WO2022099855A1 - 电机故障监测装置、驱动电机系统和电机故障监测方法 - Google Patents

电机故障监测装置、驱动电机系统和电机故障监测方法 Download PDF

Info

Publication number
WO2022099855A1
WO2022099855A1 PCT/CN2020/137300 CN2020137300W WO2022099855A1 WO 2022099855 A1 WO2022099855 A1 WO 2022099855A1 CN 2020137300 W CN2020137300 W CN 2020137300W WO 2022099855 A1 WO2022099855 A1 WO 2022099855A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
fault
drive motor
spectrum
operation data
Prior art date
Application number
PCT/CN2020/137300
Other languages
English (en)
French (fr)
Inventor
刘凯深
李守哲
邢海平
毛竹青
刘伟韦
李亮
赵大伟
张君
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Priority to CA3157735A priority Critical patent/CA3157735A1/en
Publication of WO2022099855A1 publication Critical patent/WO2022099855A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics

Definitions

  • the invention relates to equipment used in the field of oilfield operations, in particular, to a motor fault monitoring device, a driving motor system and a motor fault monitoring method used in the field of driving motors.
  • electric drive equipment can be used in engineering operations such as electric drive fracturing, electric drive mixing, electric drive sand mixing, and electric drive sand transportation.
  • Electrically driven equipment usually includes a motor to provide power, and each motor is usually equipped with its own frequency converter (VFD, also commonly referred to as the motor's drive unit), where the VFD drives by regulating the frequency and voltage of the power source motor.
  • VFD includes a rectifier, an inverter and a control circuit, wherein the control circuit detects the operating states of the inverter and the rectifier, and controls the inverter's input to the motor to protect the electrical components of the circuit, such as the motor, etc.
  • the control circuit of the VFD can monitor the current, voltage and other parameters of the motor, and when these parameters are not within the pre-defined normal threshold range, an alarm is triggered and the power supply circuit is cut off.
  • the purpose of the present invention is to provide a motor fault monitoring device and a motor control system for the electric drive equipment used in the well site.
  • the material and vibration conditions in the special use environment are more complicated, which will cause some components to fail easily after a period of time, and finally the electric drive equipment has to be shut down. It causes a great loss of time and manpower. Therefore, it is necessary to carry out fault monitoring, fault judgment and fault prompting for the electric drive equipment used in the well site, so as to provide the necessary prompts for the engineers to repair the electric drive equipment in advance.
  • the motor fault monitoring device disclosed in the present invention can not only monitor the electrical state of the motor (whether the voltage, current, etc. are normal), but also monitor the state of the mechanical components of the motor (such as bearings, bases, etc.), and the motor control system can correspond to these states. control the motor.
  • a motor fault monitoring device for monitoring the fault of a driving motor for oilfield operations, comprising:
  • a signal acquisition module configured to acquire operation data of the drive motor, wherein the signal acquisition module includes a vibration signal acquisition unit and/or an electrical signal acquisition unit, and the vibration signal acquisition unit includes one or more vibration sensors , for detecting the lateral vibration and/or vertical vibration of the component to be detected of the drive motor, and/or, the electrical signal acquisition unit includes a voltage sensor and a current sensor for detecting the voltage and current of the drive motor ;
  • a data storage module which stores the normal operation data spectrum library of the drive motor during normal operation
  • a signal analysis module wherein the signal analysis module extracts the collected operation data spectrum of the collected operation data, and compares the similarity of the collected operation data spectrum with the normal operation data spectrum corresponding to the normal operation data spectrum library, It is judged whether the similarity is lower than a predetermined threshold, and when the similarity is lower than the predetermined threshold, it is judged that the driving motor has a result of failure.
  • the data storage module also stores a fault spectrum library of the drive motor running under different fault types
  • the motor fault monitoring device further includes a fault diagnosis module, wherein the signal analysis module determines the fault spectrum.
  • the fault diagnosis module compares the collected operating data spectrum with the fault spectrum in the fault spectrum library, and diagnoses the fault type of the drive motor.
  • the data storage module is updated with the operating data of the driving motor and/or the collected operating data spectrum.
  • the data storage module uses the collected operating data spectrum to expand the normal operation data spectrum library when the driving motor is not faulty, and uses the collected operating data spectrum when the driving motor is faulty.
  • the operating data spectrum augments the faulty spectrum library.
  • the motor failure monitoring device has an alarm mechanism, wherein the alarm mechanism issues a failure alarm when the motor failure monitoring device determines that the drive motor is faulty.
  • the component to be tested includes a bearing and a base of the drive motor.
  • the present invention further discloses a drive motor system, including: a drive motor, a frequency converter for adjusting the input current of the drive motor, and a controller, wherein the system further includes the drive motor according to any embodiment of the present invention.
  • the controller controls the frequency converter to control the frequency converter when one of the frequency converter and the motor fault monitoring device detects that the driving motor is faulty. Cut off the input current of the drive motor.
  • the present invention also relates to a motor fault monitoring method for monitoring the fault of a driving motor for oilfield operations, wherein the following steps are included:
  • the operation data includes lateral vibration and/or vertical vibration signals of the component to be detected of the drive motor, and/or voltage and current signals of the drive motor;
  • the motor fault monitoring method further includes the following steps:
  • the motor fault monitoring method further includes the following steps:
  • the operation data of the driving motor is stored and/or the frequency spectrum of the operation data is collected.
  • the motor fault monitoring method further includes the following steps:
  • the normal operation data spectrum library is augmented with the collected operating data spectrum when the drive motor is not faulty, and the fault spectrum library is augmented with the collected operating data spectrum when the drive motor is faulty .
  • FIG. 1 schematically shows a motor fault monitoring device according to an embodiment of the present invention
  • Fig. 2 schematically shows a motor fault monitoring device according to another embodiment of the present invention
  • FIG. 3 exemplarily shows a motor fault monitoring method according to another embodiment of the present invention.
  • FIG. 4 exemplarily shows a motor fault monitoring method according to another embodiment of the present invention.
