第k层预编码支路索引m k满足:
    1≤m k≤M k
    Figure PCTCN2021090967-appb-100013
    Figure PCTCN2021090967-appb-100014
    其中,M k表示第k层预编码支路数,Δf k表示第k层频率偏置量,其值在事先确定,其中k=1,2,…L,T表示偏置周期,其值为:
    Figure PCTCN2021090967-appb-100015
    其中gcd(Δf 1,Δf 2,…,Δf L)表示Δf 1,Δf 2,…,Δf L的最大公约数。
PCT/CN2021/090967 2020-11-11 2021-04-29 一种高维非正交传输方法 WO2022100027A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/033,372 US11936471B2 (en) 2020-11-11 2021-04-29 High-dimensional non-orthogonal transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011249750.4A CN112073156B (zh) 2020-11-11 2020-11-11 一种高维非正交传输方法
CN202011249750.4 2020-11-11

Publications (1)

Publication Number Publication Date
WO2022100027A1 true WO2022100027A1 (zh) 2022-05-19

Family

ID=73655057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090967 WO2022100027A1 (zh) 2020-11-11 2021-04-29 一种高维非正交传输方法

Country Status (3)

Country Link
US (1) US11936471B2 (zh)
CN (1) CN112073156B (zh)
WO (1) WO2022100027A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112073156B (zh) * 2020-11-11 2021-03-26 电子科技大学 一种高维非正交传输方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180269935A1 (en) * 2017-03-15 2018-09-20 National Tsing Hua University Joint power allocation, precoding, and decoding method and base station thereof
CN110365377A (zh) * 2019-07-15 2019-10-22 电子科技大学 多天线空分多址和scma非正交多址结合的下行传输方法
CN112019464A (zh) * 2020-11-02 2020-12-01 电子科技大学 一种高维信号传输方法
CN112073156A (zh) * 2020-11-11 2020-12-11 电子科技大学 一种高维非正交传输方法
CN112104582A (zh) * 2020-11-09 2020-12-18 电子科技大学 I/q域调制方法、双域调制方法和多址通信方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1737176A1 (en) * 2005-06-20 2006-12-27 NTT DoCoMo, Inc. Signalling for allocation of a communication link in a MIMO system
CN107925451B (zh) * 2015-07-23 2021-10-15 Lg 电子株式会社 多天线无线通信系统中的基于码本的信号发送/接收方法及其设备
CN108352870B (zh) * 2015-11-04 2021-07-27 瑞典爱立信有限公司 对从天线阵列的传输进行预编码的方法和发送无线电节点
CN107094124B (zh) * 2016-02-18 2020-02-14 北京信威通信技术股份有限公司 一种下行多用户多天线数据传输方法、装置及系统
EP3439218B1 (en) * 2016-03-27 2021-01-13 LG Electronics Inc. -1- Method for transmitting and receiving uplink demodulation reference signal in wireless communication system, and apparatus therefor
US10063295B2 (en) * 2016-04-01 2018-08-28 Cohere Technologies, Inc. Tomlinson-Harashima precoding in an OTFS communication system
CN106160816B (zh) * 2016-06-21 2019-11-12 东南大学 大规模mimo系统中实现完美全向预编码的同步信号和信号的发送与接收方法
US10771205B2 (en) * 2016-08-12 2020-09-08 Lg Electronics Inc. Method and device for performing communication by using non-orthogonal code multiple access scheme in wireless communication system
US10333595B2 (en) * 2017-02-21 2019-06-25 Qualcomm Incorporated Reference signal and Tx/Rx precoding for UE multiplexing in NR SS
CN106936485B (zh) * 2017-04-05 2020-06-16 浙江大学 一种针对大规模mimo多播系统的混合预编码设计方法
WO2019157230A1 (en) * 2018-02-08 2019-08-15 Cohere Technologies, Inc. Aspects of channel estimation for orthogonal time frequency space modulation for wireless communications
WO2021062354A1 (en) * 2019-09-26 2021-04-01 Cohere Technologies, Inc. Multi-layer multi-beam communication systems
WO2021203243A1 (zh) * 2020-04-07 2021-10-14 东莞理工学院 基于人工智能的mimo多天线信号传输与检测技术
CN111917444B (zh) * 2020-08-11 2022-02-11 西安科技大学 一种适用于毫米波mimo-noma系统的资源分配方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180269935A1 (en) * 2017-03-15 2018-09-20 National Tsing Hua University Joint power allocation, precoding, and decoding method and base station thereof
CN110365377A (zh) * 2019-07-15 2019-10-22 电子科技大学 多天线空分多址和scma非正交多址结合的下行传输方法
CN112019464A (zh) * 2020-11-02 2020-12-01 电子科技大学 一种高维信号传输方法
CN112104582A (zh) * 2020-11-09 2020-12-18 电子科技大学 I/q域调制方法、双域调制方法和多址通信方法
CN112073156A (zh) * 2020-11-11 2020-12-11 电子科技大学 一种高维非正交传输方法

Also Published As

Publication number Publication date
CN112073156A (zh) 2020-12-11
CN112073156B (zh) 2021-03-26
US11936471B2 (en) 2024-03-19
US20230403097A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
Yuan et al. Data-aided channel estimation for OTFS systems with a superimposed pilot and data transmission scheme
Li et al. Diversity enhancing multiple-mode OFDM with index modulation
CN105915472B (zh) 基于人工噪声的协作网络中功率分配方法
CN106357311B (zh) 一种基于载波索引调制的mimo-ofdm系统的检测方法
CN109687897B (zh) 基于深度学习大规模mimo系统的叠加csi反馈方法
CN109391292A (zh) 加权分数傅里叶变换域双时隙分集与复用的协同传输方法
WO2013063891A1 (zh) 一种上行解调参考信号的资源配置方法及系统
Li et al. Space-time multiple-mode orthogonal frequency division multiplexing with index modulation
CN114342279A (zh) 使用具有物理层安全性的幺正编织分割复用(ubdm)的通信系统和方法
CN105591717A (zh) 用于载波索引调制的mimo-ofdm系统的低复杂度检测方法
CN106161328A (zh) 基于载波索引调制的mimo‑ofdm系统的检测方法
Li et al. Channel estimation and multipath diversity reception for RIS-empowered broadband wireless systems based on cyclic-prefixed single-carrier transmission
WO2014015726A1 (zh) 导频信号发送方法和装置
WO2022100027A1 (zh) 一种高维非正交传输方法
TWI691176B (zh) 在基於多重輸入多重輸出系統中用於適應性空間分集的裝置及方法
Adhikary et al. Constructions of cross Z-complementary pairs with new lengths
WO2022088636A1 (zh) 一种高维信号传输方法
CN112104585B (zh) 依赖于空间位置的相位域调制方法
CN101286754A (zh) 获取信道信息的方法、通信设备
CN110381003A (zh) Scma-ofdm系统中的针对峰均比抑制的多用户信号检测方法
CN104092516A (zh) 一种适用于mu-mimo系统的非正交预编码码本设计方法
CN102694587B (zh) 一种用于sm-ofdm系统中的非相干检测方法
CN104601233B (zh) 基于载波分配与ica算法的mimo可见光通信方法
CN109802903B (zh) 基于全双工信号对消的物理层安全传输方法
Pan et al. Spatial modulation aided cooperative NOMA: Implementation and achievable rate analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890562

Country of ref document: EP

Kind code of ref document: A1