  • FIG. 1 schematically shows a modular structure diagram of a motor fault monitoring device 10 disclosed according to an embodiment of the present invention.
  • the motor fault monitoring device 10 includes a signal acquisition module 1, a data storage module 2 and a signal analysis module.
  • the signal acquisition module 1 is responsible for collecting the operation data of the driving motor during operation when in use. These operating data include electrical signals of the drive motor, ie current and voltage signals, and/or vibration signals of the components to be detected that drive the motor.
  • the signal acquisition module 1 may comprise an electrical signal acquisition unit 12 and/or a vibration signal acquisition unit 11 , wherein the electrical signal acquisition unit 12 can for example comprise voltage sensors and current sensors, which can be as known in the art When in use, it is installed at a suitable position of the drive motor to detect and collect the voltage signal and current signal of the drive motor.
  • the vibration signal acquisition unit 11 may include one or more vibration sensors, wherein, depending on the component to be detected by the drive motor and the vibration direction to be detected, the vibration sensor may be installed at the component to be detected during use, and further In other words, the vibration sensor is installed at the part to be inspected in a specific direction, so that the vibration sensor can detect the vibration signal of the part to be inspected in the specific direction collected by the driving motor.
  • the vibration signal acquisition unit 11 mainly acquires the lateral and vertical vibrations of the components to be detected.
  • transverse refers to a direction parallel to the installation plane of the motor and perpendicular to the longitudinal axis of the motor
  • vertical refers to a direction perpendicular to the installation plane of the motor And perpendicular to the direction of the longitudinal axis of the motor.
  • the vibration sensor of the vibration signal acquisition unit 11 may be installed at the bearing of the drive motor, at the base of the drive motor, depending on the component concerned and to be detected, so as to detect and collect the bearing of the drive motor.
  • the vibration of the base and the base can be used to determine whether there are abnormal bearings, loose bearings, damaged bearings, and loose feet of the base.
  • the vibration signal acquisition unit includes, for example, the vibration sensor installed at the bearing of the drive motor and the vibration sensor installed at the base of the drive motor, the vibration sensor is different depending on the components to be detected and concerned. It can also be installed at other parts of the drive motor, which all fall within the scope of the present invention.
  • the data storage module 2 of the motor fault monitoring device 10 stores the normal operation data spectrum library 21 of the driving motor in normal operation.
  • the normal operation data spectrum library 21 includes the normal operation of the driving motor under different working conditions.
  • the operating data spectrum such as the lateral vibration signal spectrum, vertical vibration signal spectrum, voltage signal spectrum or current signal spectrum of the component to be detected, etc.
  • the signal analysis module 3 of the motor fault monitoring device 10 can process and analyze the operation data collected by the signal collection module 1 during use, extract the collected operation data spectrum of the collected operation data, and compare it with the normal operation data spectrum library. The corresponding normal operation data spectrum is compared, and the similarity between the two is obtained.
  • the signal analysis module determines that the drive motor is faulty when the similarity between the two is lower than a predetermined threshold.
  • the signal acquisition module 1 collects the current and voltage signals of the drive motor and the lateral and vertical vibration signals at the bearing when the drive motor is running under a certain working condition, then the signal analysis module will extract the frequency spectrum of these signals and analyze the It is compared with the normal current and voltage signal spectrum and the lateral and vertical vibration signal spectrum at the bearing under the corresponding working conditions, and the similarity between the two is obtained. If the similarity between the two is lower than the predetermined threshold, then It is determined that the drive motor is faulty.
  • the predetermined threshold value described above may be defined according to factors such as the use state of the drive motor.
  • FIG. 2 schematically shows a motor fault monitoring device 10' according to another embodiment of the present invention.
  • the following content only describes the differences between the embodiment represented in FIG. 2 and the embodiment in FIG. 1 .
  • the reference numerals referred to in FIG. 2 are added with a superscript “'” relative to FIG. 1 .
  • the motor fault monitoring device 10 ′ in addition to the modules shown in FIG. 1 , the motor fault monitoring device 10 ′ further includes a fault diagnosis module 4 ′. Specifically, the fault diagnosis module 4 ′ determines that the driving motor is faulty in the signal analysis module. In the case of failure, the fault type of the drive motor will be further judged.
  • the data storage module 2' also stores the fault spectrum database 22' of the driving motor operating under different fault types, and the fault diagnosis module 4' compares The operating data spectrum and the fault spectrum in the fault spectrum library are collected, and the fault type of the driving motor is diagnosed.
  • the fault spectrum library 22 ′ stored in the data storage module 2 ′ contains at least the characteristic spectrum of the operating data of the drive motor when the drive motor fails under different working conditions, such as loose bearings and loose bases of the drive motor under different working conditions. Or the characteristic spectrum under fault conditions such as loose stator coil and inter-turn short circuit of stator winding.
  • the fault diagnosis module 4' compares the collected operating data spectrum with these fault spectrums, thereby obtaining the fault spectrum most corresponding to the collected operating data spectrum, thereby judging the specific fault type of the drive motor.
  • the data storage module 2, 2' is also capable of storing the operating data of the drive motor and/or collecting the operating data spectrum when in use. These frequency spectra can be stored in the local memory or the remote memory of the data storage modules 2 and 2', and these storage methods can adopt the existing storage technology in the related field.
  • the data storage module 2, 2' can also use the stored operating data of the driving motor and/or collect the operating data spectrum to the library data stored therein, that is, the normal Run the data spectrum library and the fault spectrum library to update and expand.
  • the data storage modules 2, 2' use the collected operating data spectrum to expand and update the normal operating data spectrum database when the driving motor is not faulty, and use the collected operating data when the driving motor is faulty.
  • the data spectrum expansion updates the fault spectrum database, and more specifically, the collected operation data spectrum is classified according to the fault category to which it belongs.
  • the motor fault monitoring device 10, 10' may further include an alarm mechanism, which may issue an alarm based on the fault determined by the motor fault monitoring device 10, 10', and further may be based on The corresponding fault alarm is issued according to the type of fault, for example, the alarm light is turned on, the alarm sound is sounded, or the alarm information is displayed.
  • an alarm mechanism which may issue an alarm based on the fault determined by the motor fault monitoring device 10, 10', and further may be based on The corresponding fault alarm is issued according to the type of fault, for example, the alarm light is turned on, the alarm sound is sounded, or the alarm information is displayed.
  • the invention also discloses a drive motor system, which includes a drive motor, a frequency converter capable of adjusting the current and voltage of the drive motor, or also referred to as a drive unit, a motor fault monitoring device and a controller, wherein the motor fault monitoring device is in accordance with the present invention
  • the motor fault monitoring device 10, 10' of any of the embodiments is constructed.
  • the controller controls the drive motor based on the drive motor fault information obtained by the motor fault monitoring devices 10 and 10', that is, whether the drive motor has a fault and/or the type of fault of the drive motor, for example, in certain fault conditions, Control the drive motor to stop.
  • the frequency converter can monitor the current and voltage of the driving motor as in the prior art, but since the motor fault monitoring device already exists in the present invention, the frequency converter can also not control the driving motor. Current and voltage are monitored and only controlled by the controller to regulate the input current of the drive motor.
  • the frequency converter is configured as a frequency converter commonly used in driving motors in the related art, which may include a rectifier, an inverter, and a control circuit assembly that detects the current and voltage of the driving motor and regulates the input current of the driving motor Wait.
  • the controller controls the inverter to adjust the input current and voltage of the drive motor based on the fault condition of the drive motor determined by the motor fault monitoring devices 10 and 10 ′.
  • the controller detects an electrical signal fault (not in the frequency converter and one of the motor fault monitoring devices 10 and 10 ′).
  • the control inverter will cut off the input current of the drive motor. That is to say, if one of the voltage sensor and the current sensor in the inverter or the motor fault monitoring device fails and cannot detect the voltage and current fault, the controller can also safely cut off the input current of the driving motor, instead of One of the monitoring results to control. This redundant judgment method avoids the shortcoming of misjudging the fault of the drive motor due to the circuit fault in the frequency converter.
  • FIG. 3 exemplarily shows the step flow of the motor fault monitoring method disclosed in the present invention.
  • the motor fault monitoring method involved here is especially used for monitoring the fault of the driving motor of oilfield operation, which includes the following steps:
  • S101 Collect the operation data of the drive motor, wherein the operation data includes the lateral vibration and/or the vertical vibration signal of the component to be detected of the drive motor, and/or the electrical signal of the drive motor, that is, the voltage and current signals;
  • the lateral and vertical vibration signals at the bearing of the driving motor and the base of the driving motor can be collected, so that the vibration of the bearing and base of the driving motor can be detected and collected, and the vibration signals of the bearing and base of the driving motor can be detected and collected.
  • the vibration signals of the bearing and base of the driving motor can be detected and collected.
  • the collected operation data is processed and analyzed, and the collected operation data spectrum of the collected operation data is extracted.
  • S103 Compare the similarity between the collected operating data spectrum and the normal operating data spectrum in the previously stored normal operating data spectrum library of the driving motor, and when the similarity is lower than a predetermined threshold, determine that the driving motor There is a malfunction.
  • the normal operation data spectrum library of the normal operation of the drive motor is pre-stored.
  • the normal operation data spectrum library contains the operation data spectrum of the normal operation of the drive motor under different working conditions, such as the lateral direction of the component to be detected. Vibration signal spectrum, vertical vibration signal spectrum, voltage signal spectrum or current signal spectrum, etc.
  • the frequency spectrum of these signals will be extracted and compared with the corresponding working condition.
  • the normal current and voltage signal spectrum is compared with the lateral and vertical vibration signal spectrum at the bearing, and the similarity between the two is obtained. If the similarity between the two is lower than the predetermined threshold, it is judged that the drive motor is faulty.
  • the predetermined threshold value described above may be defined according to factors such as the use state of the drive motor.
  • FIG. 4 exemplarily shows a step flow of a motor fault monitoring method according to another embodiment of the present invention, wherein steps S201 to S203 are the same as the method steps represented in FIG. 3 , and are not repeated here.
  • the motor fault monitoring method shown in FIG. 4 also includes the following steps:
  • this step will further determine the fault type of the driving motor.
  • a fault spectrum library of the drive motor running under different fault types is also pre-stored, which at least contains the characteristic spectrum of the operating data of the drive motor when the drive motor fails under different working conditions, for example, the bearing of the drive motor under different working conditions Characteristic spectrum under fault conditions such as looseness, looseness of the base or looseness of the stator coil, short circuit between turns of the stator winding, etc.
  • the collected operating data spectrum is compared with these fault spectrums, so as to obtain the fault spectrum most corresponding to the collected operating data spectrum, so as to determine the specific fault type of the drive motor.
  • the motor fault monitoring method may further include the following steps:
  • the operation data of the driving motor is stored and/or the frequency spectrum of the operation data is collected.
  • the normal operation data spectrum database and the fault spectrum database can also be updated and expanded by using the stored operation data of the driving motor and/or the collected operation data spectrum.
  • the normal operation data spectrum database is expanded and updated by using the collected operation data spectrum
  • the fault spectrum library is updated by using the collected operation data spectrum expansion when the drive motor is faulty. They are classified according to the fault category they belong to.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

电机故障监测装置(10),用于油田作业的驱动电机,其包括:信号采集模块(1),构造为在使用时采集驱动电机的运行数据,其包括振动信号采集单元(11)和/或电信号采集单元(12),振动信号采集单元(11)包括一个或多个振动传感器,其在使用时安装在驱动电机的待检测部件处,用于检测横向振动和/或竖向振动,和/或,电信号采集单元(12)包括电压和电流传感器,用于检测驱动电机的电压和电流;数据存储模块(2),其中存储有驱动电机正常运行时的正常运行数据频谱库(21);及信号分析模块(3),其提取出采集的运行数据的采集运行数据频谱,并且比较其与正常运行数据频谱库(21)中对应的正常运行数据频谱的相似度,在相似度低于预先确定的阈值的情况下,判断出驱动电机存在故障。

Description

电机故障监测装置、驱动电机系统和电机故障监测方法 技术领域
本发明涉及油田作业领域所使用的设备,具体而言,涉及该领域中使用的驱动电机的电机故障监测装置、驱动电机系统和电机故障监测方法。
背景技术
目前,在油田作业领域,常常使用电驱设备。例如,电驱设备可以用在电驱压裂、电驱混配、电驱混砂、电驱输砂等工程作业中。电驱设备通常包括用来提供动力的电机,而每个电机通常都配备有自身的变频器(VFD,通常也称作电机的驱动单元),其中,VFD通过调节电力源的频率和电压来驱动电机。VFD包括整流器、逆变器和控制电路,其中,控制电路检测逆变器和整流器的运行状态,并控制逆变器对电机的输入,以保护电路的电器元件、例如电机等。VFD的控制电路可以对电机的电流、电压等参数进行监控,并且在这些参数不在预先限定的正常阈值范围内时触发报警,并切断供电电路。
发明内容
本发明的目的在于,为使用在井场中的电驱设备提供电机故障监测装置和电机控制系统。对于井场中使用的电驱设备,其由于特殊的使用环境中存在的物质和振动情况较为复杂,这会导致一些部件在一段时间后很容易发生故障,最后导致电驱设备不得不停机,而造成较大的时间损失和人力损失。因此,有必要对井场中所使用的电驱设备进行故障监测、故障判断以及故障提示,从而给工程人员提早提供必要的提示来对电驱设备进行检修。
本发明所公开的电机故障监测装置能够不仅监测电机的电气状态(电压、电流等是否正常),也能够监测电机的机械部件状态(例 如轴承、底座等),同时电机控制系统能够依据这些状态对应地控制电机。
根据本发明的第一方面,提供了一种电机故障监测装置,用于监测油田作业的驱动电机的故障,其包括:
信号采集模块,其被构造为采集所述驱动电机的运行数据,其中,所述信号采集模块包括振动信号采集单元和/或电信号采集单元,所述振动信号采集单元包括一个或多个振动传感器,用于检测所述驱动电机的待检测部件的横向振动和/或竖向振动,和/或,所述电信号采集单元包括电压传感器和电流传感器,用于检测所述驱动电机的电压和电流;
数据存储模块,其中存储有所述驱动电机正常运行时的正常运行数据频谱库;以及
信号分析模块,其中,所述信号分析模块提取出采集的运行数据的采集运行数据频谱,并且比较所述采集运行数据频谱与所述正常运行数据频谱库中对应的正常运行数据频谱的相似度,判断所述相似度是否低于预先确定的阈值,并且当在所述相似度低于所述预先确定的阈值的情况下,判断出所述驱动电机存在故障的结果。
可选地,数据存储模块中还存储有所述驱动电机在不同故障类型下运行的故障频谱库,并且所述电机故障监测装置还包括故障诊断模块,其中,在所述信号分析模块判断出所述驱动电机存在故障的情况下,所述故障诊断模块比较所述采集运行数据频谱与所述故障频谱库中的故障频谱,并且诊断出所述驱动电机的故障类型。
可选地,用所述驱动电机的运行数据和/或采集运行数据频谱来更新所述数据存储模块。
可选地,所述数据存储模块在所述驱动电机没有故障的情况下利用所述采集运行数据频谱扩充所述正常运行数据频谱库,以及在所述驱动电机存在故障的情况下利用所述采集运行数据频谱扩充所述故障频谱库。
可选地,所述电机故障监测装置具有报警机构,其中,所述报 警机构在所述电机故障监测装置判断出所述驱动电机故障的情况下发出故障警报。
可选地,所述待检测部件包括驱动电机的轴承和底座。
根据本发明的第二方面,本发明还公开了一种驱动电机系统,包括:驱动电机、用于调整驱动电机输入电流的变频器、控制器,其中,还包括按照本发明任一实施例所述的电机故障监测装置,其中,所述控制器基于所述电机故障监测装置的诊断结果控制所述变频器调整驱动电机的输入电流。
可选地,对于所述驱动电机的电信号,所述控制器在所述变频器和所述电机故障监测装置两者之一监测到所述驱动电机故障的情况下,控制所述变频器便切断所述驱动电机的输入电流。
根据本发明的第三方面,本发明还涉及电机故障监测方法,用于监测油田作业的驱动电机的故障,其中,包括以下步骤:
采集所述驱动电机的运行数据,其中,所述运行数据包括所述驱动电机的待检测部件的横向振动和/或竖向振动信号,和/或,所述驱动电机的电压和电流信号;
提取出采集的运行数据的采集运行数据频谱;以及
比较所述采集运行数据频谱与先前存储的、所述驱动电机的正常运行数据频谱库中对应的正常运行数据频谱的相似度,并且在所述相似度低于预先确定的阈值的情况下,判断出所述驱动电机存在故障。
可选地,电机故障监测方法还包括如下步骤:
在判断出所述驱动电机存在故障的情况下,比较所述采集运行数据频谱与先前存储的、所述驱动电机在不同故障类型下的故障频谱库中的故障频谱,并且诊断出所述驱动电机的故障类型。
可选地,电机故障监测方法还包括如下步骤:
存储所述驱动电机的运行数据和/或采集运行数据频谱。
可选地,电机故障监测方法还包括如下步骤:
在所述驱动电机没有故障的情况下利用所述采集运行数据频谱 扩充所述正常运行数据频谱库,并且在所述驱动电机存在故障的情况下利用所述采集运行数据频谱扩充所述故障频谱库。
附图说明
为了更好地理解本发明的上述及其他目的、特征、优点和功能,可以参考附图中所示的优选实施方式。附图中相同的附图标记指代相同的部件。本领域技术人员应该理解,附图旨在示意性地阐明本发明的优选实施方式,对本发明的范围没有任何限制作用,其中,
图1示意性地示出了按照本发明一种实施方式的电机故障监测装置;
图2示意性地示出了按照本发明另一种实施方式的电机故障监测装置;
图3示例性地示出了按照本发明另一种实施方式的电机故障监测方法;以及
图4示例性地示出了按照本发明另一种实施方式的电机故障监测方法。
附图标记清单:
10、10'  电机故障监测装置
1、1'    信号采集模块
11、11'  振动信号采集单元
12、12'  电信号采集单元
2、2'    数据存储模块
21、21'  正常运行数据频谱库
22'      故障频谱库
3、3'    信号分析模块
4、4'    故障诊断模块
具体实施方式
现在参考附图,详细描述本发明的具体实施方式。这里所描述的仅仅是根据本发明的优选实施方式,本领域技术人员可以在所述优选实施方式的基础上想到能够实现本发明的其他方式,所述其他方式同样落入本发明的范围。
本发明所公开的电机故障监测装置一般用于监测在油田作业中所使用的驱动电机的故障。参照图1,图1示意性地示出了按照本发明的一种实施例所公开的电机故障监测装置10的模块化的结构图。由图1能够看出,电机故障监测装置10包括信号采集模块1、数据存储模块2以及信号分析模块,具体而言,信号采集模块1在使用时负责采集驱动电机在运行过程中的运行数据,这些运行数据包括驱动电机的电信号、即电流电压信号和/或驱动电机的待检测部件的振动信号。为此,信号采集模块1可以包括电信号采集单元12和/或振动信号采集单元11,其中,电信号采集单元12例如能够包括电压传感器和电流传感器,其能够如现有技术中已知的那样在使用时安装在驱动电机的合适的位置处,以用来检测采集驱动电机的电压信号和电流信号。此外,振动信号采集单元11可以包括一个或多个振动传感器,其中,视驱动电机需要检测的部件和需要检测的振动方向的不同,振动传感器可以在使用时安装在待检测的部件处,进一步而言,按照特定的方向安装在待检测的部件处,由此,振动传感器可以检测采集到驱动电机的待检测部件在特定方向的振动信号。在此,在本发明的范围中,由于驱动电机的部件在故障时常常发生沿着横向方向和竖向方向的振动,振动信号采集单元11主要采集待检测部件的横向和竖向方向的振动。在此需要说明的是,在本发明的范围中,“横向”指的是平行于电机的安装平面且垂直于电机的纵轴线的方向,而“竖向”指的是垂直于电机的安装平面且垂直于电机的纵轴线的方向。例如,在本发明的范围中,依据所关注和要检测的部件不同,振动信号采集单元11的振动传感器可以安装在驱动电机的轴承处、驱动电机的底座处,从而能够检测采集驱动电机的轴承和底座的振动,用以后续判断是否发生轴承异常、轴承 松动、轴承损坏以及底座地脚松动等故障。
虽然上面描述了振动信号采集单元例如包括安装在所述驱动电机的轴承处的振动传感器和安装在所述驱动电机的底座处的振动传感器,但依据所需要检测和关注的部件的不同,振动传感器也可以安装在驱动电机的其他部件处,这些都落入本发明的保护范围。
电机故障监测装置10的数据存储模块2中存储有所述驱动电机正常运行时的正常运行数据频谱库21,具体而言,正常运行数据频谱库21中包含该驱动电机在不同工况下正常运行的运行数据频谱、例如待检测部件的横向振动信号频谱、竖向振动信号频谱、电压信号频谱或者电流信号频谱等。
电机故障监测装置10的信号分析模块3在使用中能够对信号采集模块1采集到的运行数据进行处理分析,提取出采集的运行数据的采集运行数据频谱,并且将其与正常运行数据频谱库中对应的正常运行数据频谱进行比较,得出两者的相似度。在此,信号分析模块在两者的相似度低于预先确定的阈值的情况下,判断出所述驱动电机存在故障。具体而言,例如,信号采集模块1采集到了驱动电机在某一工况下运行时的电流电压信号和轴承处的横向和竖向振动信号,那么信号分析模块会提取出这些信号的频谱并且将其与在对应的工况下正常的电流电压信号频谱和轴承处的横向和竖向振动信号频谱相对比,得出两者的相似程度,若两者的相似程度低于预先确定的阈值,则判断出驱动电机存在故障。在此,可以根据驱动电机的使用状态等因素来规定以上所述的预先确定的阈值。
图2示意性地示出了按照本发明的另一种实施方式的电机故障监测装置10'。在此,为了避免重复,以下内容仅仅描述图2所代表的实施方式与图1的实施方式的不同之处。同时,为了区分两个实施方式,图2所涉及到的附图标记在此相对于图1加上了上标“'”。如图2所示,除了图1所示出的模块之外,电机故障监测装置10'还包括故障诊断模块4',具体而言,故障诊断模块4'在信号分析模块判断出驱动电机有故障的情况下,会进一步判断出驱动电机的故障 类型。在此,对于该实施方式中的电机故障监测装置10',数据存储模块2'中还存储有所述驱动电机在不同故障类型下运行的故障频谱库22',而故障诊断模块4'会对比采集运行数据频谱与故障频谱库中的故障频谱,并且诊断出所述驱动电机的故障类型。具体而言,数据存储模块2'中存储的故障频谱库22'至少包含该驱动电机在不同工况下发生故障时的运行数据的特性频谱,例如驱动电机在不同工况下轴承松动、底座松动或者定子线圈松动、定子绕组匝间短路等故障情况下的特性频谱。对此,故障诊断模块4'会将采集运行数据频谱与这些故障频谱进行比对,从而得出与采集运行数据频谱最为对应的故障频谱,以此判断出驱动电机的具体故障类型。
可选地,在本发明的范围中,数据存储模块2、2'还能够在使用时存储驱动电机的运行数据和/或采集运行数据频谱。这些频谱可以存储在数据存储模块2、2'的本地存储器中或者远程存储器中,这些存储方式可以采用相关领域现有的存储技术。在这种情况下,可选地,在一些实施例中,数据存储模块2、2'还能够利用所存储的驱动电机的运行数据和/或采集运行数据频谱对其中存储的库数据、即正常运行数据频谱库和故障频谱库进行更新和扩充。具体而言,数据存储模块2、2'在所述驱动电机没有故障的情况下利用所述采集运行数据频谱扩充更新正常运行数据频谱库,而在所述驱动电机存在故障的情况下利用采集运行数据频谱扩充更新所述故障频谱库,更具体地,将采集运行数据频谱按照其所属的故障类别进行归类。
可选地,在本发明的一些实施例中,电机故障监测装置10、10'还可以包括报警机构,其可以基于电机故障监测装置10、10'所判断出的故障发出警报,进一步地可以依据故障类型发出对应的故障警报、例如亮警报灯、发出警报声或者显示警报信息等。
本发明还公开了驱动电机系统,其包括驱动电机、能够对驱动电机的电流电压进行调节的变频器或者也称作为驱动单元、电机故障监测装置和控制器,其中,电机故障监测装置按照本发明任一实施例的电机故障监测装置10、10'进行构造。控制器在使用时基于电 机故障监测装置10、10'得到的驱动电机故障信息、即驱动电机是否存在故障和/或驱动电机的故障类型来对驱动电机进行控制,例如在某些故障情况下,控制驱动电机停机。在此需要说明的是,变频器在这种情况下可以如现有技术中那样对驱动电机的电流和电压进行监测,但由于本发明已经存在电机故障监测装置,变频器也可以不对驱动电机的电流和电压进行监测,而仅仅受控制器的控制来调节驱动电机的输入电流。
此外,在本发明的范围内,变频器构造为在相关技术领域驱动电机常用的变频器,其可以包括整流器、逆变器以及检测驱动电机的电流电压以及调节驱动电机的输入电流的控制电路组件等。具体而言,控制器基于电机故障监测装置10、10'所判断出的驱动电机的故障情况来控制变频器调节驱动电机的输入电流电压。
可选地,在本发明的一些实施例中,对于所述驱动电机的电信号、即电流电压,控制器在变频器和电机故障监测装置10、10'之一监测到电信号故障(不处于正常的情况)的情况下,控制变频器便切断驱动电机的输入电流。也就是说,如果变频器或者电机故障监测装置中的电压传感器和电流传感器之一发生故障而无法监测出电压电流故障时时,控制器也能够安全地切断驱动电机的输入电流,而不会仅仅根据一者的监测结果做出控制。这种冗余判断的方式避免了由于变频器中的电路故障而导致对驱动电机的故障发生误判断的缺点。
图3示例性地示出了本发明所公开的电机故障监测方法的步骤流程。在此所涉及的电机故障监测方法尤其用于监测油田作业的驱动电机的故障,其包括以下步骤:
S101:采集驱动电机的运行数据,其中,运行数据包括驱动电机的待检测部件的横向振动和/或竖向振动信号,和/或,驱动电机的电信号、即电压电流信号;
如上所述,依据所关注和要检测的部件不同,可以采集在驱动电机的轴承处、驱动电机的底座处的横向和竖向振动信号,从而能 够检测采集驱动电机的轴承和底座的振动,用以后续判断是否发生轴承异常、轴承松动、轴承损坏以及基座地脚松动等故障。
S102:提取出采集的运行数据的采集运行数据频谱;
具体地,对所采集到的运行数据进行处理分析,提取出采集的运行数据的采集运行数据频谱。
S103:比较采集运行数据频谱与先前存储的、驱动电机的正常运行数据频谱库中的正常运行数据频谱的相似度,并且在相似度低于预先确定的阈值的情况下,判断出所述驱动电机存在故障。
具体地,预先存储有驱动电机正常运行时的正常运行数据频谱库,具体而言,正常运行数据频谱库中包含该驱动电机在不同工况下正常运行的运行数据频谱,例如待检测部件的横向振动信号频谱、竖向振动信号频谱、电压信号频谱或者电流信号频谱等。
也就是说,例如,采集到了驱动电机在某一工况下运行时的电流电压信号和轴承处的横向和竖向振动信号,那么会提取出这些信号的频谱并且将其与在对应的工况下正常的电流电压信号频谱和轴承处的横向和竖向振动信号频谱相对比,得出两者的相似程度,若两者的相似程度低于预先确定的阈值,则判断出驱动电机存在故障。在此,可以根据驱动电机的使用状态等因素来规定以上所述的预先确定的阈值。
图4示例性地示出了按照本发明的另一实施方式的电机故障监测方法的步骤流程,其中,步骤S201至步骤S203均与图3所代表的方法步骤相同,在此不再赘述。
此外,在图4所示出的电机故障监测方法中,还包括如下步骤:
S204:在判断出所述驱动电机存在故障的情况下,比较所述采集运行数据频谱与先前存储的、所述驱动电机在不同故障类型下的故障频谱库中的故障频谱,并且诊断出所述驱动电机的故障类型。
具体地,在判断出驱动电机有故障的情况下,该步骤会进一步判断出驱动电机的故障类型。在此,还预先存储有驱动电机在不同故障类型下运行的故障频谱库,其至少包含该驱动电机在不同工况 下发生故障时的运行数据的特性频谱、例如驱动电机在不同工况下轴承松动、底座松动或者定子线圈松动、定子绕组匝间短路等故障情况下的特性频谱。对此,将采集运行数据频谱与这些故障频谱进行比对,从而得出与采集运行数据频谱最为对应的故障频谱,以此判断出驱动电机的具体故障类型。
可选地,在本发明的一些实施例中,电机故障监测方法还可以包括如下步骤:
存储所述驱动电机的运行数据和/或采集运行数据频谱。
也就是说,还能够利用所存储的驱动电机的运行数据和/或采集运行数据频谱对正常运行数据频谱库和故障频谱库进行更新和扩充。在驱动电机没有故障的情况下利用采集运行数据频谱扩充更新正常运行数据频谱库,而在驱动电机存在故障的情况下利用采集运行数据频谱扩充更新故障频谱库,更具体地,将采集运行数据频谱按照其所属的故障类别进行归类。
本发明的多种实施方式的以上描述出于描述的目的提供给相关领域的普通技术人员。不意图将本发明排他或局限于单个公开的实施方式。如上,以上教导的领域中的普通技术人员将明白本发明的多种替代和变型。因此,虽然具体描述了一些替代实施方式,本领域普通技术人员将明白或相对容易地开发其他实施方式。本发明旨在包括这里描述的本发明的所有替代、改型和变型,以及落入以上描述的本发明的精神和范围内的其他实施方式。

Claims (12)

  1. 一种电机故障监测装置(10、10'),用于监测油田作业的驱动电机的故障,其特征在于,包括:
    信号采集模块(1、1'),其被构造为采集所述驱动电机的运行数据,其中,所述信号采集模块(1、1')包括振动信号采集单元(11、11')和/或电信号采集单元(12、12'),所述振动信号采集单元(11、11')包括一个或多个振动传感器,用于检测所述驱动电机的待检测部件的横向振动和/或竖向振动,和/或,所述电信号采集单元(12、12')包括电压传感器和电流传感器,用于检测所述驱动电机的电压和电流;
    数据存储模块(2、2'),其中存储有所述驱动电机正常运行时的正常运行数据频谱库(21、21');以及
    信号分析模块(3、3'),其中,所述信号分析模块(3、3')提取出采集的运行数据的采集运行数据频谱,并且比较所述采集运行数据频谱与所述正常运行数据频谱库中对应的正常运行数据频谱的相似度,判断所述相似度是否低于预先确定的阈值,并且当在所述相似度低于所述预先确定的阈值的情况下,判断出所述驱动电机存在故障的结果。
  2. 按照权利要求1所述的电机故障监测装置(10'),其特征在于,所述数据存储模块(2')中还存储有所述驱动电机在不同故障类型下运行的故障频谱库(22'),并且所述电机故障监测装置(10')还包括故障诊断模块(4'),其中,在所述信号分析模块(3')判断出所述驱动电机存在故障的情况下,所述故障诊断模块(4')比较所述采集运行数据频谱与所述故障频谱库中的故障频谱,并且诊断出所述驱动电机的故障类型。
  3. 按照权利要求2所述的电机故障监测装置(10'),其特征在于,用所述驱动电机的运行数据和/或采集运行数据频谱来更新所述 数据存储模块(2、2')。
  4. 按照权利要求3所述的电机故障监测装置(10'),其特征在于,所述数据存储模块(2、2')在所述驱动电机没有故障的情况下利用所述采集运行数据频谱扩充所述正常运行数据频谱库,以及在所述驱动电机存在故障的情况下利用所述采集运行数据频谱扩充所述故障频谱库。
  5. 按照权利要求1至4中任一项所述的电机故障监测装置(10、10'),其特征在于,所述电机故障监测装置(10、10')具有报警机构,其中,所述报警机构在所述电机故障监测装置(10、10')判断出所述驱动电机故障的情况下发出故障警报。
  6. 按照权利要求1所述的电机故障监测装置(10、10'),其特征在于,所述待检测部件包括驱动电机的轴承和底座。
  7. 驱动电机系统,包括:驱动电机、用于调整驱动电机输入电流的变频器和控制器,其特征在于,还包括按照权利要求1至6中任一项所述的电机故障监测装置(10、10'),其中,所述控制器基于所述电机故障监测装置(10、10')的诊断结果控制所述变频器调整驱动电机的输入电流。
  8. 按照权利要求7所述的驱动电机系统,其特征在于,对于所述驱动电机的电信号,所述控制器在所述变频器和所述电机故障监测装置(10、10')任一监测到所述驱动电机故障的情况下,控制所述变频器切断所述驱动电机的输入电流。
  9. 一种电机故障监测方法,用于监测油田作业的驱动电机的故障,其特征在于,包括以下步骤:
    采集所述驱动电机的运行数据,其中,所述运行数据包括所述驱动电机的待检测部件的横向振动和/或竖向振动信号,和/或,所述驱动电机的电压和电流信号(S101、S201);
    提取出采集的运行数据的采集运行数据频谱(S102、S202);以及
    比较所述采集运行数据频谱与先前存储的、所述驱动电机的正 常运行数据频谱库中对应的正常运行数据频谱的相似度,并且在所述相似度低于预先确定的阈值的情况下,判断出所述驱动电机存在故障(S103、S203)。
  10. 按照权利要求9所述的电机故障监测方法,其特征在于,还包括如下步骤:
    在判断出所述驱动电机存在故障的情况下,比较所述采集运行数据频谱与先前存储的、所述驱动电机在不同故障类型下的故障频谱库中的故障频谱,并且诊断出所述驱动电机的故障类型(S204)。
  11. 按照权利要求10所述的电机故障监测方法,其特征在于,还包括如下步骤:
    存储所述驱动电机的运行数据和/或采集运行数据频谱。
  12. 按照权利要求11所述的电机故障监测方法,其特征在于,还包括如下步骤:
    在所述驱动电机没有故障的情况下利用所述采集运行数据频谱扩充所述正常运行数据频谱库,并且在所述驱动电机存在故障的情况下利用所述采集运行数据频谱扩充所述故障频谱库。
PCT/CN2020/137300 2020-11-13 2020-12-17 电机故障监测装置、驱动电机系统和电机故障监测方法 WO2022099855A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3157735A CA3157735A1 (en) 2020-11-13 2020-12-17 Motor malfunction monitoring device, drive motor system and motor malfunction monitoring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011273318.9 2020-11-13
CN202011273318.9A CN112285561A (zh) 2020-11-13 2020-11-13 电机故障监测装置、驱动电机系统和电机故障监测方法

Publications (1)

Publication Number Publication Date
WO2022099855A1 true WO2022099855A1 (zh) 2022-05-19

Family

ID=74398572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137300 WO2022099855A1 (zh) 2020-11-13 2020-12-17 电机故障监测装置、驱动电机系统和电机故障监测方法

Country Status (3)

Country Link
CN (1) CN112285561A (zh)
CA (1) CA3157735A1 (zh)
WO (1) WO2022099855A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115015756A (zh) * 2022-07-14 2022-09-06 深圳市文浩科技有限公司 一种细碎融合的新材料混合机故障诊断方法
CN115062677A (zh) * 2022-08-19 2022-09-16 沃德传动(天津)股份有限公司 一种基于设备行为的智能故障诊断方法
CN115144751A (zh) * 2022-09-05 2022-10-04 西北工业大学 一种牵引电机故障诊断装置及方法
CN115598456A (zh) * 2022-11-29 2023-01-13 科瑞工业自动化系统(苏州)有限公司(Cn) 一种列车故障在线监测方法及系统
CN117607598A (zh) * 2023-12-12 2024-02-27 国网山东省电力公司莒县供电公司 一种基于声纹特征的变压器故障检测方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113379210B (zh) * 2021-05-31 2024-06-11 三一重型装备有限公司 电机的故障检测方法和装置、掘进机、可读存储介质
CN115795292B (zh) * 2022-10-20 2023-10-17 南京工大数控科技有限公司 一种基于LabVIEW的铣齿机主轴箱故障诊断系统及方法
CN118107389A (zh) * 2022-11-29 2024-05-31 蔚来动力科技(合肥)有限公司 检测电驱动系统故障的方法和装置、车辆、存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290776A1 (en) * 2009-03-23 2011-03-02 Abb Ag Thermal overload relay with voltage-based protection features
CN103456141A (zh) * 2013-08-23 2013-12-18 国家电网公司 一种基于多维变量样本信息库的水电机组状态报警方法
CN103913193A (zh) * 2012-12-28 2014-07-09 中国科学院沈阳自动化研究所 一种基于工业无线技术的设备故障预维护方法
CN105352588A (zh) * 2015-09-08 2016-02-24 北京航空航天大学 无刷直流电机振动检测系统设计
CN107345857A (zh) * 2017-06-09 2017-11-14 昆明理工大学 一种电主轴状态监测与故障诊断系统及其监测诊断方法
CN109765484A (zh) * 2018-10-25 2019-05-17 青岛鹏海软件有限公司 基于“正确树”模型的电机在线监测和故障诊断方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290776A1 (en) * 2009-03-23 2011-03-02 Abb Ag Thermal overload relay with voltage-based protection features
CN103913193A (zh) * 2012-12-28 2014-07-09 中国科学院沈阳自动化研究所 一种基于工业无线技术的设备故障预维护方法
CN103456141A (zh) * 2013-08-23 2013-12-18 国家电网公司 一种基于多维变量样本信息库的水电机组状态报警方法
CN105352588A (zh) * 2015-09-08 2016-02-24 北京航空航天大学 无刷直流电机振动检测系统设计
CN107345857A (zh) * 2017-06-09 2017-11-14 昆明理工大学 一种电主轴状态监测与故障诊断系统及其监测诊断方法
CN109765484A (zh) * 2018-10-25 2019-05-17 青岛鹏海软件有限公司 基于“正确树”模型的电机在线监测和故障诊断方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115015756A (zh) * 2022-07-14 2022-09-06 深圳市文浩科技有限公司 一种细碎融合的新材料混合机故障诊断方法
CN115062677A (zh) * 2022-08-19 2022-09-16 沃德传动(天津)股份有限公司 一种基于设备行为的智能故障诊断方法
CN115062677B (zh) * 2022-08-19 2022-10-28 沃德传动(天津)股份有限公司 一种基于设备行为的智能故障诊断方法
CN115144751A (zh) * 2022-09-05 2022-10-04 西北工业大学 一种牵引电机故障诊断装置及方法
CN115144751B (zh) * 2022-09-05 2022-11-08 西北工业大学 一种牵引电机故障诊断装置及方法
CN115598456A (zh) * 2022-11-29 2023-01-13 科瑞工业自动化系统(苏州)有限公司(Cn) 一种列车故障在线监测方法及系统
CN115598456B (zh) * 2022-11-29 2023-07-04 科瑞工业自动化系统(苏州)有限公司 一种列车故障在线监测方法及系统
CN117607598A (zh) * 2023-12-12 2024-02-27 国网山东省电力公司莒县供电公司 一种基于声纹特征的变压器故障检测方法及系统

Also Published As

Publication number Publication date
CA3157735A1 (en) 2022-05-13
CN112285561A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2022099855A1 (zh) 电机故障监测装置、驱动电机系统和电机故障监测方法
US20220155373A1 (en) Motor malfunction monitoring device, drive motor system and motor malfunction monitoring method
US11885667B2 (en) Systems and methods for monitoring of mechanical and electrical machines
JP5875734B2 (ja) 電動機の診断装置および開閉装置
US9910093B2 (en) Generator neutral ground monitoring device utilizing direct current component measurement and analysis
CN102968113A (zh) 一种发电机励磁系统故障分析及展示方法
CN114576152B (zh) 水泵状态监测系统、监测方法、装置、电子设备和介质
KR101843365B1 (ko) 규칙 및 사례 기반 통합 진단 시스템 및 데이터베이스
KR102208830B1 (ko) 모터펌프의 모니터링 장치 및 방법
CN105548884B (zh) 一种电机测试方法
CN115699490A (zh) 开路故障的自诊断方法、计算机化调查系统和模块化逆变器
Leonidovich et al. The development and use of diagnostic systems and estimation of residual life in industrial electrical equipment
CN105024595A (zh) 一种无刷直流电机故障监控方法及装置
US20200348363A1 (en) System and methods for fault detection
CA2847923C (en) Process for monitoring at least one machine tool
US20180087489A1 (en) Method for windmill farm monitoring
CN115943353A (zh) 用于确定机器的运行异常的原因的系统和方法以及计算机程序和电子可读的数据载体
KR102238614B1 (ko) 기계 또는 기기의 오작동 발생 상황 저장 장치 및 그에 의한 저장 방법
CN107168280B (zh) 电动车控制器调测系统、电动车控制器调测方法
CN105738805A (zh) 数据分析方法及装置
JP3457413B2 (ja) 回転機械の診断装置
RU2814856C1 (ru) Система мониторинга и диагностирования состояния турбогенератора
KR102124782B1 (ko) 풍력발전부를 이용한 냉각팬 진단시스템
Strangas et al. Failure prognosis methods in electrical drives-State of the art and future directions
KR20240031892A (ko) 입력전류, 진동, 및 온도에 대한 센싱 결과를 이용하여 3상 모터의 고장을 진단하는 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961408

Country of ref document: EP

Kind code of ref document: A1